Sample records for absorbed dose calibrations

  1. Simplified method for creating a density-absorbed dose calibration curve for the low dose range from Gafchromic EBT3 film.

    PubMed

    Gotanda, Tatsuhiro; Katsuda, Toshizo; Gotanda, Rumi; Kuwano, Tadao; Akagawa, Takuya; Tanki, Nobuyoshi; Tabuchi, Akihiko; Shimono, Tetsunori; Kawaji, Yasuyuki

    2016-01-01

    Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were -32.336 and -33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range.

  2. Simplified method for creating a density-absorbed dose calibration curve for the low dose range from Gafchromic EBT3 film

    PubMed Central

    Gotanda, Tatsuhiro; Katsuda, Toshizo; Gotanda, Rumi; Kuwano, Tadao; Akagawa, Takuya; Tanki, Nobuyoshi; Tabuchi, Akihiko; Shimono, Tetsunori; Kawaji, Yasuyuki

    2016-01-01

    Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were −32.336 and −33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range. PMID:28144120

  3. Estimation of absorbed dose in clinical radiotherapy linear accelerator beams: Effect of ion chamber calibration and long-term stability

    PubMed Central

    Ravichandran, Ramamoorthy; Binukumar, Johnson Pichy; Davis, Cheriyathmanjiyil Antony

    2013-01-01

    The measured dose in water at reference point in phantom is a primary parameter for planning the treatment monitor units (MU); both in conventional and intensity modulated/image guided treatments. Traceability of dose accuracy therefore still depends mainly on the calibration factor of the ion chamber/dosimeter provided by the accredited Secondary Standard Dosimetry Laboratories (SSDLs), under International Atomic Energy Agency (IAEA) network of laboratories. The data related to Nd,water calibrations, thermoluminescent dosimetry (TLD) postal dose validation, inter-comparison of different dosimeter/electrometers, and validity of Nd,water calibrations obtained from different calibration laboratories were analyzed to find out the extent of accuracy achievable. Nd,w factors in Gray/Coulomb calibrated at IBA, GmBH, Germany showed a mean variation of about 0.2% increase per year in three Farmer chambers, in three subsequent calibrations. Another ion chamber calibrated in different accredited laboratory (PTW, Germany) showed consistent Nd,w for 9 years period. The Strontium-90 beta check source response indicated long-term stability of the ion chambers within 1% for three chambers. Results of IAEA postal TL “dose intercomparison” for three photon beams, 6 MV (two) and 15 MV (one), agreed well within our reported doses, with mean deviation of 0.03% (SD 0.87%) (n = 9). All the chamber/electrometer calibrated by a single SSDL realized absorbed doses in water within 0.13% standard deviations. However, about 1-2% differences in absorbed dose estimates observed when dosimeters calibrated from different calibration laboratories are compared in solid phantoms. Our data therefore imply that the dosimetry level maintained for clinical use of linear accelerator photon beams are within recommended levels of accuracy, and uncertainties are within reported values. PMID:24672156

  4. Study of Fricke-gel dosimeter calibration for attaining precise measurements of the absorbed dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liosi, Giulia Maria; Benedini, Sara; Giacobbo, Francesca

    2015-07-01

    A method has been studied for attaining, with good precision, absolute measurements of the spatial distribution of the absorbed dose by means of the Fricke gelatin Xylenol Orange dosimetric system. With this aim, the dose response to subsequent irradiations was analyzed. In fact, the proposed modality is based on a pre-irradiation of each single dosimeter in a uniform field with a known dose, in order to extrapolate a calibration image for a subsequent non-uniform irradiation with an un-known dose to be measured. (authors)

  5. Determination of absorbed dose to water around a clinical HDR {sup 192}Ir source using LiF:Mg,Ti TLDs demonstrates an LET dependence of detector response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsson Tedgren, Aasa; Elia, Rouba; Hedtjaern, Haakan

    2012-02-15

    Purpose: Experimental radiation dosimetry with thermoluminescent dosimeters (TLDs), calibrated in a {sup 60}Co or megavoltage (MV) photon beam, is recommended by AAPM TG-43U1for verification of Monte Carlo calculated absorbed doses around brachytherapy sources. However, it has been shown by Carlsson Tedgren et al.[Med. Phys. 38, 5539-5550 (2011)] that for TLDs of LiF:Mg,Ti, detector response was 4% higher in a {sup 137}Cs beam than in a {sup 60}Co one. The aim of this work was to investigate if similar over-response exists when measuring absorbed dose to water around {sup 192}Ir sources, using LiF:Mg,Ti dosimeters calibrated in a 6 MV photon beam.more » Methods: LiF dosimeters were calibrated to measure absorbed dose to water in a 6 MV photon beam and used to measure absorbed dose to water at distances of 3, 5, and 7 cm from a clinical high dose rate (HDR) {sup 192}Ir source in a polymethylmethacrylate (PMMA) phantom. Measured values were compared to values of absorbed dose to water calculated using a treatment planning system (TPS) including corrections for the difference in energy absorption properties between calibration quality and the quality in the users'{sup 192}Ir beam and for the use of a PMMA phantom instead of the water phantom underlying dose calculations in the TPS. Results: Measured absorbed doses to water around the {sup 192}Ir source were overestimated by 5% compared to those calculated by the TPS. Corresponding absorbed doses to water measured in a previous work with lithium formate electron paramagnetic resonance (EPR) dosimeters by Antonovic et al. [Med. Phys. 36, 2236-2247 (2009)], using the same irradiation setup and calibration procedure as in this work, were 2% lower than those calculated by the TPS. The results obtained in the measurements in this work and those obtained using the EPR lithium formate dosimeters were, within the expanded (k = 2) uncertainty, in agreement with the values derived by the TPS. The discrepancy between the results using LiF:Mg,Ti TLDs and the EPR lithium formate dosimeters was, however, statistically significant and in agreement with the difference in relative detector responses found for the two detector systems by Carlsson Tedgren et al. [Med. Phys. 38, 5539-5550 (2011)] and by Adolfsson et al.[Med. Phys. 37, 4946-4959 (2010)]. Conclusions: When calibrated in {sup 60}Co or MV photon beams, correction for the linear energy transfer (LET) dependence of LiF:Mg,Ti detector response will be needed as to measure absorbed doses to water in a {sup 192}Ir beam with highest accuracy. Such corrections will depend on the manufacturing process (MTS-N Poland or Harshaw TLD-100) and details of the annealing and read-out schemes used.« less

  6. Determination of absorbed dose to water around a clinical HDR (192)Ir source using LiF:Mg,Ti TLDs demonstrates an LET dependence of detector response.

    PubMed

    Carlsson Tedgren, Asa; Elia, Rouba; Hedtjarn, Hakan; Olsson, Sara; Alm Carlsson, Gudrun

    2012-02-01

    Experimental radiation dosimetry with thermoluminescent dosimeters (TLDs), calibrated in a (60)Co or megavoltage (MV) photon beam, is recommended by AAPM TG-43U1for verification of Monte Carlo calculated absorbed doses around brachytherapy sources. However, it has been shown by Carlsson Tedgren et al. [Med. Phys. 38, 5539-5550 (2011)] that for TLDs of LiF:Mg,Ti, detector response was 4% higher in a (137)Cs beam than in a (60)Co one. The aim of this work was to investigate if similar over-response exists when measuring absorbed dose to water around (192)Ir sources, using LiF:Mg,Ti dosimeters calibrated in a 6 MV photon beam. LiF dosimeters were calibrated to measure absorbed dose to water in a 6 MV photon beam and used to measure absorbed dose to water at distances of 3, 5, and 7 cm from a clinical high dose rate (HDR) (192)Ir source in a polymethylmethacrylate (PMMA) phantom. Measured values were compared to values of absorbed dose to water calculated using a treatment planning system (TPS) including corrections for the difference in energy absorption properties between calibration quality and the quality in the users' (192)Ir beam and for the use of a PMMA phantom instead of the water phantom underlying dose calculations in the TPS. Measured absorbed doses to water around the (192)Ir source were overestimated by 5% compared to those calculated by the TPS. Corresponding absorbed doses to water measured in a previous work with lithium formate electron paramagnetic resonance (EPR) dosimeters by Antonovic et al. [Med. Phys. 36, 2236-2247 (2009)], using the same irradiation setup and calibration procedure as in this work, were 2% lower than those calculated by the TPS. The results obtained in the measurements in this work and those obtained using the EPR lithium formate dosimeters were, within the expanded (k = 2) uncertainty, in agreement with the values derived by the TPS. The discrepancy between the results using LiF:Mg,Ti TLDs and the EPR lithium formate dosimeters was, however, statistically significant and in agreement with the difference in relative detector responses found for the two detector systems by Carlsson Tedgren et al. [Med. Phys. 38, 5539-5550 (2011)] and by Adolfsson et al. [Med. Phys. 37, 4946-4959 (2010)]. When calibrated in (60)Co or MV photon beams, correction for the linear energy transfer (LET) dependence of LiF:Mg,Ti detector response will be needed as to measure absorbed doses to water in a (192)Ir beam with highest accuracy. Such corrections will depend on the manufacturing process (MTS-N Poland or Harshaw TLD-100) and details of the annealing and read-out schemes used.

  7. Evaluation of factors to convert absorbed dose calibrations from graphite to water for the NPL high-energy photon calibration service.

    PubMed

    Nutbrown, R F; Duane, S; Shipley, D R; Thomas, R A S

    2002-02-07

    The National Physical Laboratory (NPL) provides a high-energy photon calibration service using 4-19 MV x-rays and 60Co gamma-radiation for secondary standard dosemeters in terms of absorbed dose to water. The primary standard used for this service is a graphite calorimeter and so absorbed dose calibrations must be converted from graphite to water. The conversion factors currently in use were determined prior to the launch of this service in 1988. Since then, it has been found that the differences in inherent filtration between the NPL LINAC and typical clinical machines are large enough to affect absorbed dose calibrations and, since 1992, calibrations have been performed in heavily filtered qualities. The conversion factors for heavily filtered qualities were determined by interpolation and extrapolation of lightly filtered results as a function of tissue phantom ratio 20,10 (TPR20,10). This paper aims to evaluate these factors for all mega-voltage photon energies provided by the NPL LINAC for both lightly and heavily filtered qualities and for 60Co y-radiation in two ways. The first method involves the use of the photon fluence-scaling theorem. This states that if two blocks of different material are irradiated by the same photon beam, and if all dimensions are scaled in the inverse ratio of the electron densities of the two media, then, assuming that all photon interactions occur by Compton scatter the photon attenuation and scatter factors at corresponding scaled points of measurement in the phantom will be identical. The second method involves making in-phantom measurements of chamber response at a constant target-chamber distance. Monte Carlo techniques are then used to determine the corresponding dose to the medium in order to determine the chamber calibration factor directly. Values of the ratio of absorbed dose calibration factors in water and in graphite determined in these two ways agree with each other to within 0.2% (1sigma uncertainty). The best fit to both sets of results agrees with values determined in previous work to within 0.3% (1sigma uncertainty). It is found that the conversion factor is not sensitive to beam filtration.

  8. Air kerma and absorbed dose standards for reference dosimetry in brachytherapy

    PubMed Central

    2014-01-01

    This article reviews recent developments in primary standards for the calibration of brachytherapy sources, with an emphasis on the currently most common photon-emitting radionuclides. The introduction discusses the need for reference dosimetry in brachytherapy in general. The following section focuses on the three main quantities, i.e. reference air kerma rate, air kerma strength and absorbed dose rate to water, which are currently used for the specification of brachytherapy photon sources and which can be realized with primary standards from first principles. An overview of different air kerma and absorbed dose standards, which have been independently developed by various national metrology institutes over the past two decades, is given in the next two sections. Other dosimetry techniques for brachytherapy will also be discussed. The review closes with an outlook on a possible transition from air kerma to absorbed dose to water-based calibrations for brachytherapy sources in the future. PMID:24814696

  9. Absorbed dose measurements for kV-cone beam computed tomography in image-guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Hioki, Kazunari; Araki, Fujio; Ohno, Takeshi; Nakaguchi, Yuji; Tomiyama, Yuuki

    2014-12-01

    In this study, we develope a novel method to directly evaluate an absorbed dose-to-water for kilovoltage-cone beam computed tomography (kV-CBCT) in image-guided radiation therapy (IGRT). Absorbed doses for the kV-CBCT systems of the Varian On-Board Imager (OBI) and the Elekta X-ray Volumetric Imager (XVI) were measured by a Farmer ionization chamber with a 60Co calibration factor. The chamber measurements were performed at the center and four peripheral points in body-type (30 cm diameter and 51 cm length) and head-type (16 cm diameter and 33 cm length) cylindrical water phantoms. The measured ionization was converted to the absorbed dose-to-water by using a 60Co calibration factor and a Monte Carlo (MC)-calculated beam quality conversion factor, kQ, for 60Co to kV-CBCT. The irradiation for OBI and XVI was performed with pelvis and head modes for the body- and the head-type phantoms, respectively. In addition, the dose distributions in the phantom for both kV-CBCT systems were calculated with MC method and were compared with measured values. The MC-calculated doses were calibrated at the center in the water phantom and compared with measured doses at four peripheral points. The measured absorbed doses at the center in the body-type phantom were 1.96 cGy for OBI and 0.83 cGy for XVI. The peripheral doses were 2.36-2.90 cGy for OBI and 0.83-1.06 cGy for XVI. The doses for XVI were lower up to approximately one-third of those for OBI. Similarly, the measured doses at the center in the head-type phantom were 0.48 cGy for OBI and 0.21 cGy for XVI. The peripheral doses were 0.26-0.66 cGy for OBI and 0.16-0.30 cGy for XVI. The calculated peripheral doses agreed within 3% in the pelvis mode and within 4% in the head mode with measured doses for both kV-CBCT systems. In addition, the absorbed dose determined in this study was approximately 4% lower than that in TG-61 but the absorbed dose by both methods was in agreement within their combined uncertainty. This method is more robust and accurate compared to the dosimetry based on a conventional air-kerma calibration factor. Therefore, it is possible to be used as a standard dosimetry protocol for kV-CBCT in IGRT.

  10. The advantages of absorbed-dose calibration factors.

    PubMed

    Rogers, D W

    1992-01-01

    A formalism for clinical external beam dosimetry based on use of ion chamber absorbed-dose calibration factors is outlined in the context and notation of the AAPM TG-21 protocol. It is shown that basing clinical dosimetry on absorbed-dose calibration factors ND leads to considerable simplification and reduced uncertainty in dose measurement. In keeping with a protocol which is used in Germany, a quantity kQ is defined which relates an absorbed-dose calibration factor in a beam of quality Q0 to that in a beam of quality Q. For 38 cylindrical ion chambers, two sets of values are presented for ND/NX and Ngas/ND and for kQ for photon beams with beam quality specified by the TPR20(10) ratio. One set is based on TG-21's protocol to allow the new formalism to be used while maintaining equivalence to the TG-21 protocol. To demonstrate the magnitude of the overall error in the TG-21 protocol, the other set uses corrected versions of the TG-21 equations and the more consistent physical data of the IAEA Code of Practice. Comparisons are made to procedures based on air-kerma or exposure calibration factors and it is shown that accuracy and simplicity are gained by avoiding the determination of Ngas from NX. It is also shown that the kQ approach simplifies the use of plastic phantoms in photon beams since kQ values change by less than 0.6% compared to those in water although an overall correction factor of 0.973 is needed to go from absorbed dose in water calibration factors to those in PMMA or polystyrene. Values of kQ calculated using the IAEA Code of Practice are presented but are shown to be anomalous because of the way the effective point of measurement changes for 60Co beams. In photon beams the major difference between the IAEA Code of Practice and the corrected AAPM TG-21 protocol is shown to be the Prepl correction factor. Calculated kQ curves and three parameter equations for them are presented for each wall material and are shown to represent accurately the kQ curve for all ion chambers in this study with a wall of that specified material and a thickness less than 0.25 g/cm2. Values of kQ can be measured using the primary standards for absorbed dose in photon beams.

  11. Calibration and error analysis of metal-oxide-semiconductor field-effect transistor dosimeters for computed tomography radiation dosimetry.

    PubMed

    Trattner, Sigal; Prinsen, Peter; Wiegert, Jens; Gerland, Elazar-Lars; Shefer, Efrat; Morton, Tom; Thompson, Carla M; Yagil, Yoad; Cheng, Bin; Jambawalikar, Sachin; Al-Senan, Rani; Amurao, Maxwell; Halliburton, Sandra S; Einstein, Andrew J

    2017-12-01

    Metal-oxide-semiconductor field-effect transistors (MOSFETs) serve as a helpful tool for organ radiation dosimetry and their use has grown in computed tomography (CT). While different approaches have been used for MOSFET calibration, those using the commonly available 100 mm pencil ionization chamber have not incorporated measurements performed throughout its length, and moreover, no previous work has rigorously evaluated the multiple sources of error involved in MOSFET calibration. In this paper, we propose a new MOSFET calibration approach to translate MOSFET voltage measurements into absorbed dose from CT, based on serial measurements performed throughout the length of a 100-mm ionization chamber, and perform an analysis of the errors of MOSFET voltage measurements and four sources of error in calibration. MOSFET calibration was performed at two sites, to determine single calibration factors for tube potentials of 80, 100, and 120 kVp, using a 100-mm-long pencil ion chamber and a cylindrical computed tomography dose index (CTDI) phantom of 32 cm diameter. The dose profile along the 100-mm ion chamber axis was sampled in 5 mm intervals by nine MOSFETs in the nine holes of the CTDI phantom. Variance of the absorbed dose was modeled as a sum of the MOSFET voltage measurement variance and the calibration factor variance, the latter being comprised of three main subcomponents: ionization chamber reading variance, MOSFET-to-MOSFET variation and a contribution related to the fact that the average calibration factor of a few MOSFETs was used as an estimate for the average value of all MOSFETs. MOSFET voltage measurement error was estimated based on sets of repeated measurements. The calibration factor overall voltage measurement error was calculated from the above analysis. Calibration factors determined were close to those reported in the literature and by the manufacturer (~3 mV/mGy), ranging from 2.87 to 3.13 mV/mGy. The error σ V of a MOSFET voltage measurement was shown to be proportional to the square root of the voltage V: σV=cV where c = 0.11 mV. A main contributor to the error in the calibration factor was the ionization chamber reading error with 5% error. The usage of a single calibration factor for all MOSFETs introduced an additional error of about 5-7%, depending on the number of MOSFETs that were used to determine the single calibration factor. The expected overall error in a high-dose region (~30 mGy) was estimated to be about 8%, compared to 6% when an individual MOSFET calibration was performed. For a low-dose region (~3 mGy), these values were 13% and 12%. A MOSFET calibration method was developed using a 100-mm pencil ion chamber and a CTDI phantom, accompanied by an absorbed dose error analysis reflecting multiple sources of measurement error. When using a single calibration factor, per tube potential, for different MOSFETs, only a small error was introduced into absorbed dose determinations, thus supporting the use of a single calibration factor for experiments involving many MOSFETs, such as those required to accurately estimate radiation effective dose. © 2017 American Association of Physicists in Medicine.

  12. Dual-energy computed tomography of the head: a phantom study assessing axial dose distribution, eye lens dose, and image noise level

    NASA Astrophysics Data System (ADS)

    Matsubara, Kosuke; Kawashima, Hiroki; Hamaguchi, Takashi; Takata, Tadanori; Kobayashi, Masanao; Ichikawa, Katsuhiro; Koshida, Kichiro

    2016-03-01

    The aim of this study was to propose a calibration method for small dosimeters to measure absorbed doses during dual- source dual-energy computed tomography (DECT) and to compare the axial dose distribution, eye lens dose, and image noise level between DE and standard, single-energy (SE) head CT angiography. Three DE (100/Sn140 kVp 80/Sn140 kVp, and 140/80 kVp) and one SE (120 kVp) acquisitions were performed using a second-generation dual-source CT device and a female head phantom, with an equivalent volumetric CT dose index. The axial absorbed dose distribution at the orbital level and the absorbed doses for the eye lens were measured using radiophotoluminescent glass dosimeters. CT attenuation numbers were obtained in the DE composite images and the SE images of the phantom at the orbital level. The doses absorbed at the orbital level and in the eye lens were lower and standard deviations for the CT attenuation numbers were slightly higher in the DE acquisitions than those in the SE acquisition. The anterior surface dose was especially higher in the SE acquisition than that in the DE acquisitions. Thus, DE head CT angiography can be performed with a radiation dose lower than that required for a standard SE head CT angiography, with a slight increase in the image noise level. The 100/Sn140 kVp acquisition revealed the most balanced axial dose distribution. In addition, our proposed method was effective for calibrating small dosimeters to measure absorbed doses in DECT.

  13. Direct megavoltage photon calibration service in Australia

    PubMed Central

    Ramanathan, G.; Oliver, C.; Cole, A.; Lye, J.; Harty, P. D.; Wright, T.; Webb, D. V.; Followill, D. S.

    2014-01-01

    The Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) maintains the Australian primary standard of absorbed dose. Until recently, the standard was used to calibrate ionisation chambers only in 60Co gamma rays. These chambers are then used by radiotherapy clinics to determine linac output, using a correction factor (kQ) to take into account the different spectra of 60Co and the linac. Over the period 2010–2013, ARPANSA adapted the primary standard to work in megavoltage linac beams, and has developed a calibration service at three photon beams (6, 10 and 18 MV) from an Elekta Synergy linac. We describe the details of the new calibration service, the method validation and the use of the new calibration factors with the International Atomic Energy Agency’s TRS-398 dosimetry Code of Practice. The expected changes in absorbed dose measurements in the clinic when shifting from 60Co to the direct calibration are determined. For a Farmer chamber (model 2571), the measured chamber calibration coefficient is expected to be reduced by 0.4, 1.0 and 1.1 % respectively for these three beams when compared to the factor derived from 60Co. These results are in overall agreement with international absorbed dose standards and calculations by Muir and Rogers in 2010 of kQ factors using Monte Carlo techniques. The reasons for and against moving to the new service are discussed in the light of the requirements of clinical dosimetry. PMID:25146559

  14. Uncertainty propagation for SPECT/CT-based renal dosimetry in 177Lu peptide receptor radionuclide therapy

    NASA Astrophysics Data System (ADS)

    Gustafsson, Johan; Brolin, Gustav; Cox, Maurice; Ljungberg, Michael; Johansson, Lena; Sjögreen Gleisner, Katarina

    2015-11-01

    A computer model of a patient-specific clinical 177Lu-DOTATATE therapy dosimetry system is constructed and used for investigating the variability of renal absorbed dose and biologically effective dose (BED) estimates. As patient models, three anthropomorphic computer phantoms coupled to a pharmacokinetic model of 177Lu-DOTATATE are used. Aspects included in the dosimetry-process model are the gamma-camera calibration via measurement of the system sensitivity, selection of imaging time points, generation of mass-density maps from CT, SPECT imaging, volume-of-interest delineation, calculation of absorbed-dose rate via a combination of local energy deposition for electrons and Monte Carlo simulations of photons, curve fitting and integration to absorbed dose and BED. By introducing variabilities in these steps the combined uncertainty in the output quantity is determined. The importance of different sources of uncertainty is assessed by observing the decrease in standard deviation when removing a particular source. The obtained absorbed dose and BED standard deviations are approximately 6% and slightly higher if considering the root mean square error. The most important sources of variability are the compensation for partial volume effects via a recovery coefficient and the gamma-camera calibration via the system sensitivity.

  15. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    PubMed

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-03-08

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance.

  16. Comparison of absorbed-dose-to-water units for Co-60 and high-energy x-rays between PTB and LNE-LNHB

    NASA Astrophysics Data System (ADS)

    Delaunay, F.; Kapsch, R.-P.; Gouriou, J.; Illemann, J.; Krauss, A.; Le Roy, M.; Ostrowsky, A.; Sommier, L.; Vermesse, D.

    2012-10-01

    During the Euramet project JRP7 ‘External Beam Cancer Therapy’, PTB and LNE-LNHB used primary standards to determine the absorbed dose to water under IMRT conditions (in small fields). PTB used a water calorimeter to determine the absorbed-dose-to-water references in 6 MV and 10 MV beams for field sizes of 10 cm × 10 cm and 3 cm × 3 cm while LNE-LNHB used graphite calorimeters in 6 MV and 12 MV beams for field sizes of 10 cm × 10 cm, 4 cm × 4 cm and 2 cm × 2 cm. The purpose of this study is to compare PTB and LNE-LNHB new absorbed-dose-to-water references. LNE-LNHB sent an Exradin A1SL ionization chamber traceable to its primary standard to the PTB for calibration in 60Co and in linac beams and PTB sent a PTW 31010 ionization chamber traceable to its primary standard to LNE-LNHB for calibration in 60Co and in linac beams. Calculated Sw,air will be used as beam quality specifier for the ionization chamber comparison at different field sizes. The standard uncertainties (k = 1) of PTB and LNE-LNHB calibration coefficients lie respectively between 0.25% (60Co) and 0.40% (linac) and between 0.29% and 0.46%. PTB and LNE-LNHB absorbed-dose-to-water references developed for this project, based respectively on water calorimetry and on graphite calorimetry, agree within 1.5 standard deviations for field size of 10 cm × 10 cm down to 2 cm × 2 cm and for beams of 6 MV to 10 MV.

  17. The role of a microDiamond detector in the dosimetry of proton pencil beams.

    PubMed

    Gomà, Carles; Marinelli, Marco; Safai, Sairos; Verona-Rinati, Gianluca; Würfel, Jan

    2016-03-01

    In this work, the performance of a microDiamond detector in a scanned proton beam is studied and its potential role in the dosimetric characterization of proton pencil beams is assessed. The linearity of the detector response with the absorbed dose and the dependence on the dose-rate were tested. The depth-dose curve and the lateral dose profiles of a proton pencil beam were measured and compared to reference data. The feasibility of calibrating the beam monitor chamber with a microDiamond detector was also studied. It was found the detector reading is linear with the absorbed dose to water (down to few cGy) and the detector response is independent of both the dose-rate (up to few Gy/s) and the proton beam energy (within the whole clinically-relevant energy range). The detector showed a good performance in depth-dose curve and lateral dose profile measurements; and it might even be used to calibrate the beam monitor chambers-provided it is cross-calibrated against a reference ionization chamber. In conclusion, the microDiamond detector was proved capable of performing an accurate dosimetric characterization of proton pencil beams. Copyright © 2015. Published by Elsevier GmbH.

  18. Calibration of an eye lens dosemeter in terms of Hp(3) to be used in interventional radiology

    NASA Astrophysics Data System (ADS)

    Borges, F. L. S.; Guimarães, M. C.; Da Silva, T. A.; Nogueira Tavares, M. S.

    2014-11-01

    Recently, the International Commission on Radiological Protection has reviewed epidemiological evidences suggesting that there were tissue reaction effects in the eye lens below the previously considered absorbed dose threshold. A new statement related to the eye lens was issued that changed the absorbed dose threshold and reduced the dose limits for occupationally exposed persons. As consequence, some planned exposures require eye lens dosimetry and a debate was raised on the adequacy of the dosimetric quantity and on its method of measurement. The aim of this work was to study the methodology for calibrating the EYE-DTM holder with a TLD-100H Harshaw chip detector and to determine its angular and energy dependences in terms of personal dose equivalent, Hp(3).

  19. Diamond detector in absorbed dose measurements in high‐energy linear accelerator photon and electron beams

    PubMed Central

    Binukumar, John Pichy; Amri, Iqbal Al; Davis, Cheriyathmanjiyil Antony

    2016-01-01

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue‐equivalent properties. We investigated a commercially available ‘microdiamond’ detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1 mm, thickness 1×10−3mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ±0.17% (1 SD) (n=11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stopping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long‐term stability and reproducibility. Based on micro‐dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance. PACS number(s): 87.56.Da PMID:27074452

  20. A dosimetry study comparing NCS report-5, IAEA TRS-381, AAPM TG-51 and IAEA TRS-398 in three clinical electron beam energies

    NASA Astrophysics Data System (ADS)

    Palmans, Hugo; Nafaa, Laila; de Patoul, Nathalie; Denis, Jean-Marc; Tomsej, Milan; Vynckier, Stefaan

    2003-05-01

    New codes of practice for reference dosimetry in clinical high-energy photon and electron beams have been published recently, to replace the air kerma based codes of practice that have determined the dosimetry of these beams for the past twenty years. In the present work, we compared dosimetry based on the two most widespread absorbed dose based recommendations (AAPM TG-51 and IAEA TRS-398) with two air kerma based recommendations (NCS report-5 and IAEA TRS-381). Measurements were performed in three clinical electron beam energies using two NE2571-type cylindrical chambers, two Markus-type plane-parallel chambers and two NACP-02-type plane-parallel chambers. Dosimetry based on direct calibrations of all chambers in 60Co was investigated, as well as dosimetry based on cross-calibrations of plane-parallel chambers against a cylindrical chamber in a high-energy electron beam. Furthermore, 60Co perturbation factors for plane-parallel chambers were derived. It is shown that the use of 60Co calibration factors could result in deviations of more than 2% for plane-parallel chambers between the old and new codes of practice, whereas the use of cross-calibration factors, which is the first recommendation in the new codes, reduces the differences to less than 0.8% for all situations investigated here. The results thus show that neither the chamber-to-chamber variations, nor the obtained absolute dose values are significantly altered by changing from air kerma based dosimetry to absorbed dose based dosimetry when using calibration factors obtained from the Laboratory for Standard Dosimetry, Ghent, Belgium. The values of the 60Co perturbation factor for plane-parallel chambers (katt . km for the air kerma based and pwall for the absorbed dose based codes of practice) that are obtained from comparing the results based on 60Co calibrations and cross-calibrations are within the experimental uncertainties in agreement with the results from other investigators.

  1. Comparison of the IAEA TRS-398 and AAPM TG-51 absorbed dose to water protocols in the dosimetry of high-energy photon and electron beams

    NASA Astrophysics Data System (ADS)

    Saiful Huq, M.; Andreo, Pedro; Song, Haijun

    2001-11-01

    The International Atomic Energy Agency (IAEA TRS-398) and the American Association of Physicists in Medicine (AAPM TG-51) have published new protocols for the calibration of radiotherapy beams. These protocols are based on the use of an ionization chamber calibrated in terms of absorbed dose to water in a standards laboratory's reference quality beam. This paper compares the recommendations of the two protocols in two ways: (i) by analysing in detail the differences in the basic data included in the two protocols for photon and electron beam dosimetry and (ii) by performing measurements in clinical photon and electron beams and determining the absorbed dose to water following the recommendations of the two protocols. Measurements were made with two Farmer-type ionization chambers and three plane-parallel ionization chamber types in 6, 18 and 25 MV photon beams and 6, 8, 10, 12, 15 and 18 MeV electron beams. The Farmer-type chambers used were NE 2571 and PTW 30001, and the plane-parallel chambers were a Scanditronix-Wellhöfer NACP and Roos, and a PTW Markus chamber. For photon beams, the measured ratios TG-51/TRS-398 of absorbed dose to water Dw ranged between 0.997 and 1.001, with a mean value of 0.999. The ratios for the beam quality correction factors kQ were found to agree to within about +/-0.2% despite significant differences in the method of beam quality specification for photon beams and in the basic data entering into kQ. For electron beams, dose measurements were made using direct ND,w calibrations of cylindrical and plane-parallel chambers in a 60Co gamma-ray beam, as well as cross-calibrations of plane-parallel chambers in a high-energy electron beam. For the direct ND,w calibrations the ratios TG-51/TRS-398 of absorbed dose to water Dw were found to lie between 0.994 and 1.018 depending upon the chamber and electron beam energy used, with mean values of 0.996, 1.006, and 1.017, respectively, for the cylindrical, well-guarded and not well-guarded plane-parallel chambers. The Dw ratios measured for the cross-calibration procedures varied between 0.993 and 0.997. The largest discrepancies for electron beams between the two protocols arise from the use of different data for the perturbation correction factors pwall and pdis of cylindrical and plane-parallel chambers, all in 60Co. A detailed analysis of the reasons for the discrepancies is made which includes comparing the formalisms, correction factors and the quantities in the two protocols.

  2. Considerations on the calibration of small thermoluminescent dosimeters used for measurement of beta particle absorbed doses in liquid environments.

    PubMed

    Demidecki, A J; Williams, L E; Wong, J Y; Wessels, B W; Yorke, E D; Strandh, M; Strand, S E

    1993-01-01

    An investigation has been carried out on the factors which affect the absolute calibration of thermoluminescent dosimeters (TLDs) used in beta particle absorbed dose evaluations. Four effects on light output (LO) were considered: decay of detector sensitivity with time, finite TLD volume, dose linearity, and energy dependence. Most important of these was the decay of LO with time in culture medium, muscle tissue, and gels. This permanent loss of sensitivity was as large as an order of magnitude over a 21-day interval for the nominally 20-microns-thick disc-shaped CaSO4(Dy) TLDs in gel. Associated leaching of the dosimeter crystals out of the Teflon matrix was observed using scanning electron microscopy. Large channels leading from the outside environment into the TLDs were identified using SEM images. A possibility of batch dependence of fading was indicated. The second most important effect was the apparent reduction of light output due to finite size and increased specific gravity of the dosimeter (volume effect). We estimated this term by calculations as 10% in standard "mini" rods for beta particles from 90Y, but nearly a factor of 3 for 131I beta particles in the same geometry. No significant nonlinearity of the log (light output) with log (absorbed dose) over the range 0.05-20.00 Gy was discovered. Energy dependence of the LO was found to be not detectable, within measurement errors, over the range of 0.60-6.0 MeV mean energy electrons. With careful understanding of these effects, calibration via gel phantom would appear to be an acceptable strategy for mini TLDs used in beta absorbed dose evaluations in media.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Design and Calibration of a X-Ray Millibeam

    DTIC Science & Technology

    2005-12-01

    developed for use in Fricke dosimetry , parallel-plate ionization chambers, Lithium Fluoride thermoluminescent dosimetry ( TLD ), and EBT GafChromic...thermoluminescent dosimetry ( TLD ), and EBT GafChromic film to characterize the spatial distribution and accuracy of the doses produced by the Faxitron. A...absorbed dose calibration factors for use in Fricke dosimetry , parallel-plate ionization chambers, Lithium Fluoride (LiF) TLD , and EBT GafChromic film. The

  4. Changes in deviation of absorbed dose to water among users by chamber calibration shift.

    PubMed

    Katayose, Tetsurou; Saitoh, Hidetoshi; Igari, Mitsunobu; Chang, Weishan; Hashimoto, Shimpei; Morioka, Mie

    2017-07-01

    The JSMP01 dosimetry protocol had adopted the provisional 60 Co calibration coefficient [Formula: see text], namely, the product of exposure calibration coefficient N C and conversion coefficient k D,X . After that, the absorbed dose to water D w  standard was established, and the JSMP12 protocol adopted the [Formula: see text] calibration. In this study, the influence of the calibration shift on the measurement of D w among users was analyzed. The intercomparison of the D w using an ionization chamber was annually performed by visiting related hospitals. Intercomparison results before and after the calibration shift were analyzed, the deviation of D w among users was re-evaluated, and the cause of deviation was estimated. As a result, the stability of LINAC, calibration of the thermometer and barometer, and collection method of ion recombination were confirmed. The statistical significance of standard deviation of D w was not observed, but that of difference of D w among users was observed between N C and [Formula: see text] calibration. Uncertainty due to chamber-to-chamber variation was reduced by the calibration shift, consequently reducing the uncertainty among users regarding D w . The result also pointed out uncertainty might be reduced by accurate and detailed instructions on the setup of an ionization chamber.

  5. SU-E-T-137: The Response of TLD-100 in Mixed Fields of Photons and Electrons.

    PubMed

    Lawless, M; Junell, S; Hammer, C; DeWerd, L

    2012-06-01

    Thermoluminescent dosimeters are used routinely for dosimetric measurements of photon and electron fields. However, no work has been published characterizing TLDs for use in combined photon and electron fields. This work investigates the response of TLD-100 (LiF:Mg,Ti) in mixed fields of photon and electron beam qualities. TLDs were irradiated in a 6 MV photon beam, 6 MeV electron beam, and a NIST traceable cobalt-60 beam. TLDs were also irradiated in a mixed field of the electron and photon beams. All irradiations were normalized to absorbed dose to water as defined in the AAPM TG-51 report. The average response per dose (nC/Gy) for each linac beam quality was normalized to the average response per dose of the TLDs irradiated by the cobalt-60 standard.Irradiations were performed in a water tank and a Virtual Water™ phantom. Two TLD dose calibration curves for determining absorbed dose to water were generated using photon and electron field TLD response data. These individual beam quality dose calibration curves were applied to the TLDs irradiated in the mixed field. The TLD response in the mixed field was less sensitive than the response in the photon field and more sensitive than the response in the electron field. TLD determination of dose in the mixed field using the dose calibration curve generated by TLDs irradiated by photons resulted in an underestimation of the delivered dose, while the use of a dose calibration curve generated using electrons resulted in an overestimation of the delivered dose. The relative response of TLD-100 in mixed fields fell consistently between the photon nd electron relative responses. When using TLD-100 in mixed fields, the user must account for this intermediate response to avoid an over- or underestimation of the dose due to calibration in a single photon or electron field. © 2012 American Association of Physicists in Medicine.

  6. Comparison between TG-51 and TG-21: Calibration of photon and electron beams in water using cylindrical chambers.

    PubMed

    Cho, S H; Lowenstein, J R; Balter, P A; Wells, N H; Hanson, W F

    2000-01-01

    A new calibration protocol, developed by the AAPM Task Group 51 (TG-51) to replace the TG-21 protocol, is based on an absorbed-dose to water standard and calibration factor (N(D,w)), while the TG-21 protocol is based on an exposure (or air-kerma) standard and calibration factor (N(x)). Because of differences between these standards and the two protocols, the results of clinical reference dosimetry based on TG-51 may be somewhat different from those based on TG-21. The Radiological Physics Center has conducted a systematic comparison between the two protocols, in which photon and electron beam outputs following both protocols were compared under identical conditions. Cylindrical chambers used in this study were selected from the list given in the TG-51 report, covering the majority of current manufacturers. Measured ratios between absorbed-dose and air-kerma calibration factors, derived from the standards traceable to the NIST, were compared with calculated values using the TG-21 protocol. The comparison suggests that there is roughly a 1% discrepancy between measured and calculated ratios. This discrepancy may provide a reasonable measure of possible changes between the absorbed-dose to water determined by TG-51 and that determined by TG-21 for photon beam calibrations. The typical change in a 6 MV photon beam calibration following the implementation of the TG-51 protocol was about 1%, regardless of the chamber used, and the change was somewhat smaller for an 18 MV photon beam. On the other hand, the results for 9 and 16 MeV electron beams show larger changes up to 2%, perhaps because of the updated electron stopping power data used for the TG-51 protocol, in addition to the inherent 1% discrepancy presented in the calibration factors. The results also indicate that the changes may be dependent on the electron energy.

  7. Calorimetry of electron beams and the calibration of dosimeters at high doses

    NASA Astrophysics Data System (ADS)

    Humphreys, J. C.; McLaughlin, W. L.

    Graphite or metal calorimeters are used to make absolute dosimetric measurements of high-energy electron beams. These calibrated beams are then used to calibrate several types of dosimeters for high-dose applications such as medical-product sterilization, polymer modification, food processing, or electronic-device hardness testing. The electron beams are produced either as continuous high-power beams at approximately 4.5 MeV by d.c. type accelerators or in the energy range of approximately 8 to 50 MeV using pulsed microwave linear accelerators (linacs). The continuous beams are generally magnetically scanned to produce a broad, uniform radiation environment for the processing of materials of extended lateral dimensions. The higher-energy pulsed beams may also be scanned for processing applications or may be used in an unscanned, tightly-focused mode to produce maximum absorbed dose rates such as may be required for electronic-device radiation hardness testing. The calorimeters are used over an absorbed dose range of 10 2 to 10 4 Gy. Intercomparison studies are reported between National Institute of Standards and Technology (NIST) and UK National Physical Laboratory (NPL) graphite disk calorimeters at high doses, using the NPL 10-MeV linac, and agreement was found within 1.5%. It was also shown that the electron-beam responses of radiochromic film dosimeters and alanine pellet dosimeters can be accurately calibrated by comparison with calorimeter readings.

  8. Absolute dose calibration of an X-ray system and dead time investigations of photon-counting techniques

    NASA Astrophysics Data System (ADS)

    Carpentieri, C.; Schwarz, C.; Ludwig, J.; Ashfaq, A.; Fiederle, M.

    2002-07-01

    High precision concerning the dose calibration of X-ray sources is required when counting and integrating methods are compared. The dose calibration for a dental X-ray tube was executed with special dose calibration equipment (dosimeter) as function of exposure time and rate. Results were compared with a benchmark spectrum and agree within ±1.5%. Dead time investigations with the Medipix1 photon-counting chip (PCC) have been performed by rate variations. Two different types of dead time, paralysable and non-paralysable will be discussed. The dead time depends on settings of the front-end electronics and is a function of signal height, which might lead to systematic defects of systems. Dead time losses in excess of 30% have been found for the PCC at 200 kHz absorbed photons per pixel.

  9. Using LiF:Mg,Cu,P TLDs to estimate the absorbed dose to water in liquid water around an 192Ir brachytherapy source.

    PubMed

    Lucas, P Avilés; Aubineau-Lanièce, I; Lourenço, V; Vermesse, D; Cutarella, D

    2014-01-01

    The absorbed dose to water is the fundamental reference quantity for brachytherapy treatment planning systems and thermoluminescence dosimeters (TLDs) have been recognized as the most validated detectors for measurement of such a dosimetric descriptor. The detector response in a wide energy spectrum as that of an (192)Ir brachytherapy source as well as the specific measurement medium which surrounds the TLD need to be accounted for when estimating the absorbed dose. This paper develops a methodology based on highly sensitive LiF:Mg,Cu,P TLDs to directly estimate the absorbed dose to water in liquid water around a high dose rate (192)Ir brachytherapy source. Different experimental designs in liquid water and air were constructed to study the response of LiF:Mg,Cu,P TLDs when irradiated in several standard photon beams of the LNE-LNHB (French national metrology laboratory for ionizing radiation). Measurement strategies and Monte Carlo techniques were developed to calibrate the LiF:Mg,Cu,P detectors in the energy interval characteristic of that found when TLDs are immersed in water around an (192)Ir source. Finally, an experimental system was designed to irradiate TLDs at different angles between 1 and 11 cm away from an (192)Ir source in liquid water. Monte Carlo simulations were performed to correct measured results to provide estimates of the absorbed dose to water in water around the (192)Ir source. The dose response dependence of LiF:Mg,Cu,P TLDs with the linear energy transfer of secondary electrons followed the same variations as those of published results. The calibration strategy which used TLDs in air exposed to a standard N-250 ISO x-ray beam and TLDs in water irradiated with a standard (137)Cs beam provided an estimated mean uncertainty of 2.8% (k = 1) in the TLD calibration coefficient for irradiations by the (192)Ir source in water. The 3D TLD measurements performed in liquid water were obtained with a maximum uncertainty of 11% (k = 1) found at 1 cm from the source. Radial dose values in water were compared against published results of the American Association of Physicists in Medicine and the European Society for Radiotherapy and Oncology and no significant differences (maximum value of 3.1%) were found within uncertainties except for one position at 9 cm (5.8%). At this location the background contribution relative to the TLD signal is relatively small and an unexpected experimental fluctuation in the background estimate may have caused such a large discrepancy. This paper shows that reliable measurements with TLDs in complex energy spectra require a study of the detector dose response with the radiation quality and specific calibration methodologies which model accurately the experimental conditions where the detectors will be used. The authors have developed and studied a method with highly sensitive TLDs and contributed to its validation by comparison with results from the literature. This methodology can be used to provide direct estimates of the absorbed dose rate in water for irradiations with HDR (192)Ir brachytherapy sources.

  10. SU-E-T-408: Determination of KQ,Q0-Factors From Water and Graphite Calorimetry in a 60 MeV Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossomme, S; Renaud, J; Sarfehnia, A

    2014-06-01

    Purpose: To reduce the uncertainty of the beam quality correction factor k Q,Q0, for scattered proton beams (SPB). This factor is used in dosimetry protocols, to determine absorbed dose-to-water with ionization chambers. For the Roos plane parallel chambers (RPPICs), the IAEA TRS-398 protocol estimates k Q,Q0-factor to be 1.004(for a beam quality Rres=2 g.cm{sup 2}), with an uncertainty of 2.1%. Methods: A graphite calorimeter (GCal), a water calorimeter (WCal) and RPPICs were exposed, in a single experiment, to a 60 MeV non-modulated SPB. RPPICs were calibrated in terms of absorbed dose-to-water in a 20 MeV electron beam. The calibration coefficientmore » is traceable to NPL's absorbed dose standards. Chamber measurements were corrected for environmental conditions, recombination and polarity. The WCal corrections include heat loss, heat defect and vessel perturbation. The GCal corrections include heat loss and absorbed dose conversion. Except for heat loss correction and its uncertainty in the WCal system, all major corrections were included in the analysis. Other minor corrections, such as beam profile non-uniformity, are still to be evaluated. Experimental k Q,Q0-factors were derived by comparing the results obtained with both calorimeters and ionometry. Results: The absorbed dose-to-water from both calorimeters was found to be within 1.3% with an uncertainty of 1.2%. k Q,Q0-factor for a RPPIC was found to be 0.998 and 1.011, with a standard uncertainty of 1.4% and 0.9% when the dose is based on the GCal and the WCal, respectively. Conclusion: Results suggest the possibility to determine k Q,Q0-values for PPICs in SPB with a lower uncertainty than specified in the TRS-398 thereby helping to reduce uncertainty on absorbed dose-to-water. The agreement between calorimeters confirms the possibility to use GCal or WCal as primary standard in SPB. Because of the dose conversion, the use of GCal may lead to slightly higher uncertainty, but is, at present, considerably easier to operate.« less

  11. Does the lead apron and collar always reduce radiation dose?

    PubMed

    Nortje, C J; Harris, A M; Lackovic, K P; Wood, R E

    2001-11-01

    The possibility that personal lead shielding devices can increase absorption of radiation has not been entertained. The purpose of the present investigation specifically was to determine whether pituitary dose might be increased when a leaded apron and thyroid collar are used. Thermoluminescent dosimeters (TLDs) were used to measure absorbed dose. They were calibrated at the kVp used in the clinical situation and a calibration curve relating light output to dose was generated. Lithium fluoride TLD discs were placed in the pituitary gland region of a Rando-Alderson female human phantom. The equivalent of 100 transpharyngeal exposures were delivered. The resultant light output from recovered dosimeters was converted to a uGy value using the calibration curve. The experiment was repeated using a 0.25 mm lead equivalent collar and apron fitted to the phantom in the customary manner. The entire process was repeated in order to have 30 dosimeters for the unshielded and 30 dosimeters for the shielded conditions. A further 30 dosimeters were sham irradiated and served as controls. A statistical comparison between unshielded and shielded conditions was performed. When the leaded apron and thyroid collar were used the absorbed dose to the pituitary gland was increased significantly (P < 0.05). Following this a second group, using a different dosimetry system and a male phantom repeated the experiment. In both cases, the shielded phantom received significantly higher dose to the pituitary region than the unshielded.

  12. Radiochromic film calibration for the RQT9 quality beam

    NASA Astrophysics Data System (ADS)

    Costa, K. C.; Gomez, A. M. L.; Alonso, T. C.; Mourao, A. P.

    2017-11-01

    When ionizing radiation interacts with matter it generates energy deposition. Radiation dosimetry is important for medical applications of ionizing radiation due to the increasing demand for diagnostic radiology and radiotherapy. Different dosimetry methods are used and each one has its advantages and disadvantages. The film is a dose measurement method that records the energy deposition by the darkening of its emulsion. Radiochromic films have a little visible light sensitivity and respond better to ionizing radiation exposure. The aim of this study is to obtain the resulting calibration curve by the irradiation of radiochromic film strips, making it possible to relate the darkening of the film with the absorbed dose, in order to measure doses in experiments with X-ray beam of 120 kV, in computed tomography (CT). Film strips of GAFCHROMIC XR-QA2 were exposed according to RQT9 reference radiation, which defines an X-ray beam generated from a voltage of 120 kV. Strips were irradiated in "Laboratório de Calibração de Dosímetros do Centro de Desenvolvimento da Tecnologia Nuclear" (LCD / CDTN) at a dose range of 5-30 mGy, corresponding to the range values commonly used in CT scans. Digital images of the irradiated films were analyzed by using the ImageJ software. The darkening responses on film strips according to the doses were observed and they allowed obtaining the corresponding numeric values to the darkening for each specific dose value. From the numerical values of darkening, a calibration curve was obtained, which correlates the darkening of the film strip with dose values in mGy. The calibration curve equation is a simplified method for obtaining absorbed dose values using digital images of radiochromic films irradiated. With the calibration curve, radiochromic films may be applied on dosimetry in experiments on CT scans using X-ray beam of 120 kV, in order to improve CT acquisition image processes.

  13. Calibration of GafChromic EBT3 for absorbed dose measurements in 5 MeV proton beam and (60)Co γ-rays.

    PubMed

    Vadrucci, M; Esposito, G; Ronsivalle, C; Cherubini, R; Marracino, F; Montereali, R M; Picardi, L; Piccinini, M; Pimpinella, M; Vincenti, M A; De Angelis, C

    2015-08-01

    To study EBT3 GafChromic film in low-energy protons, and for comparison purposes, in a reference (60)Co beam in order to use it as a calibrated dosimetry system in the proton irradiation facility under construction within the framework of the Oncological Therapy with Protons (TOP)-Intensity Modulated Proton Linear Accelerator for RadioTherapy (IMPLART) Project at ENEA-Frascati, Italy. EBT3 film samples were irradiated at the Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Legnaro, Italy, with a 5 MeV proton beam generated by a 7 MV Van de Graaff CN accelerator. The nominal dose rates used were 2.1 Gy/min and 40 Gy/min. The delivered dose was determined by measuring the particle fluence and the energy spectrum in air with silicon surface barrier detector monitors. A preliminary study of the EBT3 film beam quality dependence in low-energy protons was conducted by passively degrading the beam energy. EBT3 films were also irradiated at ENEA-National Institute of Ionizing Radiation Metrology with gamma radiation produced by a (60)Co source characterized by an absorbed dose to water rate of 0.26 Gy/min as measured by a calibrated Farmer type ionization chamber. EBT3 film calibration curves were determined by means of a set of 40 film pieces irradiated to various doses ranging from 0.5 Gy to 30 Gy absorbed dose to water. An EPSON Expression 11000XL color scanner in transmission mode was used for film analysis. Scanner response stability, intrafilm uniformity, and interfilm reproducibility were verified. Optical absorption spectra measurements were performed on unirradiated and irradiated EBT3 films to choose the most sensitive color channel to the dose range used. EBT3 GafChromic films show an under response up to about 33% for low-energy protons with respect to (60)Co gamma radiation, which is consistent with the linear energy transfer dependence already observed with higher energy protons, and a negligible dose-rate dependence in the 2-40 Gy/min range. Short- and long-term scanner stabilities were 0.5% and 1.5%, respectively; film uniformity and reproducibility were better than 0.5%. The main purpose of this study was to implement EBT3 dosimetry in the proton low-energy radiobiology line of the TOP-IMPLART accelerator, having a maximum energy of 7 MeV. Low-energy proton and (60)Co calibrated sources were used to investigate the behavior of film response vs to be written in italicum dose. The calibration in 5 MeV protons is currently used for dose assessment in the radiobiological experiments at the TOP-IMPLART accelerator carried out at that energy value.

  14. Organ-specific SPECT activity calibration using 3D printed phantoms for molecular radiotherapy dosimetry.

    PubMed

    Robinson, Andrew P; Tipping, Jill; Cullen, David M; Hamilton, David; Brown, Richard; Flynn, Alex; Oldfield, Christopher; Page, Emma; Price, Emlyn; Smith, Andrew; Snee, Richard

    2016-12-01

    Patient-specific absorbed dose calculations for molecular radiotherapy require accurate activity quantification. This is commonly derived from Single-Photon Emission Computed Tomography (SPECT) imaging using a calibration factor relating detected counts to known activity in a phantom insert. A series of phantom inserts, based on the mathematical models underlying many clinical dosimetry calculations, have been produced using 3D printing techniques. SPECT/CT data for the phantom inserts has been used to calculate new organ-specific calibration factors for (99m) Tc and (177)Lu. The measured calibration factors are compared to predicted values from calculations using a Gaussian kernel. Measured SPECT calibration factors for 3D printed organs display a clear dependence on organ shape for (99m) Tc and (177)Lu. The observed variation in calibration factor is reproduced using Gaussian kernel-based calculation over two orders of magnitude change in insert volume for (99m) Tc and (177)Lu. These new organ-specific calibration factors show a 24, 11 and 8 % reduction in absorbed dose for the liver, spleen and kidneys, respectively. Non-spherical calibration factors from 3D printed phantom inserts can significantly improve the accuracy of whole organ activity quantification for molecular radiotherapy, providing a crucial step towards individualised activity quantification and patient-specific dosimetry. 3D printed inserts are found to provide a cost effective and efficient way for clinical centres to access more realistic phantom data.

  15. Development of a Spect-Based Three-Dimensional Treatment Planner for Radionuclide Therapy with Iodine -131.

    NASA Astrophysics Data System (ADS)

    Giap, Huan Bosco

    Accurate calculation of absorbed dose to target tumors and normal tissues in the body is an important requirement for establishing fundamental dose-response relationships for radioimmunotherapy. Two major obstacles have been the difficulty in obtaining an accurate patient-specific 3-D activity map in-vivo and calculating the resulting absorbed dose. This study investigated a methodology for 3-D internal dosimetry, which integrates the 3-D biodistribution of the radionuclide acquired from SPECT with a dose-point kernel convolution technique to provide the 3-D distribution of absorbed dose. Accurate SPECT images were reconstructed with appropriate methods for noise filtering, attenuation correction, and Compton scatter correction. The SPECT images were converted into activity maps using a calibration phantom. The activity map was convolved with an ^{131}I dose-point kernel using a 3-D fast Fourier transform to yield a 3-D distribution of absorbed dose. The 3-D absorbed dose map was then processed to provide the absorbed dose distribution in regions of interest. This methodology can provide heterogeneous distributions of absorbed dose in volumes of any size and shape with nonuniform distributions of activity. Comparison of the activities quantitated by our SPECT methodology to true activities in an Alderson abdominal phantom (with spleen, liver, and spherical tumor) yielded errors of -16.3% to 4.4%. Volume quantitation errors ranged from -4.0 to 5.9% for volumes greater than 88 ml. The percentage differences of the average absorbed dose rates calculated by this methodology and the MIRD S-values were 9.1% for liver, 13.7% for spleen, and 0.9% for the tumor. Good agreement (percent differences were less than 8%) was found between the absorbed dose due to penetrating radiation calculated from this methodology and TLD measurement. More accurate estimates of the 3 -D distribution of absorbed dose can be used as a guide in specifying the minimum activity to be administered to patients to deliver a prescribed absorbed dose to tumor without exceeding the toxicity limits of normal tissues.

  16. Absorbed dose to water based dosimetry versus air kerma based dosimetry for high-energy photon beams: an experimental study.

    PubMed

    Palmans, Hugo; Nafaa, Laila; De, Jans Jo; Gillis, Sofie; Hoornaert, Marie-Thérèse; Martens, Chantal; Piessens, Marleen; Thierens, Hubert; Van der Plaetsen, Ann; Vynckier, Stefaan

    2002-02-07

    In recent years, a change has been proposed from air kerma based reference dosimetry to absorbed dose based reference dosimetry for all radiotherapy beams of ionizing radiation. In this paper, a dosimetry study is presented in which absorbed dose based dosimetry using recently developed formalisms was compared with air kerma based dosimetry using older formalisms. Three ionization chambers of each of three different types were calibrated in terms of absorbed dose to water and air kerma and sent to five hospitals. There, reference dosimetry with all the chambers was performed in a total of eight high-energy clinical photon beams. The selected chamber types were the NE2571, the PTW-30004 and the Wellhöfer-FC65G (previously Wellhöfer-IC70). Having a graphite wall, they exhibit a stable volume and the presence of an aluminium electrode ensures the robustness of these chambers. The data were analysed with the most important recommendations for clinical dosimetry: IAEA TRS-398, AAPM TG-51, IAEA TRS-277, NCS report-2 (presently recommended in Belgium) and AAPM TG-21. The necessary conversion factors were taken from those protocols, or calculated using the data in the different protocols if data for a chamber type are lacking. Polarity corrections were within 0.1% for all chambers in all beams. Recombination corrections were consistent with theoretical predictions, did not vary within a chamber type and only slightly between different chamber types. The maximum chamber-to-chamber variations of the dose obtained with the different formalisms within the same chamber type were between 0.2% and 0.6% for the NE2571, between 0.2% and 0.6% for the PTW-30004 and 0.1% and 0.3% for the Wellhöfer-FC65G for the different beams. The absorbed dose results for the NE2571 and Wellhöfer-FC65G chambers were in good agreement for all beams and all formalisms. The PTW-30004 chambers gave a small but systematically higher result compared to the result for the NE2571 chambers (on the average 0.1% for IAEA TRS-277, 0.3% for NCS report-2 and AAPM TG-21 and 0.4% for IAEA TRS-398 and AAPM TG-51). Within the air kerma based protocols, the results obtained with the TG-21 protocol were 0.4-0.8% higher mainly due to the differences in the data used. Both absorbed dose to water based formalisms resulted in consistent values within 0.3%. The change from old to new formalisms is discussed together with the traceability of calibration factors obtained at the primary absorbed dose and air kerma standards in the reference beams (60Co). For the particular situation in Belgium (calibrations at the Laboratory for Standard Dosimetry of Ghent) the change amounts to 0.1-0.6%. This is similar to the magnitude of the change determined in other countries.

  17. MAGIC-f Gel in Nuclear Medicine Dosimetry: study in an external beam of Iodine-131

    NASA Astrophysics Data System (ADS)

    Schwarcke, M.; Marques, T.; Garrido, C.; Nicolucci, P.; Baffa, O.

    2010-11-01

    MAGIC-f gel applicability in Nuclear Medicine dosimetry was investigated by exposure to a 131I source. Calibration was made to provide known absorbed doses in different positions around the source. The absorbed dose in gel was compared with a Monte Carlo Simulation using PENELOPE code and a thermoluminescent dosimetry (TLD). Using MRI analysis for the gel a R2-dose sensitivity of 0.23 s-1Gy-1was obtained. The agreement between dose-distance curves obtained with Monte Carlo simulation and TLD was better than 97% and for MAGIC-f and TLD was better than 98%. The results show the potential of polymer gel for application in nuclear medicine where three dimensional dose distribution is demanded.

  18. Comparison of IPSM 1990 photon dosimetry code of practice with IAEA TRS‐398 and AAPM TG‐51.

    PubMed Central

    Henríquez, Francisco Cutanda

    2009-01-01

    Several codes of practice for photon dosimetry are currently used around the world, supported by different organizations. A comparison of IPSM 1990 with both IAEA TRS‐398 and AAPM TG‐51 has been performed. All three protocols are based on the calibration of ionization chambers in terms of standards of absorbed dose to water, as it is the case with other modern codes of practice. This comparison has been carried out for photon beams of nominal energies: 4 MV, 6 MV, 8 MV, 10 MV and 18 MV. An NE 2571 graphite ionization chamber was used in this study, cross‐calibrated against an NE 2611A Secondary Standard, calibrated in the National Physical Laboratory (NPL). Absolute dose in reference conditions was obtained using each of these three protocols including: beam quality indices, beam quality conversion factors both theoretical and NPL experimental ones, correction factors for influence quantities and absolute dose measurements. Each protocol recommendations have been strictly followed. Uncertainties have been obtained according to the ISO Guide to the Expression of Uncertainty in Measurement. Absorbed dose obtained according to all three protocols agree within experimental uncertainty. The largest difference between absolute dose results for two protocols is obtained for the highest energy: 0.7% between IPSM 1990 and IAEA TRS‐398 using theoretical beam quality conversion factors. PACS number: 87.55.tm

  19. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers

    NASA Astrophysics Data System (ADS)

    Lye, J. E.; Harty, P. D.; Butler, D. J.; Crosbie, J. C.; Livingstone, J.; Poole, C. M.; Ramanathan, G.; Wright, T.; Stevenson, A. W.

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3-5% higher than the calorimetry, within the stated uncertainties.

  20. Skin Dosimetry in Breast Teletherapy on a Phantom Anthropomorphic and Anthropometric Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batista Nogueira, Luciana; Lemos Silva, Hugo Leonardo; Donato da Silva, Sabrina

    This paper addresses the breast teletherapy dosimetry. The goal is to evaluate and compare absorbed doses in equivalent skin tissue, TE-skin, of an anthropomorphic and anthropometric breast phantom submitted to breast radiotherapy. The methodology involved the reproduction of a set of tomographic images of the phantom; the elaboration of conformational radiotherapy planning in the SOMAVISION and CadPlan (TPS) software; and the synthetic breast irradiation by parallel opposed fields in 3D conformal teletherapy at 6 MV linear accelerator Clinac-2100 C from VARIAN with prescribed dose (PD) of 180 cGy to the target volume (PTV), referent to the glandular tissue. Radiochromic filmsmore » EBT2 were selected as dosimeters. Two independent calibration processes of films with solid water Gammex 457 plates and water filled box were produced. Curves of optical density (OD) versus absorbed dose were produced. Dosimeters were positioned in the external region of the breast phantom in contact with TE-skin, area of 4.0 cm{sup 2} each. The irradiation process was prepared in duplicate to check the reproducibility of the technique. The radiochromic films were scanned and their response in RGB (Red, Green, Blue) analyzed by the ImageJ software. The optical density was obtained and converted to dose based on the calibration curves. Thus, the spatial dose distribution in the skin was reproduced. The absorbed doses measured on the radiochromic films in TE-skin showed values between upper and lower quadrants at 9 o'clock in the range of 54% of PD, between the upper and lower quadrants 3 o'clock in the range of 72% and 6 o'clock at the lower quadrant in the range of 68 % of PD. The values are ±64% (p <0.05) according to the TPS. It is concluded that the depth dose measured in solid water plates or water box reproduce equivalent dose values for both calibration processes of the radiochromic films. It was observed that the skin received doses ranging from 50% to 78% of the prescribed dose after two parallel opposed irradiation fields. (authors)« less

  1. Impact of missing attenuation and scatter corrections on 99m Tc-MAA SPECT 3D dosimetry for liver radioembolization using the patient relative calibration methodology: A retrospective investigation on clinical images.

    PubMed

    Botta, Francesca; Ferrari, Mahila; Chiesa, Carlo; Vitali, Sara; Guerriero, Francesco; Nile, Maria Chiara De; Mira, Marta; Lorenzon, Leda; Pacilio, Massimiliano; Cremonesi, Marta

    2018-04-01

    To investigate the clinical implication of performing pre-treatment dosimetry for 90 Y-microspheres liver radioembolization on 99m Tc-MAA SPECT images reconstructed without attenuation or scatter correction and quantified with the patient relative calibration methodology. Twenty-five patients treated with SIR-Spheres ® at Istituto Europeo di Oncologia and 31 patients treated with TheraSphere ® at Istituto Nazionale Tumori were considered. For each acquired 99m Tc-MAA SPECT, four reconstructions were performed: with attenuation and scatter correction (AC_SC), only attenuation (AC_NoSC), only scatter (NoAC_SC) and without corrections (NoAC_NoSC). Absorbed dose maps were calculated from the activity maps, quantified applying the patient relative calibration to the SPECT images. Whole Liver (WL) and Tumor (T) regions were drawn on CT images. Injected Liver (IL) region was defined including the voxels receiving absorbed dose >3.8 Gy/GBq. Whole Healthy Liver (WHL) and Healthy Injected Liver (HIL) regions were obtained as WHL = WL - T and HIL = IL - T. Average absorbed dose to WHL and HIL were calculated, and the injection activity was derived following each Institute's procedure. The values obtained from AC_NoSC, NoAC_SC and NoAC_NoSC images were compared to the reference value suggested by AC_SC images using Bland-Altman analysis and Wilcoxon paired test (5% significance threshold). Absorbed-dose maps were compared to the reference map (AC_SC) in global terms using the Voxel Normalized Mean Square Error (%VNMSE), and at voxel level by calculating for each voxel the normalized difference with the reference value. The uncertainty affecting absorbed dose at voxel level was accounted for in the comparison; to this purpose, the voxel counts fluctuation due to Poisson and reconstruction noise was estimated from SPECT images of a water phantom acquired and reconstructed as patient images. NoAC_SC images lead to activity prescriptions not significantly different from the reference AC_SC images; the individual differences (<0.1 GBq for all IEO patients, <0.6 GBq for all but one INT patients) were comparable to the uncertainty affecting activity measurement. AC_NoSC and NoAC_NoSC images, instead, yielded significantly different activity prescriptions and wider 95% confidence intervals in the Bland-Altman analysis. Concerning the absorbed dose map, AC_NoSC images had the smallest %VNMSE value and the highest fraction of voxels differing less than 2 standard deviations from AC_SC. The patient relative calibration methodology can compensate for the missing attenuation correction when performing healthy liver pre-treatment dosimetry: safe treatments can be planned even on NoAC_SC images, suggesting activities comparable to AC_SC images. Scatter correction is recommended due to its heavy impact on healthy liver dosimetry. © 2018 American Association of Physicists in Medicine.

  2. Protocols for the dosimetry of high-energy photon and electron beams: a comparison of the IAEA TRS-398 and previous international Codes of Practice

    NASA Astrophysics Data System (ADS)

    Andreo, Pedro; Saiful Huq, M.; Westermark, Mathias; Song, Haijun; Tilikidis, Aris; DeWerd, Larry; Shortt, Ken

    2002-09-01

    A new international Code of Practice for radiotherapy dosimetry co-sponsored by several international organizations has been published by the IAEA, TRS-398. It is based on standards of absorbed dose to water, whereas previous protocols (TRS-381 and TRS-277) were based on air kerma standards. To estimate the changes in beam calibration caused by the introduction of TRS-398, a detailed experimental comparison of the dose determination in reference conditions in high-energy photon and electron beams has been made using the different IAEA protocols. A summary of the formulation and reference conditions in the various Codes of Practice, as well as of their basic data, is presented first. Accurate measurements have been made in 25 photon and electron beams from 10 clinical accelerators using 12 different cylindrical and plane-parallel chambers, and dose ratios under different conditions of TRS-398 to the other protocols determined. A strict step-by-step checklist was followed by the two participating clinical institutions to ascertain that the resulting calculations agreed within tenths of a per cent. The maximum differences found between TRS-398 and the previous Codes of Practice TRS-277 (2nd edn) and TRS-381 are of the order of 1.5-2.0%. TRS-398 yields absorbed doses larger than the previous protocols, around 1.0% for photons (TRS-277) and for electrons (TRS-381 and TRS-277) when plane-parallel chambers are cross-calibrated. For the Markus chamber, results show a very large variation, although a fortuitous cancellation of the old stopping powers with the ND,w/NK ratios makes the overall discrepancy between TRS-398 and TRS-277 in this case smaller than for well-guarded plane-parallel chambers. Chambers of the Roos-type with a 60Co ND,w calibration yield the maximum discrepancy in absorbed dose, which varies between 1.0% and 1.5% for TRS-381 and between 1.5% and 2.0% for TRS-277. Photon beam calibrations using directly measured or calculated TPR20,10 from a percentage dose data at SSD = 100 cm were found to be indistinguishable. Considering that approximately 0.8% of the differences between TRS-398 and the NK-based protocols are caused by the change to the new type of standards, the remaining difference in absolute dose is due either to a close similarity in basic data or to a fortuitous cancellation of the discrepancies in data and type of chamber calibration. It is emphasized that the NK-ND,air and ND,w formalisms have very similar uncertainty when the same criteria are used for both procedures. Arguments are provided in support of the recommendation for a change in reference dosimetry based on standards of absorbed dose to water.

  3. Fricke-gel dosimeter: overview of Xylenol Orange chemical behavior

    NASA Astrophysics Data System (ADS)

    Liosi, G. M.; Dondi, D.; Vander Griend, D. A.; Lazzaroni, S.; D'Agostino, G.; Mariani, M.

    2017-11-01

    The complexation between Xylenol Orange (XO) and Fe3+ ions plays a key role in Fricke-gel dosimeters for the determination of the absorbed dose via UV-vis analysis. In this study, the effect of XO and the acidity of the solution on the complexation mechanism was investigated. Moreover, starting from the results of complexation titration and Equilibrium Restricted Factor Analysis, four XO-Fe3+ complexes were identified to contribute to the absorption spectra. Based on the acquired knowledge, a new [Fe3+] vs dose calibration method is proposed. The preliminary results show a significant improvement of the sensitivity and dose threshold with respect to the commonly used Abs vs dose calibration method.

  4. Microionization chamber for reference dosimetry in IMRT verification: clinical implications on OAR dosimetric errors

    NASA Astrophysics Data System (ADS)

    Sánchez-Doblado, Francisco; Capote, Roberto; Leal, Antonio; Roselló, Joan V.; Lagares, Juan I.; Arráns, Rafael; Hartmann, Günther H.

    2005-03-01

    Intensity modulated radiotherapy (IMRT) has become a treatment of choice in many oncological institutions. Small fields or beamlets with sizes of 1 to 5 cm2 are now routinely used in IMRT delivery. Therefore small ionization chambers (IC) with sensitive volumes <=0.1 cm3are generally used for dose verification of an IMRT treatment. The measurement conditions during verification may be quite different from reference conditions normally encountered in clinical beam calibration, so dosimetry of these narrow photon beams pertains to the so-called non-reference conditions for beam calibration. This work aims at estimating the error made when measuring the organ at risk's (OAR) absolute dose by a micro ion chamber (μIC) in a typical IMRT treatment. The dose error comes from the assumption that the dosimetric parameters determining the absolute dose are the same as for the reference conditions. We have selected two clinical cases, treated by IMRT, for our dose error evaluations. Detailed geometrical simulation of the μIC and the dose verification set-up was performed. The Monte Carlo (MC) simulation allows us to calculate the dose measured by the chamber as a dose averaged over the air cavity within the ion-chamber active volume (Dair). The absorbed dose to water (Dwater) is derived as the dose deposited inside the same volume, in the same geometrical position, filled and surrounded by water in the absence of the ion chamber. Therefore, the Dwater/Dair dose ratio is the MC estimator of the total correction factor needed to convert the absorbed dose in air into the absorbed dose in water. The dose ratio was calculated for the μIC located at the isocentre within the OARs for both clinical cases. The clinical impact of the calculated dose error was found to be negligible for the studied IMRT treatments.

  5. Validation of a MOSFET dosemeter system for determining the absorbed and effective radiation doses in diagnostic radiology.

    PubMed

    Manninen, A-L; Kotiaho, A; Nikkinen, J; Nieminen, M T

    2015-04-01

    This study aimed to validate a MOSFET dosemeter system for determining absorbed and effective doses (EDs) in the dose and energy range used in diagnostic radiology. Energy dependence, dose linearity and repeatability of the dosemeter were examined. The absorbed doses (ADs) were compared at anterior-posterior projection and the EDs were determined at posterior-anterior, anterior-posterior and lateral projections of thoracic imaging using an anthropomorphic phantom. The radiation exposures were made using digital radiography systems. This study revealed that the MOSFET system with high sensitivity bias supply set-up is sufficiently accurate for AD and ED determination. The dosemeter is recommended to be calibrated for energies <60 and >80 kVp. The entrance skin dose level should be at least 5 mGy to minimise the deviation of the individual dosemeter dose. For ED determination, dosemeters should be implanted perpendicular to the surface of the phantom to prevent the angular dependence error. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Evaluation of a lithium formate EPR dosimetry system for dose measurements around {sup 192}Ir brachytherapy sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonovic, Laura; Gustafsson, Haakan; Alm Carlsson, Gudrun

    2009-06-15

    A dosimetry system using lithium formate monohydrate (HCO{sub 2}Li{center_dot}H{sub 2}O) as detector material and electron paramagnetic resonance (EPR) spectroscopy for readout has been used to measure absorbed dose distributions around clinical {sup 192}Ir sources. Cylindrical tablets with diameter of 4.5 mm, height of 4.8 mm, and density of 1.26 g/cm{sup 3} were manufactured. Homogeneity test and calibration of the dosimeters were performed in a 6 MV photon beam. {sup 192}Ir irradiations were performed in a PMMA phantom using two different source models, the GammaMed Plus HDR and the microSelectron PDR-v1 model. Measured absorbed doses to water in the PMMA phantommore » were converted to the corresponding absorbed doses to water in water phantoms of dimensions used by the treatment planning systems (TPSs) using correction factors explicitly derived for this experiment. Experimentally determined absorbed doses agreed with the absorbed doses to water calculated by the TPS to within {+-}2.9%. Relative standard uncertainties in the experimentally determined absorbed doses were estimated to be within the range of 1.7%-1.3% depending on the radial distance from the source, the type of source (HDR or PDR), and the particular absorbed doses used. This work shows that a lithium formate dosimetry system is well suited for measurements of absorbed dose to water around clinical HDR and PDR {sup 192}Ir sources. Being less energy dependent than the commonly used thermoluminescent lithium fluoride (LiF) dosimeters, lithium formate monohydrate dosimeters are well suited to measure absorbed doses in situations where the energy dependence cannot easily be accounted for such as in multiple-source irradiations to verify treatment plans. Their wide dynamic range and linear dose response over the dose interval of 0.2-1000 Gy make them suitable for measurements on sources of the strengths used in clinical applications. The dosimeter size needs, however, to be reduced for application to single-source dosimetry.« less

  7. Accuracy of a dose-area product compared to an absorbed dose to water at a point in a 2 cm diameter field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufreneix, S.; Ostrowsky, A.; Rapp, B.

    Purpose: Graphite calorimeters with a core diameter larger than the beam can be used to establish dosimetric references in small fields. The dose-area product (DAP) measured can theoretically be linked to an absorbed dose at a point by the determination of a profile correction. This study aims at comparing the DAP-based protocol to the usual absorbed dose at a point protocol in a 2 cm diameter field for which both references exist. Methods: Two calorimeters were used, respectively, with a sensitive volume of 0.6 cm (for the absorbed dose at a point measurement) and 3 cm diameter (for the DAPmore » measurement). Profile correction was calculated from a 2D dose mapping using three detectors: a PinPoint chamber, a synthetic diamond, and EBT3 films. A specific protocol to read EBT3 films was implemented and the dose-rate and energy dependences were studied to assure a precise measurement, especially in the penumbra and out-of-field regions. Results: EBT3 films were found independent on dose rates over the range studied but showed a strong under-response (18%) at low energies. Depending on the dosimeter used for calculating the profile correction, a deviation of 0.8% (PinPoint chamber), 0.9% (diamond), or 1.9% (EBT3 films) was observed between the calibration coefficient derived from DAP measurements and the one directly established in terms of absorbed dose to water at a point. Conclusions: The DAP method can currently be linked to the classical dosimetric reference system based in an absorbed dose at a point only with a confidence interval of 95% (k = 2). None of the detectors studied can be used to determine an absorbed dose to water at a point from a DAP measurement with an uncertainty smaller than 1.2%.« less

  8. SU-D-213-06: Dosimetry of Modulated Electron Radiation Therapy Using Fricke Gel Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gawad, M Abdel; Elgohary, M; Hassaan, M

    Purpose: Modulated electron radiation therapy (MERT) has been proposed as an effective modality for treatment of superficial targets. MERT utilizes multiple beams of different energies which are intensity modulated to deliver optimized dose distribution. Energy independent dosimeters are thus needed for quantitative evaluations of MERT dose distributions and measurements of absolute doses delivered to patients. Thus in the current work we study the feasibility of Fricke gel dosimeters in MERT dosimetry. Methods: Batches of radiation sensitive Fricke gel is fabricated and poured into polymethyl methacrylate cuvettes. The samples were irradiated in solid water phantom and a thick layer of bolusmore » was used as a buildup. A spectrophotometer system was used for measuring the color changes (the absorbance) before and after irradiation and then we calculate net absorbance. We constructed calibration curves to relate the measured absorbance in terms of absorbed dose for all available electron energies. Dosimetric measurements were performed for mixed electron beam delivery and we also performed measurement for segmented field delivery with the dosimeter placed at the junction of two adjacent electron beams of different energies. Dose measured by our gel dosimetry is compared to that calculation from our precise treatment planning system. We also initiated a Monte Carlo study to evaluate the water equivalence of our dosimeters. MCBEAM and MCSIM codes were used for treatment head simulation and phantom dose calculation. PDDs and profiles were calculated for electron beams incident on a phantom designed with 1cm slab of Fricke gel. Results: The calibration curves showed no observed energy dependence with all studied electron beam energies. Good agreement was obtained between dose calculated and that obtained by gel dosimetry. Monte Carlo results illustrated the tissue equivalency of our Gel dosimeters. Conclusion: Fricke Gel dosimeters represent a good option for the dosimetric quality assurance prior to MERT application.« less

  9. Dose control in electron beam processing: Comparison of results from a graphite charge collector, routine dosimeters and the ISS alanine-based dosimeter

    NASA Astrophysics Data System (ADS)

    Fuochi, P. G.; Onori, S.; Casali, F.; Chirco, P.

    1993-10-01

    A 12 MeV linear accelerator is currently used for electron beam processing of power semiconductor devices for lifetime control and, on an experimental basis, for food irradiation, sludge treatment etc. In order to control the irradiation process a simple, quick and reliable method for a direct evaluation of dose and fluence in a broad electron beam has been developed. This paper presents the results obtained using a "charge collector" which measures the charge absorbed in a graphite target exposed in air. Calibration of the system with super-Fricke dosimeter and comparison of absorbed dose results obtained with plastic dosimeters and alanine pellets are discussed.

  10. Effects of Different Containers on Radioactivity Measurements using a Dose Calibrator with Special Reference to 111In and 123I.

    PubMed

    Inoue, Yusuke; Abe, Yutaka; Kikuchi, Kei; Miyatake, Hiroki; Watanabe, Atsushi

    2017-01-01

    Low-energy characteristic x-rays emitted by 111 In and 123 I sources are easily absorbed by the containers of the sources, affecting radioactivity measurements using a dose calibrator. We examined the effects of different containers on the estimated activities. The radioactivities of 111 In, 123 I, 201 Tl, and 99m Tc were measured in containers frequently employed in clinical practice in Japan. The 111 In measurements were performed in the vials A and B of the 111 In-pentetreotide preparation kit and in the plastic syringe. The activities of 123 I-metaiodobenzylguanidine and 201 Tl chloride were measured in the prefilled glass syringes and plastic syringes. The milking vial, vial A, vial B, and plastic syringe were used to assay 99m Tc. For 111 In and 123 I, measurements were performed with and without a copper filter. The filter was inserted into the well of the dose calibrator to absorb low-energy x-rays. The relative estimate was defined as the ratio of the activity estimated with the dose calibrator to the standard activity. The estimated activities varied greatly depending on the container when 111 In and 123 I sources were assayed without the copper filter. The relative estimates of 111 In were 0.908, 1.072, and 1.373 in the vial A, vial B, and plastic syringe, respectively. The relative estimates of 123 I were 1.052 and 1.352 in the glass syringe and plastic syringe, respectively. Use of the copper filter eliminated the container-dependence in 111 In and 123 I measurements. Container-dependence was demonstrated in neither 201 Tl nor 99m Tc measurements. The activities of 111 In and 123 I estimated with a dose calibrator differ greatly among the containers. Accurate estimation may be attained using the container-specific correction factor or using the copper filter.

  11. Dosimetry for Small Fields in Stereotactic Radiosurgery Using Gafchromic MD-V2-55 Film, TLD-100 and Alanine Dosimeters

    PubMed Central

    Massillon-JL, Guerda; Cueva-Prócel, Diego; Díaz-Aguirre, Porfirio; Rodríguez-Ponce, Miguel; Herrera-Martínez, Flor

    2013-01-01

    This work investigated the suitability of passive dosimeters for reference dosimetry in small fields with acceptable accuracy. Absorbed dose to water rate was determined in nine small radiation fields with diameters between 4 and 35 mm in a Leksell Gamma Knife (LGK) and a modified linear accelerator (linac) for stereotactic radiosurgery treatments. Measurements were made using Gafchromic film (MD-V2-55), alanine and thermoluminescent (TLD-100) dosimeters and compared with conventional dosimetry systems. Detectors were calibrated in terms of absorbed dose to water in 60Co gamma-ray and 6 MV x-ray reference (10×10 cm2) fields using an ionization chamber calibrated at a standards laboratory. Absorbed dose to water rate computed with MD-V2-55 was higher than that obtained with the others dosimeters, possibly due to a smaller volume averaging effect. Ratio between the dose-rates determined with each dosimeter and those obtained with the film was evaluated for both treatment modalities. For the LGK, the ratio decreased as the dosimeter size increased and remained constant for collimator diameters larger than 8 mm. The same behaviour was observed for the linac and the ratio increased with field size, independent of the dosimeter used. These behaviours could be explained as an averaging volume effect due to dose gradient and lack of electronic equilibrium. Evaluation of the output factors for the LGK collimators indicated that, even when agreement was observed between Monte Carlo simulation and measurements with different dosimeters, this does not warrant that the absorbed dose to water rate in the field was properly known and thus, investigation of the reference dosimetry should be an important issue. These results indicated that alanine dosimeter provides a high degree of accuracy but cannot be used in fields smaller than 20 mm diameter. Gafchromic film can be considered as a suitable methodology for reference dosimetry. TLD dosimeters are not appropriate in fields smaller than 10 mm diameters. PMID:23671677

  12. A calibration method for realistic neutron dosimetry in radiobiological experiments assisted by MCNP simulation.

    PubMed

    Shahmohammadi Beni, Mehrdad; Krstic, Dragana; Nikezic, Dragoslav; Yu, Kwan Ngok

    2016-09-01

    Many studies on biological effects of neutrons involve dose responses of neutrons, which rely on accurately determined absorbed doses in the irradiated cells or living organisms. Absorbed doses are difficult to measure, and are commonly surrogated with doses measured using separate detectors. The present work describes the determination of doses absorbed in the cell layer underneath a medium column (D A ) and the doses absorbed in an ionization chamber (D E ) from neutrons through computer simulations using the MCNP-5 code, and the subsequent determination of the conversion coefficients R (= D A /D E ). It was found that R in general decreased with increase in the medium thickness, which was due to elastic and inelastic scattering. For 2-MeV neutrons, conspicuous bulges in R values were observed at medium thicknesses of about 500, 1500, 2500 and 4000 μm, and these were attributed to carbon, oxygen and nitrogen nuclei, and were reflections of spikes in neutron interaction cross sections with these nuclei. For 0.1-MeV neutrons, no conspicuous bulges in R were observed (except one at ~2000 μm that was due to photon interactions), which was explained by the absence of prominent spikes in the interaction cross-sections with these nuclei for neutron energies <0.1 MeV. The ratio R could be increased by ~50% for small medium thickness if the incident neutron energy was reduced from 2 MeV to 0.1 MeV. As such, the absorbed doses in cells (D A ) would vary with the incident neutron energies, even when the absorbed doses shown on the detector were the same. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  13. A calibration method for realistic neutron dosimetry in radiobiological experiments assisted by MCNP simulation

    PubMed Central

    Shahmohammadi Beni, Mehrdad; Krstic, Dragana; Nikezic, Dragoslav; Yu, Kwan Ngok

    2016-01-01

    Many studies on biological effects of neutrons involve dose responses of neutrons, which rely on accurately determined absorbed doses in the irradiated cells or living organisms. Absorbed doses are difficult to measure, and are commonly surrogated with doses measured using separate detectors. The present work describes the determination of doses absorbed in the cell layer underneath a medium column (DA) and the doses absorbed in an ionization chamber (DE) from neutrons through computer simulations using the MCNP-5 code, and the subsequent determination of the conversion coefficients R (= DA/DE). It was found that R in general decreased with increase in the medium thickness, which was due to elastic and inelastic scattering. For 2-MeV neutrons, conspicuous bulges in R values were observed at medium thicknesses of about 500, 1500, 2500 and 4000 μm, and these were attributed to carbon, oxygen and nitrogen nuclei, and were reflections of spikes in neutron interaction cross sections with these nuclei. For 0.1-MeV neutrons, no conspicuous bulges in R were observed (except one at ~2000 μm that was due to photon interactions), which was explained by the absence of prominent spikes in the interaction cross-sections with these nuclei for neutron energies <0.1 MeV. The ratio R could be increased by ~50% for small medium thickness if the incident neutron energy was reduced from 2 MeV to 0.1 MeV. As such, the absorbed doses in cells (DA) would vary with the incident neutron energies, even when the absorbed doses shown on the detector were the same. PMID:27380801

  14. SU-E-T-308: Systematic Characterization of the Energy Response of Different LiF TLD Crystals for Dosimetry Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pena, E; Caprile, P; Sanchez-Nieto, B

    Purpose: The thermoluminiscense dosimeters (TLDs) are widely used in personal and clinical dosimetry due to its small size, good sensitivity and tissue equivalence, among other advantages. This study presents the characterization of Lithium Fluoride based TLDs, in terms of their absorbed dose response to successive irradiation cycles in a broad range of beam energies, measured under reference conditions. Methods: Four types of Harshaw TLD chips were used: TLD-100, TLD-600 TLD-700 and 100-H. They were irradiated with 10 photon beams of different energy spectrums, from 28 kVp to 18MV (in 30 consecutive cycles for 6 and 18 MV). Results: It wasmore » found that the response of the dosimetric system was stabilized (less than ±3%) after 10 cycles for TLD-600 and TLD-700. In the case of TLD-100 and TLD-100H this dependence was not observed. A decreased response to increasing beam energy in terms of absorbed dose to water was observed, as expected, except for TLD-100H which showed the opposite behavior. The less energy dependent detector was the TLD-100H exhibiting a maximum deviation of 12%. The highest variation observed was 33% for TLD-100. The study allowed the determination of calibration factors in absorbed dose for a wide range of energies and materials for different dosimetric applications, such as in-vivo dosimetry during imaging and radiotherapy. Conclusion: The study allowed the determination of calibration factors in absorbed dose for a wide range of energies and materials for different dosimetric applications, such as in-vivo dosimetry during imaging and radiotherapy.« less

  15. Calibration of modified Liulin detector for cosmic radiation measurements on-board aircraft.

    PubMed

    Kyselová, D; Ambrožová, I; Krist, P; Kubančák, J; Uchihori, Y; Kitamura, H; Ploc, O

    2015-06-01

    The annual effective doses of aircrew members often exceed the limit of 1 mSv for the public due to the increased level of cosmic radiation at the flight altitudes, and thus, it is recommended to monitor them. Aircrew dosimetry is usually performed using special computer programs mostly based on results of Monte Carlo simulations. Contemporary, detectors are used mostly for validation of these computer codes, verification of effective dose calculations and for research purposes. One of such detectors is active silicon semiconductor deposited energy spectrometer Liulin. Output quantities of measurement with the Liulin detector are the absorbed dose in silicon D and the ambient dose equivalent H*(10); to determine it, two calibrations are necessary. The purpose of this work was to develop a calibration methodology that can be used to convert signal from the detector to D independently on calibration performed at Heavy Ion Medical Accelerator facility in Chiba, Japan. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Calculation of Blood Dose in Patients Treated With 131I Using MIRD, Imaging, and Blood Sampling Methods

    PubMed Central

    Piruzan, Elham; Haghighatafshar, Mahdi; Faghihi, Reza; Entezarmahdi, Seyed Mohammad

    2016-01-01

    Abstract Radioiodine therapy is known as the most effective treatment of differentiated thyroid carcinoma (DTC) to ablate remnant thyroid tissue after surgery. In patients with DTC treated with radioiodine, internal radiation dosimetry of radioiodine is useful for radiation risk assessment. The aim of this study is to describe a method to estimate the absorbed dose to the blood using medical internal radiation dosimetry methods. In this study, 23 patients with DTC with different administrated activities, 3.7, 4.62, and 5.55 GBq after thyroidectomy, were randomly selected. Blood dosimetry of treated patients was performed with external whole body counting using a dual-head gamma camera imaging device and also with blood sample activity measurements using a dose calibrator. Absorbed dose to the blood was measured at 2, 6, 12, 24, 48, and 96 hours after the administration of radioiodine with the 2 methods. Based on the results of whole body counting and blood sample activity dose rate measurements, 96 hours after administration of 3.7, 4.62, and 5.55 GBq of radioiodine, absorbed doses to patients’ blood were 0.65 ± 0.20, 0.67 ± 0.18, 0.79 ± 0.51 Gy, respectively. Increasing radioiodine activity from 3.7 to 5.55 GBq increased blood dose significantly, while there was no significant difference in blood dose between radioiodine dosages of 3.7 and 4.62 GBq. Our results revealed a significant correlation between the blood absorbed dose and blood sample activity and between the blood absorbed dose and whole body counts 24 to 48 hours after the administration of radioiodine. PMID:26986171

  17. Calculation of Blood Dose in Patients Treated With 131I Using MIRD, Imaging, and Blood Sampling Methods.

    PubMed

    Piruzan, Elham; Haghighatafshar, Mahdi; Faghihi, Reza; Entezarmahdi, Seyed Mohammad

    2016-03-01

    Radioiodine therapy is known as the most effective treatment of differentiated thyroid carcinoma (DTC) to ablate remnant thyroid tissue after surgery. In patients with DTC treated with radioiodine, internal radiation dosimetry of radioiodine is useful for radiation risk assessment. The aim of this study is to describe a method to estimate the absorbed dose to the blood using medical internal radiation dosimetry methods. In this study, 23 patients with DTC with different administrated activities, 3.7, 4.62, and 5.55 GBq after thyroidectomy, were randomly selected. Blood dosimetry of treated patients was performed with external whole body counting using a dual-head gamma camera imaging device and also with blood sample activity measurements using a dose calibrator. Absorbed dose to the blood was measured at 2, 6, 12, 24, 48, and 96 hours after the administration of radioiodine with the 2 methods. Based on the results of whole body counting and blood sample activity dose rate measurements, 96 hours after administration of 3.7, 4.62, and 5.55 GBq of radioiodine, absorbed doses to patients' blood were 0.65 ± 0.20, 0.67 ± 0.18, 0.79 ± 0.51 Gy, respectively. Increasing radioiodine activity from 3.7 to 5.55 GBq increased blood dose significantly, while there was no significant difference in blood dose between radioiodine dosages of 3.7 and 4.62 GBq. Our results revealed a significant correlation between the blood absorbed dose and blood sample activity and between the blood absorbed dose and whole body counts 24 to 48 hours after the administration of radioiodine.

  18. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    PubMed

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  19. Dosimetric characterization of GafChromic EBT film and its implication on film dosimetry quality assurance.

    PubMed

    Fuss, Martina; Sturtewagen, Eva; De Wagter, Carlos; Georg, Dietmar

    2007-07-21

    The suitability of radiochromic EBT film was studied for high-precision clinical quality assurance (QA) by identifying the dose response for a wide range of irradiation parameters typically modified in highly-conformal treatment techniques. In addition, uncertainties associated with varying irradiation conditions were determined. EBT can be used for dose assessment of absorbed dose levels as well as relative dosimetry when compared to absolute absorbed dose calibrated using ionization chamber results. For comparison, a silver halide film (Kodak EDR-2) representing the current standard in film dosimetry was included. As an initial step a measurement protocol yielding accurate and precise results was established for a flatbed transparency scanner (Epson Expression 1680 Pro) that was utilized as a film reading instrument. The light transmission measured by the scanner was found to depend on the position of the film on the scanner plate. For three film pieces irradiated with doses of 0 Gy, approximately 1 Gy and approximately 7 Gy, the pixel values measured in portrait or landscape mode differed by 4.7%, 6.2% and 10.0%, respectively. A study of 200 film pieces revealed an excellent sheet-to-sheet uniformity. On a long time scale, the optical development of irradiated EBT film consisted of a slow but steady increase of absorbance which was not observed to cease during 4 months. Sensitometric curves of EBT films obtained under reference conditions (SSD = 95 cm, FS = 5 x 5 cm(2), d = 5 cm) for 6, 10 and 25 MV photon beams did not show any energy dependence. The average separation between all curves was only 0.7%. The variation of the depth d (range 2-25 cm) in the phantom did not affect the dose response of EBT film. Also the influence of the radiation field size (range 3 x 3-40 x 40 cm(2)) on the sensitometric curve was not significant. For EDR-2 films maximum differences between the calibration curves reached 7-8% for X6MV and X25MV. Radiochromic EBT film, in combination with a flatbed scanner, presents a versatile system for high-precision dosimetry in two dimensions, provided that the intrinsic behaviour of the film reading device is taken into account. EBT film itself presents substantial improvements on formerly available models of radiographic and a radiochromic film and its dosimetric characteristics allow us to measure absorbed dose levels in a large variety of situations with a single calibration curve.

  20. Dosimetric characterization of GafChromic EBT film and its implication on film dosimetry quality assurance

    NASA Astrophysics Data System (ADS)

    Fuss, Martina; Sturtewagen, Eva; DeWagter, Carlos; Georg, Dietmar

    2007-07-01

    The suitability of radiochromic EBT film was studied for high-precision clinical quality assurance (QA) by identifying the dose response for a wide range of irradiation parameters typically modified in highly-conformal treatment techniques. In addition, uncertainties associated with varying irradiation conditions were determined. EBT can be used for dose assessment of absorbed dose levels as well as relative dosimetry when compared to absolute absorbed dose calibrated using ionization chamber results. For comparison, a silver halide film (Kodak EDR-2) representing the current standard in film dosimetry was included. As an initial step a measurement protocol yielding accurate and precise results was established for a flatbed transparency scanner (Epson Expression 1680 Pro) that was utilized as a film reading instrument. The light transmission measured by the scanner was found to depend on the position of the film on the scanner plate. For three film pieces irradiated with doses of 0 Gy, ~1 Gy and ~7 Gy, the pixel values measured in portrait or landscape mode differed by 4.7%, 6.2% and 10.0%, respectively. A study of 200 film pieces revealed an excellent sheet-to-sheet uniformity. On a long time scale, the optical development of irradiated EBT film consisted of a slow but steady increase of absorbance which was not observed to cease during 4 months. Sensitometric curves of EBT films obtained under reference conditions (SSD = 95 cm, FS = 5 × 5 cm2, d = 5 cm) for 6, 10 and 25 MV photon beams did not show any energy dependence. The average separation between all curves was only 0.7%. The variation of the depth d (range 2-25 cm) in the phantom did not affect the dose response of EBT film. Also the influence of the radiation field size (range 3 × 3-40 × 40 cm2) on the sensitometric curve was not significant. For EDR-2 films maximum differences between the calibration curves reached 7-8% for X6MV and X25MV. Radiochromic EBT film, in combination with a flatbed scanner, presents a versatile system for high-precision dosimetry in two dimensions, provided that the intrinsic behaviour of the film reading device is taken into account. EBT film itself presents substantial improvements on formerly available models of radiographic and a radiochromic film and its dosimetric characteristics allow us to measure absorbed dose levels in a large variety of situations with a single calibration curve.

  1. Comparison of the calculated absorbed dose using the Cadplan™ treatment planning software and Tld-100 measurements in an Alderson-Rando phantom for a bronchogenic treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutiérrez Castillo, J. G., E-mail: jggc59@hotmail.com; Álvarez Romero, J. T., E-mail: trinidad.alvarez@inin.gob.mx, E-mail: fisarmandotorres@gmail.com, E-mail: victor.tovar@inin.gob.mx; Calderón, A. Torres, E-mail: trinidad.alvarez@inin.gob.mx, E-mail: fisarmandotorres@gmail.com, E-mail: victor.tovar@inin.gob.mx

    2014-11-07

    To verify the accuracy of the absorbed doses D calculated by a TPS Cadplan for a bronchogenic treatment (in an Alderson-Rando phantom) are chosen ten points with the following D's and localizations. Point 1, posterior position on the left edge with 136.4 Gy. Points: 2, 3 and 4 in the left lung with 104.9, 104.3 and 105.8 Gy, respectively; points 5 and 6 at the mediastinum with 192.4 and 173.5 Gy; points 7, 8 and 9 in the right lung with 105.8, 104.2 and 104.7 Gy, and 10 at posterior position on right edge with 143.7 Gy. IAEA type capsulesmore » with TLD 100 powder are placed, planned and irradiated. The evaluation of the absorbed dose is carried out a curve of calibration for the LiF response (nC) {sup vs} {sup DW}, to several cavity theories. The traceability for the DW is obtained with a secondary standard calibrated at the NRC (Canada). The dosimetric properties for the materials considered are determined from the Hounsfield numbers reported by the TPS. The stopping power ratios are calculated for nominal spectrum to 6 MV photons. The percent variations among the planned and determined D in all the cases they are < ± 3%.« less

  2. The application of polymer gel dosimeters to dosimetry for targeted radionuclide therapy

    NASA Astrophysics Data System (ADS)

    Gear, J. I.; Flux, G. D.; Charles-Edwards, E.; Partridge, M.; Cook, G.; Ott, R. J.

    2006-07-01

    There is a lack of standardized methodology to perform dose calculations for targeted radionuclide therapy and at present no method exists to objectively evaluate the various approaches employed. The aim of the work described here was to investigate the practicality and accuracy of calibrating polymer gel dosimeters such that dose measurements resulting from complex activity distributions can be verified. Twelve vials of the polymer gel dosimeter, 'MAGIC', were uniformly mixed with varying concentrations of P-32 such that absorbed doses ranged from 0 to 30 Gy after a period of 360 h before being imaged on a magnetic resonance scanner. In addition, nine vials were prepared and irradiated using an external 6 MV x-ray beam. Magnetic resonance transverse relaxation time, T2, maps were obtained using a multi-echo spin echo sequence and converted to R2 maps (where T2 = 1/R2). Absorbed doses for P-32 irradiated gel were calculated according to the medical internal radiation dose schema using EGSnrc Monte Carlo simulations. Here the energy deposited in cylinders representing the irradiated vials was scored. A relationship between dose and R2 was determined. Effects from oxygen contamination were present in the internally irradiated vials. An increase in O2 sensitivity over those gels irradiated externally was thought to be a result of the longer irradiation period. However, below the region of contamination dose response appeared homogenous. Due do a drop-off of dose at the periphery of the internally irradiated vials, magnetic resonance ringing artefacts were observed. The ringing did not greatly affect the accuracy of calibration, which was comparable for both methods. The largest errors in calculated dose originated from the initial activity measurements, and were approximately 10%. Measured R2 values ranged from 5-35 s-1 with an average standard deviation of 1%. A clear relationship between R2 and dose was observed, with up to 40% increased sensitivity for internally irradiated gels. Curve fits to the calibration data followed a single exponential function. The correlation coefficients for internally and externally irradiated gels were 0.991 and 0.985, respectively. With the ability to accurately calibrate internally dosed polymer gels, this technology shows promise as a means to evaluate dosimetry methods, particularly in cases of non-uniform uptake of a radionuclide.

  3. Evaluation of lens absorbed dose with Cone Beam IGRT procedures.

    PubMed

    Palomo, R; Pujades, M C; Gimeno-Olmos, J; Carmona, V; Lliso, F; Candela-Juan, C; Vijande, J; Ballester, F; Perez-Calatayud, J

    2015-12-01

    The purpose of this work is to evaluate the absorbed dose to the eye lenses due to the cone beam computed tomography (CBCT) system used to accurately position the patient during head-and-neck image guided procedures. The on-board imaging (OBI) systems (v.1.5) of Clinac iX and TrueBeam (Varian) accelerators were used to evaluate the imparted dose to the eye lenses and some additional points of the head. All CBCT scans were acquired with the Standard-Dose Head protocol from Varian. Doses were measured using thermoluminescence dosimeters (TLDs) placed in an anthropomorphic phantom. TLDs were calibrated at the beam quality used to reduce their energy dependence. Average dose to the lens due to the OBI systems of the Clinac iX and the TrueBeam were 0.71  ±  0.07 mGy/CBCT and 0.70  ±  0.08 mGy/CBCT, respectively. The extra absorbed dose received by the eye lenses due to one CBCT acquisition with the studied protocol is far below the 500 mGy threshold established by ICRP for cataract formation (ICRP 2011 Statement on Tissue Reactions). However, the incremental effect of several CBCT acquisitions during the whole treatment should be taken into account.

  4. Uncertainty analysis of absorbed dose calculations from thermoluminescence dosimeters.

    PubMed

    Kirby, T H; Hanson, W F; Johnston, D A

    1992-01-01

    Thermoluminescence dosimeters (TLD) are widely used to verify absorbed doses delivered from radiation therapy beams. Specifically, they are used by the Radiological Physics Center for mailed dosimetry for verification of therapy machine output. The effects of the random experimental uncertainties of various factors on dose calculations from TLD signals are examined, including: fading, dose response nonlinearity, and energy response corrections; reproducibility of TL signal measurements and TLD reader calibration. Individual uncertainties are combined to estimate the total uncertainty due to random fluctuations. The Radiological Physics Center's (RPC) mail out TLD system, utilizing throwaway LiF powder to monitor high-energy photon and electron beam outputs, is analyzed in detail. The technique may also be applicable to other TLD systems. It is shown that statements of +/- 2% dose uncertainty and +/- 5% action criterion for TLD dosimetry are reasonable when related to uncertainties in the dose calculations, provided the standard deviation (s.d.) of TL readings is 1.5% or better.

  5. Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for low-energy surface brachytherapy dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candela-Juan, C., E-mail: ccanjuan@gmail.com; Vijande, J.; García-Martínez, T.

    2015-08-15

    Purpose: A surface electronic brachytherapy (EBT) device is in fact an x-ray source collimated with specific applicators. Low-energy (<100 kVp) x-ray beam dosimetry faces several challenges that need to be addressed. A number of calibration protocols have been published for x-ray beam dosimetry. The media in which measurements are performed are the fundamental difference between them. The aim of this study was to evaluate the surface dose rate of a low-energy x-ray source with small field applicators using different calibration standards and different small-volume ionization chambers, comparing the values and uncertainties of each methodology. Methods: The surface dose rate ofmore » the EBT unit Esteya (Elekta Brachytherapy, The Netherlands), a 69.5 kVp x-ray source with applicators of 10, 15, 20, 25, and 30 mm diameter, was evaluated using the AAPM TG-61 (based on air kerma) and International Atomic Energy Agency (IAEA) TRS-398 (based on absorbed dose to water) dosimetry protocols for low-energy photon beams. A plane parallel T34013 ionization chamber (PTW Freiburg, Germany) calibrated in terms of both absorbed dose to water and air kerma was used to compare the two dosimetry protocols. Another PTW chamber of the same model was used to evaluate the reproducibility between these chambers. Measurements were also performed with two different Exradin A20 (Standard Imaging, Inc., Middleton, WI) chambers calibrated in terms of air kerma. Results: Differences between surface dose rates measured in air and in water using the T34013 chamber range from 1.6% to 3.3%. No field size dependence has been observed. Differences are below 3.7% when measurements with the A20 and the T34013 chambers calibrated in air are compared. Estimated uncertainty (with coverage factor k = 1) for the T34013 chamber calibrated in water is 2.2%–2.4%, whereas it increases to 2.5% and 2.7% for the A20 and T34013 chambers calibrated in air, respectively. The output factors, measured with the PTW chambers, differ by less than 1.1% for any applicator size when compared to the output factors that were measured with the A20 chamber. Conclusions: Measurements using both dosimetric protocols are consistent, once the overall uncertainties are considered. There is also consistency between measurements performed with both chambers calibrated in air. Both the T34013 and A20 chambers have negligible stem effect. Any x-ray surface brachytherapy system, including Esteya, can be characterized using either one of these calibration protocols and ionization chambers. Having less correction factors, lower uncertainty, and based on measurements, performed in closer to clinical conditions, the TRS-398 protocol seems to be the preferred option.« less

  6. SU-F-19A-06: Experimental Investigation of the Energy Dependence of TLD Sensitivity in Low-Energy Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z; Nath, R

    Purpose: To measure the energy dependence of TLD sensitivity in lowenergy photon beams with equivalent mono-energetic energy matching those of 103Pd, 125I and 131Cs brachytherapy sources. Methods: A Pantek DXT 300 x-ray unit (Precision X-ray, Branford, CT), with stable digital voltage control down to 20 kV, was used to establish three lowenergy photon beams with narrow energy spread and equivalent monoenergetic energies matching those of 103Pd, 125I and 131Cs brachytherapy sources. The low-energy x-ray beams and a reference 6 MV photon beam were calibrated according to the AAPM TG-61 and TG-51 protocols, respectively, using a parallel-plate low-energy chamber and amore » Farmer cylindrical chamber with NIST traceable calibration factors. The dose response of model TLD-100 micro-cubes (1×1×1 mm{sup 3}) in each beam was measured for five different batches of TLDs (each contained approximately 100 TLDs) that have different histories of irradiation and usage. Relative absorbed dose sensitivity was determined as the quotient of the slope of dose response for a beam-of-interest to that of the reference beam. Results: Equivalent mono-energetic photon energies of the low-energy beams established for 103Pd, 125I and 131Cs sources were 20.5, 27.5, and 30.1 keV, respectively. Each beam exhibited narrow spectral spread with energyhomogeneity index close to 90%. The relative absorbed-dose sensitivity was found to vary between different batches of TLD with maximum differences of up to 8%. The mean and standard deviation determined from the five TLD batches was 1.453 ± 0.026, 1.541 ± 0.035 and 1.529 ± 0.051 for the simulated 103P, 125I and 131Cs beams, respectively. Conclusion: Our measured relative absorbed-dose sensitivities are greater than the historically measured value of 1.41. We find that the relative absorbed-dose sensitivity of TLD in the 103P beam is approximately 5% lower than that of 125I and 131Cs beams. Comparison of our results with other studies will be presented.« less

  7. SU-E-I-45: Measurement of CT Dose to An HDPE Phantom Using Calorimetry: A Feasibility Study.

    PubMed

    Chen-Mayer, H; Tosh, R; Bateman, F; Zimmerman, B

    2012-06-01

    Radiation dose in CT is traditionally evaluated using an ionization chamber calibrated in terms of air kerma in a phantom of specific dimensions. The radiation absorbed dose, J/kg, can also be realized directly by measuring the temperature rise in the medium. We investigate using this primary method to determine the CT dose at a point (a few mm), using the recently proposed (APMM TG220) high density polyethylene (HDPE) phantom as a medium. The calorimeter detection scheme is adapted from the second generation NIST water calorimeter using sensitive thermistors in a Wheatstone bridge powered by a lock-in amplifier. The temperature sensitivity is about 3 microK. The expected temperature rise in PE is about 0.6 mK per Gy. The thermistor sensors were placed inside a 26 cm dia. × 10 cm HDPE phantom. Two preliminary tests were made: at a linear accelerator with a 6 MV photon beam, and at a 16-slice CT scanner with a 120 kV beam, each with the thermal sensor and with a calibrated ionization chamber. The 6 MV photon beam with 10 on/off cycles at 60 s each yielded the (uncorrected) run-to-run average dose of 3.06 Gy per cycle (sdm 0.3%), about 8% higher than the Result from the ionization chamber (calibrated in terms of absorbed to water). The CT measurements were also made in the middle section of the TG200 30 cm phantom. Twenty consecutive axial scans at 250 mA, which delivers a nominal accumulated dose (CTDIvol) of 705 mGy in 50 s at three axial and three radial locations were measured. The accumulated dose measured by the ionization chamber at the center of the smaller phantom was 347 mGy. The calorimeter data show qualitative tracking of the chamber measurements. Detailed thermal and electrical analysis of the system are planned to obtain quantitative results. © 2012 American Association of Physicists in Medicine.

  8. Lithium formate EPR dosimetry for verifications of planned dose distributions prior to intensity-modulated radiation therapy.

    PubMed

    Gustafsson, H; Lund, E; Olsson, S

    2008-09-07

    The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor kappa = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.

  9. Lithium formate EPR dosimetry for verifications of planned dose distributions prior to intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Gustafsson, H.; Lund, E.; Olsson, S.

    2008-09-01

    The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor k = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.

  10. Determination of absorbed dose to water from a miniature kilovoltage x-ray source using a parallel-plate ionization chamber

    NASA Astrophysics Data System (ADS)

    Watson, Peter G. F.; Popovic, Marija; Seuntjens, Jan

    2018-01-01

    Electronic brachytherapy sources are widely accepted as alternatives to radionuclide-based systems. Yet, formal dosimetry standards for these devices to independently complement the dose protocol provided by the manufacturer are lacking. This article presents a formalism for calculating and independently verifying the absorbed dose to water from a kV x-ray source (The INTRABEAM System) measured in a water phantom with an ionization chamber calibrated in terms of air-kerma. This formalism uses a Monte Carlo (MC) calculated chamber conversion factor, CQ , to convert air-kerma in a reference beam to absorbed dose to water in the measurement beam. In this work CQ was determined for a PTW 34013 parallel-plate ionization chamber. Our results show that CQ was sensitive to the chamber plate separation tolerance, with differences of up to 15%. CQ was also found to have a depth dependence which varied with chamber plate separation (0 to 10% variation for the smallest and largest cavity height, over 3 to 30 mm depth). However for all chamber dimensions investigated, CQ was found to be significantly larger than the manufacturer reported value, suggesting that the manufacturer recommended method of dose calculation could be underestimating the dose to water.

  11. Comparison of dosimetric properties among four commercial multi-detector computed tomography scanners.

    PubMed

    Ohno, Takeshi; Araki, Fujio; Onizuka, Ryota; Hatemura, Masahiro; Shimonobou, Toshiaki; Sakamoto, Takashi; Okumura, Shuichiro; Ideguchi, Daichi; Honda, Keiichi; Kawata, Kenji

    2017-03-01

    This study compared dosimetric properties among four commercial multi-detector CT (MDCT) scanners. The X-ray beam characteristics were obtained from photon intensity attenuation curves of aluminum and off-center ratio (OCR) profiles in air, which were measured with four commercial MDCT scanners. The absorbed dose for MDCT scanners was evaluated with Farmer ionization chamber measurements at the center and four peripheral points in the body- and head-type cylindrical water phantoms. Measured collected charge was converted to absorbed dose using a 60 Co absorbed dose-to-water calibration factor and Monte Carlo (MC)-calculated correction factors. Four MDCT scanners were modeled to correspond with measured X-ray beam characteristics using GMctdospp (IMPS, Germany) software. Al half-value layers (Al-HVLs) with a body-bowtie filter determined from measured Al-attenuation curves ranged 7.2‒9.1mm at 120kVp and 6.1‒8.0mm at 100kVp. MC-calculated Al-HVLs and OCRs in air were in acceptable agreement within 0.5mm and 5% of measured values, respectively. The percentage difference between nominal and actual beam width was greater with decreasing collimation width. The absorbed doses for MDCT scanners at 120kVp ranged 5.1‒7.1mGy and 10.8‒17.5mGy per 100mAs at the center in the body- and head-type water phantoms, respectively. Measured doses at four peripheral points were within 5% agreement of MC-calculated values. The absorbed dose at the center in both water phantoms increased with decreasing Al-HVL for the same charge on the focus. In this study the X-ray beam characteristics and the absorbed dose were measured and compared with calculated values for four MDCT scanners. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Development of a TLD mailed system for remote dosimetry audit for (192)Ir HDR and PDR sources.

    PubMed

    Roué, Amélie; Venselaar, Jack L M; Ferreira, Ivaldo H; Bridier, André; Van Dam, Jan

    2007-04-01

    In the framework of an ESTRO ESQUIRE project, the BRAPHYQS Physics Network and the EQUAL-ESTRO laboratory have developed a procedure for checking the absorbed dose to water in the vicinity of HDR or PDR sources using a mailed TLD system. The methodology and the materials used in the procedure are based on the existing EQUAL-ESTRO external radiotherapy dose checks. A phantom for TLD postal dose assurance service, adapted to accept catheters from different HDR afterloaders, has been developed. The phantom consists of three PMMA tubes supporting catheters placed at 120 degrees around a central TLD holder. A study on the use of LiF powder type DTL 937 (Philitech) has been performed in order to establish the TLD calibration in dose-to-water at a given distance from (192)Ir source, as well as to determine all correction factors to convert the TLD reading into absorbed dose to water. The dosimetric audit is based on the comparison between the dose to water measured with the TL dosimeter and the dose calculated by the clinical TPS. Results of the audits are classified in four different levels depending on the ratio of the measured dose to the stated dose. The total uncertainty budget in the measurement of the absorbed dose to water using TLD near an (192)Ir HDR source, including TLD reading, correction factors and TLD calibration coefficient, is determined as 3.27% (1s). To validate the procedures, the external audit was first tested among the members of the BRAPHYQS Network. Since November 2004, the test has been made available for use by all European brachytherapy centres. To date, 11 centres have participated in the checks and the results obtained are very encouraging. Nevertheless, one error detected has shown the usefulness of this audit. A method of absorbed dose to water determination in the vicinity of an (192)Ir brachytherapy source was developed for the purpose of a mailed TL dosimetry system. The accuracy of the procedure was determined. This method allows a check of the whole dosimetry chain for this type of brachytherapy afterloading system and can easily be performed by mail to any institution in the European area and elsewhere. Such an external audit can be an efficient QC method complementary to internal quality control as it can reveal some errors which are not observable by other means.

  13. SU-F-207-01: Comparison of Beam Characteristics and Organ Dose From Four Commercial Multidetector Computed Tomography Scanners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, T; Araki, F

    2015-06-15

    Purpose: To compare dosimetric properties and patient organ doses from four commercial multidetector CT (MDCT) using Monte Carlo (MC) simulation based on the absorbed dose measured using a Farmer chamber and cylindrical water phantoms according to AAPM TG-111. Methods: Four commercial MDCT were modeled using the GMctdospp (IMPS, Germany) based on the EGSnrc user code. The incident photon spectrum and bowtie filter for MC simulations were determined so that calculated values of aluminum half-value layer (Al-HVL) and off-center ratio (OCR) profile in air agreed with measured values. The MC dose was calibrated from absorbed dose measurements using a Farmer chambermore » and cylindrical water phantoms. The dose distributions of head, chest, and abdominal scan were calculated using patient CT images and mean organ doses were evaluated from dose volume histograms. Results: The HVLs at 120 kVp of Brilliance, LightSpeed, Aquilion, and SOMATOM were 9.1, 7.5, 7.2, and 8.7 mm, respectively. The calculated Al-HVLs agreed with measurements within 0.3%. The calculated and measured OCR profiles agreed within 5%. For adult head scans, mean doses for eye lens from Brilliance, LightSpeed, Aquilion, and SOMATOM were 21.7, 38.5, 47.2 and 28.4 mGy, respectively. For chest scans, mean doses for lung from Brilliance, LightSpeed, Aquilion, and SOMATOM were 21.1, 26.1, 35.3 and 24.0 mGy, respectively. For adult abdominal scans, the mean doses for liver from Brilliance, LightSpeed, Aquilion, and SOMATOM were 16.5, 21.3, 22.7, and 18.0 mGy, respectively. The absorbed doses increased with decreasing Al-HVL. The organ doses from Aquilion were two greater than those from Brilliance in head scan. Conclusion: MC dose distributions based on absorbed dose measurement in cylindrical water phantom are useful to evaluate individual patient organ doses.« less

  14. SU-F-T-488: Comparison of the TG-51 and TG-51 Addendum Calibration Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaw, T; Hwang, M; Jang, S

    Purpose: To quantify differences between the TG51 and TG51 addendum calibration protocols. Methods: Beam energies of 6X, 6XSRS, 10X, 15X, 23X, 6XFFF, and 10XFFF were calibrated following both the TG51 and TG51 addendum protocols using both a Farmer and a scanning ionization chamber with traceable absorbed dose-to-water calibrations. For the TG51 addendum procedure, the collimating jaws were positioned to define a 10×10cm{sup 2} radiation field, a lead foil was only used for kQ measurements of FFF energies, and a volume-averaging correction was applied based on crossline and inline dose profiles. For the TG51 procedure, the collimating jaws were set tomore » 10×10cm{sup 2} according to the digital readout, and a lead foil was used for kQ measurements of energies greater than 10MV. Results: For beam energies with a flattening filter, absorbed dose-to-water determined by the two protocols differed by 0.1%–0.3%. For FFF beam energies, differences between the protocols were up to 0.2% and 0.8% for the scanning and Farmer ionization chambers, respectively. Differences between the protocols were due to kQ determination, volume-averaging correction, and measurement of raw ionization. Differences in kQ values between the two protocols were up to 0.4% and 0.2% for the scanning and Farmer ionization chambers, respectively. Volume-averaging corrections were less than 0.1% for the scanning ionization chamber, and up to 0.4% and 0.6% for the Farmer ionization chamber in beams with a flattening filter and FFF beams, respectively. Raw ionization measurements differed up to 0.3%±0.07% due to differences in jaw settings. Conclusion: The TG51 and TG51 addendum calibration protocols differed less than 0.3% for the scanning ionization chamber. For the Farmer chamber in FFF energies, volume-averaging corrections of up to 0.6% contributed to calibration differences of up to 0.8%. Failure to verify the radiation field size can produce calibration differences of up to 0.3%.« less

  15. A test of the IAEA code of practice for absorbed dose determination in photon and electron beams

    NASA Astrophysics Data System (ADS)

    Leitner, Arnold; Tiefenboeck, Wilhelm; Witzani, Josef; Strachotinsky, Christian

    1990-12-01

    The IAEA (International Atomic Energy Agency) code of practice TRS 277 gives recommendations for absorbed dose determination in high energy photon and electron beams based on the use of ionization chambers calibrated in terms of exposure of air kerma. The scope of the work was to test the code for cobalt 60 gamma radiation and for several radiation qualities at four different types of electron accelerators and to compare the ionization chamber dosimetry with ferrous sulphate dosimetry. The results show agreement between the two methods within about one per cent for all the investigated qualities. In addition the response of the TLD capsules of the IAEA/WHO TL dosimetry service was determined.

  16. Patient dose, gray level and exposure index with a computed radiography system

    NASA Astrophysics Data System (ADS)

    Silva, T. R.; Yoshimura, E. M.

    2014-02-01

    Computed radiography (CR) is gradually replacing conventional screen-film system in Brazil. To assess image quality, manufactures provide the calculation of an exposure index through the acquisition software of the CR system. The objective of this study is to verify if the CR image can be used as an evaluator of patient absorbed dose too, through a relationship between the entrance skin dose and the exposure index or the gray level values obtained in the image. The CR system used for this study (Agfa model 30-X with NX acquisition software) calculates an exposure index called Log of the Median (lgM), related to the absorbed dose to the IP. The lgM value depends on the average gray level (called Scan Average Level (SAL)) of the segmented pixel value histogram of the whole image. A Rando male phantom was used to simulate a human body (chest and head), and was irradiated with an X-ray equipment, using usual radiologic techniques for chest exams. Thermoluminescent dosimeters (LiF, TLD100) were used to evaluate entrance skin dose and exit dose. The results showed a logarithm relation between entrance dose and SAL in the image center, regardless of the beam filtration. The exposure index varies linearly with the entrance dose, but the angular coefficient is beam quality dependent. We conclude that, with an adequate calibration, the CR system can be used to evaluate the patient absorbed dose.

  17. Ion chamber absorbed dose calibration coefficients, N{sub D,w}, measured at ADCLs: Distribution analysis and stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muir, B. R., E-mail: Bryan.Muir@nrc-cnrc.gc.ca

    2015-04-15

    Purpose: To analyze absorbed dose calibration coefficients, N{sub D,w}, measured at accredited dosimetry calibration laboratories (ADCLs) for client ionization chambers to study (i) variability among N{sub D,w} coefficients for chambers of the same type calibrated at each ADCL to investigate ion chamber volume fluctuations and chamber manufacturing tolerances; (ii) equivalency of ion chamber calibration coefficients measured at different ADCLs by intercomparing N{sub D,w} coefficients for chambers of the same type; and (iii) the long-term stability of N{sub D,w} coefficients for different chamber types by investigating repeated chamber calibrations. Methods: Large samples of N{sub D,w} coefficients for several chamber types measuredmore » over the time period between 1998 and 2014 were obtained from the three ADCLs operating in the United States. These are analyzed using various graphical and numerical statistical tests for the four chamber types with the largest samples of calibration coefficients to investigate (i) and (ii) above. Ratios of calibration coefficients for the same chamber, typically obtained two years apart, are calculated to investigate (iii) above and chambers with standard deviations of old/new ratios less than 0.3% meet stability requirements for accurate reference dosimetry recommended in dosimetry protocols. Results: It is found that N{sub D,w} coefficients for a given chamber type compared among different ADCLs may arise from differing probability distributions potentially due to slight differences in calibration procedures and/or the transfer of the primary standard. However, average N{sub D,w} coefficients from different ADCLs for given chamber types are very close with percent differences generally less than 0.2% for Farmer-type chambers and are well within reported uncertainties. Conclusions: The close agreement among calibrations performed at different ADCLs reaffirms the Calibration Laboratory Accreditation Subcommittee process of ensuring ADCL conformance with National Institute of Standards and Technology standards. This study shows that N{sub D,w} coefficients measured at different ADCLs are statistically equivalent, especially considering reasonable uncertainties. This analysis of N{sub D,w} coefficients also allows identification of chamber types that can be considered stable enough for accurate reference dosimetry.« less

  18. A dose-response curve for biodosimetry from a 6 MV electron linear accelerator

    PubMed Central

    Lemos-Pinto, M.M.P.; Cadena, M.; Santos, N.; Fernandes, T.S.; Borges, E.; Amaral, A.

    2015-01-01

    Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates. PMID:26445334

  19. Accuracy of Monte Carlo photon transport simulation in characterizing brachytherapy dosimeter energy-response artefacts.

    PubMed

    Das, R K; Li, Z; Perera, H; Williamson, J F

    1996-06-01

    Practical dosimeters in brachytherapy, such as thermoluminescent dosimeters (TLD) and diodes, are usually calibrated against low-energy megavoltage beams. To measure absolute dose rate near a brachytherapy source, it is necessary to establish the energy response of the detector relative to that of the calibration energy. The purpose of this paper is to assess the accuracy of Monte Carlo photon transport (MCPT) simulation in modelling the absolute detector response as a function of detector geometry and photon energy. We have exposed two different sizes of TLD-100 (LiF chips) and p-type silicon diode detectors to calibrated 60Co, HDR source (192Ir) and superficial x-ray beams. For the Scanditronix electron-field diode, the relative detector response, defined as the measured detector readings per measured unit of air kerma, varied from 38.46 V cGy-1 (40 kVp beam) to 6.22 V cGy-1 (60Co beam). Similarly for the large and small chips the same quantity varied from 2.08-3.02 nC cGy-1 and 0.171-0.244 nC cGy-1, respectively. Monte Carlo simulation was used to calculate the absorbed dose to the active volume of the detector per unit air kerma. If the Monte Carlo simulation is accurate, then the absolute detector response, which is defined as the measured detector reading per unit dose absorbed by the active detector volume, and is calculated by Monte Carlo simulation, should be a constant. For the diode, the absolute response is 5.86 +/- 0.15 (V cGy-1). For TLDs of size 3 x 3 x 1 mm3 the absolute response is 2.47 +/- 0.07 (nC cGy-1) and for TLDs of 1 x 1 x 1 mm3 it is 0.201 +/- 0.008 (nC cGy-1). From the above results we can conclude that the absolute response function of detectors (TLDs and diodes) is directly proportional to absorbed dose by the active volume of the detector and is independent of beam quality.

  20. Detection and quantification of 223Ra uptake in bone metastases of patients with castration resistant prostate carcinoma, with the aim of determining the absorbed dose in the metastases.

    PubMed

    Mínguez, P; Gómez de Iturriaga, A; Fernández, I L; Rodeño, E

    To obtain the necessary acquisition and calibration parameters in order to evaluate the possibility of detecting and quantifying 223 Ra uptake in bone metastases of patients treated for castration resistant prostate carcinoma. Furthermore, in the cases in which the activity can be quantified, to determine the absorbed dose. Acquisitions from a Petri dish filled with 223 Ra were performed in the gamma camera. Monte Carlo simulations were also performed to study the partial volume effect. Formulae to obtain the detection and quantification limits of 223 Ra uptake were applied to planar images of two patients 7 days post-administration of 55kBq/kg of 223 Ra. In order to locate the lesions in advance, whole-body scans and SPECT/CT images were acquired after injecting 99m Tc-HDP. The optimal energy window was found to be at 82keV with a medium-energy collimator MEGP. Of the lesions found in the patients, only those that had been detected in both the AP and PA projections could be quantified. These lesions were those which had shown a higher 99m Tc-HDP uptake. The estimated values of absorbed doses ranged between 0.7Gy and 7.8Gy. Of the lesions that can be detected, it is not possible to quantify the activity uptake in some of them, which means that the absorbed dose cannot be determined either. This does not mean that the absorbed dose in these lesions can be regarded as negligible. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  1. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, S., E-mail: smatsui@gpi.ac.jp; Mori, Y.; Nonaka, T.

    2016-05-15

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films andmore » Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.« less

  2. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations.

    PubMed

    Matsui, S; Mori, Y; Nonaka, T; Hattori, T; Kasamatsu, Y; Haraguchi, D; Watanabe, Y; Uchiyama, K; Ishikawa, M

    2016-05-01

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.

  3. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter.

    PubMed

    Harty, P D; Lye, J E; Ramanathan, G; Butler, D J; Hall, C J; Stevenson, A W; Johnston, P N

    2014-05-01

    The absolute dose rate of the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter. The calorimetry results were compared to measurements from the existing free-air chamber, to provide a robust determination of the absolute dose in the synchrotron beam and provide confidence in the first implementation of a graphite calorimeter on a synchrotron medical beam line. The graphite calorimeter has a core which rises in temperature when irradiated by the beam. A collimated x-ray beam from the synchrotron with well-defined edges was used to partially irradiate the core. Two filtration sets were used, one corresponding to an average beam energy of about 80 keV, with dose rate about 50 Gy/s, and the second filtration set corresponding to average beam energy of 90 keV, with dose rate about 20 Gy/s. The temperature rise from this beam was measured by a calibrated thermistor embedded in the core which was then converted to absorbed dose to graphite by multiplying the rise in temperature by the specific heat capacity for graphite and the ratio of cross-sectional areas of the core and beam. Conversion of the measured absorbed dose to graphite to absorbed dose to water was achieved using Monte Carlo calculations with the EGSnrc code. The air kerma measurements from the free-air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. Absolute measurements of the IMBL dose rate were made using the graphite calorimeter and compared to measurements with the free-air chamber. The measurements were at three different depths in graphite and two different filtrations. The calorimetry measurements at depths in graphite show agreement within 1% with free-air chamber measurements, when converted to absorbed dose to water. The calorimetry at the surface and free-air chamber results show agreement of order 3% when converted to absorbed dose to water. The combined standard uncertainty is 3.9%. The good agreement of the graphite calorimeter and free-air chamber results indicates that both devices are performing as expected. Further investigations at higher dose rates than 50 Gy/s are planned. At higher dose rates, recombination effects for the free-air chamber are much higher and expected to lead to much larger uncertainties. Since the graphite calorimeter does not have problems associated with dose rate, it is an appropriate primary standard detector for the synchrotron IMBL x rays and is the more accurate dosimeter for the higher dose rates expected in radiotherapy applications.

  4. Relative Efficiency of TLD-100 to High Linear Energy Transfer Radiation: Correction to Astronaut Absorbed Dose

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Cash, B. L.; Semones, E. J.; Yasuda, H.; Fujitaka, K.

    1999-01-01

    Response of thermoluminescent detectors (TLD-100) to high linear energy transfer (LET) particles has been studied using helium, carbon, silicon, and iron ions from the Heavy Ion Medical Accelerator at Chiba (Japan), iron ions from the Brookhaven National Laboratory (NY) Alternate Gradient Synchrotron, and 53, 134, 185, and 232 MeV protons from the Loma Linda accelerator. Using the measured relative (to 137Cs) dose efficiency, and measured LET spectra from a tissue equivalent proportional counter (TEPC) on 20 Space Shuttle flights, and 7 Mir flights, the underestimation of absorbed dose by these detectors has been evaluated. The dose underestimation is between 15-20% depending upon the flight inclination and shielding location. This has been confirmed by direct correlation of measured dose by TEPC and TLD-100 at a low shielded location in the Shuttle mid-deck. A comparison of efficiency- LET data with a compilation of similar data from TLD-700, shows that shapes of the two curves are nearly identical, but that the TLD-100 curve is systematically lower by about 13%, and is the major cause of dose underestimation. These results strongly suggest that TLDs used for crew dose estimation be regularly calibrated using heavy ions.

  5. Relative Efficiency of TLD-100 to Linear Energy Transfer Radiation: Correction to Astronaut Absorbed Dose

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.; Cash, B. L.; Semones, E. J.; Yasuda, H.; Fujitaka, K.

    1999-01-01

    Response of thermoluminescent detectors (TLD-100) to high linear energy transfer (LET) particles has been studied using helium, carbon, silicon, and iron ions from the Heavy Ion Medical Accelerator at Chiba (Japan), iron ions from the Brookhaven National Laboratory (NY) Alternate Gradient Synchrotron, and 53, 134, 185, and 232 MeV protons from the Loma Linda accelerator. Using the measured relative (to (137)Cs dose efficiency, and measured LET spectra from a tissue equivalent proportional counter (TEPC) on 20 Space Shuttle flights, and 7 Mir flights, the underestimation of absorbed dose by these detectors has been evaluated. The dose underestimation is between 15-20% depending upon the flight inclination and shielding location. This has been confirmed by direct correlation of measured dose by TEPC and TLD-100 at a low shielded location in the Shuttle mid-deck. A comparison of efficiency- LET data with a compilation of similar data from TLD-700, shows that shapes of the two curves are nearly identical, but that the TLD-100 curve is systematically lower by about 13%, and is the major cause of dose underestimation. These results strongly suggest that TLDs used for crew dose estimation be regularly calibrated using heavy ions.

  6. Calibration of Photon Sources for Brachytherapy

    NASA Astrophysics Data System (ADS)

    Rijnders, Alex

    Source calibration has to be considered an essential part of the quality assurance program in a brachytherapy department. Not only it will ensure that the source strength value used for dose calculation agrees within some predetermined limits to the value stated on the source certificate, but also it will ensure traceability to international standards. At present calibration is most often still given in terms of reference air kerma rate, although calibration in terms of absorbed dose to water would be closer to the users interest. It can be expected that in a near future several standard laboratories will be able to offer this latter service, and dosimetry protocols will have to be adapted in this way. In-air measurement using ionization chambers (e.g. a Baldwin—Farmer ionization chamber for 192Ir high dose rate HDR or pulsed dose rate PDR sources) is still considered the method of choice for high energy source calibration, but because of their ease of use and reliability well type chambers are becoming more popular and are nowadays often recommended as the standard equipment. For low energy sources well type chambers are in practice the only equipment available for calibration. Care should be taken that the chamber is calibrated at the standard laboratory for the same source type and model as used in the clinic, and using the same measurement conditions and setup. Several standard laboratories have difficulties to provide these calibration facilities, especially for the low energy seed sources (125I and 103Pd). Should a user not be able to obtain properly calibrated equipment to verify the brachytherapy sources used in his department, then at least for sources that are replaced on a regular basis, a consistency check program should be set up to ensure a minimal level of quality control before these sources are used for patient treatment.

  7. NOTE: Calibration of low-energy electron beams from a mobile linear accelerator with plane-parallel chambers using both TG-51 and TG-21 protocols

    NASA Astrophysics Data System (ADS)

    Beddar, A. S.; Tailor, R. C.

    2004-04-01

    A new approach to intraoperative radiation therapy led to the development of mobile linear electron accelerators that provide lower electron energy beams than the usual conventional accelerators commonly encountered in radiotherapy. Such mobile electron accelerators produce electron beams that have nominal energies of 4, 6, 9 and 12 MeV. This work compares the absorbed dose output calibrations using both the AAPM TG-51 and TG-21 dose calibration protocols for two types of ion chambers: a plane-parallel (PP) ionization chamber and a cylindrical ionization chamber. Our results indicate that the use of a 'Markus' PP chamber causes 2 3% overestimation in dose output determination if accredited dosimetry-calibration laboratory based chamber factors \\big(N_{{\\rm D},{\\rm w}}^{{}^{60}{\\rm Co}}, N_x\\big) are used. However, if the ionization chamber factors are derived using a cross-comparison at a high-energy electron beam, then a good agreement is obtained (within 1%) with a calibrated cylindrical chamber over the entire energy range down to 4 MeV. Furthermore, even though the TG-51 does not recommend using cylindrical chambers at the low energies, our results show that the cylindrical chamber has a good agreement with the PP chamber not only at 6 MeV but also down to 4 MeV electron beams.

  8. KEY COMPARISON: Comparison of the standards for absorbed dose to water of the ENEA-INMRI (Italy) and the BIPM for 60Co γ rays

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Allisy-Roberts, P. J.; Burns, D. T.; Guerra, A. S.; Laitano, R. F.; Pimpinella, M.

    2010-01-01

    A comparison of the standards for absorbed dose to water of the Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti of the Ente per le Nuove Tecnologie, l'Energia e l'Ambiente, Italy (ENEA-INMRI), and of the Bureau International des Poids et Mesures (BIPM) has been made in 60Co gamma radiation under the auspices of the key comparison BIPM.RI(I)-K4. The comparison result, based on the calibration coefficients for three transfer standards and expressed as a ratio of the ENEA and the BIPM standards for absorbed dose to water, is 0.9999 (0.0044). The present 2007 result replaces the earlier ENEA value in this key comparison. The degrees of equivalence between the ENEA and the other participants in this comparison have been calculated and the results are given in the form of a matrix for the ten national metrology institutes (NMIs) that have published results in this ongoing comparison for absorbed dose to water. A graphical presentation is also given. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section I, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  9. Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics

    NASA Astrophysics Data System (ADS)

    Rinderknecht, H. G.; Rojas-Herrera, J.; Zylstra, A. B.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Sinenian, N.; Rosenberg, M. J.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.; Filkins, T.; Steidle, Jeffrey A.; Steidle, Jessica A.; Traynor, N.; Freeman, C.

    2015-12-01

    The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1-100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protons with energies in the range 0.5-9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. The impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant.

  10. Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinderknecht, H. G.; Rojas-Herrera, J.; Zylstra, A. B.

    The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1–100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protonsmore » with energies in the range 0.5–9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. Furthermore, the impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant.« less

  11. Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinderknecht, H. G., E-mail: rinderknecht1@llnl.gov; Rojas-Herrera, J.; Zylstra, A. B.

    The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1–100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protonsmore » with energies in the range 0.5–9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. The impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant.« less

  12. Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics

    DOE PAGES

    Rinderknecht, H. G.; Rojas-Herrera, J.; Zylstra, A. B.; ...

    2015-12-23

    The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1–100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protonsmore » with energies in the range 0.5–9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. Furthermore, the impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant.« less

  13. A Novel Simple Phantom for Verifying the Dose of Radiation Therapy

    PubMed Central

    Lee, J. H.; Chang, L. T.; Shiau, A. C.; Chen, C. W.; Liao, Y. J.; Li, W. J.; Lee, M. S.; Hsu, S. M.

    2015-01-01

    A standard protocol of dosimetric measurements is used by the organizations responsible for verifying that the doses delivered in radiation-therapy institutions are within authorized limits. This study evaluated a self-designed simple auditing phantom for use in verifying the dose of radiation therapy; the phantom design, dose audit system, and clinical tests are described. Thermoluminescent dosimeters (TLDs) were used as postal dosimeters, and mailable phantoms were produced for use in postal audits. Correction factors are important for converting TLD readout values from phantoms into the absorbed dose in water. The phantom scatter correction factor was used to quantify the difference in the scattered dose between a solid water phantom and homemade phantoms; its value ranged from 1.084 to 1.031. The energy-dependence correction factor was used to compare the TLD readout of the unit dose irradiated by audit beam energies with 60Co in the solid water phantom; its value was 0.99 to 1.01. The setup-condition factor was used to correct for differences in dose-output calibration conditions. Clinical tests of the device calibrating the dose output revealed that the dose deviation was within 3%. Therefore, our homemade phantoms and dosimetric system can be applied for accurately verifying the doses applied in radiation-therapy institutions. PMID:25883980

  14. APMP supplementary comparison report of absorbed dose rate in tissue for beta radiation (BIPM KCDB: APMP.RI(I)-S2)

    NASA Astrophysics Data System (ADS)

    Kato, M.; Kurosawa, T.; Saito, N.; Kadni, T. B.; Kim, I. J.; Kim, B. C.; Yi, C.-Y.; Pungkun, V.; Chu, C.-H.

    2017-01-01

    The supplementary comparison of absorbed dose rate in tissue for beta radiation (APMP.RI(I)-S2) was performed with five national metrology institutes in 2013 and 2014. Two commercial thin window ionization chambers were used as transfer instruments and circulated among the participants. Two of the NMIs measured the calibration coefficients of the chambers in reference fields produced from Pm-147, Kr-85 and Sr-90/Y-90, while the other three measured those only in Sr-90/Y-90 beta-particle field. The degree of equivalence for the participants was determined and this comparison verifies the calibration capabilities of the participating laboratories. In addition, most of the results of this comparison are consistent with another international comparison (EUROMET.RI(I)-S2) reported before this work. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  15. Prevention of Transfusion-Associated Graft-versus-Host Disease by Irradiation: Technical Aspect of a New Ferrous Sulphate Dosimetric System

    PubMed Central

    Del Lama, Lucas Sacchini; de Góes, Evamberto Garcia; Petchevist, Paulo César Dias; Moretto, Edson Lara; Borges, José Carlos; Covas, Dimas Tadeu; de Almeida, Adelaide

    2013-01-01

    Irradiation of whole blood and blood components before transfusion is currently the only accepted method to prevent Transfusion-Associated Graft-Versus-Host-Disease (TA-GVHD). However, choosing the appropriate technique to determine the dosimetric parameters associated with blood irradiation remains an issue. We propose a dosimetric system based on the standard Fricke Xylenol Gel (FXG) dosimeter and an appropriate phantom. The modified dosimeter was previously calibrated using a 60Co teletherapy unit and its validation was accomplished with a 137Cs blood irradiator. An ionization chamber, standard FXG, radiochromic film and thermoluminescent dosimeters (TLDs) were used as reference dosimeters to determine the dose response and dose rate of the 60Co unit. The dose distributions in a blood irradiator were determined with the modified FXG, the radiochromic film, and measurements by TLD dosimeters. A linear response for absorbed doses up to 54 Gy was obtained with our system. Additionally, the dose rate uncertainties carried out with gel dosimetry were lower than 5% and differences lower than 4% were noted when the absorbed dose responses were compared with ionization chamber, film and TLDs. PMID:23762345

  16. SU-F-18C-09: Assessment of OSL Dosimeter Technology in the Validation of a Monte Carlo Radiation Transport Code for CT Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carver, D; Kost, S; Pickens, D

    Purpose: To assess the utility of optically stimulated luminescent (OSL) dosimeter technology in calibrating and validating a Monte Carlo radiation transport code for computed tomography (CT). Methods: Exposure data were taken using both a standard CT 100-mm pencil ionization chamber and a series of 150-mm OSL CT dosimeters. Measurements were made at system isocenter in air as well as in standard 16-cm (head) and 32-cm (body) CTDI phantoms at isocenter and at the 12 o'clock positions. Scans were performed on a Philips Brilliance 64 CT scanner for 100 and 120 kVp at 300 mAs with a nominal beam width ofmore » 40 mm. A radiation transport code to simulate the CT scanner conditions was developed using the GEANT4 physics toolkit. The imaging geometry and associated parameters were simulated for each ionization chamber and phantom combination. Simulated absorbed doses were compared to both CTDI{sub 100} values determined from the ion chamber and to CTDI{sub 100} values reported from the OSLs. The dose profiles from each simulation were also compared to the physical OSL dose profiles. Results: CTDI{sub 100} values reported by the ion chamber and OSLs are generally in good agreement (average percent difference of 9%), and provide a suitable way to calibrate doses obtained from simulation to real absorbed doses. Simulated and real CTDI{sub 100} values agree to within 10% or less, and the simulated dose profiles also predict the physical profiles reported by the OSLs. Conclusion: Ionization chambers are generally considered the standard for absolute dose measurements. However, OSL dosimeters may also serve as a useful tool with the significant benefit of also assessing the radiation dose profile. This may offer an advantage to those developing simulations for assessing radiation dosimetry such as verification of spatial dose distribution and beam width.« less

  17. The calibration of plane parallel ionisation chambers for the measurement of absorbed dose in electron beams of low to medium energies. Part 2: The PTW/MARKUS chamber.

    PubMed

    Cross, P; Freeman, N

    1997-06-01

    The purpose of Part 2 study of calibration methods for plane parallel ionisation chambers was to determine the feasibility of using beams of calibration of the MARKUS chamber other than the standard AAPM TG39 reference beams of 60Co and a high energy electron beam (E0 > or = 15 MeV). A previous study of the NACP chamber had demonstrated an acceptable level of accuracy with corresponding spread of -0.5% to +0.8% for its calibration in non-standard situations (medium to low energy electron and photon beams). For non-standard situations the spread in NDMARKUS values was found to be +/-2.5%. The results suggest that user calibrations of the MARKUS chamber in non-standard situations are associated with more uncertainties than is the case with the NACP chamber.

  18. SU-E-T-638: Evaluation and Comparison of Landauer Microstar (OSLD) Readers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souri, S; Ahmed, Y; Cao, Y

    2014-06-15

    Purpose: To evaluate and compare characteristic performance of a new Landauer nanodot Reader with the previous model. Methods: In order to calibrate and test the reader, a set of nanodots were irradiated using a Varian Truebeam Linac. Solid water slabs and bolus were used in the process of irradiation. Calibration sets of nanodots were irradiated for radiation dose ranges: 0 to 10 and 20 to 1000 cGy, using 6MV photons. Additionally, three sets of nanodots were each irradiated using 6MV, 10MV and 15MV beams. For each beam energy, and selected dose in the range of 3 to 1000 cGy, amore » pair of nanodots was irradiated and three readings were obtained with both readers. Results: The analysis shows that for 3 photon beam energies and selected ranges of dose, the calculated absorbed dose agrees well with the expected value. The results illustrate that the new Microstar II reader is a highly consistent system and that the repeated readings provide results with a reasonably small standard deviation. For all practical purposes, the response of system is linear for all radiation beam energies. Conclusion: The Microstar II nanodot reader is consistent, accurate, and reliable. The new hardware design and corresponding software contain several advantages over the previous model. The automatic repeat reading mechanism, that helps improve reproducibility and reduce processing time, and the smaller unit size that renders ease of transport, are two of such features. Present study shows that for high dose ranges a polynomial calibration equation provides more consistent results. A 3rd order polynomial calibration curve was used to analyze the readings of dosimeters exposed to high dose range radiation. It was observed that the results show less error compared to those calculated by using linear calibration curves, as provided by Landauer system software for all dose ranges.« less

  19. A direct reading exposure monitor for radiation processing

    NASA Astrophysics Data System (ADS)

    Kantz, A. D.; Humpherys, K. C.

    Various plastic films have been utilized to measure radiation fields. In general such films are rugged, easily handled, small enough to cause neligible perturbation on the radiation fields, and relatively inexpensive. The radiachromic materials have been shown to have advantages over other plastic fabrications in stability, reproducibility, equivalent response to electron and gamma ray processing fields, dose rate independence, and ready availability of calibration standards. Using a nylon matrix radiachromic detector, a system of direct read-out of absorbed dose has been developed to facilitate monitoring in the megarad region. When an exposed detector is inserted into the reader, the optical transmission signal is processed through an analog to digital converter. The digitized signal addresses a memory bank where the standard response curve is stored. The corresponding absorbed dose is displayed on a digital panel meter. The variation of relative sensitivity of detectors, the background of unirradiated detectors, environmental parameters, and the capacity of the memory bank are contributing factors to the total precision of the read-out system.

  20. Response of TLD-100 in mixed fields of photons and electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawless, Michael J.; Junell, Stephanie; Hammer, Cliff

    Purpose: Thermoluminescent dosimeters (TLDs) are routinely used for dosimetric measurements of high energy photon and electron fields. However, TLD response in combined fields of photon and electron beam qualities has not been characterized. This work investigates the response of TLD-100 (LiF:Mg,Ti) to sequential irradiation by high-energy photon and electron beam qualities. Methods: TLDs were irradiated to a known dose by a linear accelerator with a 6 MV photon beam, a 6 MeV electron beam, and a NIST-traceable {sup 60}Co beam. TLDs were also irradiated in a mixed field of the 6 MeV electron beam and the 6 MV photon beam.more » The average TLD response per unit dose of the TLDs for each linac beam quality was normalized to the average response per unit dose of the TLDs irradiated by the {sup 60}Co beam. Irradiations were performed in water and in a Virtual Water Trade-Mark-Sign phantom. The 6 MV photon beam and 6 MeV electron beam were used to create dose calibration curves relating TLD response to absorbed dose to water, which were applied to the TLDs irradiated in the mixed field. Results: TLD relative response per unit dose in the mixed field was less sensitive than the relative response in the photon field and more sensitive than the relative response in the electron field. Application of the photon dose calibration curve to the TLDs irradiated in a mixed field resulted in an underestimation of the delivered dose, while application of the electron dose calibration curve resulted in an overestimation of the dose. Conclusions: The relative response of TLD-100 in mixed fields fell between the relative response in the photon-only and electron-only fields. TLD-100 dosimetry of mixed fields must account for this intermediate response to minimize the estimation errors associated with calibration factors obtained from a single beam quality.« less

  1. Response of TLD-100 in mixed fields of photons and electrons.

    PubMed

    Lawless, Michael J; Junell, Stephanie; Hammer, Cliff; DeWerd, Larry A

    2013-01-01

    Thermoluminescent dosimeters (TLDs) are routinely used for dosimetric measurements of high energy photon and electron fields. However, TLD response in combined fields of photon and electron beam qualities has not been characterized. This work investigates the response of TLD-100 (LiF:Mg,Ti) to sequential irradiation by high-energy photon and electron beam qualities. TLDs were irradiated to a known dose by a linear accelerator with a 6 MV photon beam, a 6 MeV electron beam, and a NIST-traceable (60)Co beam. TLDs were also irradiated in a mixed field of the 6 MeV electron beam and the 6 MV photon beam. The average TLD response per unit dose of the TLDs for each linac beam quality was normalized to the average response per unit dose of the TLDs irradiated by the (60)Co beam. Irradiations were performed in water and in a Virtual Water™ phantom. The 6 MV photon beam and 6 MeV electron beam were used to create dose calibration curves relating TLD response to absorbed dose to water, which were applied to the TLDs irradiated in the mixed field. TLD relative response per unit dose in the mixed field was less sensitive than the relative response in the photon field and more sensitive than the relative response in the electron field. Application of the photon dose calibration curve to the TLDs irradiated in a mixed field resulted in an underestimation of the delivered dose, while application of the electron dose calibration curve resulted in an overestimation of the dose. The relative response of TLD-100 in mixed fields fell between the relative response in the photon-only and electron-only fields. TLD-100 dosimetry of mixed fields must account for this intermediate response to minimize the estimation errors associated with calibration factors obtained from a single beam quality.

  2. Beam related response of in vivo diode detectors for external radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baci, Syrja, E-mail: sbarci2013@gmail.com; Telhaj, Ervis; Malkaj, Partizan

    2016-03-25

    In Vivo Dosimetry (IVD) is a set of methods used in cancer treatment clinics to determine the real dose of radiation absorbed by target volume in a patient’s body. IVD has been widely implemented in radiotherapy treatment centers and is now recommended part of Quality Assurance program by many International health and radiation organizations. Because of cost and lack of specialized personnel, IVD has not been practiced as yet, in Albanian radiotherapy clinics. At Hygeia Hospital Tirana, patients are irradiated with high energy photons generated by Elekta Synergy Accelerators. We have recently started experimenting with the purpose of establishing anmore » IVD practice at this hospital. The first set of experiments was aimed at calibration of diodes that are going to be used for IVD. PMMA, phantoms by PTW were used to calibrate p – type Si, semiconductor diode dosimeters, made by PTW Freiburg for entrance dose. Response of the detectors is affected by energy of the beam, accumulated radiation dose, dose rate, temperature, angle against the beam axis, etc. Here we present the work done for calculating calibration factor and correction factors of source to surface distance, field size, and beam incidence for the entrance dose for both 6 MV photon beam and 18 MV photon beam. Dependence of dosimeter response was found to be more pronounced with source to surface distance as compared to other variables investigated.« less

  3. WE-D-17A-06: Optically Stimulated Luminescence Detectors as ‘LET-Meters’ in Proton Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granville, D; Sahoo, N; Sawakuchi, GO

    Purpose: To demonstrate and evaluate the potential of optically stimulated luminescence (OSL) detectors (OSLDs) for measurements of linear energy transfer (LET) in therapeutic proton beams. Methods: Batches of Al2O2:C OSLDs were irradiated with an absorbed dose of 0.2 Gy in un-modulated proton beams of varying LET (0.67 keV/μm to 2.58 keV/μm). The OSLDs were read using continuous wave (CW-OSL) and pulsed (P-OSL) stimulation modes. We parameterized and calibrated three characteristics of the OSL signals as functions of LET: CW-OSL curve shape, P-OSL curve shape and the ratio of the two OSL emission band intensities (ultraviolet/blue ratio). Calibration curves were createdmore » for each of these characteristics to describe their behaviors as functions of LET. The true LET values were determined using a validated Monte Carlo model of the proton therapy nozzle used to irradiate the OSLDs. We then irradiated batches of OSLDs with an absorbed dose of 0.2 Gy at various depths in two modulated proton beams (140 MeV, 4 cm wide spread-out Bragg peak (SOBP) and 250 MeV, 10 cm wide SOBP). The LET values were calculated using the OSL response and the calibration curves. Finally, measured LET values were compared to the true values determined using Monte Carlo simulations. Results: The CW-OSL curve shape, P-OSL curve shape and the ultraviolet/blue-ratio provided proton LET estimates within 12.4%, 5.7% and 30.9% of the true values, respectively. Conclusion: We have demonstrated that LET can be measured within 5.7% using Al2O3:C OSLDs in the therapeutic proton beams used in this investigation. From a single OSLD readout, it is possible to measure both the absorbed dose and LET. This has potential future applications in proton therapy quality assurance, particularly for treatment plans based on optimization of LET distributions. This research was partially supported by the Natural Sciences and Engineering Research Council of Canada.« less

  4. Comparison of secondary neutron dose in proton therapy resulting from the use of a tungsten alloy MLC or a brass collimator system.

    PubMed

    Diffenderfer, Eric S; Ainsley, Christopher G; Kirk, Maura L; McDonough, James E; Maughan, Richard L

    2011-11-01

    To apply the dual ionization chamber method for mixed radiation fields to an accurate comparison of the secondary neutron dose arising from the use of a tungsten alloy multileaf collimator (MLC) as opposed to a brass collimator system for defining the shape of a therapeutic proton field. Hydrogenous and nonhydrogenous ionization chambers were constructed with large volumes to enable measurements of absorbed doses below 10(-4) Gy in mixed radiation fields using the dual ionization chamber method for mixed-field dosimetry. Neutron dose measurements were made with a nominal 230 MeV proton beam incident on a closed tungsten alloy MLC and a solid brass block. The chambers were cross-calibrated against a (60)Co-calibrated Farmer chamber in water using a 6 MV x-ray beam and Monte Carlo simulations were performed to account for variations in ionization chamber response due to differences in secondary neutron energy spectra. The neutron and combined proton plus γ-ray absorbed doses are shown to be nearly equivalent downstream from either a closed tungsten alloy MLC or a solid brass block. At 10 cm downstream from the distal edge of the collimating material the neutron dose from the closed MLC was (5.3 ± 0.4) × 10(- 5) Gy/Gy. The neutron dose with brass was (6.4 ± 0.7) × 10(- 5) Gy/Gy. Further from the secondary neutron source, at 50 cm, the neutron doses remain close for both the MLC and brass block at (6.9 ± 0.6) × 10(- 6) Gy/Gy and (6.3 ± 0.7) × 10(- 6) Gy/Gy, respectively. The dual ionization chamber method is suitable for measuring secondary neutron doses resulting from proton irradiation. The results of measurements downstream from a closed tungsten alloy MLC and a brass block indicate that, even in an overly pessimistic worst-case scenario, secondary neutron production in a tungsten alloy MLC leads to absorbed doses that are nearly equivalent to those seen from brass collimators. Therefore, the choice of tungsten alloy in constructing the leaves of a proton MLC is appropriate, and does not lead to a substantial increase in the secondary neutron dose to the patient compared to that generated in a brass collimator.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, M; Lee, V; Wong, M

    Purpose: Following the method of in-phantom measurements of reference air kerma rate (Ka) at 100cm and absorbed water dose rate (Dw1) at 1cm of high-dose-rate 192Ir brachytherapy source using 60Co absorbed-dose-to-water calibrated (ND,w,60Co) ionization chamber (IC), we experimentally determined the in-phantom correction factors (kglob) of the PTW30013 (PTW, Freiburg, Germany) IC by comparing the Monte Carlo (MC)-calculated kglob of the other PTW30016 IC. Methods: The Dw1 formalism of in-phantom measurement is: M*ND,w,60Co*(kglob)Dw1, where M is the collected charges, and (kglob)Dw1 the in-phantom Dw1 correction factor. Similarly, Ka is determined by M*ND,w,60Co*(kglob)ka, where (kglob)ka the in-phantom Ka correction factor. Two thimblemore » ICs PTW30013 and another PTW30016 having a ND,w,60Co from the German primary standard laboratory (PTB) were simultaneously exposed to the microselectron 192Ir v2 source at 8cm in a PMMA phantom. A reference well chamber (PTW33004) with a PTB transfer Ka calibration Nka was used for comparing the in-phantom measurements to derive the experimental (kglob)ka factors. We determined the experimental (kglob)Dw1 of the PTW30013 by comparing the PTW30016 measurements with MC-calculated (kglob)Dw1. Results: Ka results of the PTW30016 based on ND,w,60Co and MC-calculated (kglob)ka differ from the well chamber results based on Nka by 1.6% and from the manufacturer by 1.0%. Experimental (kglob)ka factors for the PTW30016 and two other PTW30013 are 0.00683, 0.00681 and 0.00679, and vary <0.5% with 1mm source positioning uncertainty. Experimental (kglob)Dw1 of the PTW30013 ICs are 75.3 and 75.6, and differ by 1.6% from the conversion by dose rate constant from the AAPM report 229. Conclusion: The 1.7% difference between MC and experimental (kglob)ka for the PTW30016 IC is within the PTB 2.5% expanded uncertainty in Ka calibration standard. Using a single IC with ND,w,60Co to calibrate the brachytherapy source and dose output in external radiotherapy is feasible. MC validation of the PTW30013(kglob)Dw1 is warranted.« less

  6. SU-E-T-263: Luminescent Dosimetry to Measure the Out-Of-Field Low and High LET Dose Components in High Energy Photon and Proton Therapy Beams.

    PubMed

    Reft, C

    2012-06-01

    Luminescent dosimetry using thermoluminescent detectors (TLDs) and optically stimulated luminescent detectors (OSLDs) were used in mixed radiation fields containing both low LET (photons and protons) and high LET (neutrons)components to obtain their out-of-field absorbed dose, dose equivalent and quality factor. LiF Thermoluminescent Detectors (TLDs) 600 and 700 chips with dimensions 0.31×0.31×0.038 cm 3 were used in a 25.4 cm diameter Bonner sphere centered 42 cm from the isocenter of a 15×x15 cm 2 field to measure the secondary doses for 10, 15 and 18 MV photons and a 200 MeV proton therapy beam. From the sensitivity difference to LET radiation between the210 and 280 C peaks in the glow curve, the areas under the peaks were used to obtain the absorbed dose, dose equivalent and QF of the secondary radiation. The OSLD detector measured the low LET dose component to compare with the TLD dose measurement. The neutron calibration of the TLDs was obtained from an Am-Be source at the Argonne National Laboratory. The photon and proton TLD and OSLD calibrations were obtained in 6 MV and 200 MeV beams, respectively. From the two-peak analysis of the TLDs in the Bonner sphere the ratios of the neutron dose to photon dose were 0.001, 0.014 and 0.17 for 10, 15 and 18 MV, respectively. The low LET OSLD measurements agreed within 10% of the TLD results. From the dose equivalent measurements the QFs (+/-14%) obtained were 4.5, 3.9 and 4.0 for these beam energies. For the 200 MeV proton beam the ratio of neutron to proton dose was 0.28 with a measured QF of 13. Luminescent detectors in a Bonner Sphere provide measurements of the secondary photon, proton and neutron doses and provide an estimate of the neutron QF. © 2012 American Association of Physicists in Medicine.

  7. Evaluation and comparison of absorbed dose for electron beams by LiF and diamond dosimeters

    NASA Astrophysics Data System (ADS)

    Mosia, G. J.; Chamberlain, A. C.

    2007-09-01

    The absorbed dose response of LiF and diamond thermoluminescent dosimeters (TLDs), calibrated in 60Co γ-rays, has been determined using the MCNP4B Monte Carlo code system in mono-energetic megavoltage electron beams from 5 to 20 MeV. Evaluation of the dose responses was done against the dose responses of published works by other investigators. Dose responses of both dosimeters were compared to establish if any relation exists between them. The dosimeters were irradiated in a water phantom with the centre of their top surfaces (0.32×0.32 cm 2), placed at dmax perpendicular to the radiation beam on the central axis. For LiF TLD, dose responses ranged from 0.945±0.017 to 0.997±0.011. For the diamond TLD, the dose response ranged from 0.940±0.017 to 1.018±0.011. To correct for dose responses by both dosimeters, energy correction factors were generated from dose response results of both TLDs. For LiF TLD, these correction factors ranged from 1.003 up to 1.058 and for diamond TLD the factors ranged from 0.982 up to 1.064. The results show that diamond TLDs can be used in the place of the well-established LiF TLDs and that Monte Carlo code systems can be used in dose determinations for radiotherapy treatment planning.

  8. NOTE: Dose area product evaluations with Gafchromic® XR-R films and a flat-bed scanner

    NASA Astrophysics Data System (ADS)

    Rampado, O.; Garelli, E.; Deagostini, S.; Ropolo, R.

    2006-12-01

    Gafchromic® XR-R films are a useful tool to evaluate entrance skin dose in interventional radiology. Another dosimetric quantity of interest in diagnostic and interventional radiology is the dose area product (DAP). In this study, a method to evaluate DAP using Gafchromic® XR-R films and a flat-bed scanner was developed and tested. Film samples were exposed to an x-ray beam of 80 kVp over a dose range of 0 10 Gy. DAP measurements with films were obtained from the digitalization of a film sample positioned over the x-ray beam window during the exposure. DAP values obtained with this method were compared for 23 cardiological interventional procedures with DAP values displayed by the equipment. The overall one-sigma dose measurement uncertainty depended on the absorbed dose, with values below 6% for doses above 1 Gy. A maximum discrepancy of 16% was found, which is of the order of the differences in the DAP measurements that may occur with different calibration procedures. Based on the results presented, after an accurate calibration procedure and a thorough inspection of the relationship between the actual dose and the direct measured quantity (net optical density or net pixel value variation), Gafchromic® XR-R films can be used to assess the DAP.

  9. [A parallel-plate small volume chamber for dosimetry of fast electrons and its use].

    PubMed

    Markus, B

    1976-12-01

    The ionization chamber described is designed for dosimetry of electron radiation above ca. 100 keV. It is used for the measurement of the cavity ion dose and of the absorbed dose within solid or water phantoms. Its construction corresponds to a flat chamber in accordance with DIN 6800. The cylindric main body is made of plexiglass (diameter 30 mm, height 14 mm) and encompasses the measuring volume being flush with the surface (diameter 5 mm, height 2 mm; chamber window 2.3 mg/cm2; build up cap for measurements in water 236 mg/cm2). The chamber is constructed with regard to its independency on energy and direction of the incidence as well as to the minimization of the remaining influence quantities, thus answering for the accuracy class "reference-class instrument" (+/- 0.5%). The polarity effect and field perturbation effect are to be neglected, the displacement comes to 0.1 mm, the statistical inaccuracy of measurement to 0.1%. The calibration for the chamber was obtained with a 15 MeV electron beam. The calibration factor for the cavity ion dose is constant, not being related to energy, at least in the range of performance from 2 to 15 MeV according to the primary standard used for calibration (graphic double extrapolation chamber). The overall uncertainty of the calibration factor amounts to +/- 1.5% for the cavity ion dose and to +/- 1.8% for the energy dose. Numerical values of all characteristic quantities and influence quantities which correspond to DIN 6817 and also measurement results for the determination of dose and energy are reported.

  10. Multichannel dosemeter and Al2O3:C optically stimulated luminescence fibre sensors for use in radiation therapy: evaluation with electron beams.

    PubMed

    Magne, S; Auger, L; Bordy, J M; de Carlan, L; Isambert, A; Bridier, A; Ferdinand, P; Barthe, J

    2008-01-01

    This article proposes an innovative multichannel optically stimulated luminescence (OSL) dosemeter for on-line in vivo dose verification in radiation therapy. OSL fibre sensors incorporating small Al(2)O(3):C fibre crystals (TLD(500)) have been tested with an X-ray generator. A reproducible readout procedure should reduce the fading-induced uncertainty ( approximately - 1% per decade). OSL readouts are temperature-dependent [ approximately 0.3% K(-1) when OSL stimulation is performed at the same temperature as irradiation; approximately 0.16% K(-1) after thermalisation (20 degrees C)]. Sensor calibration and depth-dose measurements with electron beams have been performed with a Saturne 43 linear accelerator in reference conditions at CEA-LNHB (ionising radiation reference laboratory in France). Predosed OSL sensors show a good repeatability in multichannel operation and independence versus electron energy in the range (9, 18 MeV). The difference between absorbed doses measured by OSL and an ionisation chamber were within +/-0.9% (for a dose of about 1 Gy) despite a sublinear calibration curve.

  11. Research on radiation exposure from CT part of hybrid camera and diagnostic CT

    NASA Astrophysics Data System (ADS)

    Solný, Pavel; Zimák, Jaroslav

    2014-11-01

    Research on radiation exposure from CT part of hybrid camera in seven different Departments of Nuclear Medicine (DNM) was conducted. Processed data and effective dose (E) estimations led to the idea of phantom verification and comparison of absorbed doses and software estimation. Anonymous data from about 100 examinations from each DNM was gathered. Acquired data was processed and utilized by dose estimation programs (ExPACT, ImPACT, ImpactDose) with respect to the type of examination and examination procedures. Individual effective doses were calculated using enlisted programs. Preserving the same procedure in dose estimation process allows us to compare the resulting E. Some differences and disproportions during dose estimation led to the idea of estimated E verification. Consequently, two different sets of about 100 of TLD 100H detectors were calibrated for measurement inside the Aldersnon RANDO Anthropomorphic Phantom. Standard examination protocols were examined using a 2 Slice CT- part of hybrid SPECT/CT. Moreover, phantom exposure from body examining protocol for 32 Slice and 64 Slice diagnostic CT scanner was also verified. Absorbed dose (DT,R) measured using TLD detectors was compared with software estimation of equivalent dose HT values, computed by E estimation software. Though, only limited number of cavities for detectors enabled measurement within the regions of lung, liver, thyroid and spleen-pancreas region, some basic comparison is possible.

  12. KEY COMPARISON: Comparison of the standards for absorbed dose to water of the VNIIFTRI, Russia and the BIPM in 60Co γ rays

    NASA Astrophysics Data System (ADS)

    Allisy-Roberts, P. J.; Kessler, C.; Burns, D. T.; Berlyand, V.; Berlyand, A.

    2010-01-01

    A new comparison of the standards for absorbed dose to water of the All-Russian Scientific Research Institute for Physical-Technical and Radiotechnical Measurements (VNIIFTRI), Russia and of the Bureau International des Poids et Mesures (BIPM) has been made in 60Co gamma radiation in 2009. The results show that the VNIIFTRI and the BIPM standards for absorbed dose to water are in agreement, yielding a mean ratio of 0.9976 for the calibration coefficients of the transfer chambers, the difference from unity being within the combined standard uncertainty (0.0043) for this result. This result is consistent with the earlier 2001 comparison result of 0.9967 (43). The updated degrees of equivalence for the VNIIFTRI are compared with those of the other national metrology institutes as presented in the BIPM key comparison database. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section I, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  13. Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.

    2008-09-15

    The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly amore » factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.« less

  14. Biodosimetry of heavy ions by interphase chromosome painting

    NASA Astrophysics Data System (ADS)

    Durante, M.; Kawata, T.; Nakano, T.; Yamada, S.; Tsujii, H.

    1998-11-01

    We report measurements of chromosomal aberrations in peripheral blood lymphocytes from cancer patients undergoing radiotherapy treatment. Patients with cervix or esophageal cancer were treated with 10 MV X-rays produced at a LINAC accelerator, or high-energy carbon ions produced at the HIMAC accelerator at the National Institute for Radiological Sciences (NIRS) in Chiba. Blood samples were obtained before, during, and after the radiation treatment. Chromosomes were prematurely condensed by incubation in calyculin A. Aberrations in chromosomes 2 and 4 were scored after fluorescence in situ hybridization with whole-chromosome probes. Pre-treatment samples were exposed in vitro to X-rays, individual dose-response curves for the induction of chromosomal aberrations were determined, and used as calibration curves to calculate the effective whole-body dose absorbed during the treatment. This calculated dose, based on the calibration curve relative to the induction of reciprocal exchanges, has a sharp increase after the first few fractions of the treatment, then saturates at high doses. Although carbon ions are 2-3 times more effective than X-rays in tumor sterilization, the effective dose was similar to that of X-ray treatment. However, the frequency of complex-type chromosomal exchanges was much higher for patients treated with carbon ions than X-ray.

  15. Investigating the dose distribution in the uncompressed breast with a dedicated CT mammotomography system

    NASA Astrophysics Data System (ADS)

    Crotty, Dominic J.; Brady, Samuel L.; Jackson, D'Vone C.; Toncheva, Greta I.; Anderson, Colin E.; Yoshizumi, Terry T.; Tornai, Martin P.

    2010-04-01

    A dual modality SPECT-CT prototype dedicated to uncompressed breast imaging (mammotomography) has been developed. The CT subsystem incorporates an ultra-thick K-edge filtration technique producing a quasi-monochromatic x-ray cone beam to optimize the dose efficiency for uncompressed breast tomography. We characterize the absorbed dose to the breast under normal tomographic cone beam image acquisition protocols using both TLD measurements and ionization chamber-calibrated radiochromic film. Geometric and anthropomorphic breast phantoms are filled with 1000mL of water and oil to simulate different breast compositions and varying object shapes having density bounds of 100% glandular and fatty breast compositions, respectively. Doses to the water filled geometric and anthropomorphic breast phantoms for a tomographic scan range from 1.3-7.3mGy and 1.7-6.3mGy, respectively, with a mean whole-breast dose of 4.5mGy for the water-filled anthropomorphic phantom. Measured dose distribution trends indicate lower doses in the center of the breast phantoms towards the chest wall along with higher doses near the peripheries and nipple regions. Measured doses to the oil-filled phantoms are consistently lower across all volume shapes (mean dose, 3.8mGy for the anthropomorphic breast). Results agree with Monte Carlo dose estimates generated for uncompressed breast imaging and illustrate the advantages of using the novel K-edge filtered beam to minimize absorbed dose to the breast during fully-3D imaging.

  16. Development and application of a water calorimeter for the absolute dosimetry of short-range particle beams.

    PubMed

    Renaud, J; Rossomme, S; Sarfehnia, A; Vynckier, S; Palmans, H; Kacperek, A; Seuntjens, J

    2016-09-21

    In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min -1 , with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user's beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.

  17. Development and application of a water calorimeter for the absolute dosimetry of short-range particle beams

    NASA Astrophysics Data System (ADS)

    Renaud, J.; Rossomme, S.; Sarfehnia, A.; Vynckier, S.; Palmans, H.; Kacperek, A.; Seuntjens, J.

    2016-09-01

    In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min-1, with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user’s beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.

  18. WE-DE-201-05: Evaluation of a Windowless Extrapolation Chamber Design and Monte Carlo Based Corrections for the Calibration of Ophthalmic Applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, J; Culberson, W; DeWerd, L

    Purpose: To test the validity of a windowless extrapolation chamber used to measure surface dose rate from planar ophthalmic applicators and to compare different Monte Carlo based codes for deriving correction factors. Methods: Dose rate measurements were performed using a windowless, planar extrapolation chamber with a {sup 90}Sr/{sup 90}Y Tracerlab RA-1 ophthalmic applicator previously calibrated at the National Institute of Standards and Technology (NIST). Capacitance measurements were performed to estimate the initial air gap width between the source face and collecting electrode. Current was measured as a function of air gap, and Bragg-Gray cavity theory was used to calculate themore » absorbed dose rate to water. To determine correction factors for backscatter, divergence, and attenuation from the Mylar entrance window found in the NIST extrapolation chamber, both EGSnrc Monte Carlo user code and Monte Carlo N-Particle Transport Code (MCNP) were utilized. Simulation results were compared with experimental current readings from the windowless extrapolation chamber as a function of air gap. Additionally, measured dose rate values were compared with the expected result from the NIST source calibration to test the validity of the windowless chamber design. Results: Better agreement was seen between EGSnrc simulated dose results and experimental current readings at very small air gaps (<100 µm) for the windowless extrapolation chamber, while MCNP results demonstrated divergence at these small gap widths. Three separate dose rate measurements were performed with the RA-1 applicator. The average observed difference from the expected result based on the NIST calibration was −1.88% with a statistical standard deviation of 0.39% (k=1). Conclusion: EGSnrc user code will be used during future work to derive correction factors for extrapolation chamber measurements. Additionally, experiment results suggest that an entrance window is not needed in order for an extrapolation chamber to provide accurate dose rate measurements for a planar ophthalmic applicator.« less

  19. Status of LDEF ionizing radiation measurements and analysis

    NASA Technical Reports Server (NTRS)

    Parnell, Thomas A.

    1993-01-01

    At this symposium significant new data and analyses were reported in cosmic ray research, radiation dosimetry, induced radioactivity, and radiation environment modeling. Measurements of induced radioactivity and absorbed dose are nearly complete, but much analysis and modeling remains. Measurements and analyses of passive nuclear track detectors (PNTD), used to derive the cosmic ray composition and spectra, and linear energy transfer (LET) spectra, are only a few percent complete, but important results have already emerged. As one might expect at this stage of the research, some of the new information has produced questions rather than answers. Low-energy heavy nuclei detected by two experiments are not compatible with known solar or cosmic components. Various data sets on absorbed dose are not consistent, and a new trapped proton environment model does not match the absorbed dose data. A search for cosmogenic nuclei other than Be-7 on Long Duration Exposure Facility (LDEF) surfaces has produced an unexpected result, and some activation data relating to neutrons is not yet understood. Most of these issues will be resolved by the analysis of further experiment data, calibrations, or the application of the large LDEF data set that offers alternate data or analysis techniques bearing on the same problem. The scope of the papers at this symposium defy a compact technical summary. I have attempted to group the new information that I noted into the following groups: induced radioactivity; absorbed dose measurements; LET spectra and heavy ion dosimetry; environment modeling and three dimensional shielding effects; cosmogenic nuclei; and cosmic rays and other heavy ions. The papers generally are expository and have excellent illustrations, and I refer to their figures rather than reproduce them here. The general program and objectives of ionizing radiation measurements and analyses on LDEF has been described previously.

  20. A system for electron therapy dosimetry surveys with thermoluminescence dosimeters.

    PubMed

    Soares, C G; Ehrlich, M; Padikal, T N; Gromadzki, Z C

    1982-11-01

    Radiation-therapy dosimetry surveys employing thermoluminescence dosimeters (TLDs) are now being considered for high-energy electron beams. Using a system of individually calibrated pressed LiF TLDs in a water and a polystyrene phantom, we established that the distortions of depth-dose distributions in non-conducting materials previously observed at high absorbed doses and high dose rates were not detectable in the present geometry at doses and dose rates as much as 40 times higher than those employed in radiation therapy. The system was then used to measure TLD response in water and in polystyrene in the nominal electron-energy range from 7 to 18 MeV. In the water phantom, the well-known trend for TLD response to decrease with increasing electron energy was observed. In the polystyrene phantom, TLD response was found to be independent of electron energy.

  1. Dosimetry for Small and Nonstandard Fields

    NASA Astrophysics Data System (ADS)

    Junell, Stephanie L.

    The proposed small and non-standard field dosimetry protocol from the joint International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine working group introduces new reference field conditions for ionization chamber based reference dosimetry. Absorbed dose beam quality conversion factors (kQ factors) corresponding to this formalism were determined for three different models of ionization chambers: a Farmer-type ionization chamber, a thimble ionization chamber, and a small volume ionization chamber. Beam quality correction factor measurements were made in a specially developed cylindrical polymethyl methacrylate (PMMA) phantom and a water phantom using thermoluminescent dosimeters (TLDs) and alanine dosimeters to determine dose to water. The TLD system for absorbed dose to water determination in high energy photon and electron beams was fully characterized as part of this dissertation. The behavior of the beam quality correction factor was observed as it transfers the calibration coefficient from the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) 60Co reference beam to the small field calibration conditions of the small field formalism. TLD-determined beam quality correction factors for the calibration conditions investigated ranged from 0.97 to 1.30 and had associated standard deviations from 1% to 3%. The alanine-determined beam quality correction factors ranged from 0.996 to 1.293. Volume averaging effects were observed with the Farmer-type ionization chamber in the small static field conditions. The proposed small and non-standard field dosimetry protocols new composite-field reference condition demonstrated its potential to reduce or remove ionization chamber volume dependancies, but the measured beam quality correction factors were not equal to the standard CoP's kQ, indicating a change in beam quality in the small and non-standard field dosimetry protocols new composite-field reference condition relative to the standard broad beam reference conditions. The TLD- and alanine-determined beam quality correction factors in the composite-field reference conditions were approximately 3% greater and differed by more than one standard deviation from the published TG-51 kQ values for all three chambers.

  2. Multichannel film dosimetry with nonuniformity correction.

    PubMed

    Micke, Andre; Lewis, David F; Yu, Xiang

    2011-05-01

    A new method to evaluate radiochromic film dosimetry data scanned in multiple color channels is presented. This work was undertaken to demonstrate that the multichannel method is fundamentally superior to the traditional single channel method. The multichannel method allows for the separation and removal of the nondose-dependent portions of a film image leaving a residual image that is dependent only on absorbed dose. Radiochromic films were exposed to 10 x 10 cm radiation fields (Co-60 and 6 MV) at doses up to about 300 cGy. The films were scanned in red-blue-green (RGB) format on a flatbed color scanner and measured to build calibration tables relating the absorbed dose to the response of the film in each of the color channels. Film images were converted to dose maps using two methods. The first method used the response from a single color channel and the second method used the response from all three color channels. The multichannel method allows for the separation of the scanned signal into one part that is dose-dependent and another part that is dose-independent and enables the correction of a variety of disturbances in the digitized image including nonuniformities in the active coating on the radiochromic film as well as scanner related artifacts. The fundamental mathematics of the two methods is described and the dose maps calculated from film images using the two methods are compared and analyzed. The multichannel dosimetry method was shown to be an effective way to separate out non-dose-dependent abnormalities from radiochromic dosimetry film images. The process was shown to remove disturbances in the scanned images caused by nonhomogeneity of the radiochromic film and artifacts caused by the scanner and to improve the integrity of the dose information. Multichannel dosimetry also reduces random noise in the dose images and mitigates scanner-related artifacts such as lateral position dependence. In providing an ability to calculate dose maps from data in all the color channels the multichannel method provides the ability to examine the agreement between the color channels. Furthermore, when using calibration data to convert RGB film images to dose using the new method, poor correspondence between the dose calculations for the three color channels provides an important indication that the this new technique enables easy indication in case the dose and calibration films are curve mismatched. The method permit compensation for thickness nonuniformities in the film, increases the signal to noise level, mitigates the lateral dose-dependency of flatbed scanners effect of the calculated dose map and extends the evaluable dose range to 10 cGy-100 Gy. Multichannel dosimetry with radiochromic film like Gafchromic EBT2 is shown to have significant advantages over single channel dosimetry. It is recommended that the dosimetry protocols described be implemented when using this radiochromic film to ensure the best data integrity and dosimetric accuracy.

  3. A round-robin gamma stereotactic radiosurgery dosimetry interinstitution comparison of calibration protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drzymala, R. E., E-mail: drzymala@wustl.edu; Alvarez, P. E.; Bednarz, G.

    2015-11-15

    Purpose: Absorbed dose calibration for gamma stereotactic radiosurgery is challenging due to the unique geometric conditions, dosimetry characteristics, and nonstandard field size of these devices. Members of the American Association of Physicists in Medicine (AAPM) Task Group 178 on Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance have participated in a round-robin exchange of calibrated measurement instrumentation and phantoms exploring two approved and two proposed calibration protocols or formalisms on ten gamma radiosurgery units. The objectives of this study were to benchmark and compare new formalisms to existing calibration methods, while maintaining traceability to U.S. primary dosimetry calibration laboratory standards. Methods:more » Nine institutions made measurements using ten gamma stereotactic radiosurgery units in three different 160 mm diameter spherical phantoms [acrylonitrile butadiene styrene (ABS) plastic, Solid Water, and liquid water] and in air using a positioning jig. Two calibrated miniature ionization chambers and one calibrated electrometer were circulated for all measurements. Reference dose-rates at the phantom center were determined using the well-established AAPM TG-21 or TG-51 dose calibration protocols and using two proposed dose calibration protocols/formalisms: an in-air protocol and a formalism proposed by the International Atomic Energy Agency (IAEA) working group for small and nonstandard radiation fields. Each institution’s results were normalized to the dose-rate determined at that institution using the TG-21 protocol in the ABS phantom. Results: Percentages of dose-rates within 1.5% of the reference dose-rate (TG-21 + ABS phantom) for the eight chamber-protocol-phantom combinations were the following: 88% for TG-21, 70% for TG-51, 93% for the new IAEA nonstandard-field formalism, and 65% for the new in-air protocol. Averages and standard deviations for dose-rates over all measurements relative to the TG-21 + ABS dose-rate were 0.999 ± 0.009 (TG-21), 0.991 ± 0.013 (TG-51), 1.000 ± 0.009 (IAEA), and 1.009 ± 0.012 (in-air). There were no statistically significant differences (i.e., p > 0.05) between the two ionization chambers for the TG-21 protocol applied to all dosimetry phantoms. The mean results using the TG-51 protocol were notably lower than those for the other dosimetry protocols, with a standard deviation 2–3 times larger. The in-air protocol was not statistically different from TG-21 for the A16 chamber in the liquid water or ABS phantoms (p = 0.300 and p = 0.135) but was statistically different from TG-21 for the PTW chamber in all phantoms (p = 0.006 for Solid Water, 0.014 for liquid water, and 0.020 for ABS). Results of IAEA formalism were statistically different from TG-21 results only for the combination of the A16 chamber with the liquid water phantom (p = 0.017). In the latter case, dose-rates measured with the two protocols differed by only 0.4%. For other phantom-ionization-chamber combinations, the new IAEA formalism was not statistically different from TG-21. Conclusions: Although further investigation is needed to validate the new protocols for other ionization chambers, these results can serve as a reference to quantitatively compare different calibration protocols and ionization chambers if a particular method is chosen by a professional society to serve as a standardized calibration protocol.« less

  4. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 03: Energy dependence of a clinical probe-format calorimeter and its pertinence to absolute photon and electron beam dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renaud, James; Seuntjens, Jan; Sarfehnia, Arman

    Purpose: To evaluate the intrinsic and absorbed-dose energy dependence of a small-scale graphite calorimeter probe (GPC) developed for use as a routine clinical dosimeter. The influence of charge deposition on the response of the GPC was also assessed by performing absolute dosimetry in clinical linac-based electron beams. Methods: Intrinsic energy dependence was determined by performing constant-temperature calorimetry dose measurements in a water-equivalent solid phantom, under otherwise reference conditions, in five high-energy photon (63.5 < %dd(10){sub X} < 76.3), and five electron (2.3 cm < R{sub 50} < 8.3 cm) beams. Reference dosimetry was performed for all beams in question usingmore » an Exradin A19 ion chamber with a calibration traceable to national standards. The absorbed-dose component of the overall energy dependence was calculated using the EGSnrc egs-chamber user code. Results: A total of 72 measurements were performed with the GPC, resulting in a standard error on the mean absorbed dose of better than 0.3 % for all ten beams. For both the photon and electron beams, no statistically-significant energy dependence was observed experimentally. Peak-to-peak, variations in the relative response of the GPC across all beam qualities of a given radiation type were on the order of 1 %. No effects, either transient or permanent, were attributable to the charge deposited by the electron beams. Conclusions: The GPC’s apparent energy-independence, combined with its well-established linearity and dose rate independence, make it a potentially useful dosimetry system capable measuring photon and electron doses in absolute terms at the clinical level.« less

  5. Determination of transmission factors in beta radiation beams.

    PubMed

    Polo, Ivón Oramas; Caldas, Linda V E

    2018-06-01

    In beta emitters, in order to evaluate the absorbed dose rate at different tissue depths, it is necessary to determine the transmission factors. In this work, the transmission factors determined in beta secondary standard radiation beams are presented. For this purpose, an extrapolation chamber was used. The results obtained were considered acceptable, and they are within the uncertainties in comparison with the values provided by the source calibration certificate. The maximum differences between the results obtained in this work and those from the calibration certificate were 3.3%, 3.8% and 5.9% for 90 Sr/ 90 Y, 85 Kr and 147 Pm sources respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Absolute dose determination in high-energy electron beams: Comparison of IAEA dosimetry protocols

    PubMed Central

    Sathiyan, S.; Ravikumar, M.

    2008-01-01

    In this study, absorbed doses were measured and compared for high-energy electrons (6, 9, 12, 16, and 20 MeV) using International Atomic Energy Agency (IAEA), Technical Reports Series No. 277 (TRS), TRS 381, and TRS 398 dosimetry protocols. Absolute dose measurements were carried out using FC65-G Farmer chamber and Nordic Association of Clinical Physicists (NACP) parallel plate chamber with DOSE1 electrometer in WP1-D water phantom for reference field size of 15 × 15 cm2 at 100 cm source-to-surface distance. The results show that the difference between TRS 398 and TRS 381 was about 0.24% to 1.3% depending upon the energy, and the maximum difference between TRS 398 and TRS 277 was 1.5%. The use of cylindrical chamber in electron beam gives the maximum dose difference between the TRS 398 and TRS 277 in the order of 1.4% for energies above 10 MeV (R50 > 4 g/cm2). It was observed that the accuracy of dose estimation was better with the protocols based on the water calibration procedures, as no conversion quantities are involved for conversion of dose from air to water. The cross-calibration procedure of parallel plate chamber with high-energy electron beams is recommended as it avoids pwall correction factor entering into the determination of kQ,Qo. PMID:19893700

  7. Biological dosimetry of ionizing radiation: Evaluation of the dose with cytogenetic methodologies by the construction of calibration curves

    NASA Astrophysics Data System (ADS)

    Zafiropoulos, Demetre; Facco, E.; Sarchiapone, Lucia

    2016-09-01

    In case of a radiation accident, it is well known that in the absence of physical dosimetry biological dosimetry based on cytogenetic methods is a unique tool to estimate individual absorbed dose. Moreover, even when physical dosimetry indicates an overexposure, scoring chromosome aberrations (dicentrics and rings) in human peripheral blood lymphocytes (PBLs) at metaphase is presently the most widely used method to confirm dose assessment. The analysis of dicentrics and rings in PBLs after Giemsa staining of metaphase cells is considered the most valid assay for radiation injury. This work shows that applying the fluorescence in situ hybridization (FISH) technique, using telomeric/centromeric peptide nucleic acid (PNA) probes in metaphase chromosomes for radiation dosimetry, could become a fast scoring, reliable and precise method for biological dosimetry after accidental radiation exposures. In both in vitro methods described above, lymphocyte stimulation is needed, and this limits the application in radiation emergency medicine where speed is considered to be a high priority. Using premature chromosome condensation (PCC), irradiated human PBLs (non-stimulated) were fused with mitotic CHO cells, and the yield of excess PCC fragments in Giemsa stained cells was scored. To score dicentrics and rings under PCC conditions, the necessary centromere and telomere detection of the chromosomes was obtained using FISH and specific PNA probes. Of course, a prerequisite for dose assessment in all cases is a dose-effect calibration curve. This work illustrates the various methods used; dose response calibration curves, with 95% confidence limits used to estimate dose uncertainties, have been constructed for conventional metaphase analysis and FISH. We also compare the dose-response curve constructed after scoring of dicentrics and rings using PCC combined with FISH and PNA probes. Also reported are dose response curves showing scored dicentrics and rings per cell, combining PCC of lymphocytes and CHO cells with FISH using PNA probes after 10 h and 24 h after irradiation, and, finally, calibration data of excess PCC fragments (Giemsa) to be used if human blood is available immediately after irradiation or within 24 h.

  8. SU-E-T-163: Thin-Film Organic Photocell (OPV) Properties in MV and KV Beams for Dosimetry Applications.

    PubMed

    Ng, S K; Hesser, J; Zhang, H; Gowrisanker, S; Yakushevich, S; Shulhevich, Y; Abkai, C; Wack, L; Zygmanski, P

    2012-06-01

    To characterize dosimetric properties of low-cost thin film organic-based photovoltaic (OPV) cells to kV and MV x-ray beams for their usage as large area dosimeter for QA and patient safety monitoring device. A series of thin film OPV cells of various areas and thicknesses were irradiated with MV beams to evaluate the stability and reproducibility of their response, linearity and sensitivity to absorbed dose. The OPV response to x-rays of various linac energies were also characterized. Furthermore the practical (clinical) sensitivity of the cells was determined using IMRT sweeping gap test generated with various gap sizes. To evaluate their potential usage in the development of low cost kV imaging device, the OPV cells were irradiated with kV beam (60-120 kVp) from a fluoroscopy unit. Photocell response to the absorbed dose was characterized as a function of the organic thin film thickness and size, beam energy and exposure for kV beams as well. In addition, photocell response was determined with and without thin plastic scintillator. Response of the OPV cells to the absorbed dose from kV and MV beams are stable and reproducible. The photocell response was linearly proportional to the size and about slightly decreasing with the thickness of the organic thin film, which agrees with the general performance of the photocells in visible light. The photocell response increases as a linear function of absorbed dose and x-ray energy. The sweeping gap tests performed showed that OPV cells have sufficient practical sensitivity to measured MV x-ray delivery with gap size as small as 1 mm. With proper calibration, the OPV cells could be used for online radiation dose measurement for quality assurance and patient safety purposes. Their response to kV beam show promising potential in development of low cost kV radiation detection devices. © 2012 American Association of Physicists in Medicine.

  9. Reference dosimetry of proton pencil beams based on dose-area product: a proof of concept.

    PubMed

    Gomà, Carles; Safai, Sairos; Vörös, Sándor

    2017-06-21

    This paper describes a novel approach to the reference dosimetry of proton pencil beams based on dose-area product ([Formula: see text]). It depicts the calibration of a large-diameter plane-parallel ionization chamber in terms of dose-area product in a 60 Co beam, the Monte Carlo calculation of beam quality correction factors-in terms of dose-area product-in proton beams, the Monte Carlo calculation of nuclear halo correction factors, and the experimental determination of [Formula: see text] of a single proton pencil beam. This new approach to reference dosimetry proves to be feasible, as it yields [Formula: see text] values in agreement with the standard and well-established approach of determining the absorbed dose to water at the centre of a broad homogeneous field generated by the superposition of regularly-spaced proton pencil beams.

  10. Assessment of national dosimetry quality audits results for teletherapy machines from 1989 to 2015.

    PubMed

    Muhammad, Wazir; Ullah, Asad; Mahmood, Khalid; Matiullah

    2016-01-01

    The purpose of this study was to ensure accuracy in radiation dose delivery, external dosimetry quality audit has an equal importance with routine dosimetry performed at clinics. To do so, dosimetry quality audit was organized by the Secondary Standard Dosimetry Laboratory (SSDL) of Pakistan Institute of Nuclear Science and Technology (PINSTECH) at the national level to investigate and minimize uncertainties involved in the measurement of absorbed dose, and to improve the accuracy of dose measurement at different radiotherapy hospitals. A total of 181 dosimetry quality audits (i.e., 102 of Co-60 and 79 of linear accelerators) for teletherapy units installed at 22 different sites were performed from 1989 to 2015. The percent deviation between users’ calculated/stated dose and evaluated dose (in the result of on-site dosimetry visits) were calculated and the results were analyzed with respect to the limits of ± 2.5% (ICRU "optimal model") ± 3.0% (IAEA on-site dosimetry visits limit) and ± 5.0% (ICRU minimal or "lowest acceptable" model). The results showed that out of 181 total on-site dosimetry visits, 20.44%, 16.02%, and 4.42% were out of acceptable limits of ± 2.5% ± 3.0%, and ± 5.0%, respectively. The importance of a proper ongoing quality assurance program, recommendations of the followed protocols, and properly calibrated thermometers, pressure gauges, and humidity meters at radiotherapy hospitals are essential in maintaining consistency and uniformity of absorbed dose measurements for precision in dose delivery.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gearhart, A; Carver, D; Stabin, M

    Purpose: To validate a radiographic simulation in order to estimate patient dose due to clinically-used radiography protocols. Methods: A Monte Carlo simulation was created to simulate a radiographic x-ray beam using GEANT4. Initial validation was performed according to a portion of TG 195. Computational NURBS-based phantoms were used simulate patients of varying ages and sizes. The deposited energy in the phantom is output by the simulation. The exposure in air from a clinically used radiography unit was measured at 100 cm for various tube potentials. 10 million photons were simulated with 1 cubic centimeter of air located 100 cm frommore » the source, and the total absorbed dose was noted. The normalization factor was determined by taking a ratio of the measured dose in air to the simulated dose in air. Dose to individual voxels is calculated using the energy deposition map along with the voxelized and segmented phantom and the normalization factor. Finally, the effective dose is calculated using the ICRP methodology and tissue weighting factors. Results: This radiography simulation allows for the calculation and visualization of the energy deposition map within a voxelized phantom. The ratio of exposure, measured using an ionization chamber, to air in the simulation was determined. Since the simulation output is calibrated to match the exposure of a given clinical radiographic x-ray tube, the dose map may be visualized. This will also allow for absorbed dose estimation in specific organs or tissues as well as a whole body effective dose estimation. Conclusion: This work indicates that our Monte Carlo simulation may be used to estimate the radiation dose from clinical radiographic protocols. This will allow for an estimate of radiographic dose from various examinations without the use of traditional methods such as thermoluminescent dosimeters and body phantoms.« less

  12. Calibration of the borated ion chamber at NIST reactor thermal column.

    PubMed

    Wang, Z; Hertel, N E; Lennox, A

    2007-01-01

    In boron neutron capture therapy and boron neutron capture enhanced fast neutron therapy, the absorbed dose of tissue due to the boron neutron capture reaction is difficult to measure directly. This dose can be computed from the measured thermal neutron fluence rate and the (10)B concentration at the site of interest. A borated tissue-equivalent (TE) ion chamber can be used to directly measure the boron dose in a phantom under irradiation by a neutron beam. Fermilab has two Exradin 0.5 cm(3) Spokas thimble TE ion chambers, one loaded with boron, available for such measurements. At the Fermilab Neutron Therapy Facility, these ion chambers are generally used with air as the filling gas. Since alpha particles and lithium ions from the (10)B(n,alpha)(7)Li reactions have very short ranges in air, the Bragg-Gray principle may not be satisfied for the borated TE ion chamber. A calibration method is described in this paper for the determination of boron capture dose using paired ion chambers. The two TE ion chambers were calibrated in the thermal column of the National Institute of Standards and Technology (NIST) research reactor. The borated TE ion chamber is loaded with 1,000 ppm of natural boron (184 ppm of (10)B). The NIST thermal column has a cadmium ratio of greater than 400 as determined by gold activation. The thermal neutron fluence rate during the calibration was determined using a NIST fission chamber to an accuracy of 5.1%. The chambers were calibrated at two different thermal neutron fluence rates: 5.11 x 10(6) and 4.46 x 10(7)n cm(-2) s(-1). The non-borated ion chamber reading was used to subtract collected charge not due to boron neutron capture reactions. An optically thick lithium slab was used to attenuate the thermal neutrons from the neutron beam port so the responses of the chambers could be corrected for fast neutrons and gamma rays in the beam. The calibration factor of the borated ion chamber was determined to be 1.83 x 10(9) +/- 5.5% (+/- 1sigma) n cm(-2) per nC at standard temperature and pressure condition.

  13. Clinical in vivo dosimetry using optical fibers.

    PubMed

    Gripp, S; Haesing, F W; Bueker, H; Schmitt, G

    1998-01-01

    Discoloring of glass due to ionizing radiation depends on the absorbed dose. The radiation-induced light attenuation in optical fibers may be used as a measure of the dose. In high-energy photon beams (6 MV X rays), a lead-doped silica fiber can be calibrated. A dosimeter based on an optical fiber was developed for applications in radiation therapy. The diameter of the mounted fiber is 0.25 mm, whereas the length depends on the sensitivity required. To demonstrate the applicability, a customized fiber device was used to determine scattered radiation close to the lens of the eye. Measurements were compared with TLDs (LiF) in an anthropomorphic phantom. The comparison with TLD measurements shows good agreement. In contrast to TLD, optical fibers provide immediate dose values, and the readout procedure is much easier. Owing to its small size and diameter, interesting invasive dose measurements are feasible.

  14. Development of a primary standard for absorbed dose from unsealed radionuclide solutions

    NASA Astrophysics Data System (ADS)

    Billas, I.; Shipley, D.; Galer, S.; Bass, G.; Sander, T.; Fenwick, A.; Smyth, V.

    2016-12-01

    Currently, the determination of the internal absorbed dose to tissue from an administered radionuclide solution relies on Monte Carlo (MC) calculations based on published nuclear decay data, such as emission probabilities and energies. In order to validate these methods with measurements, it is necessary to achieve the required traceability of the internal absorbed dose measurements of a radionuclide solution to a primary standard of absorbed dose. The purpose of this work was to develop a suitable primary standard. A comparison between measurements and calculations of absorbed dose allows the validation of the internal radiation dose assessment methods. The absorbed dose from an yttrium-90 chloride (90YCl) solution was measured with an extrapolation chamber. A phantom was developed at the National Physical Laboratory (NPL), the UK’s National Measurement Institute, to position the extrapolation chamber as closely as possible to the surface of the solution. The performance of the extrapolation chamber was characterised and a full uncertainty budget for the absorbed dose determination was obtained. Absorbed dose to air in the collecting volume of the chamber was converted to absorbed dose at the centre of the radionuclide solution by applying a MC calculated correction factor. This allowed a direct comparison of the analytically calculated and experimentally determined absorbed dose of an 90YCl solution. The relative standard uncertainty in the measurement of absorbed dose at the centre of an 90YCl solution with the extrapolation chamber was found to be 1.6% (k  =  1). The calculated 90Y absorbed doses from published medical internal radiation dose (MIRD) and radiation dose assessment resource (RADAR) data agreed with measurements to within 1.5% and 1.4%, respectively. This study has shown that it is feasible to use an extrapolation chamber for performing primary standard absorbed dose measurements of an unsealed radionuclide solution. Internal radiation dose assessment methods based on MIRD and RADAR data for 90Y have been validated with experimental absorbed dose determination and they agree within the stated expanded uncertainty (k  =  2).

  15. The development of a 6 to 7 MeV photon field for instrument calibration

    NASA Astrophysics Data System (ADS)

    Duvall, K. C.; Soares, C. G.; Heaton, H. T.; Seltzer, S. M.

    1985-05-01

    A photon source has been developed at the National Bureau of Standards to measure the response of radiological survey instruments to high-energy photons. The 19F(p, αγ) 16 O reaction has been used to produce a 6 to 7 MeV photon field with a fairly uniform photon flux density of approximately 3 × 10 3 cm -2 s -1 at one meter from the source. The photon flux density is obtained from measurements with a 3 × 3 inch 2 Nal detector whose absolute response has been determined by a Monte Carlo calculation. The spectral characteristics of the high-energy photons have been determined from measurements with a large volume high purity germanium detector. The absorbed dose rate to water was measured with LiF thermoluminescent dosimeters (TLDs) at several depths in a 30 × 30 × 30 cm 3 Lucite phantom. It is planned to compare absorbed dose determinations from the TLD measurements with those computed from spectral measurements. The response of six commercial radiological survey instruments has been measured behind various thicknesses of plastic absorber. The results indicate that approximately 2.5 cm of plastic in front of these instruments is sufficient to discriminate against the associated high-energy electron contamination.

  16. Development of a technique and conceptual design of a survey instrument for beta dosimetry in the nuclear power industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, R.O.

    1986-01-01

    Before an employee of the nuclear power industry can be assigned to work in an area with radiation hazards, the total dose rate from all radiation present should be known to determine the risk. As the plants age, the level of maintenance has increased and certain tasks have required the workers to be exposed to intense beta radiation fields. Currently available survey instruments do not accurately assess the beta dose or dose rate in many circumstances due to several factors, including the fluctuation of the response of the detector due to the variation in the energy of the beta particlesmore » comprising the radiation field. This research involved developing a technique for calculating the beta dose rate, using the differential energy spectrum and the fluence rate for the beta particles, the fundamental features of the beta radiation. The energy spectrum was used to determine a spectrum weighted average mass stopping power (SWAMPS). The SWAMPS, when multiplied by the fluence rate, gives the energy deposited per unit mass per second, which is the absorbed dose rate for the beta radiation. Reference sources were developed and calibrated using an extrapolation chamber that had, itself, been calibrated using beta sources at the National Bureau of Standards. Different spectrometry systems were tested for applicability to the SWAMPS technique.« less

  17. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  18. Physiologically-based pharmacokinetic model for Fentanyl in support of the development of Provisional Advisory Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankaran, Harish, E-mail: harish.shankaran@pnnl.gov; Adeshina, Femi; Teeguarden, Justin G.

    Provisional Advisory Levels (PALs) are tiered exposure limits for toxic chemicals in air and drinking water that are developed to assist in emergency responses. Physiologically-based pharmacokinetic (PBPK) modeling can support this process by enabling extrapolations across doses, and exposure routes, thereby addressing gaps in the available toxicity data. Here, we describe the development of a PBPK model for Fentanyl – a synthetic opioid used clinically for pain management – to support the establishment of PALs. Starting from an existing model for intravenous Fentanyl, we first optimized distribution and clearance parameters using several additional IV datasets. We then calibrated the modelmore » using pharmacokinetic data for various formulations, and determined the absorbed fraction, F, and time taken for the absorbed amount to reach 90% of its final value, t90. For aerosolized pulmonary Fentanyl, F = 1 and t90 < 1 min indicating complete and rapid absorption. The F value ranged from 0.35 to 0.74 for oral and various transmucosal routes. Oral Fentanyl was absorbed the slowest (t90 ∼ 300 min); the absorption of intranasal Fentanyl was relatively rapid (t90 ∼ 20–40 min); and the various oral transmucosal routes had intermediate absorption rates (t90 ∼ 160–300 min). Based on these results, for inhalation exposures, we assumed that all of the Fentanyl inhaled from the air during each breath directly, and instantaneously enters the arterial circulation. We present model predictions of Fentanyl blood concentrations in oral and inhalation scenarios relevant for PAL development, and provide an analytical expression that can be used to extrapolate between oral and inhalation routes for the derivation of PALs. - Highlights: • We develop a Fentanyl PBPK model for relating external dose to internal levels. • We calibrate the model to oral and inhalation exposures using > 50 human datasets. • Model predictions are in good agreement with the available pharmacokinetic data. • The model can be used for extrapolating across routes, doses and exposure durations. • We illustrate how the model can be used for developing Provisional Advisory Levels.« less

  19. Performance of thin CaSO4:Dy pellets for calibration of a Sr90+Y90 source

    NASA Astrophysics Data System (ADS)

    Oliveira, M. L.; Caldas, L. V. E.

    2007-09-01

    Because of the radionuclide long half-life, Sr90+Y90, plane or concave sources, utilized in brachytherapy, have to be calibrated initially by the manufacturer and then routinely while they are utilized. Plane applicators can be calibrated against a conventional extrapolation chamber, but concave sources, because of their geometry, should be calibrated using relative dosimeters, as thermoluminescent (TL) materials. Thin CaSO4:Dy pellets are produced at IPEN specially for beta radiation detection. Previous works showed the feasibility of this material in the dosimetry of Sr90+Y90 sources in a wide range of absorbed dose in air. The aim of this work was to study the usefulness of these pellets for the calibration of a Sr90+Y90 concave applicator. To reach this objective, a special phantom was designed and manufactured in PTFE with semi spherical geometry. Because of the dependence of the TL response on the mass of the pellet, the response of each pellet was normalized by its mass in order to reduce the dispersion on TL response. Important characteristics of this material were obtained in reference of a standard Sr90+Y90 source, and the pellets were calibrated against a plane applicator; then they were utilized to calibrate the concave applicator.

  20. On the experimental validation of model-based dose calculation algorithms for 192Ir HDR brachytherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Pappas, Eleftherios P.; Zoros, Emmanouil; Moutsatsos, Argyris; Peppa, Vasiliki; Zourari, Kyveli; Karaiskos, Pantelis; Papagiannis, Panagiotis

    2017-05-01

    There is an acknowledged need for the design and implementation of physical phantoms appropriate for the experimental validation of model-based dose calculation algorithms (MBDCA) introduced recently in 192Ir brachytherapy treatment planning systems (TPS), and this work investigates whether it can be met. A PMMA phantom was prepared to accommodate material inhomogeneities (air and Teflon), four plastic brachytherapy catheters, as well as 84 LiF TLD dosimeters (MTS-100M 1  ×  1  ×  1 mm3 microcubes), two radiochromic films (Gafchromic EBT3) and a plastic 3D dosimeter (PRESAGE). An irradiation plan consisting of 53 source dwell positions was prepared on phantom CT images using a commercially available TPS and taking into account the calibration dose range of each detector. Irradiation was performed using an 192Ir high dose rate (HDR) source. Dose to medium in medium, Dmm , was calculated using the MBDCA option of the same TPS as well as Monte Carlo (MC) simulation with the MCNP code and a benchmarked methodology. Measured and calculated dose distributions were spatially registered and compared. The total standard (k  =  1) spatial uncertainties for TLD, film and PRESAGE were: 0.71, 1.58 and 2.55 mm. Corresponding percentage total dosimetric uncertainties were: 5.4-6.4, 2.5-6.4 and 4.85, owing mainly to the absorbed dose sensitivity correction and the relative energy dependence correction (position dependent) for TLD, the film sensitivity calibration (dose dependent) and the dependencies of PRESAGE sensitivity. Results imply a LiF over-response due to a relative intrinsic energy dependence between 192Ir and megavoltage calibration energies, and a dose rate dependence of PRESAGE sensitivity at low dose rates (<1 Gy min-1). Calculations were experimentally validated within uncertainties except for MBDCA results for points in the phantom periphery and dose levels  <20%. Experimental MBDCA validation is laborious, yet feasible. Further work is required for the full characterization of dosimeter response for 192Ir and the reduction of experimental uncertainties.

  1. Assessment of an organ-based tube current modulation in thoracic computed tomography.

    PubMed

    Matsubara, Kosuke; Sugai, Mai; Toyoda, Asami; Koshida, Haruka; Sakuta, Keita; Takata, Tadanori; Koshida, Kichiro; Iida, Hiroji; Matsui, Osamu

    2012-03-08

    Recently, specific computed tomography (CT) scanners have been equipped with organ-based tube current modulation (TCM) technology. It is possible that organ-based TCM will replace the conventional dose-reduction technique of reducing the effective milliampere-second. The aim of this study was to determine if organ-based TCM could reduce radiation exposure to the breasts without compromising the image uniformity and beam hardening effect in thoracic CT examinations. Breast and skin radiation doses and the absorbed radiation dose distribution within a single section were measured with an anthropomorphic phantom and radiophotoluminescent glass dosimeters using four approaches to thoracic CT (reference, organ-based TCM, copper shielding, and the combination of the above two techniques, hereafter referred to as the combination technique). The CT value and noise level were measured using the same calibration phantom. Organ-based TCM and copper shielding reduced radiation doses to the breast by 23.7% and 21.8%, respectively. However, the CT value increased, especially in the anterior region, using copper shielding. In contrast, the CT value and noise level barely increased using organ-based TCM. The combination technique reduced the radiation dose to the breast by 38.2%, but greatly increased the absorbed radiation dose from the central to the posterior regions. Moreover, the CT value increased in the anterior region and the noise level increased by more than 10% in the entire region. Therefore, organ-based TCM can reduce radiation doses to breasts with only small increases in noise levels, making it preferable for specific groups of patients, such as children and young women.

  2. Characterization of a fiber-coupled Al2O3:C luminescence dosimetry system for online in vivo dose verification during 192Ir brachytherapy.

    PubMed

    Andersen, Claus E; Nielsen, Søren Kynde; Greilich, Steffen; Helt-Hansen, Jakob; Lindegaard, Jacob Christian; Tanderup, Kari

    2009-03-01

    A prototype of a new dose-verification system has been developed to facilitate prevention and identification of dose delivery errors in remotely afterloaded brachytherapy. The system allows for automatic online in vivo dosimetry directly in the tumor region using small passive detector probes that fit into applicators such as standard needles or catheters. The system measures the absorbed dose rate (0.1 s time resolution) and total absorbed dose on the basis of radioluminescence (RL) and optically stimulated luminescence (OSL) from aluminum oxide crystals attached to optical fiber cables (1 mm outer diameter). The system was tested in the range from 0 to 4 Gy using a solid-water phantom, a Varian GammaMed Plus 192Ir PDR afterloader, and dosimetry probes inserted into stainless-steel brachytherapy needles. The calibrated system was found to be linear in the tested dose range. The reproducibility (one standard deviation) for RL and OSL measurements was 1.3%. The measured depth-dose profiles agreed well with the theoretical expectations computed with the EGSNRC Monte Carlo code, suggesting that the energy dependence for the dosimeter probes (relative to water) is less than 6% for source-to-probe distances in the range of 2-50 mm. Under certain conditions, the RL signal could be greatly disturbed by the so-called stem signal (i.e., unwanted light generated in the fiber cable upon irradiation). The OSL signal is not subject to this source of error. The tested system appears to be adequate for in vivo brachytherapy dosimetry.

  3. Establishing a standard calibration methodology for MOSFET detectors in computed tomography dosimetry.

    PubMed

    Brady, S L; Kaufman, R A

    2012-06-01

    The use of metal-oxide-semiconductor field-effect transistor (MOSFET) detectors for patient dosimetry has increased by ~25% since 2005. Despite this increase, no standard calibration methodology has been identified nor calibration uncertainty quantified for the use of MOSFET dosimetry in CT. This work compares three MOSFET calibration methodologies proposed in the literature, and additionally investigates questions relating to optimal time for signal equilibration and exposure levels for maximum calibration precision. The calibration methodologies tested were (1) free in-air (FIA) with radiographic x-ray tube, (2) FIA with stationary CT x-ray tube, and (3) within scatter phantom with rotational CT x-ray tube. Each calibration was performed at absorbed dose levels of 10, 23, and 35 mGy. Times of 0 min or 5 min were investigated for signal equilibration before or after signal read out. Calibration precision was measured to be better than 5%-7%, 3%-5%, and 2%-4% for the 10, 23, and 35 mGy respective dose levels, and independent of calibration methodology. No correlation was demonstrated for precision and signal equilibration time when allowing 5 min before or after signal read out. Differences in average calibration coefficients were demonstrated between the FIA with CT calibration methodology 26.7 ± 1.1 mV cGy(-1) versus the CT scatter phantom 29.2 ± 1.0 mV cGy(-1) and FIA with x-ray 29.9 ± 1.1 mV cGy(-1) methodologies. A decrease in MOSFET sensitivity was seen at an average change in read out voltage of ~3000 mV. The best measured calibration precision was obtained by exposing the MOSFET detectors to 23 mGy. No signal equilibration time is necessary to improve calibration precision. A significant difference between calibration outcomes was demonstrated for FIA with CT compared to the other two methodologies. If the FIA with a CT calibration methodology was used to create calibration coefficients for the eventual use for phantom dosimetry, a measurement error ~12% will be reflected in the dosimetry results. The calibration process must emulate the eventual CT dosimetry process by matching or excluding scatter when calibrating the MOSFETs. Finally, the authors recommend that the MOSFETs are energy calibrated approximately every 2500-3000 mV. © 2012 American Association of Physicists in Medicine.

  4. Addendum to the AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEwen, Malcolm, E-mail: malcolm.mcewen@nrc-cnrc.gc.ca; DeWerd, Larry; Ibbott, Geoffrey

    2014-04-15

    An addendum to the AAPM's TG-51 protocol for the determination of absorbed dose to water in megavoltage photon beams is presented. This addendum continues the procedure laid out in TG-51 but new k{sub Q} data for photon beams, based on Monte Carlo simulations, are presented and recommendations are given to improve the accuracy and consistency of the protocol's implementation. The components of the uncertainty budget in determining absorbed dose to water at the reference point are introduced and the magnitude of each component discussed. Finally, the consistency of experimental determination of N{sub D,w} coefficients is discussed. It is expected thatmore » the implementation of this addendum will be straightforward, assuming that the user is already familiar with TG-51. The changes introduced by this report are generally minor, although new recommendations could result in procedural changes for individual users. It is expected that the effort on the medical physicist's part to implement this addendum will not be significant and could be done as part of the annual linac calibration.« less

  5. Strain Gage Measurements of Aft Nacelle Shock Absorbers.

    DTIC Science & Technology

    ENGINE NACELLES, SHOCK ABSORBERS ), (* SHOCK ABSORBERS , STRESSES), SURFACE TO SURFACE MISSILES, LAUNCHING, STRAIN GAGES, COMPRESSIVE PROPERTIES, CALIBRATION, STRAIN(MECHANICS), FAILURE, GROUND SUPPORT EQUIPMENT.

  6. Uncertainty analysis for absorbed dose from a brain receptor imaging agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydogan, B.; Miller, L.F.; Sparks, R.B.

    Absorbed dose estimates are known to contain uncertainties. A recent literature search indicates that prior to this study no rigorous investigation of uncertainty associated with absorbed dose has been undertaken. A method of uncertainty analysis for absorbed dose calculations has been developed and implemented for the brain receptor imaging agent {sup 123}I-IPT. The two major sources of uncertainty considered were the uncertainty associated with the determination of residence time and that associated with the determination of the S values. There are many sources of uncertainty in the determination of the S values, but only the inter-patient organ mass variation wasmore » considered in this work. The absorbed dose uncertainties were determined for lung, liver, heart and brain. Ninety-five percent confidence intervals of the organ absorbed dose distributions for each patient and for a seven-patient population group were determined by the ``Latin Hypercube Sampling`` method. For an individual patient, the upper bound of the 95% confidence interval of the absorbed dose was found to be about 2.5 times larger than the estimated mean absorbed dose. For the seven-patient population the upper bound of the 95% confidence interval of the absorbed dose distribution was around 45% more than the estimated population mean. For example, the 95% confidence interval of the population liver dose distribution was found to be between 1.49E+0.7 Gy/MBq and 4.65E+07 Gy/MBq with a mean of 2.52E+07 Gy/MBq. This study concluded that patients in a population receiving {sup 123}I-IPT could receive absorbed doses as much as twice as large as the standard estimated absorbed dose due to these uncertainties.« less

  7. Ionization chamber-based reference dosimetry of intensity modulated radiation beams.

    PubMed

    Bouchard, Hugo; Seuntjens, Jan

    2004-09-01

    The present paper addresses reference dose measurements using thimble ionization chambers for quality assurance in IMRT fields. In these radiation fields, detector fluence perturbation effects invalidate the application of open-field dosimetry protocol data for the derivation of absorbed dose to water from ionization chamber measurements. We define a correction factor C(Q)IMRT to correct the absorbed dose to water calibration coefficient N(D, w)Q for fluence perturbation effects in individual segments of an IMRT delivery and developed a calculation method to evaluate the factor. The method consists of precalculating, using accurate Monte Carlo techniques, ionization chamber, type-dependent cavity air dose, and in-phantom dose to water at the reference point for zero-width pencil beams as a function of position of the pencil beams impinging on the phantom surface. These precalculated kernels are convolved with the IMRT fluence distribution to arrive at the dose-to-water-dose-to-cavity air ratio [D(a)w (IMRT)] for IMRT fields and with a 10x10 cm2 open-field fluence to arrive at the same ratio D(a)w (Q) for the 10x10 cm2 reference field. The correction factor C(Q)IMRT is then calculated as the ratio of D(a)w (IMRT) and D(a)w (Q). The calculation method was experimentally validated and the magnitude of chamber correction factors in reference dose measurements in single static and dynamic IMRT fields was studied. The results show that, for thimble-type ionization chambers the correction factor in a single, realistic dynamic IMRT field can be of the order of 10% or more. We therefore propose that for accurate reference dosimetry of complete n-beam IMRT deliveries, ionization chamber fluence perturbation correction factors must explicitly be taken into account.

  8. (⁹⁹m)Tc-MAA overestimates the absorbed dose to the lungs in radioembolization: a quantitative evaluation in patients treated with ¹⁶⁶Ho-microspheres.

    PubMed

    Elschot, Mattijs; Nijsen, Johannes F W; Lam, Marnix G E H; Smits, Maarten L J; Prince, Jip F; Viergever, Max A; van den Bosch, Maurice A A J; Zonnenberg, Bernard A; de Jong, Hugo W A M

    2014-10-01

    Radiation pneumonitis is a rare but serious complication of radioembolic therapy of liver tumours. Estimation of the mean absorbed dose to the lungs based on pretreatment diagnostic (99m)Tc-macroaggregated albumin ((99m)Tc-MAA) imaging should prevent this, with administered activities adjusted accordingly. The accuracy of (99m)Tc-MAA-based lung absorbed dose estimates was evaluated and compared to absorbed dose estimates based on pretreatment diagnostic (166)Ho-microsphere imaging and to the actual lung absorbed doses after (166)Ho radioembolization. This prospective clinical study included 14 patients with chemorefractory, unresectable liver metastases treated with (166)Ho radioembolization. (99m)Tc-MAA-based and (166)Ho-microsphere-based estimation of lung absorbed doses was performed on pretreatment diagnostic planar scintigraphic and SPECT/CT images. The clinical analysis was preceded by an anthropomorphic torso phantom study with simulated lung shunt fractions of 0 to 30 % to determine the accuracy of the image-based lung absorbed dose estimates after (166)Ho radioembolization. In the phantom study, (166)Ho SPECT/CT-based lung absorbed dose estimates were more accurate (absolute error range 0.1 to -4.4 Gy) than (166)Ho planar scintigraphy-based lung absorbed dose estimates (absolute error range 9.5 to 12.1 Gy). Clinically, the actual median lung absorbed dose was 0.02 Gy (range 0.0 to 0.7 Gy) based on posttreatment (166)Ho-microsphere SPECT/CT imaging. Lung absorbed doses estimated on the basis of pretreatment diagnostic (166)Ho-microsphere SPECT/CT imaging (median 0.02 Gy, range 0.0 to 0.4 Gy) were significantly better predictors of the actual lung absorbed doses than doses estimated on the basis of (166)Ho-microsphere planar scintigraphy (median 10.4 Gy, range 4.0 to 17.3 Gy; p < 0.001), (99m)Tc-MAA SPECT/CT imaging (median 2.5 Gy, range 1.2 to 12.3 Gy; p < 0.001), and (99m)Tc-MAA planar scintigraphy (median 5.5 Gy, range 2.3 to 18.2 Gy; p < 0.001). In clinical practice, lung absorbed doses are significantly overestimated by pretreatment diagnostic (99m)Tc-MAA imaging. Pretreatment diagnostic (166)Ho-microsphere SPECT/CT imaging accurately predicts lung absorbed doses after (166)Ho radioembolization.

  9. Broad-band efficiency calibration of ITER bolometer prototypes using Pt absorbers on SiN membranes.

    PubMed

    Meister, H; Willmeroth, M; Zhang, D; Gottwald, A; Krumrey, M; Scholze, F

    2013-12-01

    The energy resolved efficiency of two bolometer detector prototypes for ITER with 4 channels each and absorber thicknesses of 4.5 μm and 12.5 μm, respectively, has been calibrated in a broad spectral range from 1.46 eV up to 25 keV. The calibration in the energy range above 3 eV was performed against previously calibrated silicon photodiodes using monochromatized synchrotron radiation provided by five different beamlines of Physikalische Technische Bundesanstalt at the electron storage rings BESSY II and Metrology Light Source in Berlin. For the measurements in the visible range, a setup was realised using monochromatized halogen lamp radiation and a calibrated laser power meter as reference. The measurements clearly demonstrate that the efficiency of the bolometer prototype detectors in the range from 50 eV up to ≈6 keV is close to unity; at a photon energy of 20 keV the bolometer with the thick absorber detects 80% of the photons, the one with the thin absorber about 50%. This indicates that the detectors will be well capable of measuring the plasma radiation expected from the standard ITER scenario. However, a minimum absorber thickness will be required for the high temperatures in the central plasma. At 11.56 keV, the sharp Pt-L3 absorption edge allowed to cross-check the absorber thickness by fitting the measured efficiency to the theoretically expected absorption of X-rays in a homogeneous Pt-layer. Furthermore, below 50 eV the efficiency first follows the losses due to reflectance expected for Pt, but below 10 eV it is reduced further by a factor of 2 for the thick absorber and a factor of 4 for the thin absorber. Most probably, the different histories in production, storage, and operation led to varying surface conditions and additional loss channels.

  10. Estimated human absorbed dose of a new (153)Sm bone seeking agent based on biodistribution data in mice: Comparison with (153)Sm-EDTMP.

    PubMed

    Yousefnia, Hassan; Zolghadri, Samaneh

    2015-11-01

    The main goal in radiotherapy is to deliver the absorbed dose within the target organs in highest possible amount, while the absorbed dose of the other organs, especially the critical organs, should be kept as low as possible. In this work, the absorbed dose to human organs for a new (153)Sm bone-seeking agent was investigated. (153)Sm-(4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl) acetic acid ((153)Sm-BPAMD) complex was successfully prepared. The biodistribution of the complex was investigated in male Syrian mice up to 48 h post injection. The human absorbed dose of the complex was estimated based on the biodistribution data of the mice by radiation absorbed dose assessment resource (RADAR) method. The target to non-target absorbed dose ratios for (153)Sm-BPAMD were compared with these ratios for (153)Sm-EDTMP. The highest absorbed dose for (153)Sm-BPAMD was observed in bone surface with 5.828 mGy/MBq. The dose ratios of the bone surface to the red marrow and to the total body for (153)Sm-BPAMD were 5.3 and 20.0, respectively, while these ratios for (153)Sm-EDTMP were 4.4 and 18.3, respectively. This means, for a given dose to the bone surface as the target organ, the red marrow (as the main critical organ) and the total body would receive lesser absorbed dose in the case of (153)Sm-BPAMD. Generally, the human absorbed dose estimation of (153)Sm-BPAMD indicated that all other tissues approximately received insignificant absorbed dose in comparison with bone surface and therefore can be regarded as a new potential agent for bone pain palliation therapy. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Accuracy of Monte Carlo photon transport simulation in characterizing brachytherapy dosimeter energy-response artefacts

    NASA Astrophysics Data System (ADS)

    Das, R. K.; Li, Z.; Perera, H.; Williamson, J. F.

    1996-06-01

    Practical dosimeters in brachytherapy, such as thermoluminescent dosimeters (TLD) and diodes, are usually calibrated against low-energy megavoltage beams. To measure absolute dose rate near a brachytherapy source, it is necessary to establish the energy response of the detector relative to that of the calibration energy. The purpose of this paper is to assess the accuracy of Monte Carlo photon transport (MCPT) simulation in modelling the absolute detector response as a function of detector geometry and photon energy. We have exposed two different sizes of TLD-100 (LiF chips) and p-type silicon diode detectors to calibrated , HDR source and superficial x-ray beams. For the Scanditronix electron-field diode, the relative detector response, defined as the measured detector readings per measured unit of air kerma, varied from (40 kVp beam) to ( beam). Similarly for the large and small chips the same quantity varied from and , respectively. Monte Carlo simulation was used to calculate the absorbed dose to the active volume of the detector per unit air kerma. If the Monte Carlo simulation is accurate, then the absolute detector response, which is defined as the measured detector reading per unit dose absorbed by the active detector volume, and is calculated by Monte Carlo simulation, should be a constant. For the diode, the absolute response is . For TLDs of size the absolute response is and for TLDs of it is . From the above results we can conclude that the absolute response function of detectors (TLDs and diodes) is directly proportional to absorbed dose by the active volume of the detector and is independent of beam quality.

  12. Assessment of human effective absorbed dose of 67 Ga-ECC based on biodistribution rat data.

    PubMed

    Shanehsazzadeh, Saeed; Yousefnia, Hassan; Lahooti, Afsaneh; Zolghadri, Samaneh; Jalilian, Amir Reza; Afarideh, Hossien

    2015-02-01

    In a diagnostic context, determination of absorbed dose is required before the introduction of a new radiopharmaceutical to the market to obtain marketing authorization from the relevant agencies. In this work, the absorbed dose of [67 Ga]-ethylenecysteamine cysteine [(67 Ga)ECC] to human organs was determined by using distribution data for rats. For biodistribution data, the animals were sacrificed by CO2 asphyxiation at selected times after injection (0.5, 2 and 48 h, n = 3 for each time interval), then the tissue (blood, heart, lung, brain, intestine, feces, skin, stomach, kidneys, liver, muscle and bone) were removed. The absorbed dose was determined by Medical Internal Radiation Dose (MIRD) method after calculating cumulated activities in each organ. Our prediction shows that a 185-MBq injection of (67)Ga-ECC into the humans might result in an estimated absorbed dose of 0.029 mGy in the whole body. The highest absorbed doses are observed in the spleen and liver with 33.766 and 16.847 mGy, respectively. The results show that this radiopharmaceutical can be a good SPECT tracer since it can be produced easily and also the absorbed dose in each organ is less than permitted absorbed dose.

  13. Radiation dosimetry for quality control of food preservation and disinfestation

    NASA Astrophysics Data System (ADS)

    McLaughlin, W. L.; Miller, A.; Uribe, R. M.

    In the use of x and gamma rays and scanned electron beams to extend the shelf life of food by delay of sprouting and ripening, killing of microbes, and control of insect population, quality assurance is provided by standardized radiation dosimetry. By strategic placement of calibrated dosimeters that are sufficiently stable and reproducible, it is possible to monitor minimum and maximum radiation absorbed dose levels and dose uniformity for a given processed foodstuff. The dosimetry procedure is especially important in the commisioning of a process and in making adjustments of process parameters (e.g. conveyor speed) to meet changes that occur in product and source parameters (e.g. bulk density and radiation spectrum). Routine dosimetry methods and certain corrections of dosimetry data may be selected for the radiations used in typical food processes.

  14. The specifics of dosimetry for food irradiation applications

    NASA Astrophysics Data System (ADS)

    Kuntz, Florent; Strasser, Alain

    2016-12-01

    Dose measurement applied to food irradiation is obviously a very important and critical aspect of this process. It is described in many standards and guides. The application of appropriate dosimetry tools is explained. This helps to ensure traceability of this measurement and number of dosimeters available on the market are well studied even though theirs response should be characterized while used in routine processing conditions. When employed in low energy radiation fields, these dosimeters may exhibit specific response compared to the usual Cobalt 60 source irradiation. Traceable calibration or correction factor assessment of this energy dependency is mandatory. It is to mention that the absorbed dose is measured in the dosimeter itself and unfortunately not in/on the food product. However, existing dosimetry systems fulfill all relevant requirements.

  15. A bone marrow toxicity model for 223Ra alpha-emitter radiopharmaceutical therapy

    NASA Astrophysics Data System (ADS)

    Hobbs, Robert F.; Song, Hong; Watchman, Christopher J.; Bolch, Wesley E.; Aksnes, Anne-Kirsti; Ramdahl, Thomas; Flux, Glenn D.; Sgouros, George

    2012-05-01

    Ra-223, an α-particle emitting bone-seeking radionuclide, has recently been used in clinical trials for osseous metastases of prostate cancer. We investigated the relationship between absorbed fraction-based red marrow dosimetry and cell level-dosimetry using a model that accounts for the expected localization of this agent relative to marrow cavity architecture. We show that cell level-based dosimetry is essential to understanding potential marrow toxicity. The GEANT4 software package was used to create simple spheres representing marrow cavities. Ra-223 was positioned on the trabecular bone surface or in the endosteal layer and simulated for decay, along with the descendants. The interior of the sphere was divided into cell-size voxels and the energy was collected in each voxel and interpreted as dose cell histograms. The average absorbed dose values and absorbed fractions were also calculated in order to compare those results with previously published values. The absorbed dose was predominantly deposited near the trabecular surface. The dose cell histogram results were used to plot the percentage of cells that received a potentially toxic absorbed dose (2 or 4 Gy) as a function of the average absorbed dose over the marrow cavity. The results show (1) a heterogeneous distribution of cellular absorbed dose, strongly dependent on the position of the cell within the marrow cavity; and (2) that increasing the average marrow cavity absorbed dose, or equivalently, increasing the administered activity resulted in only a small increase in potential marrow toxicity (i.e. the number of cells receiving more than 4 or 2 Gy), for a range of average marrow cavity absorbed doses from 1 to 20 Gy. The results from the trabecular model differ markedly from a standard absorbed fraction method while presenting comparable average dose values. These suggest that increasing the amount of radioactivity may not substantially increase the risk of toxicity, a result unavailable to the absorbed fraction method of dose calculation.

  16. Review of reconstruction of radiation incident air kerma by measurement of absorbed dose in tooth enamel with EPR.

    PubMed

    Wieser, A

    2012-03-01

    Electron paramagnetic resonance dosimetry with tooth enamel has been proved to be a reliable method to determine retrospectively exposures from photon fields with minimal detectable doses of 100 mGy or lower, which is lower than achievable with cytogenetic dose reconstruction methods. For risk assessment or validating dosimetry systems for specific radiation incidents, the relevant dose from the incident has to be calculated from the total absorbed dose in enamel by subtracting additional dose contributions from the radionuclide content in teeth, natural external background radiation and medical exposures. For calculating organ doses or evaluating dosimetry systems the absorbed dose in enamel from a radiation incident has to be converted to air kerma using dose conversion factors depending on the photon energy spectrum and geometry of the exposure scenario. This paper outlines the approach to assess individual dose contributions to absorbed dose in enamel and calculate individual air kerma of a radiation incident from the absorbed dose in tooth enamel.

  17. A radiobiological model of metastatic burden reduction for molecular radiotherapy: application to patients with bone metastases

    NASA Astrophysics Data System (ADS)

    Denis-Bacelar, Ana M.; Chittenden, Sarah J.; Murray, Iain; Divoli, Antigoni; McCready, V. Ralph; Dearnaley, David P.; O'Sullivan, Joe M.; Johnson, Bernadette; Flux, Glenn D.

    2017-04-01

    Skeletal tumour burden is a biomarker of prognosis and survival in cancer patients. This study proposes a novel method based on the linear quadratic model to predict the reduction in metastatic tumour burden as a function of the absorbed doses delivered from molecular radiotherapy treatments. The range of absorbed doses necessary to eradicate all the bone lesions and to reduce the metastatic burden was investigated in a cohort of 22 patients with bone metastases from castration-resistant prostate cancer. A metastatic burden reduction curve was generated for each patient, which predicts the reduction in metastatic burden as a function of the patient mean absorbed dose, defined as the mean of all the lesion absorbed doses in any given patient. In the patient cohort studied, the median of the patient mean absorbed dose predicted to reduce the metastatic burden by 50% was 89 Gy (interquartile range: 83-105 Gy), whilst a median of 183 Gy (interquartile range: 107-247 Gy) was found necessary to eradicate all metastases in a given patient. The absorbed dose required to eradicate all the lesions was strongly correlated with the variability of the absorbed doses delivered to multiple lesions in a given patient (r  =  0.98, P  <  0.0001). The metastatic burden reduction curves showed a potential large reduction in metastatic burden for a small increase in absorbed dose in 91% of patients. The results indicate the range of absorbed doses required to potentially obtain a significant survival benefit. The metastatic burden reduction method provides a simple tool that could be used in routine clinical practice for patient selection and to indicate the required administered activity to achieve a predicted patient mean absorbed dose and reduction in metastatic tumour burden.

  18. Combination of UV absorbance and electron donating capacity to assess degradation of micropollutants and formation of bromate during ozonation of wastewater effluents.

    PubMed

    Chon, Kangmin; Salhi, Elisabeth; von Gunten, Urs

    2015-09-15

    In this study, the changes in UV absorbance at 254 nm (UVA254) and electron donating capacity (EDC) were investigated as surrogate indicators for assessing removal of micropollutants and bromate formation during ozonation of wastewater effluents. To measure the EDC, a novel method based on size exclusion chromatography followed by a post-column reaction was developed and calibrated against an existing electrochemical method. Low specific ozone doses led to a more efficient abatement of EDC than of UVA254. This was attributed to the abatement of phenolic moieties in the dissolved organic matter (DOM), which lose their EDC upon oxidation, but are partially transformed into quinones, which still absorb in the measured UV range. For higher specific ozone doses, the relative EDC abatement was lower than the relative UVA abatement, which can be explained by the oxidation of UV absorbing moieties (e.g. non-activated aromatic compounds), which contribute less to EDC. The abatement of the selected micropollutants (i.e., 17α-ethinylestradiol (EE2), carbamazepine (CBZ), atenolol (ATE), bezafibrate (BZF), ibuprofen (IBU), and p-chlorobenzoic acid (pCBA)) varied significantly depending on their reactivity with ozone in the examined specific ozone dose range of 0-1.45 mgO3/mgDOC. The decrease of EE2 and CBZ with high ozone reactivity was linearly proportional to the reduction of the relative residuals of UVA254 and EDC. The abatement of ATE, BZF, IBU, and pCBA with intermediate to low ozone reactivities was not significant in a first phase (UVA254/UVA254,0 = 1.00-0.70; EDC/EDC0 = 1.00-0.56) while their abatement was more efficient than the degradation of the relative residual UVA254 and much more noticeable than the degradation of the relative residual EDC in a second phase (UVA254/UVA254,0 = 0.70-0.25; EDC/EDC0 = 0.56-0.25) because the partially destroyed UV absorbing and electron donating DOM moieties become recalcitrant to ozone attack. Bromate formation was pronounced for specific ozone doses >0.25 mgO3/mgDOC. At these ozone doses, the residual DOM competes less with bromide for ozone as the electron-rich DOM moieties are almost completely degraded. Overall, these results imply that a combination of the relative residual UVA254 and EDC more truly reflects the intrinsic reactivity of DOM associated with the removal of micropollutants and bromate formation than the single use of the UV absorbance-based surrogate indicators. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Comparison of AAPM Addendum to TG-51, IAEA TRS-398, and JSMP 12: Calibration of photon beams in water.

    PubMed

    Kinoshita, Naoki; Oguchi, Hiroshi; Nishimoto, Yasuhiro; Adachi, Toshiki; Shioura, Hiroki; Kimura, Hirohiko; Doi, Kunio

    2017-09-01

    The American Association of Physicists in Medicine (AAPM) Working Group on TG-51 published an Addendum to the AAPM's TG-51 protocol (Addendum to TG-51) in 2014, and the Japan Society of Medical Physics (JSMP) published a new dosimetry protocol JSMP 12 in 2012. In this study, we compared the absorbed dose to water determined at the reference depth for high-energy photon beams following the recommendations given in AAPM TG-51 and the Addendum to TG-51, IAEA TRS-398, and JSMP 12. This study was performed using measurements with flattened photon beams with nominal energies of 6 and 10 MV. Three widely used ionization chambers with different compositions, Exradin A12, PTW 30013, and IBA FC65-P, were employed. Fully corrected charge readings obtained for the three chambers according to AAPM TG-51 and the Addendum to TG-51, which included the correction for the radiation beam profile (P rp ), showed variations of 0.2% and 0.3% at 6 and 10 MV, respectively, from the readings corresponding to IAEA TRS-398 and JSMP 12. The values for the beam quality conversion factor k Q obtained according to the three protocols agreed within 0.5%; the only exception was a 0.6% difference between the results obtained at 10 MV for Exradin A12 according to IAEA TRS-398 and AAPM TG-51 and the Addendum to TG-51. Consequently, the values for the absorbed dose to water obtained for the three protocols agreed within 0.4%; the only exception was a 0.6% difference between the values obtained at 10 MV for PTW 30013 according to AAPM TG-51 and the Addendum to TG-51, and JSMP 12. While the difference in the absorbed dose to water determined by the three protocols depends on the k Q and P rp values, the absorbed dose to water obtained according to the three protocols agrees within the relative uncertainties for the three protocols. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, P.H.; Krishnamurthy, G.T.; Bobba, V.R.

    The radiation absorbed doses from five commercially available hepatobiliary agents-Tc-99m-tagged analogs of IDA (EIDA, PIPIDA, HIDA, PBIDA, DISIDA*) have been calculated from biokinetic data in 41 normal subjects. Serial gamma images, with blood and urine samples, were obtained to calculate cumulated radioactivity in the source organs: blood, kidey, bladder, liver, gallbladder, and intestines. The critical organ was the gallbladder, with an absorbed-dose range of 690 to 780 mrad/mCi. Absorbed doses for other target organs were: upper large intestine 320 to 370 mrad/mCi, lower large intestine 210 to 240, small intestine 170 to 200, liver 65 (DISIDA) to 130 (PBIDA), ovariesmore » 63 to 72, and urinary bladder wall 23 (PBIDA) to 36 (EIDA). The radiation absorbed dose was largely independent of changes in chemical structure except in (a) the liver, where absorbed dose varied by a factor of two in proportion to the rate of excretion of the IDA agent from the liver, and (b) the urinary bladder, where absorbed dose varied by a factor of 1.6 because of differences in rate of excretion. When the stimulus for gallbladder emptying is changed from whole-meal ingestion to cholecystokinin injection, the absorbed dose to the gallbladder increases to approx. 1 rad/mCi; if no gallbladder emptying is assumed, its absorbed dose increases to approx. 1.9 rad/mCi. In the absence of contraindication, the gallbladder absorbed dose may thus be decreased by inducing gallbladder emptying at the end of the imaging study.« less

  1. Assessment of an organ‐based tube current modulation in thoracic computed tomography

    PubMed Central

    Sugai, Mai; Toyoda, Asami; Koshida, Haruka; Sakuta, Keita; Takata, Tadanori; Koshida, Kichiro; Iida, Hiroji; Matsui, Osamu

    2012-01-01

    Recently, specific computed tomography (CT) scanners have been equipped with organ‐based tube current modulation (TCM) technology. It is possible that organ‐based TCM will replace the conventional dose‐reduction technique of reducing the effective milliampere‐second. The aim of this study was to determine if organ‐based TCM could reduce radiation exposure to the breasts without compromising the image uniformity and beam hardening effect in thoracic CT examinations. Breast and skin radiation doses and the absorbed radiation dose distribution within a single section were measured with an anthropomorphic phantom and radiophotoluminescent glass dosimeters using four approaches to thoracic CT (reference, organ‐based TCM, copper shielding, and the combination of the above two techniques, hereafter referred to as the combination technique). The CT value and noise level were measured using the same calibration phantom. Organ‐based TCM and copper shielding reduced radiation doses to the breast by 23.7% and 21.8%, respectively. However, the CT value increased, especially in the anterior region, using copper shielding. In contrast, the CT value and noise level barely increased using organ‐based TCM. The combination technique reduced the radiation dose to the breast by 38.2%, but greatly increased the absorbed radiation dose from the central to the posterior regions. Moreover, the CT value increased in the anterior region and the noise level increased by more than 10% in the entire region. Therefore, organ‐based TCM can reduce radiation doses to breasts with only small increases in noise levels, making it preferable for specific groups of patients, such as children and young women. PACS numbers: 87.53.Bn; 87.57.Q‐; 87.57.qp PMID:22402390

  2. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 06: Investigation of an absorbed dose to water formalism for a miniature low-energy x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Peter; Seuntjens, Jan

    Purpose: We present a formalism for calculating the absorbed dose to water from a miniature x-ray source (The INTRABEAM system, Carl Zeiss), using a parallel-plate ionization chamber calibrated in terms of air-kerma. Monte Carlo calculations were performed to derive a chamber conversion factor (C{sub Q}) from reference air-kerma to dose to water for the INTRABEAM. C{sub Q} was investigated as a function of depth in water, and compared with the manufacturer’s reported value. The effect of chamber air cavity dimension tolerance was also investigated. Methods: Air-kerma (A{sub k}) from a reference beam was calculated using the EGSnrc user code cavity.more » Using egs-chamber, a model of a PTW 34013 parallel-plate ionization chamber was created according to manufacturer specifications. The dose to the chamber air cavity (D{sub gas}) was simulated both in-air (with reference beam) and in-water (with INTRABEAM source). Dose to a small water voxel (D{sub w}) was also calculated. C{sub Q} was derived from these quantities. Results: C{sub Q} was found to vary by up to 15% (1.30 vs 1.11) between chamber dimension extremes. The agreement between chamber C{sub Q} was found to improve with increasing depth in water. However, in all cases investigated, C{sub Q} was larger than the manufacturer reported value of 1.054. Conclusions: Our results show that cavity dimension tolerance has a significant effect on C{sub Q}, with differences as large as 15%. In all cases considered, C{sub Q} was found to be larger than the reported value of 1.054. This suggests that the recommended calculation underestimates the dose to water.« less

  3. The influence of neutron contamination on dosimetry in external photon beam radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horst, Felix, E-mail: felix.ernst.horst@kmub.thm.de; Czarnecki, Damian; Zink, Klemens

    Purpose: Photon fields with energies above ∼7 MeV are contaminated by neutrons due to photonuclear reactions. Their influence on dosimetry—although considered to be very low—is widely unexplored. Methods: In this work, Monte Carlo based investigations into this issue performed with FLUKA and EGSNRC are presented. A typical Linac head in 18 MV-X mode was modeled equivalently within both codes. EGSNRC was used for the photon and FLUKA for the neutron production and transport simulation. Water depth dose profiles and the response of different detectors (Farmer chamber, TLD-100, TLD-600H, and TLD-700H chip) in five representative depths were simulated and the neutrons’more » impact (neutron absorbed dose relative to photon absorbed dose) was calculated. To take account of the neutrons’ influence, a theoretically required correction factor was defined and calculated for five representative water depths. Results: The neutrons’ impact on the absorbed dose to water was found to be below 0.1% for all depths and their impact on the response of the Farmer chamber and the TLD-700H chip was found to be even less. For the TLD-100 and the TLD-600H chip it was found to be up to 0.3% and 0.7%, respectively. The theoretical correction factors to be applied to absorbed dose to water values measured with these four detectors in a depth different from the reference/calibration depth were calculated and found to be below 0.05% for the Farmer chamber and the TLD-700H chip, but up to 0.15% and 0.35% for the TLD-100 and TLD-600H chips, respectively. In thermoluminescence dosimetry the neutrons’ influence (and therefore the additional inaccuracy in measurement) was found to be higher for TLD materials whose {sup 6}Li fraction is high, such as TLD-100 and TLD-600H, resulting from the thermal neutron capture reaction on {sup 6}Li. Conclusions: The impact of photoneutrons on the absorbed dose to water and on the response of a typical ionization chamber as well as three different types of TLD chips was quantified and was as expected found to be very low relative to that of the primary photons. For most practical reasons the neutrons’ influence on dosimetry might be neglected while for absolute precise thermoluminescence dosimetry in high energy photon fields, the use of TLD-700H (<0.03% {sup 6}Li) instead of the commonly used TLD-100 (7.4% {sup 6}Li) or even the extra neutron sensitive TLD-600H is recommended (95.6% {sup 6}Li) due to the additional inaccuracy in measurement for TLD materials with a high {sup 6}Li fraction.« less

  4. The influence of neutron contamination on dosimetry in external photon beam radiotherapy.

    PubMed

    Horst, Felix; Czarnecki, Damian; Zink, Klemens

    2015-11-01

    Photon fields with energies above ∼7 MeV are contaminated by neutrons due to photonuclear reactions. Their influence on dosimetry-although considered to be very low-is widely unexplored. In this work, Monte Carlo based investigations into this issue performed with fluka and egsnrc are presented. A typical Linac head in 18 MV-X mode was modeled equivalently within both codes. egsnrc was used for the photon and fluka for the neutron production and transport simulation. Water depth dose profiles and the response of different detectors (Farmer chamber, TLD-100, TLD-600H, and TLD-700H chip) in five representative depths were simulated and the neutrons' impact (neutron absorbed dose relative to photon absorbed dose) was calculated. To take account of the neutrons' influence, a theoretically required correction factor was defined and calculated for five representative water depths. The neutrons' impact on the absorbed dose to water was found to be below 0.1% for all depths and their impact on the response of the Farmer chamber and the TLD-700H chip was found to be even less. For the TLD-100 and the TLD-600H chip it was found to be up to 0.3% and 0.7%, respectively. The theoretical correction factors to be applied to absorbed dose to water values measured with these four detectors in a depth different from the reference/calibration depth were calculated and found to be below 0.05% for the Farmer chamber and the TLD-700H chip, but up to 0.15% and 0.35% for the TLD-100 and TLD-600H chips, respectively. In thermoluminescence dosimetry the neutrons' influence (and therefore the additional inaccuracy in measurement) was found to be higher for TLD materials whose 6Li fraction is high, such as TLD-100 and TLD-600H, resulting from the thermal neutron capture reaction on 6Li. The impact of photoneutrons on the absorbed dose to water and on the response of a typical ionization chamber as well as three different types of TLD chips was quantified and was as expected found to be very low relative to that of the primary photons. For most practical reasons the neutrons' influence on dosimetry might be neglected while for absolute precise thermoluminescence dosimetry in high energy photon fields, the use of TLD-700H (<0.03% 6Li) instead of the commonly used TLD-100 (7.4% 6Li) or even the extra neutron sensitive TLD-600H is recommended (95.6% 6Li) due to the additional inaccuracy in measurement for TLD materials with a high 6Li fraction.

  5. ANN-based calibration model of FTIR used in transformer online monitoring

    NASA Astrophysics Data System (ADS)

    Li, Honglei; Liu, Xian-yong; Zhou, Fangjie; Tan, Kexiong

    2005-02-01

    Recently, chromatography column and gas sensor have been used in online monitoring device of dissolved gases in transformer oil. But some disadvantages still exist in these devices: consumption of carrier gas, requirement of calibration, etc. Since FTIR has high accuracy, consume no carrier gas and require no calibration, the researcher studied the application of FTIR in such monitoring device. Experiments of "Flow gas method" were designed, and spectrum of mixture composed of different gases was collected with A BOMEM MB104 FTIR Spectrometer. A key question in the application of FTIR is that: the absorbance spectrum of 3 fault key gases, including C2H4, CH4 and C2H6, are overlapped seriously at 2700~3400cm-1. Because Absorbance Law is no longer appropriate, a nonlinear calibration model based on BP ANN was setup to in the quantitative analysis. The height absorbance of C2H4, CH4 and C2H6 were adopted as quantitative feature, and all the data were normalized before training the ANN. Computing results show that the calibration model can effectively eliminate the cross disturbance to measurement.

  6. SU-F-T-06: Development of a Formalism for Practical Dose Measurements in Brachytherapy in the German Standard DIN 6803

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, F; Chofor, N; Schoenfeld, A

    2016-06-15

    Purpose: In the steep dose gradients in the vicinity of a radiation source and due to the properties of the changing photon spectra, dose measurements in Brachytherapy usually have large uncertainties. Working group DIN 6803-3 is presently discussing recommendations for practical brachytherapy dosimetry incorporating recent theoretical developments in the description of brachytherapy radiation fields as well as new detectors and phantom materials. The goal is to prepare methods and instruments to verify dose calculation algorithms and for clinical dose verification with reduced uncertainties. Methods: After analysis of the distance dependent spectral changes of the radiation field surrounding brachytherapy sources, themore » energy dependent response of typical brachytherapy detectors was examined with Monte Carlo simulations. A dosimetric formalism was developed allowing the correction of their energy dependence as function of source distance for a Co-60 calibrated detector. Water equivalent phantom materials were examined with Monte Carlo calculations for their influence on brachytherapy photon spectra and for their water equivalence in terms of generating equivalent distributions of photon spectra and absorbed dose to water. Results: The energy dependence of a detector in the vicinity of a brachytherapy source can be described by defining an energy correction factor kQ for brachytherapy in the same manner as in existing dosimetry protocols which incorporates volume averaging and radiation field distortion by the detector. Solid phantom materials were identified which allow precise positioning of a detector together with small correctable deviations from absorbed dose to water. Recommendations for the selection of detectors and phantom materials are being developed for different measurements in brachytherapy. Conclusion: The introduction of kQ for brachytherapy sources may allow more systematic and comparable dose measurements. In principle, the corrections can be verified or even determined by measurement in a water phantom and comparison with dose distributions calculated using the TG43 dosimetry formalism. Project is supported by DIN Deutsches Institut fuer Normung.« less

  7. SU-E-I-28: Evaluating the Organ Dose From Computed Tomography Using Monte Carlo Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, T; Araki, F

    Purpose: To evaluate organ doses from computed tomography (CT) using Monte Carlo (MC) calculations. Methods: A Philips Brilliance CT scanner (64 slice) was simulated using the GMctdospp (IMPS, Germany) based on the EGSnrc user code. The X-ray spectra and a bowtie filter for MC simulations were determined to coincide with measurements of half-value layer (HVL) and off-center ratio (OCR) profile in air. The MC dose was calibrated from absorbed dose measurements using a Farmer chamber and a cylindrical water phantom. The dose distribution from CT was calculated using patient CT images and organ doses were evaluated from dose volume histograms.more » Results: The HVLs of Al at 80, 100, and 120 kV were 6.3, 7.7, and 8.7 mm, respectively. The calculated HVLs agreed with measurements within 0.3%. The calculated and measured OCR profiles agreed within 3%. For adult head scans (CTDIvol) =51.4 mGy), mean doses for brain stem, eye, and eye lens were 23.2, 34.2, and 37.6 mGy, respectively. For pediatric head scans (CTDIvol =35.6 mGy), mean doses for brain stem, eye, and eye lens were 19.3, 24.5, and 26.8 mGy, respectively. For adult chest scans (CTDIvol=19.0 mGy), mean doses for lung, heart, and spinal cord were 21.1, 22.0, and 15.5 mGy, respectively. For adult abdominal scans (CTDIvol=14.4 mGy), the mean doses for kidney, liver, pancreas, spleen, and spinal cord were 17.4, 16.5, 16.8, 16.8, and 13.1 mGy, respectively. For pediatric abdominal scans (CTDIvol=6.76 mGy), mean doses for kidney, liver, pancreas, spleen, and spinal cord were 8.24, 8.90, 8.17, 8.31, and 6.73 mGy, respectively. In head scan, organ doses were considerably different from CTDIvol values. Conclusion: MC dose distributions calculated by using patient CT images are useful to evaluate organ doses absorbed to individual patients.« less

  8. Intercomparison of standards of absorbed dose between the USSR and the UK

    NASA Astrophysics Data System (ADS)

    Berlyand, V. A.; Bregadze, J. I.; Burns, J. E.; Dusautoy, A. R.; Sharpe, P. H. G.

    1991-05-01

    A comparison of national standards of absorbed dose was carried out between the All-Union Research Institute for Physical Technical and Radiotechnical Measurements (VNIIFTRI), USSR, and the National Physical Laboratotry (NPL), UK (United Kingdom). Absorbed dose to water for cobalt 60 gamma radiation was compared by means of Fricke dosimeters and ionization chambers in 1985 and 1986. The primary standards used to derive absorbed dose to water were cavity ionization chambers at NPL and a graphite calorimeter at VNIIFTRI. The ratio of absorbed dose to water, NPL to VNIIFTRI, using Fricke dosimeters was 1.008; using ionization chambers it was 1.007. This agreement is within the estimated uncertainties of the standards and measurement methods.

  9. New constant-temperature operating mode for graphite calorimeter at LNE-LNHB.

    PubMed

    Daures, J; Ostrowsky, A

    2005-09-07

    The realization of the unit of absorbed dose at LNE-LNHB is based on calorimetry with the present GR8 graphite calorimeter. For this reason the calorimetric technique must be maintained, developed and improved in the laboratory. The usual quasi-adiabatic operating mode at LNHB is based on the thermal feedback between the core (sensitive element) and the jacket (adjacent body). When a core-jacket temperature difference is detected, a commercially available analogue PID (Proportional, Integral, Derivative) controller sends to the jacket an amount of electrical power to reduce this difference. Nevertheless, the core and jacket temperatures increase with irradiations and electrical calibrations whereas the surrounding is maintained at a fixed temperature to shield against the room temperature variations. At radiotherapy dose rates, fewer than ten measurements, or electrical calibrations, per day can be performed. This paper describes the new constant-temperature operating mode which has been implemented recently to improve flexibility in use and, to some extent, accuracy. The core and the jacket temperatures are maintained at fixed temperatures. A steady state is achieved without irradiation. Then, under irradiation, the electrical power needed to maintain the assigned temperature in the core is reduced by the amount of heat generated by ionizing radiation. The difference between these electrical powers, without and with irradiation, gives the mean absorbed dose rate to the core. The quality of this electrical power substitution measurement is strongly dependent upon the quality of the core and jacket thermal control. The core temperature is maintained at the set value using a digital PID regulator developed at the laboratory with LabView software on PC for this purpose. This regulator is versatile and particularly well suited for calorimetry purposes. Measurements in a cobalt-60 beam have shown no significant difference (<0.09%) between the two operating modes, with an equivalent reproducibility (1sigma < 0.06%). These results corroborate the negligible difference of heat transfer between steady and irradiation periods when working in quasi-adiabatic mode with thermal feedback between the core and the jacket. The new constant-temperature mode allows numerous and fully automated measurements. The electrical calibration is an integral part of the measurement; no extra runs are needed. It also allows faster thermal equilibrium before starting runs. Moreover the quality of vacuum within the gaps between the bodies is less important.

  10. SU-G-TeP3-02: Determination of Geometry-Specific Backscatter Factors for Radiobiology Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viscariello, N; Culberson, W; Lawless, M

    2016-06-15

    Purpose: Radiation biology research relies on an accurate radiation dose delivered to the biological target. Large field irradiations in a cabinet irradiator may use the AAPM TG-61 protocol. This relies on an air-kerma measurement and conversion to absorbed dose to water (Dw) on the surface of a water phantom using provided backscatter factors. Cell or small animal studies differ significantly from this reference geometry. This study aims to determine the impact of the lack of full scatter conditions in four representative geometries that may be used in radiobiology studies. Methods: MCNP6 was used to model the Dw on the surfacemore » of a full scatter phantom in a validated orthovoltage x-ray reference beam. Dw in a cylindrical mouse, 100 mm Petri dish, 6-well and 96-well cell culture dishes was simulated and compared to this full scatter geometry. A reference dose rate was measured using the TG-61 protocol in a cabinet irradiator. This nominal dose rate was used to irradiate TLDs in each phantom to a given dose. Doses were obtained based on TLDs calibrated in a NIST-traceable beam. Results: Compared to the full scattering conditions, the simulated dose to water in the representative geometries were found to be underestimated by 12-26%. The discrepancy was smallest with the cylindrical mouse geometry, which most closely approximates adequate lateral- and backscatter. TLDs irradiated in the mouse and petri dish phantoms using the TG-61 determined dose rate showed similarly lower values of Dw. When corrected for this discrepancy, they agreed with the predicted Dw within 5%. Conclusion: Using the TG-61 in-air protocol and given backscatter factors to determine a reference dose rate in a biological irradiator may not be appropriate given the difference in scattering conditions between irradiation and calibration. Without accounting for this, the dose rate is overestimated and is dependent on irradiation geometry.« less

  11. Detailed Distribution Map of Absorbed Dose Rate in Air in Tokatsu Area of Chiba Prefecture, Japan, Constructed by Car-Borne Survey 4 Years after the Fukushima Daiichi Nuclear Power Plant Accident.

    PubMed

    Inoue, Kazumasa; Arai, Moeko; Fujisawa, Makoto; Saito, Kyouko; Fukushi, Masahiro

    2017-01-01

    A car-borne survey was carried out in the northwestern, or Tokatsu, area of Chiba Prefecture, Japan, to make a detailed distribution map of absorbed dose rate in air four years after the Fukushima Daiichi Nuclear Power Plant accident. This area was chosen because it was the most heavily radionuclide contaminated part of Chiba Prefecture and it neighbors metropolitan Tokyo. Measurements were performed using a 3-in × 3-in NaI(Tl) scintillation spectrometer in June 2015. The survey route covered the whole Tokatsu area which includes six cities. A heterogeneous distribution of absorbed dose rate in air was observed on the dose distribution map. Especially, higher absorbed dose rates in air exceeding 80 nGy h-1 were observed along national roads constructed using high porosity asphalt, whereas lower absorbed dose rates in air were observed along local roads constructed using low porosity asphalt. The difference between these asphalt types resulted in a heterogeneous dose distribution in the Tokatsu area. The mean of the contribution ratio of artificial radionuclides to absorbed dose rate in air measured 4 years after the accident was 29% (9-50%) in the Tokatsu area. The maximum absorbed dose rate in air, 201 nGy h-1 was observed at Kashiwa City. Radiocesium was deposited in the upper 1 cm surface layer of the high porosity asphalt which was collected in Kashiwa City and the environmental half-life of the absorbed dose rate in air was estimated to be 1.7 years.

  12. Analysis and recent advances in gamma heating measurements in MINERVE facility by using TLD and OSLD techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amharrak, H.; Di Salvo, J.; Lyoussi, A.

    2011-07-01

    The objective of this study is to develop nuclear heating measurement methods in Zero Power experimental reactors. This paper presents the analysis of Thermo-Luminescent Detector (TLD) and Optically Stimulated Luminescent Detectors (OSLD) experiments in the UO{sub 2} core of the MINERVE research reactor at the CEA Cadarache. The experimental sources of uncertainties on the gamma dose have been reduced by improving the conditions, as well as the repeatability, of the calibration step for each individual TLD. The interpretation of these measurements needs to take into account calculation of cavity correction factors, related to calibration and irradiation configurations, as well asmore » neutron corrections calculations. These calculations are based on Monte Carlo simulations of neutron-gamma and gamma-electron transport coupled particles. TLD and OSLD are positioned inside aluminum pillboxes. The comparison between calculated and measured integral gamma-ray absorbed doses using TLD, shows that calculation slightly overestimates the measurement with a C/E value equal to 1.05 {+-} 5.3 % (k = 2). By using OSLD, the calculation slightly underestimates the measurement with a C/E value equal to 0.96 {+-} 7.0% (k = 2. (authors)« less

  13. Determination of the Sensibility Factors for TLD-100 Powder on the Energy of X-Ray of 50, 250 kVp; 192Ir, 137Cs and 60Co

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loaiza, Sandra P.; Alvarez, Jose T.

    2006-09-08

    TLD-100 powder is calibrated in terms of absorbed dose to water Dw, using the protocols AAPM TG61, AAPM TG43 and IAEA-TRS 398, for the energy of RX 50, 250 kVp, 137Cs and 60Co respectively. The calibration curves, TLD Response R versus Dw, are fitted by weighted least square by a quadratic polynomials; which are validated with the lack of fit and the Anderson-Darling normality test. The slope of these curves corresponds to the sensibility factor: Fs R/DW, [Fs] = nC Gy-1. The expanded uncertainties U's for these factors are obtained from the ANOVA tables. Later, the Fs' values are interpolatedmore » using the effective energy hvefec for the 192Ir. The SSDL sent a set of capsules with powder TLD-100 for two Hospitals. These irradiated them a nominal dose of Dw = 2 Gy. The results determined at SSDL are: for the Hospital A the Dw is overestimated in order to 4.8% and the Hospital B underestimates it in the range from -1.4% to -17.5%.« less

  14. TH-CD-BRA-05: First Water Calorimetric Dw Measurement and Direct Measurement of Magnetic Field Correction Factors, KQ,B, in a 1.5 T B-Field of An MRI Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prez, L de; Pooter, J de; Jansen, B

    2016-06-15

    Purpose: Reference dosimetry in MR-guided radiotherapy is performed in the presence of a B-field. As a consequence the response of ionization chambers changes considerably and depends on parameters not considered in traditional reference dosimetry. Therefore future Codes of Practices need ionization chamber correction factors to correct for both the change in beam quality and the presence of a B-field. The objective was to study the feasibility of water calorimetric absorbed-dose measurements in a 1.5 T B-field of an MRLinac and the direct measurement of kQ,B calibration of ionization chambers. Methods: Calorimetric absorbed dose to water Dw was measured with amore » new water calorimeter in the bore of an MRLinac (TPR20,10 of 0.702). Two waterproof ionization chambers (PTW 30013, IBA FC-65G) were calibrated inside the calorimeter phantom (ND,w,Q,B). Both measurements were normalized to a monitor ionization chamber. Ionization chamber measurements were corrected for conventional influence parameter. Based on the chambers’ Co-60 calibrations (ND,w,Q0), measured directly against the calorimeter. In this study the correction factors kQ,B was determined as the ratio of the calibration coefficients in the MRLinac and in Co-60. Additionally, kB was determined based on kQ values obtained with the IAEA TRS-398 Code of Practice. Results: The kQ,B factors of the ionization chambers mentioned above were respectively 0.9488(8) and 0.9445(8) with resulting kB factors of 0.961(13) and 0.952(13) with standard uncertainties on the least significant digit(s) between brackets. Conclusion: Calorimetric Dw measurements and calibration of waterproof ionization chambers were successfully carried out in the 1.5 T B-field of an MRLinac with a standard uncertainty of 0.7%. Preliminary kQ,B and kB factors were determined with standard uncertainties of respectively 0.8% and 1.3%. The kQ,B agrees with an alternative method within 0.4%. The feasibility of water calorimetry in the presence of B-fields was demonstrated by the direct determination of Dw and kQ,B. This work was supported by EMRP grant HLT06. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.« less

  15. Evaluation of the absorbed dose to the breast using radiochromic film in a dedicated CT mammotomography system employing a quasi-monochromatic x-ray beam.

    PubMed

    Crotty, Dominic J; Brady, Samuel L; Jackson, D'Vone C; Toncheva, Greta I; Anderson, Colin E; Yoshizumi, Terry T; Tornai, Martin P

    2011-06-01

    A dual modality SPECT-CT prototype system dedicated to uncompressed breast imaging (mammotomography) has been developed. The computed tomography subsystem incorporates an ultrathick K-edge filtration technique producing a quasi-monochromatic x-ray cone beam that optimizes the dose efficiency of the system for lesion imaging in an uncompressed breast. Here, the absorbed dose in various geometric phantoms and in an uncompressed and pendant cadaveric breast using a normal tomographic cone beam imaging protocol is characterized using both thermoluminescent dosimeter (TLD) measurements and ionization chamber-calibrated radiochromic film. Initially, two geometric phantoms and an anthropomorphic breast phantom are filled in turn with oil and water to simulate the dose to objects that mimic various breast shapes having effective density bounds of 100% fatty and glandular breast compositions, respectively. Ultimately, an excised human cadaver breast is tomographically scanned using the normal tomographic imaging protocol, and the dose to the breast tissue is evaluated and compared to the earlier phantom-based measurements. Measured trends in dose distribution across all breast geometric and anthropomorphic phantom volumes indicate lower doses in the medial breast and more proximal to the chest wall, with consequently higher doses near the lateral peripheries and nipple regions. Measured doses to the oil-filled phantoms are consistently lower across all volume shapes due to the reduced mass energy-absorption coefficient of oil relative to water. The mean measured dose to the breast cadaver, composed of adipose and glandular tissues, was measured to be 4.2 mGy compared to a mean whole-breast dose of 3.8 and 4.5 mGy for the oil- and water-filled anthropomorphic breast phantoms, respectively. Assuming rotational symmetry due to the tomographic acquisition exposures, these results characterize the 3D dose distributions in an uncompressed human breast tissue volume for this dedicated breast imaging device and illustrate advantages of using the novel ultrathick K-edge filtered beam to minimize the dose to the breast during fully-3D imaging.

  16. Evaluation of the absorbed dose to the breast using radiochromic film in a dedicated CT mammotomography system employing a quasi-monochromatic x-ray beam

    PubMed Central

    Crotty, Dominic J.; Brady, Samuel L.; Jackson, D’Vone C.; Toncheva, Greta I.; Anderson, Colin E.; Yoshizumi, Terry T.; Tornai, Martin P.

    2011-01-01

    Purpose: A dual modality SPECT-CT prototype system dedicated to uncompressed breast imaging (mammotomography) has been developed. The computed tomography subsystem incorporates an ultrathick K-edge filtration technique producing a quasi-monochromatic x-ray cone beam that optimizes the dose efficiency of the system for lesion imaging in an uncompressed breast. Here, the absorbed dose in various geometric phantoms and in an uncompressed and pendant cadaveric breast using a normal tomographic cone beam imaging protocol is characterized using both thermoluminescent dosimeter (TLD) measurements and ionization chamber-calibrated radiochromic film. Methods: Initially, two geometric phantoms and an anthropomorphic breast phantom are filled in turn with oil and water to simulate the dose to objects that mimic various breast shapes having effective density bounds of 100% fatty and glandular breast compositions, respectively. Ultimately, an excised human cadaver breast is tomographically scanned using the normal tomographic imaging protocol, and the dose to the breast tissue is evaluated and compared to the earlier phantom-based measurements. Results: Measured trends in dose distribution across all breast geometric and anthropomorphic phantom volumes indicate lower doses in the medial breast and more proximal to the chest wall, with consequently higher doses near the lateral peripheries and nipple regions. Measured doses to the oil-filled phantoms are consistently lower across all volume shapes due to the reduced mass energy-absorption coefficient of oil relative to water. The mean measured dose to the breast cadaver, composed of adipose and glandular tissues, was measured to be 4.2 mGy compared to a mean whole-breast dose of 3.8 and 4.5 mGy for the oil- and water-filled anthropomorphic breast phantoms, respectively. Conclusions: Assuming rotational symmetry due to the tomographic acquisition exposures, these results characterize the 3D dose distributions in an uncompressed human breast tissue volume for this dedicated breast imaging device and illustrate advantages of using the novel ultrathick K-edge filtered beam to minimize the dose to the breast during fully-3D imaging. PMID:21815398

  17. Recent Update on Radiation Dose Assessment for the State-of-the-Art Coronary Computed Tomography Angiography Protocols.

    PubMed

    Tan, Sock Keow; Yeong, Chai Hong; Ng, Kwan Hoong; Abdul Aziz, Yang Faridah; Sun, Zhonghua

    2016-01-01

    This study aimed to measure the absorbed doses in selected organs for prospectively ECG-triggered coronary computed tomography angiography (CCTA) using five different generations CT scanners in a female adult anthropomorphic phantom and to estimate the effective dose (HE). Prospectively ECG-triggered CCTA was performed using five commercially available CT scanners: 64-detector-row single source CT (SSCT), 2 × 32-detector-row-dual source CT (DSCT), 2 × 64-detector-row DSCT and 320-detector-row SSCT scanners. Absorbed doses were measured in 34 organs using pre-calibrated optically stimulated luminescence dosimeters (OSLDs) placed inside a standard female adult anthropomorphic phantom. HE was calculated from the measured organ doses and compared to the HE derived from the air kerma-length product (PKL) using the conversion coefficient of 0.014 mSv∙mGy-1∙cm-1 for the chest region. Both breasts and lungs received the highest radiation dose during CCTA examination. The highest HE was received from 2 × 32-detector-row DSCT scanner (6.06 ± 0.72 mSv), followed by 64-detector-row SSCT (5.60 ± 0.68 and 5.02 ± 0.73 mSv), 2 × 64-detector-row DSCT (1.88 ± 0.25 mSv) and 320-detector-row SSCT (1.34 ± 0.48 mSv) scanners. HE calculated from the measured organ doses were about 38 to 53% higher than the HE derived from the PKL-to-HE conversion factor. The radiation doses received from a prospectively ECG-triggered CCTA are relatively small and are depending on the scanner technology and imaging protocols. HE as low as 1.34 and 1.88 mSv can be achieved in prospectively ECG-triggered CCTA using 320-detector-row SSCT and 2 × 64-detector-row DSCT scanners.

  18. Recent Update on Radiation Dose Assessment for the State-of-the-Art Coronary Computed Tomography Angiography Protocols

    PubMed Central

    Tan, Sock Keow; Yeong, Chai Hong; Ng, Kwan Hoong; Abdul Aziz, Yang Faridah; Sun, Zhonghua

    2016-01-01

    Objectives This study aimed to measure the absorbed doses in selected organs for prospectively ECG-triggered coronary computed tomography angiography (CCTA) using five different generations CT scanners in a female adult anthropomorphic phantom and to estimate the effective dose (HE). Materials and Methods Prospectively ECG-triggered CCTA was performed using five commercially available CT scanners: 64-detector-row single source CT (SSCT), 2 × 32-detector-row-dual source CT (DSCT), 2 × 64-detector-row DSCT and 320-detector-row SSCT scanners. Absorbed doses were measured in 34 organs using pre-calibrated optically stimulated luminescence dosimeters (OSLDs) placed inside a standard female adult anthropomorphic phantom. HE was calculated from the measured organ doses and compared to the HE derived from the air kerma-length product (PKL) using the conversion coefficient of 0.014 mSv∙mGy-1∙cm-1 for the chest region. Results Both breasts and lungs received the highest radiation dose during CCTA examination. The highest HE was received from 2 × 32-detector-row DSCT scanner (6.06 ± 0.72 mSv), followed by 64-detector-row SSCT (5.60 ± 0.68 and 5.02 ± 0.73 mSv), 2 × 64-detector-row DSCT (1.88 ± 0.25 mSv) and 320-detector-row SSCT (1.34 ± 0.48 mSv) scanners. HE calculated from the measured organ doses were about 38 to 53% higher than the HE derived from the PKL-to-HE conversion factor. Conclusion The radiation doses received from a prospectively ECG-triggered CCTA are relatively small and are depending on the scanner technology and imaging protocols. HE as low as 1.34 and 1.88 mSv can be achieved in prospectively ECG-triggered CCTA using 320-detector-row SSCT and 2 × 64-detector-row DSCT scanners. PMID:27552224

  19. Calibration-free optical chemical sensors

    DOEpatents

    DeGrandpre, Michael D.

    2006-04-11

    An apparatus and method for taking absorbance-based chemical measurements are described. In a specific embodiment, an indicator-based pCO2 (partial pressure of CO2) sensor displays sensor-to-sensor reproducibility and measurement stability. These qualities are achieved by: 1) renewing the sensing solution, 2) allowing the sensing solution to reach equilibrium with the analyte, and 3) calculating the response from a ratio of the indicator solution absorbances which are determined relative to a blank solution. Careful solution preparation, wavelength calibration, and stray light rejection also contribute to this calibration-free system. Three pCO2 sensors were calibrated and each had response curves which were essentially identical within the uncertainty of the calibration. Long-term laboratory and field studies showed the response had no drift over extended periods (months). The theoretical response, determined from thermodynamic characterization of the indicator solution, also predicted the observed calibration-free performance.

  20. Detailed Distribution Map of Absorbed Dose Rate in Air in Tokatsu Area of Chiba Prefecture, Japan, Constructed by Car-Borne Survey 4 Years after the Fukushima Daiichi Nuclear Power Plant Accident

    PubMed Central

    Inoue, Kazumasa; Arai, Moeko; Fujisawa, Makoto; Saito, Kyouko; Fukushi, Masahiro

    2017-01-01

    A car-borne survey was carried out in the northwestern, or Tokatsu, area of Chiba Prefecture, Japan, to make a detailed distribution map of absorbed dose rate in air four years after the Fukushima Daiichi Nuclear Power Plant accident. This area was chosen because it was the most heavily radionuclide contaminated part of Chiba Prefecture and it neighbors metropolitan Tokyo. Measurements were performed using a 3-in × 3-in NaI(Tl) scintillation spectrometer in June 2015. The survey route covered the whole Tokatsu area which includes six cities. A heterogeneous distribution of absorbed dose rate in air was observed on the dose distribution map. Especially, higher absorbed dose rates in air exceeding 80 nGy h-1 were observed along national roads constructed using high porosity asphalt, whereas lower absorbed dose rates in air were observed along local roads constructed using low porosity asphalt. The difference between these asphalt types resulted in a heterogeneous dose distribution in the Tokatsu area. The mean of the contribution ratio of artificial radionuclides to absorbed dose rate in air measured 4 years after the accident was 29% (9–50%) in the Tokatsu area. The maximum absorbed dose rate in air, 201 nGy h-1 was observed at Kashiwa City. Radiocesium was deposited in the upper 1 cm surface layer of the high porosity asphalt which was collected in Kashiwa City and the environmental half-life of the absorbed dose rate in air was estimated to be 1.7 years. PMID:28129382

  1. The Mobile Dosimetric Telescope - A Small Size Active Personal Dosimeter for Application at High Altitudes and Onboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Ritter, B.; Marsalek, K.; Berger, T.; Burmeister, S.; Reitz, G.; Heber, B.

    2012-12-01

    The radiation environment at cruising altitudes, as well as in Low Earth Orbit - like on the International Space Station - differs significantly from the natural radiation environment on Earth. Especially in Low Earth Orbit it poses one of the main health risks for long duration human missions. Therefore, it is essential to monitor the properties of the radiation field in such environments. The Mobile Dosimetric Telescope MDT, is a small size battery driven personal dosimeter based on silicon detector technology that has been developed to observe absorbed dose and dose rate in real time. Two silicon diodes are arranged in a telescope configuration, which allows the measurement of the ionizing constituents of the radiation field and partially the neutral contribution to the dose. The absorbed dose is obtained by considering every particle in either of the detectors. Particles traversing both diodes are detected as coincidence events that enable to derive linear energy transfer (LET) spectra. From these the quality factor of the field is determined, which is necessary for the estimation of the dose equivalent. The detection range of the device covers energy depositions from minimal ionizing particles up to relativistic heavy ions. Calibrations of the detector system have been performed with various radioactive sources and with heavy ions at the Heavy Ion Medical Accelerator (HIMAC) facility at the National Institute for Radiological Sciences (NIRS) in Chiba, Japan. Additionally, the MDT has been successfully tested onboard aircraft. The results of these measurements are in good agreement with those from other radiation detectors. The presentation will focus on data taken during long haul flights in the northern hemisphere.

  2. Neutron relative biological effectiveness for solid cancer incidence in the Japanese A-bomb survivors: an analysis considering the degree of independent effects from γ-ray and neutron absorbed doses with hierarchical partitioning.

    PubMed

    Walsh, Linda

    2013-03-01

    It has generally been assumed that the neutron and γ-ray absorbed doses in the data from the life span study (LSS) of the Japanese A-bomb survivors are too highly correlated for an independent separation of the all solid cancer risks due to neutrons and due to γ-rays. However, with the release of the most recent data for all solid cancer incidence and the increased statistical power over previous datasets, it is instructive to consider alternatives to the usual approaches. Simple excess relative risk (ERR) models for radiation-induced solid cancer incidence fitted to the LSS epidemiological data have been applied with neutron and γ-ray absorbed doses as separate explanatory covariables. A simple evaluation of the degree of independent effects from γ-ray and neutron absorbed doses on the all solid cancer risk with the hierarchical partitioning (HP) technique is presented here. The degree of multi-collinearity between the γ-ray and neutron absorbed doses has also been considered. The results show that, whereas the partial correlation between the neutron and γ-ray colon absorbed doses may be considered to be high at 0.74, this value is just below the level beyond which remedial action, such as adding the doses together, is usually recommended. The resulting variance inflation factor is 2.2. Applying HP indicates that just under half of the drop in deviance resulting from adding the γ-ray and neutron absorbed doses to the baseline risk model comes from the joint effects of the neutrons and γ-rays-leaving a substantial proportion of this deviance drop accounted for by individual effects of the neutrons and γ-rays. The average ERR/Gy γ-ray absorbed dose and the ERR/Gy neutron absorbed dose that have been obtained here directly for the first time, agree well with previous indirect estimates. The average relative biological effectiveness (RBE) of neutrons relative to γ-rays, calculated directly from fit parameters to the all solid cancer ERR model with both colon absorbed dose covariables, is 65 (95 %CI: 11; 170). Therefore, although the 95 % CI is quite wide, reference to the colon doses with a neutron weighting of 10 may not be optimal as the basis for the determination of all solid cancer risks. Further investigations into the neutron RBE are required, ideally based on the LSS data with organ-specific neutron and γ-ray absorbed doses for all organs rather than the RBE weighted absorbed doses currently provided. The HP method is also suggested for use in other epidemiological cohort analyses that involve correlated explanatory covariables.

  3. Using RADFET for the real-time measurement of gamma radiation dose rate

    NASA Astrophysics Data System (ADS)

    Andjelković, Marko S.; Ristić, Goran S.; Jakšić, Aleksandar B.

    2015-02-01

    RADFETs (RADiation sensitive Field Effect Transistors) are integrating ionizing radiation dosimeters operating on the principle of conversion of radiation-induced threshold voltage shift into absorbed dose. However, one of the major drawbacks of RADFETs is the inability to provide the information on the dose rate in real-time using the conventional absorbed dose measurement technique. The real-time monitoring of dose rate and absorbed dose can be achieved with the current mode dosimeters such as PN and PIN diodes/photodiodes, but these dosimeters have some limitations as absorbed dose meters and hence they are often not a suitable replacement for RADFETs. In that sense, this paper investigates the possibility of using the RADFET as a real-time dose rate meter so that it could be applied for simultaneous online measurement of the dose rate and absorbed dose. A RADFET sample, manufactured by Tyndall National Institute, Cork, Ireland, was tested as a dose rate meter under gamma irradiation from a Co-60 source. The RADFET was configured as a PN junction, such that the drain, gate and source terminals were grounded, while the radiation-induced current was measured at the bulk terminal, whereby the bulk was successively biased with 0 , 10 , 20  and 30 V. In zero-bias mode the radiation-induced current was unstable, but in the biased mode the current response was stable for the investigated dose rates from 0.65  to 32.1 Gy h-1 and up to the total absorbed dose of 25 Gy. The current increased with the dose rate in accordance with the power law, whereas the sensitivity of the current read-out was linear with respect to the applied bias voltage. Comparison with previously analyzed PIN photodiodes has shown that the investigated RADFET is competitive with PIN photodiodes as a gamma radiation dose rate meter and therefore has the potential to be employed for the real-time monitoring of the dose rate and absorbed dose.

  4. An EGSnrc Monte Carlo study of the microionization chamber for reference dosimetry of narrow irregular IMRT beamlets.

    PubMed

    Capote, Roberto; Sánchez-Doblado, Francisco; Leal, Antonio; Lagares, Juan Ignacio; Arráns, Rafael; Hartmann, Günther H

    2004-09-01

    Intensity modulated radiation therapy (IMRT) has evolved toward the use of many small radiation fields, or "beamlets," to increase the resolution of the intensity map. The size of smaller beamlets can be typically about 1-5 cm2. Therefore small ionization chambers (IC) with sensitive volumes < or = 0.1 cm3 are generally used for dose verification of IMRT treatment. The dosimetry of these narrow photon beams pertains to the so-called nonreference conditions for beam calibration. The use of ion chambers for such narrow beams remains questionable due to the lack of electron equilibrium in most of the field. The present contribution aims to estimate, by the Monte Carlo (MC) method, the total correction needed to convert the IBA-Wellhöfer NAC007 micro IC measured charge in such radiation field to the absolute dose to water. Detailed geometrical simulation of the microionization chamber was performed. The ion chamber was always positioned at a 10 cm depth in water, parallel to the beam axis. The delivered doses to air and water cavity were calculated using the CAVRZ EGSnrc user code. The 6 MV phase-spaces for Primus Clinac (Siemens) used as an input to the CAVRZnrc code were derived by BEAM/EGS4 modeling of the treatment head of the machine along with the multileaf collimator [Sánchez-Doblado et al., Phys. Med. Biol. 48, 2081-2099 (2003)] and contrasted with experimental measurements. Dose calculations were carried out for two irradiation geometries, namely, the reference 10x10 cm2 field and an irregular (approximately 2x2 cm2) IMRT beamlet. The dose measured by the ion chamber is estimated by MC simulation as a dose averaged over the air cavity inside the ion-chamber (Dair). The absorbed dose to water is derived as the dose deposited inside the same volume, in the same geometrical position, filled and surrounded by water (Dwater) in the absence of the ionization chamber. Therefore, the Dwater/Dair dose ratio is a MC direct estimation of the total correction factor needed to convert the absorbed dose in air to absorbed dose to water. The dose ratio was calculated for several chamber positions, starting from the penumbra region around the beamlet along the two diagonals crossing the radiation field. For this quantity from 0 up to a 3% difference is observed between the dose ratio values obtained within the small irregular IMRT beamlet in comparison with the dose ratio derived for the reference 10x10 cm2 field. Greater differences from the reference value up to 9% were obtained in the penumbra region of the small IMRT beamlet.

  5. [Investigation of radiation dose for lower tube voltage CT using automatic exposure control].

    PubMed

    Takata, Mitsuo; Matsubara, Kousuke; Koshida, Kichirou; Tarohda, Tohru

    2015-04-01

    The purpose of our study was to investigate radiation dose for lower tube voltage CT using automatic exposure control (AEC). An acrylic body phantom was used, and volume CT dose indices (CTDIvol) for tube voltages of 80, 100, 120, and 135 kV were investigated with combination of AEC. Average absorbed dose in the abdomen for 100 and 120 kV were also measured using thermoluminescence dosimeters. In addition, we examined noise characteristics under the same absorbed doses. As a result, the exposure dose was not decreased even when the tube voltage was lowered, and the organ absorbed dose value became approximately 30% high. And the noise was increased under the radiographic condition to be an equal absorbed dose. Therefore, radiation dose increases when AEC is used for lower tube voltage CT under the same standard deviation (SD) setting with 120 kV, and the optimization of SD setting is crucial.

  6. The calibration of a Scanditronix-Wellhöfer thimble chamber for photon dosimetry using the IAEA TRS 277 code of practice.

    PubMed

    Fourie, O L

    2004-03-01

    This note investigates the calibration of a Scanditronix-Wellhöfer type FC65-G ionisation chamber to be used in clinical photon dosimetry. The current Adaptation by the Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM) of the IAEA TRS 277 dosimetry protocol makes no provision for this type of chamber. The absorbed dose to air calibration coefficient ND was therefore calculated from the air kerma calibration coefficient NK using the formalism of the IAEA TRS 277 protocol and it is shown that the value of the correction factor kmkatt for the FC65-G chamber is identical to that of the NE 2571 chamber. ND was also determined experimentally from a cross calibration against an NE 2571 dosimetry. It was found that there is a good correspondence between the calculated and measured values. To establish to what extent the ACPSEM Adaptation can be used for the FC65-G chamber, values for the ratio of stopping powers in water and air (Sw,air)Q and the perturbation correction factor pQ were calculated using the TRS 277 protocol. From these results it is shown that over the range of beam qualities TPR20,10 = 0.59 to TPR20,10 = 0.78 the Adaptation can be used for the FC65-G chamber.

  7. On the definition of absorbed dose

    NASA Astrophysics Data System (ADS)

    Grusell, Erik

    2015-02-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before.

  8. MO-AB-BRA-03: Calorimetry-Based Absorbed Dose to Water Measurements Using Interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores-Martinez, E; Malin, M; DeWerd, L

    2015-06-15

    Purpose: Interferometry-based calorimetry is a novel technique to measure radiation-induced temperature changes allowing the measurement of absorbed dose to water (ADW). There are no mechanical components in the field. This technique also has the possibility of obtaining 2D dose distributions. The goal of this investigation is to calorimetrically-measure doses between 2.5 and 5 Gy over a single projection in a photon beam using interferometry and compare the results with doses calculated using the TG-51 linac calibration. Methods: ADW was determined by measuring radiation-induced phase shifts (PSs) of light passing through water irradiated with a 6 MV photon beam. A 9×9×9more » cm{sup 3} glass phantom filled with water and placed in an arm of a Michelson interferometer was irradiated with 300, 400, 500 and 600 monitor units. The whole system was thermally insulated to achieve sufficient passive temperature control. The depth of measurement was 4.5 cm with a field size of 7×7 cm{sup 2}. The intensity of the fringe pattern was monitored with a photodiode and used to calculate the time-dependent PS curve. Data was acquired 60 s before and after the irradiation. The radiation-induced PS was calculated by taking the difference in the pre- and post-irradiation drifts extrapolated to the midpoint of the irradiation. Results were compared to computed doses. Results: Average comparison of calculated ADW values with interferometry-measured values showed an agreement to within 9.5%. k=1 uncertainties were 4.3% for calculations and 14.7% for measurements. The dominant source of uncertainty for the measurements was a temperature drift of about 30 µK/s caused by heat conduction from the interferometer’s surroundings. Conclusion: This work presented the first absolute ADW measurements using interferometry in the dose range of linac-based radiotherapy. Future work to improve measurements’ reproducibility includes the implementation of active thermal control techniques.« less

  9. A rule of unity for human intestinal absorption 3: Application to pharmaceuticals.

    PubMed

    Patel, Raj B; Yalkowsky, Samuel H

    2018-02-01

    The rule of unity is based on a simple absorption parameter, Π, that can accurately predict whether or not an orally administered drug will be well absorbed or poorly absorbed. The intrinsic aqueous solubility and octanol-water partition coefficient, along with the drug dose are used to calculate Π. We show that a single delineator value for Π exist that can distinguish whether a drug is likely to be well absorbed (FA ≥ 0.5) or poorly absorbed (FA < 0.5) at any specified dose. The model is shown to give 82.5% correct predictions for over 938 pharmaceuticals. The maximum well-absorbed dose (i.e. the maximum dose that will be more than 50% absorbed) calculated using this model can be utilized as a guideline for drug design and synthesis. Copyright © 2017 John Wiley & Sons, Ltd.

  10. LDEF: Dosimetric measurement results (AO 138-7 experiment)

    NASA Technical Reports Server (NTRS)

    Bourrieau, J.

    1992-01-01

    One of the objectives of the AO 138-7 experiment on board the LDEF was a total dose measurement with Thermo Luminescent Detectors (TLD 100). Two identical cases, both including 5 TLDs inside various aluminum shields, are exposed to the space environment in order to obtain the absorbed dose profile induced. Radiation fluence received during the total mission length was computed, taking into account the trapped particles (solar maximum and solar minimum periods) and the cosmic rays; due to the magnetospheric shielding, the solar proton fluences are negligible on the LDEF orbit. The total dose induced by these radiations inside a semi-infinite plane shield of Al are computed with radiation transport codes. TLD reading are performed after flight; due to the mission duration increase, a post-flight calibration was necessary in order to cover the range of the flight induced dose. The results obtained, similar (+ or - 30 pct.) in both cases, are compared with the dose profile computation. In practice, these LDEF results, with less than a factor 1.4 between measurements and forecasts, reinforce the validity of the computation methods and models used for the long term evaluation of space radiation intensity on low inclination Earth orbits.

  11. [Radiation effect on cosmonauts during extravehicular activities in 2008-2009].

    PubMed

    Mitrikas, V G

    2010-01-01

    The geometrical model of suited cosmonaut's phantom was used in mathematical modeling of EVAs performed by cosmonauts with consideration of changes in the ISS Russian segment configuration during 2008-2009 and the dependence of space radiation absorbed dose on EVA scene. Influence of spatial position of cosmonaut on absorbed dose value was evaluated with the EVA dosimeter model reproducing the actually determined weight and dimension. Calculated absorbed dose values are in good agreement with experimental data. Absorbed doses imparted to body organs (skin, lens, hemopoietic system, gastrointestinal tract, central nervous system, gonads) were determined for specific EVA events.

  12. [Absorbed doses to critical organs from full mouth dental radiography].

    PubMed

    Zhang, G; Yasuhiko, O; Hidegiko, Y

    1999-01-01

    A few studies were reported in China on radiological risk of dental radiography. The aim of this study is to evaluate the absorbed doses of patients from the full mouth radiographs, and to find out the contribution from each projection to the total absorbed dose of the organs. Absorbed doses to critical organs were measured from 14-film complete dental radiography. The organs included pituitary, optical lens, parotid glands, submandibular glands, sublingual glands, thyroid, breasts, ovary, testes and the skin in center field of each projection were studied. A-radiation analog dosimetry system (RANDO) phantom with thermoluminescent dosimeters (ILD200) was used for the study. All of the exposure parameters were fixed. The total filtration was 2 mm Al equivalent. The column collaboration was 6 cm in diameter and 20 cm in length. The absorbed doses of organs were measured three times in each projection of the full-mouth series (FMS) exposures. The absorbed dose of lenses in FMS (249 microGy) in present study was much less (10%) than the doses (2,630 microGy) reported in 1976. The doses absorbed of other organs in the present study were thyroid gland (125 microGy), pituitary gland (112 microGy), parotid gland (153 microGy), submandibular gland (629 microGy), sublingual gland (1,900 microGy), and breast gland (12 microGy). The doses of the ovary and testis were to small to further analysis. All of the results show that the radiation risk to patients in intraoral radiograph has been reduced significantly. In the pituitary, half of the dose is from both sides of the maxillary molar projection. For the lenses, the largest contribultions of radiation (60%) come from the ipsilateral molar and premolar projection of maxilla. In parotid gland, up to 57% of the dose is from the contralateral molar, pre-molar and canine of maxilla. It could be derived that about 90% of the absorbed doses could be avoided in FMS if the column collimator is 20 cm long and the filter is 2.0 mm thick. If we use the 10-film complete mouth radiograph instead of the 14-film series, more 20% of the doses would be reduced.

  13. Maximum dose rate is a determinant of hypothyroidism after 131I therapy of Graves' disease but the total thyroid absorbed dose is not.

    PubMed

    Krohn, Thomas; Hänscheid, Heribert; Müller, Berthold; Behrendt, Florian F; Heinzel, Alexander; Mottaghy, Felix M; Verburg, Frederik A

    2014-11-01

    The determinants of successful (131)I therapy of Graves' disease (GD) are unclear. To relate dosimetry parameters to outcome of therapy to identify significant determinants eu- and/or hypothyroidism after (131)I therapy in patients with GD. A retrospective study in which 206 Patients with GD treated in University Hospital between November 1999 and January 2011. All received (131)I therapy aiming at a total absorbed dose to the thyroid of 250 Gy based on pre-therapeutic dosimetry. Post-therapy dosimetric thyroid measurements were performed twice daily until discharge. From these measurements, thyroid (131)I half-life, the total thyroid absorbed dose, and the maximum dose rate after (131)I administration were calculated. In all, 48.5% of patients were hypothyroid and 28.6% of patients were euthyroid after (131)I therapy. In univariate analysis, nonhyperthyroid and hyperthyroid patients only differed by sex. A lower thyroid mass, a higher activity per gram thyroid tissue, a shorter effective thyroidal (131)I half-life, and a higher maximum dose rate, but not the total thyroid absorbed dose, were significantly associated with hypothyroidism. In multivariate analysis, the maximum dose rate remained the only significant determinant of hypothyroidism (P < .001). Maximum dose rates of 2.2 Gy/h and higher were associated with a 100% hypothyroidism rate. Not the total thyroid absorbed dose, but the maximum dose rate is a determinant of successfully achieving hypothyroidism in Graves' disease. Dosimetric concepts aiming at a specific total thyroid absorbed dose will therefore require reconsideration if our data are confirmed prospectively.

  14. Development and validation of a GEANT4 radiation transport code for CT dosimetry

    PubMed Central

    Carver, DE; Kost, SD; Fernald, MJ; Lewis, KG; Fraser, ND; Pickens, DR; Price, RR; Stabin, MG

    2014-01-01

    We have created a radiation transport code using the GEANT4 Monte Carlo toolkit to simulate pediatric patients undergoing CT examinations. The focus of this paper is to validate our simulation with real-world physical dosimetry measurements using two independent techniques. Exposure measurements were made with a standard 100-mm CT pencil ionization chamber, and absorbed doses were also measured using optically stimulated luminescent (OSL) dosimeters. Measurements were made in air, a standard 16-cm acrylic head phantom, and a standard 32-cm acrylic body phantom. Physical dose measurements determined from the ionization chamber in air for 100 and 120 kVp beam energies were used to derive photon-fluence calibration factors. Both ion chamber and OSL measurement results provide useful comparisons in the validation of our Monte Carlo simulations. We found that simulated and measured CTDI values were within an overall average of 6% of each other. PMID:25706135

  15. Development and validation of a GEANT4 radiation transport code for CT dosimetry.

    PubMed

    Carver, D E; Kost, S D; Fernald, M J; Lewis, K G; Fraser, N D; Pickens, D R; Price, R R; Stabin, M G

    2015-04-01

    The authors have created a radiation transport code using the GEANT4 Monte Carlo toolkit to simulate pediatric patients undergoing CT examinations. The focus of this paper is to validate their simulation with real-world physical dosimetry measurements using two independent techniques. Exposure measurements were made with a standard 100-mm CT pencil ionization chamber, and absorbed doses were also measured using optically stimulated luminescent (OSL) dosimeters. Measurements were made in air with a standard 16-cm acrylic head phantom and with a standard 32-cm acrylic body phantom. Physical dose measurements determined from the ionization chamber in air for 100 and 120 kVp beam energies were used to derive photon-fluence calibration factors. Both ion chamber and OSL measurement results provide useful comparisons in the validation of the Monte Carlo simulations. It was found that simulated and measured CTDI values were within an overall average of 6% of each other.

  16. Three-Dimensional Radiobiologic Dosimetry: Application of Radiobiologic Modeling to Patient-Specific 3-Dimensional Imaging–Based Internal Dosimetry

    PubMed Central

    Prideaux, Andrew R.; Song, Hong; Hobbs, Robert F.; He, Bin; Frey, Eric C.; Ladenson, Paul W.; Wahl, Richard L.; Sgouros, George

    2010-01-01

    Phantom-based and patient-specific imaging-based dosimetry methodologies have traditionally yielded mean organ-absorbed doses or spatial dose distributions over tumors and normal organs. In this work, radiobiologic modeling is introduced to convert the spatial distribution of absorbed dose into biologically effective dose and equivalent uniform dose parameters. The methodology is illustrated using data from a thyroid cancer patient treated with radioiodine. Methods Three registered SPECT/CT scans were used to generate 3-dimensional images of radionuclide kinetics (clearance rate) and cumulated activity. The cumulated activity image and corresponding CT scan were provided as input into an EGSnrc-based Monte Carlo calculation: The cumulated activity image was used to define the distribution of decays, and an attenuation image derived from CT was used to define the corresponding spatial tissue density and composition distribution. The rate images were used to convert the spatial absorbed dose distribution to a biologically effective dose distribution, which was then used to estimate a single equivalent uniform dose for segmented volumes of interest. Equivalent uniform dose was also calculated from the absorbed dose distribution directly. Results We validate the method using simple models; compare the dose-volume histogram with a previously analyzed clinical case; and give the mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for an illustrative case of a pediatric thyroid cancer patient with diffuse lung metastases. The mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for the tumor were 57.7, 58.5, and 25.0 Gy, respectively. Corresponding values for normal lung tissue were 9.5, 9.8, and 8.3 Gy, respectively. Conclusion The analysis demonstrates the impact of radiobiologic modeling on response prediction. The 57% reduction in the equivalent dose value for the tumor reflects a high level of dose nonuniformity in the tumor and a corresponding reduced likelihood of achieving a tumor response. Such analyses are expected to be useful in treatment planning for radionuclide therapy. PMID:17504874

  17. Effects of body and organ size on absorbed dose: there is no standard patient. [Radiation dose distribution in patients following radionuclide administration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, J.W.

    1976-01-01

    The problem of estimating the absorbed dose to organs and tissues of the human body due to the presence of a radiopharmaceutical in one or more organs is discussed. Complications are introduced by the fact that the body is not homogeneous and in many cases the organ shapes are not regular. Publications of the MIRD Committee have provided a direct means of estimating the absorbed dose (or absorbed fraction) for a number of radioisotopes. These estimates are based on Monte Carlo calculations for monoenergetic photons distributed uniformly in organs of an adult phantom. The medical physicist finds that his patientmore » does not resemble the adult phantom. In addition, the absorbed fractions for the adult are not reasonable values for the child. This paper examines how these absorbed fraction estimates apply to a nonstandard patient. (auth)« less

  18. Comparison of the uncertainties of several European low-dose calibration facilities

    NASA Astrophysics Data System (ADS)

    Dombrowski, H.; Cornejo Díaz, N. A.; Toni, M. P.; Mihelic, M.; Röttger, A.

    2018-04-01

    The typical uncertainty of a low-dose rate calibration of a detector, which is calibrated in a dedicated secondary national calibration laboratory, is investigated, including measurements in the photon field of metrology institutes. Calibrations at low ambient dose equivalent rates (at the level of the natural ambient radiation) are needed when environmental radiation monitors are to be characterised. The uncertainties of calibration measurements in conventional irradiation facilities above ground are compared with those obtained in a low-dose rate irradiation facility located deep underground. Four laboratories quantitatively evaluated the uncertainties of their calibration facilities, in particular for calibrations at low dose rates (250 nSv/h and 1 μSv/h). For the first time, typical uncertainties of European calibration facilities are documented in a comparison and the main sources of uncertainty are revealed. All sources of uncertainties are analysed, including the irradiation geometry, scattering, deviations of real spectra from standardised spectra, etc. As a fundamental metrological consequence, no instrument calibrated in such a facility can have a lower total uncertainty in subsequent measurements. For the first time, the need to perform calibrations at very low dose rates (< 100 nSv/h) deep underground is underpinned on the basis of quantitative data.

  19. Prediction of Normal Organ Absorbed Doses for [177Lu]Lu-PSMA-617 Using [44Sc]Sc-PSMA-617 Pharmacokinetics in Patients With Metastatic Castration Resistant Prostate Carcinoma.

    PubMed

    Khawar, Ambreen; Eppard, Elisabeth; Sinnes, Jean Phlippe; Roesch, Frank; Ahmadzadehfar, Hojjat; Kürpig, Stefan; Meisenheimer, Michael; Gaertner, Florian C; Essler, Markus; Bundschuh, Ralph A

    2018-04-23

    In vivo pharmacokinetic analysis of [Sc]Sc-PSMA-617 was used to determine the normal organ-absorbed doses that may result from therapeutic activity of [Lu]Lu-PSMA-617 and to predict the maximum permissible activity of [Lu]Lu-PSMA-617 for patients with metastatic castration-resistant prostate carcinoma. Pharmacokinetics of [Sc]Sc-PSMA-617 was evaluated in 5 patients with metastatic castration-resistant prostate carcinoma using dynamic PET/CT, followed by 3 static PET/CT acquisitions and blood sample collection over 19.5 hours, as well as urine sample collection at 2 time points. Total activity measured in source organs by PET imaging, as well as counts per milliliter measured in blood and urine samples, was decay corrected back to the time of injection using the half-life of Sc. Afterward, forward decay correction using the half-life of Lu was performed, extrapolating the pharmacokinetics of [Sc]Sc-PSMA-617 to that of [Lu]Lu-PSMA-617. Source organs residence times and organ-absorbed doses for [Lu]Lu-PSMA-617 were calculated using OLINDA/EXM software. Bone marrow self-dose was determined with indirect blood-based method, and urinary bladder contents residence time was estimated by trapezoidal approximation. The maximum permissible activity of [Lu]Lu-PSMA-617 was calculated for each patient considering external beam radiotherapy toxicity limits for radiation absorbed doses to kidneys, bone marrow, salivary glands, and whole body. The predicted mean organ-absorbed doses were highest in the kidneys (0.44 mSv/MBq), followed by the salivary glands (0.23 mSv/MBq). The maximum permissible activity was highly variable among patients; limited by whole body-absorbed dose (1 patient), marrow-absorbed dose (1 patient), and kidney-absorbed dose (3 patients). [Sc]Sc-PSMA-617 PET/CT imaging is feasible and allows theoretical extrapolation of the pharmacokinetics of [Sc]Sc-PSMA-617 to that of [Lu]Lu-PSMA-617, with the intent of predicting normal organ-absorbed doses and maximum permissible activity in patients scheduled for therapy with [Lu]Lu-PSMA-617.

  20. A small-scale anatomical dosimetry model of the liver

    NASA Astrophysics Data System (ADS)

    Stenvall, Anna; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders

    2014-07-01

    Radionuclide therapy is a growing and promising approach for treating and prolonging the lives of patients with cancer. For therapies where high activities are administered, the liver can become a dose-limiting organ; often with a complex, non-uniform activity distribution and resulting non-uniform absorbed-dose distribution. This paper therefore presents a small-scale dosimetry model for various source-target combinations within the human liver microarchitecture. Using Monte Carlo simulations, Medical Internal Radiation Dose formalism-compatible specific absorbed fractions were calculated for monoenergetic electrons; photons; alpha particles; and 125I, 90Y, 211At, 99mTc, 111In, 177Lu, 131I and 18F. S values and the ratio of local absorbed dose to the whole-organ average absorbed dose was calculated, enabling a transformation of dosimetry calculations from macro- to microstructure level. For heterogeneous activity distributions, for example uptake in Kupffer cells of radionuclides emitting low-energy electrons (125I) or high-LET alpha particles (211At) the target absorbed dose for the part of the space of Disse, closest to the source, was more than eight- and five-fold the average absorbed dose to the liver, respectively. With the increasing interest in radionuclide therapy of the liver, the presented model is an applicable tool for small-scale liver dosimetry in order to study detailed dose-effect relationships in the liver.

  1. SU-E-I-78: Establishing a Protocol for Quick Estimation of Thyroid Internal Contamination with 131I in Normal and Emergency Situations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naderi, S Mehdizadeh; Karimipourfard, M; Lotfalizadeh, F

    2015-06-15

    Purpose: I-131 is one of the most frequent radionuclides used in nuclear medicine departments. The radiation workers, who manipulate the unsealed radio-toxic iodine, should be monitored for internal contamination. In this study a protocol was established for estimating I-131 activity absorbed in the thyroid glands of the nuclear medicine staff in normal working condition and also in accidents. Methods: I-131 with the activity of 10 μCi was injected inside the thyroid gland of a home-made anthropomorphic neck phantom. The phantom is made up of PMMA as soft tissue, and Aluminium as bone. The dose rate at different distances from themore » surface of the neck phantom was measured using a scintillator detector for duration of two months. Then, calibration factors were obtained, for converting the dose rate at each distance to the iodine activity inside the thyroid. Results: According to the results of this study, the calibration factors for converting the dose rates (nSv/h) at distances of 0cm, 1cm, 6cm, 11cm, and 16cm to the activity (kBq) inside the thyroid were found to be 0.03, 0.04, 0.14, 0.29, and 0.49 . Conclusion: This method can be effectively used for quick estimation of the I-131 concentration inside the thyroid of the staff for daily checks in normal working conditions and also in accidents.« less

  2. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV.

    PubMed

    Gudowska, I; Brahme, A; Andreo, P; Gudowski, W; Kierkegaard, J

    1999-09-01

    The absorbed dose due to photonuclear reactions in soft tissue, lung, breast, adipose tissue and cortical bone has been evaluated for a scanned bremsstrahlung beam of end point 50 MeV from a racetrack accelerator. The Monte Carlo code MCNP4B was used to determine the photon source spectrum from the bremsstrahlung target and to simulate the transport of photons through the treatment head and the patient. Photonuclear particle production in tissue was calculated numerically using the energy distributions of photons derived from the Monte Carlo simulations. The transport of photoneutrons in the patient and the photoneutron absorbed dose to tissue were determined using MCNP4B; the absorbed dose due to charged photonuclear particles was calculated numerically assuming total energy absorption in tissue voxels of 1 cm3. The photonuclear absorbed dose to soft tissue, lung, breast and adipose tissue is about (0.11-0.12)+/-0.05% of the maximum photon dose at a depth of 5.5 cm. The absorbed dose to cortical bone is about 45% larger than that to soft tissue. If the contributions from all photoparticles (n, p, 3He and 4He particles and recoils of the residual nuclei) produced in the soft tissue and the accelerator, and from positron radiation and gammas due to induced radioactivity and excited states of the nuclei, are taken into account the total photonuclear absorbed dose delivered to soft tissue is about 0.15+/-0.08% of the maximum photon dose. It has been estimated that the RBE of the photon beam of 50 MV acceleration potential is approximately 2% higher than that of conventional 60Co radiation.

  3. TH-CD-201-09: High Spatial Resolution Absorbed Dose to Water Measurements Using Optical Calorimetry in Megavoltage External Beam Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores-Martinez, E; DeWerd, L; Radtke, J

    2016-06-15

    Purpose: To develop and implement a high spatial resolution calorimeter methodology to measure absorbed dose to water (ADW) using phase shifts (PSs) of light passing through a water phantom and to compare measurements with theoretical calculations. Methods: Radiation-induced temperature changes were measured using the PSs of a He-Ne laser beam passing through a (10×10×10) cm{sup 3} water phantom. PSs were measured using a Michelson interferometer and recording the time-dependent fringe patterns on a CCD camera. The phantom was positioned at the center of the radiation field. A Varian 21EX was used to deliver 500 MU from a 9 MeV beammore » using a (6×6) cm{sup 2} cone. A 127cm SSD was used and the PSs were measured at depths ranging from of 1.90cm to 2.10cm in steps of 0.05cm by taking profiles at the corresponding rows across the image. PSs were computed by taking the difference between pre- and post-irradiation image frames and then measuring the amplitude of the resulting image profiles. An amplitude-to-PS calibration curve was generated using a piezoelectric transducer to mechanically induce PSs between 0.05 and 1.50 radians in steps of 0.05 radians. The temperature dependence of the refractive index of water at 632.8nm was used to convert PSs to ADW. Measured results were compared with ADW values calculated using the linac output calibration and commissioning data. Results: Milli-radian resolution in PS measurement was achieved using the described methodology. Measured radiation-induced PSs ranged from 0.10 ± 0.01 to 0.12 ± 0.01 radians at the investigated depths. After converting PSs to ADW, measured and calculated ADW values agreed within the measurement uncertainty. Conclusion: This work shows that interferometer-based calorimetry measurements are capable of achieving sub-millimeter resolution measuring 2D temperature/dose distributions, which are particularly useful for characterizing beams from modalities such as SRS, proton therapy, or microbeams.« less

  4. A feasibility study on the use of phantoms with statistical lung masses for determining the uncertainty in the dose absorbed by the lung from broad beams of incident photons and neutrons

    PubMed Central

    Khankook, Atiyeh Ebrahimi; Hakimabad, Hashem Miri

    2017-01-01

    Abstract Computational models of the human body have gradually become crucial in the evaluation of doses absorbed by organs. However, individuals may differ considerably in terms of organ size and shape. In this study, the authors sought to determine the energy-dependent standard deviations due to lung size of the dose absorbed by the lung during external photon and neutron beam exposures. One hundred lungs with different masses were prepared and located in an adult male International Commission on Radiological Protection (ICRP) reference phantom. Calculations were performed using the Monte Carlo N-particle code version 5 (MCNP5). Variation in the lung mass caused great uncertainty: ~90% for low-energy broad parallel photon beams. However, for high-energy photons, the lung-absorbed dose dependency on the anatomical variation was reduced to <1%. In addition, the results obtained indicated that the discrepancy in the lung-absorbed dose varied from 0.6% to 8% for neutron beam exposure. Consequently, the relationship between absorbed dose and organ volume was found to be significant for low-energy photon sources, whereas for higher energy photon sources the organ-absorbed dose was independent of the organ volume. In the case of neutron beam exposure, the maximum discrepancy (of 8%) occurred in the energy range between 0.1 and 5 MeV. PMID:28077627

  5. High resolution MR based polymer dosimetry versus film densitometry: a systematic study based on the modulation transfer function approach.

    PubMed

    Berg, A; Pernkopf, M; Waldhäusl, C; Schmidt, W; Moser, E

    2004-09-07

    Precise methods of modem radiation therapy such as intensity modulated radiotherapy (IMRT), brachytherapy (BT) and high LET irradiation allow for high dose localization in volumes of a few mm3. However, most dosimetry methods-ionization chambers, TLD arrangements or silicon detectors, for example-are not capable of detecting sub-mm dose variations or do not allow for simple dose imaging. Magnetic resonance based polymer dosimetry (MRPD) appears to be well suited to three-dimensional high resolution relative dosimetry but the spatial resolution based on a systematic modulation transfer function (MTF) approach has not yet been investigated. We offer a theoretical construct for addressing the spatial resolution in different dose imaging systems, i.e. the dose modulation transfer function (DMTF) approach, an experimental realization of this concept with a phantom and quantitative comparisons between two dosimetric systems: polymer gel and film dosimetry. Polymer gel samples were irradiated by Co-60 photons through an absorber grid which is characterized by periodic structures of different spatial period (a), the smallest one at width of a/2 = 280 microm. The modulation in dose under the grid is visualized via calibrated, high resolution, parameter-selective (T2) and dose images based on multi-echo MR imaging. The DMTF is obtained from the modulation depth of the spin-spin relaxation time (T2) after calibration. Voxel sizes below 0.04 mm3 could be achieved, which are significantly smaller than those reported in MR based dose imaging on polymer gels elsewhere, using a powerful gradient system and a highly sensitive small birdcage resonator on a whole-body 3T MR scanner. Dose modulations at 22% of maximum dose amplitude could be observed at about 2 line pairs per mm. The polymer DMTF results are compared to those of a typical clinical film-scanner system. This study demonstrates that MR based gel dosimetry at 200 microm pixel resolution might even be superior, with reference to relative spatial resolution, to the results of a standard film-scanner system offering a nominal scan resolution of 200 microm.

  6. Chemometric Approach to the Calibration of Light Emitting Diode Based Optical Gas Sensors Using High-Resolution Transmission Molecular Absorption Data.

    PubMed

    Mahbub, Parvez; Leis, John; Macka, Mirek

    2018-05-15

    Modeling the propagation of light from LED sources is problematic since the emission covers a broad range of wavelengths and thus cannot be considered as monochromatic. Furthermore, the lack of directivity of such sources is also problematic. Both attributes are characteristic of LEDs. Here we propose a HITRAN ( high-resolution transmission molecular absorption database) based chemometric approach that incorporates not-perfect-monochromaticity and spatial directivity of near-infrared (NIR) LED for absorbance calculations in 1-6% methane (CH 4 ) in air, considering CH 4 as a model absorbing gas. We employed the absorbance thus calculated using HITRAN to validate the experimentally measured absorbance of CH 4 . The maximum error between the measured and calculated absorbance values were within 1%. The approach can be generalized as a chemometric calibration technique for measuring gases and gas mixtures that absorb emissions from polychromatic or not-perfect-monochromatic sources, provided the gas concentration, optical path length, as well as blank and attenuated emission spectra of the light source are incorporated into the proposed chemometric approach.

  7. Radiation Dose Optimization For Critical Organs

    NASA Astrophysics Data System (ADS)

    Khodadadegan, Yasaman

    Ionizing radiation used in the patient diagnosis or therapy has negative effects on the patient body in short term and long term depending on the amount of exposure. More than 700,000 examinations are everyday performed on Interventional Radiology modalities, however; there is no patient-centric information available to the patient or the Quality Assurance for the amount of organ dose received. In this study, we are exploring the methodologies to systematically reduce the absorbed radiation dose in the Fluoroscopically Guided Interventional Radiology procedures. In the first part of this study, we developed a mathematical model which determines a set of geometry settings for the equipment and a level for the energy during a patient exam. The goal is to minimize the amount of absorbed dose in the critical organs while maintaining image quality required for the diagnosis. The model is a large-scale mixed integer program. We performed polyhedral analysis and derived several sets of strong inequalities to improve the computational speed and quality of the solution. Results present the amount of absorbed dose in the critical organ can be reduced up to 99% for a specific set of angles. In the second part, we apply an approximate gradient method to simultaneously optimize angle and table location while minimizing dose in the critical organs with respect to the image quality. In each iteration, we solve a sub-problem as a MIP to determine the radiation field size and corresponding X-ray tube energy. In the computational experiments, results show further reduction (up to 80%) of the absorbed dose in compare with previous method. Last, there are uncertainties in the medical procedures resulting imprecision of the absorbed dose. We propose a robust formulation to hedge from the worst case absorbed dose while ensuring feasibility. In this part, we investigate a robust approach for the organ motions within a radiology procedure. We minimize the absorbed dose for the critical organs across all input data scenarios which are corresponding to the positioning and size of the organs. The computational results indicate up to 26% increase in the absorbed dose calculated for the robust approach which ensures the feasibility across scenarios.

  8. Effect of respiratory motion on internal radiation dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Tianwu; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch; Geneva Neuroscience Center, Geneva University, Geneva CH-1205

    Purpose: Estimation of the radiation dose to internal organs is essential for the assessment of radiation risks and benefits to patients undergoing diagnostic and therapeutic nuclear medicine procedures including PET. Respiratory motion induces notable internal organ displacement, which influences the absorbed dose for external exposure to radiation. However, to their knowledge, the effect of respiratory motion on internal radiation dosimetry has never been reported before. Methods: Thirteen computational models representing the adult male at different respiratory phases corresponding to the normal respiratory cycle were generated from the 4D dynamic XCAT phantom. Monte Carlo calculations were performed using the MCNP transportmore » code to estimate the specific absorbed fractions (SAFs) of monoenergetic photons/electrons, the S-values of common positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124), and the absorbed dose of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) in 28 target regions for both the static (average of dynamic frames) and dynamic phantoms. Results: The self-absorbed dose for most organs/tissues is only slightly influenced by respiratory motion. However, for the lung, the self-absorbed SAF is about 11.5% higher at the peak exhale phase than the peak inhale phase for photon energies above 50 keV. The cross-absorbed dose is obviously affected by respiratory motion for many combinations of source-target pairs. The cross-absorbed S-values for the heart contents irradiating the lung are about 7.5% higher in the peak exhale phase than the peak inhale phase for different positron-emitting radionuclides. For {sup 18}F-FDG, organ absorbed doses are less influenced by respiratory motion. Conclusions: Respiration-induced volume variations of the lungs and the repositioning of internal organs affect the self-absorbed dose of the lungs and cross-absorbed dose between organs in internal radiation dosimetry. The dynamic anatomical model provides more accurate internal radiation dosimetry estimates for the lungs and abdominal organs based on realistic modeling of respiratory motion. This work also contributes to a better understanding of model-induced uncertainties in internal radiation dosimetry.« less

  9. Development of a correction factor for Xe-133 vials for use with a dose calibrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gels, G.L.; Piltingsrud, H.V.

    1982-04-01

    Manufacturers of dose calibrators who give calibration settings for various radionuclies sometimes do not specify the type of radionuclide container the calibration is for. The container, moreover, may not be of the same type as those a user might purchase. When these factors are not considered, the activity administered to the patient may be significantly different from that intended. An experiment is described in which calibration factors are determined for measurement of Xe-133 activity in vials in a dose calibrator. This was accomplished by transferring the Xe-133 from the commercial vials to standard NBS calibration ampules. Based on ten suchmore » transfers, the resulting correction factor for the dose calibrator was 1.22.« less

  10. Dosimetric calculations for uranium miners for epidemiological studies.

    PubMed

    Marsh, J W; Blanchardon, E; Gregoratto, D; Hofmann, W; Karcher, K; Nosske, D; Tomásek, L

    2012-05-01

    Epidemiological studies on uranium miners are being carried out to quantify the risk of cancer based on organ dose calculations. Mathematical models have been applied to calculate the annual absorbed doses to regions of the lung, red bone marrow, liver, kidney and stomach for each individual miner arising from exposure to radon gas, radon progeny and long-lived radionuclides (LLR) present in the uranium ore dust and to external gamma radiation. The methodology and dosimetric models used to calculate these organ doses are described and the resulting doses for unit exposure to each source (radon gas, radon progeny and LLR) are presented. The results of dosimetric calculations for a typical German miner are also given. For this miner, the absorbed dose to the central regions of the lung is dominated by the dose arising from exposure to radon progeny, whereas the absorbed dose to the red bone marrow is dominated by the external gamma dose. The uncertainties in the absorbed dose to regions of the lung arising from unit exposure to radon progeny are also discussed. These dose estimates are being used in epidemiological studies of cancer in uranium miners.

  11. Theoretical study of the influence of a heterogeneous activity distribution on intratumoral absorbed dose distribution.

    PubMed

    Bao, Ande; Zhao, Xia; Phillips, William T; Woolley, F Ross; Otto, Randal A; Goins, Beth; Hevezi, James M

    2005-01-01

    Radioimmunotherapy of hematopoeitic cancers and micrometastases has been shown to have significant therapeutic benefit. The treatment of solid tumors with radionuclide therapy has been less successful. Previous investigations of intratumoral activity distribution and studies on intratumoral drug delivery suggest that a probable reason for the disappointing results in solid tumor treatment is nonuniform intratumoral distribution coupled with restricted intratumoral drug penetrance, thus inhibiting antineoplastic agents from reaching the tumor's center. This paper describes a nonuniform intratumoral activity distribution identified by limited radiolabeled tracer diffusion from tumor surface to tumor center. This activity was simulated using techniques that allowed the absorbed dose distributions to be estimated using different intratumoral diffusion capabilities and calculated for tumors of varying diameters. The influences of these absorbed dose distributions on solid tumor radionuclide therapy are also discussed. The absorbed dose distribution was calculated using the dose point kernel method that provided for the application of a three-dimensional (3D) convolution between a dose rate kernel function and an activity distribution function. These functions were incorporated into 3D matrices with voxels measuring 0.10 x 0.10 x 0.10 mm3. At this point fast Fourier transform (FFT) and multiplication in frequency domain followed by inverse FFT (iFFT) were used to effect this phase of the dose calculation process. The absorbed dose distribution for tumors of 1, 3, 5, 10, and 15 mm in diameter were studied. Using the therapeutic radionuclides of 131I, 186Re, 188Re, and 90Y, the total average dose, center dose, and surface dose for each of the different tumor diameters were reported. The absorbed dose in the nearby normal tissue was also evaluated. When the tumor diameters exceed 15 mm, a much lower tumor center dose is delivered compared with tumors between 3 and 5 mm in diameter. Based on these findings, the use of higher beta-energy radionuclides, such as 188Re and 90Y is more effective in delivering a higher absorbed dose to the tumor center at tumor diameters around 10 mm.

  12. Approaches on calibration of bolometer and establishment of bolometer calibration device

    NASA Astrophysics Data System (ADS)

    Xia, Ming; Gao, Jianqiang; Ye, Jun'an; Xia, Junwen; Yin, Dejin; Li, Tiecheng; Zhang, Dong

    2015-10-01

    Bolometer is mainly used for measuring thermal radiation in the field of public places, labor hygiene, heating and ventilation and building energy conservation. The working principle of bolometer is under the exposure of thermal radiation, temperature of black absorbing layer of detector rise after absorption of thermal radiation, which makes the electromotive force produced by thermoelectric. The white light reflective layer of detector does not absorb thermal radiation, so the electromotive force produced by thermoelectric is almost zero. A comparison of electromotive force produced by thermoelectric of black absorbing layer and white reflective layer can eliminate the influence of electric potential produced by the basal background temperature change. After the electromotive force which produced by thermal radiation is processed by the signal processing unit, the indication displays through the indication display unit. The measurement unit of thermal radiation intensity is usually W/m2 or kW/m2. Its accurate and reliable value has important significance for high temperature operation, labor safety and hygiene grading management. Bolometer calibration device is mainly composed of absolute radiometer, the reference light source, electric measuring instrument. Absolute radiometer is a self-calibration type radiometer. Its working principle is using the electric power which can be accurately measured replaces radiation power to absolutely measure the radiation power. Absolute radiometer is the standard apparatus of laser low power standard device, the measurement traceability is guaranteed. Using the calibration method of comparison, the absolute radiometer and bolometer measure the reference light source in the same position alternately which can get correction factor of irradiance indication. This paper is mainly about the design and calibration method of the bolometer calibration device. The uncertainty of the calibration result is also evaluated.

  13. Reference Dosimetry according to the New German Protocol DIN 6800-2 and Comparison with IAEA TRS 398 and AAPM TG 51*

    PubMed Central

    Zakaria, A; Schuette, W; Younan, C

    2011-01-01

    The preceding DIN 6800-2 (1997) protocol has been revised by a German task group and its latest version was published in March 2008 as the national standard dosimetry protocol DIN 6800-2 (2008 March). Since then, in Germany the determination of absorbed dose to water for high-energy photon and electron beams has to be performed according to this new German dosimetry protocol. The IAEA Code of Practice TRS 398 (2000) and the AAPM TG-51 are the two main protocols applied internationally. The new German version has widely adapted the methodology and dosimetric data of TRS-398. This paper investigates systematically the DIN 6800-2 protocol and compares it with the procedures and results obtained by using the international protocols. The investigation was performed with 6 MV and 18 MV photon beams as well as with electron beams from 5 MeV to 21 MeV. While only cylindrical chambers were used for photon beams, the measurements of electron beams were performed by using cylindrical and plane-parallel chambers. It was found that the discrepancies in the determination of absorbed dose to water among the three protocols were 0.23% for photon beams and 1.2% for electron beams. The determination of water absorbed dose was also checked by a national audit procedure using TLDs. The comparison between the measurements following the DIN 6800-2 protocol and the TLD audit-procedure confirmed a difference of less than 2%. The advantage of the new German protocol DIN 6800-2 lies in the renouncement on the cross calibration procedure as well as its clear presentation of formulas and parameters. In the past, the different protocols evoluted differently from time to time. Fortunately today, a good convergence has been obtained in concepts and methods. PMID:22287987

  14. Reference Dosimetry according to the New German Protocol DIN 6800-2 and Comparison with IAEA TRS 398 and AAPM TG 51.

    PubMed

    Zakaria, A; Schuette, W; Younan, C

    2011-04-01

    The preceding DIN 6800-2 (1997) protocol has been revised by a German task group and its latest version was published in March 2008 as the national standard dosimetry protocol DIN 6800-2 (2008 March). Since then, in Germany the determination of absorbed dose to water for high-energy photon and electron beams has to be performed according to this new German dosimetry protocol. The IAEA Code of Practice TRS 398 (2000) and the AAPM TG-51 are the two main protocols applied internationally. The new German version has widely adapted the methodology and dosimetric data of TRS-398. This paper investigates systematically the DIN 6800-2 protocol and compares it with the procedures and results obtained by using the international protocols. The investigation was performed with 6 MV and 18 MV photon beams as well as with electron beams from 5 MeV to 21 MeV. While only cylindrical chambers were used for photon beams, the measurements of electron beams were performed by using cylindrical and plane-parallel chambers. It was found that the discrepancies in the determination of absorbed dose to water among the three protocols were 0.23% for photon beams and 1.2% for electron beams. The determination of water absorbed dose was also checked by a national audit procedure using TLDs. The comparison between the measurements following the DIN 6800-2 protocol and the TLD audit-procedure confirmed a difference of less than 2%. The advantage of the new German protocol DIN 6800-2 lies in the renouncement on the cross calibration procedure as well as its clear presentation of formulas and parameters. In the past, the different protocols evoluted differently from time to time. Fortunately today, a good convergence has been obtained in concepts and methods.

  15. SU-F-J-08: Quantitative SPECT Imaging of Ra-223 in a Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, J; Hobbs, R; Sgouros, G

    Purpose: Ra-223 therapy of prostate cancer bone metastases is being used to treat patients routinely. However, the absorbed dose distribution at the macroscopic and microscopic scales remains elusive, due to the inability to image the small activities injected. Accurate activity quantification through imaging is essential to calculate the absorbed dose in organs and sub-units in radiopharmaceutical therapy, enabling personalized absorbed dose-based treatment planning methodologies and more effective and optimal treatments. Methods: A 22 cm diameter by 20 cm long cylindrical phantom, containing a 3.52 cm diameter sphere, was used. A total of 2.01 MBq of Ra-223 was placed in themore » phantom with 177.6 kBq in the sphere. Images were acquired on a dual-head Siemens Symbia T16 gamma camera using three 20% full-width energy windows and centered at 84, 154, and 269 keV (120 projections, 360° rotation, 45 s per view). We have implemented reconstruction of Ra-223 SPECT projections using OS-EM (up to 20 iterations of 10 subsets) with compensation for attenuation using CT-based attenuation maps, collimator-detector response (CDR) (including septal penetration, scatter and Pb x-ray modeling), and scatter in the patient using the effective source scatter estimation (ESSE) method. The CDR functions and scatter kernels required for ESSE were computed using the SIMIND MC simulation code. All Ra-223 photon emissions as well as gamma rays from the daughters Rn-219 and Bi-211 were modeled. Results: The sensitivity of the camera in the three combined windows was 107.3 cps/MBq. The visual quality of the SPECT images was reasonably good and the activity in the sphere was 27% smaller than the true activity. This underestimation is likely due to partial volume effect. Conclusion: Absolute quantitative Ra-223 SPECT imaging is achievable with careful attention to compensate for image degrading factors and system calibration.« less

  16. Leuco-crystal-violet micelle gel dosimeters: Component effects on dose-rate dependence

    NASA Astrophysics Data System (ADS)

    Xie, J. C.; Katz, E. A. B.; Alexander, K. M.; Schreiner, L. J.; McAuley, K. B.

    2017-05-01

    Designed experiments were performed to produce empirical models for the dose sensitivity, initial absorbance, and dose-rate dependence respectively for leucocrystal violet (LCV) micelle gel dosimeters containing cetyltrimethylammonium bromide (CTAB) and 2,2,2-trichloroethanol (TCE). Previous gels of this type showed dose-rate dependent behaviour, producing an ˜18% increase in dose sensitivity between dose rates of 100 and 600 cGy min-1. Our models predict that the dose rate dependence can be reduced by increasing the concentration of TCE, CTAB and LCV. Increasing concentrations of LCV and CTAB produces a significant increase in dose sensitivity with a corresponding increase in initial absorbance. An optimization procedure was used to determine a nearly dose-rate independent gel which maintained high sensitivity and low initial absorbance. This gel which contains 33 mM CTAB, 1.25 mM LCV, and 96 mM TCE in 25 mM trichloroacetic acid and 4 wt% gelatin showed an increase in dose sensitivity of only 4% between dose rates of 100 and 600 cGy min-1, and provides an 80% greater dose sensitivity compared to Jordan’s standard gels with similar initial absorbance.

  17. Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy

    NASA Astrophysics Data System (ADS)

    Giménez-Alventosa, Vicent; Antunes, Paula C. G.; Vijande, Javier; Ballester, Facundo; Pérez-Calatayud, José; Andreo, Pedro

    2017-01-01

    The AAPM TG-43 brachytherapy dosimetry formalism, introduced in 1995, has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations, except in the vicinity of the source capsule. Subsequent dosimetry developments, based on Monte Carlo calculations or analytical solutions of transport equations, do not rely on the CPE assumption and determine directly the dose to different tissues. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seeds is proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences. State-of-the art Monte Carlo calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone), which in all cases include a realistic modelling of low-energy brachytherapy sources in order to benchmark the formalism proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases (e.g. bone tissue).

  18. Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy.

    PubMed

    Giménez-Alventosa, Vicent; Antunes, Paula C G; Vijande, Javier; Ballester, Facundo; Pérez-Calatayud, José; Andreo, Pedro

    2017-01-07

    The AAPM TG-43 brachytherapy dosimetry formalism, introduced in 1995, has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations, except in the vicinity of the source capsule. Subsequent dosimetry developments, based on Monte Carlo calculations or analytical solutions of transport equations, do not rely on the CPE assumption and determine directly the dose to different tissues. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seeds is proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences. State-of-the art Monte Carlo calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone), which in all cases include a realistic modelling of low-energy brachytherapy sources in order to benchmark the formalism proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases (e.g. bone tissue).

  19. Determination of the efficiency of commercially available dose calibrators for beta-emitters.

    PubMed

    Valley, Jean-François; Bulling, Shelley; Leresche, Michel; Wastiel, Claude

    2003-03-01

    The goals of this investigation are to determine whether commercially available dose calibrators can be used to measure the activity of beta-emitting radionuclides used in pain palliation and to establish whether manufacturer-supplied calibration factors are appropriate for this purpose. Six types of commercially available dose calibrators were studied. Dose calibrator response was controlled for 5 gamma-emitters used for calibration or typically encountered in routine use. For the 4 most commonly used beta-emitters ((32)P, (90)Sr, (90)Y, and (169)Er) dose calibrator efficiency was determined in the syringe geometry used for clinical applications. Efficiency of the calibrators was also measured for (153)Sm and (186)Re, 2 beta-emitters with significant gamma-contributions. Source activities were traceable to national standards. All calibrators measured gamma-emitters with a precision of +/-10%, in compliance with Swiss regulatory requirements. For beta-emitters, dose calibrator intrinsic efficiency depends strongly on the maximal energy of the beta-spectrum and is notably low for (169)Er. Manufacturer-supplied calibration factors give accurate results for beta-emitters with maximal beta-energy in the middle-energy range (1 MeV) but are not appropriate for use with low-energy ((169)Er) or high-energy ((90)Y) beta-emitters. beta-emitters with significant gamma-contributions behave like gamma-emitters. Commercially available dose calibrators have an intrinsic efficiency that is sufficient for the measurement of beta-emitters, including beta-emitters with a low maximum beta-energy. Manufacturer-supplied calibration factors are reliable for gamma-emitters and beta-emitters in the middle-energy range. For low- and high-energy beta-emitters, the use of manufacturer-supplied calibration factors introduces significant measurement inaccuracy.

  20. Measurement of absorbed dose during the phantom torso experiment on the International Space Station

    NASA Astrophysics Data System (ADS)

    Semones, E.; Gibbons, F.; Golightly, M.; Weyland, M.; Johnson, A.; Smith, G.; Shelfer, T.; Zapp, N.

    The Phantom Torso Experiment (PTE) was flown on the International Space Station (ISS) during Increment 2 (April-August 2001). The experiment was located in the US Lab module Human Research Facility (HRF) rack. The objective of the passive dosimetry portion of the experiment was to measure spatial distributions of absorbed dose in the 34, 1 inch sections of a modified RandoTM phantom. In each section of the phantom, thermoluminescent detectors (TLDs) were placed at various locations (depths) to provide the spatial measurement. TLDs were also located at several radiosensitive organ locations (brain, thyroid, heart/lung, stomach and colon) and two locations on the surface (skin). Active silicon detectors were also placed at these organ locations to provide time resolved results of the absorbed dose rates. Using these detectors, it is possible to separate the trapped and galactic cosmic ray components of the absorbed dose. The TLD results of the spatial and organ dose measurements will be presented and comparisons of the TLD and silicon detector organ absorbed doses will be made.

  1. Influence of gamma radiation on the physicochemical and rheological properties of sterculia gum polysaccharides

    NASA Astrophysics Data System (ADS)

    Singh, Baljit; Sharma, Vikrant

    2013-11-01

    Keeping in view the influence of gamma radiation on the physiochemical properties of the polysaccharides and their importance in the food and pharmaceutical industry, in the present study attempt has been made to investigate the effects of absorbed dose on FTIR, XRD, SEMs, absorbance, pH, solubility, water absorption capacity, emulsion stability and rheology of sterculia gum. Increase in solubility and decrease in swellability of gum has been observed on increasing the absorbed dose. The emulsion stability has improved for the gum sample irradiated with total dose of 8.1±0.2 kGy. Apparent viscosity of gum solution first increased with increase in dose from 0 to 8.1±0.2 kGy than decreased with regular trends with further increase in total absorbed dose. Flow behavior of gum solution shifted to Newtonian from non-Newtonian with increasing the dose.

  2. Calibrating page sized Gafchromic EBT3 films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crijns, W.; Maes, F.; Heide, U. A. van der

    2013-01-15

    Purpose: The purpose is the development of a novel calibration method for dosimetry with Gafchromic EBT3 films. The method should be applicable for pretreatment verification of volumetric modulated arc, and intensity modulated radiotherapy. Because the exposed area on film can be large for such treatments, lateral scan errors must be taken into account. The correction for the lateral scan effect is obtained from the calibration data itself. Methods: In this work, the film measurements were modeled using their relative scan values (Transmittance, T). Inside the transmittance domain a linear combination and a parabolic lateral scan correction described the observed transmittancemore » values. The linear combination model, combined a monomer transmittance state (T{sub 0}) and a polymer transmittance state (T{sub {infinity}}) of the film. The dose domain was associated with the observed effects in the transmittance domain through a rational calibration function. On the calibration film only simple static fields were applied and page sized films were used for calibration and measurements (treatment verification). Four different calibration setups were considered and compared with respect to dose estimation accuracy. The first (I) used a calibration table from 32 regions of interest (ROIs) spread on 4 calibration films, the second (II) used 16 ROIs spread on 2 calibration films, the third (III), and fourth (IV) used 8 ROIs spread on a single calibration film. The calibration tables of the setups I, II, and IV contained eight dose levels delivered to different positions on the films, while for setup III only four dose levels were applied. Validation was performed by irradiating film strips with known doses at two different time points over the course of a week. Accuracy of the dose response and the lateral effect correction was estimated using the dose difference and the root mean squared error (RMSE), respectively. Results: A calibration based on two films was the optimal balance between cost effectiveness and dosimetric accuracy. The validation resulted in dose errors of 1%-2% for the two different time points, with a maximal absolute dose error around 0.05 Gy. The lateral correction reduced the RMSE values on the sides of the film to the RMSE values at the center of the film. Conclusions: EBT3 Gafchromic films were calibrated for large field dosimetry with a limited number of page sized films and simple static calibration fields. The transmittance was modeled as a linear combination of two transmittance states, and associated with dose using a rational calibration function. Additionally, the lateral scan effect was resolved in the calibration function itself. This allows the use of page sized films. Only two calibration films were required to estimate both the dose and the lateral response. The calibration films were used over the course of a week, with residual dose errors Less-Than-Or-Slanted-Equal-To 2% or Less-Than-Or-Slanted-Equal-To 0.05 Gy.« less

  3. Model-based versus specific dosimetry in diagnostic context: Comparison of three dosimetric approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcatili, S., E-mail: sara.marcatili@inserm.fr; Villoing, D.; Mauxion, T.

    Purpose: The dosimetric assessment of novel radiotracers represents a legal requirement in most countries. While the techniques for the computation of internal absorbed dose in a therapeutic context have made huge progresses in recent years, in a diagnostic scenario the absorbed dose is usually extracted from model-based lookup tables, most often derived from International Commission on Radiological Protection (ICRP) or Medical Internal Radiation Dose (MIRD) Committee models. The level of approximation introduced by these models may impact the resulting dosimetry. The aim of this work is to establish whether a more refined approach to dosimetry can be implemented in nuclearmore » medicine diagnostics, by analyzing a specific case. Methods: The authors calculated absorbed doses to various organs in six healthy volunteers administered with flutemetamol ({sup 18}F) injection. Each patient underwent from 8 to 10 whole body 3D PET/CT scans. This dataset was analyzed using a Monte Carlo (MC) application developed in-house using the toolkit GATE that is capable to take into account patient-specific anatomy and radiotracer distribution at the voxel level. They compared the absorbed doses obtained with GATE to those calculated with two commercially available software: OLINDA/EXM and STRATOS implementing a dose voxel kernel convolution approach. Results: Absorbed doses calculated with GATE were higher than those calculated with OLINDA. The average ratio between GATE absorbed doses and OLINDA’s was 1.38 ± 0.34 σ (from 0.93 to 2.23). The discrepancy was particularly high for the thyroid, with an average GATE/OLINDA ratio of 1.97 ± 0.83 σ for the six patients. Differences between STRATOS and GATE were found to be higher. The average ratio between GATE and STRATOS absorbed doses was 2.51 ± 1.21 σ (from 1.09 to 6.06). Conclusions: This study demonstrates how the choice of the absorbed dose calculation algorithm may introduce a bias when gamma radiations are of importance, as is the case in nuclear medicine diagnostics.« less

  4. SU-E-CAMPUS-I-06: Y90 PET/CT for the Instantaneous Determination of Both Target and Non-Target Absorbed Doses Following Hepatic Radioembolization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasciak, A; Kao, J

    2014-06-15

    Purpose The process of converting Yttrium-90 (Y90) PET/CT images into 3D absorbed dose maps will be explained. The simple methods presented will allow the medical physicst to analyze Y90 PET images following radioembolization and determine the absorbed dose to tumor, normal liver parenchyma and other areas of interest, without application of Monte-Carlo radiation transport or dose-point-kernel (DPK) convolution. Methods Absorbed dose can be computed from Y90 PET/CT images based on the premise that radioembolization is a permanent implant with a constant relative activity distribution after infusion. Many Y90 PET/CT publications have used DPK convolution to obtain 3D absorbed dose maps.more » However, this method requires specialized software limiting clinical utility. The Local Deposition method, an alternative to DPK convolution, can be used to obtain absorbed dose and requires no additional computer processing. Pixel values from regions of interest drawn on Y90 PET/CT images can be converted to absorbed dose (Gy) by multiplication with a scalar constant. Results There is evidence that suggests the Local Deposition method may actually be more accurate than DPK convolution and it has been successfully used in a recent Y90 PET/CT publication. We have analytically compared dose-volume-histograms (DVH) for phantom hot-spheres to determine the difference between the DPK and Local Deposition methods, as a function of PET scanner point-spread-function for Y90. We have found that for PET/CT systems with a FWHM greater than 3.0 mm when imaging Y90, the Local Deposition Method provides a more accurate representation of DVH, regardless of target size than DPK convolution. Conclusion Using the Local Deposition Method, post-radioembolization Y90 PET/CT images can be transformed into 3D absorbed dose maps of the liver. An interventional radiologist or a Medical Physicist can perform this transformation in a clinical setting, allowing for rapid prediction of treatment efficacy by comparison to published tumoricidal thresholds.« less

  5. Evaluation of variations in absorbed dose and image noise according to patient forms in X-ray computed tomography.

    PubMed

    Matsubara, Kosuke; Koshida, Kichiro; Suzuki, Masayuki; Hayakawa, Mayumi; Tsujii, Hideo; Yamamoto, Tomoyuki

    2005-12-20

    Excessive radiation exposure in pediatric computed tomography (CT) scanning has become a serious problem, and it is difficult to select scan parameters for the scanning of small patients such as children. We investigated differences in absorbed dose and standard deviation (SD) in Hounsfield unit (HU) caused by differences in the form of the subject using a body-type phantom with removable body parts. Using four X-ray CT scanners, measurements were made with values from 50 mAs to 300 mAs, with slices of 50 mAs, using scan protocols that were assumed to perform thorough examinations. The results showed that the mAs values and absorbed doses were almost proportional, and the absorbed doses in the phantom without body parts were about 1.1-2.2-fold higher than those of the phantom with body parts at the same points. The SD values obtained indicated that the absorbed doses in the phantom with body parts were 0.3-0.6 times those of the phantom without body parts when the mAs values used were adjusted so that both SD values were the same. The absorbed doses in various patient forms can be estimated from these results, and they will become critical data for the selection of appropriate scan protocols.

  6. Monte Carlo calculation of the sensitivity of a commercial dose calibrator to gamma and beta radiation.

    PubMed

    Laedermann, Jean-Pascal; Valley, Jean-François; Bulling, Shelley; Bochud, François O

    2004-06-01

    The detection process used in a commercial dose calibrator was modeled using the GEANT 3 Monte Carlo code. Dose calibrator efficiency for gamma and beta emitters, and the response to monoenergetic photons and electrons was calculated. The model shows that beta emitters below 2.5 MeV deposit energy indirectly in the detector through bremsstrahlung produced in the chamber wall or in the source itself. Higher energy beta emitters (E > 2.5 MeV) deposit energy directly in the chamber sensitive volume, and dose calibrator sensitivity increases abruptly for these radionuclides. The Monte Carlo calculations were compared with gamma and beta emitter measurements. The calculations show that the variation in dose calibrator efficiency with measuring conditions (source volume, container diameter, container wall thickness and material, position of the source within the calibrator) is relatively small and can be considered insignificant for routine measurement applications. However, dose calibrator efficiency depends strongly on the inner-wall thickness of the detector.

  7. Absorbed radiation doses to staff after implementation of a radiopharmacy clean room.

    PubMed

    Ponto, James A

    2014-12-01

    In response to U.S. Pharmacopeia general chapter <797> standards, a clean room was constructed for our in-house radiopharmacy. Previously, most patient doses were prepared as needed just before injection. Currently, to minimize repeated entries into the clean room, most patient doses are prepared in batches; that is, early morning and noontime preparation of doses to be injected at various times throughout the morning and the afternoon, respectively. Because these patient doses may be prepared well before injection time, radioactive decay necessitates higher amounts of radioactivity to be handled for patient dose preparation. Hence, absorbed radiation doses to staff, all of whom rotate into the radiopharmacy clean room in addition to their regular patient-related activities, were retrospectively evaluated. Monthly dosimetry reports for body (chest badge) and extremities (finger ring) were retrospectively reviewed for each staff member for 12 mo before and 12 mo after implementation of the radiopharmacy clean room. Monthly data were evaluated for average and SD, and 12-mo groups were evaluated using a paired t test. Data for the second 12-mo period were also normalized to the same number of patient doses to account for an increase in procedure volume and were reevaluated. Before the radiopharmacy clean room had been implemented, average monthly absorbed radiation doses to body and extremities were 23 ± 15 mrem (0.23 ± 0.15 mSv) and 93 ± 59 mrem (0.93 ± 0.59 mSv), respectively. After the clean room had been implemented, average monthly absorbed radiation doses increased to 32 ± 16 mrem (0.32 ± 0.16 mSv) (P < 0.001) and 121 ± 89 mrem (1.21 ± 0.89 mSv) (P = 0.0015), respectively. When normalized for procedure volume, average monthly absorbed radiation doses after implementation of the clean room were still higher, at 29 ± 15 mrem (0.29 ± 0.15 mSv) (P = 0.001) and 110 ± 80 mrem (1.10 ± 0.80 mSv) (P = 0.039), respectively. After implementation of a radiopharmacy clean room, absorbed radiation doses to body and extremities increased by 26% and 18%, respectively, even after normalizing for procedure volume. Because absorbed radiation doses from other activities, such as patient dose administration and patient imaging, are assumed to remain relatively constant, these increases in absorbed radiation doses to staff are attributed to changes in work flow after implementation of the radiopharmacy clean room. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  8. Dose-specific transcriptional responses in thyroid tissue in mice after (131)I administration.

    PubMed

    Rudqvist, Nils; Schüler, Emil; Parris, Toshima Z; Langen, Britta; Helou, Khalil; Forssell-Aronsson, Eva

    2015-03-01

    In the present investigation, microarray analysis was used to monitor transcriptional activity in thyroids in mice 24 h after (131)I exposure. The aims of this study were to 1) assess the transcriptional patterns associated with (131)I exposure in normal mouse thyroid tissue and 2) propose biomarkers for (131)I exposure of the thyroid. Adult BALB/c nude mice were i.v. injected with 13, 130 or 260 kBq of (131)I and killed 24h after injection (absorbed dose to thyroid: 0.85, 8.5, or 17 Gy). Mock-treated mice were used as controls. Total RNA was extracted from thyroids and processed using the Illumina platform. In total, 497, 546, and 90 transcripts were regulated (fold change ≥1.5) in the thyroid after 0.85, 8.5, and 17 Gy, respectively. These were involved in several biological functions, e.g. oxygen access, inflammation and immune response, and apoptosis/anti-apoptosis. Approximately 50% of the involved transcripts at each absorbed dose level were dose-specific, and 18 transcripts were commonly detected at all absorbed dose levels. The Agpat9, Plau, Prf1, and S100a8 gene expression displayed a monotone decrease in regulation with absorbed dose, and further studies need to be performed to evaluate if they may be useful as dose-related biomarkers for 131I exposure. Distinct and substantial differences in gene expression and affected biological functions were detected at the different absorbed dose levels. The transcriptional profiles were specific for the different absorbed dose levels. We propose that the Agpat9, Plau, Prf1, and S100a8 genes might be novel potential absorbed dose-related biomarkers to (131)I exposure of thyroid. During the recent years, genomic techniques have been developed; however, they have not been fully utilized in nuclear medicine and radiation biology. We have used RNA microarrays to investigate genome-wide transcriptional regulations in thyroid tissue in mice after low, intermediate, and high absorbed doses from (131)I exposure in vivo. Using this approach, we have identified novel biological responses and potential absorbed dose-related biomarkers to (131)I exposure. Our research shows the importance of embracing technological advances and multi-disciplinary collaboration in order to apply them in radiation therapy, nuclear medicine, and radiation biology. This work may contribute with new knowledge of potential normal tissue effects or complications that may occur after exposure to ionizing radiation in diagnostic and therapeutic nuclear medicine, and due to radioactive fallout or accident with radionuclide spread. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. A feasibility study on the use of phantoms with statistical lung masses for determining the uncertainty in the dose absorbed by the lung from broad beams of incident photons and neutrons.

    PubMed

    Khankook, Atiyeh Ebrahimi; Hakimabad, Hashem Miri; Motavalli, Laleh Rafat

    2017-05-01

    Computational models of the human body have gradually become crucial in the evaluation of doses absorbed by organs. However, individuals may differ considerably in terms of organ size and shape. In this study, the authors sought to determine the energy-dependent standard deviations due to lung size of the dose absorbed by the lung during external photon and neutron beam exposures. One hundred lungs with different masses were prepared and located in an adult male International Commission on Radiological Protection (ICRP) reference phantom. Calculations were performed using the Monte Carlo N-particle code version 5 (MCNP5). Variation in the lung mass caused great uncertainty: ~90% for low-energy broad parallel photon beams. However, for high-energy photons, the lung-absorbed dose dependency on the anatomical variation was reduced to <1%. In addition, the results obtained indicated that the discrepancy in the lung-absorbed dose varied from 0.6% to 8% for neutron beam exposure. Consequently, the relationship between absorbed dose and organ volume was found to be significant for low-energy photon sources, whereas for higher energy photon sources the organ-absorbed dose was independent of the organ volume. In the case of neutron beam exposure, the maximum discrepancy (of 8%) occurred in the energy range between 0.1 and 5 MeV. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  10. [BeO-OSL detectors for dose measurements in cell cultures].

    PubMed

    Andreeff, M; Sommer, D; Freudenberg, R; Reichelt, U; Henniger, J; Kotzerke, J

    2009-01-01

    The absorbed dose is an important parameter in experiments involving irradiation of cells in vitro with unsealed radionuclides. Typically, this is estimated with a model calculation, although the results thus obtained cannot be verified. Generally used real-time measurement methods are not applicable in this setting. A new detector material with in vitro suitability is the subject of this work. Optically-stimulated luminescence (OSL) dosimeters based on beryllium oxide (BeO) were used for dose measurement in cell cultures exposed to unsealed radionuclides. Their qualitative properties (e. g. energy-dependent count rate sensitivity, fading, contamination by radioactive liquids) were determined and compared to the results of a Monte Carlo simulation (using AMOS software). OSL dosimeters were tested in common cell culture setups with a known geometry. Dose reproducibility of the OSL dosimeters was +/-1.5%. Fading at room temperature was 0.07% per day. Dose loss (optically-stimulated deletion) under ambient lighting conditions was 0.5% per minute. The Monte Carlo simulation for the relative sensitivity at different beta energies provided corresponding results to those obtained with the OSL dosimeters. Dose profile measurements using a 6 well plate and 14 ml PP tube showed that the geometry of the cell culture vessel has a marked influence on dose distribution with 188Re. A new dosimeter system was calibrated with beta-emitters of different energy. It turned out as suitable for measuring dose in liquids. The dose profile measurements obtained are suitably precise to be used as a check against theoretical dose calculations.

  11. Optimization of (131)I doses for the treatment of hyperthyroidism.

    PubMed

    Araujo, F; Rebelo, A M O; Pereira, A C; Moura, M B; Lucena, E A; Dantas, A L A; Dantas, B M; Corbo, R

    2009-11-15

    Several methods can be used to determine the activity of (131)I in the treatment of hyperthyroidism. However, many of them do not consider all the parameters necessary for optimum dose calculation. The relationship between the dose absorbed by the thyroid and the activity administered depends basically on three parameters: organ mass, iodine uptake and effective half-life of iodine in the thyroid. Such parameters should be individually determined for each patient in order to optimize the administered activity. The objective of this work is to develop a methodology for individualized treatment with (131)I in patients with hyperthyroidism of the Grave's Disease. A neck-thyroid phantom developed at the IRD was used to calibrate a scintillation camera and a uptake probe SCT-13004 at the Nuclear Medicine Center of the University Hospital of Rio de Janeiro and a uptake probe SCT-13002, available at the Nuclear Medicine Institute in Goiânia. The biokinetic parameters were determined based on measurements performed in eight voluntary patients. It is concluded that the use of the equipment available at the hospital (scintillation camera and uptake probe) has shown to be a suitable and feasible procedure for dose optimization in terms of effectiveness, simplicity and cost.

  12. Calibration of helical tomotherapy machine using EPR/alanine dosimetry.

    PubMed

    Perichon, Nicolas; Garcia, Tristan; François, Pascal; Lourenço, Valérie; Lesven, Caroline; Bordy, Jean-Marc

    2011-03-01

    Current codes of practice for clinical reference dosimetry of high-energy photon beams in conventional radiotherapy recommend using a 10 x 10 cm2 square field, with the detector at a reference depth of 10 cm in water and 100 cm source to surface distance (SSD) (AAPM TG-51) or 100 cm source-to-axis distance (SAD) (IAEA TRS-398). However, the maximum field size of a helical tomotherapy (HT) machine is 40 x 5 cm2 defined at 85 cm SAD. These nonstandard conditions prevent a direct implementation of these protocols. The purpose of this study is twofold: To check the absorbed dose in water and dose rate calibration of a tomotherapy unit as well as the accuracy of the tomotherapy treatment planning system (TPS) calculations for a specific test case. Both topics are based on the use of electron paramagnetic resonance (EPR) using alanine as transfer dosimeter between the Laboratoire National Henri Becquerel (LNHB) 60Co-gamma-ray reference beam and the Institut Curie's HT beam. Irradiations performed in the LNHB reference 60Co-gamma-ray beam allowed setting up the calibration method, which was then implemented and tested at the LNHB 6 MV linac x-ray beam, resulting in a deviation of 1.6% (at a 1% standard uncertainty) relative to the reference value determined with the standard IAEA TRS-398 protocol. HT beam dose rate estimation shows a difference of 2% with the value stated by the manufacturer at a 2% standard uncertainty. A 4% deviation between measured dose and the calculation from the tomotherapy TPS was found. The latter was originated by an inadequate representation of the phantom CT-scan values and, consequently, mass densities within the phantom. This difference has been explained by the mass density values given by the CT-scan and used by the TPS which were not the true ones. Once corrected using Monte Carlo N-Particle simulations to validate the accuracy of this process, the difference between corrected TPS calculations and alanine measured dose values was then found to be around 2% (with 2% standard uncertainty on TPS doses and 1.5% standard uncertainty on EPR measurements). Beam dose rate estimation results were found to be in good agreement with the reference value given by the manufacturer at 2% standard uncertainty. Moreover, the dose determination method was set up with a deviation around 2% (at a 2% standard uncertainty).

  13. SU-F-T-222: Dose of Fetus and Infant Following Accidental Intakes of I-131 by the Mother

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y; Hu, P

    Purpose: To estimate the calculation of absorbed dose to the fetus and infants from intakes of I-131 by the mother. Thus provide some advice to the radioprotection of radioactive accident. Methods: In this clinical case, a staff of nuclear medicine accidently intake I-131 during (10–12 weeks) and after pregnancy. The infant was born at full term, but both lobes of the thyroid gland were found to be absent (bilobar thyroid agenesis). It was suspected that the fetal thyroid agenesis may be related with mother’s contamination of I-131 during pregnancy. Urine samples for 24h were collected at different times after administeredmore » and radioactivity were measured to calculate the dose of intake I-131. Calculate the intake I-131 by the results of personal TLD dosimeter. We adopted the mean of two calculated results as the I-131 intake. According to the dose of intake I-131 by the mother, effective dose and absorbed dose of thyroid for mother, fetus and infant were calculated. Results: The intake of I-131 was estimated for 8.18 mCi. I-131 intake was calculated for 7.9 mCi based on data of TLD dosimeter. We adopted the mean of two results as the I-131 intake. The final result was 8.0 mCi. Effective dose and absorbed dose of thyroid for mother were 7.3Sv and 164 Gy, effective dose and absorbed dose of thyroid for fetus were 2.035 Sv and 40.7 Gy, effective dose and absorbed dose of thyroid for infant were 16.25 Sv and 355Gy. Conclusion: The intake during pregnancy was about 1mCi. The absorbed dose of thyroid of the mother was 19.5Gy, whereas the effective of infant was estimated for 40.7Gy. The function of the mother’s thyroid was normal after diagnosis. But the infant was diagnosed as bilobar thyroid agenesis.« less

  14. ESR dosimetry for atomic bomb survivors and radiologic technologists

    NASA Astrophysics Data System (ADS)

    Tatsumi-Miyajima, Junko

    1987-06-01

    An individual absorbed dose for atomic bomb (A-bomb) survivors and radiologic technologists has been estimated using a new personal dosimetry. This dosimetry is based on the electron spin resonance (ESR) spectroscopy of the CO 33- radicals, which are produced in their teeth by radiation. Measurements were carried out to study the characteristics of the dosimetry; the ESR signals of the CO 33- radicals were stable and increased linearly with the radiation dose. In the evaluation of the absorbed dose, the ESR signals were considered to be a function of photon energy. The absorbed doses in ten cases of A-bomb victims and eight cases of radiologic technologists were determined. For A-bomb survivors, the adsorbed doses, which were estimated using the ESR dosimetry, were consistent with the ones obtained using the calculations of the tissue dose in air of A-bomb, and also with the ones obtained using the chromosome measurements. For radiologic technologists, the absorbed doses, which were estimated using the ESR dosimetry, agreed with the ones calculated using the information on the occupational history and conditions. The advantages of this method are that the absorbed dose can be directly estimated by measuring the ESR signals obtained from the teeth of persons, who are exposed to radiation. Therefore, the ESR dosimetry is useful to estimate the accidental exposure and the long term cumulative dose.

  15. Dosimetry in differentiated thyroid carcinoma (12-1402R)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minguez, Pablo; Genolla, Jose; Celeiro, Jose Javier

    2013-01-15

    Purpose: The aim of this study has been to perform a dosimetric study in the treatments of differentiated thyroid cancer (DTC) performed in our center in order to find a dose-effect correlation. Methods: Thirty patients treated for DTC with 3700 MBq of {sup 131}I have been included in this study. For reasons of radiological protection all of them spent two nights as inpatients. Dose rate at 1 m from all patients was measured approximately 20 and 44 h after the administration of the radioiodine and a whole body scan in the gamma camera was performed approximately 1 week later. Withmore » those measurements and by using a model of two compartments the activities in thyroid bed remnants and in the whole body were calculated as a function of time. The integration of both activities yields the corresponding cumulated activities. Absorbed doses to thyroid bed remnants and to the whole body can be calculated following the MIRDOSE method-that is, by multiplying the corresponding cumulated activities by the corresponding S factors. Results: The absorbed doses to thyroid bed remnants calculated in this study fall into a very wide range (13-1161 Gy) and showed the highest correlation factors with the following parameters: the absorbed dose rate to thyroid bed remnants, the cumulated activity in thyroid bed remnants, and the maximum radioiodine uptake in thyroid bed remnants. The absorbed doses to the whole body range from 0.12 to 0.23 Gy. The ablation was successful in all patients, and in spite of the wide range of absorbed doses to thyroid bed remnants obtained, no dose-effect correlation could be obtained. Conclusions: Facing DTC treatments from a dosimetric viewpoint in which a predosimetry to calculate the activity of {sup 131}I to be administered is performed is a subject difficult to handle. This statement is based on the fact that although a very wide range of absorbed doses to thyroid bed remnants was obtained (including several absorbed doses well below some dose thresholds previously published to achieve ablation of thyroid bed remnants), ablation of thyroid bed remnants was successful for all patients and therefore no dose-effect correlation could be determined.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cojocaru, Claudiu; Mui, Bryan; McEwen, Malcolm

    Purpose: To investigate the stability of a water calorimetry system as a primary standard for absorbed dose to water using measurements performed in cobalt-60 and high-energy linac photon beams over a span of more than a decade. Methods: Calorimetry measures adsorbed dose directly by recording the amount of heat created when ionizing radiation passes through matter. The radiation-induced temperature rise was measured using two thermistors calibrated against the NRC temperature primary standard, using an AC bridge with lock-in amplifier for precise measurement. The calorimeter system was operated under thermal equilibrium at 4 °C (to eliminate convection) with drifts in watermore » temperature less than 0.1 mK/min. Seven water vessels of various designs were used to make repeated measurements over the course of 17 years. Results: The standard uncertainty achieved for a set of ten calorimeter measurements (4 Gy delivered) was generally well below 0.15 % while the variation between multiple sets for a given vessel was consistent with this value. The long-term stability of the system combined with inter-vessel variations indicated that there was good control of the radiochemistry (chemical heat defect). Conclusions: The measurements performed over a period of several years showed that the combined water calorimeters showed stability at +/− 0.25 % level. Thus, rather than relying on a particular vessel as an artifact one can realize the Gray through the more generalized method of combining a glass vessel, high-purity water and thermistor probes. This provides increased robustness in the dissemination of absorbed dose to Canadian users.« less

  17. Dosimetric characteristics of the University of Washington Clinical Neutron Therapy System

    NASA Astrophysics Data System (ADS)

    Moffitt, Gregory B.; Stewart, Robert D.; Sandison, George A.; Goorley, John T.; Argento, David C.; Jevremovic, Tatjana; Emery, Robert; Wootton, Landon S.; Parvathaneni, Upendra; Laramore, George E.

    2018-05-01

    The University of Washington (UW) Clinical Neutron Therapy System (CNTS), which generates high linear energy transfer fast neutrons through interactions of 50.5 MeV protons incident on a Be target, has depth-dose characteristics similar to 6 MV x-rays. In contrast to the fixed beam angles and primitive blocking used in early clinical trials of neutron therapy, the CNTS has a gantry with a full 360° of rotation, internal wedges, and a multi-leaf collimator (MLC). Since October of 1984, over 3178 patients have received conformal neutron therapy treatments using the UW CNTS. In this work, the physical and dosimetric characteristics of the CNTS are documented through comparisons of measurements and Monte Carlo simulations. A high resolution computed tomography scan of the model 17 ionization chamber (IC-17) has also been used to improve the accuracy of simulations of the absolute calibration geometry. The response of the IC-17 approximates well the kinetic energy released per unit mass (KERMA) in water for neutrons and photons for energies from a few tens of keV up to about 20 MeV. Above 20 MeV, the simulated model 17 ion chamber response is 20%–30% higher than the neutron KERMA in water. For CNTS neutrons, simulated on- and off-axis output factors in water match measured values within ~2%  ±  2% for rectangular and irregularly shaped field with equivalent square areas ranging in a side dimension from 2.8 cm to 30.7 cm. Wedge factors vary by less than 1.9% of the measured dose in water for clinically relevant field sizes. Simulated tissue maximum ratios in water match measured values within 3.3% at depths up to 20 cm. Although the absorbed dose for water and adipose tissue are within 2% at a depth of 1.7 cm, the absorbed dose in muscle and bone can be as much as 12 to 40% lower than the absorbed dose in water. The reported studies are significant from a historical perspective and as additional validation of a new tool for patient quality assurance and as an aid in ongoing efforts to clinically implement advanced treatment techniques, such as intensity modulated neutron therapy, at the UW.

  18. Red Marrow-Absorbed Dose for Non-Hodgkin Lymphoma Patients Treated with 177Lu-Lilotomab Satetraxetan, a Novel Anti-CD37 Antibody-Radionuclide Conjugate.

    PubMed

    Blakkisrud, Johan; Løndalen, Ayca; Dahle, Jostein; Turner, Simon; Holte, Harald; Kolstad, Arne; Stokke, Caroline

    2017-01-01

    Red marrow (RM) is often the primary organ at risk in radioimmunotherapy; irradiation of marrow may induce short- and long-term hematologic toxicity. 177 Lu-lilotomab satetraxetan is a novel anti-CD37 antibody-radionuclide conjugate currently in phase 1/2a. Two predosing regimens have been investigated, one with 40 mg of unlabeled lilotomab antibody (arm 1) and one without (arm 2). The aim of this work was to compare RM-absorbed doses for the two arms and to correlate absorbed doses with hematologic toxicity. Eight patients with relapsed CD37+ indolent B-cell non-Hodgkin lymphoma were included for RM dosimetry. Hybrid SPECT and CT images were used to estimate the activity concentration in the RM of L2-L4. Pharmacokinetic parameters were calculated after measurement of the 177 Lu-lilotomab satetraxetan concentration in blood samples. Adverse events were graded according to the Common Terminology Criteria for Adverse Events, version 4.0. The mean absorbed doses to RM were 0.9 mGy/MBq for arm 1 (lilotomab+) and 1.5 mGy/MBq for arm 2 (lilotomab-). There was a statistically significant difference between arms 1 and 2 (Student t test, P = 0.02). Total RM-absorbed doses ranged from 67 to 127 cGy in arm 1 and from 158 to 207 cGy in arm 2. For blood, the area under the curve was higher with lilotomab predosing than without (P = 0.001), whereas the volume of distribution and the clearance of 177 Lu-lilotomab satetraxetan was significantly lower (P = 0.01 and P = 0.03, respectively). Patients with grade 3/4 thrombocytopenia had received significantly higher radiation doses to RM than patients with grade 1/2 thrombocytopenia (P = 0.02). A surrogate, non-imaging-based, method underestimated the RM dose and did not show any correlation with toxicity. Predosing with lilotomab reduces the RM-absorbed dose for 177 Lu-lilotomab satetraxetan patients. The decrease in RM dose could be explained by the lower volume of distribution. Hematologic toxicity was more severe for patients receiving higher absorbed radiation doses, indicating that adverse events possibly can be predicted by the calculation of absorbed dose to RM from SPECT/CT images. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  19. Effective dose equivalent on the ninth Shuttle--Mir mission (STS-91)

    NASA Technical Reports Server (NTRS)

    Yasuda, H.; Badhwar, G. D.; Komiyama, T.; Fujitaka, K.

    2000-01-01

    Organ and tissue doses and effective dose equivalent were measured using a life-size human phantom on the ninth Shuttle-Mir Mission (STS-91, June 1998), a 9.8-day spaceflight at low-Earth orbit (about 400 km in altitude and 51.65 degrees in inclination). The doses were measured at 59 positions using a combination of thermoluminescent dosimeters of Mg(2)SiO(4):Tb (TDMS) and plastic nuclear track detectors (PNTD). In correcting the change in efficiency of the TDMS, it was assumed that reduction of efficiency is attributed predominantly to HZE particles with energy greater than 100 MeV nucleon(-1). A conservative calibration curve was chosen for determining LET from the PNTD track-formation sensitivities. The organ and tissue absorbed doses during the mission ranged from 1.7 to 2.7 mGy and varied by a factor of 1.6. The dose equivalent ranged from 3.4 to 5.2 mSv and varied by a factor of 1.5 on the basis of the dependence of Q on LET in the 1990 recommendations of the ICRP. The effective quality factor (Q(e)) varied from 1.7 to 2.4. The dose equivalents for several radiation-sensitive organs, such as the stomach, lung, gonad and breast, were not significantly different from the skin dose equivalent (H(skin)). The effective dose equivalent was evaluated as 4.1 mSv, which was about 90% of the H(skin).

  20. In-depth analysis and discussions of water absorption-typed high power laser calorimeter

    NASA Astrophysics Data System (ADS)

    Wei, Ji Feng

    2017-02-01

    In high-power and high-energy laser measurement, the absorber materials can be easily destroyed under long-term direct laser irradiation. In order to improve the calorimeter's measuring capacity, a measuring system directly using water flow as the absorber medium was built. The system's basic principles and the designing parameters of major parts were elaborated. The system's measuring capacity, the laser working modes, and the effects of major parameters were analyzed deeply. Moreover, the factors that may affect the accuracy of measurement were analyzed and discussed. The specific control measures and methods were elaborated. The self-calibration and normal calibration experiments show that this calorimeter has very high accuracy. In electrical calibration, the average correction coefficient is only 1.015, with standard deviation of only 0.5%. In calibration experiments, the standard deviation relative to a middle-power standard calorimeter is only 1.9%.

  1. A new optical method coupling light polarization and Vis-NIR spectroscopy to improve the measured absorbance signal's quality of soil samples.

    NASA Astrophysics Data System (ADS)

    Gobrecht, Alexia; Bendoula, Ryad; Roger, Jean-Michel; Bellon-Maurel, Véronique

    2014-05-01

    Visible - Near-infrared spectroscopy (Vis-NIRS) is now commonly used to measure different physical and chemical parameters of soils, including carbon content. However, prediction model accuracy is insufficient for Vis-NIRS to replace routine laboratory analysis. One of the biggest issues this technique is facing up to is light scattering due to soil particles. It causes departure in the assumed linear relationship between the Absorbance spectrum and the concentration of the chemicals of interest as stated by Beer-Lambert's Law, which underpins the calibration models. Therefore it becomes essential to improve the metrological quality of the measured signal in order to optimize calibration as light/matter interactions are at the basis of the resulting linear modeling. Optics can help to mitigate scattering effect on the signal. We put forward a new optical setup coupling linearly polarized light with a Vis-NIR spectrometer to free the measured spectra from multi-scattering effect. The corrected measured spectrum was then used to compute an Absorbance spectrum of the sample, using Dahm's Equation in the frame of the Representative Layer Theory. This method has been previously tested and validated on liquid (milk+ dye) and powdered (sand + dye) samples showing scattering (and absorbing) properties. The obtained Absorbance was a very good approximation of the Beer-Lambert's law absorbance. Here, we tested the method on a set of 54 soil samples to predict Soil Organic Carbon content. In order to assess the signal quality improvement by this method, we built and compared calibration models using Partial Least Square (PLS) algorithm. The prediction model built from new Absorbance spectrum outperformed the model built with the classical Absorbance traditionally obtained with Vis-NIR diffuse reflectance. This study is a good illustration of the high influence of signal quality on prediction model's performances.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baiden, H.N.; Ercanli-Huffman, F.G.

    Bioavailability of zinc from sweet potato (SP) roots and leaves were determined, by extrinsic labeling technique, in rats fed control and zinc deficient diets. Weanling male Sprague Dawley (SD) rats (60-75g) were divided into 4 groups, and fed laboratory chow, a control diet (ad libitum and pair fed) and a zinc deficient diet, for 4 weeks. Each group then was divided into at least 2 sub groups, containing 6 rats, which were intubated with one of 3 tubing solutions extrinsically labeled with /sup 65/Zn; baked sweet potato roots (BSPR), raw sweet potato leaves (RSPL) and cooked sweet potato leaves (CSPL).more » Five hours after intubation the rats were sacrificed, blood, liver, testes, spleen, heart, brain, thymus and lungs were removed. Feces, urine, and GI tract contents were collected and their /sup 65/Zn activity was determined in a gamma counter. In all treatment groups zinc bioavailability from BSPR, RSPL or CSPL were not significantly different. Zinc deficient rats absorbed significantly more (P < 0.01) /sup 65/Zn (86-90% of the dose), regardless of type of tubing solution than the pairfed or control animals (35-58% of the dose). The highest retention of /sup 65/Zn was found in the liver (12-20% of absorbed dose), GI tract (6-17% of absorbed dose), kidney (2-8% of absorbed dose), and blood (1-5% of absorbed dose). The lowest retention was found in the brain, heart, thymus and testes. (< 1% of absorbed dose).« less

  3. Evaluation of S-values and dose distributions for {sup 90}Y, {sup 131}I, {sup 166}Ho, and {sup 188}Re in seven lobes of the rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Tianwu; Liu Qian; Zaidi, Habib

    2012-03-15

    Purpose: Rats have been widely used in radionuclide therapy research for the treatment of hepatocellular carcinoma (HCC). This has created the need to assess rat liver absorbed radiation dose. In most dose estimation studies, the rat liver is considered as a homogeneous integrated target organ with a tissue composition assumed to be similar to that of human liver tissue. However, the rat liver is composed of several lobes having different anatomical and chemical characteristics. To assess the overall impact on rat liver dose calculation, the authors use a new voxel-based rat model with identified suborgan regions of the liver. Methods:more » The liver in the original cryosectional color images was manually segmented into seven individual lobes and subsequently integrated into a voxel-based computational rat model. Photon and electron particle transport was simulated using the MCNPX Monte Carlo code to calculate absorbed fractions and S-values for {sup 90}Y, {sup 131}I, {sup 166}Ho, and {sup 188}Re for the seven liver lobes. The effect of chemical composition on organ-specific absorbed dose was investigated by changing the chemical composition of the voxel filling liver material. Radionuclide-specific absorbed doses at the voxel level were further assessed for a small spherical hepatic tumor. Results: The self-absorbed dose for different liver lobes varied depending on their respective masses. A maximum difference of 3.5% was observed for the liver self-absorbed fraction between rat and human tissues for photon energies below 100 keV. {sup 166}Ho and {sup 188}Re produce a uniformly distributed high dose in the tumor and relatively low absorbed dose for surrounding tissues. Conclusions: The authors evaluated rat liver radiation doses from various radionuclides used in HCC treatments using a realistic computational rat model. This work contributes to a better understanding of all aspects influencing radiation transport in organ-specific radiation dose evaluation for preclinical therapy studies, from tissue composition to organ morphology and activity distribution.« less

  4. Analysis of the Body Distribution of Absorbed Dose in the Organs of Three Species of Fish from Sepetiba Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Wagner de S; Universidade Federal Fluminense, Programa de Pos-graduacao em Biologia Marinha; Kelecom, Alphonse

    2008-08-07

    The body distribution of Polonium-210 in three fishes from the Sepetiba Bay (Macrodon ancylodon, Micropogonias furnieri and Mugil curema) has been studied under the approach of the Department of Energy of the United States of America (DOE) that set the limit of absorbed dose rate in biota equal to 3.5x10{sup 3} {mu}Gy/y, and that also established the relation between dose rate (D) and radionuclide concentration (c) on a fish muscle fresh weight basis, as follows: D = 5.05 ExNxC, assuming that the radionuclide distribution is homogenous among organs. Two hypotheses were tested here, using statistical tools: 1) is the bodymore » distribution of absorbed dose homogenous among organs? and 2) is the body distribution of absorbed dose identical among studied fishes? It was concluded, as expected, that the distribution among organs is heterogeneous; but, unexpectedly, that the three fishes display identical body distribution pattern, although they belong to different trophic levels. Hence, concerning absorbed dose calculation, the statement that data distribution is homogenous must be understood merely as an approximation, at least in the case of Polonium-210.« less

  5. Measurement of Absorbed Dose from Radionuclide Solutions Mixed Intimately with the Fbx Dosimeter.

    NASA Astrophysics Data System (ADS)

    Benedetto, Anthony Richard

    Chemical dosimeters are used widely for accurate measurement of large radiation doses due to external beam irradiation from radioisotope sources and from particle accelerators. Their use for measurement of absorbed doses from radioactive solutions mixed in the dosimeter solution was reported as early as 1952, but the large activities needed to produce suitable absorbance values in the relatively insensitive dosimeters of that time discouraged further work. This manuscript reports the results of an investigation into the suitability of the ferrous sulfate-benzoic acid -xylenol orange (FBX) dosimeter for measurement of small absorbed doses caused by radionuclide solutions dissolved in the dosimeter solution. The FBX dosimeter exhibited a linear dose response as a function of activity for two common radiopharmaceuticals, technetium-99m sodium pertechnetate and iodine-131 sodium iodide. Conditions under which the FBX dosimeter may be used with radionuclide solutions were studied and were found to be amenable to routine use by laboratories possessing relatively unsophisticated instrumentation. It appears likely that any radionuclide could be studied using this dosimeter. Finally, potential applications and future research work are suggested, including measurement of absorbed dose from radiopharmaceuticals using realistic human-like phantoms to assess the risk from clinical nuclear medicine studies.

  6. Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods

    ERIC Educational Resources Information Center

    Barlag, Rebecca; Nyasulu, Frazier

    2011-01-01

    The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such…

  7. Estimation of Organ Absorbed Doses in Patients from 99mTc-diphosphonate Using the Data of MIRDose Software

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Cheki, Mohsen; Moslehi, Masoud

    2012-01-01

    The purpose of this study was to compare estimation of radiation absorbed doses to patients following bone scans with technetium-99m-labeled methylene diphosphonate (MDP) with the estimates given in MIRDose software. In this study, each patient was injected 25 mCi of 99mTc-MDP. Whole-body images from thirty patients were acquired by gamma camera at 10, 60, 90, 180 minutes after 99mTc-MDP injection. To determine the amount of activity in each organ, conjugate view method was applied on images. MIRD equation was then used to estimate absorbed doses in different organs of patients. At the end, absorbed dose values obtained in this study were compared with the data of MIRDose software. The absorbed doses per unit of injected activity (mGy/MBq × 10–4) for liver, kidneys, bladder wall and spleen were 3.86 ± 1.1, 38.73 ± 4.7, 4.16 ± 1.8 and 3.91 ± 1.3, respectively. The results of this study may be useful to estimate the amount of activity that can be administered to the patient and also showed that methods used in the study for absorbed dose calculation is in good agreement with the data of MIRDose software and it is possible to use by a clinician. PMID:23724374

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farfan, E.; Jannik, T.

    This article describes major studies performed by the Chernobyl Center's International Radioecology Laboratory (Slavutich, Ukraine) on radioecology of murine rodents and shrews inhabiting the Chernobyl Exclusion Zone. The article addresses the long-term (1986-2005) and seasonal dynamics of radioactive contamination of animals, and reviews interspecies differences in radionuclide accumulations and factors affecting the radionuclide accumulations. It is shown that bioavailability of radionuclides in the 'soil-to-plant' chain and a trophic specialization of animals play key roles in determining their actual contamination levels. The total absorbed dose rates in small mammals significantly reduced during the years following the Chernobyl Nuclear Power Plant accident.more » In 1986, the absorbed dose rate reached 1.3-6.0 Gy hr{sup -1} in the central areas of the Chernobyl Exclusion Zone (the 'Red Forest'). In 1988 and 1990, the total absorbed dose rates were 1.3 and 0.42 Gy hr{sup -1}, respectively. In 1995, 2000, and 2005, according to the present study, the total absorbed dose rates rarely exceeded 0.00023, 0.00018, and 0.00015 Gy hr{sup -1}, respectively. Contributions of individual radiation sources into the total absorbed dose are described.« less

  9. Comparison of Test and Finite Element Analysis for Two Full-Scale Helicopter Crash Tests

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Horta,Lucas G.

    2011-01-01

    Finite element analyses have been performed for two full-scale crash tests of an MD-500 helicopter. The first crash test was conducted to evaluate the performance of a composite deployable energy absorber under combined flight loads. In the second crash test, the energy absorber was removed to establish the baseline loads. The use of an energy absorbing device reduced the impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to analytical results. Details of the full-scale crash tests and development of the system-integrated finite element model are briefly described along with direct comparisons of acceleration magnitudes and durations for the first full-scale crash test. Because load levels were significantly different between tests, models developed for the purposes of predicting the overall system response with external energy absorbers were not adequate under more severe conditions seen in the second crash test. Relative error comparisons were inadequate to guide model calibration. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used for the second full-scale crash test. The calibrated parameter set reduced 2-norm prediction error by 51% but did not improve impact shape orthogonality.

  10. Real-time measurement and monitoring of absorbed dose for electron beams

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey; Korenev, Ivan; Rumega, Stanislav; Grossman, Leon

    2004-09-01

    The real-time method and system for measurement and monitoring of absorbed dose for industrial and research electron accelerators is considered in the report. The system was created on the basis of beam parameters method. The main concept of this method consists in the measurement of dissipated kinetic energy of electrons in the irradiated product, determination of number of electrons and mass of irradiated product in the same cell by following calculation of absorbed dose in the cell. The manual and automation systems for dose measurements are described. The systems are acceptable for all types of electron accelerators.

  11. Absorbed radiation dose in adults from iodine-131 and iodine-123 orthoiodohippurate and technetium-99m DTPA renography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsen, O.

    1988-03-01

    A mathematic model for evaluation of absorbed dose in radionuclide renography has been developed and programmed for automatic calculation in the computer. Input data to the model are readily available from the results of the renography and, hence, the method described is suitable for individual dose determinations in adults. Apart from the situation with very considerable outflow obstructions (/sup 131/I)OIH single probe renography involves a 15-20 times smaller dose to radiation sensitive organs than (/sup 123/I)OIH gamma camera renography. Further, the latter examination results in a 2-10 times smaller dose than (/sup 99m/Tc)DTPA gamma camera renography under normal outflow conditions.more » Absorbed renal dose is large, approximately 70 mGy, in the three renographies in the borderline case with total outflow obstructions. For comparison, i.v. pyelography, which is the x-ray examination often used instead of radionuclide renography, involves an absorbed dose to ovaries 10-1000 times larger than in radionuclide renography« less

  12. Patient-specific FDG dosimetry for adult males, adult females, and very low birth weight infants

    NASA Astrophysics Data System (ADS)

    Niven, Erin

    Fluorodeoxyglucose is the most commonly used radiopharmaceutical in Positron Emission Tomography, with applications in neurology, cardiology, and oncology. Despite its routine use worldwide, the radiation absorbed dose estimates from FDG have been based primarily on data obtained from two dogs studied in 1977 and 11 adults (most likely males) studied in 1982. In addition, the dose estimates calculated for FDG have been centered on the adult male, with little or no mention of variations in the dose estimates due to sex, age, height, weight, nationality, diet, or pathological condition. Through an extensive investigation into the Medical Internal Radiation Dose schema for calculating absorbed doses, I have developed a simple patient-specific equation; this equation incorporates the parameters necessary for alterations to the mathematical values of the human model to produce an estimate more representative of the individual under consideration. I have used this method to determine the range of absorbed doses to FDG from the collection of a large quantity of biological data obtained in adult males, adult females, and very low birth weight infants. Therefore, a more accurate quantification of the dose to humans from FDG has been completed. My results show that per unit administered activity, the absorbed dose from FDG is higher for infants compared to adults, and the dose for adult women is higher than for adult men. Given an injected activity of approximately 3.7 MBq kg-1, the doses for adult men, adult women, and full-term newborns would be on the order of 5.5, 7.1, and 2.8 mSv, respectively. These absorbed doses are comparable to the doses received from other nuclear medicine procedures.

  13. Evaluation of dose delivery accuracy of gamma knife using MRI polymer gel dosimeter in an inhomogeneous phantom

    NASA Astrophysics Data System (ADS)

    Pourfallah T, A.; Alam N, Riahi; M, Allahverdi; M, Ay; M, Zahmatkesh

    2009-05-01

    Polymer gel dosimetry is still the only dosimetry method for directly measuring three-dimensional dose distributions. MRI Polymer gel dosimeters are tissue equivalent and can act as a phantom material. Because of high dose response sensitivity, the MRI was chosen as readout device. In this study dose profiles calculated with treatment-planning software (LGP) and measurements with the MR polymer gel dosimeter for single-shot irradiations were compared. A custom-built 16 cm diameter spherical plexiglas head phantom was used in this study. Inside the phantom, there is a cubic cutout for insertion of gel phantoms and another cutout for inserting the inhomogeneities. The phantoms were scanned with a 1.5T MRI (Siemens syngo MR 2004A 4VA25A) scanner. The multiple spin-echo sequence with 32 echoes was used for the MRI scans. Calibration relations between the spin-spin relaxation rate and the absorbed dose were obtained by using small cylindrical vials, which were filled with the PAGAT polymer gel from the same batch as for the spherical phantom. 1D and 2D data obtained using gel dosimeter for homogeneous and inhomogeneous phantoms were compared with dose obtained using LGP calculation. The distance between relative isodose curves obtained for homogeneous phantom and heterogeneous phantoms exceed the accepted total positioning error (>±2mm). The findings of this study indicate that dose measurement using PAGAT gel dosimeter can be used for verifying dose delivering accuracy in GK unit in presence of inhomogeneities.

  14. Fast skin dose estimation system for interventional radiology

    PubMed Central

    Takata, Takeshi; Kotoku, Jun’ichi; Maejima, Hideyuki; Kumagai, Shinobu; Arai, Norikazu; Kobayashi, Takenori; Shiraishi, Kenshiro; Yamamoto, Masayoshi; Kondo, Hiroshi; Furui, Shigeru

    2018-01-01

    Abstract To minimise the radiation dermatitis related to interventional radiology (IR), rapid and accurate dose estimation has been sought for all procedures. We propose a technique for estimating the patient skin dose rapidly and accurately using Monte Carlo (MC) simulation with a graphical processing unit (GPU, GTX 1080; Nvidia Corp.). The skin dose distribution is simulated based on an individual patient’s computed tomography (CT) dataset for fluoroscopic conditions after the CT dataset has been segmented into air, water and bone based on pixel values. The skin is assumed to be one layer at the outer surface of the body. Fluoroscopic conditions are obtained from a log file of a fluoroscopic examination. Estimating the absorbed skin dose distribution requires calibration of the dose simulated by our system. For this purpose, a linear function was used to approximate the relation between the simulated dose and the measured dose using radiophotoluminescence (RPL) glass dosimeters in a water-equivalent phantom. Differences of maximum skin dose between our system and the Particle and Heavy Ion Transport code System (PHITS) were as high as 6.1%. The relative statistical error (2 σ) for the simulated dose obtained using our system was ≤3.5%. Using a GPU, the simulation on the chest CT dataset aiming at the heart was within 3.49 s on average: the GPU is 122 times faster than a CPU (Core i7–7700K; Intel Corp.). Our system (using the GPU, the log file, and the CT dataset) estimated the skin dose more rapidly and more accurately than conventional methods. PMID:29136194

  15. Fast skin dose estimation system for interventional radiology.

    PubMed

    Takata, Takeshi; Kotoku, Jun'ichi; Maejima, Hideyuki; Kumagai, Shinobu; Arai, Norikazu; Kobayashi, Takenori; Shiraishi, Kenshiro; Yamamoto, Masayoshi; Kondo, Hiroshi; Furui, Shigeru

    2018-03-01

    To minimise the radiation dermatitis related to interventional radiology (IR), rapid and accurate dose estimation has been sought for all procedures. We propose a technique for estimating the patient skin dose rapidly and accurately using Monte Carlo (MC) simulation with a graphical processing unit (GPU, GTX 1080; Nvidia Corp.). The skin dose distribution is simulated based on an individual patient's computed tomography (CT) dataset for fluoroscopic conditions after the CT dataset has been segmented into air, water and bone based on pixel values. The skin is assumed to be one layer at the outer surface of the body. Fluoroscopic conditions are obtained from a log file of a fluoroscopic examination. Estimating the absorbed skin dose distribution requires calibration of the dose simulated by our system. For this purpose, a linear function was used to approximate the relation between the simulated dose and the measured dose using radiophotoluminescence (RPL) glass dosimeters in a water-equivalent phantom. Differences of maximum skin dose between our system and the Particle and Heavy Ion Transport code System (PHITS) were as high as 6.1%. The relative statistical error (2 σ) for the simulated dose obtained using our system was ≤3.5%. Using a GPU, the simulation on the chest CT dataset aiming at the heart was within 3.49 s on average: the GPU is 122 times faster than a CPU (Core i7-7700K; Intel Corp.). Our system (using the GPU, the log file, and the CT dataset) estimated the skin dose more rapidly and more accurately than conventional methods.

  16. 21 CFR 892.1360 - Radionuclide dose calibrator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide dose calibrator. 892.1360 Section 892.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1360 Radionuclide dose calibrator. (a...

  17. Characterising Passive Dosemeters for Dosimetry of Biological Experiments in Space (dobies)

    NASA Astrophysics Data System (ADS)

    Vanhavere, Filip; Spurny, Frantisek; Yukihara, Eduardo; Genicot, Jean-Louis

    Introduction: The DOBIES (Dosimetry of biological experi-ments in space) project focusses on the use of a stan-dard dosimetric method (as a combination of differ-ent passive techniques) to measure accurately the absorbed doses and equivalent doses in biological samples. Dose measurements on biological samples are of high interest in the fields of radiobiology and exobiology. Radiation doses absorbed by biological samples must be quantified to be able to determine the relationship between observed biological effects and the radiation dose. The radiation field in space is very complex, con-sisting of protons, neutrons, electrons and high-energy heavy charged particles. It is not straightfor-ward to measure doses in this radiation field, cer-tainly not with only small and light passive doseme-ters. The properties of the passive detectors must be tested in radiation fields that are representative of the space radiation. We will report on the characterisation of different type of passive detectors at high energy fields. The results from such characterisation measurements will be applied to recent exposures of detectors on the International Space Station. Material and methods: Following passive detectors are used: • thermoluminescent detectors (TLD) • optically stimulated luminescence detectors (OSLD) • track etch detectors (TED) The different groups have participated in the past to the ICCHIBAN series of irradiations. Here protons and other particles of high energy were used to de-termine the LET-dependency of the passive detec-tors. The last few months, new irradiations have been done at the iThemba labs (100-200 MeV protons), Dubna (145 MeV protons) and the JRC-IRMM (quasi mono energetic neutrons up to 19 MeV). All these detectors were also exposed to a simulated space radiation field at CERN (CERF-field). Discussion: The interpretation of the TLD and OSLD results is done using the measured LET spectrum (TED) and the LET-dependency curves of ths TLD and OSLDs. These LET- dependency curves are determined based on the different irradiations listed above. We will report on the results of the different detectors in these fields. Further information on the LET of the space irradia-tion can be deduced from the ratio of the different peaks of the TLDs after glow curve deconvolution, and from the shape of the decay curve of the OSLDs. The results in the CERF field can on the other hand directly being used as a calibration for space radia-tion fields. Conclusion: Combining different passive detectors will lead to improved information on the radiation field, and thus to a better estimation of the absorbed dose to the bio-logical samples. We use the characterisations on high energy accelerators to improve the estimation of some recent space doses.

  18. EPR/PTFE dosimetry for test reactor environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vehar, D.W.; Griffin, P.J.; Quirk, T.J.

    2011-07-01

    The use of Electron Paramagnetic Resonance (EPR) spectroscopy with materials such as alanine is well established as a technique for measurement of ionizing radiation absorbed dose in photon and electron fields such as Co-60, high-energy bremsstrahlung and electron-beam fields [1]. In fact, EPR/Alanine dosimetry has become a routine transfer standard for national standards bodies such as NIST and NPL. In 1992 the Radiation Metrology Laboratory (RML) at Sandia National Laboratories implemented EPR/Alanine capabilities for use in routine and calibration activities at its Co-60 and pulsed-power facilities. At that time it also investigated the usefulness of the system for measurement ofmore » absorbed dose in the mixed neutron/photon environments of reactors such as the Sandia Pulsed Reactor and the Annular Core Research Reactor used for hardness testing of electronics. The RML concluded that the neutron response of alanine was a sufficiently high fraction of the overall dosimeter response that the resulting uncertainties in the photon dose would be unacceptably large for silicon-device testing. However, it also suggested that non-hydrogenous materials such as polytetrafluoroethylene (PTFE) would exhibit smaller neutron response and might be useful in mixed environments. Preliminary research with PTFE in photon environments indicated considerable promise, but further development was not pursued at that time. Because of renewed interest in absorbed dose measurements that could better define the individual contributions of photon and neutron components to the overall dose delivered to a test object, the RML has re-initiated the development of an EPR/PTFE dosimetry system. This effort consists of three stages: 1) Identification of PTFE materials that may be suitable for dosimetry applications. It was speculated that the inconsistency of EPR signatures in the earlier samples may have been due to variability in PTFE manufacturing processes. 2) Characterization of dosimetry in photon-only environments. This is necessary to establish requirements for sample preparation, operating parameters and limitations for use in well-defined and predictable environments prior to deployment in the less well-defined mixed environments of test reactors. 3) Characterization of the EPR responses obtained with PTFE in mixed neutron/photon fields. This includes evaluation of the neutron and photon contributions to response, determination of applicable of neutron fluence and photon dose ranges. This paper presents a summary of the research, a description of the EPR/PTFE dosimetry system, and recommendations for preparation and fielding of the dosimetry in photon and mixed neutron/photon environments. (authors)« less

  19. Estimation of background radiation doses for the Peninsular Malaysia's population by ESR dosimetry of tooth enamel.

    PubMed

    Rodzi, Mohd; Zhumadilov, Kassym; Ohtaki, Megu; Ivannikov, Alexander; Bhattacharjee, Deborshi; Fukumura, Akifumi; Hoshi, Masaharu

    2011-08-01

    Background radiation dose is used in dosimetry for estimating occupational doses of radiation workers or determining radiation dose of an individual following accidental exposure. In the present study, the absorbed dose and the background radiation level are determined using the electron spin resonance (ESR) method on tooth samples. The effect of using different tooth surfaces and teeth exposed with single medical X-rays on the absorbed dose are also evaluated. A total of 48 molars of position 6-8 were collected from 13 district hospitals in Peninsular Malaysia. Thirty-six teeth had not been exposed to any excessive radiation, and 12 teeth had been directly exposed to a single X-ray dose during medical treatment prior to extraction. There was no significant effect of tooth surfaces and exposure with single X-rays on the measured absorbed dose of an individual. The mean measured absorbed dose of the population is 34 ± 6.2 mGy, with an average tooth enamel age of 39 years. From the slope of a regression line, the estimated annual background dose for Peninsular Malaysia is 0.6 ± 0.3 mGy y(-1). This value is slightly lower than the yearly background dose for Malaysia, and the radiation background dose is established by ESR tooth measurements on samples from India and Russia.

  20. Characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam

    NASA Astrophysics Data System (ADS)

    Bong, Jihye; Shin, Dongho; Kwon, Soo-Il

    2014-01-01

    The characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam were evaluated. A polymer gel dosimeter was synthesized using gelatin, methacrylic acid, hydroquinone, tetrakis(hydroxymethyl) phosphonium chloride, and highly purified distilled water. The dosimeter was manufactured by placement in a polyethylene (PE) container. Irradiated dosimeters were analyzed to determine the transverse relaxation time (T2) using a 1.5-T MRI. A calibration curve was obtained as a function of the absorbed dose. A Bragg curve made by irradiating the gel with mono-energy was compared with the results for a parallel plate ionization chamber. The spread-out Bragg peak (SOBP) range and distal dose fall-off (DDF) were comparatively analyzed by comparing the irradiated gel with a spread-out Bragg peak against with the ion chamber. Lastly, the gel's usefulness as a dosimeter for therapeutic radiation quality assurance was evaluated by obtaining its practical field size, flatness, and symmetry, through comparison of the profiles of the gel and ion chamber.

  1. Plasma Membrane Permeabilization by 60- and 600-ns Electric Pulses Is Determined by the Absorbed Dose

    PubMed Central

    Ibey, Bennett L.; Xiao, Shu; Schoenbach, Karl H.; Murphy, Michael R.; Pakhomov, Andrei G.

    2008-01-01

    We explored how the effect of plasma membrane permeabilization by nanosecond-duration electric pulses (nsEP) depends on the physical characteristics of exposure. The resting membrane resistance (Rm) and membrane potential (MP) were measured in cultured GH3 and CHO cells by conventional whole-cell patch-clamp technique. Intact cells were exposed to a single nsEP (60 or 600 ns duration, 0-22 kV/cm), followed by patch-clamp measurements after a 2-3 min delay. Consistent with earlier findings, nsEP caused long-lasting Rm decrease, accompanied by the loss of MP. The threshold for these effects was about 6 kV/cm for 60 ns pulses, and about 1 kV/cm for 600 ns pulses. Further analysis established that it was neither pulse duration nor the E-field amplitude per se, but the absorbed dose that determined the magnitude of the biological effect. In other words, exposure to nsEP at either pulse duration caused equal effects if the absorbed doses were equal. The threshold absorbed dose to produce plasma membrane effects in either GH3 or CHO cells at either pulse duration was found to be at or below 10 mJ/g. Despite being determined by the dose, the nsEP effect clearly is not thermal, as the maximum heating at the threshold dose is less than 0.01 °C. The use of the absorbed dose as a universal exposure metric may help to compare and quantify nsEP sensitivity of different cell types and of cells in different physiological conditions. The absorbed dose may also prove to be a more useful metric than the incident E-field in determining safety limits for high peak, lowaverage power EMF emissions. PMID:18839412

  2. Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny in the human lung.

    PubMed

    Nikezic, D; Lau, B M F; Stevanovic, N; Yu, K N

    2006-01-01

    To calculate the absorbed dose in the human lung due to inhaled radon progeny, ICRP focussed on the layers containing the target cells, i.e., the basal and secretory cells. Such an approach did not consider details of the sensitive cells in the layers. The present work uses the microdosimetric approach and determines the absorbed alpha-particle energy in non-spherical nuclei of target cells (basal and secretory cells). The absorbed energy for alpha particles emitted by radon progeny in the human respiratory tract was calculated in basal- and secretory-cell nuclei, assuming conical and ellipsoidal forms for these cells. Distributions of specific energy for different combinations of alpha-particle sources, energies and targets are calculated and shown. The dose conversion coefficient for radon progeny is reduced for about 2mSv/WLM when conical and ellipsoidal cell nuclei are considered instead of the layers. While changes in the geometry of secretory-cell nuclei do not have significant effects on their absorbed dose, changes from spherical to conical basal-cell nuclei have significantly reduced their absorbed dose from approximately 4 to approximately 3mGy/WLM. This is expected because basal cells are situated close to the end of the range of 6MeV alpha particles. This also underlines the significance of better and more precise information on targets in the T-B tree. A further change in the dose conversion coefficient can be achieved if a different weighting scheme is adopted for the doses for the cells. The results demonstrate the necessity for better information on the target cells for more accurate dosimetry for radon progeny.

  3. ANALYSIS OF UNCERTAINTIES IN DOSE RECONSTRUCTION FROM BIOMARKERS: IMPACT ON STUDY DESIGN

    EPA Science Inventory

    The absorbed dose is defined as the quantity which has passed through the barriers (skin, GI tract, The absorbed dose of a pesticide can be estimated from its established urinary biomarker. ungs). For an exposure study, there are several options for biomarker collection, each w...

  4. SU-E-T-340: Dosimetry of a Small Field Electron Beam for Innovative Radiotherapy of Small Surface Or Internal Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reft, C; Lu, Z; Noonan, J

    2015-06-15

    Purpose: An innovative small high intensity electron beams with energies from 6 to 12 MeV is being developed at Argonne National Laboratory to deliver an absorbed dose via a catheter to small malignant and nonmalignant lesions. This study reports on the initial dosimetric characteristics of this electron beam. These include output calibration, percent depth dose, beam profiles and leakage through the catheter. Methods: To simulate the narrow electron beam, the Argonne Wakefield Accelerator is used to produce high energy electron beams. The electron beam from the accelerator is monitored by measuring the current through a transmission coil while the beammore » shape is observed with a fluorescent screen. The dosimetry properties of the electron beam transmitting through bone and tissue-like materials are measured with nanodot optically stimulated luminescent dosimeters and EDR radiographic film. The 6 MV photon beam from a Varian True beam linac is used to calibrate both the OSLDs and the film. Results: The beam characteristics of the 12 MeV beam were measured. The properties of the small diameter, 5 mm, beam differs from that of broad clinical electron beams from radiotherapy linacs. Due to the lack of scatter from the narrow beam, the maximum dose is at the surface and the depth of the 50% depth dose is 35 mm compared to 51 mm for a clinical 12 MeV. The widths of the 90% isodose measured at the surface and depths of 2, 6, 12, and 16 mm varied from 6.6 to 8.8 mm while the widths of the FWHM isodose varied from 7.8 to 25.5 mm. Conclusion: Initial beam measurements show favorable dosimetric properties for its use in treating either small surface or internal lesions, particularly to deliver radiation at the time of surgery to maximize the dose to the lesion and spare normal tissue.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, R; Le, Y; Armour, E

    Purpose: Dose-response studies in radiation therapy are typically using single response values for tumors across ensembles of tumors. Using the high dose rate (HDR) treatment plan dose grid and pre- and post-therapy FDG-PET images, we look for correlations between voxelized dose and FDG uptake response in individual tumors. Methods: Fifteen patients were treated for localized rectal cancer using 192Ir HDR brachytherapy in conjunction with surgery. FDG-PET images were acquired before HDR therapy and 6–8 weeks after treatment (prior to surgery). Treatment planning was done on a commercial workstation and the dose grid was calculated. The two PETs and the treatmentmore » dose grid were registered to each other using non-rigid registration. The difference in PET SUV values before and after HDR was plotted versus absorbed radiation dose for each voxel. The voxels were then separated into bins for every 400 cGy of absorbed dose and the bin average values plotted similarly. Results: Individual voxel doses did not correlate with PET response; however, when group into tumor subregions corresponding to dose bins, eighty percent of the patients showed a significant positive correlation (R2 > 0) between PET uptake difference in the targeted region and the absorbed dose. Conclusion: By considering larger ensembles of voxels, such as organ average absorbed dose or the dose bins considered here, valuable information may be obtained. The dose-response correlations as measured by FDG-PET difference potentially underlines the importance of FDG-PET as a measure of response, as well as the value of voxelized information.« less

  6. Female gonadal shielding with automatic exposure control increases radiation risks.

    PubMed

    Kaplan, Summer L; Magill, Dennise; Felice, Marc A; Xiao, Rui; Ali, Sayed; Zhu, Xiaowei

    2018-02-01

    Gonadal shielding remains common, but current estimates of gonadal radiation risk are lower than estimated risks to colon and stomach. A female gonadal shield may attenuate active automatic exposure control (AEC) sensors, resulting in increased dose to colon and stomach as well as to ovaries outside the shielded area. We assess changes in dose-area product (DAP) and absorbed organ dose when female gonadal shielding is used with AEC for pelvis radiography. We imaged adult and 5-year-old equivalent dosimetry phantoms using pelvis radiograph technique with AEC in the presence and absence of a female gonadal shield. We recorded DAP and mAs and measured organ absorbed dose at six internal sites using film dosimetry. Female gonadal shielding with AEC increased DAP 63% for the 5-year-old phantom and 147% for the adult phantom. Absorbed organ dose at unshielded locations of colon, stomach and ovaries increased 21-51% in the 5-year-old phantom and 17-100% in the adult phantom. Absorbed organ dose sampled under the shield decreased 67% in the 5-year-old phantom and 16% in the adult phantom. Female gonadal shielding combined with AEC during pelvic radiography increases absorbed dose to organs with greater radiation sensitivity and to unshielded ovaries. Difficulty in proper use of gonadal shields has been well described, and use of female gonadal shielding may be inadvisable given the risks of increasing radiation.

  7. The Molecular Effect of Diagnostic Absorbed Doses from 131I on Papillary Thyroid Cancer Cells In Vitro.

    PubMed

    Stasiołek, Mariusz; Adamczewski, Zbigniew; Śliwka, Przemysław W; Puła, Bartosz; Karwowski, Bolesław; Merecz-Sadowska, Anna; Dedecjus, Marek; Lewiński, Andrzej

    2017-06-15

    Diagnostic whole-body scan is a standard procedure in patients with thyroid cancer prior to the application of a therapeutic dose of 131 I. Unfortunately, administration of the radioisotope in a diagnostic dose may decrease further radioiodine uptake-the phenomenon called "thyroid stunning". We estimated radiation absorbed dose-dependent changes in genetic material, in particular in the sodium iodide symporter (NIS) gene promoter, and the NIS protein level in a K1 cell line derived from the metastasis of a human papillary thyroid carcinoma exposed to 131 I in culture. The different activities applied were calculated to result in absorbed doses of 5, 10 and 20 Gy. Radioiodine did not affect the expression of the NIS gene at the mRNA level, however, we observed significant changes in the NIS protein level in K1 cells. The decrease of the NIS protein level observed in the cells subjected to the lowest absorbed dose was paralleled by a significant increase in 8-oxo-dG concentrations ( p < 0.01) and followed by late activation of the DNA repair pathways. Our findings suggest that the impact of 131 I radiation on thyroid cells, in the range compared to doses absorbed during diagnostic procedures, is not linear and depends on various factors including the cellular components of thyroid pathology.

  8. Fluence-to-Absorbed Dose Conversion Coefficients for Use in Radiological Protection of Embryo and Foetus Against External Exposure to Muons from 20MeV to 50GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Jing

    2008-08-07

    This study used the Monte-Carlo code MCNPX to determine mean absorbed doses to the embryo and foetus when the mother is exposed to external muon fields. Monoenergetic muons ranging from 20 MeV to 50 GeV were considered. The irradiation geometries include anteroposterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT), isotropic (ISO), and top-down (TOP). At each of these irradiation geometries, absorbed doses to the foetal body were calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months, respectively. Muon fluence-to-absorbed-dose conversion coefficients were derived for the four prenatal ages. Since such conversion coefficients aremore » yet unknown, the results presented here fill a data gap.« less

  9. Editor's choice--Use of disposable radiation-absorbing surgical drapes results in significant dose reduction during EVAR procedures.

    PubMed

    Kloeze, C; Klompenhouwer, E G; Brands, P J M; van Sambeek, M R H M; Cuypers, P W M; Teijink, J A W

    2014-03-01

    Because of the increasing number of interventional endovascular procedures with fluoroscopy and the corresponding high annual dose for interventionalists, additional dose-protecting measures are desirable. The purpose of this study was to evaluate the effect of disposable radiation-absorbing surgical drapes in reducing scatter radiation exposure for interventionalists and supporting staff during an endovascular aneurysm repair (EVAR) procedure. This was a randomized control trial in which 36 EVAR procedures were randomized between execution with and without disposable radiation-absorbing surgical drapes (Radpad: Worldwide Innovations & Technologies, Inc., Kansas City, US, type 5511A). Dosimetric measurements were performed on the interventionalist (hand and chest) and theatre nurse (chest) with and without the use of the drapes to obtain the dose reduction and effect on the annual dose caused by the drapes. Use of disposable radiation-absorbing surgical drapes resulted in dose reductions of 49%, 55%, and 48%, respectively, measured on the hand and chest of the interventionalist and the chest of the theatre nurse. The use of disposable radiation-absorbing surgical drapes significantly reduces scatter radiation exposure for both the interventionalist and the supporting staff during EVAR procedures. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Commissioning dosimetry and in situ dose mapping of a semi-industrial Cobalt-60 gamma-irradiation facility using Fricke and Ceric-cerous dosimetry system and comparison with Monte Carlo simulation data

    NASA Astrophysics Data System (ADS)

    Mortuza, Md Firoz; Lepore, Luigi; Khedkar, Kalpana; Thangam, Saravanan; Nahar, Arifatun; Jamil, Hossen Mohammad; Bandi, Laxminarayan; Alam, Md Khorshed

    2018-03-01

    Characterization of a 90 kCi (3330 TBq), semi-industrial, cobalt-60 gamma irradiator was performed by commissioning dosimetry and in-situ dose mapping experiments with Ceric-cerous and Fricke dosimetry systems. Commissioning dosimetry was carried out to determine dose distribution pattern of absorbed dose in the irradiation cell and products. To determine maximum and minimum absorbed dose, overdose ratio and dwell time of the tote boxes, homogeneous dummy product (rice husk) with a bulk density of 0.13 g/cm3 were used in the box positions of irradiation chamber. The regions of minimum absorbed dose of the tote boxes were observed in the lower zones of middle plane and maximum absorbed doses were found in the middle position of front plane. Moreover, as a part of dose mapping, dose rates in the wall positions and some selective strategic positions were also measured to carry out multiple irradiation program simultaneously, especially for low dose research irradiation program. In most of the cases, Monte Carlo simulation data, using Monte Carlo N-Particle eXtended code version MCNPX 2.7., were found to be in congruence with experimental values obtained from Ceric-cerous and Fricke dosimetry; however, in close proximity positions from the source, the dose rate variation between chemical dosimetry and MCNP was higher than distant positions.

  11. Cosmic ray LET spectra and doses on board Cosmos-2044 biosatellite

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Kovalev, E. E.; Potapov, Y. V.; Benton, E. V.; Frank, A. L.; Benton, E. R.; Watts, J. W. Jr; Parnell, T. A.; Schopper, E.; Baican, B.; hide

    1992-01-01

    Results of the experiments on board Cosmos-2044 (Biosatellite 9) are presented. Various nuclear track detectors (NTD) (dielectric, AgCl-based, nuclear emulsions) were used to obtain the LET spectra inside and outside the satellite. The spectra from the different NTDs have proved to be in general agreement. The results of LET spectra calculations using two different models are also presented. The resultant LET distributions are used to calculate the absorbed and equivalent doses and the orbit-averaged quality factors (QF) of the cosmic rays (CR). Absorbed dose rates inside (approximately 20 g cm-2 shielding) and outside (1 g cm-2) the spacecraft, omitting electrons, were found to be 4.8 and 8.6 mrad d-1, respectively, while the corresponding equivalent doses were 8.8 and 19.7 mrem d-1. The effects of the flight parameters on the total fluence of, and on the dose from, the CR particles are analyzed. Integral dose distributions of the detected particles are also determined. The LET values which separate absorbed and equivalent doses into 50% intervals are estimated. The CR-39 dielectric NTD is shown to detect 20-30% of the absorbed dose and 60-70% of the equivalent dose in the Cosmos-2044 orbit. The influence of solar activity phase on the magnitude of CR flux is discussed.

  12. Developing new extension of GafChromic RTQA2 film to patient quality assurance field using a plan-based calibration method

    NASA Astrophysics Data System (ADS)

    Peng, Jiayuan; Zhang, Zhen; Wang, Jiazhou; Xie, Jiang; Chen, Junchao; Hu, Weigang

    2015-10-01

    GafChromic RTQA2 film is a type of radiochromic film designed for light field and radiation field alignment. The aim of this study is to extend the application of RTQA2 film to the measurement of patient specific quality assurance (QA) fields as a 2D relative dosimeter. Pre-irradiated and post-irradiated RTQA2 films were scanned in reflection mode using a flatbed scanner. A plan-based calibration (PBC) method utilized the mapping information of the calculated dose image and film grayscale image to create a dose versus pixel value calibration model. This model was used to calibrate the film grayscale image to the film relative dose image. The dose agreement between calculated and film dose images were analyzed by gamma analysis. To evaluate the feasibility of this method, eight clinically approved RapidArc cases (one abdomen cancer and seven head-and-neck cancer patients) were tested using this method. Moreover, three MLC gap errors and two MLC transmission errors were introduced to eight Rapidarc cases respectively to test the robustness of this method. The PBC method could overcome the film lot and post-exposure time variations of RTQA2 film to get a good 2D relative dose calibration result. The mean gamma passing rate of eight patients was 97.90%  ±  1.7%, which showed good dose consistency between calculated and film dose images. In the error test, the PBC method could over-calibrate the film, which means some dose error in the film would be falsely corrected to keep the dose in film consistent with the dose in the calculated dose image. This would then lead to a false negative result in the gamma analysis. In these cases, the derivative curve of the dose calibration curve would be non-monotonic which would expose the dose abnormality. By using the PBC method, we extended the application of more economical RTQA2 film to patient specific QA. The robustness of the PBC method has been improved by analyzing the monotonicity of the derivative of the calibration curve.

  13. Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite

    NASA Technical Reports Server (NTRS)

    Watts, J. W., Jr.; Parnell, T. A.; Akatov, Yu. A.; Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.

    1995-01-01

    Significant absorbed dose levels exceeding 1.0 Gy day(exp -1) have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLD's) made in U.S.S.R. and U.S.A. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.

  14. Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.; Watts, J. W. Jr; Parnell, T. A.

    1990-01-01

    Significant absorbed dose levels exceeding 1.0 Gy day-1 have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLDs) of U.S.S.R. and U.S.A. manufacture. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.

  15. Radiation ecology issues associated with murine rodents and shrews in the Chernobyl exclusion zone.

    PubMed

    Gaschak, Sergey P; Maklyuk, Yulia A; Maksimenko, Andrey M; Bondarkov, Mikhail D; Jannik, G Timothy; Farfán, Eduardo B

    2011-10-01

    This article describes major studies performed by the Chernobyl Center's International Radioecology Laboratory (Slavutich, Ukraine) on radioecology of murine rodents and shrews inhabiting the Chernobyl Exclusion Zone. The article addresses the long-term (1986-2005) and seasonal dynamics of radioactive contamination of animals and reviews interspecies differences in radionuclide accumulations and factors affecting the radionuclide accumulations. It is shown that bioavailability of radionuclides in the "soil-to-plant" chain and a trophic specialization of animals play key roles in determining their actual contamination levels. The total absorbed dose rates in small mammals significantly reduced during the years following the Chernobyl Nuclear Power Plant accident. In 1986, the absorbed dose rate reached 1.3-6.0 Gy h(-1) in the central areas of the Chernobyl Exclusion Zone (the "Red Forest"). In 1988 and 1990, the total absorbed dose rates were 1.3 and 0.42 Gy h(-1), respectively. In 1995, 2000, and 2005, according to the present study, the total absorbed dose rates rarely exceeded 0.00023, 0.00018, and 0.00015 Gy h(-1), respectively. Contributions of individual radiation sources into the total absorbed dose are described.

  16. Determination of spatial dose distribution in UCC treatments with LDR brachytherapy using Monte Carlo methods.

    PubMed

    Benites-Rengifo, Jorge Luis; Vega-Carrillo, Hector Rene

    2018-05-19

    Using Monte Carlos methods, with the MCNP5 code, a gynecological phantom and a vaginal cylinder were modeled. The spatial distribution of absorbed dose rates in Uterine Cervical Cancer treatment through low dose rate brachytherapy was determined. A liquid water gynecology computational phantom, including a vaginal cylinder applicator made of Lucite, was designed. The applicator has a linear array of four radioactive sources of Cesium 137. Around the vaginal cylinder, 13 water spherical cells of 0.5 cm-diameter were modeled to calculate absorbed dose emulating the procedure made by the treatment planning system. The gamma-ray fluence distribution was estimated, as well as the absorbed doses resulting approximately symmetrical for cells located at upper and lower of vaginal cylinder. Obtained results allow the use of the radioactive decay law to determine dose rate for Uterine Cervical Cancer using low dose rate brachytherapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. SU-E-T-470: Importance of HU-Mass Density Calibration Technique in Proton Pencil Beam Dose Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penfold, S; Miller, A

    2015-06-15

    Purpose: Stoichiometric calibration of Hounsfield Units (HUs) for conversion to proton relative stopping powers (RStPs) is vital for accurate dose calculation in proton therapy. However proton dose distributions are not only dependent on RStP, but also on relative scattering power (RScP) of patient tissues. RScP is approximated from material density but a stoichiometric calibration of HU-density tables is commonly neglected. The purpose of this work was to quantify the difference in calculated dose of a commercial TPS when using HU-density tables based on tissue substitute materials and stoichiometric calibrated ICRU tissues. Methods: Two HU-density calibration tables were generated based onmore » scans of the CIRS electron density phantom. The first table was based directly on measured HU and manufacturer quoted density of tissue substitute materials. The second was based on the same CT scan of the CIRS phantom followed by a stoichiometric calibration of ICRU44 tissue materials. The research version of Pinnacle{sup 3} proton therapy was used to compute dose in a patient CT data set utilizing both HU-density tables. Results: The two HU-density tables showed significant differences for bone tissues; the difference increasing with increasing HU. Differences in density calibration table translated to a difference in calculated RScP of −2.5% for ICRU skeletal muscle and 9.2% for ICRU femur. Dose-volume histogram analysis of a parallel opposed proton therapy prostate plan showed that the difference in calculated dose was negligible when using the two different HU-density calibration tables. Conclusion: The impact of HU-density calibration technique on proton therapy dose calculation was assessed. While differences were found in the calculated RScP of bony tissues, the difference in dose distribution for realistic treatment scenarios was found to be insignificant.« less

  18. Dosimetry in small-animal CT using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Lee, C.-L.; Park, S.-J.; Jeon, P.-H.; Jo, B.-D.; Kim, H.-J.

    2016-01-01

    Small-animal computed tomography (micro-CT) imaging devices are increasingly being used in biological research. While investigators are mainly interested in high-contrast, low-noise, and high-resolution anatomical images, relatively large radiation doses are required, and there is also growing concern over the radiological risk from preclinical experiments. This study was conducted to determine the radiation dose in a mouse model for dosimetric estimates using the GEANT4 application for tomographic emission simulations (GATE) and to extend its techniques to various small-animal CT applications. Radiation dose simulations were performed with the same parameters as those for the measured micro-CT data, using the MOBY phantom, a pencil ion chamber and an electrometer with a CT detector. For physical validation of radiation dose, absorbed dose of brain and liver in mouse were evaluated to compare simulated results with physically measured data using thermoluminescent dosimeters (TLDs). The mean difference between simulated and measured data was less than 2.9% at 50 kVp X-ray source. The absorbed doses of 37 brain tissues and major organs of the mouse were evaluated according to kVp changes. The absorbed dose over all of the measurements in the brain (37 types of tissues) consistently increased and ranged from 42.4 to 104.0 mGy. Among the brain tissues, the absorbed dose of the hypothalamus (157.8-414.30 mGy) was the highest for the beams at 50-80 kVp, and that of the corpus callosum (11.2-26.6 mGy) was the lowest. These results can be used as a dosimetric database to control mouse doses and preclinical targeted radiotherapy experiments. In addition, to accurately calculate the mouse-absorbed dose, the X-ray spectrum, detector alignment, and uncertainty in the elemental composition of the simulated materials must be accurately modeled.

  19. Absorbed doses of lungs from radon retained in airway lumens of mice and rats.

    PubMed

    Sakoda, Akihiro; Ishimori, Yuu; Yamaoka, Kiyonori; Kataoka, Takahiro; Mitsunobu, Fumihiro

    2013-08-01

    This paper provides absorbed doses arising from radon gas in air retained in lung airway lumens. Because radon gas exposure experiments often use small animals, the calculation was performed for mice and rats. For reference, the corresponding computations were also done for humans. Assuming that radon concentration in airway lumens is the same as that in the environment, its progeny's production in and clearance from airways were simulated. Absorbed dose rates were obtained for three lung regions and the whole lung, considering that secretory and basal cells are sensitive to radiation. The results showed that absorbed dose rates for all lung regions and whole lung generally increase from mice to rats to humans. For example, the dose rates for the whole lung were 25.4 in mice, 41.7 in rats, and 59.9 pGy (Bq m⁻³)⁻¹ h⁻¹ in humans. Furthermore, these values were also compared with lung dose rates from two other types of exposures, that is, due to inhalation of radon or its progeny, which were already reported. It was confirmed that the direct inhalation of radon progeny in the natural environment, which is known as a cause of lung cancer, results in the highest dose rates for all species. Based on the present calculations, absorbed dose rates of the whole lung from radon gas were lower by a factor of about 550 (mice), 200 (rats), or 70 (humans) than those from radon progeny inhalation. The calculated dose rate values are comparatively small. Nevertheless, the present study is considered to contribute to our understanding of doses from inhalation of radon and its progeny.

  20. Comparison of estimated human dose of (68)Ga-MAA with (99m)Tc-MAA based on rat data.

    PubMed

    Shanehsazzadeh, Saeed; Lahooti, Afsaneh; Yousefnia, Hassan; Geramifar, Parham; Jalilian, Amir Reza

    2015-10-01

    (99m)Tc macroaggregated albumin ((99m)Tc-MAA) that had been used as a perfusion agent has been evaluated. In this study, we tried to estimate human absorbed dose of ⁶⁸Ga-MAA via commercially available kit from Pars-Isotopes, based on biodistribution data in wild-type rats, and compare our estimation with the available absorbed dose data from (99m)Tc-MAA. For biodistribution of ⁶⁸Ga-MAA, three rats were sacrificed at each selected times after injection (15, 30, 45, 60, and 120 min) and the percentage of injected dose per gram of each organ was measured by direct counting from rats data from 11 harvested organs. The medical internal radiation dose formulation was applied to extrapolate from rats to human and to project the absorbed radiation dose for various organs in humans. The biodistribution data for ⁶⁸Ga-MAA showed that the most of the activity was taken up by the lung (more than 97 %) in no time. Our dose prediction shows that a 185-MBq injection of ⁶⁸Ga-MAA into humans might result in an estimated absorbed dose of 4.31 mGy in the whole body. The highest absorbed doses are observed in the adrenals, spleen, pancreas, and red marrow with 0.36, 0.34, 0.26, and 0.19 mGy, respectively. Since the (99m)Tc-MAA remains longer than ⁶⁸Ga-MAA in the lung and ⁶⁸Ga-MAA has good image qualities and results in lower amounts of dose delivery to the critical organs such as gonads, red marrow, and adrenals, the use of ⁶⁸Ga-MAA is recommended.

  1. Absorbed dose measurement in low temperature samples:. comparative methods using simulated material

    NASA Astrophysics Data System (ADS)

    Garcia, Ruth; Harris, Anthony; Winters, Martell; Howard, Betty; Mellor, Paul; Patil, Deepak; Meiner, Jason

    2004-09-01

    There is a growing need to reliably measure absorbed dose in low temperature samples, especially in the pharmaceutical and tissue banking industries. All dosimetry systems commonly used in the irradiation industry are temperature sensitive. Radiation of low temperature samples, such as those packaged with dry ice, must therefore take these dosimeter temperature effects into consideration. This paper will suggest a method to accurately deliver an absorbed radiation dose using dosimetry techniques designed to abrogate the skewing effects of low temperature environments on existing dosimetry systems.

  2. Study on the quality assurance of diagnostic X-ray machines and assessment of the absorbed dose to patients

    NASA Astrophysics Data System (ADS)

    Hassan, G. M.; Rabie, N.; Mustafa, K. A.; Abdel-Khalik, S. S.

    2012-09-01

    Radiation exposure and image quality in X-ray diagnostic radiology provide a clear understanding of the relationship between the radiation dose delivered to a patient and image quality in optimizing medical diagnostic radiology. Because a certain amount of radiation is unavoidably delivered to patients, this should be as low as reasonably achievable. Several X-ray diagnostic machines were used at different medical diagnostic centers in Egypt for studying the beam quality and the dose delivered to the patient. This article studies the factors affecting the beam quality, such as the kilo-volt peak (kVp), exposure time (mSc), tube current (mAs) and the absorbed dose in (μGy) for different examinations. The maximum absorbed dose measured per mAs was 594±239 and 12.5±3.7 μGy for the abdomen and the chest, respectively, while the absorbed dose at the elbow was 18±6 μGy, which was the minimum dose recorded. The compound and expanded uncertainties accompanying these measurements were 4±0.35% and 8±0.7%, respectively. The measurements were done through quality control tests as acceptance procedures.

  3. Optically Stimulated Luminescence (OSL) of Tooth Enamel and its Potential Use in Post-Radiation Exposure Triage

    PubMed Central

    DeWitt, R.; Klein, D. M.; Yukihara, E. G.; Simon, S. L.; McKeever, S. W. S.

    2009-01-01

    Optically stimulated luminescence (OSL) properties of dental enamel are discussed with a view to the development of an in-vivo dose assessment technique for medical triage following a radiological/nuclear accident or terrorist event. In the OSL technique, past radiation exposure is assessed by stimulating the sample with light of one wavelength and monitoring the luminescence at another wavelength under the assumption that the luminescence originates from the recombination of radiation-induced charges trapped at metastable defects in the enamel and that the intensity of the luminescence signal is in proportion to the absorbed radiation dose. Several primary findings emerged from this research: (a) sensitivities varied considerably between different teeth and also between fragments of the same tooth, (b) OSL signals were found to decay rapidly during the first 12 hours after irradiation and slower afterwards, (c) the fading rate of the luminescence signal varied between fragments, (d) blue light stimulation yields greater sensitivity than infra-red stimulation, while the OSL signal obtained with a high-intensity pulsed green-light laser was found to be not correlated with the radiation dose. Significant challenges remain to developing a practical in-vivo technique including the development of calibration procedures and lowering minimum detectable doses. PMID:20065717

  4. Relative Importance of Hip and Sacral Pain Among Long-Term Gynecological Cancer Survivors Treated With Pelvic Radiotherapy and Their Relationships to Mean Absorbed Doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldenstroem, Ann-Charlotte, E-mail: ann-charlotte.waldenstrom@oncology.gu.se; Department of Oncology, Sahlgrenska University Hospital, Gothenburg; Olsson, Caroline

    Purpose: To investigate the relative importance of patient-reported hip and sacral pain after pelvic radiotherapy (RT) for gynecological cancer and its relationship to the absorbed doses in these organs. Methods and Materials: We used data from a population-based study that included 650 long-term gynecological cancer survivors treated with pelvic RT in the Gothenburg and Stockholm areas in Sweden with a median follow-up of 6 years (range, 2-15) and 344 population controls. Symptoms were assessed through a study-specific postal questionnaire. We also analyzed the hip and sacral dose-volume histogram data for 358 of the survivors. Results: Of the survivors, one inmore » three reported having or having had hip pain after completing RT. Daily pain when walking was four times as common among the survivors compared to controls. Symptoms increased in frequency with a mean absorbed dose >37.5 Gy. Also, two in five survivors reported pain in the sacrum. Sacral pain also affected their walking ability and tended to increase with a mean absorbed dose >42.5 Gy. Conclusions: Long-term survivors of gynecological cancer treated with pelvic RT experience hip and sacral pain when walking. The mean absorbed dose was significantly related to hip pain and was borderline significantly related to sacral pain. Keeping the total mean absorbed hip dose below 37.5 Gy during treatment might lower the occurrence of long-lasting pain. In relation to the controls, the survivors had a lower occurrence of pain and pain-related symptoms from the hips and sacrum compared with what has previously been reported for the pubic bone.« less

  5. Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose

    NASA Technical Reports Server (NTRS)

    Welton, Andrew; Lee, Kerry

    2010-01-01

    While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.

  6. Determination of lipoic acid in human urine by capillary zone electrophoresis.

    PubMed

    Kubalczyk, Paweł; Głowacki, Rafał

    2017-07-01

    Fast, simple, and accurate CE method enabling determination of lipoic acid (LA) in human urine has been developed and validated. LA is a disulfide-containing natural compound absorbed from the organism's diet. Due to powerful antioxidant activity, LA has been used for prevention and treatment of various diseases and disorders, e.g. cardiovascular diseases, neurodegenerative disorders, and cancer. The proposed analytical procedure consists of liquid-liquid sample extraction, reduction of LA with tris(2-carboxyethyl)phosphine, derivatization with 1-benzyl-2-chloropyridinium bromide (BCPB) followed by field amplified sample injection stacking, capillary zone electrophoresis separation, and ultraviolet-absorbance detection of LA-BCPB derivative at 322 nm. Effective baseline electrophoretic separation was achieved within 6 min under the separation voltage of 20 kV (∼80 μA) using a standard fused-silica capillary (effective length 51.5 cm, 75 μm id) and BGE consisted of 0.05 mol/L borate buffer adjusted to pH 9. The experimentally determined limit of detection for LA in urine was 1.2 μmol/L. The calibration curve obtained for LA in urine showed linearity in the range 2.5-80 μmol/L, with R 2 0.9998. The relative standard deviation of the points of the calibration curve was lower than 10%. The analytical procedure was successfully applied to analysis of real urine samples from seven healthy volunteers who received single 100 mg dose of LA. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. An optimized computational method for determining the beta dose distribution using a multiple-element thermoluminescent dosimeter system.

    PubMed

    Shen, L; Levine, S H; Catchen, G L

    1987-07-01

    This paper describes an optimization method for determining the beta dose distribution in tissue, and it describes the associated testing and verification. The method uses electron transport theory and optimization techniques to analyze the responses of a three-element thermoluminescent dosimeter (TLD) system. Specifically, the method determines the effective beta energy distribution incident on the dosimeter system, and thus the system performs as a beta spectrometer. Electron transport theory provides the mathematical model for performing the optimization calculation. In this calculation, parameters are determined that produce calculated doses for each of the chip/absorber components in the three-element TLD system. The resulting optimized parameters describe an effective incident beta distribution. This method can be used to determine the beta dose specifically at 7 mg X cm-2 or at any depth of interest. The doses at 7 mg X cm-2 in tissue determined by this method are compared to those experimentally determined using an extrapolation chamber. For a great variety of pure beta sources having different incident beta energy distributions, good agreement is found. The results are also compared to those produced by a commonly used empirical algorithm. Although the optimization method produces somewhat better results, the advantage of the optimization method is that its performance is not sensitive to the specific method of calibration.

  8. MIRD Pamphlet No. 21: A Generalized Schema for Radiopharmaceutical Dosimetry-Standardization of Nomenclature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolch, W E; Eckerman, Keith F; Sgouros, George

    2009-03-01

    The internal dosimetry schema of the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine has provided a broad framework for assessment of the absorbed dose to whole organs, tissue subregions, voxelized tissue structures, and individual cellular compartments for use in both diagnostic and therapeutic nuclear medicine. The schema was originally published in 1968, revised in 1976, and republished in didactic form with comprehensive examples as the MIRD primer in 1988 and 1991. The International Commission on Radiological Protection (ICRP) is an organization that also supplies dosimetric models and technical data, for use in providing recommendations formore » limits on ionizing radiation exposure to workers and members of the general public. The ICRP has developed a dosimetry schema similar to that of the MIRD Committee but has used different terminology and symbols for fundamental quantities such as the absorbed fraction, specific absorbed fraction, and various dose coefficients. The MIRD Committee objectives for this pamphlet are 3-fold: to restate its schema for assessment of absorbed dose in a manner consistent with the needs of both the nuclear medicine and the radiation protection communities, with the goal of standardizing nomenclature; to formally adopt the dosimetry quantities equivalent dose and effective dose for use in comparative evaluations of potential risks of radiation-induced stochastic effects to patients after nuclear medicine procedures; and to discuss the need to identify dosimetry quantities based on absorbed dose that address deterministic effects relevant to targeted radionuclide therapy.« less

  9. A mathematical model for calculation of 90Sr absorbed dose in dental tissues: elaboration and comparison to EPR measurements.

    PubMed

    Shishkina, E A; Lyubashevskii, N M; Tolstykh, E I; Ignatiev, E A; Betenekova, T A; Nikiforov, S V

    2001-09-01

    A mathematical model for calculation of the 90Sr absorbed doses in dental tissues is presented. The results of the Monte-Carlo calculations are compared to the data obtained by EPR measurements of dental tissues. Radiometric measurements of the 90Sr concentrations. TLD and EPR dosimetry investigations were performed in animal (dog) study. The importance of the irregular 90Sr distribution in the dentine for absorbed dose formation has been shown. The dominant dose formation factors (main source-tissues) were identified for the crown dentine and enamel. The model has shown agreement with experimental data which allows to determine further directions of the human tooth model development.

  10. SU-E-T-491: Importance of Energy Dependent Protons Per MU Calibration Factors in IMPT Dose Calculations Using Monte Carlo Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randeniya, S; Mirkovic, D; Titt, U

    2014-06-01

    Purpose: In intensity modulated proton therapy (IMPT), energy dependent, protons per monitor unit (MU) calibration factors are important parameters that determine absolute dose values from energy deposition data obtained from Monte Carlo (MC) simulations. Purpose of this study was to assess the sensitivity of MC-computed absolute dose distributions to the protons/MU calibration factors in IMPT. Methods: A “verification plan” (i.e., treatment beams applied individually to water phantom) of a head and neck patient plan was calculated using MC technique. The patient plan had three beams; one posterior-anterior (PA); two anterior oblique. Dose prescription was 66 Gy in 30 fractions. Ofmore » the total MUs, 58% was delivered in PA beam, 25% and 17% in other two. Energy deposition data obtained from the MC simulation were converted to Gy using energy dependent protons/MU calibrations factors obtained from two methods. First method is based on experimental measurements and MC simulations. Second is based on hand calculations, based on how many ion pairs were produced per proton in the dose monitor and how many ion pairs is equal to 1 MU (vendor recommended method). Dose distributions obtained from method one was compared with those from method two. Results: Average difference of 8% in protons/MU calibration factors between method one and two converted into 27 % difference in absolute dose values for PA beam; although dose distributions preserved the shape of 3D dose distribution qualitatively, they were different quantitatively. For two oblique beams, significant difference in absolute dose was not observed. Conclusion: Results demonstrate that protons/MU calibration factors can have a significant impact on absolute dose values in IMPT depending on the fraction of MUs delivered. When number of MUs increases the effect due to the calibration factors amplify. In determining protons/MU calibration factors, experimental method should be preferred in MC dose calculations. Research supported by National Cancer Institute grant P01CA021239.« less

  11. Evaluation of absorbed dose in irradiated sugar-containing plant material (peony roots) by an ESR method

    NASA Astrophysics Data System (ADS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2015-12-01

    The relationship between electron spin resonance (ESR) signal intensity of irradiated plant materials and sugar content was investigated by spectral analysis using peony roots. A weak background signal near g=2.005 was observed in the roots. After a 10 kGy irradiation, the ESR line broadened and the intensity increased, and the spectral characteristics were similar to a typical spectrum of irradiated food containing crystalline sugars. The free radical concentration was nearly stable 30 days after irradiation. The spectrum of peony root 30 days after irradiation was simulated using the summation of the intensities of six assumed components: radical signals derived from (a) sucrose, (b) glucose, (c) fructose, (d) cellulose, (e) the background signal near g=2.005 and (f) unidentified component. The simulated spectra using the six components were in agreement with the observed sample spectra. The intensity of sucrose radical signal in irradiated samples increased proportionally up to 20 kGy. In addition, the intensity of sucrose radical signals was strongly correlated with the sucrose contents of the samples. The results showed that the radiation sensitivity of sucrose in peony roots was influenced little by other plant constituents. There was also a good correlation between the total area of the spectra and the sucrose content, because the sucrose content was higher than that of other sugars in the samples. In peony roots, estimation of the absorbed dose from the ESR signal intensity may be possible by a calibration method based on the sucrose content.

  12. [Determination of absorbed dose to water for high energy photon and electron beams--comparison of different dosimetry protocols].

    PubMed

    Zakaria, Golam Abu; Schütte, Wilhelm

    2003-01-01

    The determination of absorbed dose to water for high-energy photon and electron beams is performed in Germany according to the dosimetry protocol DIN 6800-2 (1997). At an international level, the main protocols used are the AAPM dosimetry protocol TG-51 (1999) and the IAEA Code of Practice TRS-398 (2000). The present paper systematically compares these three dosimetry protocols, and identifies similarities and differences. The investigations were performed using 4 and 10 MV photon beams, as well as 6, 8, 9, 10, 12 and 14 MeV electron beams. Two cylindrical and two plane-parallel type chambers were used for measurements. In general, the discrepancies among the three protocols were 1.0% for photon beams and 1.6% for electron beams. Comparative measurements in the context of measurement technical control (MTK) with TLD showed a deviation of less than 1.3% between the measurements obtained according to protocols DIN 6800-2 and MTK (exceptions: 4 MV photons with 2.9% and 6 MeV electrons with 2.4%). While only cylindrical chambers were used for photon beams, measurements of electron beams were performed using both cylindrical and plane-parallel chambers (the latter used after a cross-calibration to a cylindrical chamber, as required by the respective dosimetry protocols). Notably, unlike recommended in the corresponding protocols, we found out that cylindrical chambers can be used also for energies from 6 to 10 MeV.

  13. Absorbed dose kernel and self-shielding calculations for a novel radiopaque glass microsphere for transarterial radioembolization.

    PubMed

    Church, Cody; Mawko, George; Archambault, John Paul; Lewandowski, Robert; Liu, David; Kehoe, Sharon; Boyd, Daniel; Abraham, Robert; Syme, Alasdair

    2018-02-01

    Radiopaque microspheres may provide intraprocedural and postprocedural feedback during transarterial radioembolization (TARE). Furthermore, the potential to use higher resolution x-ray imaging techniques as opposed to nuclear medicine imaging suggests that significant improvements in the accuracy and precision of radiation dosimetry calculations could be realized for this type of therapy. This study investigates the absorbed dose kernel for novel radiopaque microspheres including contributions of both short and long-lived contaminant radionuclides while concurrently quantifying the self-shielding of the glass network. Monte Carlo simulations using EGSnrc were performed to determine the dose kernels for all monoenergetic electron emissions and all beta spectra for radionuclides reported in a neutron activation study of the microspheres. Simulations were benchmarked against an accepted 90 Y dose point kernel. Self-shielding was quantified for the microspheres by simulating an isotropically emitting, uniformly distributed source, in glass and in water. The ratio of the absorbed doses was scored as a function of distance from a microsphere. The absorbed dose kernel for the microspheres was calculated for (a) two bead formulations following (b) two different durations of neutron activation, at (c) various time points following activation. Self-shielding varies with time postremoval from the reactor. At early time points, it is less pronounced due to the higher energies of the emissions. It is on the order of 0.4-2.8% at a radial distance of 5.43 mm with increased size from 10 to 50 μm in diameter during the time that the microspheres would be administered to a patient. At long time points, self-shielding is more pronounced and can reach values in excess of 20% near the end of the range of the emissions. Absorbed dose kernels for 90 Y, 90m Y, 85m Sr, 85 Sr, 87m Sr, 89 Sr, 70 Ga, 72 Ga, and 31 Si are presented and used to determine an overall kernel for the microspheres based on weighted activities. The shapes of the absorbed dose kernels are dominated at short times postactivation by the contributions of 70 Ga and 72 Ga. Following decay of the short-lived contaminants, the absorbed dose kernel is effectively that of 90 Y. After approximately 1000 h postactivation, the contributions of 85 Sr and 89 Sr become increasingly dominant, though the absorbed dose-rate around the beads drops by roughly four orders of magnitude. The introduction of high atomic number elements for the purpose of increasing radiopacity necessarily leads to the production of radionuclides other than 90 Y in the microspheres. Most of the radionuclides in this study are short-lived and are likely not of any significant concern for this therapeutic agent. The presence of small quantities of longer lived radionuclides will change the shape of the absorbed dose kernel around a microsphere at long time points postadministration when activity levels are significantly reduced. © 2017 American Association of Physicists in Medicine.

  14. Graves' disease radioiodine-therapy: Choosing target absorbed doses for therapy planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willegaignon, J., E-mail: j.willegaignon@gmail.com; Sapienza, M. T.; Coura-Filho, G. B.

    Purpose: The precise determination of organ mass (m{sub th}) and total number of disintegrations within the thyroid gland (A{sup ~}) are essential for thyroid absorbed-dose calculations for radioiodine therapy. Nevertheless, these parameters may vary according to the method employed for their estimation, thus introducing uncertainty in the estimated thyroid absorbed dose and in any dose–response relationship derived using such estimates. In consideration of these points, thyroid absorbed doses for Graves’ disease (GD) treatment planning were calculated using different approaches to estimating the m{sub th} and the A{sup ~}. Methods: Fifty patients were included in the study. Thyroid{sup 131}I uptake measurementsmore » were performed at 2, 6, 24, 48, 96, and 220 h postadministration of a tracer activity in order to estimate the effective half-time (T{sub eff}) of {sup 131}I in the thyroid; the thyroid cumulated activity was then estimated using the T{sub eff} thus determined or, alternatively, calculated by numeric integration of the measured time-activity data. Thyroid mass was estimated by ultrasonography (USG) and scintigraphy (SCTG). Absorbed doses were calculated with the OLINDA/EXM software. The relationships between thyroid absorbed dose and therapy response were evaluated at 3 months and 1 year after therapy. Results: The average ratio (±1 standard deviation) betweenm{sub th} estimated by SCTG and USG was 1.74 (±0.64) and that between A{sup ~} obtained by T{sub eff} and the integration of measured activity in the gland was 1.71 (±0.14). These differences affect the calculated absorbed dose. Overall, therapeutic success, corresponding to induction of durable hypothyroidism or euthyroidism, was achieved in 72% of all patients at 3 months and in 90% at 1 year. A therapeutic success rate of at least 95% was found in the group of patients receiving doses of 200 Gy (p = 0.0483) and 330 Gy (p = 0.0131) when m{sub th} was measured by either USG or SCTG and A{sup ~} was determined by the integration of measured {sup 131}I activity in the thyroid gland and based on T{sub eff}, respectively. No statistically significant relationship was found between therapeutic response and patients’ age, administered {sup 131}I activity (MBq), 24-h thyroid {sup 131}I uptake (%) or T{sub eff} (p ≥ 0.064); nonetheless, a good relationship was found between the therapeutic response and m{sub th} (p ≤ 0.035). Conclusions: According to the results of this study, the most effective thyroid absorbed dose to be targeted in GD therapy should not be based on a fixed dose but rather should be individualized based on the patient'sm{sub th} and A{sup ~}. To achieve a therapeutic success (i.e., durable euthyroidism or hypothyroidism) rate of at least 95%, a thyroid absorbed dose of 200 or 330 Gy is required depending on the methodology used for estimating m{sub th} and A{sup ~}.« less

  15. Graves' disease radioiodine-therapy: Choosing target absorbed doses for therapy planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willegaignon, J., E-mail: j.willegaignon@gmail.com; Sapienza, M. T.; Coura-Filho, G. B.

    2014-01-15

    Purpose: The precise determination of organ mass (m{sub th}) and total number of disintegrations within the thyroid gland (A{sup ~}) are essential for thyroid absorbed-dose calculations for radioiodine therapy. Nevertheless, these parameters may vary according to the method employed for their estimation, thus introducing uncertainty in the estimated thyroid absorbed dose and in any dose–response relationship derived using such estimates. In consideration of these points, thyroid absorbed doses for Graves’ disease (GD) treatment planning were calculated using different approaches to estimating the m{sub th} and the A{sup ~}. Methods: Fifty patients were included in the study. Thyroid{sup 131}I uptake measurementsmore » were performed at 2, 6, 24, 48, 96, and 220 h postadministration of a tracer activity in order to estimate the effective half-time (T{sub eff}) of {sup 131}I in the thyroid; the thyroid cumulated activity was then estimated using the T{sub eff} thus determined or, alternatively, calculated by numeric integration of the measured time-activity data. Thyroid mass was estimated by ultrasonography (USG) and scintigraphy (SCTG). Absorbed doses were calculated with the OLINDA/EXM software. The relationships between thyroid absorbed dose and therapy response were evaluated at 3 months and 1 year after therapy. Results: The average ratio (±1 standard deviation) betweenm{sub th} estimated by SCTG and USG was 1.74 (±0.64) and that between A{sup ~} obtained by T{sub eff} and the integration of measured activity in the gland was 1.71 (±0.14). These differences affect the calculated absorbed dose. Overall, therapeutic success, corresponding to induction of durable hypothyroidism or euthyroidism, was achieved in 72% of all patients at 3 months and in 90% at 1 year. A therapeutic success rate of at least 95% was found in the group of patients receiving doses of 200 Gy (p = 0.0483) and 330 Gy (p = 0.0131) when m{sub th} was measured by either USG or SCTG and A{sup ~} was determined by the integration of measured {sup 131}I activity in the thyroid gland and based on T{sub eff}, respectively. No statistically significant relationship was found between therapeutic response and patients’ age, administered {sup 131}I activity (MBq), 24-h thyroid {sup 131}I uptake (%) or T{sub eff} (p ≥ 0.064); nonetheless, a good relationship was found between the therapeutic response and m{sub th} (p ≤ 0.035). Conclusions: According to the results of this study, the most effective thyroid absorbed dose to be targeted in GD therapy should not be based on a fixed dose but rather should be individualized based on the patient'sm{sub th} and A{sup ~}. To achieve a therapeutic success (i.e., durable euthyroidism or hypothyroidism) rate of at least 95%, a thyroid absorbed dose of 200 or 330 Gy is required depending on the methodology used for estimating m{sub th} and A{sup ~}.« less

  16. SU-C-204-01: A Dosimetric Investigation Into the Effects of Yttrium-90 Radioembolization On the GI Tract: In-Vivo and Histological Analysis in An Animal Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasciak, A; The University of Tennessee Graduate School of Medicine, Knoxville, TN; Nodit, L

    Purpose: In Yttrium-90 (90Y) radioembolization, non-target embolization (NTE) to the stomach or small bowel can result in ulceration, a rare but difficult to manage clinical complication. However, dosimetric thresholds for toxicity to these tissues from radioembolization have never been evaluated in a controlled setting. We performed an analysis of the effect of 90Y radioembolization in a porcine model at different absorbed-dose endpoints. Methods: Under approval of the University of Tennessee IACUC, 6 female pigs were included in this study. Animals underwent transfemoral angiography and infusion of calibrated dosages of 90Y resin microspheres into arteries supplying part of the gastric wall.more » A 99mTc-MAA simulation study was performed first to determine perfused tissue volume for treatment planning along with contrast-enhanced CT. The pigs were monitored for side effects for 9 weeks, after which time they were euthanized and their upper gastrointestinal tracts were harvested for analysis. Results: 90Y radioembolization was infused resulting in average absorbed doses of between 35.5 and 91.9 Gy to the gastric wall. No animal exhibited any signs of pain or gastrointestinal distress through the duration of the study. Excised tissue showed 1–2 small (<3.0 cm2) healed or healing superficial gastric lesions in 5 out of 6 animals. Histologic analysis demonstrated that lesion location was superficial to areas of abnormally high microsphere deposition. An analysis of microsphere deposition patterns within the gastric wall indicated a high preference for submucosal deposition. Dosimetric evaluation at the luminal mucosa performed based on microsphere deposition patterns confirmed that 90Y dosimetry techniques conventionally used in hepatic dosimetry provide a reasonable estimate of absorbed dose. Conclusion: The upper gastrointestinal tract may be less sensitive to 90Y radioembolization than previously thought. Lack of charged-particle equilibrium at the luminal mucosa may contribute to decreased toxicity of 90Y radioembolization compared to external-beam radiation therapy in gastrointestinal tissue. This project was supported by SIRTex Medical Ltd.« less

  17. SU-C-204-07: Radiation Therapy as a Potential Treatment for Obesity: Initial Data from a Preclinical Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasciak, A; Bradley, Y; Nodit, L

    Purpose: To evaluate the feasibility of Yttrium-90 (90Y) radionuclide therapy as a potential treatment for obesity in a porcine model. As the only appetite-stimulating hormone, localized targeting of ghrelin-producing X/A cells in the fundus of the stomach using 90Y may reduce serum ghrelin levels and decrease hunger. Methods: Under approval of the University of Tennessee IACUC, 8 young female pigs aged 12–13 weeks and weighing 21.8–28.1 Kg were included in this study. Six animals underwent transfemoral angiography as part of a two-day procedure involving: (1) infusion of 99mTc-MAA, followed by nuclear scintigraphy and contrast-enhanced CT for treatment-planning and (2) administrationmore » of resin 90Y microspheres into the stomach fundus. Calibrated 90Y activities were infused into the main left gastric and the gastric artery arising from the splenic to yield predetermined fundal absorbed doses. Control animals underwent a sham procedure with saline and contrast. Weekly animal weight and serum ghrelin were measured along with post-euthanasia histologic analyses of mucosal integrity and ghrelin immunoreactive cell-density. Results: 90Y radioembolization was administered to six pigs in dosages from 46.3 to 105.1 MBq resulting in average fundal absorbed doses between 35.5 and 91.9 Gy. No animal showed any signs of pain or GI complication through the duration of the study. Ghrelin immunoreactive cell-density was significantly lower in treated vs. control animals in both the stomach fundus (13.5 vs 34.8, P < 0.05) and body (11.2 vs 19.8, P < 0.05). A trend towards decreased weight gain in treated animals as well as a decrease in explanted stomach volume was also noted. Conclusion: The safety and technical feasibility of radiation therapy using 90Y radioembolization as a potential treatment for obesity has been demonstrated at fundal absorbed doses over 90 Gy. Preliminary data is suggestive of short-term safety and potential efficacy, however, further animal studies are required. Project was funded by SIRTex medical ltd.« less

  18. Cosmic ray LET spectra and doses on board Cosmos-2044 biosatellite

    NASA Technical Reports Server (NTRS)

    Watts, J. W., Jr.; Parnell, T. A.; Dudkin, V. E.; Kovalev, E. E.; Potapov, Yu. V.; Benton, E. V.; Frank, A. L.; Benton, E. R.; Beaujean, R.; Heilmann, C.

    1995-01-01

    Results of the experiments on board Cosmos-2044 (Biosatellite 9) are presented. Various nuclear track detectors (NTD) (dielectric, AgCl-based, nuclear emulsions) were used to obtain the Linear Energy Transfer (LET) spectra inside and outside the satellite. The spectra from the different NTDs have proved to be in general agreement. The results of LET spectra calculations using two different models are also presented. The resultant LET distributions are used to calculate the absorbed and equivalent doses and the orbit-averaged quality factors (QF) of the cosmic rays (CR). Absorbed dose rates inside (approximately 20 g cm (exp -2) shielding) and outside (1 g cm(exp -2) the spacecraft, omitting electrons, were found to be 4.8 and 8.6 mrad d (exp -1), respectively, while the corresponding equivalent doses were 8.8 and 19.7 mrem d(exp -1). The effects of the flight parameters on the total fluence of, and on the dose from the CR particles are analyzed. Integral dose distributions of the detected particles are also determined. The LET values which separate absorbed and equivalent doses into 50% intervals are estimated. The CR-39 dielectric NTD is shown to detect 20-30% of the absorbed dose and 60-70% of the equivalent dose in the Cosmos-2044 orbit. The influence of solar activity phase on the magnitude of CR flux is discussed.

  19. SU-F-P-49: Comparison of Mapcheck 2 Commission for Photon and Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, J; Yang, C; Morris, B

    2016-06-15

    Purpose: We will investigate the performance variation of the MapCheck2 detector array with different array calibration and dose calibration pairs from different radiation therapy machine. Methods: A MapCheck2 detector array was calibrated on 3 Elekta accelerators with different energy of photon (6 MV, 10 MV, 15 MV and 18 MV) and electron (6 MeV, 9 MeV, 12 MeV, 15 MeV, 18 MeV and 20 MeV) beams. Dose calibration was conducted by referring a water phantom measurement following TG-51 protocol and commission data for each accelerator. A 10 cm × 10 cm beam was measured. This measured map was morphed bymore » applying different calibration pairs. Then the difference was quantified by comparing the doses and similarity using gamma analysis of criteria (0.5 %, 0 mm). Profile variation was evaluated on a same dataset with different calibration pairs. The passing rate of an IMRT QA planar dose was calculated by using 3 mm and 3% criteria and compared with respect to each calibration pairs. Results: In this study, a dose variation up to 0.67% for matched photons and 1.0% for electron beams is observed. Differences of flatness and symmetry can be as high as 1% and 0.7% respectively. Gamma analysis shows a passing rate ranging from 34% to 85% for the standard 10 × 10 cm field. Conclusion: Our work demonstrated that a customized array calibration and dose calibration for each machine is preferred to fulfill a high standard patient QA task.« less

  20. Radioactivity of peat mud used in therapy.

    PubMed

    Karpińska, Maria; Mnich, Krystian; Kapała, Jacek; Bielawska, Agnieszka; Kulesza, Grzegorz; Mnich, Stanisław

    2016-02-01

    The aim of the study was to determine the contents of natural and artificial isotopes in peat mud and to estimate the radiation dose absorbed via skin in patients during standard peat mud treatment. The analysis included 37 samples collected from 8 spas in Poland. The measurements of isotope concentration activity were conducted with the use of gamma spectrometry methods. The skin dose in a standard peat mud bath therapy is approximately 300 nSv. The effective dose of such therapy is considered to be 22 nSv. The doses absorbed during peat mud therapy are 5 orders of magnitude lower than effective annual dose absorbed from the natural radiation background by a statistical Pole (3.5 mSv). Neither therapeutic nor harmful effect is probable in case of such a small dose of ionising radiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. High resolution digital autoradiographic and dosimetric analysis of heterogeneous radioactivity distribution in xenografted prostate tumors.

    PubMed

    Timmermand, Oskar V; Nilsson, Jenny; Strand, Sven-Erik; Elgqvist, Jörgen

    2016-12-01

    The first main aim of this study was to illustrate the absorbed dose rate distribution from 177 Lu in sections of xenografted prostate cancer (PCa) tumors using high resolution digital autoradiography (DAR) and compare it with hypothetical identical radioactivity distributions of 90 Y or 7 MeV alpha-particles. Three dosimetry models based on either dose point kernels or Monte Carlo simulations were used and evaluated. The second and overlapping aim, was to perform DAR imaging and dosimetric analysis of the distribution of radioactivity, and hence the absorbed dose rate, in tumor sections at an early time point after injection during radioimmunotherapy using 177 Lu-h11B6, directed against the human kallikrein 2 antigen. Male immunodeficient BALB/c nude mice, aged 6-8 w, were inoculated by subcutaneous injection of ∼10 7 LNCaP cells in a 200 μl suspension of a 1:1 mixture of medium and Matrigel. The antibody h11B6 was conjugated with the chelator CHX-A″-DTPA after which conjugated h11B6 was mixed with 177 LuCl 3 . The incubation was performed at room temperature for 2 h, after which the labeling was terminated and the solution was purified on a NAP-5 column. About 20 MBq 177 Lu-h11B6 was injected intravenously in the tail vein. At approximately 10 h postinjection (hpi), the mice were sacrificed and one tumor was collected from each of the five animals and cryosectioned into 10 μm thick slices. The tumor slices were measured and imaged using the DAR MicroImager system and the M3Vision software. Then the absorbed dose rate was calculated using a dose point kernel generated with the Monte Carlo code gate v7.0. The DAR system produced high resolution images of the radioactivity distribution, close to the resolution of single PCa cells. The DAR images revealed a pronounced heterogeneous radioactivity distribution, i.e., count rate per area, in the tumors, indicated by the normalized intensity variations along cross sections as mean ± SD: 0.15 ± 0.15, 0.20 ± 0.18, 0.12 ± 0.17, 0.15 ± 0.16, and 0.23 ± 0.22, for each tumor section, respectively. The absorbed dose rate distribution for 177 Lu at the time of dissection 10 hpi showed a maximum value of 2.9 ± 0.4 Gy/h (mean ± SD), compared to 6.0 ± 0.9 and 159 ± 25 Gy/h for the hypothetical 90 Y and 7 MeV alpha-particle cases assuming the same count rate densities. Mean absorbed dose rate values were 0.13, 0.53, and 6.43 Gy/h for 177 Lu, 90 Y, and alpha-particles, respectively. The initial uptake of 177 Lu-h11B6 produces a high absorbed dose rate, which is important for a successful therapeutic outcome. The hypothetical 90 Y case indicates a less heterogeneous absorbed dose rate distribution and a higher mean absorbed dose rate compared to 177 Lu, although with a potentially increased irradiation of surrounding healthy tissue. The hypothetical alpha-particle case indicates the possibility of a higher maximum absorbed dose rate, although with a more heterogeneous absorbed dose rate distribution.

  2. In Vitro Dosimetry of Silver Nanoparticles

    EPA Science Inventory

    An important issue for interpreting in vitro nanomaterial testing is quantifying the dose absorbed by target cells. Considerations include the concentration added to the culture and the proportion of the applied dose that is absorbed by the target cells. Rapid and efficient techn...

  3. Dependency of EBT2 film calibration curve on postirradiation time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Liyun, E-mail: liyunc@isu.edu.tw; Ding, Hueisch-Jy; Ho, Sheng-Yow

    2014-02-15

    Purpose: The Ashland Inc. product EBT2 film model is a widely used quality assurance tool, especially for verification of 2-dimensional dose distributions. In general, the calibration film and the dose measurement film are irradiated, scanned, and calibrated at the same postirradiation time (PIT), 1-2 days after the films are irradiated. However, for a busy clinic or in some special situations, the PIT for the dose measurement film may be different from that of the calibration film. In this case, the measured dose will be incorrect. This paper proposed a film calibration method that includes the effect of PIT. Methods: Themore » dose versus film optical density was fitted to a power function with three parameters. One of these parameters was PIT dependent, while the other two were found to be almost constant with a standard deviation of the mean less than 4%. The PIT-dependent parameter was fitted to another power function of PIT. The EBT2 film model was calibrated using the PDD method with 14 different PITs ranging from 1 h to 2 months. Ten of the fourteen PITs were used for finding the fitting parameters, and the other four were used for testing the model. Results: The verification test shows that the differences between the delivered doses and the film doses calculated with this modeling were mainly within 2% for delivered doses above 60 cGy, and the total uncertainties were generally under 5%. The errors and total uncertainties of film dose calculation were independent of the PIT using the proposed calibration procedure. However, the fitting uncertainty increased with decreasing dose or PIT, but stayed below 1.3% for this study. Conclusions: The EBT2 film dose can be modeled as a function of PIT. For the ease of routine calibration, five PITs were suggested to be used. It is recommended that two PITs be located in the fast developing period (1∼6 h), one in 1 ∼ 2 days, one around a week, and one around a month.« less

  4. Radiation dose reduction efficiency of buildings after the accident at the Fukushima Daiichi Nuclear Power Station.

    PubMed

    Monzen, Satoru; Hosoda, Masahiro; Osanai, Minoru; Tokonami, Shinji

    2014-01-01

    Numerous radionuclides were released from the Fukushima Daiichi Nuclear Power Station (F1-NPS) in Japan following the magnitude 9.0 earthquake and tsunami on March 11, 2011. Local residents have been eager to calculate their individual radiation exposure. Thus, absorbed dose rates in the indoor and outdoor air at evacuation sites in the Fukushima Prefecture were measured using a gamma-ray measuring devices, and individual radiation exposure was calculated by assessing the radiation dose reduction efficiency (defined as the ratio of absorbed dose rate in the indoor air to the absorbed dose rate in the outdoor air) of wood, aluminum, and reinforced concrete buildings. Between March 2011 and July 2011, dose reduction efficiencies of wood, aluminum, and reinforced concrete buildings were 0.55 ± 0.04, 0.15 ± 0.02, and 0.19 ± 0.04, respectively. The reduction efficiency of wood structures was 1.4 times higher than that reported by the International Atomic Energy Agency. The efficiency of reinforced concrete was similar to previously reported values, whereas that of aluminum structures has not been previously reported. Dose reduction efficiency increased in proportion to the distance from F1-NPS at 8 of the 18 evacuation sites. Time variations did not reflect dose reduction efficiencies at evacuation sites although absorbed dose rates in the outdoor air decreased. These data suggest that dose reduction efficiency depends on structure types, levels of contamination, and evacuee behaviors at evacuation sites.

  5. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV).

    PubMed

    Tedgren, Asa Carlsson; Hedman, Angelica; Grindborg, Jan-Erik; Carlsson, Gudrun Alm

    2011-10-01

    High energy photon beams are used in calibrating dosimeters for use in brachytherapy since absorbed dose to water can be determined accurately and with traceability to primary standards in such beams, using calibrated ion chambers and standard dosimetry protocols. For use in brachytherapy, beam quality correction factors are needed, which include corrections for differences in mass energy absorption properties between water and detector as well as variations in detector response (intrinsic efficiency) with radiation quality, caused by variations in the density of ionization (linear energy transfer (LET) -distributions) along the secondary electron tracks. The aim of this work was to investigate experimentally the detector response of LiF:Mg,Ti thermoluminescent dosimeters (TLD) for photon energies below 1 MeV relative to (60)Co and to address discrepancies between the results found in recent publications of detector response. LiF:Mg,Ti dosimeters of formulation MTS-N Poland were irradiated to known values of air kerma free-in-air in x-ray beams at tube voltages 25-250 kV, in (137)Cs- and (60)Co-beams at the Swedish Secondary Standards Dosimetry Laboratory. Conversions from air kerma free-in-air into values of mean absorbed dose in the dosimeters in the actual irradiation geometries were made using EGSnrc Monte Carlo simulations. X-ray energy spectra were measured or calculated for the actual beams. Detector response relative to that for (60)Co was determined at each beam quality. An increase in relative response was seen for all beam qualities ranging from 8% at tube voltage 25 kV (effective energy 13 keV) to 3%-4% at 250 kV (122 keV effective energy) and (137)Cs with a minimum at 80 keV effective energy (tube voltage 180 kV). The variation with effective energy was similar to that reported by Davis et al. [Radiat. Prot. Dosim. 106, 33-43 (2003)] with our values being systematically lower by 2%-4%. Compared to the results by Nunn et al. [Med. Phys. 35, 1861-1869 (2008)], the relative detector response as a function of effective energy differed in both shape and magnitude. This could be explained by the higher maximum read-out temperature (350 °C) used by Nunn et al. [Med. Phys. 35, 1861-1869 (2008)], allowing light emitted from high-temperature peaks with a strong LET dependence to be registered. Use of TLD-100 by Davis et al. [Radiat. Prot. Dosim. 106, 33-43 (2003)] with a stronger super-linear dose response compared to MTS-N was identified as causing the lower relative detector response in this work. Both careful dosimetry and strict protocols for handling the TLDs are required to reach solid experimental data on relative detector response. This work confirms older findings that an over-response relative to (60)Co exists for photon energies below 200-300 keV. Comparison with the results from the literature indicates that using similar protocols for annealing and read-out, dosimeters of different makes (TLD-100, MTS-N) differ in relative detector response. Though universality of the results has not been proven and further investigation is needed, it is anticipated that with the use of strict protocols for annealing and read-out, it will be possible to determine correction factors that can be used to reduce uncertainties in dose measurements around brachytherapy sources at photon energies where primary standards for absorbed dose to water are not available.

  6. Method for outlier detection: a tool to assess the consistency between laboratory data and ultraviolet-visible absorbance spectra in wastewater samples.

    PubMed

    Zamora, D; Torres, A

    2014-01-01

    Reliable estimations of the evolution of water quality parameters by using in situ technologies make it possible to follow the operation of a wastewater treatment plant (WWTP), as well as improving the understanding and control of the operation, especially in the detection of disturbances. However, ultraviolet (UV)-Vis sensors have to be calibrated by means of a local fingerprint laboratory reference concentration-value data-set. The detection of outliers in these data-sets is therefore important. This paper presents a method for detecting outliers in UV-Vis absorbances coupled to water quality reference laboratory concentrations for samples used for calibration purposes. Application to samples from the influent of the San Fernando WWTP (Medellín, Colombia) is shown. After the removal of outliers, improvements in the predictability of the influent concentrations using absorbance spectra were found.

  7. Effect of improved TLD dosimetry on the determination of dose rate constants for {sup 125}I and {sup 103}Pd brachytherapy seeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, M., E-mail: manuel.rodriguez@rmp.uhn.ca; Rogers, D. W. O.

    Purpose: To more accurately account for the relative intrinsic energy dependence and relative absorbed-dose energy dependence of TLDs when used to measure dose rate constants (DRCs) for {sup 125}I and {sup 103}Pd brachytherapy seeds, to thereby establish revised “measured values” for all seeds and compare the revised values with Monte Carlo and consensus values. Methods: The relative absorbed-dose energy dependence, f{sup rel}, for TLDs and the phantom correction, P{sub phant}, are calculated for {sup 125}I and {sup 103}Pd seeds using the EGSnrc BrachyDose and DOSXYZnrc codes. The original energy dependence and phantom corrections applied to DRC measurements are replaced bymore » calculated (f{sup rel}){sup −1} and P{sub phant} values for 24 different seed models. By comparing the modified measured DRCs to the MC values, an appropriate relative intrinsic energy dependence, k{sub bq}{sup rel}, is determined. The new P{sub phant} values and relative absorbed-dose sensitivities, S{sub AD}{sup rel}, calculated as the product of (f{sup rel}){sup −1} and (k{sub bq}{sup rel}){sup −1}, are used to individually revise the measured DRCs for comparison with Monte Carlo calculated values and TG-43U1 or TG-43U1S1 consensus values. Results: In general, f{sup rel} is sensitive to the energy spectra and models of the brachytherapy seeds. Values may vary up to 8.4% among {sup 125}I and {sup 103}Pd seed models and common TLD shapes. P{sub phant} values depend primarily on the isotope used. Deduced (k{sub bq}{sup rel}){sup −1} values are 1.074 ± 0.015 and 1.084 ± 0.026 for {sup 125}I and {sup 103}Pd seeds, respectively. For (1 mm){sup 3} chips, this implies an overall absorbed-dose sensitivity relative to {sup 60}Co or 6 MV calibrations of 1.51 ± 1% and 1.47 ± 2% for {sup 125}I and {sup 103}Pd seeds, respectively, as opposed to the widely used value of 1.41. Values of P{sub phant} calculated here have much lower statistical uncertainties than literature values, but systematic uncertainties from density and composition uncertainties are significant. Using these revised values with the literature’s DRC measurements, the average discrepancies between revised measured values and Monte Carlo values are 1.2% and 0.2% for {sup 125}I and {sup 103}Pd seeds, respectively, compared to average discrepancies for the original measured values of 4.8%. On average, the revised measured values are 4.3% and 5.9% lower than the original measured values for {sup 103}Pd and {sup 125}I seeds, respectively. The average of revised DRCs and Monte Carlo values is 3.8% and 2.8% lower for {sup 125}I and {sup 103}Pd seeds, respectively, than the consensus values in TG-43U1 or TG-43U1S1. Conclusions: This work shows that f{sup rel} is TLD shape and seed model dependent suggesting a need to update the generalized energy response dependence, i.e., relative absorbed-dose sensitivity, measured 25 years ago and applied often to DRC measurements of {sup 125}I and {sup 103}Pd brachytherapy seeds. The intrinsic energy dependence for LiF TLDs deduced here is consistent with previous dosimetry studies and emphasizes the need to revise the DRC consensus values reported by TG-43U1 or TG-43U1S1.« less

  8. Radiation dosimetry in cell biology: comparison of calculated and measured absorbed dose for a range of culture vessels and clinical beam qualities.

    PubMed

    Claridge Mackonis, Elizabeth; Hammond, Lauren; Esteves, Ana I S; Suchowerska, Natalka

    2018-02-01

    Cell culture studies are frequently used to evaluate the effects of cancer treatments such as radiotherapy, hormone therapy, chemotherapy, nanoparticle enhancement, and to determine any synergies between the treatments. To achieve valid results, the absorbed dose of each therapy needs to be well known and controlled. In this study, we aim to determine the uncertainty associated with radiation exposure in different experimental conditions. We have performed an in-depth evaluation of the absorbed dose and dose distribution that would be delivered to a cell sample when cultivated in a number of the more popular designs of culture vessels. We focus on exposure to two beam types: a kilovoltage x-ray beam and a megavoltage photon beam, both of which are routinely used to treat cancer patients in the clinical environment. Our results identify large variations of up to 16% in the absorbed dose across multi-well culture plates, which if ignored in radiobiological experiments, have the potential to lead to erroneous conclusions.

  9. Estimation of Second Primary Cancer Risk After Treatment with Radioactive Iodine for Differentiated Thyroid Carcinoma.

    PubMed

    Corrêa, Nilton Lavatori; de Sá, Lidia Vasconcellos; de Mello, Rossana Corbo Ramalho

    2017-02-01

    An increase in the incidence of second primary cancers is the late effect of greatest concern that could occur in differentiated thyroid carcinoma (DTC) patients treated with radioactive iodine (RAI). The decision to treat a patient with RAI should therefore incorporate a careful risk-benefit analysis. The objective of this work was to adapt the risk-estimation models developed by the Biological Effects of Ionizing Radiation Committee to local epidemiological characteristics in order to assess the carcinogenesis risk from radiation in a population of Brazilian DTC patients treated with RAI. Absorbed radiation doses in critical organs were also estimated to determine whether they exceeded the thresholds for deterministic effects. A total of 416 DTC patients treated with RAI were retrospectively studied. Four organs were selected for absorbed dose estimation and subsequent calculation of carcinogenic risk: the kidney, stomach, salivary glands, and bone marrow. Absorbed doses were calculated by dose factors (absorbed dose per unit activity administered) previously established and based on standard human models. The lifetime attributable risk (LAR) of incidence of cancer as a function of age, sex, and organ-specific dose was estimated, relating it to the activity of RAI administered in the initial treatment. The salivary glands received the greatest absorbed doses of radiation, followed by the stomach, kidney, and bone marrow. None of these, however, surpassed the threshold for deterministic effects for a single administration of RAI. Younger patients received the same level of absorbed dose in the critical organs as older patients did. The lifetime attributable risk for stomach cancer incidence was by far the highest, followed in descending order by salivary-gland cancer, leukemia, and kidney cancer. RAI in a single administration is safe in terms of deterministic effects because even high-administered activities do not result in absorbed doses that exceed the thresholds for significant tissue reactions. The Biological Effects of Ionizing Radiation Committee mathematical models are a practical method of quantifying the risks of a second primary cancer, demonstrating a marked decrease in risk for younger patients with the administration of lower RAI activities and suggesting that only the smallest activities necessary to promote an effective ablation should be administered in low-risk DTC patients.

  10. Radiation absorbed dose to bladder walls from positron emitters in the bladder content.

    PubMed

    Powell, G F; Chen, C T

    1987-01-01

    A method to calculate absorbed doses at depths in the walls of a static spherical bladder from a positron emitter in the bladder content has been developed. The beta ray dose component is calculated for a spherical model by employing the solutions to the integration of Loevinger and Bochkarev point source functions over line segments and a line segment source array technique. The gamma ray dose is determined using the specific gamma ray constant. As an example, absorbed radiation doses to the bladder walls from F-18 in the bladder content are presented for static spherical bladder models having radii of 2.0 and 3.5 cm, respectively. Experiments with ultra-thin thermoluminescent dosimeters (TLD's) were performed to verify the results of the calculations. Good agreement between TLD measurements and calculations was obtained.

  11. Specification of absorbed-sound power in the ear canal: Application to suppression of stimulus frequency otoacoustic emissions

    PubMed Central

    Keefe, Douglas H.; Schairer, Kim S.

    2011-01-01

    An insert ear-canal probe including sound source and microphone can deliver a calibrated sound power level to the ear. The aural power absorbed is proportional to the product of mean-squared forward pressure, ear-canal area, and absorbance, in which the sound field is represented using forward (reverse) waves traveling toward (away from) the eardrum. Forward pressure is composed of incident pressure and its multiple internal reflections between eardrum and probe. Based on a database of measurements in normal-hearing adults from 0.22 to 8 kHz, the transfer-function level of forward relative to incident pressure is boosted below 0.7 kHz and within 4 dB above. The level of forward relative to total pressure is maximal close to 4 kHz with wide variability across ears. A spectrally flat incident-pressure level across frequency produces a nearly flat absorbed power level, in contrast to 19 dB changes in pressure level. Calibrating an ear-canal sound source based on absorbed power may be useful in audiological and research applications. Specifying the tip-to-tail level difference of the suppression tuning curve of stimulus frequency otoacoustic emissions in terms of absorbed power reveals increased cochlear gain at 8 kHz relative to the level difference measured using total pressure. PMID:21361437

  12. Influence of phantom materials on the energy dependence of LiF:Mg,Ti thermoluminescent dosimeters exposed to 20-300 kV narrow x-ray spectra, 137Cs and 60Co photons.

    PubMed

    Massillon-J L, G; Cabrera-Santiago, A; Minniti, R; O'Brien, M; Soares, C G

    2014-08-07

    LiF:Mg,Ti, are widely used to estimate absorbed-dose received by patients during diagnostic or medical treatment. Conveniently, measurements are usually made in plastic phantoms. However, experimental conditions vary from one group to another and consequently, a lack of consensus data exists for the energy dependence of thermoluminescent (TL) response. This work investigated the energy dependence of TLD-100 TL-response and the effect of irradiating the dosimeters in different phantom materials for a broad range of energy photons in an attempt to understand the parameters that affect the discrepancies reported by various research groups. TLD-100s were exposed to 20-300 kV narrow x-ray spectra, (137)Cs and (60)Co photons. Measurements were performed in air, PMMA, wt1, polystyrene and TLDS as surrounding material. Total air-kerma values delivered were between 50 and 150 mGy for x-rays and 50 mGy for (137)Cs and (60)Co beams; each dosimeter was irradiated individually. Relative response, R, defined as the TL-response per air-kerma and relative efficiency, RE, described as the TL-response per absorbed-dose (obtained through Monte Carlo (MC) and analytically) were used to describe the TL-response. Both R and RE are normalized to the responses in a (60)Co beam. The results indicate that the use of different phantom materials affects the TL-response and this response varies with energy and material type. MC simulations reproduced qualitatively the experimental data: a) R increases, reaches a maximum at ~25 keV and decreases; b) RE decreases, down to a minimum at ~60 keV, increases to a maximum at ~150 keV and after decreases. Independent of the phantom materials, RE strongly depends on how the absorbed dose is evaluated and the discrepancies between RE evaluated analytically and by MC simulation are around 4% and 18%, dependent on the photon energy. The comparison between our results and that reported in the literature suggests that the discrepancy observed between different research groups appears to be most likely related to supralinearity effect, phantom materials, difference on the energy-spectra and geometry conditions during each experiment rather than parameters such as heating-rate or annealing procedure, which was supported by MC simulation. From the results obtained in this work and the strict analysis performed, we can conclude that for clinical applications of TLD-100, special attention must be taken when published data are used to convert TL calibration curve from (60)Co to low-energy photons. Otherwise, this can lead to incorrect results when later used to measure absorbed dose in human tissue.

  13. Randomized comparison of operator radiation exposure comparing transradial and transfemoral approach for percutaneous coronary procedures: rationale and design of the minimizing adverse haemorrhagic events by TRansradial access site and systemic implementation of angioX - RAdiation Dose study (RAD-MATRIX).

    PubMed

    Sciahbasi, Alessandro; Calabrò, Paolo; Sarandrea, Alessandro; Rigattieri, Stefano; Tomassini, Francesco; Sardella, Gennaro; Zavalloni, Dennis; Cortese, Bernardo; Limbruno, Ugo; Tebaldi, Matteo; Gagnor, Andrea; Rubartelli, Paolo; Zingarelli, Antonio; Valgimigli, Marco

    2014-06-01

    Radiation absorbed by interventional cardiologists is a frequently under-evaluated important issue. Aim is to compare radiation dose absorbed by interventional cardiologists during percutaneous coronary procedures for acute coronary syndromes comparing transradial and transfemoral access. The randomized multicentre MATRIX (Minimizing Adverse Haemorrhagic Events by TRansradial Access Site and Systemic Implementation of angioX) trial has been designed to compare the clinical outcome of patients with acute coronary syndromes treated invasively according to the access site (transfemoral vs. transradial) and to the anticoagulant therapy (bivalirudin vs. heparin). Selected experienced interventional cardiologists involved in this study have been equipped with dedicated thermoluminescent dosimeters to evaluate the radiation dose absorbed during transfemoral or right transradial or left transradial access. For each access we evaluate the radiation dose absorbed at wrist, at thorax and at eye level. Consequently the operator is equipped with three sets (transfemoral, right transradial or left transradial access) of three different dosimeters (wrist, thorax and eye dosimeter). Primary end-point of the study is the procedural radiation dose absorbed by operators at thorax. An important secondary end-point is the procedural radiation dose absorbed by operators comparing the right or left radial approach. Patient randomization is performed according to the MATRIX protocol for the femoral or radial approach. A further randomization for the radial approach is performed to compare right and left transradial access. The RAD-MATRIX study will probably consent to clarify the radiation issue for interventional cardiologist comparing transradial and transfemoral access in the setting of acute coronary syndromes. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Comparison of microdosimetry-based absorbed doses to control tumours and clinically obtained tumour absorbed doses in treatments with 223Ra.

    PubMed

    Minguez Gabina, Pablo; Roeske, John C; Mínguez, Ricardo; Gomez de Iturriaga, Alfonso; Rodeño, Emilia

    2018-06-20

    We performed Monte Carlo simulations in order to determine by means of microdosimetry calculations the average number of hits to the cell nucleus required to reach a tumour control probability (TCP) of 0.9, 〈n<sub>0.9</sub> 〉, for the source geometry of a nucleus embedded in a homogeneous distribution of <sup>223</sup>Ra atoms. From the results obtained and following the MIRD methodology, we determined the values of lesion absorbed doses needed to reach a TCP of 0.9, D<sub>0.9</sub>, for different values of mass density, cell radiosensitivity, nucleus radius and lesion volume. The greatest variation of those absorbed doses occurred with cell radiosensitivity and no dependence was found on mass density. The source geometry used was chosen because we aimed to compare the values of D<sub>0.9</sub> with the lesion absorbed doses obtained from image-based macrodosimetry in treatments of metastatic castration-resistant prostate cancer with <sup>223</sup>Ra which were obtained assuming a homogeneous distribution of <sup>223</sup>Ra atoms within the lesion. In a comparison with a study including 29 lesions, results showed that even for the case of the most radiosensitive cells simulated, 45% of the lesions treated following a schedule of two cycles of 110 kBq/kg body mass would receive absorbed doses below the values of D<sub>0.9</sub> determined in this study. © 2018 Institute of Physics and Engineering in Medicine.

  15. Case control study to assess the possibility of decrease the risk of osteoradionecrosis in relation to the dose of radiation absorbed by the jaw

    PubMed Central

    Carini, Fabrizio; Bucalo, Concetta; Saggese, Vito; Monai, Dario; Porcaro, Gianluca

    2012-01-01

    Summary Aims the assessment of the limit dose for the organs at risk in external radiotherapy is a fundamental step to guarantee an optimal risk-benefit ratio. The aim of this study was to assess, through contouring the single dental cavities, the absorbed radiation dose on irradiated alveolar bones during the treatment of cervico-facial tumours, so as to test the correlation between the absorbed dose of radiation at alveolar level and the level of individual surgical risk for osteonecrosis. Materials and methods we selected 45 out of 89 patients on the basis of different exclusion criteria. Nine of these patients showed evidence of osteoradionecrosis. The patients were treated either with 3D conformational radiation therapy (3D-CRT) or with intensity-modulated radiation therapy (IMRT), there after alveolar bones were contoured using computed axial tomography (CAT scans) carried out following oncological and dental treatment. The dose-volume histograms (DVH) were obtained on the basis of such data, which included those relating to the dental cavities in addition to those inherent to the tumours and the organs at risk. Results all patients, irrespective of type of treatment, received an average of 60 to 70 grays in 30/35 sittings. The patients treated with IMRT showed higher variation in absorbed radiation dose than those treated with 3D-CRT. The alveolar encirclement allowed the assessment of the absorbed radiation dose, and consequently it also allowed to assess the individual surgical risk for osteonecrosis in patients with head and neck tumours who underwent radiography treatment. Conclusions the study of DVH allows the assessment of limit dose and the detection of the areas at greater risk for osteoradionecrosis before dental surgery. PMID:23285316

  16. Visible photoluminescence of color centers in LiF crystals for absorbed dose evaluation in clinical dosimetry

    NASA Astrophysics Data System (ADS)

    Villarreal-Barajas, J. E.; Piccinini, M.; Vincenti, M. A.; Bonfigli, F.; Khan, R. F.; Montereali, R. M.

    2015-04-01

    Among insulating materials, lithium fluoride (LiF) has been successfully used as ionizing radiation dosemeter for more than 60 years. Thermoluminescence (TL) has been the most commonly used reading technique to evaluate the absorbed dose. Lately, optically stimulated luminescence (OSL) of visible emitting color centers (CCs) has also been explored in pure and doped LiF. This work focuses on the experimental behaviour of nominally pure LiF crystals dosemeters for 6 MV x rays at low doses based on photoluminescence (PL) of radiation induced CCs. Polished LiF crystals were irradiated using 6 MV x rays produced by a clinical linear accelerator. The doses (absorbed dose to water) covered the 1-100 Gy range. Optical absorption spectra show stable formation of primary F defects up to a maximum concentration of 2×1016 cm-3, while no significant M absorption band at around 450 nm was detected. On the other hand, under Argon laser excitation at 458 nm, PL spectra of the irradiated LiF crystals clearly exhibited the characteristic F2 and F+3 visible broad emission bands. Their sum intensity is linearly proportional to the absorbed dose in the investigated range. PL integrated intensity was also measured using a conventional fluorescence optical microscope under blue lamp illumination. The relationship between the absorbed dose and the integrated F2 and F+3 PL intensities, represented by the net average pixel number in the optical fluorescence images, is also fairly linear. Even at the low point defect densities obtained at the investigated doses, these preliminary experimental results are encouraging for further investigation of CCs PL in LiF crystals for clinical dosimetry.

  17. TU-H-CAMPUS-IeP1-05: A Framework for the Analytic Calculation of Patient-Specific Dose Distribution Due to CBCT Scan for IGRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youn, H; Jeon, H; Nam, J

    Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law.more » In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion: This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.« less

  18. Postlumpectomy Focal Brachytherapy for Simultaneous Treatment of Surgical Cavity and Draining Lymph Nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrycushko, Brian A.; Li Shihong; Shi Chengyu

    2011-03-01

    Purpose: The primary objective was to investigate a novel focal brachytherapy technique using lipid nanoparticle (liposome)-carried {beta}-emitting radionuclides (rhenium-186 [{sup 186}Re]/rhenium-188 [{sup 188}Re]) to simultaneously treat the postlumpectomy surgical cavity and draining lymph nodes. Methods and Materials: Cumulative activity distributions in the lumpectomy cavity and lymph nodes were extrapolated from small animal imaging and human lymphoscintigraphy data. Absorbed dose calculations were performed for lumpectomy cavities with spherical and ellipsoidal shapes and lymph nodes within human subjects by use of the dose point kernel convolution method. Results: Dose calculations showed that therapeutic dose levels within the lumpectomy cavity wall can covermore » 2- and 5-mm depths for {sup 186}Re and {sup 188}Re liposomes, respectively. The absorbed doses at 1 cm sharply decreased to only 1.3% to 3.7% of the doses at 2 mm for {sup 186}Re liposomes and 5 mm for {sup 188}Re liposomes. Concurrently, the draining sentinel lymph nodes would receive a high focal therapeutic absorbed dose, whereas the average dose to 1 cm of surrounding tissue received less than 1% of that within the nodes. Conclusions: Focal brachytherapy by use of {sup 186}Re/{sup 188}Re liposomes was theoretically shown to be capable of simultaneously treating the lumpectomy cavity wall and draining sentinel lymph nodes with high absorbed doses while significantly lowering dose to surrounding healthy tissue. In turn, this allows for dose escalation to regions of higher probability of containing residual tumor cells after lumpectomy while reducing normal tissue complications.« less

  19. Absorbed organ and effective doses from digital intra-oral and panoramic radiography applying the ICRP 103 recommendations for effective dose estimations

    PubMed Central

    Thilander-Klang, Anne; Ylhan, Betȕl; Lofthag-Hansen, Sara; Ekestubbe, Annika

    2016-01-01

    Objective: During dental radiography, the salivary and thyroid glands are at radiation risk. In 2007, the International Commission on Radiological Protection (ICRP) updated the methodology for determining the effective dose, and the salivary glands were assigned tissue-specific weighting factors for the first time. The aims of this study were to determine the absorbed dose to the organs and to calculate, applying the ICRP publication 103 tissue-weighting factors, the effective doses delivered during digital intraoral and panoramic radiography. Methods: Thermoluminescent dosemeter measurements were performed on an anthropomorphic head and neck phantom. The organ-absorbed doses were measured at 30 locations, representing different radiosensitive organs in the head and neck, and the effective dose was calculated according to the ICRP recommendations. Results: The salivary glands and the oral mucosa received the highest absorbed doses from both intraoral and panoramic radiography. The effective dose from a full-mouth intraoral examination was 15 μSv and for panoramic radiography, the effective dose was in the range of 19–75 μSv, depending on the panoramic equipment used. Conclusion: The effective dose from a full-mouth intraoral examination is lower and that from panoramic radiography is higher than previously reported. Clinicians should be aware of the higher effective dose delivered during panoramic radiography and the risk–benefit profile of this technique must be assessed for the individual patient. Advances in knowledge: The effective dose of radiation from panoramic radiography is higher than previously reported and there is large variability in the delivered radiation dosage among the different types of equipment used. PMID:27452261

  20. Angular distributions of absorbed dose of Bremsstrahlung and secondary electrons induced by 18-, 28- and 38-MeV electron beams in thick targets.

    PubMed

    Takada, Masashi; Kosako, Kazuaki; Oishi, Koji; Nakamura, Takashi; Sato, Kouichi; Kamiyama, Takashi; Kiyanagi, Yoshiaki

    2013-03-01

    Angular distributions of absorbed dose of Bremsstrahlung photons and secondary electrons at a wide range of emission angles from 0 to 135°, were experimentally obtained using an ion chamber with a 0.6 cm(3) air volume covered with or without a build-up cap. The Bremsstrahlung photons and electrons were produced by 18-, 28- and 38-MeV electron beams bombarding tungsten, copper, aluminium and carbon targets. The absorbed doses were also calculated from simulated photon and electron energy spectra by multiplying simulated response functions of the ion chambers, simulated with the MCNPX code. Calculated-to-experimental (C/E) dose ratios obtained are from 0.70 to 1.57 for high-Z targets of W and Cu, from 15 to 135° and the C/E range from 0.6 to 1.4 at 0°; however, the values of C/E for low-Z targets of Al and C are from 0.5 to 1.8 from 0 to 135°. Angular distributions at the forward angles decrease with increasing angles; on the other hand, the angular distributions at the backward angles depend on the target species. The dependences of absorbed doses on electron energy and target thickness were compared between the measured and simulated results. The attenuation profiles of absorbed doses of Bremsstrahlung beams at 0, 30 and 135° were also measured.

  1. Secondary neutron dose measurement for proton eye treatment using an eye snout with a borated neutron absorber

    PubMed Central

    2013-01-01

    Background We measured and assessed ways to reduce the secondary neutron dose from a system for proton eye treatment. Methods Proton beams of 60.30 MeV were delivered through an eye-treatment snout in passive scattering mode. Allyl diglycol carbonate (CR-39) etch detectors were used to measure the neutron dose in the external field at 0.00, 1.64, and 6.00 cm depths in a water phantom. Secondary neutron doses were measured and compared between those with and without a high-hydrogen–boron-containing block. In addition, the neutron energy and vertices distribution were obtained by using a Geant4 Monte Carlo simulation. Results The ratio of the maximum neutron dose equivalent to the proton absorbed dose (H(10)/D) at 2.00 cm from the beam field edge was 8.79 ± 1.28 mSv/Gy. The ratio of the neutron dose equivalent to the proton absorbed dose with and without a high hydrogen-boron containing block was 0.63 ± 0.06 to 1.15 ± 0.13 mSv/Gy at 2.00 cm from the edge of the field at depths of 0.00, 1.64, and 6.00 cm. Conclusions We found that the out-of-field secondary neutron dose in proton eye treatment with an eye snout is relatively small, and it can be further reduced by installing a borated neutron absorbing material. PMID:23866307

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cederkrantz, Elin; Andersson, Håkan; Bernhardt, Peter

    Purpose: Ovarian cancer is often diagnosed at an advanced stage with dissemination in the peritoneal cavity. Most patients achieve clinical remission after surgery and chemotherapy, but approximately 70% eventually experience recurrence, usually in the peritoneal cavity. To prevent recurrence, intraperitoneal (i.p.) targeted α therapy has been proposed as an adjuvant treatment for minimal residual disease after successful primary treatment. In the present study, we calculated absorbed and relative biological effect (RBE)-weighted (equivalent) doses in relevant normal tissues and estimated the effective dose associated with i.p. administration of {sup 211}At-MX35 F(ab'){sub 2}. Methods and Materials: Patients in clinical remission after salvage chemotherapymore » for peritoneal recurrence of ovarian cancer underwent i.p. infusion of {sup 211}At-MX35 F(ab'){sub 2}. Potassium perchlorate was given to block unwanted accumulation of {sup 211}At in thyroid and other NIS-containing tissues. Mean absorbed doses to normal tissues were calculated from clinical data, including blood and i.p. fluid samples, urine, γ-camera images, and single-photon emission computed tomography/computed tomography images. Extrapolation of preclinical biodistribution data combined with clinical blood activity data allowed us to estimate absorbed doses in additional tissues. The equivalent dose was calculated using an RBE of 5 and the effective dose using the recommended weight factor of 20. All doses were normalized to the initial activity concentration of the infused therapy solution. Results: The urinary bladder, thyroid, and kidneys (1.9, 1.8, and 1.7 mGy per MBq/L) received the 3 highest estimated absorbed doses. When the tissue-weighting factors were applied, the largest contributors to the effective dose were the lungs, stomach, and urinary bladder. Using 100 MBq/L, organ equivalent doses were less than 10% of the estimated tolerance dose. Conclusion: Intraperitoneal {sup 211}At-MX35 F(ab'){sub 2} treatment is potentially a well-tolerated therapy for locally confined microscopic ovarian cancer. Absorbed doses to normal organs are low, but because the effective dose potentially corresponds to a risk of treatment-induced carcinogenesis, optimization may still be valuable.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    González, M. A. Pagnan, E-mail: miguelangel.pagnan@hotmail.com; Mitsoura, E., E-mail: meleni@uaemex.mx; Oviedo, J.O. Hernández

    Mycosis fungoides is a cutaneous lymphoma that accounts for 2–3% of all lymphomas. Several clinical studies have demonstrated the effectiveness of TSEBT (Total Skin Electron Beam Therapy) in patients with mycosis fungoides. It is important to develop this technique and make it available to a larger number of patients in Mexico. Because large fields for electron TSEBT are required in order to cover the entire body of the patient, beam characterization at conventional treatment distances is not sufficient and a calibration distance of 500cm or higher is required. Materials and methods: Calibration of radiochromic Gafchromic® EBT2 film (RCF) for electronsmore » was performed in a solid water phantom (Scanditronix Wellhöfer) at a depth of 1.4cm and a Source Axis Distance (SAD) of 100cm. A polynomial fit was applied to the calibration curve, in order to obtain the equation relating dose response with optical density. The spatial distribution is obtained in terms of percentage of the dose, placing 3×3cm samples of RCF on the acrylic screen, which is placed in front of the patient in order to obtain maximum absorbed dose on the skin, covering an area of 200×100cm{sup 2}. The Percentage Depth Dose (PDD) curve was obtained placing RCF samples at depths of 0, 1, 1.2, 1.4, 1.5, 2, 3, 4, 5, 6, 7, 8 and 9cm in the solid water phantom, irradiated with an ELEKTA SINERGY Linear Accelerator electron beam, with an energy of 6 MeV, at a Source Skin Distance (SSD) of 500cm, with 1000MU = 100Gy, with a cone of 40×40cm and gantry angle of 90°. The RCFs were scanned on a flatbed scanner (EPSON EXPRESSION 10000 XL) and the images were processed with the ImageJ program using a region of interest (ROI) of 1×1cm{sup 2}. Results: The relative spatial dose distribution and the percentage depth dose for a SSD of 500±0.5cm, over an area of 200×100cm{sup 2} was obtained, resulting to an effective maximum dose depth (Z{sub ref}) for electrons of 1.4±0.05cm. Using the same experimental data, horizontal and vertical beam profiles were also graphed, showing a horizontal symmetry of ±035%, horizontal flatness of ±3.62%, vertical symmetry of ±2.1% and vertical flatness of ±14.2%. Conclusions: The electron beam was characterized and the data obtained were useful to determine the spatial dose distribution to a SSD of 500±0.5cm, in an area of 200×100cm{sup 2}. Dose profiles were obtained both horizontally and vertically, thus allowing to assess electron beam symmetry and flatness. PDD analysis up to a depth of 9±0.05cm, has made possible to establish the depth of electron penetration, assuring an only skin irradiation treatment.« less

  4. SU-E-T-204: Comparison of Absorbed-Dose to Water in High-Energy Photon Beams Based On Addendum AAPM TG-51, IAEA TRS-398, and JSMP 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, N; Kita, A; Yoshioka, C

    Purpose: Several clinical reference dosimetry protocols for absorbed-dose to water have recently been published: The American Association of Physicists in Medicine (AAPM) published an Addendum to the AAPM’s TG-51 (Addendum TG-51) in April 2014, and the Japan Society of Medical Physics (JSMP) published the Japan Society of Medical Physics 12 (JSMP12), a clinical reference dosimetry protocol, in September 2012. This investigation compared and evaluated the absorbed-dose to water of high-energy photon beams according to Addendum TG-51, International Atomic Energy Agency Technical Report Series No. 398 (TRS-398), and JSMP12. Methods: Differences in the respective beam quality conversion factors with Addendum TG-51,more » TRS-398, and JSMP12 were analyzed and the absorbed-dose to water using 6- and 10-MV photon beams was measured according to the protocols recommended in Addendum TG-51, TRS-398, and JSMP12. The measurements were conducted using two Farmer-type ionization chambers, Exradin A12 and PTW 30013. Results: The beam quality conversion factors for both the 6- and 10-MV photon beams with Addendum TG-51 were within 0.6%, in agreement with the beam quality conversion factors with TRS-398 and JSMP12. The Exradin A12 provided an absorbed-dose to water ratio from 1.003 to 1.006 with TRS-398 / Addendum TG-51 and from 1.004 to 1.005 with JSMP 12 / Addendum TG-51, whereas the PTW 30013 provided a ratio of 1.001 with TRS-398 / Addendum TG-51 and a range from 0.997 to 0.999 with JSMP 12 / Addendum TG-51. Conclusion: Despite differences in the beam quality conversion factor, no major differences were seen in the absorbed-dose to water with Addendum TG-51, TRS-398, and JSMP12. However, Addendum TG-51 provides the most recent data for beam quality conversion factors based on Monte Carlo simulation and greater detail for the measurement protocol. Therefore, the absorbed-dose to water measured with Addendum TG-51 is an estimate with less uncertainty.« less

  5. Errors introduced by dose scaling for relative dosimetry

    PubMed Central

    Watanabe, Yoichi; Hayashi, Naoki

    2012-01-01

    Some dosimeters require a relationship between detector signal and delivered dose. The relationship (characteristic curve or calibration equation) usually depends on the environment under which the dosimeters are manufactured or stored. To compensate for the difference in radiation response among different batches of dosimeters, the measured dose can be scaled by normalizing the measured dose to a specific dose. Such a procedure, often called “relative dosimetry”, allows us to skip the time‐consuming production of a calibration curve for each irradiation. In this study, the magnitudes of errors due to the dose scaling procedure were evaluated by using the characteristic curves of BANG3 polymer gel dosimeter, radiographic EDR2 films, and GAFCHROMIC EBT2 films. Several sets of calibration data were obtained for each type of dosimeters, and a calibration equation of one set of data was used to estimate doses of the other dosimeters from different batches. The scaled doses were then compared with expected doses, which were obtained by using the true calibration equation specific to each batch. In general, the magnitude of errors increased with increasing deviation of the dose scaling factor from unity. Also, the errors strongly depended on the difference in the shape of the true and reference calibration curves. For example, for the BANG3 polymer gel, of which the characteristic curve can be approximated with a linear equation, the error for a batch requiring a dose scaling factor of 0.87 was larger than the errors for other batches requiring smaller magnitudes of dose scaling, or scaling factors of 0.93 or 1.02. The characteristic curves of EDR2 and EBT2 films required nonlinear equations. With those dosimeters, errors larger than 5% were commonly observed in the dose ranges of below 50% and above 150% of the normalization dose. In conclusion, the dose scaling for relative dosimetry introduces large errors in the measured doses when a large dose scaling is applied, and this procedure should be applied with special care. PACS numbers: 87.56.Da, 06.20.Dk, 06.20.fb PMID:22955658

  6. Preclinical Study of 68Ga-DOTATOC: Biodistribution Assessment in Syrian Rats and Evaluation of Absorbed Dose in Human Organs.

    PubMed

    Naderi, Mojdeh; Zolghadri, Samaneh; Yousefnia, Hassan; Ramazani, Ali; Jalilian, Amir Reza

    2016-01-01

    Gallium-68 DOTA-DPhe 1 -Tyr 3 -Octreotide ( 68 Ga-DOTATOC) has been applied by several European centers for the treatment of a variety of human malignancies. Nevertheless, definitive dosimetric data are yet unavailable. According to the Society of Nuclear Medicine and Molecular Imaging, researchers are investigating the safety and efficacy of this radiotracer to meet Food and Drug Administration requirements. The aim of this study was to introduce the optimized procedure for 68 Ga-DOTATOC preparation, using a novel germanium-68 ( 68 Ge)/ 68 Ga generator in Iran and evaluate the absorbed doses in numerous organs with high accuracy. The optimized conditions for preparing the radiolabeled complex were determined via several experiments by changing the ligand concentration, pH, temperature and incubation time. Radiochemical purity of the complex was assessed, using high-performance liquid chromatography and instant thin-layer chromatography. The absorbed dose of human organs was evaluated, based on biodistribution studies on Syrian rats via Radiation Absorbed Dose Assessment Resource Method. 68 Ga-DOTATOC was prepared with radiochemical purity of >98% and specific activity of 39.6 MBq/nmol. The complex demonstrated great stability at room temperature and in human serum at 37°C at least two hours after preparation. Significant uptake was observed in somatostatin receptor-positive tissues such as pancreatic and adrenal tissues (12.83 %ID/g and 0.91 %ID/g, respectively). Dose estimations in human organs showed that the pancreas, kidneys and adrenal glands received the maximum absorbed doses (0.105, 0.074 and 0.010 mGy/MBq, respectively). Also, the effective absorbed dose was estimated at 0.026 mSv/MBq for 68 Ga-DOTATOC. The obtained results showed that 68 Ga-DOTATOC can be considered as an effective agent for clinical PET imaging in Iran.

  7. Dosimetric results in treatments of neuroblastoma and neuroendocrine tumors with {sup 131}I-metaiodobenzylguanidine with implications for the activity to administer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mínguez, Pablo, E-mail: pablo.minguezgabina@osakidetza.net; Flux, Glenn; Genollá, José

    2015-07-15

    Purpose: The aim was to investigate whole-body and red marrow absorbed doses in treatments of neuroblastoma (NB) and adult neuroendocrine tumors (NETs) with {sup 131}I-metaiodobenzylguanidine and to propose a simple method for determining the activity to administer when dosimetric data for the individual patient are not available. Methods: Nine NB patients and six NET patients were included, giving in total 19 treatments as four patients were treated twice. Whole-body absorbed doses were determined from dose-rate measurements and planar gamma-camera imaging. For six NB and five NET treatments, red marrow absorbed doses were also determined using the blood-based method. Results: Dosimetricmore » data from repeated administrations in the same patient were consistent. In groups of NB and NET patients, similar whole-body residence times were obtained, implying that whole-body absorbed dose per unit of administered activity could be reasonably well described as a power function of the patient mass. For NB, this functional form was found to be consistent with dosimetric data from previously published studies. The whole-body to red marrow absorbed dose ratio was similar among patients, with values of 1.4 ± 0.6–1.7 ± 0.7 (1 standard deviation) in NB treatments and between 1.5 ± 0.6 and 1.7 ± 0.7 (1 standard deviation) in NET treatments. Conclusions: The consistency of dosimetric results between administrations for the same patient supports prescription of the activity based on dosimetry performed in pretreatment studies, or during the first administration in a fractionated schedule. The expressions obtained for whole-body absorbed doses per unit of administered activity as a function of patient mass for NB and NET treatments are believed to be a useful tool to estimate the activity to administer at the stage when the individual patient biokinetics has not yet been measured.« less

  8. Preclinical Study of 68Ga-DOTATOC: Biodistribution Assessment in Syrian Rats and Evaluation of Absorbed Dose in Human Organs

    PubMed Central

    Naderi, Mojdeh; Zolghadri, Samaneh; Yousefnia, Hassan; Ramazani, Ali; Jalilian, Amir Reza

    2016-01-01

    Objective(s): Gallium-68 DOTA-DPhe1-Tyr3-Octreotide (68Ga-DOTATOC) has been applied by several European centers for the treatment of a variety of human malignancies. Nevertheless, definitive dosimetric data are yet unavailable. According to the Society of Nuclear Medicine and Molecular Imaging, researchers are investigating the safety and efficacy of this radiotracer to meet Food and Drug Administration requirements. The aim of this study was to introduce the optimized procedure for 68Ga-DOTATOC preparation, using a novel germanium-68 (68Ge)/68Ga generator in Iran and evaluate the absorbed doses in numerous organs with high accuracy. Methods: The optimized conditions for preparing the radiolabeled complex were determined via several experiments by changing the ligand concentration, pH, temperature and incubation time. Radiochemical purity of the complex was assessed, using high-performance liquid chromatography and instant thin-layer chromatography. The absorbed dose of human organs was evaluated, based on biodistribution studies on Syrian rats via Radiation Absorbed Dose Assessment Resource Method. Results: 68Ga-DOTATOC was prepared with radiochemical purity of >98% and specific activity of 39.6 MBq/nmol. The complex demonstrated great stability at room temperature and in human serum at 37°C at least two hours after preparation. Significant uptake was observed in somatostatin receptor-positive tissues such as pancreatic and adrenal tissues (12.83 %ID/g and 0.91 %ID/g, respectively). Dose estimations in human organs showed that the pancreas, kidneys and adrenal glands received the maximum absorbed doses (0.105, 0.074 and 0.010 mGy/MBq, respectively). Also, the effective absorbed dose was estimated at 0.026 mSv/MBq for 68Ga-DOTATOC. Conclusion: The obtained results showed that 68Ga-DOTATOC can be considered as an effective agent for clinical PET imaging in Iran. PMID:27904870

  9. Approximate distribution of dose among foetal organs for radioiodine uptake via placenta transfer

    NASA Astrophysics Data System (ADS)

    Millard, R. K.; Saunders, M.; Palmer, A. M.; Preece, A. W.

    2001-11-01

    Absorbed radiation doses to internal foetal organs were calculated according to the medical internal radiation dose (MIRD) technique in this study. Anthropomorphic phantoms of the pregnant female as in MIRDOSE3 enabled estimation of absorbed dose to the whole foetus at two stages of gestation. Some foetal organ self-doses could have been estimated by invoking simple spherical models for thyroid, liver, etc, but we investigated the use of the MIRDOSE3 new-born phantom as a surrogate for the stage 3 foetus, scaled to be compatible with total foetal body mean absorbed dose/cumulated activity. We illustrate the method for obtaining approximate dose distribution in the foetus near term following intake of 1 MBq of 123I, 124I, 125I or 131I as sodium iodide by the mother using in vivo biodistribution data examples from a good model of placenta transfer. Doses to the foetal thyroid of up to 1.85 Gy MBq-1 were predicted from the 131I uptake data. Activity in the foetal thyroid was the largest contributor to absorbed dose in the foetal body, brain, heart and thymus. Average total doses to the whole foetus ranged from 0.16 to 1.2 mGy MBq-1 for stages 1 and 3 of pregnancy using the MIRDOSE3 program, and were considerably higher than those predicted from the maternal contributions alone. Doses to the foetal thymus and stomach were similar, around 2-3 mGy MBq-1. Some foetal organ doses from the radioiodides were ten times higher than to the corresponding organs of the mother, and up to 100 times higher to the thyroid. The fraction of activity uptakes in foetal organs were distributed similarly to the maternal ones.

  10. SU-D-304-06: Measurement of LET in Patient-Specific Proton Therapy Treatment Fields Using Optically Stimulated Luminescence Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granville, DA; Sahoo, N; Sawakuchi, GO

    Purpose: To investigate the use of optically stimulated luminescence (OSL) detectors (OSLDs) for measurements of dose-averaged linear energy transfer (LET) in patient-specific proton therapy treatment fields. Methods: We used Al{sub 2}O{sub 3}:C OSLDs made from the same material as commercially available nanoDot OSLDs from Landauer, Inc. We calibrated two parameters of the OSL signal as functions of LET in therapeutic proton beams: the ratio of the ultraviolet and blue emission intensities (UV/blue ratio) and the OSL curve shape. These calibration curves were created by irradiating OSLDs in passively scattered beams of known LET (0.96 to 3.91 keV/µm). The LET valuesmore » were determined using a validated Monte Carlo model of the beamline. We then irradiated new OSLDs with the prescription dose (16 to 74 cGy absorbed dose to water) at the center of the spread-out Bragg peak (SOBP) of four patient-specific treatment fields. From readouts of these OSLDs, we determined both the UV/blue ratio and OSL curve shape parameters. Combining these parameters with the calibration curves, we were able to measure LET using the OSLDs. The measurements were compared to the theoretical LET values obtained from Monte Carlo simulations of the patient-specific treatments fields. Results: Using the UV/blue ratio parameter, we were able to measure LET within 3.8%, 6.2%, 5.6% and 8.6% of the Monte Carlo value for each of the patient fields. Similarly, using the OSL curve shape parameter, LET measurements agreed within 0.5%, 11.0%, 2.5% and 7.6% for each of the four fields. Conclusion: We have demonstrated a method to verify LET in patient-specific proton therapy treatment fields using OSLDs. The possibility of enhancing biological effectiveness of proton therapy treatment plans by including LET in the optimization has been previously shown. The LET verification method we have demonstrated will be useful in the quality assurance of such LET optimized treatment plans. DA Granville received financial support from the Natural Sciences and Engineering Research Council of Canada.« less

  11. The effect of systematic set-up deviations on the absorbed dose distribution for left-sided breast cancer treated with respiratory gating

    NASA Astrophysics Data System (ADS)

    Edvardsson, A.; Ceberg, S.

    2013-06-01

    The aim of this study was 1) to investigate interfraction set-up uncertainties for patients treated with respiratory gating for left-sided breast cancer, 2) to investigate the effect of the inter-fraction set-up on the absorbed dose-distribution for the target and organs at risk (OARs) and 3) optimize the set-up correction strategy. By acquiring multiple set-up images the systematic set-up deviation was evaluated. The effect of the systematic set-up deviation on the absorbed dose distribution was evaluated by 1) simulation in the treatment planning system and 2) measurements with a biplanar diode array. The set-up deviations could be decreased using a no action level correction strategy. Not using the clinically implemented adaptive maximum likelihood factor for the gating patients resulted in better set-up. When the uncorrected set-up deviations were simulated the average mean absorbed dose was increased from 1.38 to 2.21 Gy for the heart, 4.17 to 8.86 Gy to the left anterior descending coronary artery and 5.80 to 7.64 Gy to the left lung. Respiratory gating can induce systematic set-up deviations which would result in increased mean absorbed dose to the OARs if not corrected for and should therefore be corrected for by an appropriate correction strategy.

  12. Decomposition byproducts induced by gamma radiation and their toxicity: the case of 2-nitrophenol.

    PubMed

    Alsager, Omar A; Basfar, Ahmed A; Muneer, Majid

    2018-04-01

    The induced degradation and detoxification of 2-nitrophenol (2-NP) in aqueous media by gamma irradiation were carefully evaluated in this study. Gamma radiation at absorbed doses as low as 20 kGy was able to degrade 2-NP to reach a removal of at least 85% across the investigated range of concentration (50-150 ppm). 2-NP breaks down to aromatic-based compounds with increasing number of byproducts upon increasing the radiation treatment from the absorbed dose of 50% decomposition (D 50 ) to the absorbed dose of 90% decomposition (D 90 ), after which no byproducts could be detected, indicating the formation of undetectable aliphatic hydrocarbons, insoluble, or volatile byproducts. Toxicology studies showed that the degradation of 2-NP under absorbed doses up to D 90 resulted in a more toxic byproduct than the parent compound, and a remarkable reduction in the toxicity was observed with the irradiated samples with absorbed doses above D 90 . Varying the pH of the media to acidic or basic conditions did not significantly alter the degradation behavior of 2-NP. However, a notable improvement of the detoxification was associated with the samples of acidic pH. Adding 0.5% of H 2 O 2 to 2-NP solutions had a positive effect by reducing D 90 by a factor of nine and diminishing the toxicity by twofolds.

  13. Photon spectrum and absorbed dose in brain tumor.

    PubMed

    Vega-Carrillo, Hector Rene; Silva-Sanchez, Angeles; Rivera-Montalvo, Teodoro

    2016-11-01

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is and 15.7 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 37.1 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Absorbed dose measurements on external surface of Kosmos-satellites with glass thermoluminescent detectors.

    PubMed

    Akatov YuA; Arkhangelsky, V V; Kovalev, E E; Spurny, F; Votochkova, I

    1989-01-01

    In this paper we present absorbed dose measurements with glass thermoluminescent detectors on external surface of satellites of Kosmos-serie flying in 1983-87. Experiments were performed with thermoluminescent aluminophosphate glasses of thicknesses 0.1, 0.3, 0.4, 0.5, and 1 mm. They were exposed in sets of total thickness between 5 and 20 mm, which were protected against sunlight with thin aluminized foils. In all missions, extremely high absorbed dose values were observed in the first layers of detectors, up to the thickness of 0.2 to 0.5 gcm-2. These experimental results confirm that, during flights at 250 to 400 km, doses on the surface of the satellites are very high, due to the low energy component of the proton and electron radiation.

  15. Impact of dose calibrators quality control programme in Argentina

    NASA Astrophysics Data System (ADS)

    Furnari, J. C.; de Cabrejas, M. L.; del C. Rotta, M.; Iglicki, F. A.; Milá, M. I.; Magnavacca, C.; Dima, J. C.; Rodríguez Pasqués, R. H.

    1992-02-01

    The national Quality Control (QC) programme for radionuclide calibrators started 12 years ago. Accuracy and the implementation of a QC programme were evaluated over all these years at 95 nuclear medicine laboratories where dose calibrators were in use. During all that time, the Metrology Group of CNEA has distributed 137Cs sealed sources to check stability and has been performing periodic "checking rounds" and postal surveys using unknown samples (external quality control). An account of the results of both methods is presented. At present, more of 65% of the dose calibrators measure activities with an error less than 10%.

  16. The Effect of Diagnostic Absorbed Doses from 131I on Human Thyrocytes in Vitro.

    PubMed

    Adamczewski, Zbigniew; Stasiołek, Mariusz; Karwowski, Bolesław; Dedecjus, Marek; Orszulak-Michalak, Daria; Merecz, Anna; Śliwka, Przemysław W; Puła, Bartosz; Lewiński, Andrzej

    2015-06-29

    Administration of diagnostic activities of 131I, performed in order to detect thyroid remnants after surgery and/or thyroid cancer recurrence/metastases, may lead to reduction of iodine uptake. This phenomenon is called "thyroid stunning". We estimated radiation absorbed dose-dependent changes in genetic material, in particular in sodium iodide symporter (NIS) gene promoter, and NIS protein level in human thyrocytes (HT). We used unmodified HT isolated from patients subjected to thyroidectomy exposed to 131I in culture. The different 131I activities applied were calculated to result in absorbed doses of 5, 10, and 20 Gy. According to flow cytometry analysis and comet assay, 131I did not influence the HT viability in culture. Temporary increase of 8-oxo-dG concentration in HT directly after 24 h (p < 0.05) and increase in the number of AP-sites 72 h after termination of exposition to 20 Gy dose (p < 0.0001) were observed. The signs of dose-dependent DNA damage were not associated with essential changes in the NIS expression on mRNA and protein levels. Our observation constitutes a first attempt to evaluate the effect of the absorbed dose of 131I on HT. The results have not confirmed the theory that the "thyroid stunning" reduces the NIS protein synthesis.

  17. Characterization of Thymol blue Radiochromic dosimeters for high dose applications

    NASA Astrophysics Data System (ADS)

    Aldweri, Feras M.; Abuzayed, Manar H.; Al-Ajaleen, Musab S.; Rabaeh, Khalid A.

    2018-03-01

    Thymol blue (TB) solutions and Thymol blue Polyvinyl Alcohol (TB-PVA) films have been introduced as Radiochromic dosimeter for high dose applications. The dosimeters were irradiated with gamma ray (60Co source) from 5 to 30 kGy for film, and from 0.150 kGy to 4 kGy for solution. The optical density of unirradiated and irradiated TB solution as well as TB-PVA film dosimeters were studied in terms of absorbance at 434 nm using UV/VIS spectrophotometer. The effects of scan temperature, light pre-gamma irradiation, dose rate, relative humidity and stability of the absorbance of solutions and films after irradiation were investigated. We found the dose sensitivity of TB solution and TB-PVA film dosimeters increases significantly with increases of the absorbed dose as well as with the increases of TB dye concentrations. The useful dose range of developed TB solutions and TB-PVA films dosimeters is in the range 0.125-1 kGy and of 5-20 kGy, respectively.

  18. Food irradiation dosimetry by opti-chromic technique

    NASA Astrophysics Data System (ADS)

    Zhan-Jun, Liu; Radak, B. B.; McLaughlin, W. L.

    The measurement of gamma-radiation quantities, e.g., absorbed dose in materials such as water, plastics, foodstuffs, is a convenient means of quality assurance in radiation processing. A new dosimetry system, called the "Opti-Chromic" dosimeter, is commercially available in large batches for use as a routine measurement system in the absorbed dose range 10 to 2x10 4 Gy. This dose range covers most food irradiation applications. A statistical evaluation was made of the reproducibility of this dosimeter for measuring doses appropriate for the disinfestation and shelf-life extension of many foods, namely 10 to 2x10 3 Gy. In addition, the small dosimeters were used to map absorbed dose distributions in boxes of foods having four different bulk densities (grapefruit, lemons, peanuts, and wheat bran). It is demonstrated that the dosimeters are rugged and stable enough to be used over a wide temperature and humidity range, and, in fact, can be placed in such environments as the inside of citrus fruits without adverse effects on their ability to give satisfactory dose assessment.

  19. SU-F-T-274: Modified Dose Calibration Methods for IMRT QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, W; Westlund, S

    2016-06-15

    Purpose: To investigate IMRT QA uncertainties caused by dose calibration and modify widely used dose calibration procedures to improve IMRT QA accuracy and passing rate. Methods: IMRT QA dose measurement is calibrated using a calibration factor (CF) that is the ratio between measured value and expected value corresponding to the reference fields delivered on a phantom. Two IMRT QA phantoms were used for this study: a 30×30×30 cm3 solid water cube phantom (Cube), and the PTW Octavius phantom. CF was obtained by delivering 100 MUs to the phantoms with different reference fields ranging from 3×3 cm2 to 20×20 cm{sup 2}.more » For Cube, CFs were obtained using the following beam arrangements: 2-AP Field - chamber at dmax, 2-AP Field - chamber at isocenter, 4-beam box - chamber at isocenter, and 8 equally spaced fields and chamber at isocenter. The same plans were delivered on Octavius and CFs were derived for the dose at the isocenter using the above beam arrangements. The Octavius plans were evaluated with PTW-VeriSoft (Gamma criteria of 3%/3mm). Results: Four head and neck IMRT plans were included in this study. For point dose measurement with Cube, the CFs with 4-Field gave the best agreement between measurement and calculation within 4% for large field plans. All the measurement results agreed within 2% for a small field plan. Compared with calibration field sizes, 5×5 to 15×15 were more accurate than other field sizes. For Octavius, 4-Field calibration increased passing rate by up to 10% compared to AP calibration. Passing rate also increased by up to 4% with the increase of field size from 3×3 to 20×20. Conclusion: IMRT QA results are correlated with calibration methods used. The dose calibration using 4-beam box with field sizes from 5×5 to 20×20 can improve IMRT QA accuracy and passing rate.« less

  20. Absorbed dose rates in tissue from prompt gamma emissions from near-thermal neutron absorption

    DOE PAGES

    Schwahn, Scott O.

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency s Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.

  1. Pain and mean absorbed dose to the pubic bone after radiotherapy among gynecological cancer survivors.

    PubMed

    Waldenström, Ann-Charlotte; Olsson, Caroline; Wilderäng, Ulrica; Dunberger, Gail; Lind, Helena; al-Abany, Massoud; Palm, Åsa; Avall-Lundqvist, Elisabeth; Johansson, Karl-Axel; Steineck, Gunnar

    2011-07-15

    To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. We analyzed data from 650 survivors (participation rate 79%) with median follow-up of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses <52.5 Gy to the pubic bone and 5/12 (42%) to mean absorbed external beam doses ≥ 52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Pain and Mean Absorbed Dose to the Pubic Bone After Radiotherapy Among Gynecological Cancer Survivors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldenstroem, Ann-Charlotte, E-mail: ann-charlotte.waldenstrom@oncology.gu.se; Department of Oncology, Sahlgrenska University Hospital, Gothenburg; Olsson, Caroline

    Purpose: To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. Methods and Materials: In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. Results: We analyzed data from 650 survivors (participation rate 79%) with median follow-upmore » of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses <52.5 Gy to the pubic bone and 5/12 (42%) to mean absorbed external beam doses {>=}52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Conclusions: Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer.« less

  3. Effects of body habitus on internal radiation dose calculations using the 5-year-old anthropomorphic male models.

    PubMed

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-07-13

    Computational phantoms are commonly used in internal radiation dosimetry to assess the amount and distribution pattern of energy deposited in various parts of the human body from different internal radiation sources. Radiation dose assessments are commonly performed on predetermined reference computational phantoms while the argument for individualized patient-specific radiation dosimetry exists. This study aims to evaluate the influence of body habitus on internal dosimetry and to quantify the uncertainties in dose estimation correlated with the use of fixed reference models. The 5-year-old IT'IS male phantom was modified to match target anthropometric parameters, including body weight, body height and sitting height/stature ratio (SSR), determined from reference databases, thus enabling the creation of 125 5-year-old habitus-dependent male phantoms with 10th, 25th, 50th, 75th and 90th percentile body morphometries. We evaluated the absorbed fractions and the mean absorbed dose to the target region per unit cumulative activity in the source region (S-values) of F-18 in 46 source regions for the generated 125 anthropomorphic 5-year-old hybrid male phantoms using the Monte Carlo N-Particle eXtended general purpose Monte Carlo transport code and calculated the absorbed dose and effective dose of five 18 F-labelled radiotracers for children of various habitus. For most organs, the S-value of F-18 presents stronger statistical correlations with body weight, standing height and sitting height than BMI and SSR. The self-absorbed fraction and self-absorbed S-values of F-18 and the absorbed dose and effective dose of 18 F-labelled radiotracers present with the strongest statistical correlations with body weight. For 18 F-Amino acids, 18 F-Brain receptor substances, 18 F-FDG, 18 F-L-DOPA and 18 F-FBPA, the mean absolute effective dose differences between phantoms of different habitus and fixed reference models are 11.4%, 11.3%, 10.8%, 13.3% and 11.4%, respectively. Total body weight, standing height and sitting height have considerable effects on human internal dosimetry. Radiation dose calculations for individual subjects using the most closely matched habitus-dependent computational phantom should be considered as an alternative to improve the accuracy of the estimates.

  4. Effects of body habitus on internal radiation dose calculations using the 5-year-old anthropomorphic male models

    NASA Astrophysics Data System (ADS)

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-08-01

    Computational phantoms are commonly used in internal radiation dosimetry to assess the amount and distribution pattern of energy deposited in various parts of the human body from different internal radiation sources. Radiation dose assessments are commonly performed on predetermined reference computational phantoms while the argument for individualized patient-specific radiation dosimetry exists. This study aims to evaluate the influence of body habitus on internal dosimetry and to quantify the uncertainties in dose estimation correlated with the use of fixed reference models. The 5-year-old IT’IS male phantom was modified to match target anthropometric parameters, including body weight, body height and sitting height/stature ratio (SSR), determined from reference databases, thus enabling the creation of 125 5-year-old habitus-dependent male phantoms with 10th, 25th, 50th, 75th and 90th percentile body morphometries. We evaluated the absorbed fractions and the mean absorbed dose to the target region per unit cumulative activity in the source region (S-values) of F-18 in 46 source regions for the generated 125 anthropomorphic 5-year-old hybrid male phantoms using the Monte Carlo N-Particle eXtended general purpose Monte Carlo transport code and calculated the absorbed dose and effective dose of five 18F-labelled radiotracers for children of various habitus. For most organs, the S-value of F-18 presents stronger statistical correlations with body weight, standing height and sitting height than BMI and SSR. The self-absorbed fraction and self-absorbed S-values of F-18 and the absorbed dose and effective dose of 18F-labelled radiotracers present with the strongest statistical correlations with body weight. For 18F-Amino acids, 18F-Brain receptor substances, 18F-FDG, 18F-L-DOPA and 18F-FBPA, the mean absolute effective dose differences between phantoms of different habitus and fixed reference models are 11.4%, 11.3%, 10.8%, 13.3% and 11.4%, respectively. Total body weight, standing height and sitting height have considerable effects on human internal dosimetry. Radiation dose calculations for individual subjects using the most closely matched habitus-dependent computational phantom should be considered as an alternative to improve the accuracy of the estimates.

  5. PLASTIC SCINTILLATOR FOR RADIATION DOSIMETRY.

    PubMed

    Kim, Yewon; Yoo, Hyunjun; Kim, Chankyu; Lim, Kyung Taek; Moon, Myungkook; Kim, Jongyul; Cho, Gyuseong

    2016-09-01

    Inorganic scintillators, composed of high-atomic-number materials such as the CsI(Tl) scintillator, are commonly used in commercially available a silicon diode and a scintillator embedded indirect-type electronic personal dosimeters because the light yield of the inorganic scintillator is higher than that of an organic scintillator. However, when it comes to tissue-equivalent dose measurements, a plastic scintillator such as polyvinyl toluene (PVT) is a more appropriate material than an inorganic scintillator because of the mass energy absorption coefficient. To verify the difference in the absorbed doses for each scintillator, absorbed doses from the energy spectrum and the calculated absorbed dose were compared. From the results, the absorbed dose of the plastic scintillator was almost the same as that of the tissue for the overall photon energy. However, in the case of CsI, it was similar to that of the tissue only for a photon energy from 500 to 4000 keV. Thus, the values and tendency of the mass energy absorption coefficient of the PVT are much more similar to those of human tissue than those of the CsI. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Calibration factors for the SNOOPY NP-100 neutron dosimeter

    NASA Astrophysics Data System (ADS)

    Moscu, D. F.; McNeill, F. E.; Chase, J.

    2007-10-01

    Within CANDU nuclear power facilities, only a small fraction of workers are exposed to neutron radiation. For these individuals, roughly 4.5% of the total radiation equivalent dose is the result of exposure to neutrons. When this figure is considered across all workers receiving external exposure of any kind, only 0.25% of the total radiation equivalent dose is the result of exposure to neutrons. At many facilities, the NP-100 neutron dosimeter, manufactured by Canberra Industries Incorporated, is employed in both direct and indirect dosimetry methods. Also known as "SNOOPY", these detectors undergo calibration, which results in a calibration factor relating the neutron count rate to the ambient dose equivalent rate, using a standard Am-Be neutron source. Using measurements presented in a technical note, readings from the dosimeter for six different neutron fields in six source-detector orientations were used, to determine a calibration factor for each of these sources. The calibration factor depends on the neutron energy spectrum and the radiation weighting factor to link neutron fluence to equivalent dose. Although the neutron energy spectra measured in the CANDU workplace are quite different than that of the Am-Be calibration source, the calibration factor remains constant - within acceptable limits - regardless of the neutron source used in the calibration; for the specified calibration orientation and current radiation weighting factors. However, changing the value of the radiation weighting factors would result in changes to the calibration factor. In the event of changes to the radiation weighting factors, it will be necessary to assess whether a change to the calibration process or resulting calibration factor is warranted.

  7. A new tissue segmentation method to calculate 3D dose in small animal radiation therapy.

    PubMed

    Noblet, C; Delpon, G; Supiot, S; Potiron, V; Paris, F; Chiavassa, S

    2018-02-26

    In pre-clinical animal experiments, radiation delivery is usually delivered with kV photon beams, in contrast to the MV beams used in clinical irradiation, because of the small size of the animals. At this medium energy range, however, the contribution of the photoelectric effect to absorbed dose is significant. Accurate dose calculation therefore requires a more detailed tissue definition because both density (ρ) and elemental composition (Z eff ) affect the dose distribution. Moreover, when applied to cone beam CT (CBCT) acquisitions, the stoichiometric calibration of HU becomes inefficient as it is designed for highly collimated fan beam CT acquisitions. In this study, we propose an automatic tissue segmentation method of CBCT imaging that assigns both density (ρ) and elemental composition (Z eff ) in small animal dose calculation. The method is based on the relationship found between CBCT number and ρ*Z eff product computed from known materials. Monte Carlo calculations were performed to evaluate the impact of ρZ eff variation on the absorbed dose in tissues. These results led to the creation of a tissue database composed of artificial tissues interpolated from tissue values published by the ICRU. The ρZ eff method was validated by measuring transmitted doses through tissue substitute cylinders and a mouse with EBT3 film. Measurements were compared to the results of the Monte Carlo calculations. The study of the impact of ρZ eff variation over the range of materials, from ρZ eff  = 2 g.cm - 3 (lung) to 27 g.cm - 3 (cortical bone) led to the creation of 125 artificial tissues. For tissue substitute cylinders, the use of ρZ eff method led to maximal and average relative differences between the Monte Carlo results and the EBT3 measurements of 3.6% and 1.6%. Equivalent comparison for the mouse gave maximal and average relative differences of 4.4% and 1.2%, inside the 80% isodose area. Gamma analysis led to a 94.9% success rate in the 10% isodose area with 4% and 0.3 mm criteria in dose and distance. Our new tissue segmentation method was developed for 40kVp CBCT images. Both density and elemental composition are assigned to each voxel by using a relationship between HU and the product ρZ eff . The method, validated by comparing measurements and calculations, enables more accurate small animal dose distribution calculated on low energy CBCT images.

  8. Radiochromic film sensitivity calibrations using ion beams from a Pelletron accelerator

    NASA Astrophysics Data System (ADS)

    Filkins, T. M.; Steidle, Jessica; Ward, R. J.; Freeman, C. G.; Padalino, S. J.; Regan, S. P.; Sangster, T. C.

    2015-11-01

    Radiochromic film (RCF) is a transparent detector film that permanently changes color following exposure to ionizing radiation. The optical density of the film increases with increasing absorbed dose. RCF is convenient to use because it requires no chemical processing and can be scanned using commercially available document scanners. RCF is used frequently in medical applications, but is also used in a variety of diagnostics in high energy density physics. The film consists of a single or double layer of radiation-sensitive organic microcrystal monomers placed onto a polyester backing. GafchromicTM manufactures a large number of different types of RCF, and new types of film frequently replace older products. In this study, the sensitivity of several types of RCF to ion beams of different energies was measured. Ion beams produced by the SUNY Geneseo 1.7 MV Pelletron accelerator were directed into a target chamber where they scattered off of a gold foil. A sample of RCF was exposed to the scattered ions. The fluence of incident particles on the film was measured using a surface barrier detector. Results of these calibrations will be presented. This work was funded in part by a grant from the DOE through the Laboratory for Laser Energetics.

  9. SU-G-201-10: Experimental Determination of Modified TG-43 Dosimetry Parameters for the Xoft Axxent® Electronic Brachytherapy Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simiele, S; Palmer, B; DeWerd, L

    Purpose: The establishment of an air kerma rate standard at NIST for the Xoft Axxent{sup ®} electronic brachytherapy source (Axxent{sup ®} source) motivated the establishment of a modified TG-43 dosimetry formalism. This work measures the modified dosimetry parameters for the Axxent{sup ®} source in the absence of a treatment applicator for implementation in Xoft’s treatment planning system. Methods: The dose-rate conversion coefficient (DRCC), radial dose function (RDF) values, and polar anisotropy (PA) were measured using TLD-100 microcubes with NIST-calibrated sources. The DRCC and RDF measurements were performed in liquid water using an annulus of Virtual Water™ designed to align themore » TLDs at the height of the anode at fixed radii from the source. The PA was measured at several distances from the source in a PMMA phantom. MCNP-determined absorbed dose energy dependence correction factors were used to convert from dose to TLD to dose to liquid water for the DRCC, RDF, and PA measurements. The intrinsic energy dependence correction factor from the work of Pike was used. The AKR was determined using a NIST-calibrated HDR1000 Plus well-type ionization chamber. Results: The DRCC was determined to be 8.6 (cGy/hr)/(µGy/min). The radial dose values were determined to be 1.00 (1cm), 0.60 (2cm), 0.42 (3cm), and 0.32 (4cm), with agreement ranging from (5.7% to 10.9%) from the work of Hiatt et al. 2015 and agreement from (2.8% to 6.8%) with internal MCNP simulations. Conclusion: This work presents a complete dataset of modified TG-43 dosimetry parameters for the Axxent{sup ®} source in the absence of an applicator. Prior to this study a DRCC had not been measured for the Axxent{sup ®} source. This data will be used for calculating dose distributions for patients receiving treatment with the Axxent{sup ®} source in Xoft’s breast balloon and vaginal applicators, and for intraoperative radiotherapy. Sources and partial funding for this work were provided by Xoft Inc. (a subsidiary of iCAD). This work was also supported by the Radiological Sciences T32 Training Grant through the University of Wisconsin-Madison Medical Physics department (5T32CA009206-37).« less

  10. Developability assessment of clinical drug products with maximum absorbable doses.

    PubMed

    Ding, Xuan; Rose, John P; Van Gelder, Jan

    2012-05-10

    Maximum absorbable dose refers to the maximum amount of an orally administered drug that can be absorbed in the gastrointestinal tract. Maximum absorbable dose, or D(abs), has proved to be an important parameter for quantifying the absorption potential of drug candidates. The purpose of this work is to validate the use of D(abs) in a developability assessment context, and to establish appropriate protocol and interpretation criteria for this application. Three methods for calculating D(abs) were compared by assessing how well the methods predicted the absorption limit for a set of real clinical candidates. D(abs) was calculated for these clinical candidates by means of a simple equation and two computer simulation programs, GastroPlus and an program developed at Eli Lilly and Company. Results from single dose escalation studies in Phase I clinical trials were analyzed to identify the maximum absorbable doses for these compounds. Compared to the clinical results, the equation and both simulation programs provide conservative estimates of D(abs), but in general D(abs) from the computer simulations are more accurate, which may find obvious advantage for the simulations in developability assessment. Computer simulations also revealed the complex behavior associated with absorption saturation and suggested in most cases that the D(abs) limit is not likely to be achieved in a typical clinical dose range. On the basis of the validation findings, an approach is proposed for assessing absorption potential, and best practices are discussed for the use of D(abs) estimates to inform clinical formulation development strategies. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Prediction of Therapy Tumor-Absorbed Dose Estimates in I-131 Radioimmunotherapy Using Tracer Data Via a Mixed-Model Fit to Time Activity

    PubMed Central

    Koral, Kenneth F.; Avram, Anca M.; Kaminski, Mark S.; Dewaraja, Yuni K.

    2012-01-01

    Abstract Background For individualized treatment planning in radioimmunotherapy (RIT), correlations must be established between tracer-predicted and therapy-delivered absorbed doses. The focus of this work was to investigate this correlation for tumors. Methods The study analyzed 57 tumors in 19 follicular lymphoma patients treated with I-131 tositumomab and imaged with SPECT/CT multiple times after tracer and therapy administrations. Instead of the typical least-squares fit to a single tumor's measured time-activity data, estimation was accomplished via a biexponential mixed model in which the curves from multiple subjects were jointly estimated. The tumor-absorbed dose estimates were determined by patient-specific Monte Carlo calculation. Results The mixed model gave realistic tumor time-activity fits that showed the expected uptake and clearance phases even with noisy data or missing time points. Correlation between tracer and therapy tumor-residence times (r=0.98; p<0.0001) and correlation between tracer-predicted and therapy-delivered mean tumor-absorbed doses (r=0.86; p<0.0001) were very high. The predicted and delivered absorbed doses were within±25% (or within±75 cGy) for 80% of tumors. Conclusions The mixed-model approach is feasible for fitting tumor time-activity data in RIT treatment planning when individual least-squares fitting is not possible due to inadequate sampling points. The good correlation between predicted and delivered tumor doses demonstrates the potential of using a pretherapy tracer study for tumor dosimetry-based treatment planning in RIT. PMID:22947086

  12. Gamma Radiation Dose Rate in Air due to Terrestrial Radionuclides in Southern Brazil: Synthesis by Geological Units and Lithotypes Covered by the Serra do Mar Sul Aero-Geophysical Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastos, Rodrigo O.; Appoloni, Carlos R.; Pinese, Jose P. P.

    2008-08-07

    The absorbed dose rates in air due to terrestrial radionuclides were estimated from aerial gamma spectrometric data for an area of 48,600 km{sup 2} in Southern Brazil. The source data was the Serra do Mar Sul Aero-Geophysical Project back-calibrated in a cooperative work among the Geological Survey of Brazil, the Geological Survey of Canada, and Paterson, Grant and Watson Ltd. The concentrations of eU (ppm), eTh (ppm) and K (%) were converted to dose rates in air (nGy{center_dot}h{sup -1}) by accounting for the contribution of each element's concentration. Regional variation was interpreted according to lithotypes and a synthesis was performedmore » according to the basic geological units present in the area. Higher values of total dose were estimated for felsic igneous and metamorphic rocks, with average values varying up to 119{+-}24 nGy{center_dot}h{sup -1}, obtained by Anitapolis syenite body. Sedimentary, metasedimentary and metamafic rocks presented the lower dose levels, and some beach deposits reached the lowest average total dose, 18.5{+-}8.2 nGy{center_dot}h{sup -1}. Thorium gives the main average contribution in all geological units, the highest value being reached by the nebulitic gneisses of Atuba Complex, 71{+-}23 nGy{center_dot}h{sup -1}. Potassium presents the lowest average contribution to dose rate in 53 of the 72 units analyzed, the highest contribution being obtained by intrusive alkaline bodies (28{+-}12 nGy{center_dot}h{sup -1}). The general pattern of geographic dose distribution respects well the hypotheses on geo-physicochemical behavior of radioactive elements.« less

  13. Evaluation of the dose received in the tissues of the neck during quantification of iodine in the thyroid by X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Portararo, Antonio; Licour, Caroline; Gerardy, Isabelle; Pozuelo Navarro, Fausto

    2018-04-01

    The determination of the iodine content in the thyroid is of great interest for many investigations of this gland. The conventional scintigraphic method, using radionuclides, is efficient but delivers a significant dose to the patient. The X-ray fluorescence spectrometry could give information about the iodine content in the thyroid. The measured signal is obtained after stimulation of the stable iodine contained in the gland by X-rays. The advantage of this technique is the complete absence of radioactive isotope injected into the patient body. By applying this, a decrease in effective dose to the patient should be obtained. In this work, the study of the dose received by a thyroid phantom (surrounded by the different tissues of the neck) was performed. The phantom is made of PLA. The dose is measured in optimised conditions defined for the analytical technique. A total head-neck phantom was also used in order to consider the absorbed dose in each different tissues and organs as spinal cord or eyes. Thermo-luminescence dosimeters were chosen for their small size, their sensitivity and the easy positioning on the surface of the phantom but also inside of it to evaluate dose to internal organs. Those LiF 100 dosimeters have been calibrated within the X-ray beam also used for the analysis of iodine. The repeatability and reproducibility of the method has been evaluated. The influence of parameters as concentration of iodine in the thyroid, distance between the X-ray generator and the neck, thickness of the tissues surrounding the thyroid, has been investigated in terms of modifying parameters of the dose received by different tissues situated in the neck and the head.

  14. Estimated human absorbed dose of ¹⁷⁷Lu-BPAMD based on mice data: Comparison with ¹⁷⁷Lu-EDTMP.

    PubMed

    Yousefnia, Hassan; Zolghadri, Samaneh; Shanehsazzadeh, Saeed

    2015-10-01

    In this work, the absorbed dose of human organs for (177)Lu-BPAMD was evaluated based on biodistribution studies into the Syrian mice by RADAR method and was compared with (177)Lu-EDTMP as the only clinically used Lu-177 bone-seeking agent. The highest absorbed dose for both (177)Lu-BPAMD and (177)Lu-EDTMP is observed on the bone surface with 8.007 and 4.802 mSv/MBq. Generally, (177)Lu-BPAMD has considerable characteristics compared with (177)Lu-EDTMP and can be considered as a promising agent for the bone pain palliation therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Measurement of absorbed dose with a bone-equivalent extrapolation chamber.

    PubMed

    DeBlois, François; Abdel-Rahman, Wamied; Seuntjens, Jan P; Podgorsak, Ervin B

    2002-03-01

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to approximately 2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams.

  16. Neutron fluence-to-dose conversion coefficients for embryo and fetus.

    PubMed

    Chen, Jing; Meyerhof, Dorothy; Vlahovich, Slavica

    2004-01-01

    A problem of concern in radiation protection is the exposure of pregnant women to ionising radiation, because of the high radiosensitivity of the embryo and fetus. External neutron exposure is of concern when pregnant women travel by aeroplane. Dose assessments for neutrons frequently rely on fluence-to-dose conversion coefficients. While neutron fluence-to-dose conversion coefficients for adults are recommended in International Commission on Radiological Protection publications and International Commission on Radiological Units and Measurements reports, conversion coefficients for embryos and fetuses are not given in the publications. This study undertakes Monte Carlo calculations to determine the mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A new set of mathematical models for the embryo and fetus has been developed at Health Canada and is used together with mathematical phantoms of a pregnant female developed at Oak Ridge National Laboratory. Monoenergetic neutrons from 1 eV to 10 MeV are considered in this study. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO) geometries. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated; for the embryo at 8 weeks and the fetus at 3, 6 or 9 months. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four age groups. Neutron fluence-to-equivalent dose conversion coefficients are given for the AP irradiations which yield the highest radiation dose to the fetal body in the neutron energy range considered here. The results indicate that for neutrons <10 MeV more protection should be given to pregnant women in the first trimester due to the higher absorbed dose per unit neutron fluence to the fetus.

  17. Organ dose measurement using Optically Stimulated Luminescence Detector (OSLD) during CT examination

    NASA Astrophysics Data System (ADS)

    Yusuf, Muhammad; Alothmany, Nazeeh; Abdulrahman Kinsara, Abdulraheem

    2017-10-01

    This study provides detailed information regarding the imaging doses to patient radiosensitive organs from a kilovoltage computed tomography (CT) scan procedure using OSLD. The study reports discrepancies between the measured dose and the calculated dose from the ImPACT scan, as well as a comparison with the dose from a chest X-ray radiography procedure. OSLDs were inserted in several organs, including the brain, eyes, thyroid, lung, heart, spinal cord, breast, spleen, stomach, liver and ovaries, of the RANDO phantom. Standard clinical scanning protocols were used for each individual site, including the brain, thyroid, lung, breast, stomach, liver and ovaries. The measured absorbed doses were then compared with the simulated dose obtained from the ImPACT scan. Additionally, the equivalent doses for each organ were calculated and compared with the dose from a chest X-ray radiography procedure. Absorbed organ doses measured by OSLD in the RANDO phantom of up to 17 mGy depend on the organ scanned and the scanning protocols used. A maximum 9.82% difference was observed between the target organ dose measured by OSLD and the results from the ImPACT scan. The maximum equivalent organ dose measured during this experiment was equal to 99.899 times the equivalent dose from a chest X-ray radiography procedure. The discrepancies between the measured dose with the OSLD and the calculated dose from the ImPACT scan were within 10%. This report recommends the use of OSLD for measuring the absorbed organ dose during CT examination.

  18. Neutron dose estimation in a zero power nuclear reactor

    NASA Astrophysics Data System (ADS)

    Triviño, S.; Vedelago, J.; Cantargi, F.; Keil, W.; Figueroa, R.; Mattea, F.; Chautemps, A.; Santibañez, M.; Valente, M.

    2016-10-01

    This work presents the characterization and contribution of neutron and gamma components to the absorbed dose in a zero power nuclear reactor. A dosimetric method based on Fricke gel was implemented to evaluate the separation between dose components in the mixed field. The validation of this proposed method was performed by means of direct measurements of neutron flux in different positions using Au and Mg-Ni activation foils. Monte Carlo simulations were conversely performed using the MCNP main code with a dedicated subroutine to incorporate the exact complete geometry of the nuclear reactor facility. Once nuclear fuel elements were defined, the simulations computed the different contributions to the absorbed dose in specific positions inside the core. Thermal/epithermal contributions of absorbed dose were assessed by means of Fricke gel dosimetry using different isotopic compositions aimed at modifying the sensitivity of the dosimeter for specific dose components. Clear distinctions between gamma and neutron capture dose were obtained. Both Monte Carlo simulations and experimental results provided reliable estimations about neutron flux rate as well as dose rate during the reactor operation. Simulations and experimental results are in good agreement in every positions measured and simulated in the core.

  19. Comparative study of nuclear magnetic resonance and UV-visible spectroscopy dose-response of polymer gel based on N-(Isobutoxymethyl) acrylamide

    NASA Astrophysics Data System (ADS)

    Lotfy, S.; Basfar, A. A.; Moftah, B.; Al-Moussa, A. A.

    2017-12-01

    A comparative study of nuclear magnetic resonance and UV-visible spectroscopy of dose-response for polymer gel dosimeters was performed. Dosimeters were prepared using N-(Isobutoxymethyl) acrylamide (NIBMA) as a new monomer via radiation induced polymerization for use in radiotherapy planning. The prepared dosimeters were irradiated with doses up to 30 Gy at a constant dose rate of 600 MU/min. Using a medical linear accelerator at irradiation energies of 6, 10 and 18 MV photon beam. The nuclear magnetic resonance (NMR), via spin-spin relaxation rate (R2) for water proton surrounding the polymer formulation and UV-Visible spectroscopy, via the optical absorbance measurements of irradiated dosimeters at selected wavelengths of 500 nm, was used to investigate the dose response of NIBMAGAT gel dosimeters. Scavenge of oxygen was done using tetrakis (hydroxymethyl) phosphonium chloride (THPC). The THPC optimum concentration in the dosimeters formulations were 5 and 10 mM for the NMR and optical absorbance measurements respectively. The quantitative investigation of the dosimeters components reveals the selective formulations based on 4% w/w gelatin, 1% w/w NIBMA, 3% w/w BisAAm, 5 or 10 mM THPC and 17% w/w glycerol which significantly increase the dosimeters dose response. The prepared dosimeters were found to be dose rate and photon beam irradiation energy independent. The stability study shows no change in the relaxation rate or in the optical absorbance of the gel dosimeters up to 8 days post-irradiation. The prepared polymer gel dosimeters at the energies of 6, 10 and 18 MV photon beam irradiation in the range of 1-30 Gy have the linearity of the dose response function in the case of R2 is better than in the case of absorbance measurements; correlation coefficient (r2) equals 0.995 and 0.991, respectively. Dose sensitivity, R2 of NIBMAGAT dosimeters (0.0775 s-1 Gy-1). The absorption band intensity increases linearly with a dose sensitivity of 0.016 cm-1 Gy-1. The detection limit of the present dosimeter analyzed by R2 and absorbance measurements is 1 Gy and 2 Gy respectively. The overall uncertainty measurements of dose approve that by using the absorbance measurements the gel is not useful as a dosimeter like as R2 measurements. It could be a new composition of dosimeters successfully utilized for MRI (Magnetic Resonance Imaging) for radiotherapy treatment planning.

  20. Absorbed dose in AgBr in direct film for photon energies ( < 150 keV): relation to optical density. Theoretical calculation and experimental evaluation.

    PubMed

    Helmrot, E; Alm Carlsson, G

    1996-01-01

    In the radiological process it is necessary to develop tools so as to explore how X-rays can be used in the most effective way. Evaluation of models to derive measures of image quality and risk-related parameters is one possibility of getting such a tool. Modelling the image receptor, an important part of the imaging chain, is then required. The aim of this work was to find convenient and accurate ways of describing the blackening of direct dental films by X-rays. Since the beginning of the 20th century, the relation between optical density and photon interactions in the silver bromide in X-ray films has been investigated by many authors. The first attempts used simple quantum theories with no consideration of underlying physical interaction processes. The theories were gradually made more realistic by the introduction of dosimetric concepts and cavity theory. A review of cavity theories for calculating the mean absorbed dose in the AgBr grains of the film emulsion is given in this work. The cavity theories of GREENING (15) and SPIERS-CHARLTON (37) were selected for calculating the mean absorbed dose in the AgBr grains relative to the air collision kerma (Kc,air) of the incident photons of Ultra-speed and Ektaspeed (intraoral) films using up-to-date values of interaction coefficients. GREENING'S theory is a multi-grain theory and the results depend on the relative amounts of silver bromide and gelatine in the emulsion layer. In the single grain theory of SPIERS-CHARLTON, the shape and size of the silver bromide grain are important. Calculations of absorbed dose in the silver bromide were compared with measurements of optical densities in Ultra-speed and Ektaspeed films for a broad range (25-145 kV) of X-ray energy. The calculated absorbed dose values were appropriately averaged over the complete photon energy spectrum, which was determined experimentally using a Compton spectrometer. For the whole range of tube potentials used, the measured optical densities of the films were found to be proportional to the mean absorbed dose in the AgBr grains calculated according to GREENING'S theory. They were also found to be proportional to the collision kerma in silver bromide (Kc,AgBr) indicating proportionality between Kc,AgBr and the mean absorbed dose in silver bromide. While GREENING'S theory shows that the quotient of the mean absorbed dose in silver bromide and Kc,AgBr varies with photon energy, this is not apparent when averaged over the broad (diagnostic) X-ray energy spectra used here. Alternatively, proportionality between Kc,AgBr and the mean absorbed dose in silver bromide can be interpreted as resulting from a combination of the SPIERS-CHARLTON theory, valid at low photon energies ( < 30 keV) and GREENING'S theory, which is strictly valid at energies above 50 keV. This study shows that the blackening of non-screen films can be related directly to the energy absorbed in the AgBr grains of the emulsion layer and that, for the purpose of modelling the imaging chain in intraoral radiography, film response can be represented by Kc,AgBr (at the position of the film) independent of photon energy. The importance of taking the complete X-ray energy spectrum into full account in deriving Kc,AgBr is clearly demonstrated, showing that the concept of effective energy must be used with care.

  1. Analysis of variation in calibration curves for Kodak XV radiographic film using model-based parameters.

    PubMed

    Hsu, Shu-Hui; Kulasekere, Ravi; Roberson, Peter L

    2010-08-05

    Film calibration is time-consuming work when dose accuracy is essential while working in a range of photon scatter environments. This study uses the single-target single-hit model of film response to fit the calibration curves as a function of calibration method, processor condition, field size and depth. Kodak XV film was irradiated perpendicular to the beam axis in a solid water phantom. Standard calibration films (one dose point per film) were irradiated at 90 cm source-to-surface distance (SSD) for various doses (16-128 cGy), depths (0.2, 0.5, 1.5, 5, 10 cm) and field sizes (5 × 5, 10 × 10 and 20 × 20 cm²). The 8-field calibration method (eight dose points per film) was used as a reference for each experiment, taken at 95 cm SSD and 5 cm depth. The delivered doses were measured using an Attix parallel plate chamber for improved accuracy of dose estimation in the buildup region. Three fitting methods with one to three dose points per calibration curve were investigated for the field sizes of 5 × 5, 10 × 10 and 20 × 20 cm². The inter-day variation of model parameters (background, saturation and slope) were 1.8%, 5.7%, and 7.7% (1 σ) using the 8-field method. The saturation parameter ratio of standard to 8-field curves was 1.083 ± 0.005. The slope parameter ratio of standard to 8-field curves ranged from 0.99 to 1.05, depending on field size and depth. The slope parameter ratio decreases with increasing depth below 0.5 cm for the three field sizes. It increases with increasing depths above 0.5 cm. A calibration curve with one to three dose points fitted with the model is possible with 2% accuracy in film dosimetry for various irradiation conditions. The proposed fitting methods may reduce workload while providing energy dependence correction in radiographic film dosimetry. This study is limited to radiographic XV film with a Lumisys scanner.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacFarlane, Michael; Battista, Jerry; Chen, Jeff

    Purpose: To develop a radiotherapy dose tracking and plan evaluation technique using cone-beam computed tomography (CBCT) images. Methods: We developed a patient-specific method of calibrating CBCT image sets for dose calculation. The planning CT was first registered with the CBCT using deformable image registration (DIR). A scatter plot was generated between the CT numbers of the planning CT and CBCT for each slice. The CBCT calibration curve was obtained by least-square fitting of the data, and applied to each CBCT slice. The calibrated CBCT was then merged with original planning CT to extend the small field of view of CBCT.more » Finally, the treatment plan was copied to the merged CT for dose tracking and plan evaluation. The proposed patient-specific calibration method was also compared to two methods proposed in literature. To evaluate the accuracy of each technique, 15 head-and-neck patients requiring plan adaptation were arbitrarily selected from our institution. The original plan was calculated on each method’s data set, including a second planning CT acquired within 48 hours of the CBCT (serving as gold standard). Clinically relevant dose metrics and 3D gamma analysis of dose distributions were compared between the different techniques. Results: Compared to the gold standard of using planning CTs, the patient-specific CBCT calibration method was shown to provide promising results with gamma pass rates above 95% and average dose metric agreement within 2.5%. Conclusions: The patient-specific CBCT calibration method could potentially be used for on-line dose tracking and plan evaluation, without requiring a re-planning CT session.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, H; Menon, G; Sloboda, R

    The purpose of this study was to investigate the accuracy of radiochromic film calibration procedures used in external beam radiotherapy when applied to I-125 brachytherapy sources delivering higher doses, and to determine any necessary modifications to achieve similar accuracy in absolute dose measurements. GafChromic EBT3 film was used to measure radiation doses upwards of 35 Gy from 6 MV, 75 kVp and (∼28 keV) I-125 photon sources. A custom phantom was used for the I-125 irradiations to obtain a larger film area with nearly constant dose to reduce the effects of film heterogeneities on the optical density (OD) measurements. RGBmore » transmission images were obtained with an Epson 10000XL flatbed scanner, and calibration curves relating OD and dose using a rational function were determined for each colour channel and at each energy using a non-linear least square minimization method. Differences found between the 6 MV calibration curve and those for the lower energy sources are large enough that 6 MV beams should not be used to calibrate film for low-energy sources. However, differences between the 75 kVp and I-125 calibration curves were quite small; indicating that 75 kVp is a good choice. Compared with I-125 irradiation, this gives the advantages of lower type B uncertainties and markedly reduced irradiation time. To obtain high accuracy calibration for the dose range up to 35 Gy, two-segment piece-wise fitting was required. This yielded absolute dose measurement accuracy above 1 Gy of ∼2% for 75 kVp and ∼5% for I-125 seed exposures.« less

  4. The Effect of Diagnostic Absorbed Doses from 131I on Human Thyrocytes in Vitro

    PubMed Central

    Adamczewski, Zbigniew; Stasiołek, Mariusz; Karwowski, Bolesław; Dedecjus, Marek; Orszulak-Michalak, Daria; Merecz, Anna; Śliwka, Przemysław W.; Puła, Bartosz; Lewiński, Andrzej

    2015-01-01

    Background: Administration of diagnostic activities of 131I, performed in order to detect thyroid remnants after surgery and/or thyroid cancer recurrence/metastases, may lead to reduction of iodine uptake. This phenomenon is called “thyroid stunning”. We estimated radiation absorbed dose-dependent changes in genetic material, in particular in sodium iodide symporter (NIS) gene promoter, and NIS protein level in human thyrocytes (HT). Materials and Methods: We used unmodified HT isolated from patients subjected to thyroidectomy exposed to 131I in culture. The different 131I activities applied were calculated to result in absorbed doses of 5, 10, and 20 Gy. Results: According to flow cytometry analysis and comet assay, 131I did not influence the HT viability in culture. Temporary increase of 8-oxo-dG concentration in HT directly after 24 h (p < 0.05) and increase in the number of AP-sites 72 h after termination of exposition to 20 Gy dose (p < 0.0001) were observed. The signs of dose-dependent DNA damage were not associated with essential changes in the NIS expression on mRNA and protein levels. Conclusions: Our observation constitutes a first attempt to evaluate the effect of the absorbed dose of 131I on HT. The results have not confirmed the theory that the “thyroid stunning” reduces the NIS protein synthesis. PMID:26132566

  5. Attenuation-based estimation of patient size for the purpose of size specific dose estimation in CT. Part II. Implementation on abdomen and thorax phantoms using cross sectional CT images and scanned projection radiograph images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jia; Christner, Jodie A.; Duan Xinhui

    2012-11-15

    Purpose: To estimate attenuation using cross sectional CT images and scanned projection radiograph (SPR) images in a series of thorax and abdomen phantoms. Methods: Attenuation was quantified in terms of a water cylinder with cross sectional area of A{sub w} from both the CT and SPR images of abdomen and thorax phantoms, where A{sub w} is the area of a water cylinder that would absorb the same dose as the specified phantom. SPR and axial CT images were acquired using a dual-source CT scanner operated at 120 kV in single-source mode. To use the SPR image for estimating A{sub w},more » the pixel values of a SPR image were calibrated to physical water attenuation using a series of water phantoms. A{sub w} and the corresponding diameter D{sub w} were calculated using the derived attenuation-based methods (from either CT or SPR image). A{sub w} was also calculated using only geometrical dimensions of the phantoms (anterior-posterior and lateral dimensions or cross sectional area). Results: For abdomen phantoms, the geometry-based and attenuation-based methods gave similar results for D{sub w}. Using only geometric parameters, an overestimation of D{sub w} ranging from 4.3% to 21.5% was found for thorax phantoms. Results for D{sub w} using the CT image and SPR based methods agreed with each other within 4% on average in both thorax and abdomen phantoms. Conclusions: Either the cross sectional CT or SPR images can be used to estimate patient attenuation in CT. Both are more accurate than use of only geometrical information for the task of quantifying patient attenuation. The SPR based method requires calibration of SPR pixel values to physical water attenuation and this calibration would be best performed by the scanner manufacturer.« less

  6. An international dosimetry exchange for boron neutron capture therapy. Part I: Absorbed dose measurements.

    PubMed

    Binns, P J; Riley, K J; Harling, O K; Kiger, W S; Munck af Rosenschöld, P M; Giusti, V; Capala, J; Sköld, K; Auterinen, I; Serén, T; Kotiluoto, P; Uusi-Simola, J; Marek, M; Viererbl, L; Spurny, F

    2005-12-01

    An international collaboration was organized to undertake a dosimetry exchange to enable the future combination of clinical data from different centers conducting neutron capture therapy trials. As a first step (Part I) the dosimetry group from the Americas, represented by MIT, visited the clinical centers at Studsvik (Sweden), VTT Espoo (Finland), and the Nuclear Research Institute (NRI) at Rez (Czech Republic). A combined VTT/NRI group reciprocated with a visit to MIT. Each participant performed a series of dosimetry measurements under equivalent irradiation conditions using methods appropriate to their clinical protocols. This entailed in-air measurements and dose versus depth measurements in a large water phantom. Thermal neutron flux as well as fast neutron and photon absorbed dose rates were measured. Satisfactory agreement in determining absorbed dose within the experimental uncertainties was obtained between the different groups although the measurement uncertainties are large, ranging between 3% and 30% depending upon the dose component and the depth of measurement. To improve the precision in the specification of absorbed dose amongst the participants, the individually measured dose components were normalized to the results from a single method. Assuming a boron concentration of 15 microg g(-1) that is typical of concentrations realized clinically with the boron delivery compound boronophenylalanine-fructose, systematic discrepancies in the specification of the total biologically weighted dose of up to 10% were apparent between the different groups. The results from these measurements will be used in future to normalize treatment plan calculations between the different clinical dosimetry protocols as Part II of this study.

  7. Absorbed dose to man from the Se-75 labeled conjugated bile salt SeHCAT: concise communication.

    PubMed

    Soundy, R G; Simpson, J D; Ross, H M; Merrick, M V

    1982-02-01

    The absorbed radiation dose that would result from the oral or intravenous administration of SeHCAT (23-[75Se]selena-25-homotaurocholate) has been calculated using the MIRD tables and formulas and data from measurements of whole-body distribution and from long-term whole-body counting in rats, mice, and man. When SeHCAT is administered to normal subjects, the gallbladder is the critical organ, receiving 12 mrad (oral dose) or 22 mrad (i.v.) per microcurie. The whole-body dose is 1 mrad/microCi, whatever the route of administration. In severe hepatic failure the liver might receive 200 mrad/microCi. The activity likely to be used in routine clinical practice is 10 microCi. Where a whole-body counter is used, an activity of 1 microCi has proved adequate. Even at an administered activity of 25 microCi, the absorbed dose is small compared with established techniques of investigating the gastrointestinal tract.

  8. Boron Neutron Capture Therapy (BNCT) Dose Calculation using Geometrical Factors Spherical Interface for Glioblastoma Multiforme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zasneda, Sabriani; Widita, Rena

    2010-06-22

    Boron Neutron Capture Therapy (BNCT) is a cancer therapy by utilizing thermal neutron to produce alpha particles and lithium nuclei. The superiority of BNCT is that the radiation effects could be limited only for the tumor cells. BNCT radiation dose depends on the distribution of boron in the tumor. Absorbed dose to the cells from the reaction 10B (n, {alpha}) 7Li was calculated near interface medium containing boron and boron-free region. The method considers the contribution of the alpha particle and recoiled lithium particle to the absorbed dose and the variation of Linear Energy Transfer (LET) charged particles energy. Geometricalmore » factor data of boron distribution for the spherical surface is used to calculate the energy absorbed in the tumor cells, brain and scalp for case Glioblastoma Multiforme. The result shows that the optimal dose in tumor is obtained for boron concentrations of 22.1 mg {sup 10}B/g blood.« less

  9. Primary DNA damage assessed with the comet assay and comparison to the absorbed dose of diagnostic X-rays in children.

    PubMed

    Milkovic, Durdica; Garaj-Vrhovac, Vera; Ranogajec-Komor, Mária; Miljanic, Saveta; Gajski, Goran; Knezevic, Zeljka; Beck, Natko

    2009-01-01

    The aim of this work is to assess DNA damage in peripheral blood lymphocytes of children prior to and following airway X-ray examinations of the chest using the alkaline comet assay and to compare data with the measured absorbed dose. Twenty children with pulmonary diseases, between the ages of 5 and 14 years, are assessed. Absorbed dose measurements are conducted for posterior-anterior projection on the forehead, thyroid gland, gonads, chest, and back. Doses are measured using thermoluminescent and radiophotoluminescent dosimetry systems. Differences between tail lengths, tail intensity, and tail moments as well as for the long-tailed nuclei before and after exposures are statistically significant and are dependent on the individual. The results demonstrate the usefulness of the comet assay as a measure of X-ray damage to lymphocytes in a clinical setting. Doses measured with both dosimeters show satisfactory agreement (0.01 mSv) and are suitable for dosimetric measurements in X-ray diagnostics.

  10. Micro-Dose Calibrator for Pre-clinical Radiotracer Assays | NCI Technology Transfer Center | TTC

    Cancer.gov

    Pre-clinical radiotracer biomedical research involves the use of compounds labeled with radioisotopes, including cell binding studies, immune cell labeling techniques, and radio-ligand bio-distribution studies. Before this Micro-Dose Calibrator, measurement of pre-clinical level dosage for small animal studies was inaccurate and unreliable. This dose calibrator is a prototype ready for manufacturing. It is designed to accurately measure radioactive doses in the range of 50 nCi (1.8 kBq) to 100 µCi (3.7 MBq) with 1% precision. The NCI seeks co-development or licensing to commercialize it. Alternative uses will be considered.

  11. Heavy-ion-induced sucrose radicals investigated using EPR and UV spectroscopy

    PubMed Central

    Nakagawa, Kouichi; Karakirova, Yordanka; Yordanov, Nicola D.

    2015-01-01

    The potential use of a sucrose dosimeter for estimating both linear energy transfer (LET) and the absorbed dose of heavy ion and X-ray radiation was investigated. The stable free radicals were produced when sucrose was irradiated with heavy ions, such as helium, carbon, silicon and neon ions, and when the X-ray radiation was similar to the obtained electron paramagnetic resonance (EPR) spectra, which were ∼7 mT wide and composed of several hyperfine structures. In addition, the total spin concentration resulting from heavy-ion irradiation increased linearly as the absorbed dose increased, and decreased logarithmically as the LET increased. These empirical relations imply that the LET at a certain dose can be determined from the spin concentration. For sucrose and alanine, both cross-sections following C-ion irradiation with a 50 Gy dose were ∼1.3 × 10−12 [μm2], taking into account the molecular size of the samples. The values of these cross-sections imply that multiple ionizing particles were involved in the production of stable radicals. Furthermore, UV absorbance at 267 nm of an aqueous solution of irradiated sucrose was found to linearly increase with increasing absorbed dose. Therefore, the EPR and UV results suggest that sucrose can be a useful dosimeter for heavy-ion irradiation. PMID:25480828

  12. SU-E-J-69: Evaluation of the Lens Dose On the Cone Beam IGRT Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palomo-Llinares, R; Gimeno-Olmos, J; Carmona Meseguer, V

    Purpose: With the establishment of the IGRT as a standard technique, the extra dose that is given to the patients should be taken into account. Furthermore, it has been a recent decrease of the dose threshold in the lens, reduced to 0.5 Gy (ICRP ref 4825-3093-1464 on 21st April, 2011).The purpose of this work was to evaluate the extra dose that the lens is receive due to the Cone-Beam (CBCT) location systems in Head-and-Neck treatments. Methods: The On-Board Imaging (OBI) v 1.5 of the two Varian accelerators, one Clinac iX and one True Beam, were used to obtain the dosemore » that this OBI version give to the lens in the Head-and-Neck location treatments. All CBCT scans were acquired with the Standard Dose Head protocol (100 kVp, 80 mA, 8 ms and 200 degree of rotation).The measurements were taken with thermoluminescence (TLD) EXTRAD (Harshaw) dosimeters placed in an anthropomorphic phantom over the eye and under 3 mm of bolus material to mimic the lens position. The center of the head was placed at the isocenter. To reduce TLD energy dependence, they were calibrated at the used beam quality. Results: The average lens dose at the lens in the OBI v 1.5 systems of the Clinac iX and the True Beam is 0.071 and 0.076 cGy/CBCT, respectively. Conclusions: The extra absorbed doses that receive the eye lenses due to one CBCT acquisition with the studied protocol is far below the new ICRP recommended threshold for the lens. However, the addition effect of several CBCT acquisition during the whole treatment should be taken into account.« less

  13. Electromagnetic scattering from microwave absorbers - Laboratory verification of the coupled wave theory

    NASA Technical Reports Server (NTRS)

    Gasiewski, A. J.; Jackson, D. M.

    1992-01-01

    W-band measurements of the bistatic scattering function of some common microwave absorbing structures, including periodic wedge-type and pyramid-type iron-epoxy calibration loads and flat carbon-foam 'Echosorb' samples, were made using a network analyzer interface to a focused-lens scattering range. Swept frequency measurements over the 75-100 GHz band revealed specular and Bragg reflection characteristics in the measured data.

  14. Monte Carlo Assessments of Absorbed Doses to the Hands of Radiopharmaceutical Workers Due to Photon Emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Dan; Eckerman, Keith F; Karagiannis, Harriet

    This paper describes the characterization of radiation doses to the hands of nuclear medicine technicians resulting from the handling of radiopharmaceuticals. Radiation monitoring using ring dosimeters indicates that finger dosimeters that are used to show compliance with applicable regulations may overestimate or underestimate radiation doses to the skin depending on the nature of the particular procedure and the radionuclide being handled. To better understand the parameters governing the absorbed dose distributions, a detailed model of the hands was created and used in Monte Carlo simulations of selected nuclear medicine procedures. Simulations of realistic configurations typical for workers handling radiopharmaceuticals weremore » performedfor a range of energies of the source photons. The lack of charged-particle equilibrium necessitated full photon-electron coupled transport calculations. The results show that the dose to different regions of the fingers can differ substantially from dosimeter readings when dosimeters are located at the base of the finger. We tried to identify consistent patterns that relate the actual dose to the dosimeter readings. These patterns depend on the specific work conditions and can be used to better assess the absorbed dose to different regions of the exposed skin.« less

  15. Space dosimetry with the application of a 3D silicon detector telescope: response function and inverse algorithm.

    PubMed

    Pázmándi, Tamás; Deme, Sándor; Láng, Edit

    2006-01-01

    One of the many risks of long-duration space flights is the excessive exposure to cosmic radiation, which has great importance particularly during solar flares and higher sun activity. Monitoring of the cosmic radiation on board space vehicles is carried out on the basis of wide international co-operation. Since space radiation consists mainly of charged heavy particles (protons, alpha and heavier particles), the equivalent dose differs significantly from the absorbed dose. A radiation weighting factor (w(R)) is used to convert absorbed dose (Gy) to equivalent dose (Sv). w(R) is a function of the linear energy transfer of the radiation. Recently used equipment is suitable for measuring certain radiation field parameters changing in space and over time, so a combination of different measurements and calculations is required to characterise the radiation field in terms of dose equivalent. The objectives of this project are to develop and manufacture a three-axis silicon detector telescope, called Tritel, and to develop software for data evaluation of the measured energy deposition spectra. The device will be able to determine absorbed dose and dose equivalent of the space radiation.

  16. Abdominal Pediatric Cancer Surveillance using Serial CT: Evaluation of Organ Absorbed Dose and Effective Dose

    PubMed Central

    Lam, Diana; Wootton-Gorges, Sandra L.; McGahan, John P.; Stern, Robin; Boone, John M.

    2012-01-01

    Computed tomography (CT) is used extensively in cancer diagnosis, staging, evaluation of response to treatment, and in active surveillance for cancer reoccurrence. A review of CT technology is provided, at a level of detail appropriate for a busy clinician to review. The basis of x-ray CT dosimetry is also discussed, and concepts of absorbed dose and effective dose are distinguished. Absorbed dose is a physical quantity (measured in milliGray) equal to the x-ray energy deposited in a mass of tissue, whereas effective dose utilizes an organ-specific weighting method which converts organ doses to effective dose measured in milliSieverts. The organ weighting values carry with them a measure of radiation risk, and so effective dose (in mSv) is not a physical dose metric but rather is one that conveys radiation risk. The use of CT in a cancer surveillance protocol was used as an example of a pediatric patient who had kidney cancer, with surgery and radiation therapy. The active use of CT for cancer surveillance along with diagnostic CT scans led to a total of 50 CT scans performed on this child in a 7 year period. It was estimated that the patient received an average organ dose of 431 mGy from these CT scans. By comparison, the radiation therapy was performed and delivered 50.4 Gy to the patient’s abdomen. Thus, the total dose from CT represented only 0.8% of the patients radiation dose. PMID:21362521

  17. Construction of dose response calibration curves for dicentrics and micronuclei for X radiation in a Serbian population.

    PubMed

    Pajic, J; Rakic, B; Jovicic, D; Milovanovic, A

    2014-10-01

    Biological dosimetry using chromosome damage biomarkers is a valuable dose assessment method in cases of radiation overexposure with or without physical dosimetry data. In order to estimate dose by biodosimetry, any biological dosimetry service have to have its own dose response calibration curve. This paper reveals the results obtained after irradiation of blood samples from fourteen healthy male and female volunteers in order to establish biodosimetry in Serbia and produce dose response calibration curves for dicentrics and micronuclei. Taking into account pooled data from all the donors, the resultant fitted curve for dicentrics is: Ydic=0.0009 (±0.0003)+0.0421 (±0.0042)×D+0.0602 (±0.0022)×D(2); and for micronuclei: Ymn=0.0104 (±0.0015)+0.0824 (±0.0050)×D+0.0189 (±0.0017)×D(2). Following establishment of the dose response curve, a validation experiment was carried out with four blood samples. Applied and estimated doses were in good agreement. On this basis, the results reported here give us confidence to apply both calibration curves for future biological dosimetry requirements in Serbia. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Olive oil phenolics are dose-dependently absorbed in humans.

    PubMed

    Visioli, F; Galli, C; Bornet, F; Mattei, A; Patelli, R; Galli, G; Caruso, D

    2000-02-25

    Olive oil phenolic constituents have been shown, in vitro, to be endowed with potent biological activities including, but not limited to, an antioxidant action. To date, there is no information on the absorption and disposition of such compounds in humans. We report that olive oil phenolics, namely tyrosol and hydroxytyrosol, are dose-dependently absorbed in humans after ingestion and that they are excreted in the urine as glucuronide conjugates. Furthermore, an increase in the dose of phenolics administered increased the proportion of conjugation with glucuronide.

  19. A brachytherapy photon radiation quality index Q(BT) for probe-type dosimetry.

    PubMed

    Quast, Ulrich; Kaulich, Theodor W; Álvarez-Romero, José T; Carlsson Tedgren, Sa; Enger, Shirin A; Medich, David C; Mourtada, Firas; Perez-Calatayud, Jose; Rivard, Mark J; Zakaria, G Abu

    2016-06-01

    In photon brachytherapy (BT), experimental dosimetry is needed to verify treatment plans if planning algorithms neglect varying attenuation, absorption or scattering conditions. The detector's response is energy dependent, including the detector material to water dose ratio and the intrinsic mechanisms. The local mean photon energy E¯(r) must be known or another equivalent energy quality parameter used. We propose the brachytherapy photon radiation quality indexQ(BT)(E¯), to characterize the photon radiation quality in view of measurements of distributions of the absorbed dose to water, Dw, around BT sources. While the external photon beam radiotherapy (EBRT) radiation quality index Q(EBRT)(E¯)=TPR10(20)(E¯) is not applicable to BT, the authors have applied a novel energy dependent parameter, called brachytherapy photon radiation quality index, defined as Q(BT)(E¯)=Dprim(r=2cm,θ0=90°)/Dprim(r0=1cm,θ0=90°), utilizing precise primary absorbed dose data, Dprim, from source reference databases, without additional MC-calculations. For BT photon sources used clinically, Q(BT)(E¯) enables to determine the effective mean linear attenuation coefficient μ¯(E) and thus the effective energy of the primary photons Eprim(eff)(r0,θ0) at the TG-43 reference position Pref(r0=1cm,θ0=90°), being close to the mean total photon energy E¯tot(r0,θ0). If one has calibrated detectors, published E¯tot(r) and the BT radiation quality correction factor [Formula: see text] for different BT radiation qualities Q and Q0, the detector's response can be determined and Dw(r,θ) measured in the vicinity of BT photon sources. This novel brachytherapy photon radiation quality indexQ(BT) characterizes sufficiently accurate and precise the primary photon's penetration probability and scattering potential. Copyright © 2016. Published by Elsevier Ltd.

  20. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: organic carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2014-11-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, the organic carbon concentration is measured using thermal methods such as Thermal-Optical Reflectance (TOR) from quartz fiber filters. Here, methods are presented whereby Fourier Transform Infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters are used to accurately predict TOR OC. Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filters. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites sampled during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to artifact-corrected TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date which leads to precise and accurate OC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), low bias (0.02 μg m-3, all μg m-3 values based on the nominal IMPROVE sample volume of 32.8 m-3), low error (0.08 μg m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. FT-IR spectra are also divided into calibration and test sets by OC mass and by OM / OC which reflects the organic composition of the particulate matter and is obtained from organic functional group composition; this division also leads to precise and accurate OC predictions. Low OC concentrations have higher bias and normalized error due to TOR analytical errors and artifact correction errors, not due to the range of OC mass of the samples in the calibration set. However, samples with low OC mass can be used to predict samples with high OC mass indicating that the calibration is linear. Using samples in the calibration set that have a different OM / OC or ammonium / OC distributions than the test set leads to only a modest increase in bias and normalized error in the predicted samples. We conclude that FT-IR analysis with partial least squares regression is a robust method for accurately predicting TOR OC in IMPROVE network samples; providing complementary information to the organic functional group composition and organic aerosol mass estimated previously from the same set of sample spectra (Ruthenburg et al., 2014).

  1. Estimation of absorbed radiation dose rates in wild rodents inhabiting a site severely contaminated by the Fukushima Dai-ichi nuclear power plant accident.

    PubMed

    Kubota, Yoshihisa; Takahashi, Hiroyuki; Watanabe, Yoshito; Fuma, Shoichi; Kawaguchi, Isao; Aoki, Masanari; Kubota, Masahide; Furuhata, Yoshiaki; Shigemura, Yusaku; Yamada, Fumio; Ishikawa, Takahiro; Obara, Satoshi; Yoshida, Satoshi

    2015-04-01

    The dose rates of radiation absorbed by wild rodents inhabiting a site severely contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident were estimated. The large Japanese field mouse (Apodemus speciosus), also called the wood mouse, was the major rodent species captured in the sampling area, although other species of rodents, such as small field mice (Apodemus argenteus) and Japanese grass voles (Microtus montebelli), were also collected. The external exposure of rodents calculated from the activity concentrations of radiocesium ((134)Cs and (137)Cs) in litter and soil samples using the ERICA (Environmental Risk from Ionizing Contaminants: Assessment and Management) tool under the assumption that radionuclides existed as the infinite plane isotropic source was almost the same as those measured directly with glass dosimeters embedded in rodent abdomens. Our findings suggest that the ERICA tool is useful for estimating external dose rates to small animals inhabiting forest floors; however, the estimated dose rates showed large standard deviations. This could be an indication of the inhomogeneous distribution of radionuclides in the sampled litter and soil. There was a 50-fold difference between minimum and maximum whole-body activity concentrations measured in rodents at the time of capture. The radionuclides retained in rodents after capture decreased exponentially over time. Regression equations indicated that the biological half-life of radiocesium after capture was 3.31 d. At the time of capture, the lowest activity concentration was measured in the lung and was approximately half of the highest concentration measured in the mixture of muscle and bone. The average internal absorbed dose rate was markedly smaller than the average external dose rate (<10% of the total absorbed dose rate). The average total absorbed dose rate to wild rodents inhabiting the sampling area was estimated to be approximately 52 μGy h(-1) (1.2 mGy d(-1)), even 3 years after the accident. This dose rate exceeds 0.1-1 mGy d(-1) derived consideration reference level for Reference rat proposed by the International Commission on Radiological Protection (ICRP). Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Dose Calculations for [131I] Meta-Iodobenzylguanidine-Induced Bystander Effects

    PubMed Central

    Gow, M. D.; Seymour, C. B.; Boyd, M.; Mairs, R. J.; Prestiwch, W. V.; Mothersill, C. E.

    2014-01-01

    Targeted radiotherapy is a potentially useful treatment for some cancers and may be potentiated by bystander effects. However, without estimation of absorbed dose, it is difficult to compare the effects with conventional external radiation treatment. Methods: Using the Vynckier – Wambersie dose point kernel, a model for dose rate evaluation was created allowing for calculation of absorbed dose values to two cell lines transfected with the noradrenaline transporter (NAT) gene and treated with [131I]MIBG. Results: The mean doses required to decrease surviving fractions of UVW/NAT and EJ138/NAT cells, which received medium from [131I]MIBG-treated cells, to 25 – 30% were 1.6 and 1.7 Gy respectively. The maximum mean dose rates achieved during [131I]MIBG treatment were 0.09 – 0.75 Gy/h for UVW/NAT and 0.07 – 0.78 Gy/h for EJ138/NAT. These were significantly lower than the external beam gamma radiation dose rate of 15 Gy/h. In the case of control lines which were incapable of [131I]MIBG uptake the mean absorbed doses following radiopharmaceutical were 0.03 – 0.23 Gy for UVW and 0.03 – 0.32 Gy for EJ138. Conclusion: [131I]MIBG treatment for ICCM production elicited a bystander dose-response profile similar to that generated by external beam gamma irradiation but with significantly greater cell death. PMID:24659931

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosen, B. S., E-mail: bsrosen@wisc.edu; Hammer, C. G.; Kunugi, K. A.

    Purpose: To evaluate a prototype densitometer traceable to primary optical standards and compare its performance to an EPSON Expression{sup ®} 10000XL flatbed scanner (the Epson) for quantitative radiochromic film (RCF) dosimetry. Methods: A prototype traceable laser densitometry system (LDS) was developed to mitigate common film scanning artifacts, such as positional scan dependence and high noise in low-dose regions, by performing point-based measurements of RCF suspended in free-space using coherent light. The LDS and the Epson optical absorbance scales were calibrated up to 3 AU, using reference materials calibrated at a primary standards laboratory and a scanner calibration factor (SCF). Calibratedmore » optical density (OD) was determined for 96 Gafchromic{sup ®} EBT3 film segments before and after irradiation to one of 16 dose levels between 0 and 10 Gy, exposed to {sup 60}Co in a polymethyl-methacrylate (PMMA) phantom. The sensitivity was determined at each dose level and at two rotationally orthogonal readout orientations to obtain the sensitometric response of each RCF dosimetry system. LDS rotational scanning dependence was measured at nine angles between 0°and 180°, due to the expected interference between coherent light and polarizing EBT3 material. The response curves were fit to the analytic functions predicted by two physical response models: the two-parameter single-hit model and the four-parameter percolation model. Results: The LDS and the Epson absorbance measurements were linear to primary optical standards to within 0.2% and 0.3% up to 2 and 1 AU, respectively. At higher densities, the LDS had an over-response (2.5% at 3 AU) and the Epson an under-response (3.1% and 9.8% at 2 and 3 AU, respectively). The LDS and the Epson SCF over the applicable range were 0.968% ± 0.2% and 1.561% ± 0.3%, respectively. The positional scan dependence was evaluated on each digitizer and shown to be mitigated on the LDS, as compared to the Epson. Maximum EBT3 rotational dependence was found to have a strong dependence on dose (0.1% and 34% at 30 mGy and 5 Gy, respectively). The preferred EBT3 polymerization axis angle was constant within experimental uncertainties. In its most sensitive orientation, the LDS-measured EBT3 sensitivity was 7.13 × 10{sup −4} ± 9.2 × 10{sup −6} AU/mGy, which represented a 4.5 fold increase over the Epson of 1.58 × 10{sup −4} ± 9.8 × 10{sup −6} AU/mGy. To first order approximations, EBT3 response was linear up to 500 mGy to within 0.80% and to within 7.5% for the most sensitive LDS and the Epson orientations, respectively. The corresponding single-hit and percolation model relative residual norms were 0.082 and 0.074 for LDS as compared to 0.29 and 0.18 for the Epson, which represented a significant increase in LDS-measured agreement with the simple physical model. Less sensitive LDS and the Epson orientations showed a marked decrease in the physical model agreement, which suggested that suboptimal readout device characteristics may be the origin of the complex sensitometric functional forms currently required for accurate RCF dosimetry. Conclusions: The prototype densitometer was shown to be superior to a conventional scanner for quantitative RCF dosimetry based on physical models of film response. The Epson was shown to be a reliable tool for routine RCF dosimetry in a clinical setting, yet calibration to primary optical standards did not mitigate the necessity for complex, empirical functional form fitting.« less

  4. Predicting ambient aerosol thermal-optical reflectance measurements from infrared spectra: elemental carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2015-10-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as thermal-optical reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier transform infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive and nondestructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FT-IR spectra are divided into calibration and test sets. Two calibrations are developed: one developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a uniform distribution of Low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the Low EC calibration to Low EC samples and the Uniform EC calibration to all other samples is used to produce predictions for Low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), no bias (0.00 μg m-3, a concentration value based on the nominal IMPROVE sample volume of 32.8 m3), low error (0.03 μg m-3) and reasonable normalized error (21 %). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. Only the normalized error is higher for the FT-IR EC measurements than for collocated TOR. FT-IR spectra are also divided into calibration and test sets by the ratios OC/EC and ammonium/EC to determine the impact of OC and ammonium on EC prediction. We conclude that FT-IR analysis with partial least squares regression is a robust method for accurately predicting TOR EC in IMPROVE network samples, providing complementary information to TOR OC predictions (Dillner and Takahama, 2015) and the organic functional group composition and organic matter estimated previously from the same set of sample spectra (Ruthenburg et al., 2014).

  5. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: elemental carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2015-06-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as Thermal-Optical Reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier Transform Infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure tested and developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FTIR spectra are divided into calibration and test sets. Two calibrations are developed, one which is developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a~uniform distribution of low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the low EC calibration to low EC samples and the Uniform EC calibration to all other samples is used to produces predictions for low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of variation (R2; 0.96), no bias (0.00 μg m-3, concentration value based on the nominal IMPROVE sample volume of 32.8 m-3), low error (0.03 μg m-3) and reasonable normalized error (21 %). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. Only the normalized error is higher for the FT-IR EC measurements than for collocated TOR. FT-IR spectra are also divided into calibration and test sets by the ratios OC/EC and ammonium/EC to determine the impact of OC and ammonium on EC prediction. We conclude that FT-IR analysis with partial least squares regression is a robust method for accurately predicting TOR EC in IMPROVE network samples; providing complementary information to TOR OC predictions (Dillner and Takahama, 2015) and the organic functional group composition and organic matter (OM) estimated previously from the same set of sample spectra (Ruthenburg et al., 2014).

  6. An estimate by two methods of thyroid absorbed doses due to BRAVO fallout in several Northern Marshall Islands.

    PubMed

    Musolino, S V; Greenhouse, N A; Hull, A P

    1997-10-01

    Estimates of the thyroid absorbed doses due to fallout originating from the 1 March 1954 BRAVO thermonuclear test on Bikini Atoll have been made for several inhabited locations in the Northern Marshall Islands. Rongelap, Utirik, Rongerik and Ailinginae Atolls were also inhabited on 1 March 1954, where retrospective thyroid absorbed doses have previously been reconstructed. The current estimates are based primarily on external exposure data, which were recorded shortly after each nuclear test in the Castle Series, and secondarily on soil concentrations of 137Cs in samples collected in 1978 and 1988, along with aerial monitoring done in 1978. The external exposures and 137Cs soil concentrations were representative of the atmospheric transport and deposition patterns of the entire Castle Series tests and show that the BRAVO test was the major contributor to fallout exposure during the Castle series and other test series which were carried out in the Marshall Islands. These data have been used as surrogates for fission product radioiodines and telluriums in order to estimate the range of thyroid absorbed doses that may have occurred throughout the Marshall Islands. Dosimetry based on these two sets of estimates agreed within a factor of 4 at the locations where BRAVO was the dominant contributor to the total exposure and deposition. Both methods indicate that thyroid absorbed doses in the range of 1 Gy (100 rad) may have been incurred in some of the northern locations, whereas the doses at southern locations did not significantly exceed levels comparable to those from worldwide fallout. The results of these estimates indicate that a systematic medical survey for thyroid disease should be conducted, and that a more definitive dose reconstruction should be made for all the populated atolls and islands in the Northern Marshall Islands beyond Rongelap, Utirik, Rongerik and Ailinginae, which were significantly contaminated by BRAVO fallout.

  7. The absorbed dose to blood from blood-borne activity

    NASA Astrophysics Data System (ADS)

    Hänscheid, H.; Fernández, M.; Lassmann, M.

    2015-01-01

    The radiation absorbed dose to blood and organs from activity in the blood is relevant for nuclear medicine dosimetry and for research in biodosimetry. The present study provides coefficients for the average absorbed dose rates to the blood from blood-borne activity for radionuclides frequently used in targeted radiotherapy and in PET diagnostics. The results were deduced from published data for vessel radius-dependent dose rate coefficients and reasonable assumptions on the blood-volume distribution as a function of the vessel radius. Different parts of the circulatory system were analyzed separately. Vessel size information for heart chambers, aorta, vena cava, pulmonary artery, and capillaries was taken from published results of morphometric measurements. The remaining blood not contained in the mentioned vessels was assumed to reside in fractal-like vascular trees, the smallest branches of which are the arterioles or venules. The applied vessel size distribution is consistent with recommendations of the ICRP on the blood-volume distribution in the human. The resulting average absorbed dose rates to the blood per nuclear disintegration per milliliter (ml) of blood are (in 10-11 Gy·s-1·Bq-1·ml) Y-90: 5.58, I-131: 2.49, Lu-177: 1.72, Sm-153: 2.97, Tc-99m: 0.366, C-11: 4.56, F-18: 3.61, Ga-68: 5.94, I-124: 2.55. Photon radiation contributes 1.1-1.2·10-11 Gy·s-1·Bq-1·ml to the total dose rate for positron emitters but significantly less for the other nuclides. Blood self-absorption of the energy emitted by ß-particles in the whole blood ranges from 37% for Y-90 to 80% for Tc-99m. The correspondent values in vascular trees, which are important for the absorbed dose to organs, range from 30% for Y-90 to 82% for Tc-99m.

  8. Jet Fuel Exposure and Neurological Health in Military Personnel

    DTIC Science & Technology

    2011-07-01

    and dermal samples E Absorbed Dose measure: Exhaled breath, urine , blood F Lifestyle factors (smoking), use of protective equipment (gloves...toluene, ethylbenzene, xylene, and naphthalene. To assess personal absorbed dose levels to JP8 components, exhaled breath and urine samples were...the following primary analytes of interest were measured: benzene, toluene, ethylbenzene, xylene, and naphthalene. Pre- and post- shift urine samples

  9. Microdosimetric intercomparison of BNCT beams at BNL and MIT.

    PubMed

    Burmeister, Jay; Riley, Kent; Coderre, Jeffrey A; Harling, Otto K; Ma, Ruimei; Wielopolski, Lucian; Kota, Chandrasekhar; Maughan, Richard L

    2003-08-01

    Microdosimetric measurements have been performed at the clinical beam intensities in two epithermal neutron beams, the Brookhaven Medical Research Reactor and the M67 beam at the Massachusetts Institute of Technology Research Reactor, which have been used to treat patients with Boron Neutron Capture Therapy (BNCT). These measurements offer an independent assessment of the dosimetry used at these two facilities, as well as provide information about the radiation quality not obtainable from conventional macrodosimetric techniques. Moreover, they provide a direct measurement of the absorbed dose resulting from the BNC reaction. BNC absorbed doses measured within this study are approximately 15% lower than those estimated using foil activation at both MIT and BNL. Finally, an intercomparison of the characteristics and radiation quality of these two clinical beams is presented. The techniques described here allow an accurate quantitative comparison of the physical absorbed dose as well as a measure of the biological effectiveness of the absorbed dose delivered by different epithermal beams. No statistically significant differences were observed in the predicted RBEs of these two beams. The methodology presented here can help to facilitate the effective sharing of clinical results in an effort to demonstrate the clinical utility of BNCT.

  10. Reliability issues for a bolometer detector for ITER at high operating temperatures.

    PubMed

    Meister, H; Kannamüller, M; Koll, J; Pathak, A; Penzel, F; Trautmann, T; Detemple, P; Schmitt, S; Langer, H

    2012-10-01

    The first detector prototypes for the ITER bolometer diagnostic featuring a 12.5 μm thick Pt-absorber have been realized and characterized in laboratory tests. The results show linear dependencies of the calibration parameters and are in line with measurements of prototypes with thinner absorbers. However, thermal cycling tests up to 450 °C of the prototypes with thick absorbers demonstrated that their reliability at these elevated operating temperatures is not yet sufficient. Profilometer measurements showed a deflection of the membrane hinting to stresses due to the deposition processes of the absorber. Finite element analysis (FEA) managed to reproduce the deflection and identified the highest stresses in the membrane in the region around the corners of the absorber. FEA was further used to identify changes in the geometry of the absorber with a positive impact on the intrinsic stresses of the membrane. However, further improvements are still necessary.

  11. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations

    NASA Astrophysics Data System (ADS)

    Nogueira, P.; Zankl, M.; Schlattl, H.; Vaz, P.

    2011-11-01

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation—the germinative cells—absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  12. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations.

    PubMed

    Nogueira, P; Zankl, M; Schlattl, H; Vaz, P

    2011-11-07

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation-the germinative cells-absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  13. 3D dosimetry estimation for selective internal radiation therapy (SIRT) using SPECT/CT images: a phantom study

    NASA Astrophysics Data System (ADS)

    Debebe, Senait A.; Franquiz, Juan; McGoron, Anthony J.

    2015-03-01

    Selective Internal Radiation Therapy (SIRT) is a common way to treat liver cancer that cannot be treated surgically. SIRT involves administration of Yttrium - 90 (90Y) microspheres via the hepatic artery after a diagnostic procedure using 99mTechnetium (Tc)-macroaggregated albumin (MAA) to detect extrahepatic shunting to the lung or the gastrointestinal tract. Accurate quantification of radionuclide administered to patients and radiation dose absorbed by different organs is of importance in SIRT. Accurate dosimetry for SIRT allows optimization of dose delivery to the target tumor and may allow for the ability to assess the efficacy of the treatment. In this study, we proposed a method that can efficiently estimate radiation absorbed dose from 90Y bremsstrahlung SPECT/CT images of liver and the surrounding organs. Bremsstrahlung radiation from 90Y was simulated using the Compton window of 99mTc (78keV at 57%). 99mTc images acquired at the photopeak energy window were used as a standard to examine the accuracy of dosimetry prediction by the simulated bremsstrahlung images. A Liqui-Phil abdominal phantom with liver, stomach and two tumor inserts was imaged using a Philips SPECT/CT scanner. The Dose Point Kernel convolution method was used to find the radiation absorbed dose at a voxel level for a three dimensional dose distribution. This method will allow for a complete estimate of the distribution of radiation absorbed dose by tumors, liver, stomach and other surrounding organs at the voxel level. The method provides a quantitative predictive method for SIRT treatment outcome and administered dose response for patients who undergo the treatment.

  14. Applying an analytical method to study neutron behavior for dosimetry

    NASA Astrophysics Data System (ADS)

    Shirazi, S. A. Mousavi

    2016-12-01

    In this investigation, a new dosimetry process is studied by applying an analytical method. This novel process is associated with a human liver tissue. The human liver tissue has compositions including water, glycogen and etc. In this study, organic compound materials of liver are decomposed into their constituent elements based upon mass percentage and density of every element. The absorbed doses are computed by analytical method in all constituent elements of liver tissue. This analytical method is introduced applying mathematical equations based on neutron behavior and neutron collision rules. The results show that the absorbed doses are converged for neutron energy below 15MeV. This method can be applied to study the interaction of neutrons in other tissues and estimating the absorbed dose for a wide range of neutron energy.

  15. Prediction of wood mechanical and chemical properties in the presence and absence of blue stain using two near infrared instruments

    Treesearch

    Brian K. Via; Chi-Leung So; Todd F. Shupe; Lori G. Eckhardt; Michael Stine; Leslie H. Groom

    2005-01-01

    The objective of this research was to (a) determine if blue stain in solid wood influenced calibration equations developed from a nonstained wood population, (b) assess the bias introduced when scanning was performed by the slave instrument without calibration transfer from the master instrument and (c) partition absorbance-based variation by instrument, stain and...

  16. Dose to 'water-like' media or dose to tissue in MV photons radiotherapy treatment planning: still a matter of debate.

    PubMed

    Andreo, Pedro

    2015-01-07

    The difference between Monte Carlo Treatment Planning (MCTP) based on the assumption of 'water-like' tissues with densities obtained from CT procedures, or on tissue compositions derived from CT-determined densities, have been investigated. Stopping powers and electron fluences have been calculated for a range of media and body tissues for 6 MV photon beams, including changes in their physical data (density and stopping powers). These quantities have been used to determine absorbed doses using cavity theory. It is emphasized that tissue compositions given in ICRU or ICRP reports should not be given the standing of physical constants as they correspond to average values obtained for a limited number of human-body samples. It has been shown that mass stopping-power ratios to water are more dependent on patient-to-patient composition differences, and therefore on their mean excitation energies (I-values), than on mass density. Electron fluence in different media are also more dependent on media composition (and their I-values) than on density. However, as a consequence of the balance between fluence and stopping powers, doses calculated from their product are more constant than what the independent stopping powers and fluence variations suggest. Additionally, cancelations in dose ratios minimize the differences between the 'water-like' and 'tissue' approaches, yielding practically identical results except for bone, and to a lesser extent for adipose tissue. A priori, changing from one approach to another does not seem to be justified considering the large number of approximations and uncertainties involved throughout the treatment planning tissue segmentation and dose calculation procedures. The key issue continues to be the composition of tissues and their I-values, and as these cannot be obtained for individual patients, whatever approach is selected does not lead to significant differences from a water reference dose, the maximum of these being of the order of 5% for bone tissues. Considering, however, current developments in advanced dose calculation methods, planning in terms of dose-to-tissue should be the preferred choice, under the expectancy that progress in the field will gradually improve some of the crude approximations included in MCTP and numerical transport methods. The small differences obtained also show that a retrospective conversion from dose-to-tissue to dose-to-water, based on a widely used approach, would mostly increase the final uncertainty of the treatment planning process. It is demonstrated that, due to the difference between electron fluence distributions in water and in body tissues, the conversion requires an additional fluence correction that has so far been neglected. An improved expression for the conversion and data for the fluence correction factor are provided. These will be necessary even in a dose-to-tissue environment, for the normalization of the treatment plan to the reference dosimetry of the treatment unit, always calibrated in terms of absorbed dose to water.

  17. Dose to ‘water-like’ media or dose to tissue in MV photons radiotherapy treatment planning: still a matter of debate

    NASA Astrophysics Data System (ADS)

    Andreo, Pedro

    2015-01-01

    The difference between Monte Carlo Treatment Planning (MCTP) based on the assumption of ‘water-like’ tissues with densities obtained from CT procedures, or on tissue compositions derived from CT-determined densities, have been investigated. Stopping powers and electron fluences have been calculated for a range of media and body tissues for 6 MV photon beams, including changes in their physical data (density and stopping powers). These quantities have been used to determine absorbed doses using cavity theory. It is emphasized that tissue compositions given in ICRU or ICRP reports should not be given the standing of physical constants as they correspond to average values obtained for a limited number of human-body samples. It has been shown that mass stopping-power ratios to water are more dependent on patient-to-patient composition differences, and therefore on their mean excitation energies (I-values), than on mass density. Electron fluence in different media are also more dependent on media composition (and their I-values) than on density. However, as a consequence of the balance between fluence and stopping powers, doses calculated from their product are more constant than what the independent stopping powers and fluence variations suggest. Additionally, cancelations in dose ratios minimize the differences between the ‘water-like’ and ‘tissue’ approaches, yielding practically identical results except for bone, and to a lesser extent for adipose tissue. A priori, changing from one approach to another does not seem to be justified considering the large number of approximations and uncertainties involved throughout the treatment planning tissue segmentation and dose calculation procedures. The key issue continues to be the composition of tissues and their I-values, and as these cannot be obtained for individual patients, whatever approach is selected does not lead to significant differences from a water reference dose, the maximum of these being of the order of 5% for bone tissues. Considering, however, current developments in advanced dose calculation methods, planning in terms of dose-to-tissue should be the preferred choice, under the expectancy that progress in the field will gradually improve some of the crude approximations included in MCTP and numerical transport methods. The small differences obtained also show that a retrospective conversion from dose-to-tissue to dose-to-water, based on a widely used approach, would mostly increase the final uncertainty of the treatment planning process. It is demonstrated that, due to the difference between electron fluence distributions in water and in body tissues, the conversion requires an additional fluence correction that has so far been neglected. An improved expression for the conversion and data for the fluence correction factor are provided. These will be necessary even in a dose-to-tissue environment, for the normalization of the treatment plan to the reference dosimetry of the treatment unit, always calibrated in terms of absorbed dose to water.

  18. On Calibrations Using the Crab Nebula as a Standard Candle

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin; Guainazzi, Matteo; Jahoda, Keith; Shaposhnikov, Nikolai; ODell, Stephen; Zavlin, Vyacheslav; Wilson-Hodge, Colleen; Elsner, Ronald

    2009-01-01

    Inspired by a recent paper (Kirsch et al. 2005) on possible use of the Crab Nebula as a standard candle for calibrating X-ray response func tions, we examine possible consequences of intrinsic departures from a single (absorbed) power law upon such calibrations. We limited our analyses to three more modern X-ray instruments -- the ROSAT/PSPC, th e RXTE/PCA, and the XMM-Newton/EPIC-pn. The results are unexpected an d indicate a need to refine two of the three response functions studi ed. The implications for Chandra will be discussed.

  19. Development of a transmission alpha particle dosimetry technique using A549 cells and a Ra-223 source for targeted alpha therapy.

    PubMed

    Al Darwish, R; Staudacher, A H; Li, Y; Brown, M P; Bezak, E

    2016-11-01

    In targeted radionuclide therapy, regional tumors are targeted with radionuclides delivering therapeutic radiation doses. Targeted alpha therapy (TAT) is of particular interest due to its ability to deliver alpha particles of high linear energy transfer within the confines of the tumor. However, there is a lack of data related to alpha particle distribution in TAT. These data are required to more accurately estimate the absorbed dose on a cellular level. As a result, there is a need for a dosimeter that can estimate, or better yet determine the absorbed dose deposited by alpha particles in cells. In this study, as an initial step, the authors present a transmission dosimetry design for alpha particles using A549 lung carcinoma cells, an external alpha particle emitting source (radium 223; Ra-223) and a Timepix pixelated semiconductor detector. The dose delivery to the A549 lung carcinoma cell line from a Ra-223 source, considered to be an attractive radionuclide for alpha therapy, was investigated in the current work. A549 cells were either unirradiated (control) or irradiated for 12, 1, 2, or 3 h with alpha particles emitted from a Ra-223 source positioned below a monolayer of A549 cells. The Timepix detector was used to determine the number of transmitted alpha particles passing through the A549 cells and DNA double strand breaks (DSBs) in the form of γ-H2AX foci were examined by fluorescence microscopy. The number of transmitted alpha particles was correlated with the observed DNA DSBs and the delivered radiation dose was estimated. Additionally, the dose deposited was calculated using Monte Carlo code SRIM. Approximately 20% of alpha particles were transmitted and detected by Timepix. The frequency and number of γ-H2AX foci increased significantly following alpha particle irradiation as compared to unirradiated controls. The equivalent dose delivered to A549 cells was estimated to be approximately 0.66, 1.32, 2.53, and 3.96 Gy after 12, 1, 2, and 3 h irradiation, respectively, considering a relative biological effectiveness of alpha particles of 5.5. The study confirmed that the Timepix detector can be used for transmission alpha particle dosimetry. If cross-calibrated using biological dosimetry, this method will give a good indication of the biological effects of alpha particles without the need for repeated biological dosimetry which is costly, time consuming, and not readily available.

  20. Comparing otoacoustic emissions evoked by chirp transients with constant absorbed sound power and constant incident pressure magnitude.

    PubMed

    Keefe, Douglas H; Feeney, M Patrick; Hunter, Lisa L; Fitzpatrick, Denis F

    2017-01-01

    Human ear-canal properties of transient acoustic stimuli are contrasted that utilize measured ear-canal pressures in conjunction with measured acoustic pressure reflectance and admittance. These data are referenced to the tip of a probe snugly inserted into the ear canal. Promising procedures to calibrate across frequency include stimuli with controlled levels of incident pressure magnitude, absorbed sound power, and forward pressure magnitude. An equivalent pressure at the eardrum is calculated from these measured data using a transmission-line model of ear-canal acoustics parameterized by acoustically estimated ear-canal area at the probe tip and length between the probe tip and eardrum. Chirp stimuli with constant incident pressure magnitude and constant absorbed sound power across frequency were generated to elicit transient-evoked otoacoustic emissions (TEOAEs), which were measured in normal-hearing adult ears from 0.7 to 8 kHz. TEOAE stimuli had similar peak-to-peak equivalent sound pressure levels across calibration conditions. Frequency-domain TEOAEs were compared using signal level, signal-to-noise ratio (SNR), coherence synchrony modulus (CSM), group delay, and group spread. Time-domain TEOAEs were compared using SNR, CSM, instantaneous frequency and instantaneous bandwidth. Stimuli with constant incident pressure magnitude or constant absorbed sound power across frequency produce generally similar TEOAEs up to 8 kHz.

  1. SU-E-T-643: Pure Alanine Dosimeter for Verification Dosimetry in IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Karmi, Anan M.; Zraiqat, Fadi

    Purpose: The objective of this study was evaluation of accuracy of pure alanine dosimeters measuring intensity-modulated radiation therapy (IMRT) dose distributions in a thorax phantom. Methods: Alanine dosimeters were prepared in the form of 110 mg pure L-α-alanine powder filled into clear tissue-equivalent polymethylmethacrylate (PMMA) plastic tubes with the dimensions 25 mm length, 3 mm inner diameter, and 1 mm wall thickness. A dose-response calibration curve was established for the alanine by placing the dosimeters at 1.5 cm depth in a 30×30×30 cm{sup 3} solid water phantom and then irradiating on a linac with 6 MV photon beam at 10×10more » cm{sup 2} field size to doses ranging from 1 to 5 Gy. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the absorbed dose in alanine. An IMRT treatment plan was designed for a commercial heterogeneous CIRS thorax phantom and the dose values were calculated at three different points located in tissue, lung, and bone equivalent materials. A set of dose measurements was carried out to compare measured and calculated dose values by placing the alanine dosimeters at those selected locations inside the thorax phantom and delivering the IMRT to the phantom. Results: The alanine dose measurements and the IMRT plan dose calculations were found to be in agreement within ±2%. Specifically, the deviations were −0.5%, 1.3%, and −1.7% for tissue, lung, and bone; respectively. The slightly large deviations observed for lung and bone may be attributed to tissue inhomogeneity, steep dose gradients in these regions, and uncontrollable changes in spectrometer conditions. Conclusion: The results described herein confirmed that pure alanine dosimeter was suitable for in-phantom dosimetry of IMRT beams because of its high sensitivity and acceptable accuracy. This makes the dosimeter a promising option for quality control of the therapeutic beams, complementing the commonly used ionization chambers, TLDs, and films.« less

  2. SU-E-T-275: Dose Verification in a Small Animal Image-Guided Radiation Therapy X-Ray Machine: A Dose Comparison between TG-61 Based Look-Up Table and MOSFET Method for Various Collimator Sizes.

    PubMed

    Rodrigues, A; Nguyen, G; Li, Y; Roy Choudhury, K; Kirsch, D; Das, S; Yoshizumi, T

    2012-06-01

    To verify the accuracy of TG-61 based dosimetry with MOSFET technology using a tissue-equivalent mouse phantom. Accuracy of mouse dose between a TG-61 based look-up table was verified with MOSFET technology. The look-up table followed a TG-61 based commissioning and used a solid water block and radiochromic film. A tissue-equivalent mouse phantom (2 cm diameter, 8 cm length) was used for the MOSFET method. Detectors were placed in the phantom at the head and center of the body. MOSFETs were calibrated in air with an ion chamber and f-factor was applied to derive the dose to tissue. In CBCT mode, the phantom was positioned such that the system isocenter coincided with the center of the MOSFET with the active volume perpendicular to the beam. The absorbed dose was measured three times for seven different collimators, respectively. The exposure parameters were 225 kVp, 13 mA, and an exposure time of 20 s. For a 10 mm, 15 mm, and 20 mm circular collimator, the dose measured by the phantom was 4.3%, 2.7%, and 6% lower than TG-61 based measurements, respectively. For a 10 × 10 mm, 20 × 20 mm, and 40 × 40 mm collimator, the dose difference was 4.7%, 7.7%, and 2.9%, respectively. The MOSFET data was systematically lower than the commissioning data. The dose difference is due to the increased scatter radiation in the solid water block versus the dimension of the mouse phantom leading to an overestimation of the actual dose in the solid water block. The MOSFET method with the use of a tissue- equivalent mouse phantom provides less labor intensive geometry-specific dosimetry and accuracy with better dose tolerances of up to ± 2.7%. © 2012 American Association of Physicists in Medicine.

  3. Biodosimetry Based on γ-H2AX Quantification and Cytogenetics after Partial- and Total-Body Irradiation during Fractionated Radiotherapy.

    PubMed

    Zahnreich, Sebastian; Ebersberger, Anne; Kaina, Bernd; Schmidberger, Heinz

    2015-04-01

    The aim of this current study was to quantitatively describe radiation-induced DNA damage and its distribution in leukocytes of cancer patients after fractionated partial- or total-body radiotherapy. Specifically, the impact of exposed anatomic region and administered dose was investigated in breast and prostate cancer patients receiving partial-body radiotherapy. DNA double-strand breaks (DSBs) were quantified by γ-H2AX immunostaining. The frequency of unstable chromosomal aberrations in stimulated lymphocytes was also determined and compared with the frequency of DNA DSBs in the same samples. The frequency of radiation-induced DNA damage was converted into dose, using ex vivo generated calibration curves, and was then compared with the administered physical dose. This study showed that 0.5 h after partial-body radiotherapy the quantity of radiation-induced γ-H2AX foci increased linearly with the administered equivalent whole-body dose for both tumor entities. Foci frequencies dropped 1 day thereafter but proportionality to the equivalent whole-body dose was maintained. Conversely, the frequency of radiation-induced cytogenetic damage increased from 0.5 h to 1 day after the first partial-body exposure with a linear dependence on the administered equivalent whole-body dose, for prostate cancer patients only. Only γ-H2AX foci assessment immediately after partial-body radiotherapy was a reliable measure of the expected equivalent whole-body dose. Local tumor doses could be approximated with both assays after one day. After total-body radiotherapy satisfactory dose estimates were achieved with both assays up to 8 h after exposure. In conclusion, the quantification of radiation-induced γ-H2AX foci, but not cytogenetic damage in peripheral leukocytes was a sensitive and rapid biodosimeter after acute heterogeneous irradiation of partial body volumes that was able to primarily assess the absorbed equivalent whole-body dose.

  4. Fiber-Coupled, Time-Gated { {Al}}_{2}{ {O}}_{3} : { {C}} Radioluminescence Dosimetry Technique and Algorithm for Radiation Therapy With LINACs

    NASA Astrophysics Data System (ADS)

    Magne, Sylvain; Deloule, Sybelle; Ostrowsky, Aimé; Ferdinand, Pierre

    2013-08-01

    An original algorithm for real-time In Vivo Dosimetry (IVD) based on Radioluminescence (RL) of dosimetric-grade Al2O3:C crystals is described and demonstrated in reference conditions with 12-MV photon beams from a Saturne 43 linear accelerator (LINAC), simulating External Beam Radiation Therapy (EBRT) treatments. During the course of irradiation, a portion of electrons is trapped within the Al2O3:C crystal while another portion recombines and generates RL, recorded on-line using an optical fiber. The RL sensitivity is dose-dependent and increases in accordance with the concentration of trapped electrons. Once irradiation is completed, the Al2O3:C crystal is reset by laser light (reusable) and the resultant OSL (Optically Stimulated Luminescence) is also collected back by the remote RL-OSL reader and finally integrated to yield the absorbed dose. During irradiation, scintillation and Cerenkov lights generated within the optical fiber (“stem effect”) are removed by a time-discrimination method involving a discriminating unit and a fiber-coupled BGO scintillator placed in the irradiation room, next to the LINAC. The RL signals were then calibrated with respect to reference dose and dose rate data using an ionization chamber (IC). The algorithm relies upon the integral of the RL and provides the accumulated dose (useful to the medical physicist) at any time during irradiation, the dose rate being derived afterwards. It is tested with both step and arbitrary dose rate profiles, manually operated from the LINAC control desk. The doses measured by RL and OSL are both compared to reference doses and deviations are about ±2% and ±1% respectively, thus demonstrating the reliability of the algorithm for arbitrary profiles and wide range of dose rates. Although the calculation was done off-line, it is amenable to real-time processing during irradiation.

  5. PET/CT-Based Dosimetry in 90Y-Microsphere Selective Internal Radiation Therapy: Single Cohort Comparison With Pretreatment Planning on (99m)Tc-MAA Imaging and Correlation With Treatment Efficacy.

    PubMed

    Song, Yoo Sung; Paeng, Jin Chul; Kim, Hyo-Cheol; Chung, Jin Wook; Cheon, Gi Jeong; Chung, June-Key; Lee, Dong Soo; Kang, Keon Wook

    2015-06-01

    ⁹⁰Y PET/CT can be acquired after ⁹⁰Y-microsphere selective radiation internal therapy (SIRT) to describe radioactivity distribution. We performed dosimetry using ⁹⁰Y-microsphere PET/CT data to evaluate treatment efficacy and appropriateness of activity planning from (99m)Tc-MAA scan and SPECT/CT. Twenty-three patients with liver malignancy were included in the study. (99m)Tc-MAA was injected during planning angiography and whole body (99m)Tc-MAA scan and liver SPECT/CT were acquired. After SIRT using ⁹⁰Y-resin microsphere, ⁹⁰Y-microsphere PET/CT was acquired. A partition model (PM) using 4 compartments (tumor, intarget normal liver, out-target normal liver, and lung) was adopted, and absorbed dose to each compartment was calculated based on measurements from (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT, respectively, to be compared with each other. Progression-free survival (PFS) was evaluated in terms of tumor absorbed doses calculated by (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT results. Lung shunt fraction was overestimated on (99m)Tc-MAA scan compared with ⁹⁰Y-microsphere PET/CT (0.060 ± 0.037 vs. 0.018 ± 0.026, P < 0.01). Tumor absorbed dose exhibited a close correlation between the results from (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT (r = 0.64, P < 0.01), although the result from (99m)Tc-MAA SPECT/CT was significantly lower than that from ⁹⁰Y-microsphere PET/CT (135.4 ± 64.2 Gy vs. 185.0 ± 87.8 Gy, P < 0.01). Absorbed dose to in-target normal liver was overestimated on (99m)Tc-MAA SPECT/CT compared with PET/CT (62.6 ± 38.2 Gy vs. 45.2 ± 32.0 Gy, P = 0.02). Absorbed dose to out-target normal liver did not differ between (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT (P = 0.49). Patients with tumor absorbed dose >200 Gy on ⁹⁰Y-microsphere PET/CT had longer PFS than those with tumor absorbed dose ≤200 Gy (286 ± 56 days vs. 92 ± 20 days, P = 0.046). Tumor absorbed dose calculated by (99m)Tc-MAA SPECT/CT was not a significant predictor for PFS. Activity planning based on (99m)Tc-MAA scan and SPECT/CT can be effectively used as a conservative method. Post-SIRT dosimetry based on ⁹⁰Y-microsphere PET/CT is an effective method to predict treatment efficacy.

  6. PET/CT-Based Dosimetry in 90Y-Microsphere Selective Internal Radiation Therapy: Single Cohort Comparison With Pretreatment Planning on 99mTc-MAA Imaging and Correlation With Treatment Efficacy

    PubMed Central

    Song, Yoo Sung; Paeng, Jin Chul; Kim, Hyo-Cheol; Chung, Jin Wook; Cheon, Gi Jeong; Chung, June-Key; Lee, Dong Soo; Kang, Keon Wook

    2015-01-01

    Abstract 90Y PET/CT can be acquired after 90Y-microsphere selective radiation internal therapy (SIRT) to describe radioactivity distribution. We performed dosimetry using 90Y-microsphere PET/CT data to evaluate treatment efficacy and appropriateness of activity planning from 99mTc-MAA scan and SPECT/CT. Twenty-three patients with liver malignancy were included in the study. 99mTc-MAA was injected during planning angiography and whole body 99mTc-MAA scan and liver SPECT/CT were acquired. After SIRT using 90Y-resin microsphere, 90Y-microsphere PET/CT was acquired. A partition model (PM) using 4 compartments (tumor, intarget normal liver, out-target normal liver, and lung) was adopted, and absorbed dose to each compartment was calculated based on measurements from 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT, respectively, to be compared with each other. Progression-free survival (PFS) was evaluated in terms of tumor absorbed doses calculated by 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT results. Lung shunt fraction was overestimated on 99mTc-MAA scan compared with 90Y-microsphere PET/CT (0.060 ± 0.037 vs. 0.018 ± 0.026, P < 0.01). Tumor absorbed dose exhibited a close correlation between the results from 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT (r = 0.64, P < 0.01), although the result from 99mTc-MAA SPECT/CT was significantly lower than that from 90Y-microsphere PET/CT (135.4 ± 64.2 Gy vs. 185.0 ± 87.8 Gy, P < 0.01). Absorbed dose to in-target normal liver was overestimated on 99mTc-MAA SPECT/CT compared with PET/CT (62.6 ± 38.2 Gy vs. 45.2 ± 32.0 Gy, P = 0.02). Absorbed dose to out-target normal liver did not differ between 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT (P = 0.49). Patients with tumor absorbed dose >200 Gy on 90Y-microsphere PET/CT had longer PFS than those with tumor absorbed dose ≤200 Gy (286 ± 56 days vs. 92 ± 20 days, P = 0.046). Tumor absorbed dose calculated by 99mTc-MAA SPECT/CT was not a significant predictor for PFS. Activity planning based on 99mTc-MAA scan and SPECT/CT can be effectively used as a conservative method. Post-SIRT dosimetry based on 90Y-microsphere PET/CT is an effective method to predict treatment efficacy. PMID:26061323

  7. Effect of low dose and moderate dose gamma irradiation on the mechanical properties of bone and soft tissue allografts.

    PubMed

    Balsly, Colleen R; Cotter, Andrew T; Williams, Lisa A; Gaskins, Barton D; Moore, Mark A; Wolfinbarger, Lloyd

    2008-12-01

    The increased use of allograft tissue for musculoskeletal repair has brought more focus to the safety of allogenic tissue and the efficacy of various sterilization techniques. Gamma irradiation is an effective method for providing terminal sterilization to biological tissue, but it is also reported to have deleterious effects on tissue mechanics in a dose-dependent manner. At irradiation ranges up to 25 kGy, a clear relationship between mechanical strength and dose has yet to be established. The aim of this study was to investigate the mechanical properties of bone and soft tissue allografts, irradiated on dry ice at a low absorbed dose (18.3-21.8 kGy) and a moderate absorbed dose (24.0-28.5 kGy), using conventional compressive and tensile testing, respectively. Bone grafts consisted of Cloward dowels and iliac crest wedges, while soft tissue grafts consisted of patellar tendons, anterior tibialis tendons, semitendinosus tendons, and fascia lata. There were no statistical differences in mechanical strength or modulus of elasticity for any graft irradiated at a low absorbed dose, compared to control groups. Also, bone allografts and two soft tissue allografts (anterior tibialis and semitendinosus tendon) that were irradiated at a moderate dose demonstrated similar strength and modulus of elasticity values to control groups. The results of this study support the use of low dose and moderate dose gamma irradiation of bone grafts. For soft tissue grafts, the results support the use of low dose irradiation.

  8. [Absorbed dose and the effective dose of panoramic temporo mandibular joint radiography].

    PubMed

    Matsuo, Ayae; Okano, Tsuneichi; Gotoh, Kenichi; Yokoi, Midori; Hirukawa, Akiko; Okumura, Shinji; Koyama, Syuji

    2011-01-01

    This study measured the radiation doses absorbed by the patient during Panoramic temporo mandibular joint radiography (Panoramic TMJ), Schüllers method and Orbitoramus projection. The dose of the frontal view in Panoramic TMJ was compared to that with Orbitoramus projection and the lateral view in Panoramic TMJ was compared to that with Schüllers method. We measured the doses received by various organs and calculated the effective doses using the guidelines of the International Commission on Radiological Protection in Publication 103. Organ absorbed doses were measured using an anthropomorphic phantom, loaded with thermoluminescent dosimeters (TLD), located at 160 sensitive sites. The dose shows the sum value of irradiation on both the right and left sides. In addition, we set a few different exposure field sizes. The effective dose for a frontal view in Panoramic TMJ was 11 µSv, and that for the lateral view was 14 µSv. The lens of the Orbitoramus projection was 40 times higher than the frontal view in Panoramic TMJ. Although the effective dose of the lateral view in Panoramic TMJ was 3 times higher than that of the small exposure field (10×10 cm on film) in Schüller's method, it was the same as that of a mid-sized exposure field. When the exposure field in the inferior 1/3 was reduced during panoramic TMJ, the effective doses could be decreased. Therefore we recommend that the size of the exposure field in Panoramic TMJ be decreased.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnell, E; Ferreira, C; Ahmad, S

    Purpose: Accuracy of a RSP-HU calibration curve produced for proton treatment planning is tested by comparing the treatment planning system dose grid to physical doses delivered on film by a Mevion S250 double-scattering proton unit. Methods: A single batch of EBT3 Gafchromic film was used for calibration and measurements. The film calibration curve was obtained using Mevion proton beam reference option 20 (15cm range, 10cm modulation). Paired films were positioned at the center of the spread out Bragg peak (SOBP) in solid water. The calibration doses were verified with an ion chamber, including background and doses from 20cGy to 350cGy.more » Films were scanned in a flatbed Epson-Expression 10000-XL scanner, and analyzed using the red channel. A Rando phantom was scanned with a GE LightSpeed CT Simulator. A single-field proton plan (Eclipse, Varian) was calculated to deliver 171cGy to the pelvis section (heterogeneous region), using a standard 4×4cm aperture without compensator, 7.89cm beam range, and 5.36cm SOBP. Varied depths of the calculated distal 90% isodose-line were recorded and compared. The dose distribution from film irradiated between Rando slices was compared with the calculated plans using RIT v.6.2. Results: Distal 90% isodose-line depth variation between CT scans was 2mm on average, and 4mm at maximum. Fine calculation of this variation was restricted by the dose calculation grid, as well as the slice thickness. Dose differences between calibrated film measurements and calculated doses were on average 5.93cGy (3.5%), with the large majority of differences forming a normal distribution around 3.5cGy (2%). Calculated doses were almost entirely greater than those measured. Conclusion: RSP to HU calibration curve is shown to produce distal depth variation within the margin of tolerance (±4.3mm) across all potential scan energies and protocols. Dose distribution calculation is accurate to 2–4% within the SOBP, including areas of high tissue heterogeneity.« less

  10. Development of computational pregnant female and fetus models and assessment of radiation dose from positron-emitting tracers.

    PubMed

    Xie, Tianwu; Zaidi, Habib

    2016-12-01

    Molecular imaging using PET and hybrid (PET/CT and PET/MR) modalities nowadays plays a pivotal role in the clinical setting for diagnosis and staging, treatment response monitoring, and radiation therapy treatment planning of a wide range of oncologic malignancies. The developing embryo/fetus presents a high sensitivity to ionizing radiation. Therefore, estimation of the radiation dose delivered to the embryo/fetus and pregnant patients from PET examinations to assess potential radiation risks is highly praised. We constructed eight embryo/fetus models at various gestation periods with 25 identified tissues according to reference data recommended by the ICRP publication 89 representing the anatomy of the developing embryo/fetus. The developed embryo/fetus models were integrated into realistic anthropomorphic computational phantoms of the pregnant female and used for estimating, using Monte Carlo calculations, S-values of common positron-emitting radionuclides, organ absorbed dose, and effective dose of a number of positron-emitting labeled radiotracers. The absorbed dose is nonuniformly distributed in the fetus. The absorbed dose of the kidney and liver of the 8-week-old fetus are about 47.45 % and 44.76 % higher than the average absorbed dose of the fetal total body for all investigated radiotracers. For 18 F-FDG, the fetal effective doses are 2.90E-02, 3.09E-02, 1.79E-02, 1.59E-02, 1.47E-02, 1.40E-02, 1.37E-02, and 1.27E-02 mSv/MBq at the 8th, 10th, 15th, 20th, 25th, 30th, 35th, and 38th weeks of gestation, respectively. The developed pregnant female/fetus models matching the ICRP reference data can be exploited by dedicated software packages for internal and external dose calculations. The generated S-values will be useful to produce new standardized dose estimates to pregnant patients and embryo/fetus from a variety of positron-emitting labeled radiotracers.

  11. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system.

    PubMed

    Pérez-Andújar, Angélica; Newhauser, Wayne D; Deluca, Paul M

    2009-02-21

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient.

  12. Guidance for selecting the measurement conditions in the dye-binding method for determining serum protein: theoretical analysis based on the chemical equilibrium of protein error.

    PubMed

    Suzuki, Y

    2001-11-01

    A methodology for selecting the measurement conditions in the dye-binding method for determining serum protein has been studied by a theoretical calculation. This calculation was based on the fact that a protein error occurs because of a reaction between the side chains of a positively charged amino acid residue in a protein molecule and a dissociated dye anion. The calculated characteristics of this method are summarized as follows: (1) Although the reaction between the dye and the protein occurs up to about pH 12, a change in the color shade, called protein error, is observed only in a pH region restricted within narrow limits. (2) Although the apparent absorbance (the absorbance of the test solution measured against a reagent blank) is lower than the true absorbance indicated by the formed dye-protein complex, the apparent absorbance correlates with the true absorbance with a correlation coefficient of 1.0. (3) At a higher dye concentration, the calibration curve is more linear at a higher pH than at a lower pH. Most of these characteristics were similarly observed experimentally in the reactions of BPB, BCG and BCP with human and bovine albumins. It is concluded that in order to ensure the linearity of the calibration curve, the measurement should be performed at a higher dye concentration and sufficiently high pH where the detection sensitivity is satisfied.

  13. Proficiency Testing as a tool to monitor consistency of measurements in the IAEA/WHO Network of Secondary Standards Dosimetry Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meghzifene, Ahmed; Czap, Ladislav; Shortt, Ken

    2008-08-14

    The International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) established a Network of Secondary Standards Dosimetry Laboratories (IAEA/WHO SSDL Network) in 1976. Through SSDLs designated by Member States, the Network provides a direct link of national dosimetry standards to the international measurement system of standards traceable to the Bureau International des Poids et Mesures (BIPM). Within this structure and through the proper calibration of field instruments, the SSDLs disseminate S.I. quantities and units.To ensure that the services provided by SSDL members to end-users follow internationally accepted standards, the IAEA has set up two different comparison programmes. Onemore » programme relies on the IAEA/WHO postal TLD service and the other uses comparisons of calibrated ionization chambers to help the SSDLs verify the integrity of their national standards and the procedures used for the transfer of the standards to the end-users. The IAEA comparisons include {sup 60}Co air kerma (N{sub K}) and absorbed dose to water (N{sub D,W}) coefficients. The results of the comparisons are confidential and are communicated only to the participants. This is to encourage participation of the laboratories and their full cooperation in the reconciliation of any discrepancy.This work describes the results of the IAEA programme comparing calibration coefficients for radiotherapy dosimetry, using ionization chambers. In this programme, ionization chambers that belong to the SSDLs are calibrated sequentially at the SSDL, at the IAEA, and again at the SSDL. As part of its own quality assurance programme, the IAEA has participated in several regional comparisons organized by Regional Metrology Organizations.The results of the IAEA comparison programme show that the majority of SSDLs are capable of providing calibrations that fall inside the acceptance level of 1.5% compared to the IAEA.« less

  14. MO-F-CAMPUS-T-04: Implementation of a Standardized Monthly Quality Check for Linac Output Management in a Large Multi-Site Clinic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, H; Yi, B; Prado, K

    2015-06-15

    Purpose: This work is to investigate the feasibility of a standardized monthly quality check (QC) of LINAC output determination in a multi-site, multi-LINAC institution. The QC was developed to determine individual LINAC output using the same optimized measurement setup and a constant calibration factor for all machines across the institution. Methods: The QA data over 4 years of 7 Varian machines over four sites, were analyzed. The monthly output constancy checks were performed using a fixed source-to-chamber-distance (SCD), with no couch position adjustment throughout the measurement cycle for all the photon energies: 6 and 18MV, and electron energies: 6, 9,more » 12, 16 and 20 MeV. The constant monthly output calibration factor (Nconst) was determined by averaging the machines’ output data, acquired with the same monthly ion chamber. If a different monthly ion chamber was used, Nconst was then re-normalized to consider its different NDW,Co-60. Here, the possible changes of Nconst over 4 years have been tracked, and the precision of output results based on this standardized monthly QA program relative to the TG-51 calibration for each machine was calculated. Any outlier of the group was investigated. Results: The possible changes of Nconst varied between 0–0.9% over 4 years. The normalization of absorbed-dose-to-water calibration factors corrects for up to 3.3% variations of different monthly QA chambers. The LINAC output precision based on this standardized monthly QC relative to the TG-51 output calibration is within 1% for 6MV photon energy and 2% for 18MV and all the electron energies. A human error in one TG-51 report was found through a close scrutiny of outlier data. Conclusion: This standardized QC allows for a reasonably simplified, precise and robust monthly LINAC output constancy check, with the increased sensitivity needed to detect possible human errors and machine problems.« less

  15. Air kerma calibration factors and chamber correction values for PTW soft x-ray, NACP and Roos ionization chambers at very low x-ray energies.

    PubMed

    Ipe, N E; Rosser, K E; Moretti, C J; Manning, J W; Palmer, M J

    2001-08-01

    This paper evaluates the characteristics of ionization chambers for the measurement of absorbed dose to water using very low-energy x-rays. The values of the chamber correction factor, k(ch), used in the IPEMB 1996 code of practice for the UK secondary standard ionization chambers (PTW type M23342 and PTW type M23344), the Roos (PTW type 34001) and NACP electron chambers are derived. The responses in air of the small and large soft x-ray chambers (PTW type M23342 and PTW type M23344) and the NACP and Roos electron ionization chambers were compared. Besides the soft x-ray chambers, the NACP and Roos chambers can be used for very low-energy x-ray dosimetry provided that they are used in the restricted energy range for which their response does not change by more than 5%. The chamber correction factor was found by comparing the absorbed dose to water determined using the dosimetry protocol recommended for low-energy x-rays with that for very low-energy x-rays. The overlap energy range was extended using data from Grosswendt and Knight. Chamber correction factors given in this paper are chamber dependent, varying from 1.037 to 1.066 for a PTW type M23344 chamber, which is very different from a value of unity given in the IPEMB code. However, the values of k(ch) determined in this paper agree with those given in the DIN standard within experimental uncertainty. The authors recommend that the very low-energy section of the IPEMB code is amended to include the most up-to-date values of k(ch).

  16. SU-F-T-175: Absorbed Dose Measurement Using Radiophotoluminescent Glass Dosimeter in Therapeutic Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, W; National Institute of Radiological Sciences, Chiba, Chiba; Koba, Y

    Purpose: To measure the absorbed dose to water Dw in therapeutic proton beam with radiophotoluminescent glass dosimeter (RGD), a methodology was proposed. In this methodology, the correction factor for the LET dependence of radiophotoluminescent (RPL) efficiency and the variation of mass stopping power ratio of water to RGD (SPRw, RGD) were adopted. The feasibility of proposed method was evaluated in this report. Methods: The calibration coefficient in terms of Dw for RGDs (GD-302M, Asahi Techno Glass) was obtained using 60Co beam. The SPRw, RGD was calculated by Monte Carlo simulation toolkit Geant4. The LET dependence of RPL efficiency was investigatedmore » experimentally by using a 70 MeV proton beam at National Institute of Radiological Sciences. For clinical usage, the residual range Rres was used as a quality index to determine the correction factor for RPL efficiency. The proposed method was evaluated by measuring Dw at difference depth in the 200 MeV proton beam. Results: For both modulated and non-modulated proton beam, the SPRw, RGD increases more than 3 % where Rres are less than 1 cm. RPL efficiency decreases with increasing LET and it reaches 0.6 at LET of 10 keV µm{sup −1}. Dw measured by RGD (Dw, RGD) shows good agreement with that measured by ionization chamber (Dw, IC) and the relative difference between Dw, RGD and Dw, IC are within 3 % where Rres is larger than 1 cm. Conclusion: In this work, a methodology for using RGD in proton dosimetry was proposed and the SPRw, RGD and the LET dependence of RPL efficiency in therapeutic proton beam was investigated. The results revealed that the proposed method is useful for RGD in the dosimetry of proton beams.« less

  17. The development of fetal dosimetry and its application to A-bomb survivors exposed in utero.

    PubMed

    Chen, Jing

    2012-03-01

    The cohort of the atomic bomb survivors of Hiroshima and Nagasaki comprises the major basis for investigations of health effects induced by ionising radiation in humans. To study the health effects associated with radiation exposure before birth, fetal dosimetry is needed if significant differences exist between the fetal absorbed dose and the mother's uterine dose. Combining total neutron and gamma ray free-in-air fluences at 1 m above ground with fluence-to-absorbed dose conversion coefficients, fetal doses were calculated for various exposure orientations at the ground distance of 1500 m from the hypocentres in Hiroshima and Nagasaki. The results showed that the mother's uterine dose can serve as a good surrogate for the dose of the embryo and fetus in the first trimester. However, significant differences exist between doses of the fetus of different ages. If the mother's uterine dose were used as a surrogate, doses to the fetus in the last two trimesters could be overestimated by more than 20 % for exposure orientations facing towards and away from the hypocentre while significantly underestimated for lateral positions relative to the hypocentre. In newer fetal models, the brain is modelled for all fetal ages. Brain doses to the 3-month fetus are generally higher than those to an embryo and fetus of other ages. In most cases, brain absorbed doses differ significantly from the doses to the entire fetal body. In order to accurately assess radiation effects to the fetal brain, it is necessary to determine brain doses separately.

  18. Radioactivity concentrations in soils in the Qingdao area, China.

    PubMed

    Qu, Limei; Yao, De; Cong, Pifu; Xia, Ning

    2008-10-01

    The specific activity concentrations of radionuclides (238)U, (232)Th, and (40)K of 2300 sampling points in the Qingdao area were measured by an FD-3022 gamma-ray spectrometer. The radioactivity concentrations of (238)U, (232)Th, and (40)K ranged from 3.3 to 185.3, from 6.9 to 157.2, and from 115.8 to 7834.4 Bq kg(-1), respectively. The air-absorbed dose at 1 meter above ground, effective annual dose, external hazard index, and radium equivalent activity were also calculated to systematically evaluate the radiological hazards of the natural radioactivity in Qingdao. The air-absorbed dose, effective annual dose, external hazard index, and radium equivalent activity in the study area were 98.6 nGy h(-1), 0.12 mSv, 0.56, 197 Bq kg(-1), respectively. Compared with the worldwide value, the air-absorbed dose is slightly high, but the other factors are all lower than the recommended value. The natural external exposure will not pose significant radiological threat to the population. In conclusion, the Qingdao area is safe with regard to the radiological level and suitable for living.

  19. Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norris, Edward T.; Liu, Xin, E-mail: xinliu@mst.edu; Hsieh, Jiang

    Purpose: Organ dose estimation for a patient undergoing computed tomography (CT) scanning is very important. Although Monte Carlo methods are considered gold-standard in patient dose estimation, the computation time required is formidable for routine clinical calculations. Here, the authors instigate a deterministic method for estimating an absorbed dose more efficiently. Methods: Compared with current Monte Carlo methods, a more efficient approach to estimating the absorbed dose is to solve the linear Boltzmann equation numerically. In this study, an axial CT scan was modeled with a software package, Denovo, which solved the linear Boltzmann equation using the discrete ordinates method. Themore » CT scanning configuration included 16 x-ray source positions, beam collimators, flat filters, and bowtie filters. The phantom was the standard 32 cm CT dose index (CTDI) phantom. Four different Denovo simulations were performed with different simulation parameters, including the number of quadrature sets and the order of Legendre polynomial expansions. A Monte Carlo simulation was also performed for benchmarking the Denovo simulations. A quantitative comparison was made of the simulation results obtained by the Denovo and the Monte Carlo methods. Results: The difference in the simulation results of the discrete ordinates method and those of the Monte Carlo methods was found to be small, with a root-mean-square difference of around 2.4%. It was found that the discrete ordinates method, with a higher order of Legendre polynomial expansions, underestimated the absorbed dose near the center of the phantom (i.e., low dose region). Simulations of the quadrature set 8 and the first order of the Legendre polynomial expansions proved to be the most efficient computation method in the authors’ study. The single-thread computation time of the deterministic simulation of the quadrature set 8 and the first order of the Legendre polynomial expansions was 21 min on a personal computer. Conclusions: The simulation results showed that the deterministic method can be effectively used to estimate the absorbed dose in a CTDI phantom. The accuracy of the discrete ordinates method was close to that of a Monte Carlo simulation, and the primary benefit of the discrete ordinates method lies in its rapid computation speed. It is expected that further optimization of this method in routine clinical CT dose estimation will improve its accuracy and speed.« less

  20. SU-E-I-85: Absorbed Dose Estimation for a Commercially Available MicroCT Scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, A; Ahmad, S; Chen, Y

    2015-06-15

    Purpose: To quantify the simulated absorbed dose delivered for a typical scan from a commercially available microCT scanner in order to aid in the dose estimation. Methods: The simulations were conducted using the Geant4 Monte Carlo Toolkit (version 10) with the standard electromagnetic classes. The Quantum FX microCT scanner (PerkinElmer, Waltham, MA) was modeled incorporating the energy fluence and angular distributions of generated photons, spatial dimensions of nominal source-to-object and source-to-detector distances. The energy distribution was measured using a spectrometer (X-123CdTe, Amptek Inc., Bedford, USA) with a 300 angular spread from the source for the 90 kVp X-ray beams withmore » no additional filtration. The nominal distances from the source to object consisted of three setups: 154.0 mm, 104.0 mm, and 51.96 mm. Our simulations recorded the dose absorbed in a cylindrical phantom of PMMA with a fixed length of 2 cm and varying radii (10, 20, 30 and 40 mm) using 100 million incident photons. The averaged absorbed dose in the object was then quantified for all setups. An exposure measurement of 417 mR was taken using a Radcal 9095 system utilizing 10×9–180 ion chamber with the given technique of 90 kVp, 63 μA, and 12 s. The exposure rate was also simulated with same setup to calculate the conversion factor of the beam current and the number of incident photons. Results: For a typical cone-beam scan with non-filtered 90kVp, the dose coefficients (the absorbed dose per mAs) were 2.614, 2.549 and 2.467 μGy/mAs under source to object distance of 104 mm for the object diameters of 10 mm, 20 mm and 30 mm, respectively. Conclusion: A look-up table was developed where an investigator can estimate the delivered dose using this particular microCT given the scanning protocol (kVp and mAs) as well as the size of the scanned object.« less

  1. Patient exposure dose for chest and skull radiographies in Mazandaran hospitals.

    PubMed

    Etemadinezhad, Siavash; Rahimi, Seyed Ali

    2010-01-01

    Radiographic techniques are essential methods of diagnosis, and their use has been increased, especially with the development of the new technologies. Inappropriate administration of these techniques may put both the patients and personnel at unnecessary risks. The objective of this research was to measure the skin dose of chest and skull radiographies used in Mazandaran hospitals and to compare these doses with national and international standards. In this cross-sectional study, six X-ray generators at six hospitals affiliated to Mazandaran University of Medical Sciences were included. One hundred and twenty patients referred to the radiology wards for radiographic examinations of chest and skull with normal body mass index (BMI) were selected (20 patients for each radiography unit). The generators were matched for mAs, kvp, type of amplifier sheets, and technical conditions as much as possible. Calibrated thermo luminescence dosimeters (TLD-USA, Lif-100) were used to measure the skin dose by placing them on the patients' back and the absorbed doses by TLDs were read by a TLD reader (model: Harshuu, TLD3500, Japan). The mean values of the skin dose were 0.51 mGray for posteroanterior (PA), chest X-ray (CXR), 3.36 mGray for lateral CXR, 7.25 mGray for anterroposterior (AP) or PA skull X-rays, and 7.59 mGray for lateral skull X-rays. The measured values were higher than the national and international standards. The results of this research revealed that the conditions of the X-ray generators should be monitored and modified periodically. Modifying the X-ray generators plus improving technicians' skills would, to some extent, reduce the radiation exposure of the patients.

  2. Neutron dosimetry in organs of an adult human phantom using linacs with multileaf collimator in radiotherapy treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Ovalle, S. A.; Barquero, R.; Gomez-Ros, J. M.

    Purpose: To calculate absorbed doses due to neutrons in 87 organs/tissues for anthropomorphic phantoms, irradiated in position supine (head first into the gantry) with orientations anteroposterior (AP) and right-left (RLAT) with a 18 MV accelerator. Conversion factors from monitor units to {mu}Gy per neutron in organs, equivalent doses in organs/tissues, and effective doses, which permit to quantify stochastic risks, are estimated. Methods: MAX06 and FAX06 phantoms were modeled with MCNPX and irradiated with a 18 MV Varian Clinac 2100C/D accelerator whose geometry included a multileaf collimator. Two actual fields of a pelvic treatment were simulated using electron-photon-neutron coupled transport. Absorbedmore » doses due to neutrons were estimated from kerma. Equivalent doses were estimated using the radiation weighting factor corresponding to an average incident neutron energy 0.47 MeV. Statistical uncertainties associated to absorbed doses, as calculated by MCNPX, were also obtained. Results: Largest doses were absorbed in shallowest (with respect to the neutron pathway) organs. In {mu}GyMU{sup -1}, values of 2.66 (for penis) and 2.33 (for testes) were found in MAX06, and 1.68 (for breasts), 1.05 (for lenses of eyes), and 0.94 (for sublingual salivary glands) in FAX06, in AP orientation. In RLAT, the largest doses were found for bone tissues (leg) just at the entrance of the beam in the body (right side in our case). Values, in {mu}GyMU{sup -1}, of 1.09 in upper leg bone right spongiosa, for MAX06, and 0.63 in mandible spongiosa, for FAX06, were found. Except for gonads, liver, and stomach wall, equivalent doses found for FAX06 were, in both orientations, higher than for MAX06. Equivalent doses in AP are higher than in RLAT for all organs/tissues other than brain and liver. Effective doses of 12.6 and 4.1 {mu}SvMU{sup -1} were found for AP and RLAT, respectively. The organs/tissues with larger relative contributions to the effective dose were testes and breasts, in AP, and breasts and red marrow, in RLAT. Equivalent and effective doses obtained for MAX06/FAX06 were smaller (between 2 and 20 times) than those quoted for the mathematical phantoms ADAM/EVA in ICRP-74. Conclusions: The new calculations of conversion coefficients for neutron irradiation in AP and RLAT irradiation geometries show a reduction in the values of effective dose by factors 7 (AP) and 6 (RLAT) with respect to the old data obtained with mathematical phantoms. The existence of tissues or anatomical regions with maximum absorbed doses, such as penis, lens of eyes, fascia (part of connective tissue), etc., organs/tissues that classic mathematical phantoms did not include because they were not considered for the study of stochastic effects, has been revealed. Absorbed doses due to photons, obtained following the same simulation methodology, are larger than those due to neutrons, reaching values 100 times larger as the primary beam is approached. However, for organs far from the treated volume, absorbed photon doses can be up to three times smaller than neutron ones. Calculations using voxel phantoms permitted to know the organ dose conversion coefficients per MU due to secondary neutrons in the complete anatomy of a patient.« less

  3. An update on 'dose calibrator' settings for nuclides used in nuclear medicine.

    PubMed

    Bergeron, Denis E; Cessna, Jeffrey T

    2018-06-01

    Most clinical measurements of radioactivity, whether for therapeutic or imaging nuclides, rely on commercial re-entrant ionization chambers ('dose calibrators'). The National Institute of Standards and Technology (NIST) maintains a battery of representative calibrators and works to link calibration settings ('dial settings') to primary radioactivity standards. Here, we provide a summary of NIST-determined dial settings for 22 radionuclides. We collected previously published dial settings and determined some new ones using either the calibration curve method or the dialing-in approach. The dial settings with their uncertainties are collected in a comprehensive table. In general, current manufacturer-provided calibration settings give activities that agree with National Institute of Standards and Technology standards to within a few percent.

  4. Overview of the Liulin type instruments for space radiation measurement and their scientific results.

    PubMed

    Dachev, T P; Semkova, J V; Tomov, B T; Matviichuk, Yu N; Dimitrov, P G; Koleva, R T; Malchev, St; Bankov, N G; Shurshakov, V A; Benghin, V V; Yarmanova, E N; Ivanova, O A; Häder, D-P; Lebert, M; Schuster, M T; Reitz, G; Horneck, G; Uchihori, Y; Kitamura, H; Ploc, O; Cubancak, J; Nikolaev, I

    2015-01-01

    Ionizing radiation is recognized to be one of the main health concerns for humans in the space radiation environment. Estimation of space radiation effects on health requires the accurate knowledge of the accumulated absorbed dose, which depends on the global space radiation distribution, solar cycle and local shielding generated by the 3D mass distribution of the space vehicle. This paper presents an overview of the spectrometer-dosimeters of the Liulin type, which were developed in the late 1980s and have been in use since then. Two major measurement systems have been developed by our team. The first one is based on one silicon detector and is known as a Liulin-type deposited energy spectrometer (DES) (Dachev et al., 2002, 2003), while the second one is a dosimetric telescope (DT) with two or three silicon detectors. The Liulin-type instruments were calibrated using a number of radioactive sources and particle accelerators. The main results of the calibrations are presented in the paper. In the last section of the paper some of the most significant scientific results obtained in space and on aircraft, balloon and rocket flights since 1989 are presented. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  5. Impact of interpatient variability on organ dose estimates according to MIRD schema: Uncertainty and variance-based sensitivity analysis.

    PubMed

    Zvereva, Alexandra; Kamp, Florian; Schlattl, Helmut; Zankl, Maria; Parodi, Katia

    2018-05-17

    Variance-based sensitivity analysis (SA) is described and applied to the radiation dosimetry model proposed by the Committee on Medical Internal Radiation Dose (MIRD) for the organ-level absorbed dose calculations in nuclear medicine. The uncertainties in the dose coefficients thus calculated are also evaluated. A Monte Carlo approach was used to compute first-order and total-effect SA indices, which rank the input factors according to their influence on the uncertainty in the output organ doses. These methods were applied to the radiopharmaceutical (S)-4-(3- 18 F-fluoropropyl)-L-glutamic acid ( 18 F-FSPG) as an example. Since 18 F-FSPG has 11 notable source regions, a 22-dimensional model was considered here, where 11 input factors are the time-integrated activity coefficients (TIACs) in the source regions and 11 input factors correspond to the sets of the specific absorbed fractions (SAFs) employed in the dose calculation. The SA was restricted to the foregoing 22 input factors. The distributions of the input factors were built based on TIACs of five individuals to whom the radiopharmaceutical 18 F-FSPG was administered and six anatomical models, representing two reference, two overweight, and two slim individuals. The self-absorption SAFs were mass-scaled to correspond to the reference organ masses. The estimated relative uncertainties were in the range 10%-30%, with a minimum and a maximum for absorbed dose coefficients for urinary bladder wall and heart wall, respectively. The applied global variance-based SA enabled us to identify the input factors that have the highest influence on the uncertainty in the organ doses. With the applied mass-scaling of the self-absorption SAFs, these factors included the TIACs for absorbed dose coefficients in the source regions and the SAFs from blood as source region for absorbed dose coefficients in highly vascularized target regions. For some combinations of proximal target and source regions, the corresponding cross-fire SAFs were found to have an impact. Global variance-based SA has been for the first time applied to the MIRD schema for internal dose calculation. Our findings suggest that uncertainties in computed organ doses can be substantially reduced by performing an accurate determination of TIACs in the source regions, accompanied by the estimation of individual source region masses along with the usage of an appropriate blood distribution in a patient's body and, in a few cases, the cross-fire SAFs from proximal source regions. © 2018 American Association of Physicists in Medicine.

  6. Extravasation of radiopharmaceuticals - a study of its frequency and estimation of absorbed doses in diagnosis and therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strand, S.E.; Grafstroem, G.; Kontestabile, E.

    In all injection procedures exists a risk for extravasation. For radiopharmaceuticals, the absorbed dose at the injection site can be high because of high activity concentrations. In radionuclide therapy (RNT), this can cause deterministic effects such as tissue necrosis. To estimate the risk for extravasation, we studied various injection techniques at two nuclear medicine clinics. The frequency and magnitude of extravasations was studied in randomly selected patients. Clinic A used peripheral venous cathethers (PVC), and clinic B used direct injections with injection needles (IN). At clinic A 203 patients were investigated and at clinic B 90. All of these patientsmore » were injected with either 99mTc-DTPA, 99mTc-MAA, 99mTc-MDP or pertechnetate. Both arms were imaged with a scintillation camera as soon as possible after the injection. In the case of an extravasation, the retention time at the injection site was determined with multiple imaging, together with volume estimates. The results for PVC injected patients showed one complete extravasation. We also found that in 8% of these patients the remaining activity at the injection site was up to 2%. For the IN injected patients there was none with complete extravasation. However, in 33% of these patients the remaining activity was up to 18%. The locally absorbed doses in these diagnostically investigated patients were estimated with the MIRD formalism to be up to 0.1 Sv (10 rem). Transforming these results to the RNT, the absorbed doses can be up to 1000 times higher. In addition to the calculated absorbed doses, radionuclides localizing to the cell nucleus could enhance the effects.« less

  7. Assessment of the actual light dose in photodynamic therapy.

    PubMed

    Schaberle, Fabio A

    2018-06-09

    Photodynamic therapy (PDT) initiates with the absorption of light, which depends on the spectral overlap between the light source emission and the photosensitizer absorption, resulting in the number of photons absorbed, the key parameter starting PDT processes. Most papers report light doses regardless if the light is only partially absorbed or shifted relatively to the absorption peak, misleading the actual light dose value and not allowing quantitative comparisons between photosensitizers and light sources. In this manuscript a method is presented to calculate the actual light dose delivered by any light source for a given photosensitizer. This method allows comparing light doses delivered for any combination of light source (broad or narrow band or daylight) and photosensitizer. Copyright © 2018. Published by Elsevier B.V.

  8. Comparison of the ionizing radiation effects on cochineal, annatto and turmeric natural dyes

    NASA Astrophysics Data System (ADS)

    Cosentino, Helio M.; Takinami, Patricia Y. I.; del Mastro, Nelida L.

    2016-07-01

    As studies on radiation stability of food dyes are scarce, commercially important natural food grade dyes were evaluated in terms of their sensitivity against gamma ionizing radiation. Cochineal, annatto and turmeric dyes with suitable concentrations were subjected to increasing doses up to 32 kGy and analyzed by spectrophotometry and capillary electrophoresis. The results showed different pattern of absorbance versus absorbed dose for the three systems. Carmine, the glucosidal coloring matter from the scale insect Coccus cacti L., Homoptera (cochineal) remained almost unaffected by radiation up to doses of about 32 kGy (absorbance at 494 nm). Meanwhile, at that dose, a plant-derived product annatto or urucum (Bixa orellana L.) tincture presented a nearly 58% reduction in color intensity. Tincture of curcumin (diferuloylmethane) the active ingredient in the eastern spice turmeric (Curcuma longa) showed to be highly sensitive to radiation when diluted. These data shall be taken in account whenever food products containing these food colors were going to undergo radiation processing.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, L; Lambert, C; Nyiri, B

    Purpose: To standardize the tube calibration for Elekta XVI cone beam CT (CBCT) systems in order to provide a meaningful estimate of the daily imaging dose and reduce the variation between units in a large centre with multiple treatment units. Methods: Initial measurements of the output from the CBCT systems were made using a Farmer chamber and standard CTDI phantom. The correlation between the measured CTDI and the tube current was confirmed using an Unfors Xi detector which was then used to perform a tube current calibration on each unit. Results: Initial measurements showed measured tube current variations of upmore » to 25% between units for scans with the same image settings. In order to reasonably estimate the imaging dose, a systematic approach to x-ray generator calibration was adopted to ensure that the imaging dose was consistent across all units at the centre and was adopted as part of the routine quality assurance program. Subsequent measurements show that the variation in measured dose across nine units is on the order of 5%. Conclusion: Increasingly, patients receiving radiation therapy have extended life expectancies and therefore the cumulative dose from daily imaging should not be ignored. In theory, an estimate of imaging dose can be made from the imaging parameters. However, measurements have shown that there are large differences in the x-ray generator calibration as installed at the clinic. Current protocols recommend routine checks of dose to ensure constancy. The present study suggests that in addition to constancy checks on a single machine, a tube current calibration should be performed on every unit to ensure agreement across multiple machines. This is crucial at a large centre with multiple units in order to provide physicians with a meaningful estimate of the daily imaging dose.« less

  10. SU-F-T-170: Patient Surface Dose Measurements Using Optically Stimulated Luminescence Dosimeters in Scanning Proton Beam Therapy for Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J; Strauss, D; Langner, U

    Purpose: To establish patient surface dose dosimetry for scanning proton beam therapy (SPBT) for breast cancer using optically stimulated luminescence dosimeters (OSLD). Methods: OSLDs were calibrated with SPB under the similar conditions as the treatments for breast cancer. A range shifter (RS) of 5 cm water equivalent thickness (WET) was used. The air gap from the surface of the range shifter to the surface of the phantom was 15 cm. A uniform planar dose generated by nominal energy of 118 MeV was delivered. The range of 118 MeV proton beam after the 5cm RS is approximately 5 cm in water,more » which is the common range for breast treatments. The OSLDs were placed on the surface of high density polyethylene slabs, and a bolus of 1.06 cm WET was used for buildup. A variety of dose levels in the range of 0.5 to 8 Gy were delivered. Under the same condition, an ADCL calibrated parallel plate (PP) chamber was used to measure the reference dose. The correlation between the output signals of OSLDs and the reference doses was established. The calibration of OSLD was verified against the PP chamber measurements for two SPBT breast plans calculated for two patients. Results: the least squares fitting for the OSLD calibration curve was a polynomial function to the order of 2 in the range of 0.5 to 8 Gy (RBE). The differences between the dose measured with OSLDs and PP chamber were within 3% for the two breast proton plans. Conclusion: the calibrated OSLDs under the similar conditions as the treatments can be used for patient surface dose measurements.« less

  11. Acoustic Characterization of Grass-cover Ground

    DTIC Science & Technology

    2014-11-20

    for noise and rever- beration control. Examples of porous media are cements , ceramics, rocks, building insulation, foams and soil. Characterizing the...To perform the calibration of the tube an absorbing material with known acoustic properties is used. A sample of Melamine foam , 5 cm thick was used...system was calibrated using materials with known acous- tic properties in order to confirm accurate measurement of the system. Melamine foam 5 cm (1.97 in

  12. Biases in Multicenter Longitudinal PET Standardized Uptake Value Measurements1

    PubMed Central

    Doot, Robert K; Pierce, Larry A; Byrd, Darrin; Elston, Brian; Allberg, Keith C; Kinahan, Paul E

    2014-01-01

    This study investigates measurement biases in longitudinal positron-emission tomography/computed tomography (PET/CT) studies that are due to instrumentation variability including human error. Improved estimation of variability between patient scans is of particular importance for assessing response to therapy and multicenter trials. We used National Institute of Standards and Technology-traceable calibration methodology for solid germanium-68/gallium-68 (68Ge/68Ga) sources used as surrogates for fluorine-18 (18F) in radionuclide activity calibrators. One cross-calibration kit was constructed for both dose calibrators and PET scanners using the same 9-month half-life batch of 68Ge/68Ga in epoxy. Repeat measurements occurred in a local network of PET imaging sites to assess standardized uptake value (SUV) errors over time for six dose calibrators from two major manufacturers and for six PET/CT scanners from three major manufacturers. Bias in activity measures by dose calibrators ranged from -50% to 9% and was relatively stable over time except at one site that modified settings between measurements. Bias in activity concentration measures by PET scanners ranged from -27% to 13% with a median of 174 days between the six repeat scans (range, 29 to 226 days). Corresponding errors in SUV measurements ranged from -20% to 47%. SUV biases were not stable over time with longitudinal differences for individual scanners ranging from -11% to 59%. Bias in SUV measurements varied over time and between scanner sites. These results suggest that attention should be paid to PET scanner calibration for longitudinal studies and use of dose calibrator and scanner cross-calibration kits could be helpful for quality assurance and control. PMID:24772207

  13. Patient-specific calibration of cone-beam computed tomography data sets for radiotherapy dose calculations and treatment plan assessment.

    PubMed

    MacFarlane, Michael; Wong, Daniel; Hoover, Douglas A; Wong, Eugene; Johnson, Carol; Battista, Jerry J; Chen, Jeff Z

    2018-03-01

    In this work, we propose a new method of calibrating cone beam computed tomography (CBCT) data sets for radiotherapy dose calculation and plan assessment. The motivation for this patient-specific calibration (PSC) method is to develop an efficient, robust, and accurate CBCT calibration process that is less susceptible to deformable image registration (DIR) errors. Instead of mapping the CT numbers voxel-by-voxel with traditional DIR calibration methods, the PSC methods generates correlation plots between deformably registered planning CT and CBCT voxel values, for each image slice. A linear calibration curve specific to each slice is then obtained by least-squares fitting, and applied to the CBCT slice's voxel values. This allows each CBCT slice to be corrected using DIR without altering the patient geometry through regional DIR errors. A retrospective study was performed on 15 head-and-neck cancer patients, each having routine CBCTs and a middle-of-treatment re-planning CT (reCT). The original treatment plan was re-calculated on the patient's reCT image set (serving as the gold standard) as well as the image sets produced by voxel-to-voxel DIR, density-overriding, and the new PSC calibration methods. Dose accuracy of each calibration method was compared to the reference reCT data set using common dose-volume metrics and 3D gamma analysis. A phantom study was also performed to assess the accuracy of the DIR and PSC CBCT calibration methods compared with planning CT. Compared with the gold standard using reCT, the average dose metric differences were ≤ 1.1% for all three methods (PSC: -0.3%; DIR: -0.7%; density-override: -1.1%). The average gamma pass rates with thresholds 3%, 3 mm were also similar among the three techniques (PSC: 95.0%; DIR: 96.1%; density-override: 94.4%). An automated patient-specific calibration method was developed which yielded strong dosimetric agreement with the results obtained using a re-planning CT for head-and-neck patients. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  14. Evaluation of dual energy quantitative CT for determining the spatial distributions of red marrow and bone for dosimetry in internal emitter radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodsitt, Mitchell M., E-mail: goodsitt@umich.edu; Shenoy, Apeksha; Howard, David

    2014-05-15

    Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correctionmore » factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 × 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa.« less

  15. Evaluation of dual energy quantitative CT for determining the spatial distributions of red marrow and bone for dosimetry in internal emitter radiation therapy

    PubMed Central

    Goodsitt, Mitchell M.; Shenoy, Apeksha; Shen, Jincheng; Howard, David; Schipper, Matthew J.; Wilderman, Scott; Christodoulou, Emmanuel; Chun, Se Young; Dewaraja, Yuni K.

    2014-01-01

    Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correction factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 × 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa. PMID:24784380

  16. Metastable Autoionizing States of Molecules and Radicals in Highly Energetic Environment

    DTIC Science & Technology

    2016-03-22

    electronic states. The specific aims are to develop and calibrate complex-scaled equation-of-motion coupled cluster (cs-EOM- CC ) and CAP (complex...absorbing potential) augmented EOM- CC methods. We have implemented and benchmarked cs-EOM-CCSD and CAP- augmented EOM-CCSD methods for excitation energies...motion coupled cluster (cs-EOM- CC ) and CAP (complex absorbing potential) augmented EOM- CC methods. We have implemented and benchmarked cs-EOM-CCSD and

  17. A feasibility study to calculate unshielded fetal doses to pregnant patients in 6-MV photon treatments using Monte Carlo methods and anatomically realistic phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bednarz, Bryan; Xu, X. George

    2008-07-15

    A Monte Carlo-based procedure to assess fetal doses from 6-MV external photon beam radiation treatments has been developed to improve upon existing techniques that are based on AAPM Task Group Report 36 published in 1995 [M. Stovall et al., Med. Phys. 22, 63-82 (1995)]. Anatomically realistic models of the pregnant patient representing 3-, 6-, and 9-month gestational stages were implemented into the MCNPX code together with a detailed accelerator model that is capable of simulating scattered and leakage radiation from the accelerator head. Absorbed doses to the fetus were calculated for six different treatment plans for sites above the fetusmore » and one treatment plan for fibrosarcoma in the knee. For treatment plans above the fetus, the fetal doses tended to increase with increasing stage of gestation. This was due to the decrease in distance between the fetal body and field edge with increasing stage of gestation. For the treatment field below the fetus, the absorbed doses tended to decrease with increasing gestational stage of the pregnant patient, due to the increasing size of the fetus and relative constant distance between the field edge and fetal body for each stage. The absorbed doses to the fetus for all treatment plans ranged from a maximum of 30.9 cGy to the 9-month fetus to 1.53 cGy to the 3-month fetus. The study demonstrates the feasibility to accurately determine the absorbed organ doses in the mother and fetus as part of the treatment planning and eventually in risk management.« less

  18. Space radiation absorbed dose distribution in a human phantom

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose-rate predictions are 20% lower than the observations. Assuming that the trapped-belt models lead to a correct orbit-averaged energy spectrum, the measurements of dose rates inside the phantom cannot be fully understood. Passive measurements using 6Li- and 7Li-based detectors on the astronauts and inside the brain and thyroid of the phantom show the presence of a significant contribution due to thermal neutrons, an area requiring additional study.

  19. Dosimetric evaluation of nanotargeted (188)Re-liposome with the MIRDOSE3 and OLINDA/EXM programs.

    PubMed

    Chang, Chih-Hsien; Chang, Ya-Jen; Lee, Te-Wei; Ting, Gann; Chang, Kwo-Ping

    2012-06-01

    The OLINDA/EXM computer code was created as a replacement for the widely used MIRDOSE3 code for radiation dosimetry in nuclear medicine. A dosimetric analysis with these codes was performed to evaluate nanoliposomes as carriers of radionuclides ((188)Re-liposomes) in colon carcinoma-bearing mice. Pharmacokinetic data for (188)Re-N, N-bis (2-mercaptoethyl)-N',N'-diethylethylenediamine ((188)Re-BMEDA) and (188)Re-liposome were obtained for estimation of absorbed doses in normal organs. Radiation dose estimates for normal tissues were calculated using the MIRDOSE3 and OLINDA/EXM programs for a colon carcinoma solid tumor mouse model. Mean absorbed doses derived from(188)Re-BMEDA and (188)Re-liposome in normal tissues were generally similar as calculated by MIRDOSE3 and OLINDA/EXM programs. One notable exception to this was red marrow, wherein MIRDOSE3 resulted in higher absorbed doses than OLINDA/EXM (1.53- and 1.60-fold for (188)Re-BMEDA and (188)Re-liposome, respectively). MIRDOSE3 and OLINDA have very similar residence times and organ doses. Bone marrow doses were estimated by designating cortical bone rather than bone marrow as a source organ. The bone marrow doses calculated by MIRDOSE3 are higher than those by OLINDA. If the bone marrow is designated as a source organ, the doses estimated by MIRDOSE3 and OLINDA programs will be very similar.

  20. Monte Carlo simulations and benchmark measurements on the response of TE(TE) and Mg(Ar) ionization chambers in photon, electron and neutron beams

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Chun; Huang, Tseng-Te; Liu, Yuan-Hao; Chen, Wei-Lin; Chen, Yen-Fu; Wu, Shu-Wei; Nievaart, Sander; Jiang, Shiang-Huei

    2015-06-01

    The paired ionization chambers (ICs) technique is commonly employed to determine neutron and photon doses in radiology or radiotherapy neutron beams, where neutron dose shows very strong dependence on the accuracy of accompanying high energy photon dose. During the dose derivation, it is an important issue to evaluate the photon and electron response functions of two commercially available ionization chambers, denoted as TE(TE) and Mg(Ar), used in our reactor based epithermal neutron beam. Nowadays, most perturbation corrections for accurate dose determination and many treatment planning systems are based on the Monte Carlo technique. We used general purposed Monte Carlo codes, MCNP5, EGSnrc, FLUKA or GEANT4 for benchmark verifications among them and carefully measured values for a precise estimation of chamber current from absorbed dose rate of cavity gas. Also, energy dependent response functions of two chambers were calculated in a parallel beam with mono-energies from 20 keV to 20 MeV photons and electrons by using the optimal simple spherical and detailed IC models. The measurements were performed in the well-defined (a) four primary M-80, M-100, M120 and M150 X-ray calibration fields, (b) primary 60Co calibration beam, (c) 6 MV and 10 MV photon, (d) 6 MeV and 18 MeV electron LINACs in hospital and (e) BNCT clinical trials neutron beam. For the TE(TE) chamber, all codes were almost identical over the whole photon energy range. In the Mg(Ar) chamber, MCNP5 showed lower response than other codes for photon energy region below 0.1 MeV and presented similar response above 0.2 MeV (agreed within 5% in the simple spherical model). With the increase of electron energy, the response difference between MCNP5 and other codes became larger in both chambers. Compared with the measured currents, MCNP5 had the difference from the measurement data within 5% for the 60Co, 6 MV, 10 MV, 6 MeV and 18 MeV LINACs beams. But for the Mg(Ar) chamber, the derivations reached 7.8-16.5% below 120 kVp X-ray beams. In this study, we were especially interested in BNCT doses where low energy photon contribution is less to ignore, MCNP model is recognized as the most suitable to simulate wide photon-electron and neutron energy distributed responses of the paired ICs. Also, MCNP provides the best prediction of BNCT source adjustment by the detector's neutron and photon responses.

  1. Signal inference with unknown response: calibration-uncertainty renormalized estimator.

    PubMed

    Dorn, Sebastian; Enßlin, Torsten A; Greiner, Maksim; Selig, Marco; Boehm, Vanessa

    2015-01-01

    The calibration of a measurement device is crucial for every scientific experiment, where a signal has to be inferred from data. We present CURE, the calibration-uncertainty renormalized estimator, to reconstruct a signal and simultaneously the instrument's calibration from the same data without knowing the exact calibration, but its covariance structure. The idea of the CURE method, developed in the framework of information field theory, is to start with an assumed calibration to successively include more and more portions of calibration uncertainty into the signal inference equations and to absorb the resulting corrections into renormalized signal (and calibration) solutions. Thereby, the signal inference and calibration problem turns into a problem of solving a single system of ordinary differential equations and can be identified with common resummation techniques used in field theories. We verify the CURE method by applying it to a simplistic toy example and compare it against existent self-calibration schemes, Wiener filter solutions, and Markov chain Monte Carlo sampling. We conclude that the method is able to keep up in accuracy with the best self-calibration methods and serves as a noniterative alternative to them.

  2. Dose Calculation on KV Cone Beam CT Images: An Investigation of the Hu-Density Conversion Stability and Dose Accuracy Using the Site-Specific Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rong Yi, E-mail: rong@humonc.wisc.ed; Smilowitz, Jennifer; Tewatia, Dinesh

    2010-10-01

    Precise calibration of Hounsfield units (HU) to electron density (HU-density) is essential to dose calculation. On-board kV cone beam computed tomography (CBCT) imaging is used predominantly for patients' positioning, but will potentially be used for dose calculation. The impacts of varying 3 imaging parameters (mAs, source-imager distance [SID], and cone angle) and phantom size on the HU number accuracy and HU-density calibrations for CBCT imaging were studied. We proposed a site-specific calibration method to achieve higher accuracy in CBCT image-based dose calculation. Three configurations of the Computerized Imaging Reference Systems (CIRS) water equivalent electron density phantom were used to simulatemore » sites including head, lungs, and lower body (abdomen/pelvis). The planning computed tomography (CT) scan was used as the baseline for comparisons. CBCT scans of these phantom configurations were performed using Varian Trilogy{sup TM} system in a precalibrated mode with fixed tube voltage (125 kVp), but varied mAs, SID, and cone angle. An HU-density curve was generated and evaluated for each set of scan parameters. Three HU-density tables generated using different phantom configurations with the same imaging parameter settings were selected for dose calculation on CBCT images for an accuracy comparison. Changing mAs or SID had small impact on HU numbers. For adipose tissue, the HU discrepancy from the baseline was 20 HU in a small phantom, but 5 times lager in a large phantom. Yet, reducing the cone angle significantly decreases the HU discrepancy. The HU-density table was also affected accordingly. By performing dose comparison between CT and CBCT image-based plans, results showed that using the site-specific HU-density tables to calibrate CBCT images of different sites improves the dose accuracy to {approx}2%. Our phantom study showed that CBCT imaging can be a feasible option for dose computation in adaptive radiotherapy approach if the site-specific calibration is applied.« less

  3. Absorbed Dose Determination Using Experimental and Analytical Predictions of X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Edwards, D. L.; Carruth, Ralph (Technical Monitor)

    2001-01-01

    Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the U.S. Space Shuttle. This series of experiments was named the international space welding experiment (ISWE). The hardware associated with the ISWE was leased to NASA by the Paton Welding Institute (PWI) in Ukraine for ground-based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used thermoluminescence dosimeters (TLD's) shielded with material currently used by astronauts during extravehicular activities to measure the radiation dose. The TLD's were exposed to x-ray radiation generated by operation of the ISWE in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure, then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in agreement with the measured TLD values.

  4. Image quality and absorbed dose comparison of single- and dual-source cone-beam computed tomography.

    PubMed

    Miura, Hideharu; Ozawa, Shuichi; Okazue, Toshiya; Kawakubo, Atsushi; Yamada, Kiyoshi; Nagata, Yasushi

    2018-05-01

    Dual-source cone-beam computed tomography (DCBCT) is currently available in the Vero4DRT image-guided radiotherapy system. We evaluated the image quality and absorbed dose for DCBCT and compared the values with those for single-source CBCT (SCBCT). Image uniformity, Hounsfield unit (HU) linearity, image contrast, and spatial resolution were evaluated using a Catphan phantom. The rotation angle for acquiring SCBCT and DCBCT images is 215° and 115°, respectively. The image uniformity was calculated using measurements obtained at the center and four peripheral positions. The HUs of seven materials inserted into the phantom were measured to evaluate HU linearity and image contrast. The Catphan phantom was scanned with a conventional CT scanner to measure the reference HU for each material. The spatial resolution was calculated using high-resolution pattern modules. Image quality was analyzed using ImageJ software ver. 1.49. The absorbed dose was measured using a 0.6-cm 3 ionization chamber with a 16-cm-diameter cylindrical phantom, at the center and four peripheral positions of the phantom, and calculated using weighted cone-beam CT dose index (CBCTDI w ). Compared with that of SCBCT, the image uniformity of DCBCT was slightly reduced. A strong linear correlation existed between the measured HU for DCBCT and the reference HU, although the linear regression slope was different from that of the reference HU. DCBCT had poorer image contrast than did SCBCT, particularly with a high-contrast material. There was no significant difference between the spatial resolutions of SCBCT and DCBCT. The absorbed dose for DCBCT was higher than that for SCBCT, because in DCBCT, the two x-ray projections overlap between 45° and 70°. We found that the image quality was poorer and the absorbed dose was higher for DCBCT than for SCBCT in the Vero4DRT. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  5. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedgren, Aasa Carlsson; Hedman, Angelica; Grindborg, Jan-Erik

    2011-10-15

    Purpose: High energy photon beams are used in calibrating dosimeters for use in brachytherapy since absorbed dose to water can be determined accurately and with traceability to primary standards in such beams, using calibrated ion chambers and standard dosimetry protocols. For use in brachytherapy, beam quality correction factors are needed, which include corrections for differences in mass energy absorption properties between water and detector as well as variations in detector response (intrinsic efficiency) with radiation quality, caused by variations in the density of ionization (linear energy transfer (LET) -distributions) along the secondary electron tracks. The aim of this work wasmore » to investigate experimentally the detector response of LiF:Mg,Ti thermoluminescent dosimeters (TLD) for photon energies below 1 MeV relative to {sup 60}Co and to address discrepancies between the results found in recent publications of detector response. Methods: LiF:Mg,Ti dosimeters of formulation MTS-N Poland were irradiated to known values of air kerma free-in-air in x-ray beams at tube voltages 25-250 kV, in {sup 137}Cs- and {sup 60}Co-beams at the Swedish Secondary Standards Dosimetry Laboratory. Conversions from air kerma free-in-air into values of mean absorbed dose in the dosimeters in the actual irradiation geometries were made using EGSnrc Monte Carlo simulations. X-ray energy spectra were measured or calculated for the actual beams. Detector response relative to that for {sup 60}Co was determined at each beam quality. Results: An increase in relative response was seen for all beam qualities ranging from 8% at tube voltage 25 kV (effective energy 13 keV) to 3%-4% at 250 kV (122 keV effective energy) and {sup 137}Cs with a minimum at 80 keV effective energy (tube voltage 180 kV). The variation with effective energy was similar to that reported by Davis et al.[Radiat. Prot. Dosim. 106, 33-43 (2003)] with our values being systematically lower by 2%-4%. Compared to the results by Nunn et al.[Med. Phys. 35, 1861-1869 (2008)], the relative detector response as a function of effective energy differed in both shape and magnitude. This could be explained by the higher maximum read-out temperature (350 deg. C) used by Nunn et al.[Med. Phys. 35, 1861-1869 (2008)], allowing light emitted from high-temperature peaks with a strong LET dependence to be registered. Use of TLD-100 by Davis et al.[Radiat. Prot. Dosim. 106, 33-43 (2003)] with a stronger super-linear dose response compared to MTS-N was identified as causing the lower relative detector response in this work. Conclusions: Both careful dosimetry and strict protocols for handling the TLDs are required to reach solid experimental data on relative detector response. This work confirms older findings that an over-response relative to {sup 60}Co exists for photon energies below 200-300 keV. Comparison with the results from the literature indicates that using similar protocols for annealing and read-out, dosimeters of different makes (TLD-100, MTS-N) differ in relative detector response. Though universality of the results has not been proven and further investigation is needed, it is anticipated that with the use of strict protocols for annealing and read-out, it will be possible to determine correction factors that can be used to reduce uncertainties in dose measurements around brachytherapy sources at photon energies where primary standards for absorbed dose to water are not available.« less

  6. Application of real-time radiation dosimetry using a new silicon LET sensor

    NASA Technical Reports Server (NTRS)

    Doke, T.; Hayashi, T.; Kikuchi, J.; Nagaoka, S.; Nakano, T.; Sakaguchi, T.; Terasawa, K.; Badhwar, G. D.

    1999-01-01

    A new type of real-time radiation monitoring device, RRMD-III, consisting of three double-sided silicon strip detectors (DSSDs), has been developed and tested on-board the Space Shuttle mission STS-84. The test succeeded in measuring the linear energy transfer (LET) distribution over the range of 0.2 keV/micrometer to 600 keV/micrometer for 178 h. The Shuttle cruised at an altitude of 300 to 400 km and an inclination angle of 51.6 degrees for 221.3 h, which is equivalent to the International Space Station orbit. The LET distribution obtained for particles was investigated by separating it into galactic cosmic ray (GCR) particles and trapped particles in the South Atlantic Anomaly (SAA) region. The result shows that the contribution in dose-equivalent due to GCR particles is almost equal to that from trapped particles. The total absorbed dose rate during the mission was 0.611 mGy/day; the effective quality factor, 1.64; and the dose equivalent rate, 0.998 mSv/day. The average absorbed dose rates are 0.158 mGy/min for GCR particles and 3.67 mGy/min for trapped particles. The effective quality factors are 2.48 for GCR particles and 1.19 for trapped particles. The absorbed doses obtained by the RRMD-III and a conventional method using TLD (Mg(2)SiO(4)), which was placed around the RRMD-III were compared. It was found that the TLDs showed a lower efficiency, just 58% of absorbed dose registered by the RRMD-III.

  7. Gamma ray induced decomposition of double nitrates of lanthanum and cerium with some mono and bivalent cations in solid state

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. P.; Garg, A. N.

    Gamma ray induced decomposition of two series of double nitrates; 2M INO 3⋯Ln(NO 3) 3⋯ x H 2O (where MI = NH+4, Na+, K+, Rb+, Cs+; LnIII = La3+, Ce3+ and x = 2 or 4) and 3M II(NO 3) 2·2Ln III(NO 3) 3⋯24H 2O (where MII = Mg2+, Co2+, Zn2+; LnIII = La3+, Ce3+) has been studied in solid state over a wide absorbed dose range at room temperature. G(NO -2) values have been found to depend on the absorbed dose and the nature of cation in both the series of double salts. Radiation sensitivity of lanthanum double nitrates with monovalent cations at an absorbed dose of 158 kGy follows the order NH +4 < Rb + ≅ Cs + < Na + < K + and those of cerium NH +4 < Rb +

  8. Comparative dosimetric evaluation of nanotargeted (188)Re-(DXR)-liposome for internal radiotherapy.

    PubMed

    Chang, Chih-Hsien; Stabin, Michael G; Chang, Ya-Jen; Chen, Liang-Cheng; Chen, Min-Hua; Chang, Tsui-Jung; Lee, Te-Wei; Ting, Gann

    2008-12-01

    A dosimetric analysis was performed to evaluate nanoliposomes as carriers of radionuclides ((188)Re-liposomes) and radiochemotherapeutic drugs [(188)Re-doxorubicin (DXR)-liposomes] in internal radiotherapy for colon carcinoma, as evaluated in mice. Pharmacokinetic data for (188)Re-N, N-bis (2-mercaptoethyl)-N',N'-diethylethylenediamine (BMEDA), (188)Re-liposome, and (188)Re-DXR-liposome were obtained for the estimation of absorbed doses in tumors and normal organs. Two colon carcinoma mouse models were employed: subcutaneous growing solid tumor and malignant ascites pervading tumor models. Radiation-dose estimates for normal tissues and tumors were calculated by using the OLINDA/EXM program. An evaluation of a recommended maximum administered activity (MAA) for the nanotargeted drugs was also made. Mean absorbed doses derived from (188)Re-liposome and (188)Re-DXR-liposome in normal tissues were generally similar to those from (188)Re-BMEDA in intraperitoneal and intravenous administration. Tissue-absorbed dose in the liver was 0.24-0.40 and 0.17-0.26 (mGy/MBq) and in red marrow was 0.033-0.050 and 0.038-0.046 (mGy/MBq), respectively, for (188)Re-liposome and (188)Re-DXR-liposome. Tumor-absorbed doses for the nanotargeted (188)Re-liposome and (188)Re-DXR-liposome were higher than those of (188)Re-BMEDA for both routes of administration (4-26-fold). Dose to red marrow defined the recommended MAA. Our results suggest that radionuclide and chemoradiotherapeutic passive targeting delivery, using nanoliposomes as the carrier, is feasible and promising in systemic-targeted radionuclide therapy.

  9. Comparison of TLD calibration methods for  192Ir dosimetry

    PubMed Central

    Butler, Duncan J.; Wilfert, Lisa; Ebert, Martin A.; Todd, Stephen P.; Hayton, Anna J.M.; Kron, Tomas

    2013-01-01

    For the purpose of dose measurement using a high‐dose rate  192Ir source, four methods of thermoluminescent dosimeter (TLD) calibration were investigated. Three of the four calibration methods used the  192Ir source. Dwell times were calculated to deliver 1 Gy to the TLDs irradiated either in air or water. Dwell time calculations were confirmed by direct measurement using an ionization chamber. The fourth method of calibration used 6 MV photons from a medical linear accelerator, and an energy correction factor was applied to account for the difference in sensitivity of the TLDs in  192Ir and 6 M V. The results of the four TLD calibration methods are presented in terms of the results of a brachytherapy audit where seven Australian centers irradiated three sets of TLDs in a water phantom. The results were in agreement within estimated uncertainties when the TLDs were calibrated with the  192Ir source. Calibrating TLDs in a phantom similar to that used for the audit proved to be the most practical method and provided the greatest confidence in measured dose. When calibrated using 6 MV photons, the TLD results were consistently higher than the  192Ir−calibrated TLDs, suggesting this method does not fully correct for the response of the TLDs when irradiated in the audit phantom. PACS number: 87 PMID:23318392

  10. The effect of poorly absorbed solute on intestinal absorption.

    PubMed

    Menzies, I S; Jenkins, A P; Heduan, E; Catt, S D; Segal, M B; Creamer, B

    1990-12-01

    To determine the effects of poorly absorbed solute on intestinal absorption, the urinary recovery of ingested lactulose, L-rhamnose, D-xylose, and 3-O-methyl-D-glucose was measured after simultaneous ingestion of various 'loads' of mannitol given in iso-osmolar solution. Mannitol reduced intestinal uptake of the poorly absorbed test sugars, lactulose and L-rhamnose; uptake of D-xylose and 3-O-methyl-D-glucose, which are absorbed by carrier-mediated transport largely from the jejunum, was less affected. The dose-response effect of mannitol on the absorption of L-rhamnose was approximately exponential; doses of 5, 10, and 20 g mannitol reduced the average urinary excretion of L-rhamnose by 34.7%, 51.7%, and 61.2%, respectively. In this respect, an osmotically equivalent load of lactulose, ingested as 'solute', was approximately twice as effective as mannitol in reducing L-rhamnose absorption, probably because lactulose is more poorly absorbed than mannitol (less than 1.0% versus 32-41%). Ingestion of other poorly absorbed solutes such as raffinose, sorbitol, xylitol, magnesium sulphate, and sodium sulphate also significantly depressed the absorption of L-rhamnose; in contrast, more efficiently absorbed solutes, such as sodium chloride, glucose, glycerol, and urea had little effect.

  11. The impact of emollients on phototherapy: a review.

    PubMed

    Asztalos, Manuela L; Heller, Misha M; Lee, Eric S; Koo, John

    2013-05-01

    When treating psoriasis, various topical emollients exist that can affect the penetration of ultraviolet radiation in phototherapy. Compared with normal-appearing skin with a reflectance of 4% to 5%, psoriatic skin has higher reflectance as a result of its increased air-to-corneocyte interfaces. Studies have tested the effect of emollients on light penetration by assessing psoriatic plaque clearance, differences in minimal erythema dose, and physical properties of the emollient (eg, monochromatic protection factor and absorbance). Psoriatic plaque clearance was found to improve with serous (thin liquid)-based emollients (eg, Vaseline oil [Unilever, Blackfriars, London, UK], mineral oil, and glycerol), whereas clearance decreased with salicylic acid and viscous-based emollients (eg, petrolatum). Emollients with high ultraviolet absorbance properties increased minimal erythema dose, and those with low absorbance properties decreased minimal erythema dose. Interestingly, when a liquid emollient with a refractive index close to that of normal-appearing skin was applied, there was a net increase in light absorption, or a reduction in reflection that exceeded the emollient's innate ability to absorb light. Copyright © 2012 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  12. Estimation of absorbed doses from paediatric cone-beam CT scans: MOSFET measurements and Monte Carlo simulations.

    PubMed

    Kim, Sangroh; Yoshizumi, Terry T; Toncheva, Greta; Frush, Donald P; Yin, Fang-Fang

    2010-03-01

    The purpose of this study was to establish a dose estimation tool with Monte Carlo (MC) simulations. A 5-y-old paediatric anthropomorphic phantom was computed tomography (CT) scanned to create a voxelised phantom and used as an input for the abdominal cone-beam CT in a BEAMnrc/EGSnrc MC system. An X-ray tube model of the Varian On-Board Imager((R)) was built in the MC system. To validate the model, the absorbed doses at each organ location for standard-dose and low-dose modes were measured in the physical phantom with MOSFET detectors; effective doses were also calculated. In the results, the MC simulations were comparable to the MOSFET measurements. This voxelised phantom approach could produce a more accurate dose estimation than the stylised phantom method. This model can be easily applied to multi-detector CT dosimetry.

  13. Internal dosimetry with the Monte Carlo code GATE: validation using the ICRP/ICRU female reference computational model

    NASA Astrophysics Data System (ADS)

    Villoing, Daphnée; Marcatili, Sara; Garcia, Marie-Paule; Bardiès, Manuel

    2017-03-01

    The purpose of this work was to validate GATE-based clinical scale absorbed dose calculations in nuclear medicine dosimetry. GATE (version 6.2) and MCNPX (version 2.7.a) were used to derive dosimetric parameters (absorbed fractions, specific absorbed fractions and S-values) for the reference female computational model proposed by the International Commission on Radiological Protection in ICRP report 110. Monoenergetic photons and electrons (from 50 keV to 2 MeV) and four isotopes currently used in nuclear medicine (fluorine-18, lutetium-177, iodine-131 and yttrium-90) were investigated. Absorbed fractions, specific absorbed fractions and S-values were generated with GATE and MCNPX for 12 regions of interest in the ICRP 110 female computational model, thereby leading to 144 source/target pair configurations. Relative differences between GATE and MCNPX obtained in specific configurations (self-irradiation or cross-irradiation) are presented. Relative differences in absorbed fractions, specific absorbed fractions or S-values are below 10%, and in most cases less than 5%. Dosimetric results generated with GATE for the 12 volumes of interest are available as supplemental data. GATE can be safely used for radiopharmaceutical dosimetry at the clinical scale. This makes GATE a viable option for Monte Carlo modelling of both imaging and absorbed dose in nuclear medicine.

  14. Development of a high efficiency personal/environmental radon dosimeter using polycarbonate detectors.

    PubMed

    Taheri, M; Jafarizadeh, M; Baradaran, S; Zainali, Gh

    2006-12-01

    Passive radon dosimeters, based on alpha particle etched track detectors, are widely used for the assessment of radon exposure. These methods are often applied in radon dosimetry for long periods of time. In this research work, we have developed a highly efficient method of personal/environmental radon dosimetry that is based upon the detection of alpha particles from radon daughters, (218)Po and (214)Po, using a polycarbonate detector (PC). The radon daughters are collected on the filter surface by passing a fixed flow of air through it and the PC detector, placed at a specified distance from the filter, is simultaneously exposed to alpha particles. After exposure, the latent tracks on the detector are made to appear by means of an electrochemical etching process; these are proportional to the radon dose. The air flow rate and the detector-filter distance are the major factors that can affect the performance of the dosimeter. The results obtained in our experimental investigations have shown that a distance of 1.5 cm between the detector and the filter, an absorber layer of Al with a thickness of 12 microm and an air flow rate of 4 l min(-1) offer the best design parameters for a high efficiency radon dosimeter. Then, the designed dosimeter was calibrated against different values of radon exposures and the obtained sensitivity was found to be 2.1 (tracks cm(-2)) (kBq h m(-3))(-1). The most important advantages of this method are that it is reliable, fast and convenient when used for radon dose assessment. In this paper, the optimized parameters of the dosimeter structure and its calibration procedure are presented and discussed.

  15. Calculation of Absorbed Dose in Target Tissue and Equivalent Dose in Sensitive Tissues of Patients Treated by BNCT Using MCNP4C

    NASA Astrophysics Data System (ADS)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Pooya, S. M. Hosseini

    Boron Neutron Capture Therapy (BNCT) is used for treatment of many diseases, including brain tumors, in many medical centers. In this method, a target area (e.g., head of patient) is irradiated by some optimized and suitable neutron fields such as research nuclear reactors. Aiming at protection of healthy tissues which are located in the vicinity of irradiated tissue, and based on the ALARA principle, it is required to prevent unnecessary exposure of these vital organs. In this study, by using numerical simulation method (MCNP4C Code), the absorbed dose in target tissue and the equiavalent dose in different sensitive tissues of a patiant treated by BNCT, are calculated. For this purpose, we have used the parameters of MIRD Standard Phantom. Equiavelent dose in 11 sensitive organs, located in the vicinity of target, and total equivalent dose in whole body, have been calculated. The results show that the absorbed dose in tumor and normal tissue of brain equal to 30.35 Gy and 0.19 Gy, respectively. Also, total equivalent dose in 11 sensitive organs, other than tumor and normal tissue of brain, is equal to 14 mGy. The maximum equivalent doses in organs, other than brain and tumor, appear to the tissues of lungs and thyroid and are equal to 7.35 mSv and 3.00 mSv, respectively.

  16. Calibration of strontium-90 eye applicator using a strontium external beam standard.

    PubMed

    Siddle, D; Langmack, K

    1999-07-01

    Four techniques for measuring the dose rate from Sr-90 concave eye plaques are presented. The techniques involve calibrating a concave eye plaque against a Sr-90 teletherapy unit using X-Omat film, radiochromic film, black LiF TLD discs and LiF chips. The mean dose rate predicted by these dosimeters is 7.5 cGy s(-1). The dose rate quoted by the manufacturer is 33% lower than this value, which is consistent with discrepancies reported by other authors. Calibration against a 6 MV linear accelerator was also carried out using each of the above dosimetric devices, and appropriate sensitivity correction factors have been presented.

  17. Calibration of strontium-90 eye applicator using a strontium external beam standard

    NASA Astrophysics Data System (ADS)

    Siddle, D.; Langmack, K.

    1999-07-01

    Four techniques for measuring the dose rate from Sr-90 concave eye plaques are presented. The techniques involve calibrating a concave eye plaque against a Sr-90 teletherapy unit using X-Omat film, radiochromic film, black LiF TLD discs and LiF chips. The mean dose rate predicted by these dosimeters is 7.5 cGy s-1. The dose rate quoted by the manufacturer is 33% lower than this value, which is consistent with discrepancies reported by other authors. Calibration against a 6 MV linear accelerator was also carried out using each of the above dosimetric devices, and appropriate sensitivity correction factors have been presented.

  18. Study of the absorption spectra of Fricke Xylenol Orange gel dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambarini, Grazia; Artuso, Emanuele; Liosi, Giulia Maria

    2015-07-01

    A systematic study of the absorption spectra of Fricke Xylenol Orange gel dosimeters has been performed, in the wavelength range from 300 nm to 700 nm. The spectrum of Xylenol Orange (without ferrous sulphate solution) has been achieved, in order to subtract its contribution from the absorption spectra of the irradiated Fricke Xylenol Orange gel dosimeters. The absorbance due to ferric ions chelated by Xylenol Orange has been studied for various irradiation doses. Two absorbance peaks are visible, mainly at low doses: the first peak increases with the dose more slowly than the second one. This effect can explain themore » apparent threshold dose that was frequently evidenced. (authors)« less

  19. On the p(dis) correction factor for cylindrical chambers.

    PubMed

    Andreo, Pedro

    2010-03-07

    The authors of a recent paper (Wang and Rogers 2009 Phys. Med. Biol. 54 1609) have used the Monte Carlo method to simulate the 'classical' experiment made more than 30 years ago by Johansson et al (1978 National and International Standardization of Radiation Dosimetry (Atlanta 1977) vol 2 (Vienna: IAEA) pp 243-70) on the displacement (or replacement) perturbation correction factor p(dis) for cylindrical chambers in 60Co and high-energy photon beams. They conclude that an 'unreasonable normalization at dmax' of the ionization chambers response led to incorrect results, and for the IAEA TRS-398 Code of Practice, which uses ratios of those results, 'the difference in the correction factors can lead to a beam calibration deviation of more than 0.5% for Farmer-like chambers'. The present work critically examines and questions some of the claims and generalized conclusions of the paper. It is demonstrated that for real, commercial Farmer-like chambers, the possible deviations in absorbed dose would be much smaller (typically 0.13%) than those stated by Wang and Rogers, making the impact of their proposed values negligible on practical high-energy photon dosimetry. Differences of the order of 0.4% would only appear at the upper extreme of the energies potentially available for clinical use (around 25 MV) and, because lower energies are more frequently used, the number of radiotherapy photon beams for which the deviations would be larger than say 0.2% is extremely small. This work also raises concerns on the proposed value of pdis for Farmer chambers at the reference quality of 60Co in relation to their impact on electron beam dosimetry, both for direct dose determination using these chambers and for the cross-calibration of plane-parallel chambers. The proposed increase of about 1% in p(dis) (compared with TRS-398) would lower the kQ factors and therefore Dw in electron beams by the same amount. This would yield a severe discrepancy with the current good agreement between electron dosimetry based on an electron cross-calibrated plane-parallel chamber (against a Farmer) or on a directly 60Co calibrated plane-parallel chamber, which is not likely to be in error by 1%. It is suggested that the influence of the 60Co source spectrum used in the simulations may not be negligible for calculations aimed at an uncertainty level of 0.1%.

  20. LETTER TO THE EDITOR: On the pdis correction factor for cylindrical chambers

    NASA Astrophysics Data System (ADS)

    Andreo, Pedro

    2010-03-01

    The authors of a recent paper (Wang and Rogers 2009 Phys. Med. Biol. 54 1609) have used the Monte Carlo method to simulate the 'classical' experiment made more than 30 years ago by Johansson et al (1978 National and International Standardization of Radiation Dosimetry (Atlanta 1977) vol 2 (Vienna: IAEA) pp 243-70) on the displacement (or replacement) perturbation correction factor pdis for cylindrical chambers in 60Co and high-energy photon beams. They conclude that an 'unreasonable normalization at dmax' of the ionization chambers response led to incorrect results, and for the IAEA TRS-398 Code of Practice, which uses ratios of those results, 'the difference in the correction factors can lead to a beam calibration deviation of more than 0.5% for Farmer-like chambers'. The present work critically examines and questions some of the claims and generalized conclusions of the paper. It is demonstrated that for real, commercial Farmer-like chambers, the possible deviations in absorbed dose would be much smaller (typically 0.13%) than those stated by Wang and Rogers, making the impact of their proposed values negligible on practical high-energy photon dosimetry. Differences of the order of 0.4% would only appear at the upper extreme of the energies potentially available for clinical use (around 25 MV) and, because lower energies are more frequently used, the number of radiotherapy photon beams for which the deviations would be larger than say 0.2% is extremely small. This work also raises concerns on the proposed value of pdis for Farmer chambers at the reference quality of 60Co in relation to their impact on electron beam dosimetry, both for direct dose determination using these chambers and for the cross-calibration of plane-parallel chambers. The proposed increase of about 1% in pdis (compared with TRS-398) would lower the kQ factors and therefore Dw in electron beams by the same amount. This would yield a severe discrepancy with the current good agreement between electron dosimetry based on an electron cross-calibrated plane-parallel chamber (against a Farmer) or on a directly 60Co calibrated plane-parallel chamber, which is not likely to be in error by 1%. It is suggested that the influence of the 60Co source spectrum used in the simulations may not be negligible for calculations aimed at an uncertainty level of 0.1%.

  1. SU-F-T-159: Monte Carlo Simulation Studies of Three-Dimensional Dose Distribution for Polymer Gel Dosimeter and Radiochromic Gel Dosimeter in a Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Kim, G; Jung, H

    Purpose: The purpose of this simulation study is to evaluate the proton detectability of gel dosimeters, and estimate the three-dimensional dose distribution of protons in the radiochromic gel and polymer gel dosimeter compared with the dose distribution in water. Methods: The commercial composition ratios of normoxic polymer gel and LCV micelle radiochromic gel were included in this simulation study. The densities of polymer and radiochromic gel were 1.024 and 1.005 g/cm3, respectively. The 50, 80 and 140 MeV proton beam energies were selected. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiationmore » transport code (MCNPX 2.7.0, Los Alamos Laboratory). The water equivalent depth profiles and the dose distributions of two gel dosimeters were compared for the water. Results: In case of irradiating 50, 80 and 140 MeV proton beam to water phantom, the reference Bragg-peak depths are represented at 2.22, 5.18 and 13.98 cm, respectively. The difference in the water equivalent depth is represented to about 0.17 and 0.37 cm in the radiochromic gel and polymer gel dosimeter, respectively. The proton absorbed doses in the radiochromic gel dosimeter are calculated to 2.41, 3.92 and 6.90 Gy with increment of incident proton energies. In the polymer gel dosimeter, the absorbed doses are calculated to 2.37, 3.85 and 6.78 Gy with increment of incident proton energies. The relative absorbed dose in radiochromic gel (about 0.47 %) is similar to that of water than the relative absorbed dose of polymer gel (about 2.26 %). In evaluating the proton dose distribution, we found that the dose distribution of both gel dosimeters matched that of water in most cases. Conclusion: As the dosimetry device, the radiochromic gel dosimeter has the potential particle detectability and is feasible to use for quality assurance of proton beam therapy beam.« less

  2. SU-E-T-753: Three-Dimensional Dose Distributions of Incident Proton Particle in the Polymer Gel Dosimeter and the Radiochromic Gel Dosimeter: A Simulation Study with MCNP Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Kim, G; Ji, Y

    Purpose: The purpose of this study is to estimate the three-dimensional dose distributions in the polymer and the radiochromic gel dosimeter, and to identify the detectability of both gel dosimeters by comparing with the water phantom in case of irradiating the proton particles. Methods: The normoxic polymer gel and the LCV micelle radiochromic gel were used in this study. The densities of polymer and the radiochromic gel dosimeter were 1.024 and 1.005 g/cm{sup 3}, respectively. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiation transport code (MCNPX, Los Alamos National Laboratory). Themore » shape of phantom irradiated by proton particles was a hexahedron with the dimension of 12.4 × 12.4 × 15.0 cm{sup 3}. The energies of proton beam were 50, 80, and 140 MeV energies were directed to top of the surface of phantom. The cross-sectional view of proton dose distribution in both gel dosimeters was estimated with the water phantom and evaluated by the gamma evaluation method. In addition, the absorbed dose(Gy) was also calculated for evaluating the proton detectability. Results: The evaluation results show that dose distributions in both gel dosimeters at intermediated section and Bragg-peak region are similar with that of the water phantom. At entrance section, however, inconsistencies of dose distribution are represented, compared with water. The relative absorbed doses in radiochromic and polymer gel dosimeter were represented to be 0.47 % and 2.26 % difference, respectively. These results show that the radiochromic gel dosimeter was better matched than the water phantom in the absorbed dose evaluation. Conclusion: The polymer and the radiochromic gel dosimeter show similar characteristics in dose distributions for the proton beams at intermediate section and Bragg-peak region. Moreover the calculated absorbed dose in both gel dosimeters represents similar tendency by comparing with that in water phantom.« less

  3. Validating dose rate calibration of radiotherapy photon beams through IAEA/WHO postal audit dosimetry service.

    PubMed

    Jangda, Abdul Qadir; Hussein, Sherali

    2012-05-01

    In external beam radiation therapy (EBRT), the quality assurance (QA) of the radiation beam is crucial to the accurate delivery of the prescribed dose to the patient. One of the dosimetric parameters that require monitoring is the beam output, specified as the dose rate on the central axis under reference conditions. The aim of this project was to validate dose rate calibration of megavoltage photon beams using the International Atomic Energy Agency (IAEA)/World Health Organisation (WHO) postal audit dosimetry service. Three photon beams were audited: a 6 MV beam from the low-energy linac and 6 and 18 MV beams from a dual high-energy linac. The agreement between our stated doses and the IAEA results was within 1% for the two 6 MV beams and within 2% for the 18 MV beam. The IAEA/WHO postal audit dosimetry service provides an independent verification of dose rate calibration protocol by an international facility.

  4. 42 CFR 81.4 - Definition of terms used in this part.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...]. (e) Equivalent dose means the absorbed dose in a tissue or organ multiplied by a radiation weighting... dose means the portion of the equivalent dose that is received from radiation sources outside of the... pattern and level of radiation exposure. (h) Internal dose means the portion of the equivalent dose that...

  5. Study of the optical properties and the carbonaceous clusters in DAM-ADC solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Rammah, Y. S.; Abdalla, A. M.

    2017-12-01

    The optical properties of DAM-ADC solid state nuclear track detectors (SSNTDs) were investigated. Samples of DAM-ADC detector were irradiated at room temperature with gamma doses in the range of 100-500 kGy using 1.25 MeV 60Co source of dose rate 4 kGy/h. The optical characterization of these detectors have been studied through the measurements of UV-visible absorption spectra of blank and γ- irradiated samples. The optical energy band gaps, Eg for the detectors were obtained from the direct and the indirect allowed transitions in K-space using two methods (Tauc's model and absorption spectrum fitting (ASF) method). The absorbance of DAM-ADC detector was found to increase with increasing of the gamma absorbed dose. The width of the tail of localized states in the band gap, Eu was evaluated with the Urbach's method. The number of carbon atoms per conjugated length (N), the number of carbon atoms per cluster (M), and refractive index (n) for the present samples were determined. Both of the direct and the indirect band gaps of DAM-ADC detector decrease with increasing of the gamma absorbed dose. Urbach's energy decreased significantly for the detector. An increase in N, M, and n with increasing of the gamma absorbed dose was noticed. Results shed light on the effect of gamma irradiations of DAM-ADC SSNTDs to suitable industrial applications and to modify the optical properties through gamma-induced modifications of the polymer structure.

  6. Absorbed Dose Rate Due to Intake of Natural Radionuclides by Tilapia Fish (Tilapia nilotica,Linnaeus, 1758) Estimated Near Uranium Mining at Caetité, Bahia, Brazil

    NASA Astrophysics Data System (ADS)

    Pereira, Wagner de S.; Kelecom, Alphonse; Py Júnior, Delcy de Azevedo

    2008-08-01

    The uranium mining at Caetité (Uranium Concentrate Unit—URA) is in its operational phase. Aiming to estimate the radiological environmental impact of the URA, a monitoring program is underway. In order to preserve the biota of the deleterious effects from radiation and to act in a pro-active way as expected from a licensing body, the present work aims to use an environmental protection methodology based on the calculation of absorbed dose rate in biota. Thus, selected target organism was the Tilapia fish (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210). As, in Brazil there are no radiation exposure limits adopted for biota the value proposed by the Department of Energy (DOE) of the United States of 3.5×103 μGy y-1 has been used. The derived absorbed dose rate calculated for Tilapia was 2.51×100 μGy y-1, that is less than 0.1% of the dose limit established by DOE. The critical radionuclide was Ra-226, with 56% of the absorbed dose rate, followed by U-238 with 34% and Th-232 with 9%. This value of 0.1% of the limit allows to state that, in the operational conditions analyzed, natural radionuclides do not represent a radiological problem to biota.

  7. Absorbed Dose Rate Due to Intake of Natural Radionuclides by Tilapia Fish (Tilapia nilotica,Linnaeus, 1758) Estimated Near Uranium Mining at Caetite, Bahia, Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Wagner de S; Universidade Federal Fluminense, Programa de Pos-graduacao em Biologia Marinha; Kelecom, Alphonse

    2008-08-07

    The uranium mining at Caetite (Uranium Concentrate Unit--URA) is in its operational phase. Aiming to estimate the radiological environmental impact of the URA, a monitoring program is underway. In order to preserve the biota of the deleterious effects from radiation and to act in a pro-active way as expected from a licensing body, the present work aims to use an environmental protection methodology based on the calculation of absorbed dose rate in biota. Thus, selected target organism was the Tilapia fish (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210).more » As, in Brazil there are no radiation exposure limits adopted for biota the value proposed by the Department of Energy (DOE) of the United States of 3.5x10{sup 3} {mu}Gy y{sup -1} has been used. The derived absorbed dose rate calculated for Tilapia was 2.51x10{sup 0} {mu}Gy y{sup -1}, that is less than 0.1% of the dose limit established by DOE. The critical radionuclide was Ra-226, with 56% of the absorbed dose rate, followed by U-238 with 34% and Th-232 with 9%. This value of 0.1% of the limit allows to state that, in the operational conditions analyzed, natural radionuclides do not represent a radiological problem to biota.« less

  8. Heavy-ion-induced sucrose radicals investigated using EPR and UV spectroscopy.

    PubMed

    Nakagawa, Kouichi; Karakirova, Yordanka; Yordanov, Nicola D

    2015-05-01

    The potential use of a sucrose dosimeter for estimating both linear energy transfer (LET) and the absorbed dose of heavy ion and X-ray radiation was investigated. The stable free radicals were produced when sucrose was irradiated with heavy ions, such as helium, carbon, silicon and neon ions, and when the X-ray radiation was similar to the obtained electron paramagnetic resonance (EPR) spectra, which were ∼7 mT wide and composed of several hyperfine structures. In addition, the total spin concentration resulting from heavy-ion irradiation increased linearly as the absorbed dose increased, and decreased logarithmically as the LET increased. These empirical relations imply that the LET at a certain dose can be determined from the spin concentration. For sucrose and alanine, both cross-sections following C-ion irradiation with a 50 Gy dose were ∼1.3 × 10(-12) [μm(2)], taking into account the molecular size of the samples. The values of these cross-sections imply that multiple ionizing particles were involved in the production of stable radicals. Furthermore, UV absorbance at 267 nm of an aqueous solution of irradiated sucrose was found to linearly increase with increasing absorbed dose. Therefore, the EPR and UV results suggest that sucrose can be a useful dosimeter for heavy-ion irradiation. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  9. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system

    PubMed Central

    Pérez-Andújar, Angélica; Newhauser, Wayne D; DeLuca, Paul M

    2014-01-01

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient. PMID:19147903

  10. A new form of the calibration curve in radiochromic dosimetry. Properties and results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamponi, Matteo, E-mail: mtamponi@aslsassari.it; B

    Purpose: This work describes a new form of the calibration curve for radiochromic dosimetry that depends on one fit parameter. Some results are reported to show that the new curve performs as well as those previously used and, more importantly, significantly reduces the dependence on the lot of films, the film orientation on the scanner, and the time after exposure. Methods: The form of the response curve makes use of the net optical densities ratio against the dose and has been studied by means of the Beer–Lambert law and a simple modeling of the film. The new calibration curve hasmore » been applied to EBT3 films exposed at 6 and 15 MV energy beams of linear accelerators and read-out in transmission mode by means of a flatbed color scanner. Its performance has been compared to that of two established forms of the calibration curve, which use the optical density and the net optical density against the dose. Four series of measurements with four lots of EBT3 films were used to evaluate the precision, accuracy, and dependence on the time after exposure, orientation on the scanner and lot of films. Results: The new calibration curve is roughly subject to the same dose uncertainty, about 2% (1 standard deviation), and has the same accuracy, about 1.5% (dose values between 50 and 450 cGy), as the other calibration curves when films of the same lot are used. Moreover, the new calibration curve, albeit obtained from only one lot of film, shows a good agreement with experimental data from all other lots of EBT3 films used, with an accuracy of about 2% and a relative dose precision of 2.4% (1 standard deviation). The agreement also holds for changes of the film orientation and of the time after exposure. Conclusions: The dose accuracy of this new form of the calibration curve is always equal to or better than those obtained from the two types of curves previously used. The use of the net optical densities ratio considerably reduces the dependence on the lot of films, the landscape/portrait orientation, and the time after exposure. This form of the calibration curve could become even more useful with new optical digital devices using monochromatic light.« less

  11. A new form of the calibration curve in radiochromic dosimetry. Properties and results.

    PubMed

    Tamponi, Matteo; Bona, Rossana; Poggiu, Angela; Marini, Piergiorgio

    2016-07-01

    This work describes a new form of the calibration curve for radiochromic dosimetry that depends on one fit parameter. Some results are reported to show that the new curve performs as well as those previously used and, more importantly, significantly reduces the dependence on the lot of films, the film orientation on the scanner, and the time after exposure. The form of the response curve makes use of the net optical densities ratio against the dose and has been studied by means of the Beer-Lambert law and a simple modeling of the film. The new calibration curve has been applied to EBT3 films exposed at 6 and 15 MV energy beams of linear accelerators and read-out in transmission mode by means of a flatbed color scanner. Its performance has been compared to that of two established forms of the calibration curve, which use the optical density and the net optical density against the dose. Four series of measurements with four lots of EBT3 films were used to evaluate the precision, accuracy, and dependence on the time after exposure, orientation on the scanner and lot of films. The new calibration curve is roughly subject to the same dose uncertainty, about 2% (1 standard deviation), and has the same accuracy, about 1.5% (dose values between 50 and 450 cGy), as the other calibration curves when films of the same lot are used. Moreover, the new calibration curve, albeit obtained from only one lot of film, shows a good agreement with experimental data from all other lots of EBT3 films used, with an accuracy of about 2% and a relative dose precision of 2.4% (1 standard deviation). The agreement also holds for changes of the film orientation and of the time after exposure. The dose accuracy of this new form of the calibration curve is always equal to or better than those obtained from the two types of curves previously used. The use of the net optical densities ratio considerably reduces the dependence on the lot of films, the landscape/portrait orientation, and the time after exposure. This form of the calibration curve could become even more useful with new optical digital devices using monochromatic light.

  12. MAGIC with formaldehyde applied to dosimetry of HDR brachytherapy source

    NASA Astrophysics Data System (ADS)

    Marques; T; Fernandes; J; Barbi; G; Nicolucci; P; Baffa; O

    2009-05-01

    The use of polymer gel dosimeters in brachytherapy can allow the determination of three-dimensional dose distributions in large volumes and with high spatial resolution if an adequate calibration process is performed. One of the major issues in these experiments is the polymer gel response dependence on dose rate when high dose rate sources are used and the doses in the vicinity of the sources are to be determinated. In this study, the response of a modified MAGIC polymer gel with formaldehyde around an Iridium-192 HDR brachytherapy source is presented. Experimental results obtained with this polymer gel were compared with ionization chamber measurements and with Monte Carlo simulation with PENELOPE. A maximum difference of 3.10% was found between gel dose measurements and Monte Carlo simulation at a radial distance of 18 mm from the source. The results obtained show that the gel's response is strongly influenced by dose rate and that a different calibration should be used for the vicinity of the source and for regions of lower dose rates. The results obtained in this study show that, provided the proper calibration is performed, MAGIC with formaldehyde can be successfully used to accurate determinate dose distributions form high dose rate brachytherapy sources.

  13. Development and characterization of a three-dimensional radiochromic film stack dosimeter for megavoltage photon beam dosimetry.

    PubMed

    McCaw, Travis J; Micka, John A; DeWerd, Larry A

    2014-05-01

    Three-dimensional (3D) dosimeters are particularly useful for verifying the commissioning of treatment planning and delivery systems, especially with the ever-increasing implementation of complex and conformal radiotherapy techniques such as volumetric modulated arc therapy. However, currently available 3D dosimeters require extensive experience to prepare and analyze, and are subject to large measurement uncertainties. This work aims to provide a more readily implementable 3D dosimeter with the development and characterization of a radiochromic film stack dosimeter for megavoltage photon beam dosimetry. A film stack dosimeter was developed using Gafchromic(®) EBT2 films. The dosimeter consists of 22 films separated by 1 mm-thick spacers. A Virtual Water™ phantom was created that maintains the radial film alignment within a maximum uncertainty of 0.3 mm. The film stack dosimeter was characterized using simulations and measurements of 6 MV fields. The absorbed-dose energy dependence and orientation dependence of the film stack dosimeter were investigated using Monte Carlo simulations. The water equivalence of the dosimeter was determined by comparing percentage-depth-dose (PDD) profiles measured with the film stack dosimeter and simulated using Monte Carlo methods. Film stack dosimeter measurements were verified with thermoluminescent dosimeter (TLD) microcube measurements. The film stack dosimeter was also used to verify the delivery of an intensity-modulated radiation therapy (IMRT) procedure. The absorbed-dose energy response of EBT2 film differs less than 1.5% between the calibration and film stack dosimeter geometries for a 6 MV spectrum. Over a series of beam angles ranging from normal incidence to parallel incidence, the overall variation in the response of the film stack dosimeter is within a range of 2.5%. Relative to the response to a normally incident beam, the film stack dosimeter exhibits a 1% under-response when the beam axis is parallel to the film planes. Measured and simulated PDD profiles agree within a root-mean-square difference of 1.3%. In-field film stack dosimeter and TLD measurements agree within 5%, and measurements in the field penumbra agree within 0.5 mm. Film stack dosimeter and TLD measurements have expanded (k = 2) overall measurement uncertainties of 6.2% and 5.8%, respectively. Film stack dosimeter measurements of an IMRT dose distribution have 98% agreement with the treatment planning system dose calculation, using gamma criteria of 3% and 2 mm. The film stack dosimeter is capable of high-resolution, low-uncertainty 3D dose measurements, and can be readily incorporated into an existing film dosimetry program.

  14. Synchrotron radiation external beam rotational radiotherapy of breast cancer: proof of principle.

    PubMed

    Di Lillo, Francesca; Mettivier, Giovanni; Castriconi, Roberta; Sarno, Antonio; Stevenson, Andrew W; Hall, Chris J; Häusermann, Daniel; Russo, Paolo

    2018-05-01

    The principle of rotational summation of the absorbed dose for breast cancer treatment with orthovoltage X-ray beams was proposed by J. Boone in 2012. Here, use of X-ray synchrotron radiation for image guided external beam rotational radiotherapy treatment of breast cancer is proposed. Tumor irradiation occurs with the patient in the prone position hosted on a rotating bed, with her breast hanging from a hole in the bed, which rotates around a vertical axis passing through the tumor site. Horizontal collimation of the X-ray beam provides for whole breast or partial breast irradiation, while vertical translation of the bed and successive rotations allow for irradiation of the full tumor volume, with dose rates which permit also hypofractionated treatments. In this work, which follows a previous preliminary report, results are shown of a full series of measurements on polyethylene and acrylic cylindrical phantoms carried out at the Australian Synchrotron, confirmed by Geant4 Monte Carlo simulations, intended to demonstrate the proof of principle of the technique. Dose measurements were carried out with calibrated ion chambers, radiochromic films and thermoluminescence dosimeters. The photon energy investigated was 60 keV. Image guidance may occur with the transmitted beam for contrast-enhanced breast computed tomography. For a horizontal beam collimation of 1.5 cm and rotation around the central axis of a 14 cm-diameter polyethylene phantom, a periphery-to-center dose ratio of 14% was measured. The simulations showed that under the same conditions the dose ratio decreases with increasing photon energy down to 10% at 175 keV. These values are comparable with those achievable with conventional megavoltage radiotherapy of breast cancer with a medical linear accelerator. Dose painting was demonstrated with two off-center `cancer foci' with 1.3 Gy and 0.6 Gy target doses. The use of a radiosensitizing agent for dose enhancement is foreseen.

  15. Diagnostic x-ray dosimetry using Monte Carlo simulation.

    PubMed

    Ioppolo, J L; Price, R I; Tuchyna, T; Buckley, C E

    2002-05-21

    An Electron Gamma Shower version 4 (EGS4) based user code was developed to simulate the absorbed dose in humans during routine diagnostic radiological procedures. Measurements of absorbed dose using thermoluminescent dosimeters (TLDs) were compared directly with EGS4 simulations of absorbed dose in homogeneous, heterogeneous and anthropomorphic phantoms. Realistic voxel-based models characterizing the geometry of the phantoms were used as input to the EGS4 code. The voxel geometry of the anthropomorphic Rando phantom was derived from a CT scan of Rando. The 100 kVp diagnostic energy x-ray spectra of the apparatus used to irradiate the phantoms were measured, and provided as input to the EGS4 code. The TLDs were placed at evenly spaced points symmetrically about the central beam axis, which was perpendicular to the cathode-anode x-ray axis at a number of depths. The TLD measurements in the homogeneous and heterogenous phantoms were on average within 7% of the values calculated by EGS4. Estimates of effective dose with errors less than 10% required fewer numbers of photon histories (1 x 10(7)) than required for the calculation of dose profiles (1 x 10(9)). The EGS4 code was able to satisfactorily predict and thereby provide an instrument for reducing patient and staff effective dose imparted during radiological investigations.

  16. Diagnostic x-ray dosimetry using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Ioppolo, J. L.; Price, R. I.; Tuchyna, T.; Buckley, C. E.

    2002-05-01

    An Electron Gamma Shower version 4 (EGS4) based user code was developed to simulate the absorbed dose in humans during routine diagnostic radiological procedures. Measurements of absorbed dose using thermoluminescent dosimeters (TLDs) were compared directly with EGS4 simulations of absorbed dose in homogeneous, heterogeneous and anthropomorphic phantoms. Realistic voxel-based models characterizing the geometry of the phantoms were used as input to the EGS4 code. The voxel geometry of the anthropomorphic Rando phantom was derived from a CT scan of Rando. The 100 kVp diagnostic energy x-ray spectra of the apparatus used to irradiate the phantoms were measured, and provided as input to the EGS4 code. The TLDs were placed at evenly spaced points symmetrically about the central beam axis, which was perpendicular to the cathode-anode x-ray axis at a number of depths. The TLD measurements in the homogeneous and heterogenous phantoms were on average within 7% of the values calculated by EGS4. Estimates of effective dose with errors less than 10% required fewer numbers of photon histories (1 × 107) than required for the calculation of dose profiles (1 × 109). The EGS4 code was able to satisfactorily predict and thereby provide an instrument for reducing patient and staff effective dose imparted during radiological investigations.

  17. Whole-body biodistribution and estimation of radiation-absorbed doses of the dopamine D1 receptor radioligand 11C-NNC 112 in humans.

    PubMed

    Cropley, Vanessa L; Fujita, Masahiro; Musachio, John L; Hong, Jinsoo; Ghose, Subroto; Sangare, Janet; Nathan, Pradeep J; Pike, Victor W; Innis, Robert B

    2006-01-01

    The present study estimated radiation-absorbed doses of the dopamine D(1) receptor radioligand [(11)C]((+)-8-chloro-5-(7-benzofuranyl)-7-hydroxy-3-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine) (NNC 112) in humans, based on dynamic whole-body PET in healthy subjects. Whole-body PET was performed on 7 subjects after injection of 710 +/- 85 MBq of (11)C-NNC 112. Fourteen frames were acquired for a total of 120 min in 7 segments of the body. Regions of interest were drawn on compressed planar images of source organs that could be identified. Radiation dose estimates were calculated from organ residence times using the OLINDA 1.0 program. The organs with the highest radiation-absorbed doses were the gallbladder, liver, lungs, kidneys, and urinary bladder wall. Biexponential fitting of mean bladder activity demonstrated that 15% of activity was excreted via the urine. With a 2.4-h voiding interval, the effective dose was 5.7 microSv/MBq (21.1 mrem/mCi). (11)C-NNC 112 displays a favorable radiation dose profile in humans and would allow multiple PET examinations per year to be performed on the same subject.

  18. Comparing otoacoustic emissions evoked by chirp transients with constant absorbed sound power and constant incident pressure magnitude

    PubMed Central

    Keefe, Douglas H.; Feeney, M. Patrick; Hunter, Lisa L.; Fitzpatrick, Denis F.

    2017-01-01

    Human ear-canal properties of transient acoustic stimuli are contrasted that utilize measured ear-canal pressures in conjunction with measured acoustic pressure reflectance and admittance. These data are referenced to the tip of a probe snugly inserted into the ear canal. Promising procedures to calibrate across frequency include stimuli with controlled levels of incident pressure magnitude, absorbed sound power, and forward pressure magnitude. An equivalent pressure at the eardrum is calculated from these measured data using a transmission-line model of ear-canal acoustics parameterized by acoustically estimated ear-canal area at the probe tip and length between the probe tip and eardrum. Chirp stimuli with constant incident pressure magnitude and constant absorbed sound power across frequency were generated to elicit transient-evoked otoacoustic emissions (TEOAEs), which were measured in normal-hearing adult ears from 0.7 to 8 kHz. TEOAE stimuli had similar peak-to-peak equivalent sound pressure levels across calibration conditions. Frequency-domain TEOAEs were compared using signal level, signal-to-noise ratio (SNR), coherence synchrony modulus (CSM), group delay, and group spread. Time-domain TEOAEs were compared using SNR, CSM, instantaneous frequency and instantaneous bandwidth. Stimuli with constant incident pressure magnitude or constant absorbed sound power across frequency produce generally similar TEOAEs up to 8 kHz. PMID:28147608

  19. The use of megavoltage CT (MVCT) images for dose recomputations

    NASA Astrophysics Data System (ADS)

    Langen, K. M.; Meeks, S. L.; Poole, D. O.; Wagner, T. H.; Willoughby, T. R.; Kupelian, P. A.; Ruchala, K. J.; Haimerl, J.; Olivera, G. H.

    2005-09-01

    Megavoltage CT (MVCT) images of patients are acquired daily on a helical tomotherapy unit (TomoTherapy, Inc., Madison, WI). While these images are used primarily for patient alignment, they can also be used to recalculate the treatment plan for the patient anatomy of the day. The use of MVCT images for dose computations requires a reliable CT number to electron density calibration curve. In this work, we tested the stability of the MVCT numbers by determining the variation of this calibration with spatial arrangement of the phantom, time and MVCT acquisition parameters. The two calibration curves that represent the largest variations were applied to six clinical MVCT images for recalculations to test for dosimetric uncertainties. Among the six cases tested, the largest difference in any of the dosimetric endpoints was 3.1% but more typically the dosimetric endpoints varied by less than 2%. Using an average CT to electron density calibration and a thorax phantom, a series of end-to-end tests were run. Using a rigid phantom, recalculated dose volume histograms (DVHs) were compared with plan DVHs. Using a deformed phantom, recalculated point dose variations were compared with measurements. The MVCT field of view is limited and the image space outside this field of view can be filled in with information from the planning kVCT. This merging technique was tested for a rigid phantom. Finally, the influence of the MVCT slice thickness on the dose recalculation was investigated. The dosimetric differences observed in all phantom tests were within the range of dosimetric uncertainties observed due to variations in the calibration curve. The use of MVCT images allows the assessment of daily dose distributions with an accuracy that is similar to that of the initial kVCT dose calculation.

  20. The response of covered silicon detectors to monoenergetic gamma rays

    NASA Technical Reports Server (NTRS)

    Reier, M.

    1972-01-01

    Measurements were made of the efficiency in detecting gamma rays of a 0.3-mm, a 3-mm, and a 5-mm silicon detector covered with different absorbers. Calibrated sources covering the range from 279 KeV to 2.75 MeV were used. The need for the absorbers in order to obtain meaningful results, and their contribution to detector response at electron biases from 50 to 200 KeV, are discussed in detail. It is shown that the results are independent of the atomic number of the absorber. In addition, the role of the absorber in increasing the efficiency with increasing photon energy for low bias setting is demonstrated for the 0.3-mm crystal. Qualitative explanations are given for the shapes of all curves of efficiency versus energy at each bias.

  1. Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats

    PubMed Central

    Wang, Jing; He, Linfeng; Fan, Dunhuang; Ding, Defang; Wang, Xufei; Gao, Yun; Zhang, Xuxia; Li, Qiang; Chen, Honghong

    2016-01-01

    The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1–3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure. PMID:27445126

  2. Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats

    NASA Astrophysics Data System (ADS)

    Wang, Jing; He, Linfeng; Fan, Dunhuang; Ding, Defang; Wang, Xufei; Gao, Yun; Zhang, Xuxia; Li, Qiang; Chen, Honghong

    2016-07-01

    The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1-3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure.

  3. Monte Carlo Estimation of Absorbed Dose Distributions Obtained from Heterogeneous 106Ru Eye Plaques.

    PubMed

    Zaragoza, Francisco J; Eichmann, Marion; Flühs, Dirk; Sauerwein, Wolfgang; Brualla, Lorenzo

    2017-09-01

    The distribution of the emitter substance in 106 Ru eye plaques is usually assumed to be homogeneous for treatment planning purposes. However, this distribution is never homogeneous, and it widely differs from plaque to plaque due to manufacturing factors. By Monte Carlo simulation of radiation transport, we study the absorbed dose distribution obtained from the specific CCA1364 and CCB1256 106 Ru plaques, whose actual emitter distributions were measured. The idealized, homogeneous CCA and CCB plaques are also simulated. The largest discrepancy in depth dose distribution observed between the heterogeneous and the homogeneous plaques was 7.9 and 23.7% for the CCA and CCB plaques, respectively. In terms of isodose lines, the line referring to 100% of the reference dose penetrates 0.2 and 1.8 mm deeper in the case of heterogeneous CCA and CCB plaques, respectively, with respect to the homogeneous counterpart. The observed differences in absorbed dose distributions obtained from heterogeneous and homogeneous plaques are clinically irrelevant if the plaques are used with a lateral safety margin of at least 2 mm. However, these differences may be relevant if the plaques are used in eccentric positioning.

  4. Cerium nanoparticle effect on sensitivity of Fricke gel dosimeter: Initial investigation

    NASA Astrophysics Data System (ADS)

    Ebenezer Suman Babu, S.; Peace Balasingh, S. Timothy; Benedicta Pearlin, R.; Rabi Raja Singh, I.; Ravindran, B. Paul

    2017-05-01

    Fricke gel dosimeters (FXGs) have been the preferred dosimeters because of its ease in preparation and water and tissue equivalency. Visible changes happen three dimensionally in the dosimeter as the ferrous (Fe2+) ions change into ferric (Fe3+) ions upon irradiation and the measure of this change can be correlated to the dose absorbed. Nanoparticles are promising entities that can improve the sensitivity of the gel dosimeter. Cerium Oxide nanoparticle was investigated for possible enhancement of absorbed dose in the FXG. Various concentrations of the nanoparticle based gel dosimeters were prepared and irradiated for a clinical dose range of 0-3 Gy in a telegamma unit. The optimal concentration of 0.1 mM nanoparticle incorporated in the FXG enhances the radiation sensitivity of the unmodified FXG taken as reference without modifying the background absorbance prior to irradiation. The gel recipe consisted of 5% (wt) gelatin, 50 mM Sulphuric acid, 0.05 mM Xylenol Orange, 0.5 mM Ferrous Ammonium Sulphate and 0.1 mM Cerium (IV) Oxide nanoparticle (< 25 nm particle size) and triple distilled water. The FXGs with nanoparticle showed linear dose response in the dose range tested.

  5. Development of a portable graphite calorimeter for radiation dosimetry.

    PubMed

    Sakama, Makoto; Kanai, Tatsuaki; Fukumura, Akifumi

    2008-01-01

    We developed and performance-tested a portable graphite calorimeter designed to measure the absolute dosimetry of various beams including heavy-ion beams, based on a flexible and convenient means of measurement. This measurement system is fully remote-controlled by the GPIB system. This system uses a digital PID (Proportional, Integral, Derivative) control method based on the LabVIEW software. It was possible to attain stable conditions in a shorter time by this system. The standard deviation of the measurements using the calorimeter was 0.79% at a dose rate of 0.8 Gy/min in 17 calorimeter runs for a (60)Co photon beam. The overall uncertainties for the absorbed dose to graphite and water of the (60)Co photon beam using the developed calorimeter were 0.89% and 1.35%, respectively. Estimations of the correction factors due to vacuum gaps, impurities in the core, the dose gradient and the radiation profile were included in the uncertainties. The absorbed doses to graphite and water irradiated by the (60)Co photon beam were compared with dosimetry measurements obtained using three ionization chambers. The absorbed doses to graphite and water estimated by the two dosimetry methods agreed within 0.1% and 0.3%, respectively.

  6. Modeling gamma radiation dose in dwellings due to building materials.

    PubMed

    de Jong, Peter; van Dijk, Willem

    2008-01-01

    A model is presented that calculates the absorbed dose rate in air of gamma radiation emitted by building materials in a rectangular body construction. The basis for these calculations is formed by a fixed set of specific absorbed dose rates (the dose rate per Bq kg(-1) 238U, 232Th, and 40K), as determined for a standard geometry with the dimensions 4 x 5 x 2.8 m3. Using the computer codes Marmer and MicroShield, correction factors are assessed that quantify the influence of several room and material related parameters on the specific absorbed dose rates. The investigated parameters are the position in the construction; the thickness, density, and dimensions of the construction parts; the contribution from the outer leave; the presence of doors and windows; the attenuation by internal partition walls; the contribution from building materials present in adjacent rooms; and the effect of non-equilibrium due to 222Rn exhalation. To verify the precision, the proposed method is applied to three Dutch reference dwellings, i.e., a row house, a coupled house, and a gallery apartment. The averaged difference with MCNP calculations is found to be 4%.

  7. [Analysis of the importance of cosmonaut's location and orientation onboard the International space station to levels of visceral irradiation during traverse of the region of the South Atlantic Anomaly].

    PubMed

    Drobyshev, S G; Benghin, V V

    2015-01-01

    Parametric analysis of absorbed radiation dose to the cosmonaut working in the Service module (SM) of the International space station (ISS) was made with allowance for anisotropy of the radiation field of the South Atlantic Anomaly. Calculation data show that in weakly shielded SM compartments the radiation dose to poorly shielded viscera may depend essentially on cosmonaut's location and orientation relative to the ISS shell. Difference of the lens absorbed dose can be as high as 5 times depending on orientation of the cosmonaut and the ISS. The effect is less pronounced on the deep seated hematopoietic system; however, it may increase up to 2.5 times during the extravehicular activities. When the cosmonaut is outside on the ISS SM side presented eastward, the absorbed dose can be affected noticeably by remoteness from the SM. At a distance less than 1.5 meters away from the SM east side in the course of ascending circuits, the calculated lens dose is approximately half as compared with the situation when the cosmonaut is not shielded by the ISS material.

  8. Comparative Pharmacokinetics of the Organophosphorus Insecticide Chlorpyrifos and its Major Metabolites Diethylphosphate, Diethylthiophosphate and 3,5,6-Trichloro-2-pyridinol in the Rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timchalk, Chuck; Busby, Andrea L; Campbell, James A

    2007-07-31

    Abstract Chlorpyrifos (CPF) is a commonly used diethylphosphorothionate organophosphorus (OP) insecticide. Diethylphosphate (DEP), diethylthiophosphate (DETP) and 3,5,6-trichloro-2-pyridinol (TCPy) are products of metabolism and of environmental degradation of CPF and are routinely measured in urine as biomarkers of exposure. However, because these same chemicals can result from metabolism or by biodegradation, monitoring total urinary metabolite levels may be reflective of not only an individual’s contact with the parent pesticide, but also exposure with the metabolites, which are present in the environment. The objective of the current study was to compare the pharmacokinetics of orally administered DEP, DETP and TCPy with theirmore » kinetics following oral dosing with the parent insecticide CPF in the rat. Groups of rats were orally administered CPF, DEP, TCPy or DETP at doses of 140 μmol/kg body weight, and the time-courses of the metabolites were evaluated in blood and urine. Following oral administration, all three metabolites were well absorbed with peak blood concentrations being attained between 1-3 h post-dosing. In the case of DEP and TCPy virtually all the administered dose was recovered in the urine by 72 h post-dosing, suggesting negligible, if any, metabolism; whereas with DETP, ~50% of the orally administered dose was recovered in the urine. The CPF oral dose was likewise rapidly absorbed and metabolized to DEP, TCPy and DETP, with the distribution of metabolites in the urine followed the order: TCPy (22 ± 3 μmol) > DETP (14 ± 2 μmol) > DEP (1.4 ± 0.7 μmol). Based upon the total amount of TCPy detected in the urine a minimum of 63% of the oral CPF dose was absorbed. These studies support the hypotheses that DEP, DETP and TCPy present in the environment can be readily absorbed and eliminated in the urine of rats and potentially humans.« less

  9. Dose estimation for astronauts using dose conversion coefficients calculated with the PHITS code and the ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Sihver, Lembit; Niita, Koji

    2011-03-01

    Absorbed-dose and dose-equivalent rates for astronauts were estimated by multiplying fluence-to-dose conversion coefficients in the units of Gy.cm(2) and Sv.cm(2), respectively, and cosmic-ray fluxes around spacecrafts in the unit of cm(-2) s(-1). The dose conversion coefficients employed in the calculation were evaluated using the general-purpose particle and heavy ion transport code system PHITS coupled to the male and female adult reference computational phantoms, which were released as a common ICRP/ICRU publication. The cosmic-ray fluxes inside and near to spacecrafts were also calculated by PHITS, using simplified geometries. The accuracy of the obtained absorbed-dose and dose-equivalent rates was verified by various experimental data measured both inside and outside spacecrafts. The calculations quantitatively show that the effective doses for astronauts are significantly greater than their corresponding effective dose equivalents, because of the numerical incompatibility between the radiation quality factors and the radiation weighting factors. These results demonstrate the usefulness of dose conversion coefficients in space dosimetry. © Springer-Verlag 2010

  10. Monitoring the eye lens: which dose quantity is adequate?

    NASA Astrophysics Data System (ADS)

    Behrens, R.; Dietze, G.

    2010-07-01

    Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. The question of which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens arises from this situation. While in many countries dosemeters calibrated in terms of the dose equivalent quantity Hp(0.07) have been seen as being adequate for monitoring the dose to the eye lens, this might be questionable in the case of reduced dose limits and, thus, it may become necessary to use the dose equivalent quantity Hp(3) for this purpose. To discuss this question, the dose conversion coefficients for the equivalent dose of the eye lens (in the following eye lens dose) were determined for realistic photon and beta radiation fields and compared with the values of the corresponding conversion coefficients for the different operational quantities. The values obtained lead to the following conclusions: in radiation fields where most of the dose comes from photons, especially x-rays, it is appropriate to use dosemeters calibrated in terms of Hp(0.07) on a slab phantom, while in other radiation fields (dominated by beta radiation or unknown contributions of photon and beta radiation) dosemeters calibrated in terms of Hp(3) on a slab phantom should be used. As an alternative, dosemeters calibrated in terms of Hp(0.07) on a slab phantom could also be used; however, in radiation fields containing beta radiation with the end point energy near 1 MeV, an overestimation of the eye lens dose by up to a factor of 550 is possible.

  11. Monitoring the eye lens: which dose quantity is adequate?

    PubMed

    Behrens, R; Dietze, G

    2010-07-21

    Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. The question of which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens arises from this situation. While in many countries dosemeters calibrated in terms of the dose equivalent quantity H(p)(0.07) have been seen as being adequate for monitoring the dose to the eye lens, this might be questionable in the case of reduced dose limits and, thus, it may become necessary to use the dose equivalent quantity H(p)(3) for this purpose. To discuss this question, the dose conversion coefficients for the equivalent dose of the eye lens (in the following eye lens dose) were determined for realistic photon and beta radiation fields and compared with the values of the corresponding conversion coefficients for the different operational quantities. The values obtained lead to the following conclusions: in radiation fields where most of the dose comes from photons, especially x-rays, it is appropriate to use dosemeters calibrated in terms of H(p)(0.07) on a slab phantom, while in other radiation fields (dominated by beta radiation or unknown contributions of photon and beta radiation) dosemeters calibrated in terms of H(p)(3) on a slab phantom should be used. As an alternative, dosemeters calibrated in terms of H(p)(0.07) on a slab phantom could also be used; however, in radiation fields containing beta radiation with the end point energy near 1 MeV, an overestimation of the eye lens dose by up to a factor of 550 is possible.

  12. Poster - 53: Improving inter-linac DMLC IMRT dose precision by fine tuning of MLC leaf calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakonechny, Keith; Tran, Muoi; Sasaki, David

    Purpose: To develop a method to improve the inter-linac precision of DMLC IMRT dosimetry. Methods: The distance between opposing MLC leaf banks (“gap size”) can be finely tuned on Varian linacs. The dosimetric effect due to small deviations from the nominal gap size (“gap error”) was studied by introducing known errors for several DMLC sliding gap sizes, and for clinical plans based on the TG119 test cases. The plans were delivered on a single Varian linac and the relationship between gap error and the corresponding change in dose was measured. The plans were also delivered on eight Varian 2100 seriesmore » linacs (at two institutions) in order to quantify the inter-linac variation in dose before and after fine tuning the MLC calibration. Results: The measured dose differences for each field agreed well with the predictions of LoSasso et al. Using the default MLC calibration, the variation in the physical MLC gap size was determined to be less than 0.4 mm between all linacs studied. The dose difference between the linacs with the largest and smallest physical gap was up to 5.4% (spinal cord region of the head and neck TG119 test case). This difference was reduced to 2.5% after fine tuning the MLC gap calibration. Conclusions: The inter-linac dose precision for DMLC IMRT on Varian linacs can be improved using a simple modification of the MLC calibration procedure that involves fine adjustment of the nominal gap size.« less

  13. 131I-tositumomab myeloablative radioimmunotherapy for non-Hodgkin’s lymphoma: radiation dose to the testes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattori, Naoya; Gopal, Ajay K.; Shields, Andrew T.

    Purpose: To investigate radiation doses to the testes delivered by a radiolabeled anti-CD20 antibody and its effects on male sex hormone levels. Materials and methods: Testicular uptake and retention of 131I-tositumomab were measured, and testicular absorbed doses were calculated for 67 male patients (54+/-11 years of age) with non-Hodgkin's lymphoma who had undergone myeloablative radioimmunotherapy (RIT) using 131I-tositumomab. Time-activity curves for the major organs, testes, and whole body were generated from planar imaging studies. In a subset of patients, male sex hormones were measured before and 1 year after the therapy. Results: The absorbed dose to the testes showed considerablemore » variability (range=4.4-70.2 Gy). Pretherapy levels of total testosterone were below the lower limit of the reference range, and post-therapy evaluation demonstrated further reduction [4.6+/-1.8 nmol/l (pre-RIT) vs. 3.8+/-2.9 nmol/l (post-RIT), P<0.05]. Patients receiving higher radiation doses to the testes (>=25 Gy) showed a greater reduction [4.7+/-1.6 nmol/l (pre-RIT) vs. 3.3+/-2.7 nmol/l (post-RIT), P<0.05] compared with patients receiving lower doses (<25 Gy), who showed no significant change in total testosterone levels. Conclusion: The testicular radiation absorbed dose varied highly among individual patients. Finally, patients receiving higher doses to the testes were more likely to show post-RIT suppression of testosterone levels.« less

  14. Proton induced target fragmentation studies on solid state nuclear track detectors using Carbon radiators

    NASA Astrophysics Data System (ADS)

    Szabó, J.; Pálfalvi, J. K.; Strádi, A.; Bilski, P.; Swakoń, J.; Stolarczyk, L.

    2018-04-01

    One of the limiting factors of an astronaut's career is the dose received from space radiation. High energy protons, being the main components of the complex radiation field present on a spacecraft, give a significant contribution to the dose. To investigate the behavior of solid state nuclear track detectors (SSNTDs) if they are irradiated by such particles, SSNTD stacks containing carbon blocks were exposed to high energy proton beams (70, 100, 150 and 230 MeV) at the Proteus cyclotron, IFJ PAN -Krakow. The incident protons cannot be detected directly; however, tracks of secondary particles, recoils and fragments of the constituent atoms of the detector material and of the carbon radiator are formed. It was found that as the proton energy increases, the number of tracks induced in the PADC material by secondary particles decreases. From the measured geometrical parameters of the tracks the linear energy transfer (LET) spectrum and the dosimetric quantities were determined, applying appropriate calibration. In the LET spectra the LET range of the most important secondary particles could be identified and their abundance showed differences in the spectra if the detectors were short or long etched. The LET spectra obtained on the SSNTDs irradiated by protons were compared to LET spectra of detectors flown on the International Space Station (ISS): they were quite similar, resulting in a quality factor difference of only 5%. Thermoluminescent detectors (TLDs) were applied in each case to measure the dose from primary protons and other lower LET particles present in space. Comparing and analyzing the results of the TLD and SSNTD measurements, it was obtained that proton induced target fragments contributed to the total absorbed dose in 3.2% and to the dose equivalent in 14.2% in this particular space experiment.

  15. SU-G-201-08: Energy Response of Thermoluminescent Microcube Dosimeters in Water for Kilovoltage X-Ray Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Maso, L; Lawless, M; Culberson, W

    Purpose: To characterize the energy dependence for TLD-100 microcubes in water at kilovoltage energies. Methods: TLD-100 microcubes with dimensions of (1 × 1 × 1) mm{sup 3} were irradiated with kilovoltage x-rays in a custom-built thin-window liquid water phantom. The TLD-100 microcubes were held in Virtual Water™ probes and aligned at a 2 cm depth in water. Irradiations were performed using the M-series x-ray beams of energies ranging from 50-250 kVp and normalized to a {sup 60}Co beam located at the UWADCL. Simulations using the EGSnrc Monte Carlo Code System were performed to model the x-ray beams, the {sup 60}Comore » beam, the water phantom and the dosimeters in the phantom. The egs-chamber user code was used to tally the dose to the TLDs and the dose to water. The measurements and calculations were used to determine the intrinsic energy dependence, absorbed-dose energy dependence, and absorbed-dose sensitivity. These values were compared to TLD-100 chips with dimensions of (3.2 × 0.9 × 0.9) mm{sup 3}. Results: The measured TLD-100 microcube response per dose to water among all investigated x-ray energies had a maximum percent difference of 61% relative to {sup 60}Co. The simulated ratio of dose to water to the dose to TLD had a maximum percent difference of 29% relative to {sup 60}Co. The ratio of dose to TLD to the TLD output had a maximum percent difference of 13% relative to {sup 60}Co. The maximum percent difference for the absorbed-dose sensitivity was 15% more than the used value of 1.41. Conclusion: These results confirm that differences in beam quality have a significant effect on TLD response when irradiated in water. These results also indicated a difference in TLD-100 response between microcube and chip geometries. The intrinsic energy dependence and the absorbed-dose energy dependence deviated up to 10% between TLD-100 microcubes and chips.« less

  16. Influence of Exposure and Toxicokinetics on Measures of Aquatic Toxicity for Organic Contaminants: A Case Study Review

    PubMed Central

    Landrum, Peter F; Chapman, Peter M; Neff, Jerry; Page, David S

    2013-01-01

    This theoretical and case study review of dynamic exposures of aquatic organisms to organic contaminants examines variables important for interpreting exposure and therefore toxicity. The timing and magnitude of the absorbed dose change when the dynamics of exposure change. Thus, the dose metric for interpreting toxic responses observed during such exposure conditions is generally limited to the specific experiment and cannot be extrapolated to either other experiments with different exposure dynamics or to field exposures where exposure dynamics usually are different. This is particularly true for mixture exposures, for which the concentration and composition and, therefore, the timing and magnitude of exposure to individual components of different potency and potentially different mechanisms of action can vary. Aquatic toxicology needs studies that develop temporal thresholds for absorbed toxicant doses to allow for better extrapolation between conditions of dynamic exposure. Improved experimental designs are required that include high-quality temporal measures of both the exposure and the absorbed dose to allow better interpretation of data. For the short term, initial water concentration can be considered a conservative measure of exposure, although the extent to which this is true cannot be estimated specifically unless the dynamics of exposure as well as the toxicokinetics of the chemicals in the exposure scenario for the organism of interest are known. A better, but still limited, metric for interpreting the exposure and, therefore, toxicity is the peak absorbed dose, although this neglects toxicodynamics, requires appropriate temporal measures of accumulated dose to determine the peak concentration, and requires temporal thresholds for critical body residue for each component of the mixture. Integr Environ Assess Manag 2013; 9: 196–210. © 2012 SETAC PMID:23229376

  17. Assessment of exposure to pesticides during mixing/loading and spraying of tomatoes in the open field.

    PubMed

    Aprea, Maria Cristina; Bosi, Anna; Manara, Michele; Mazzocchi, Barbara; Pompini, Alessandra; Sormani, Francesca; Lunghini, Liana; Sciarra, Gianfranco

    2016-01-01

    Some evidence of exposure-response of metolachlor and pendimethalin for lung cancer and an association of metribuzin with risk of glioma have been reported. The primary objectives in this study were to evaluate exposure and occupational risk during mixing/loading of pesticides and during their application to tomatoes cultivated in open fields. Sixteen farmers were sampled. Respiratory exposure was estimated by personal air sampling using fiberglass filters in a IOM device. Dermal exposure was assessed using skin pads and hand washing. Absorbed doses were estimated assuming 100% lung retention, and 50% or 10% skin absorption for metribuzin, and pendimethalin and metolachlor, respectively. The three pesticides were quantified by gas chromatography tandem mass spectrometry in all matrices. Metolachlor was used as a tracer of contamination of clothes and tractors unrelated to the exposure monitored. Respiratory exposure to metribuzin, used in granular form, was on average more than one order of magnitude higher than exposure to pendimethalin, used in the form of microencapsulated liquid. The actual doses were 0.067-8.08 µg/kg bw, 0.420-12.6 µg/kg bw, and 0.003-0.877 µg/kg bw for pendimethalin, metribuzin, and metolachlor, respectively. Dermal exposure was about 88% of the actual dose for metribuzin and more than 95%, for pendimethalin and metolachlor. For risk assessment, the total absorbed doses (sum of respiratory and skin absorbed doses) were compared with the AOEL for each compound. The actual and absorbed doses of the three pesticides were always lower than the acceptable operator exposure level (AOEL), which are reported to be 234 µg/kg bw, 20 µg/kg bw, and 150 µg/kg bw for pendimethalin, metribuzin, and metolachlor, respectively. In any case, personal protective equipment and spraying devices should be chosen with care to minimize exposure.

  18. Calculated organ doses using Monte Carlo simulations in a reference male phantom undergoing HDR brachytherapy applied to localized prostate carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candela-Juan, Cristian; Perez-Calatayud, Jose; Ballester, Facundo

    Purpose: The aim of this study was to obtain equivalent doses in radiosensitive organs (aside from the bladder and rectum) when applying high-dose-rate (HDR) brachytherapy to a localized prostate carcinoma using {sup 60}Co or {sup 192}Ir sources. These data are compared with results in a water phantom and with expected values in an infinite water medium. A comparison with reported values from proton therapy and intensity-modulated radiation therapy (IMRT) is also provided. Methods: Monte Carlo simulations in Geant4 were performed using a voxelized phantom described in International Commission on Radiological Protection (ICRP) Publication 110, which reproduces masses and shapes frommore » an adult reference man defined in ICRP Publication 89. Point sources of {sup 60}Co or {sup 192}Ir with photon energy spectra corresponding to those exiting their capsules were placed in the center of the prostate, and equivalent doses per clinical absorbed dose in this target organ were obtained in several radiosensitive organs. Values were corrected to account for clinical circumstances with the source located at various positions with differing dwell times throughout the prostate. This was repeated for a homogeneous water phantom. Results: For the nearest organs considered (bladder, rectum, testes, small intestine, and colon), equivalent doses given by {sup 60}Co source were smaller (8%-19%) than from {sup 192}Ir. However, as the distance increases, the more penetrating gamma rays produced by {sup 60}Co deliver higher organ equivalent doses. The overall result is that effective dose per clinical absorbed dose from a {sup 60}Co source (11.1 mSv/Gy) is lower than from a {sup 192}Ir source (13.2 mSv/Gy). On the other hand, equivalent doses were the same in the tissue and the homogeneous water phantom for those soft tissues closer to the prostate than about 30 cm. As the distance increased, the differences of photoelectric effect in water and soft tissue, and appearance of other materials such as air, bone, or lungs, produced variations between both phantoms which were at most 35% in the considered organ equivalent doses. Finally, effective doses per clinical absorbed dose from IMRT and proton therapy were comparable to those from both brachytherapy sources, with brachytherapy being advantageous over external beam radiation therapy for the furthest organs. Conclusions: A database of organ equivalent doses when applying HDR brachytherapy to the prostate with either {sup 60}Co or {sup 192}Ir is provided. According to physical considerations, {sup 192}Ir is dosimetrically advantageous over {sup 60}Co sources at large distances, but not in the closest organs. Damage to distant healthy organs per clinical absorbed dose is lower with brachytherapy than with IMRT or protons, although the overall effective dose per Gy given to the prostate seems very similar. Given that there are several possible fractionation schemes, which result in different total amounts of therapeutic absorbed dose, advantage of a radiation treatment (according to equivalent dose to healthy organs) is treatment and facility dependent.« less

  19. Whole-remnant and maximum-voxel SPECT/CT dosimetry in {sup 131}I-NaI treatments of differentiated thyroid cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mínguez, Pablo, E-mail: pablo.minguezgabina@osakid

    Purpose: To investigate the possible differences between SPECT/CT based whole-remnant and maximum-voxel dosimetry in patients receiving radio-iodine ablation treatment of differentiated thyroid cancer (DTC). Methods: Eighteen DTC patients were administered 1.11 GBq of {sup 131}I-NaI after near-total thyroidectomy and rhTSH stimulation. Two patients had two remnants, so in total dosimetry was performed for 20 sites. Three SPECT/CT scans were performed for each patient at 1, 2, and 3–7 days after administration. The activity, the remnant mass, and the maximum-voxel activity were determined from these images and from a recovery-coefficient curve derived from experimental phantom measurements. The cumulated activity was estimatedmore » using trapezoidal-exponential integration. Finally, the absorbed dose was calculated using S-values for unit-density spheres in whole-remnant dosimetry and S-values for voxels in maximum-voxel dosimetry. Results: The mean absorbed dose obtained from whole-remnant dosimetry was 40 Gy (range 2–176 Gy) and from maximum-voxel dosimetry 34 Gy (range 2–145 Gy). For any given patient, the activity concentrations for each of the three time-points were approximately the same for the two methods. The effective half-lives varied (R = 0.865), mainly due to discrepancies in estimation of the longer effective half-lives. On average, absorbed doses obtained from whole-remnant dosimetry were 1.2 ± 0.2 (1 SD) higher than for maximum-voxel dosimetry, mainly due to differences in the S-values. The method-related differences were however small in comparison to the wide range of absorbed doses obtained in patients. Conclusions: Simple and consistent procedures for SPECT/CT based whole-volume and maximum-voxel dosimetry have been described, both based on experimentally determined recovery coefficients. Generally the results from the two approaches are consistent, although there is a small, systematic difference in the absorbed dose due to differences in the S-values, and some variability due to differences in the estimated effective half-lives, especially when the effective half-life is long. Irrespective of the method used, the patient absorbed doses obtained span over two orders of magnitude.« less

  20. The NUKDOS software for treatment planning in molecular radiotherapy.

    PubMed

    Kletting, Peter; Schimmel, Sebastian; Hänscheid, Heribert; Luster, Markus; Fernández, Maria; Nosske, Dietmar; Lassmann, Michael; Glatting, Gerhard

    2015-09-01

    The aim of this work was the development of a software tool for treatment planning prior to molecular radiotherapy, which comprises all functionality to objectively determine the activity to administer and the pertaining absorbed doses (including the corresponding error) based on a series of gamma camera images and one SPECT/CT or probe data. NUKDOS was developed in MATLAB. The workflow is based on the MIRD formalism For determination of the tissue or organ pharmacokinetics, gamma camera images as well as probe, urine, serum and blood activity data can be processed. To estimate the time-integrated activity coefficients (TIAC), sums of exponentials are fitted to the time activity data and integrated analytically. To obtain the TIAC on the voxel level, the voxel activity distribution from the quantitative 3D SPECT/CT (or PET/CT) is used for scaling and weighting the TIAC derived from the 2D organ data. The voxel S-values are automatically calculated based on the voxel-size of the image and the therapeutic nuclide ((90)Y, (131)I or (177)Lu). The absorbed dose coefficients are computed by convolution of the voxel TIAC and the voxel S-values. The activity to administer and the pertaining absorbed doses are determined by entering the absorbed dose for the organ at risk. The overall error of the calculated absorbed doses is determined by Gaussian error propagation. NUKDOS was tested for the operation systems Windows(®) 7 (64 Bit) and 8 (64 Bit). The results of each working step were compared to commercially available (SAAMII, OLINDA/EXM) and in-house (UlmDOS) software. The application of the software is demonstrated using examples form peptide receptor radionuclide therapy (PRRT) and from radioiodine therapy of benign thyroid diseases. For the example from PRRT, the calculated activity to administer differed by 4% comparing NUKDOS and the final result using UlmDos, SAAMII and OLINDA/EXM sequentially. The absorbed dose for the spleen and tumour differed by 7% and 8%, respectively. The results from the example from radioiodine therapy of benign thyroid diseases and the example given in the latest corresponding SOP were identical. The implemented, objective methods facilitate accurate and reproducible results. The software is freely available. Copyright © 2015. Published by Elsevier GmbH.

Top