Sample records for absorbed dose range

  1. (⁹⁹m)Tc-MAA overestimates the absorbed dose to the lungs in radioembolization: a quantitative evaluation in patients treated with ¹⁶⁶Ho-microspheres.

    PubMed

    Elschot, Mattijs; Nijsen, Johannes F W; Lam, Marnix G E H; Smits, Maarten L J; Prince, Jip F; Viergever, Max A; van den Bosch, Maurice A A J; Zonnenberg, Bernard A; de Jong, Hugo W A M

    2014-10-01

    Radiation pneumonitis is a rare but serious complication of radioembolic therapy of liver tumours. Estimation of the mean absorbed dose to the lungs based on pretreatment diagnostic (99m)Tc-macroaggregated albumin ((99m)Tc-MAA) imaging should prevent this, with administered activities adjusted accordingly. The accuracy of (99m)Tc-MAA-based lung absorbed dose estimates was evaluated and compared to absorbed dose estimates based on pretreatment diagnostic (166)Ho-microsphere imaging and to the actual lung absorbed doses after (166)Ho radioembolization. This prospective clinical study included 14 patients with chemorefractory, unresectable liver metastases treated with (166)Ho radioembolization. (99m)Tc-MAA-based and (166)Ho-microsphere-based estimation of lung absorbed doses was performed on pretreatment diagnostic planar scintigraphic and SPECT/CT images. The clinical analysis was preceded by an anthropomorphic torso phantom study with simulated lung shunt fractions of 0 to 30 % to determine the accuracy of the image-based lung absorbed dose estimates after (166)Ho radioembolization. In the phantom study, (166)Ho SPECT/CT-based lung absorbed dose estimates were more accurate (absolute error range 0.1 to -4.4 Gy) than (166)Ho planar scintigraphy-based lung absorbed dose estimates (absolute error range 9.5 to 12.1 Gy). Clinically, the actual median lung absorbed dose was 0.02 Gy (range 0.0 to 0.7 Gy) based on posttreatment (166)Ho-microsphere SPECT/CT imaging. Lung absorbed doses estimated on the basis of pretreatment diagnostic (166)Ho-microsphere SPECT/CT imaging (median 0.02 Gy, range 0.0 to 0.4 Gy) were significantly better predictors of the actual lung absorbed doses than doses estimated on the basis of (166)Ho-microsphere planar scintigraphy (median 10.4 Gy, range 4.0 to 17.3 Gy; p < 0.001), (99m)Tc-MAA SPECT/CT imaging (median 2.5 Gy, range 1.2 to 12.3 Gy; p < 0.001), and (99m)Tc-MAA planar scintigraphy (median 5.5 Gy, range 2.3 to 18.2 Gy; p < 0.001). In clinical practice, lung absorbed doses are significantly overestimated by pretreatment diagnostic (99m)Tc-MAA imaging. Pretreatment diagnostic (166)Ho-microsphere SPECT/CT imaging accurately predicts lung absorbed doses after (166)Ho radioembolization.

  2. Simplified method for creating a density-absorbed dose calibration curve for the low dose range from Gafchromic EBT3 film.

    PubMed

    Gotanda, Tatsuhiro; Katsuda, Toshizo; Gotanda, Rumi; Kuwano, Tadao; Akagawa, Takuya; Tanki, Nobuyoshi; Tabuchi, Akihiko; Shimono, Tetsunori; Kawaji, Yasuyuki

    2016-01-01

    Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were -32.336 and -33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range.

  3. Simplified method for creating a density-absorbed dose calibration curve for the low dose range from Gafchromic EBT3 film

    PubMed Central

    Gotanda, Tatsuhiro; Katsuda, Toshizo; Gotanda, Rumi; Kuwano, Tadao; Akagawa, Takuya; Tanki, Nobuyoshi; Tabuchi, Akihiko; Shimono, Tetsunori; Kawaji, Yasuyuki

    2016-01-01

    Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were −32.336 and −33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range. PMID:28144120

  4. A radiobiological model of metastatic burden reduction for molecular radiotherapy: application to patients with bone metastases

    NASA Astrophysics Data System (ADS)

    Denis-Bacelar, Ana M.; Chittenden, Sarah J.; Murray, Iain; Divoli, Antigoni; McCready, V. Ralph; Dearnaley, David P.; O'Sullivan, Joe M.; Johnson, Bernadette; Flux, Glenn D.

    2017-04-01

    Skeletal tumour burden is a biomarker of prognosis and survival in cancer patients. This study proposes a novel method based on the linear quadratic model to predict the reduction in metastatic tumour burden as a function of the absorbed doses delivered from molecular radiotherapy treatments. The range of absorbed doses necessary to eradicate all the bone lesions and to reduce the metastatic burden was investigated in a cohort of 22 patients with bone metastases from castration-resistant prostate cancer. A metastatic burden reduction curve was generated for each patient, which predicts the reduction in metastatic burden as a function of the patient mean absorbed dose, defined as the mean of all the lesion absorbed doses in any given patient. In the patient cohort studied, the median of the patient mean absorbed dose predicted to reduce the metastatic burden by 50% was 89 Gy (interquartile range: 83-105 Gy), whilst a median of 183 Gy (interquartile range: 107-247 Gy) was found necessary to eradicate all metastases in a given patient. The absorbed dose required to eradicate all the lesions was strongly correlated with the variability of the absorbed doses delivered to multiple lesions in a given patient (r  =  0.98, P  <  0.0001). The metastatic burden reduction curves showed a potential large reduction in metastatic burden for a small increase in absorbed dose in 91% of patients. The results indicate the range of absorbed doses required to potentially obtain a significant survival benefit. The metastatic burden reduction method provides a simple tool that could be used in routine clinical practice for patient selection and to indicate the required administered activity to achieve a predicted patient mean absorbed dose and reduction in metastatic tumour burden.

  5. Dosimetry in differentiated thyroid carcinoma (12-1402R)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minguez, Pablo; Genolla, Jose; Celeiro, Jose Javier

    2013-01-15

    Purpose: The aim of this study has been to perform a dosimetric study in the treatments of differentiated thyroid cancer (DTC) performed in our center in order to find a dose-effect correlation. Methods: Thirty patients treated for DTC with 3700 MBq of {sup 131}I have been included in this study. For reasons of radiological protection all of them spent two nights as inpatients. Dose rate at 1 m from all patients was measured approximately 20 and 44 h after the administration of the radioiodine and a whole body scan in the gamma camera was performed approximately 1 week later. Withmore » those measurements and by using a model of two compartments the activities in thyroid bed remnants and in the whole body were calculated as a function of time. The integration of both activities yields the corresponding cumulated activities. Absorbed doses to thyroid bed remnants and to the whole body can be calculated following the MIRDOSE method-that is, by multiplying the corresponding cumulated activities by the corresponding S factors. Results: The absorbed doses to thyroid bed remnants calculated in this study fall into a very wide range (13-1161 Gy) and showed the highest correlation factors with the following parameters: the absorbed dose rate to thyroid bed remnants, the cumulated activity in thyroid bed remnants, and the maximum radioiodine uptake in thyroid bed remnants. The absorbed doses to the whole body range from 0.12 to 0.23 Gy. The ablation was successful in all patients, and in spite of the wide range of absorbed doses to thyroid bed remnants obtained, no dose-effect correlation could be obtained. Conclusions: Facing DTC treatments from a dosimetric viewpoint in which a predosimetry to calculate the activity of {sup 131}I to be administered is performed is a subject difficult to handle. This statement is based on the fact that although a very wide range of absorbed doses to thyroid bed remnants was obtained (including several absorbed doses well below some dose thresholds previously published to achieve ablation of thyroid bed remnants), ablation of thyroid bed remnants was successful for all patients and therefore no dose-effect correlation could be determined.« less

  6. Food irradiation dosimetry by opti-chromic technique

    NASA Astrophysics Data System (ADS)

    Zhan-Jun, Liu; Radak, B. B.; McLaughlin, W. L.

    The measurement of gamma-radiation quantities, e.g., absorbed dose in materials such as water, plastics, foodstuffs, is a convenient means of quality assurance in radiation processing. A new dosimetry system, called the "Opti-Chromic" dosimeter, is commercially available in large batches for use as a routine measurement system in the absorbed dose range 10 to 2x10 4 Gy. This dose range covers most food irradiation applications. A statistical evaluation was made of the reproducibility of this dosimeter for measuring doses appropriate for the disinfestation and shelf-life extension of many foods, namely 10 to 2x10 3 Gy. In addition, the small dosimeters were used to map absorbed dose distributions in boxes of foods having four different bulk densities (grapefruit, lemons, peanuts, and wheat bran). It is demonstrated that the dosimeters are rugged and stable enough to be used over a wide temperature and humidity range, and, in fact, can be placed in such environments as the inside of citrus fruits without adverse effects on their ability to give satisfactory dose assessment.

  7. Evaluation of a lithium formate EPR dosimetry system for dose measurements around {sup 192}Ir brachytherapy sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonovic, Laura; Gustafsson, Haakan; Alm Carlsson, Gudrun

    2009-06-15

    A dosimetry system using lithium formate monohydrate (HCO{sub 2}Li{center_dot}H{sub 2}O) as detector material and electron paramagnetic resonance (EPR) spectroscopy for readout has been used to measure absorbed dose distributions around clinical {sup 192}Ir sources. Cylindrical tablets with diameter of 4.5 mm, height of 4.8 mm, and density of 1.26 g/cm{sup 3} were manufactured. Homogeneity test and calibration of the dosimeters were performed in a 6 MV photon beam. {sup 192}Ir irradiations were performed in a PMMA phantom using two different source models, the GammaMed Plus HDR and the microSelectron PDR-v1 model. Measured absorbed doses to water in the PMMA phantommore » were converted to the corresponding absorbed doses to water in water phantoms of dimensions used by the treatment planning systems (TPSs) using correction factors explicitly derived for this experiment. Experimentally determined absorbed doses agreed with the absorbed doses to water calculated by the TPS to within {+-}2.9%. Relative standard uncertainties in the experimentally determined absorbed doses were estimated to be within the range of 1.7%-1.3% depending on the radial distance from the source, the type of source (HDR or PDR), and the particular absorbed doses used. This work shows that a lithium formate dosimetry system is well suited for measurements of absorbed dose to water around clinical HDR and PDR {sup 192}Ir sources. Being less energy dependent than the commonly used thermoluminescent lithium fluoride (LiF) dosimeters, lithium formate monohydrate dosimeters are well suited to measure absorbed doses in situations where the energy dependence cannot easily be accounted for such as in multiple-source irradiations to verify treatment plans. Their wide dynamic range and linear dose response over the dose interval of 0.2-1000 Gy make them suitable for measurements on sources of the strengths used in clinical applications. The dosimeter size needs, however, to be reduced for application to single-source dosimetry.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, P.H.; Krishnamurthy, G.T.; Bobba, V.R.

    The radiation absorbed doses from five commercially available hepatobiliary agents-Tc-99m-tagged analogs of IDA (EIDA, PIPIDA, HIDA, PBIDA, DISIDA*) have been calculated from biokinetic data in 41 normal subjects. Serial gamma images, with blood and urine samples, were obtained to calculate cumulated radioactivity in the source organs: blood, kidey, bladder, liver, gallbladder, and intestines. The critical organ was the gallbladder, with an absorbed-dose range of 690 to 780 mrad/mCi. Absorbed doses for other target organs were: upper large intestine 320 to 370 mrad/mCi, lower large intestine 210 to 240, small intestine 170 to 200, liver 65 (DISIDA) to 130 (PBIDA), ovariesmore » 63 to 72, and urinary bladder wall 23 (PBIDA) to 36 (EIDA). The radiation absorbed dose was largely independent of changes in chemical structure except in (a) the liver, where absorbed dose varied by a factor of two in proportion to the rate of excretion of the IDA agent from the liver, and (b) the urinary bladder, where absorbed dose varied by a factor of 1.6 because of differences in rate of excretion. When the stimulus for gallbladder emptying is changed from whole-meal ingestion to cholecystokinin injection, the absorbed dose to the gallbladder increases to approx. 1 rad/mCi; if no gallbladder emptying is assumed, its absorbed dose increases to approx. 1.9 rad/mCi. In the absence of contraindication, the gallbladder absorbed dose may thus be decreased by inducing gallbladder emptying at the end of the imaging study.« less

  9. Characterization of Thymol blue Radiochromic dosimeters for high dose applications

    NASA Astrophysics Data System (ADS)

    Aldweri, Feras M.; Abuzayed, Manar H.; Al-Ajaleen, Musab S.; Rabaeh, Khalid A.

    2018-03-01

    Thymol blue (TB) solutions and Thymol blue Polyvinyl Alcohol (TB-PVA) films have been introduced as Radiochromic dosimeter for high dose applications. The dosimeters were irradiated with gamma ray (60Co source) from 5 to 30 kGy for film, and from 0.150 kGy to 4 kGy for solution. The optical density of unirradiated and irradiated TB solution as well as TB-PVA film dosimeters were studied in terms of absorbance at 434 nm using UV/VIS spectrophotometer. The effects of scan temperature, light pre-gamma irradiation, dose rate, relative humidity and stability of the absorbance of solutions and films after irradiation were investigated. We found the dose sensitivity of TB solution and TB-PVA film dosimeters increases significantly with increases of the absorbed dose as well as with the increases of TB dye concentrations. The useful dose range of developed TB solutions and TB-PVA films dosimeters is in the range 0.125-1 kGy and of 5-20 kGy, respectively.

  10. A bone marrow toxicity model for 223Ra alpha-emitter radiopharmaceutical therapy

    NASA Astrophysics Data System (ADS)

    Hobbs, Robert F.; Song, Hong; Watchman, Christopher J.; Bolch, Wesley E.; Aksnes, Anne-Kirsti; Ramdahl, Thomas; Flux, Glenn D.; Sgouros, George

    2012-05-01

    Ra-223, an α-particle emitting bone-seeking radionuclide, has recently been used in clinical trials for osseous metastases of prostate cancer. We investigated the relationship between absorbed fraction-based red marrow dosimetry and cell level-dosimetry using a model that accounts for the expected localization of this agent relative to marrow cavity architecture. We show that cell level-based dosimetry is essential to understanding potential marrow toxicity. The GEANT4 software package was used to create simple spheres representing marrow cavities. Ra-223 was positioned on the trabecular bone surface or in the endosteal layer and simulated for decay, along with the descendants. The interior of the sphere was divided into cell-size voxels and the energy was collected in each voxel and interpreted as dose cell histograms. The average absorbed dose values and absorbed fractions were also calculated in order to compare those results with previously published values. The absorbed dose was predominantly deposited near the trabecular surface. The dose cell histogram results were used to plot the percentage of cells that received a potentially toxic absorbed dose (2 or 4 Gy) as a function of the average absorbed dose over the marrow cavity. The results show (1) a heterogeneous distribution of cellular absorbed dose, strongly dependent on the position of the cell within the marrow cavity; and (2) that increasing the average marrow cavity absorbed dose, or equivalently, increasing the administered activity resulted in only a small increase in potential marrow toxicity (i.e. the number of cells receiving more than 4 or 2 Gy), for a range of average marrow cavity absorbed doses from 1 to 20 Gy. The results from the trabecular model differ markedly from a standard absorbed fraction method while presenting comparable average dose values. These suggest that increasing the amount of radioactivity may not substantially increase the risk of toxicity, a result unavailable to the absorbed fraction method of dose calculation.

  11. Development of a Spect-Based Three-Dimensional Treatment Planner for Radionuclide Therapy with Iodine -131.

    NASA Astrophysics Data System (ADS)

    Giap, Huan Bosco

    Accurate calculation of absorbed dose to target tumors and normal tissues in the body is an important requirement for establishing fundamental dose-response relationships for radioimmunotherapy. Two major obstacles have been the difficulty in obtaining an accurate patient-specific 3-D activity map in-vivo and calculating the resulting absorbed dose. This study investigated a methodology for 3-D internal dosimetry, which integrates the 3-D biodistribution of the radionuclide acquired from SPECT with a dose-point kernel convolution technique to provide the 3-D distribution of absorbed dose. Accurate SPECT images were reconstructed with appropriate methods for noise filtering, attenuation correction, and Compton scatter correction. The SPECT images were converted into activity maps using a calibration phantom. The activity map was convolved with an ^{131}I dose-point kernel using a 3-D fast Fourier transform to yield a 3-D distribution of absorbed dose. The 3-D absorbed dose map was then processed to provide the absorbed dose distribution in regions of interest. This methodology can provide heterogeneous distributions of absorbed dose in volumes of any size and shape with nonuniform distributions of activity. Comparison of the activities quantitated by our SPECT methodology to true activities in an Alderson abdominal phantom (with spleen, liver, and spherical tumor) yielded errors of -16.3% to 4.4%. Volume quantitation errors ranged from -4.0 to 5.9% for volumes greater than 88 ml. The percentage differences of the average absorbed dose rates calculated by this methodology and the MIRD S-values were 9.1% for liver, 13.7% for spleen, and 0.9% for the tumor. Good agreement (percent differences were less than 8%) was found between the absorbed dose due to penetrating radiation calculated from this methodology and TLD measurement. More accurate estimates of the 3 -D distribution of absorbed dose can be used as a guide in specifying the minimum activity to be administered to patients to deliver a prescribed absorbed dose to tumor without exceeding the toxicity limits of normal tissues.

  12. Gamma ray induced decomposition of double nitrates of lanthanum and cerium with some mono and bivalent cations in solid state

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. P.; Garg, A. N.

    Gamma ray induced decomposition of two series of double nitrates; 2M INO 3⋯Ln(NO 3) 3⋯ x H 2O (where MI = NH+4, Na+, K+, Rb+, Cs+; LnIII = La3+, Ce3+ and x = 2 or 4) and 3M II(NO 3) 2·2Ln III(NO 3) 3⋯24H 2O (where MII = Mg2+, Co2+, Zn2+; LnIII = La3+, Ce3+) has been studied in solid state over a wide absorbed dose range at room temperature. G(NO -2) values have been found to depend on the absorbed dose and the nature of cation in both the series of double salts. Radiation sensitivity of lanthanum double nitrates with monovalent cations at an absorbed dose of 158 kGy follows the order NH +4 < Rb + ≅ Cs + < Na + < K + and those of cerium NH +4 < Rb +

  13. Angular distributions of absorbed dose of Bremsstrahlung and secondary electrons induced by 18-, 28- and 38-MeV electron beams in thick targets.

    PubMed

    Takada, Masashi; Kosako, Kazuaki; Oishi, Koji; Nakamura, Takashi; Sato, Kouichi; Kamiyama, Takashi; Kiyanagi, Yoshiaki

    2013-03-01

    Angular distributions of absorbed dose of Bremsstrahlung photons and secondary electrons at a wide range of emission angles from 0 to 135°, were experimentally obtained using an ion chamber with a 0.6 cm(3) air volume covered with or without a build-up cap. The Bremsstrahlung photons and electrons were produced by 18-, 28- and 38-MeV electron beams bombarding tungsten, copper, aluminium and carbon targets. The absorbed doses were also calculated from simulated photon and electron energy spectra by multiplying simulated response functions of the ion chambers, simulated with the MCNPX code. Calculated-to-experimental (C/E) dose ratios obtained are from 0.70 to 1.57 for high-Z targets of W and Cu, from 15 to 135° and the C/E range from 0.6 to 1.4 at 0°; however, the values of C/E for low-Z targets of Al and C are from 0.5 to 1.8 from 0 to 135°. Angular distributions at the forward angles decrease with increasing angles; on the other hand, the angular distributions at the backward angles depend on the target species. The dependences of absorbed doses on electron energy and target thickness were compared between the measured and simulated results. The attenuation profiles of absorbed doses of Bremsstrahlung beams at 0, 30 and 135° were also measured.

  14. Fluence-to-Absorbed Dose Conversion Coefficients for Use in Radiological Protection of Embryo and Foetus Against External Exposure to Muons from 20MeV to 50GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Jing

    2008-08-07

    This study used the Monte-Carlo code MCNPX to determine mean absorbed doses to the embryo and foetus when the mother is exposed to external muon fields. Monoenergetic muons ranging from 20 MeV to 50 GeV were considered. The irradiation geometries include anteroposterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT), isotropic (ISO), and top-down (TOP). At each of these irradiation geometries, absorbed doses to the foetal body were calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months, respectively. Muon fluence-to-absorbed-dose conversion coefficients were derived for the four prenatal ages. Since such conversion coefficients aremore » yet unknown, the results presented here fill a data gap.« less

  15. Visible photoluminescence of color centers in LiF crystals for absorbed dose evaluation in clinical dosimetry

    NASA Astrophysics Data System (ADS)

    Villarreal-Barajas, J. E.; Piccinini, M.; Vincenti, M. A.; Bonfigli, F.; Khan, R. F.; Montereali, R. M.

    2015-04-01

    Among insulating materials, lithium fluoride (LiF) has been successfully used as ionizing radiation dosemeter for more than 60 years. Thermoluminescence (TL) has been the most commonly used reading technique to evaluate the absorbed dose. Lately, optically stimulated luminescence (OSL) of visible emitting color centers (CCs) has also been explored in pure and doped LiF. This work focuses on the experimental behaviour of nominally pure LiF crystals dosemeters for 6 MV x rays at low doses based on photoluminescence (PL) of radiation induced CCs. Polished LiF crystals were irradiated using 6 MV x rays produced by a clinical linear accelerator. The doses (absorbed dose to water) covered the 1-100 Gy range. Optical absorption spectra show stable formation of primary F defects up to a maximum concentration of 2×1016 cm-3, while no significant M absorption band at around 450 nm was detected. On the other hand, under Argon laser excitation at 458 nm, PL spectra of the irradiated LiF crystals clearly exhibited the characteristic F2 and F+3 visible broad emission bands. Their sum intensity is linearly proportional to the absorbed dose in the investigated range. PL integrated intensity was also measured using a conventional fluorescence optical microscope under blue lamp illumination. The relationship between the absorbed dose and the integrated F2 and F+3 PL intensities, represented by the net average pixel number in the optical fluorescence images, is also fairly linear. Even at the low point defect densities obtained at the investigated doses, these preliminary experimental results are encouraging for further investigation of CCs PL in LiF crystals for clinical dosimetry.

  16. A feasibility study on the use of phantoms with statistical lung masses for determining the uncertainty in the dose absorbed by the lung from broad beams of incident photons and neutrons

    PubMed Central

    Khankook, Atiyeh Ebrahimi; Hakimabad, Hashem Miri

    2017-01-01

    Abstract Computational models of the human body have gradually become crucial in the evaluation of doses absorbed by organs. However, individuals may differ considerably in terms of organ size and shape. In this study, the authors sought to determine the energy-dependent standard deviations due to lung size of the dose absorbed by the lung during external photon and neutron beam exposures. One hundred lungs with different masses were prepared and located in an adult male International Commission on Radiological Protection (ICRP) reference phantom. Calculations were performed using the Monte Carlo N-particle code version 5 (MCNP5). Variation in the lung mass caused great uncertainty: ~90% for low-energy broad parallel photon beams. However, for high-energy photons, the lung-absorbed dose dependency on the anatomical variation was reduced to <1%. In addition, the results obtained indicated that the discrepancy in the lung-absorbed dose varied from 0.6% to 8% for neutron beam exposure. Consequently, the relationship between absorbed dose and organ volume was found to be significant for low-energy photon sources, whereas for higher energy photon sources the organ-absorbed dose was independent of the organ volume. In the case of neutron beam exposure, the maximum discrepancy (of 8%) occurred in the energy range between 0.1 and 5 MeV. PMID:28077627

  17. Comparison of dosimetric properties among four commercial multi-detector computed tomography scanners.

    PubMed

    Ohno, Takeshi; Araki, Fujio; Onizuka, Ryota; Hatemura, Masahiro; Shimonobou, Toshiaki; Sakamoto, Takashi; Okumura, Shuichiro; Ideguchi, Daichi; Honda, Keiichi; Kawata, Kenji

    2017-03-01

    This study compared dosimetric properties among four commercial multi-detector CT (MDCT) scanners. The X-ray beam characteristics were obtained from photon intensity attenuation curves of aluminum and off-center ratio (OCR) profiles in air, which were measured with four commercial MDCT scanners. The absorbed dose for MDCT scanners was evaluated with Farmer ionization chamber measurements at the center and four peripheral points in the body- and head-type cylindrical water phantoms. Measured collected charge was converted to absorbed dose using a 60 Co absorbed dose-to-water calibration factor and Monte Carlo (MC)-calculated correction factors. Four MDCT scanners were modeled to correspond with measured X-ray beam characteristics using GMctdospp (IMPS, Germany) software. Al half-value layers (Al-HVLs) with a body-bowtie filter determined from measured Al-attenuation curves ranged 7.2‒9.1mm at 120kVp and 6.1‒8.0mm at 100kVp. MC-calculated Al-HVLs and OCRs in air were in acceptable agreement within 0.5mm and 5% of measured values, respectively. The percentage difference between nominal and actual beam width was greater with decreasing collimation width. The absorbed doses for MDCT scanners at 120kVp ranged 5.1‒7.1mGy and 10.8‒17.5mGy per 100mAs at the center in the body- and head-type water phantoms, respectively. Measured doses at four peripheral points were within 5% agreement of MC-calculated values. The absorbed dose at the center in both water phantoms increased with decreasing Al-HVL for the same charge on the focus. In this study the X-ray beam characteristics and the absorbed dose were measured and compared with calculated values for four MDCT scanners. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Accuracy of a dose-area product compared to an absorbed dose to water at a point in a 2 cm diameter field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufreneix, S.; Ostrowsky, A.; Rapp, B.

    Purpose: Graphite calorimeters with a core diameter larger than the beam can be used to establish dosimetric references in small fields. The dose-area product (DAP) measured can theoretically be linked to an absorbed dose at a point by the determination of a profile correction. This study aims at comparing the DAP-based protocol to the usual absorbed dose at a point protocol in a 2 cm diameter field for which both references exist. Methods: Two calorimeters were used, respectively, with a sensitive volume of 0.6 cm (for the absorbed dose at a point measurement) and 3 cm diameter (for the DAPmore » measurement). Profile correction was calculated from a 2D dose mapping using three detectors: a PinPoint chamber, a synthetic diamond, and EBT3 films. A specific protocol to read EBT3 films was implemented and the dose-rate and energy dependences were studied to assure a precise measurement, especially in the penumbra and out-of-field regions. Results: EBT3 films were found independent on dose rates over the range studied but showed a strong under-response (18%) at low energies. Depending on the dosimeter used for calculating the profile correction, a deviation of 0.8% (PinPoint chamber), 0.9% (diamond), or 1.9% (EBT3 films) was observed between the calibration coefficient derived from DAP measurements and the one directly established in terms of absorbed dose to water at a point. Conclusions: The DAP method can currently be linked to the classical dosimetric reference system based in an absorbed dose at a point only with a confidence interval of 95% (k = 2). None of the detectors studied can be used to determine an absorbed dose to water at a point from a DAP measurement with an uncertainty smaller than 1.2%.« less

  19. A feasibility study on the use of phantoms with statistical lung masses for determining the uncertainty in the dose absorbed by the lung from broad beams of incident photons and neutrons.

    PubMed

    Khankook, Atiyeh Ebrahimi; Hakimabad, Hashem Miri; Motavalli, Laleh Rafat

    2017-05-01

    Computational models of the human body have gradually become crucial in the evaluation of doses absorbed by organs. However, individuals may differ considerably in terms of organ size and shape. In this study, the authors sought to determine the energy-dependent standard deviations due to lung size of the dose absorbed by the lung during external photon and neutron beam exposures. One hundred lungs with different masses were prepared and located in an adult male International Commission on Radiological Protection (ICRP) reference phantom. Calculations were performed using the Monte Carlo N-particle code version 5 (MCNP5). Variation in the lung mass caused great uncertainty: ~90% for low-energy broad parallel photon beams. However, for high-energy photons, the lung-absorbed dose dependency on the anatomical variation was reduced to <1%. In addition, the results obtained indicated that the discrepancy in the lung-absorbed dose varied from 0.6% to 8% for neutron beam exposure. Consequently, the relationship between absorbed dose and organ volume was found to be significant for low-energy photon sources, whereas for higher energy photon sources the organ-absorbed dose was independent of the organ volume. In the case of neutron beam exposure, the maximum discrepancy (of 8%) occurred in the energy range between 0.1 and 5 MeV. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  20. Iodine kinetics and dosimetry in the salivary glands during repeated courses of radioiodine therapy for thyroid cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, B.; Huang, R.; Kuang, A.

    2011-10-15

    Purpose: The present study was conducted to investigate salivary iodine kinetics and dosimetry during repeated courses of radioiodine ({sup 131}I) therapy for differentiated thyroid cancer (DTC). Such data could provide a better understanding of the mechanisms of {sup 131}I induced salivary toxicity and help to develop appropriate methods to reduce this injury. Methods: Seventy-eight consecutive DTC patients (mean age 45 {+-} 17 years, 60%, female) undergoing {sup 131}I therapy for remnant ablation or metastatic tumors were prospectively recruited. Planar quantitative scintigraphy of head-neck images was serially acquired after administration of 2.9-7.4 GBq of {sup 131}I to assess kinetics in themore » salivary glands of patients. Salivary absorbed doses were calculated based on the schema of Medical Internal Radiation Dosimetry. Results: The maximum uptakes in percentage of administered {sup 131}I activity per kilogram of gland tissue (%/kg) were 12.9% {+-} 6.5%/kg (range, 0.4%-37.3%/kg) and 12.3% {+-} 6.2%/kg (range, 0.4%-35.1%/kg) for the parotid and submandibular glands, respectively. Statistically significant correlations of maximum uptake versus cumulative activity (r = -0.74, P < 0.01, for the parotid glands; r = -0.71, P < 0.01, for the submandibular glands) and treatment cycle (P < 0.001, for both gland types) were found. The effective half-lives of {sup 131}I in the parotid and submandibular glands were 9.3 {+-} 3.5 h (range, 1.5-19.8 h) and 8.6 {+-} 3.2 h (range, 0.8-18.0 h), respectively. A statistically significant correlation was observed between effective half-life with cumulative activity (r = 0.37, P < 0.01) and treatment cycle (P = 0.03) only for the parotid glands. The calculated absorbed doses were 0.20 {+-} 0.10 mGy/MBq (range, 0.01-0.92 mGy/MBq) and 0.25 {+-} 0.09 mGy/MBq (range, 0.01-1.52 mGy/MBq) for the parotid and submandibular glands, respectively. The photon contribution to the salivary absorbed dose was minimal in relation to the beta dose contribution. Photon-absorbed dose fractions of total absorbed dose were 4.9% {+-} 1.3% (range, 1.1%-8.7%) and 3.7% {+-} 2.5% (range, 0.8%-7.9%) for the parotid and submandibular glands, respectively. Conclusions: The iodine uptake of salivary glands is continuously reduced during the courses of therapy. The phenomenon of hyper-radiosensitivity may to some extent account for the occurrence of salivary gland hypofunction at very low radiation doses with low dose rates in {sup 131}I therapy. On the other hand, failure to incorporate a nonuniform and preferential uptake by salivary gland ductal cells may result in underestimating the actual dose for the critical tissue. Other methods, including {sup 124}I voxel-based dosimetry, are warranted to further investigate the {sup 131}I-induced salivary gland toxicity.« less

  1. Development and application of a water calorimeter for the absolute dosimetry of short-range particle beams.

    PubMed

    Renaud, J; Rossomme, S; Sarfehnia, A; Vynckier, S; Palmans, H; Kacperek, A; Seuntjens, J

    2016-09-21

    In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min -1 , with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user's beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.

  2. Development and application of a water calorimeter for the absolute dosimetry of short-range particle beams

    NASA Astrophysics Data System (ADS)

    Renaud, J.; Rossomme, S.; Sarfehnia, A.; Vynckier, S.; Palmans, H.; Kacperek, A.; Seuntjens, J.

    2016-09-01

    In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min-1, with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user’s beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.

  3. The Molecular Effect of Diagnostic Absorbed Doses from 131I on Papillary Thyroid Cancer Cells In Vitro.

    PubMed

    Stasiołek, Mariusz; Adamczewski, Zbigniew; Śliwka, Przemysław W; Puła, Bartosz; Karwowski, Bolesław; Merecz-Sadowska, Anna; Dedecjus, Marek; Lewiński, Andrzej

    2017-06-15

    Diagnostic whole-body scan is a standard procedure in patients with thyroid cancer prior to the application of a therapeutic dose of 131 I. Unfortunately, administration of the radioisotope in a diagnostic dose may decrease further radioiodine uptake-the phenomenon called "thyroid stunning". We estimated radiation absorbed dose-dependent changes in genetic material, in particular in the sodium iodide symporter (NIS) gene promoter, and the NIS protein level in a K1 cell line derived from the metastasis of a human papillary thyroid carcinoma exposed to 131 I in culture. The different activities applied were calculated to result in absorbed doses of 5, 10 and 20 Gy. Radioiodine did not affect the expression of the NIS gene at the mRNA level, however, we observed significant changes in the NIS protein level in K1 cells. The decrease of the NIS protein level observed in the cells subjected to the lowest absorbed dose was paralleled by a significant increase in 8-oxo-dG concentrations ( p < 0.01) and followed by late activation of the DNA repair pathways. Our findings suggest that the impact of 131 I radiation on thyroid cells, in the range compared to doses absorbed during diagnostic procedures, is not linear and depends on various factors including the cellular components of thyroid pathology.

  4. COBALT-60 Gamma Irradiation of Shrimp.

    NASA Astrophysics Data System (ADS)

    Sullivan, Nancy L. B.

    Meta- and ortho-tyrosine were measured using high performance liquid chromatography (HPLC) in conjunction with electrochemical detection in shrimp irradiated using cobalt-60 gamma radiation in the absorbed dose range 0.8 to 6.0 kGy, in nonirradiated shrimp, and in bovine serum albumin (BSA) irradiated in dilute aqueous solution at 25.0 kGy. Ortho-tyrosine was measured in nonirradiated BSA. Para-, meta-, and ortho-tyrosine were measured using HPLC in conjunction with uv-absorption detection in dilute aqueous solutions of phenylalanine irradiated in the absorbed dose range 16.0 to 195.0 kGy. The measured yields of tyrosine isomers were approximately linear as a function of absorbed dose in shrimp, and in irradiated solutions of phenylalanine up to 37.0 kGy. The occurrence of meta- and ortho-tyrosine, which had formerly been considered unique radiolytic products, has not previously been reported in nonirradiated shrimp or BSA. The conventional hydrolyzation and analytical techniques used in the present study to measure meta- and ortho-tyrosine may provide the basis for a method to detect and determine the dose used in food irradiation.

  5. Cerium nanoparticle effect on sensitivity of Fricke gel dosimeter: Initial investigation

    NASA Astrophysics Data System (ADS)

    Ebenezer Suman Babu, S.; Peace Balasingh, S. Timothy; Benedicta Pearlin, R.; Rabi Raja Singh, I.; Ravindran, B. Paul

    2017-05-01

    Fricke gel dosimeters (FXGs) have been the preferred dosimeters because of its ease in preparation and water and tissue equivalency. Visible changes happen three dimensionally in the dosimeter as the ferrous (Fe2+) ions change into ferric (Fe3+) ions upon irradiation and the measure of this change can be correlated to the dose absorbed. Nanoparticles are promising entities that can improve the sensitivity of the gel dosimeter. Cerium Oxide nanoparticle was investigated for possible enhancement of absorbed dose in the FXG. Various concentrations of the nanoparticle based gel dosimeters were prepared and irradiated for a clinical dose range of 0-3 Gy in a telegamma unit. The optimal concentration of 0.1 mM nanoparticle incorporated in the FXG enhances the radiation sensitivity of the unmodified FXG taken as reference without modifying the background absorbance prior to irradiation. The gel recipe consisted of 5% (wt) gelatin, 50 mM Sulphuric acid, 0.05 mM Xylenol Orange, 0.5 mM Ferrous Ammonium Sulphate and 0.1 mM Cerium (IV) Oxide nanoparticle (< 25 nm particle size) and triple distilled water. The FXGs with nanoparticle showed linear dose response in the dose range tested.

  6. Evaluation and comparison of absorbed dose for electron beams by LiF and diamond dosimeters

    NASA Astrophysics Data System (ADS)

    Mosia, G. J.; Chamberlain, A. C.

    2007-09-01

    The absorbed dose response of LiF and diamond thermoluminescent dosimeters (TLDs), calibrated in 60Co γ-rays, has been determined using the MCNP4B Monte Carlo code system in mono-energetic megavoltage electron beams from 5 to 20 MeV. Evaluation of the dose responses was done against the dose responses of published works by other investigators. Dose responses of both dosimeters were compared to establish if any relation exists between them. The dosimeters were irradiated in a water phantom with the centre of their top surfaces (0.32×0.32 cm 2), placed at dmax perpendicular to the radiation beam on the central axis. For LiF TLD, dose responses ranged from 0.945±0.017 to 0.997±0.011. For the diamond TLD, the dose response ranged from 0.940±0.017 to 1.018±0.011. To correct for dose responses by both dosimeters, energy correction factors were generated from dose response results of both TLDs. For LiF TLD, these correction factors ranged from 1.003 up to 1.058 and for diamond TLD the factors ranged from 0.982 up to 1.064. The results show that diamond TLDs can be used in the place of the well-established LiF TLDs and that Monte Carlo code systems can be used in dose determinations for radiotherapy treatment planning.

  7. Radiation dosimetry in cell biology: comparison of calculated and measured absorbed dose for a range of culture vessels and clinical beam qualities.

    PubMed

    Claridge Mackonis, Elizabeth; Hammond, Lauren; Esteves, Ana I S; Suchowerska, Natalka

    2018-02-01

    Cell culture studies are frequently used to evaluate the effects of cancer treatments such as radiotherapy, hormone therapy, chemotherapy, nanoparticle enhancement, and to determine any synergies between the treatments. To achieve valid results, the absorbed dose of each therapy needs to be well known and controlled. In this study, we aim to determine the uncertainty associated with radiation exposure in different experimental conditions. We have performed an in-depth evaluation of the absorbed dose and dose distribution that would be delivered to a cell sample when cultivated in a number of the more popular designs of culture vessels. We focus on exposure to two beam types: a kilovoltage x-ray beam and a megavoltage photon beam, both of which are routinely used to treat cancer patients in the clinical environment. Our results identify large variations of up to 16% in the absorbed dose across multi-well culture plates, which if ignored in radiobiological experiments, have the potential to lead to erroneous conclusions.

  8. Patient-specific FDG dosimetry for adult males, adult females, and very low birth weight infants

    NASA Astrophysics Data System (ADS)

    Niven, Erin

    Fluorodeoxyglucose is the most commonly used radiopharmaceutical in Positron Emission Tomography, with applications in neurology, cardiology, and oncology. Despite its routine use worldwide, the radiation absorbed dose estimates from FDG have been based primarily on data obtained from two dogs studied in 1977 and 11 adults (most likely males) studied in 1982. In addition, the dose estimates calculated for FDG have been centered on the adult male, with little or no mention of variations in the dose estimates due to sex, age, height, weight, nationality, diet, or pathological condition. Through an extensive investigation into the Medical Internal Radiation Dose schema for calculating absorbed doses, I have developed a simple patient-specific equation; this equation incorporates the parameters necessary for alterations to the mathematical values of the human model to produce an estimate more representative of the individual under consideration. I have used this method to determine the range of absorbed doses to FDG from the collection of a large quantity of biological data obtained in adult males, adult females, and very low birth weight infants. Therefore, a more accurate quantification of the dose to humans from FDG has been completed. My results show that per unit administered activity, the absorbed dose from FDG is higher for infants compared to adults, and the dose for adult women is higher than for adult men. Given an injected activity of approximately 3.7 MBq kg-1, the doses for adult men, adult women, and full-term newborns would be on the order of 5.5, 7.1, and 2.8 mSv, respectively. These absorbed doses are comparable to the doses received from other nuclear medicine procedures.

  9. Alternative chitosan-based EPR dosimeter applicable for a relatively wide range of gamma radiation doses

    NASA Astrophysics Data System (ADS)

    Piroonpan, Thananchai; Katemake, Pichayada; Panritdam, Eagkapong; Pasanphan, Wanvimol

    2017-12-01

    Chitosan biopolymer is proposed as an alternative EPR dosimeter. Its ability to be EPR dosimeter was studied in comparison with the conventional alanine, sugars (i.e., glucose and sucrose), formate derivatives (i.e., lithium (Li), magnesium (Mg), and calcium (Ca) formate). Ethylene vinyl acetate (EVA) and paraffin were used as binder for the preparation of composite EPR dosimeter. Dose responses of all materials were investigated in a wide dose range of radiation doses, i.e., low-level (0-1 kGy), medium-level (1-10 kGy) and high-level (10-100 kGy). The EPR dosimeter properties were studied under different parameters, i.e., microwave power, materials contents, absorbed doses, storage conditions and post-irradiation effects. Li-formate showed a simple EPR spectrum and exhibited superior radiation response for low-dose range; whereas chitosan and sucrose exhibited linear dose response in all studied dose ranges. The EPR signals of chitosan exhibited similar stability as glucose, Li-formate and alanine at ambient temperature after irradiation as long as a year. All EPR signals of the studied materials were affected post-irradiation temperature and humidity after gamma irradiation. The EPR signal of chitosan exhibited long-term stability and it was not sensitive to high storage temperatures and humidity values after irradiation. Chitosan has a good merit as the alternative bio-based material for a stable EPR dosimeter in a wide range of radiation-absorbed doses.

  10. Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny in the human lung.

    PubMed

    Nikezic, D; Lau, B M F; Stevanovic, N; Yu, K N

    2006-01-01

    To calculate the absorbed dose in the human lung due to inhaled radon progeny, ICRP focussed on the layers containing the target cells, i.e., the basal and secretory cells. Such an approach did not consider details of the sensitive cells in the layers. The present work uses the microdosimetric approach and determines the absorbed alpha-particle energy in non-spherical nuclei of target cells (basal and secretory cells). The absorbed energy for alpha particles emitted by radon progeny in the human respiratory tract was calculated in basal- and secretory-cell nuclei, assuming conical and ellipsoidal forms for these cells. Distributions of specific energy for different combinations of alpha-particle sources, energies and targets are calculated and shown. The dose conversion coefficient for radon progeny is reduced for about 2mSv/WLM when conical and ellipsoidal cell nuclei are considered instead of the layers. While changes in the geometry of secretory-cell nuclei do not have significant effects on their absorbed dose, changes from spherical to conical basal-cell nuclei have significantly reduced their absorbed dose from approximately 4 to approximately 3mGy/WLM. This is expected because basal cells are situated close to the end of the range of 6MeV alpha particles. This also underlines the significance of better and more precise information on targets in the T-B tree. A further change in the dose conversion coefficient can be achieved if a different weighting scheme is adopted for the doses for the cells. The results demonstrate the necessity for better information on the target cells for more accurate dosimetry for radon progeny.

  11. An estimate by two methods of thyroid absorbed doses due to BRAVO fallout in several Northern Marshall Islands.

    PubMed

    Musolino, S V; Greenhouse, N A; Hull, A P

    1997-10-01

    Estimates of the thyroid absorbed doses due to fallout originating from the 1 March 1954 BRAVO thermonuclear test on Bikini Atoll have been made for several inhabited locations in the Northern Marshall Islands. Rongelap, Utirik, Rongerik and Ailinginae Atolls were also inhabited on 1 March 1954, where retrospective thyroid absorbed doses have previously been reconstructed. The current estimates are based primarily on external exposure data, which were recorded shortly after each nuclear test in the Castle Series, and secondarily on soil concentrations of 137Cs in samples collected in 1978 and 1988, along with aerial monitoring done in 1978. The external exposures and 137Cs soil concentrations were representative of the atmospheric transport and deposition patterns of the entire Castle Series tests and show that the BRAVO test was the major contributor to fallout exposure during the Castle series and other test series which were carried out in the Marshall Islands. These data have been used as surrogates for fission product radioiodines and telluriums in order to estimate the range of thyroid absorbed doses that may have occurred throughout the Marshall Islands. Dosimetry based on these two sets of estimates agreed within a factor of 4 at the locations where BRAVO was the dominant contributor to the total exposure and deposition. Both methods indicate that thyroid absorbed doses in the range of 1 Gy (100 rad) may have been incurred in some of the northern locations, whereas the doses at southern locations did not significantly exceed levels comparable to those from worldwide fallout. The results of these estimates indicate that a systematic medical survey for thyroid disease should be conducted, and that a more definitive dose reconstruction should be made for all the populated atolls and islands in the Northern Marshall Islands beyond Rongelap, Utirik, Rongerik and Ailinginae, which were significantly contaminated by BRAVO fallout.

  12. The absorbed dose to blood from blood-borne activity

    NASA Astrophysics Data System (ADS)

    Hänscheid, H.; Fernández, M.; Lassmann, M.

    2015-01-01

    The radiation absorbed dose to blood and organs from activity in the blood is relevant for nuclear medicine dosimetry and for research in biodosimetry. The present study provides coefficients for the average absorbed dose rates to the blood from blood-borne activity for radionuclides frequently used in targeted radiotherapy and in PET diagnostics. The results were deduced from published data for vessel radius-dependent dose rate coefficients and reasonable assumptions on the blood-volume distribution as a function of the vessel radius. Different parts of the circulatory system were analyzed separately. Vessel size information for heart chambers, aorta, vena cava, pulmonary artery, and capillaries was taken from published results of morphometric measurements. The remaining blood not contained in the mentioned vessels was assumed to reside in fractal-like vascular trees, the smallest branches of which are the arterioles or venules. The applied vessel size distribution is consistent with recommendations of the ICRP on the blood-volume distribution in the human. The resulting average absorbed dose rates to the blood per nuclear disintegration per milliliter (ml) of blood are (in 10-11 Gy·s-1·Bq-1·ml) Y-90: 5.58, I-131: 2.49, Lu-177: 1.72, Sm-153: 2.97, Tc-99m: 0.366, C-11: 4.56, F-18: 3.61, Ga-68: 5.94, I-124: 2.55. Photon radiation contributes 1.1-1.2·10-11 Gy·s-1·Bq-1·ml to the total dose rate for positron emitters but significantly less for the other nuclides. Blood self-absorption of the energy emitted by ß-particles in the whole blood ranges from 37% for Y-90 to 80% for Tc-99m. The correspondent values in vascular trees, which are important for the absorbed dose to organs, range from 30% for Y-90 to 82% for Tc-99m.

  13. Whole-remnant and maximum-voxel SPECT/CT dosimetry in {sup 131}I-NaI treatments of differentiated thyroid cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mínguez, Pablo, E-mail: pablo.minguezgabina@osakid

    Purpose: To investigate the possible differences between SPECT/CT based whole-remnant and maximum-voxel dosimetry in patients receiving radio-iodine ablation treatment of differentiated thyroid cancer (DTC). Methods: Eighteen DTC patients were administered 1.11 GBq of {sup 131}I-NaI after near-total thyroidectomy and rhTSH stimulation. Two patients had two remnants, so in total dosimetry was performed for 20 sites. Three SPECT/CT scans were performed for each patient at 1, 2, and 3–7 days after administration. The activity, the remnant mass, and the maximum-voxel activity were determined from these images and from a recovery-coefficient curve derived from experimental phantom measurements. The cumulated activity was estimatedmore » using trapezoidal-exponential integration. Finally, the absorbed dose was calculated using S-values for unit-density spheres in whole-remnant dosimetry and S-values for voxels in maximum-voxel dosimetry. Results: The mean absorbed dose obtained from whole-remnant dosimetry was 40 Gy (range 2–176 Gy) and from maximum-voxel dosimetry 34 Gy (range 2–145 Gy). For any given patient, the activity concentrations for each of the three time-points were approximately the same for the two methods. The effective half-lives varied (R = 0.865), mainly due to discrepancies in estimation of the longer effective half-lives. On average, absorbed doses obtained from whole-remnant dosimetry were 1.2 ± 0.2 (1 SD) higher than for maximum-voxel dosimetry, mainly due to differences in the S-values. The method-related differences were however small in comparison to the wide range of absorbed doses obtained in patients. Conclusions: Simple and consistent procedures for SPECT/CT based whole-volume and maximum-voxel dosimetry have been described, both based on experimentally determined recovery coefficients. Generally the results from the two approaches are consistent, although there is a small, systematic difference in the absorbed dose due to differences in the S-values, and some variability due to differences in the estimated effective half-lives, especially when the effective half-life is long. Irrespective of the method used, the patient absorbed doses obtained span over two orders of magnitude.« less

  14. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    PubMed

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  15. Validation of a MOSFET dosemeter system for determining the absorbed and effective radiation doses in diagnostic radiology.

    PubMed

    Manninen, A-L; Kotiaho, A; Nikkinen, J; Nieminen, M T

    2015-04-01

    This study aimed to validate a MOSFET dosemeter system for determining absorbed and effective doses (EDs) in the dose and energy range used in diagnostic radiology. Energy dependence, dose linearity and repeatability of the dosemeter were examined. The absorbed doses (ADs) were compared at anterior-posterior projection and the EDs were determined at posterior-anterior, anterior-posterior and lateral projections of thoracic imaging using an anthropomorphic phantom. The radiation exposures were made using digital radiography systems. This study revealed that the MOSFET system with high sensitivity bias supply set-up is sufficiently accurate for AD and ED determination. The dosemeter is recommended to be calibrated for energies <60 and >80 kVp. The entrance skin dose level should be at least 5 mGy to minimise the deviation of the individual dosemeter dose. For ED determination, dosemeters should be implanted perpendicular to the surface of the phantom to prevent the angular dependence error. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Dosimetry in small-animal CT using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Lee, C.-L.; Park, S.-J.; Jeon, P.-H.; Jo, B.-D.; Kim, H.-J.

    2016-01-01

    Small-animal computed tomography (micro-CT) imaging devices are increasingly being used in biological research. While investigators are mainly interested in high-contrast, low-noise, and high-resolution anatomical images, relatively large radiation doses are required, and there is also growing concern over the radiological risk from preclinical experiments. This study was conducted to determine the radiation dose in a mouse model for dosimetric estimates using the GEANT4 application for tomographic emission simulations (GATE) and to extend its techniques to various small-animal CT applications. Radiation dose simulations were performed with the same parameters as those for the measured micro-CT data, using the MOBY phantom, a pencil ion chamber and an electrometer with a CT detector. For physical validation of radiation dose, absorbed dose of brain and liver in mouse were evaluated to compare simulated results with physically measured data using thermoluminescent dosimeters (TLDs). The mean difference between simulated and measured data was less than 2.9% at 50 kVp X-ray source. The absorbed doses of 37 brain tissues and major organs of the mouse were evaluated according to kVp changes. The absorbed dose over all of the measurements in the brain (37 types of tissues) consistently increased and ranged from 42.4 to 104.0 mGy. Among the brain tissues, the absorbed dose of the hypothalamus (157.8-414.30 mGy) was the highest for the beams at 50-80 kVp, and that of the corpus callosum (11.2-26.6 mGy) was the lowest. These results can be used as a dosimetric database to control mouse doses and preclinical targeted radiotherapy experiments. In addition, to accurately calculate the mouse-absorbed dose, the X-ray spectrum, detector alignment, and uncertainty in the elemental composition of the simulated materials must be accurately modeled.

  17. 131I-tositumomab myeloablative radioimmunotherapy for non-Hodgkin’s lymphoma: radiation dose to the testes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattori, Naoya; Gopal, Ajay K.; Shields, Andrew T.

    Purpose: To investigate radiation doses to the testes delivered by a radiolabeled anti-CD20 antibody and its effects on male sex hormone levels. Materials and methods: Testicular uptake and retention of 131I-tositumomab were measured, and testicular absorbed doses were calculated for 67 male patients (54+/-11 years of age) with non-Hodgkin's lymphoma who had undergone myeloablative radioimmunotherapy (RIT) using 131I-tositumomab. Time-activity curves for the major organs, testes, and whole body were generated from planar imaging studies. In a subset of patients, male sex hormones were measured before and 1 year after the therapy. Results: The absorbed dose to the testes showed considerablemore » variability (range=4.4-70.2 Gy). Pretherapy levels of total testosterone were below the lower limit of the reference range, and post-therapy evaluation demonstrated further reduction [4.6+/-1.8 nmol/l (pre-RIT) vs. 3.8+/-2.9 nmol/l (post-RIT), P<0.05]. Patients receiving higher radiation doses to the testes (>=25 Gy) showed a greater reduction [4.7+/-1.6 nmol/l (pre-RIT) vs. 3.3+/-2.7 nmol/l (post-RIT), P<0.05] compared with patients receiving lower doses (<25 Gy), who showed no significant change in total testosterone levels. Conclusion: The testicular radiation absorbed dose varied highly among individual patients. Finally, patients receiving higher doses to the testes were more likely to show post-RIT suppression of testosterone levels.« less

  18. Applying an analytical method to study neutron behavior for dosimetry

    NASA Astrophysics Data System (ADS)

    Shirazi, S. A. Mousavi

    2016-12-01

    In this investigation, a new dosimetry process is studied by applying an analytical method. This novel process is associated with a human liver tissue. The human liver tissue has compositions including water, glycogen and etc. In this study, organic compound materials of liver are decomposed into their constituent elements based upon mass percentage and density of every element. The absorbed doses are computed by analytical method in all constituent elements of liver tissue. This analytical method is introduced applying mathematical equations based on neutron behavior and neutron collision rules. The results show that the absorbed doses are converged for neutron energy below 15MeV. This method can be applied to study the interaction of neutrons in other tissues and estimating the absorbed dose for a wide range of neutron energy.

  19. Red Marrow-Absorbed Dose for Non-Hodgkin Lymphoma Patients Treated with 177Lu-Lilotomab Satetraxetan, a Novel Anti-CD37 Antibody-Radionuclide Conjugate.

    PubMed

    Blakkisrud, Johan; Løndalen, Ayca; Dahle, Jostein; Turner, Simon; Holte, Harald; Kolstad, Arne; Stokke, Caroline

    2017-01-01

    Red marrow (RM) is often the primary organ at risk in radioimmunotherapy; irradiation of marrow may induce short- and long-term hematologic toxicity. 177 Lu-lilotomab satetraxetan is a novel anti-CD37 antibody-radionuclide conjugate currently in phase 1/2a. Two predosing regimens have been investigated, one with 40 mg of unlabeled lilotomab antibody (arm 1) and one without (arm 2). The aim of this work was to compare RM-absorbed doses for the two arms and to correlate absorbed doses with hematologic toxicity. Eight patients with relapsed CD37+ indolent B-cell non-Hodgkin lymphoma were included for RM dosimetry. Hybrid SPECT and CT images were used to estimate the activity concentration in the RM of L2-L4. Pharmacokinetic parameters were calculated after measurement of the 177 Lu-lilotomab satetraxetan concentration in blood samples. Adverse events were graded according to the Common Terminology Criteria for Adverse Events, version 4.0. The mean absorbed doses to RM were 0.9 mGy/MBq for arm 1 (lilotomab+) and 1.5 mGy/MBq for arm 2 (lilotomab-). There was a statistically significant difference between arms 1 and 2 (Student t test, P = 0.02). Total RM-absorbed doses ranged from 67 to 127 cGy in arm 1 and from 158 to 207 cGy in arm 2. For blood, the area under the curve was higher with lilotomab predosing than without (P = 0.001), whereas the volume of distribution and the clearance of 177 Lu-lilotomab satetraxetan was significantly lower (P = 0.01 and P = 0.03, respectively). Patients with grade 3/4 thrombocytopenia had received significantly higher radiation doses to RM than patients with grade 1/2 thrombocytopenia (P = 0.02). A surrogate, non-imaging-based, method underestimated the RM dose and did not show any correlation with toxicity. Predosing with lilotomab reduces the RM-absorbed dose for 177 Lu-lilotomab satetraxetan patients. The decrease in RM dose could be explained by the lower volume of distribution. Hematologic toxicity was more severe for patients receiving higher absorbed radiation doses, indicating that adverse events possibly can be predicted by the calculation of absorbed dose to RM from SPECT/CT images. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  20. Relative Importance of Hip and Sacral Pain Among Long-Term Gynecological Cancer Survivors Treated With Pelvic Radiotherapy and Their Relationships to Mean Absorbed Doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldenstroem, Ann-Charlotte, E-mail: ann-charlotte.waldenstrom@oncology.gu.se; Department of Oncology, Sahlgrenska University Hospital, Gothenburg; Olsson, Caroline

    Purpose: To investigate the relative importance of patient-reported hip and sacral pain after pelvic radiotherapy (RT) for gynecological cancer and its relationship to the absorbed doses in these organs. Methods and Materials: We used data from a population-based study that included 650 long-term gynecological cancer survivors treated with pelvic RT in the Gothenburg and Stockholm areas in Sweden with a median follow-up of 6 years (range, 2-15) and 344 population controls. Symptoms were assessed through a study-specific postal questionnaire. We also analyzed the hip and sacral dose-volume histogram data for 358 of the survivors. Results: Of the survivors, one inmore » three reported having or having had hip pain after completing RT. Daily pain when walking was four times as common among the survivors compared to controls. Symptoms increased in frequency with a mean absorbed dose >37.5 Gy. Also, two in five survivors reported pain in the sacrum. Sacral pain also affected their walking ability and tended to increase with a mean absorbed dose >42.5 Gy. Conclusions: Long-term survivors of gynecological cancer treated with pelvic RT experience hip and sacral pain when walking. The mean absorbed dose was significantly related to hip pain and was borderline significantly related to sacral pain. Keeping the total mean absorbed hip dose below 37.5 Gy during treatment might lower the occurrence of long-lasting pain. In relation to the controls, the survivors had a lower occurrence of pain and pain-related symptoms from the hips and sacrum compared with what has previously been reported for the pubic bone.« less

  1. Defining Action Levels for In Vivo Dosimetry in Intraoperative Electron Radiotherapy.

    PubMed

    López-Tarjuelo, Juan; Morillo-Macías, Virginia; Bouché-Babiloni, Ana; Ferrer-Albiach, Carlos; Santos-Serra, Agustín

    2016-06-01

    In vivo dosimetry is recommended in intraoperative electron radiotherapy (IOERT). To perform real-time treatment monitoring, action levels (ALs) have to be calculated. Empirical approaches based on observation of samples have been reported previously, however, our aim is to present a predictive model for calculating ALs and to verify their validity with our experimental data. We considered the range of absorbed doses delivered to our detector by means of the percentage depth dose for the electron beams used. Then, we calculated the absorbed dose histograms and convoluted them with detector responses to obtain probability density functions in order to find ALs as certain probability levels. Our in vivo dosimeters were reinforced TN-502RDM-H mobile metal-oxide-semiconductor field-effect transistors (MOSFETs). Our experimental data came from 30 measurements carried out in patients undergoing IOERT for rectal, breast, sarcoma, and pancreas cancers, among others. The prescribed dose to the tumor bed was 90%, and the maximum absorbed dose was 100%. The theoretical mean absorbed dose was 90.3% and the measured mean was 93.9%. Associated confidence intervals at P = .05 were 89.2% and 91.4% and 91.6% and 96.4%, respectively. With regard to individual comparisons between the model and the experiment, 37% of MOSFET measurements lay outside particular ranges defined by the derived ALs. Calculated confidence intervals at P = .05 ranged from 8.6% to 14.7%. The model can describe global results successfully but cannot match all the experimental data reported. In terms of accuracy, this suggests an eventual underestimation of tumor bed bleeding or detector alignment. In terms of precision, it will be necessary to reduce positioning uncertainties for a wide set of location and treatment postures, and more precise detectors will be required. Planning and imaging tools currently under development will play a fundamental role. © The Author(s) 2015.

  2. Study of the absorption spectra of Fricke Xylenol Orange gel dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambarini, Grazia; Artuso, Emanuele; Liosi, Giulia Maria

    2015-07-01

    A systematic study of the absorption spectra of Fricke Xylenol Orange gel dosimeters has been performed, in the wavelength range from 300 nm to 700 nm. The spectrum of Xylenol Orange (without ferrous sulphate solution) has been achieved, in order to subtract its contribution from the absorption spectra of the irradiated Fricke Xylenol Orange gel dosimeters. The absorbance due to ferric ions chelated by Xylenol Orange has been studied for various irradiation doses. Two absorbance peaks are visible, mainly at low doses: the first peak increases with the dose more slowly than the second one. This effect can explain themore » apparent threshold dose that was frequently evidenced. (authors)« less

  3. Energy deposition at the bone-tissue interface from nuclear fragments produced by high-energy nucleons

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Hajnal, Ferenc; Wilson, John W.

    1990-01-01

    The transport of nuclear fragmentation recoils produced by high-energy nucleons in the region of the bone-tissue interface is considered. Results for the different flux and absorbed dose for recoils produced by 1 GeV protons are presented in a bidirectional transport model. The energy deposition in marrow cavities is seen to be enhanced by recoils produced in bone. Approximate analytic formulae for absorbed dose near the interface region are also presented for a simplified range-energy model.

  4. Decomposition byproducts induced by gamma radiation and their toxicity: the case of 2-nitrophenol.

    PubMed

    Alsager, Omar A; Basfar, Ahmed A; Muneer, Majid

    2018-04-01

    The induced degradation and detoxification of 2-nitrophenol (2-NP) in aqueous media by gamma irradiation were carefully evaluated in this study. Gamma radiation at absorbed doses as low as 20 kGy was able to degrade 2-NP to reach a removal of at least 85% across the investigated range of concentration (50-150 ppm). 2-NP breaks down to aromatic-based compounds with increasing number of byproducts upon increasing the radiation treatment from the absorbed dose of 50% decomposition (D 50 ) to the absorbed dose of 90% decomposition (D 90 ), after which no byproducts could be detected, indicating the formation of undetectable aliphatic hydrocarbons, insoluble, or volatile byproducts. Toxicology studies showed that the degradation of 2-NP under absorbed doses up to D 90 resulted in a more toxic byproduct than the parent compound, and a remarkable reduction in the toxicity was observed with the irradiated samples with absorbed doses above D 90 . Varying the pH of the media to acidic or basic conditions did not significantly alter the degradation behavior of 2-NP. However, a notable improvement of the detoxification was associated with the samples of acidic pH. Adding 0.5% of H 2 O 2 to 2-NP solutions had a positive effect by reducing D 90 by a factor of nine and diminishing the toxicity by twofolds.

  5. Skin Dosimetry in Breast Teletherapy on a Phantom Anthropomorphic and Anthropometric Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batista Nogueira, Luciana; Lemos Silva, Hugo Leonardo; Donato da Silva, Sabrina

    This paper addresses the breast teletherapy dosimetry. The goal is to evaluate and compare absorbed doses in equivalent skin tissue, TE-skin, of an anthropomorphic and anthropometric breast phantom submitted to breast radiotherapy. The methodology involved the reproduction of a set of tomographic images of the phantom; the elaboration of conformational radiotherapy planning in the SOMAVISION and CadPlan (TPS) software; and the synthetic breast irradiation by parallel opposed fields in 3D conformal teletherapy at 6 MV linear accelerator Clinac-2100 C from VARIAN with prescribed dose (PD) of 180 cGy to the target volume (PTV), referent to the glandular tissue. Radiochromic filmsmore » EBT2 were selected as dosimeters. Two independent calibration processes of films with solid water Gammex 457 plates and water filled box were produced. Curves of optical density (OD) versus absorbed dose were produced. Dosimeters were positioned in the external region of the breast phantom in contact with TE-skin, area of 4.0 cm{sup 2} each. The irradiation process was prepared in duplicate to check the reproducibility of the technique. The radiochromic films were scanned and their response in RGB (Red, Green, Blue) analyzed by the ImageJ software. The optical density was obtained and converted to dose based on the calibration curves. Thus, the spatial dose distribution in the skin was reproduced. The absorbed doses measured on the radiochromic films in TE-skin showed values between upper and lower quadrants at 9 o'clock in the range of 54% of PD, between the upper and lower quadrants 3 o'clock in the range of 72% and 6 o'clock at the lower quadrant in the range of 68 % of PD. The values are ±64% (p <0.05) according to the TPS. It is concluded that the depth dose measured in solid water plates or water box reproduce equivalent dose values for both calibration processes of the radiochromic films. It was observed that the skin received doses ranging from 50% to 78% of the prescribed dose after two parallel opposed irradiation fields. (authors)« less

  6. SU-E-T-308: Systematic Characterization of the Energy Response of Different LiF TLD Crystals for Dosimetry Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pena, E; Caprile, P; Sanchez-Nieto, B

    Purpose: The thermoluminiscense dosimeters (TLDs) are widely used in personal and clinical dosimetry due to its small size, good sensitivity and tissue equivalence, among other advantages. This study presents the characterization of Lithium Fluoride based TLDs, in terms of their absorbed dose response to successive irradiation cycles in a broad range of beam energies, measured under reference conditions. Methods: Four types of Harshaw TLD chips were used: TLD-100, TLD-600 TLD-700 and 100-H. They were irradiated with 10 photon beams of different energy spectrums, from 28 kVp to 18MV (in 30 consecutive cycles for 6 and 18 MV). Results: It wasmore » found that the response of the dosimetric system was stabilized (less than ±3%) after 10 cycles for TLD-600 and TLD-700. In the case of TLD-100 and TLD-100H this dependence was not observed. A decreased response to increasing beam energy in terms of absorbed dose to water was observed, as expected, except for TLD-100H which showed the opposite behavior. The less energy dependent detector was the TLD-100H exhibiting a maximum deviation of 12%. The highest variation observed was 33% for TLD-100. The study allowed the determination of calibration factors in absorbed dose for a wide range of energies and materials for different dosimetric applications, such as in-vivo dosimetry during imaging and radiotherapy. Conclusion: The study allowed the determination of calibration factors in absorbed dose for a wide range of energies and materials for different dosimetric applications, such as in-vivo dosimetry during imaging and radiotherapy.« less

  7. Absorbed organ and effective doses from digital intra-oral and panoramic radiography applying the ICRP 103 recommendations for effective dose estimations

    PubMed Central

    Thilander-Klang, Anne; Ylhan, Betȕl; Lofthag-Hansen, Sara; Ekestubbe, Annika

    2016-01-01

    Objective: During dental radiography, the salivary and thyroid glands are at radiation risk. In 2007, the International Commission on Radiological Protection (ICRP) updated the methodology for determining the effective dose, and the salivary glands were assigned tissue-specific weighting factors for the first time. The aims of this study were to determine the absorbed dose to the organs and to calculate, applying the ICRP publication 103 tissue-weighting factors, the effective doses delivered during digital intraoral and panoramic radiography. Methods: Thermoluminescent dosemeter measurements were performed on an anthropomorphic head and neck phantom. The organ-absorbed doses were measured at 30 locations, representing different radiosensitive organs in the head and neck, and the effective dose was calculated according to the ICRP recommendations. Results: The salivary glands and the oral mucosa received the highest absorbed doses from both intraoral and panoramic radiography. The effective dose from a full-mouth intraoral examination was 15 μSv and for panoramic radiography, the effective dose was in the range of 19–75 μSv, depending on the panoramic equipment used. Conclusion: The effective dose from a full-mouth intraoral examination is lower and that from panoramic radiography is higher than previously reported. Clinicians should be aware of the higher effective dose delivered during panoramic radiography and the risk–benefit profile of this technique must be assessed for the individual patient. Advances in knowledge: The effective dose of radiation from panoramic radiography is higher than previously reported and there is large variability in the delivered radiation dosage among the different types of equipment used. PMID:27452261

  8. Monte Carlo Assessments of Absorbed Doses to the Hands of Radiopharmaceutical Workers Due to Photon Emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Dan; Eckerman, Keith F; Karagiannis, Harriet

    This paper describes the characterization of radiation doses to the hands of nuclear medicine technicians resulting from the handling of radiopharmaceuticals. Radiation monitoring using ring dosimeters indicates that finger dosimeters that are used to show compliance with applicable regulations may overestimate or underestimate radiation doses to the skin depending on the nature of the particular procedure and the radionuclide being handled. To better understand the parameters governing the absorbed dose distributions, a detailed model of the hands was created and used in Monte Carlo simulations of selected nuclear medicine procedures. Simulations of realistic configurations typical for workers handling radiopharmaceuticals weremore » performedfor a range of energies of the source photons. The lack of charged-particle equilibrium necessitated full photon-electron coupled transport calculations. The results show that the dose to different regions of the fingers can differ substantially from dosimeter readings when dosimeters are located at the base of the finger. We tried to identify consistent patterns that relate the actual dose to the dosimeter readings. These patterns depend on the specific work conditions and can be used to better assess the absorbed dose to different regions of the exposed skin.« less

  9. Radon Exposure and the Definition of Low Doses-The Problem of Spatial Dose Distribution.

    PubMed

    Madas, Balázs G

    2016-07-01

    Investigating the health effects of low doses of ionizing radiation is considered to be one of the most important fields in radiological protection research. Although the definition of low dose given by a dose range seems to be clear, it leaves some open questions. For example, the time frame and the target volume in which absorbed dose is measured have to be defined. While dose rate is considered in the current system of radiological protection, the same cancer risk is associated with all exposures, resulting in a given amount of energy absorbed by a single target cell or distributed among all the target cells of a given organ. However, the biological effects and so the health consequences of these extreme exposure scenarios are unlikely to be the same. Due to the heterogeneous deposition of radon progeny within the lungs, heterogeneous radiation exposure becomes a practical issue in radiological protection. While the macroscopic dose is still within the low dose range, local tissue doses on the order of Grays can be reached in the most exposed parts of the bronchial airways. It can be concluded that progress in low dose research needs not only low dose but also high dose experiments where small parts of a biological sample receive doses on the order of Grays, while the average dose over the whole sample remains low. A narrow interpretation of low dose research might exclude investigations with high relevance to radiological protection. Therefore, studies important to radiological protection should be performed in the frame of low dose research even if the applied doses do not fit in the dose range used for the definition of low doses.

  10. Approximate distribution of dose among foetal organs for radioiodine uptake via placenta transfer

    NASA Astrophysics Data System (ADS)

    Millard, R. K.; Saunders, M.; Palmer, A. M.; Preece, A. W.

    2001-11-01

    Absorbed radiation doses to internal foetal organs were calculated according to the medical internal radiation dose (MIRD) technique in this study. Anthropomorphic phantoms of the pregnant female as in MIRDOSE3 enabled estimation of absorbed dose to the whole foetus at two stages of gestation. Some foetal organ self-doses could have been estimated by invoking simple spherical models for thyroid, liver, etc, but we investigated the use of the MIRDOSE3 new-born phantom as a surrogate for the stage 3 foetus, scaled to be compatible with total foetal body mean absorbed dose/cumulated activity. We illustrate the method for obtaining approximate dose distribution in the foetus near term following intake of 1 MBq of 123I, 124I, 125I or 131I as sodium iodide by the mother using in vivo biodistribution data examples from a good model of placenta transfer. Doses to the foetal thyroid of up to 1.85 Gy MBq-1 were predicted from the 131I uptake data. Activity in the foetal thyroid was the largest contributor to absorbed dose in the foetal body, brain, heart and thymus. Average total doses to the whole foetus ranged from 0.16 to 1.2 mGy MBq-1 for stages 1 and 3 of pregnancy using the MIRDOSE3 program, and were considerably higher than those predicted from the maternal contributions alone. Doses to the foetal thymus and stomach were similar, around 2-3 mGy MBq-1. Some foetal organ doses from the radioiodides were ten times higher than to the corresponding organs of the mother, and up to 100 times higher to the thyroid. The fraction of activity uptakes in foetal organs were distributed similarly to the maternal ones.

  11. TLD postal dose intercomparison for megavoltage units in Poland.

    PubMed

    Izewska, J; Gajewski, R; Gwiazdowska, B; Kania, M; Rostkowska, J

    1995-08-01

    The aim of the TLD pilot study was to investigate and to reduce the uncertainties involved in the measurements of absorbed dose and to improve the consistency in dose determination in the regional radiotherapy centres in Poland. The intercomparison was organized by the SSDL. It covered absorbed dose measurements under reference conditions for Co-60, high energy X-rays and electron beams. LiF powder type MT-N was used for the irradiations and read with the Harshaw TLD reader model 2000B/2000C. The TLD system was set up and an analysis of the factors influencing the accuracy of absorbed dose measurements with TL-detectors was performed to evaluate and minimize the measurement uncertainty. A fading not exceeding 2% in 12 weeks was found. The relative energy correction factor did not exceed 3% for X-rays in the range 4-15 MV, and 4% for electron beams between 6 and 20 MeV. A total of 34 beams was checked. Deviation of +/- 3.5% stated and evaluated dose was considered acceptable for photons and +/- 5% for electron beams. The results for Co-60, high energy X-rays and electron beams showed that there were two, three and no centres, respectively, beyond acceptance levels. The sources of errors for all deviations out of this range were thoroughly investigated, discussed and corrected, however two deviations remained unexplained. The pilot study resulted in an improvement of the accuracy and consistency of dosimetry in Poland.

  12. Absorbed dose in AgBr in direct film for photon energies ( < 150 keV): relation to optical density. Theoretical calculation and experimental evaluation.

    PubMed

    Helmrot, E; Alm Carlsson, G

    1996-01-01

    In the radiological process it is necessary to develop tools so as to explore how X-rays can be used in the most effective way. Evaluation of models to derive measures of image quality and risk-related parameters is one possibility of getting such a tool. Modelling the image receptor, an important part of the imaging chain, is then required. The aim of this work was to find convenient and accurate ways of describing the blackening of direct dental films by X-rays. Since the beginning of the 20th century, the relation between optical density and photon interactions in the silver bromide in X-ray films has been investigated by many authors. The first attempts used simple quantum theories with no consideration of underlying physical interaction processes. The theories were gradually made more realistic by the introduction of dosimetric concepts and cavity theory. A review of cavity theories for calculating the mean absorbed dose in the AgBr grains of the film emulsion is given in this work. The cavity theories of GREENING (15) and SPIERS-CHARLTON (37) were selected for calculating the mean absorbed dose in the AgBr grains relative to the air collision kerma (Kc,air) of the incident photons of Ultra-speed and Ektaspeed (intraoral) films using up-to-date values of interaction coefficients. GREENING'S theory is a multi-grain theory and the results depend on the relative amounts of silver bromide and gelatine in the emulsion layer. In the single grain theory of SPIERS-CHARLTON, the shape and size of the silver bromide grain are important. Calculations of absorbed dose in the silver bromide were compared with measurements of optical densities in Ultra-speed and Ektaspeed films for a broad range (25-145 kV) of X-ray energy. The calculated absorbed dose values were appropriately averaged over the complete photon energy spectrum, which was determined experimentally using a Compton spectrometer. For the whole range of tube potentials used, the measured optical densities of the films were found to be proportional to the mean absorbed dose in the AgBr grains calculated according to GREENING'S theory. They were also found to be proportional to the collision kerma in silver bromide (Kc,AgBr) indicating proportionality between Kc,AgBr and the mean absorbed dose in silver bromide. While GREENING'S theory shows that the quotient of the mean absorbed dose in silver bromide and Kc,AgBr varies with photon energy, this is not apparent when averaged over the broad (diagnostic) X-ray energy spectra used here. Alternatively, proportionality between Kc,AgBr and the mean absorbed dose in silver bromide can be interpreted as resulting from a combination of the SPIERS-CHARLTON theory, valid at low photon energies ( < 30 keV) and GREENING'S theory, which is strictly valid at energies above 50 keV. This study shows that the blackening of non-screen films can be related directly to the energy absorbed in the AgBr grains of the emulsion layer and that, for the purpose of modelling the imaging chain in intraoral radiography, film response can be represented by Kc,AgBr (at the position of the film) independent of photon energy. The importance of taking the complete X-ray energy spectrum into full account in deriving Kc,AgBr is clearly demonstrated, showing that the concept of effective energy must be used with care.

  13. Development of a primary standard for absorbed dose from unsealed radionuclide solutions

    NASA Astrophysics Data System (ADS)

    Billas, I.; Shipley, D.; Galer, S.; Bass, G.; Sander, T.; Fenwick, A.; Smyth, V.

    2016-12-01

    Currently, the determination of the internal absorbed dose to tissue from an administered radionuclide solution relies on Monte Carlo (MC) calculations based on published nuclear decay data, such as emission probabilities and energies. In order to validate these methods with measurements, it is necessary to achieve the required traceability of the internal absorbed dose measurements of a radionuclide solution to a primary standard of absorbed dose. The purpose of this work was to develop a suitable primary standard. A comparison between measurements and calculations of absorbed dose allows the validation of the internal radiation dose assessment methods. The absorbed dose from an yttrium-90 chloride (90YCl) solution was measured with an extrapolation chamber. A phantom was developed at the National Physical Laboratory (NPL), the UK’s National Measurement Institute, to position the extrapolation chamber as closely as possible to the surface of the solution. The performance of the extrapolation chamber was characterised and a full uncertainty budget for the absorbed dose determination was obtained. Absorbed dose to air in the collecting volume of the chamber was converted to absorbed dose at the centre of the radionuclide solution by applying a MC calculated correction factor. This allowed a direct comparison of the analytically calculated and experimentally determined absorbed dose of an 90YCl solution. The relative standard uncertainty in the measurement of absorbed dose at the centre of an 90YCl solution with the extrapolation chamber was found to be 1.6% (k  =  1). The calculated 90Y absorbed doses from published medical internal radiation dose (MIRD) and radiation dose assessment resource (RADAR) data agreed with measurements to within 1.5% and 1.4%, respectively. This study has shown that it is feasible to use an extrapolation chamber for performing primary standard absorbed dose measurements of an unsealed radionuclide solution. Internal radiation dose assessment methods based on MIRD and RADAR data for 90Y have been validated with experimental absorbed dose determination and they agree within the stated expanded uncertainty (k  =  2).

  14. Sci—Thur AM: YIS - 03: irtGPUMCD: a new GPU-calculated dosimetry code for {sup 177}Lu-octreotate radionuclide therapy of neuroendocrine tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montégiani, Jean-François; Gaudin, Émilie; Després, Philippe

    2014-08-15

    In peptide receptor radionuclide therapy (PRRT), huge inter-patient variability in absorbed radiation doses per administered activity mandates the utilization of individualized dosimetry to evaluate therapeutic efficacy and toxicity. We created a reliable GPU-calculated dosimetry code (irtGPUMCD) and assessed {sup 177}Lu-octreotate renal dosimetry in eight patients (4 cycles of approximately 7.4 GBq). irtGPUMCD was derived from a brachytherapy dosimetry code (bGPUMCD), which was adapted to {sup 177}Lu PRRT dosimetry. Serial quantitative single-photon emission computed tomography (SPECT) images were obtained from three SPECT/CT acquisitions performed at 4, 24 and 72 hours after {sup 177}Lu-octreotate administration, and registered with non-rigid deformation of CTmore » volumes, to obtain {sup 177}Lu-octreotate 4D quantitative biodistribution. Local energy deposition from the β disintegrations was assumed. Using Monte Carlo gamma photon transportation, irtGPUMCD computed dose rate at each time point. Average kidney absorbed dose was obtained from 1-cm{sup 3} VOI dose rate samples on each cortex, subjected to a biexponential curve fit. Integration of the latter time-dose rate curve yielded the renal absorbed dose. The mean renal dose per administered activity was 0.48 ± 0.13 Gy/GBq (range: 0.30–0.71 Gy/GBq). Comparison to another PRRT dosimetry code (VRAK: Voxelized Registration and Kinetics) showed fair accordance with irtGPUMCD (11.4 ± 6.8 %, range: 3.3–26.2%). These results suggest the possibility to use the irtGPUMCD code in order to personalize administered activity in PRRT. This could allow improving clinical outcomes by maximizing per-cycle tumor doses, without exceeding the tolerable renal dose.« less

  15. Radioactivity concentrations in soils in the Qingdao area, China.

    PubMed

    Qu, Limei; Yao, De; Cong, Pifu; Xia, Ning

    2008-10-01

    The specific activity concentrations of radionuclides (238)U, (232)Th, and (40)K of 2300 sampling points in the Qingdao area were measured by an FD-3022 gamma-ray spectrometer. The radioactivity concentrations of (238)U, (232)Th, and (40)K ranged from 3.3 to 185.3, from 6.9 to 157.2, and from 115.8 to 7834.4 Bq kg(-1), respectively. The air-absorbed dose at 1 meter above ground, effective annual dose, external hazard index, and radium equivalent activity were also calculated to systematically evaluate the radiological hazards of the natural radioactivity in Qingdao. The air-absorbed dose, effective annual dose, external hazard index, and radium equivalent activity in the study area were 98.6 nGy h(-1), 0.12 mSv, 0.56, 197 Bq kg(-1), respectively. Compared with the worldwide value, the air-absorbed dose is slightly high, but the other factors are all lower than the recommended value. The natural external exposure will not pose significant radiological threat to the population. In conclusion, the Qingdao area is safe with regard to the radiological level and suitable for living.

  16. Developability assessment of clinical drug products with maximum absorbable doses.

    PubMed

    Ding, Xuan; Rose, John P; Van Gelder, Jan

    2012-05-10

    Maximum absorbable dose refers to the maximum amount of an orally administered drug that can be absorbed in the gastrointestinal tract. Maximum absorbable dose, or D(abs), has proved to be an important parameter for quantifying the absorption potential of drug candidates. The purpose of this work is to validate the use of D(abs) in a developability assessment context, and to establish appropriate protocol and interpretation criteria for this application. Three methods for calculating D(abs) were compared by assessing how well the methods predicted the absorption limit for a set of real clinical candidates. D(abs) was calculated for these clinical candidates by means of a simple equation and two computer simulation programs, GastroPlus and an program developed at Eli Lilly and Company. Results from single dose escalation studies in Phase I clinical trials were analyzed to identify the maximum absorbable doses for these compounds. Compared to the clinical results, the equation and both simulation programs provide conservative estimates of D(abs), but in general D(abs) from the computer simulations are more accurate, which may find obvious advantage for the simulations in developability assessment. Computer simulations also revealed the complex behavior associated with absorption saturation and suggested in most cases that the D(abs) limit is not likely to be achieved in a typical clinical dose range. On the basis of the validation findings, an approach is proposed for assessing absorption potential, and best practices are discussed for the use of D(abs) estimates to inform clinical formulation development strategies. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Improvements in opti-chromic dosimeters for radiation processing

    NASA Astrophysics Data System (ADS)

    Humpherys, K. C.; Kantz, A. D.

    "Opti-Chromic" dosimeters consisting of radiachromic dye in flourinated polymer tubing have been introduced as a dosimetry system in the range from 10 1 to 5 × 10 4 Gy. Batches of "Opti-Chromic" dosimeters have been produced to evaluate performance under large scale industrial conditions. A systematic study was undertaken to determine the effect of various dosimeter parameters on radiation sensitivity, shelf life, and response characteristics at the higher absorbed doses. These parameters were (A) Type of flourinated polymer tubing; (B) Organic solvent used to activate the radiachromic dye; (C) Concentration of radiachromic dye; (D) Additives to provide proper viscosity, color stability, and high-dose response. Prototype batches were produced and experimental dosimeters exposed to a range of absorbed doses and the response measured as a function of shelf life and dose. The results of the study are presented, and an improved formulation recommended for application to Food Processing. Other formulations may be of value in specific requirements of sensitivity or temperature.

  18. Pain and mean absorbed dose to the pubic bone after radiotherapy among gynecological cancer survivors.

    PubMed

    Waldenström, Ann-Charlotte; Olsson, Caroline; Wilderäng, Ulrica; Dunberger, Gail; Lind, Helena; al-Abany, Massoud; Palm, Åsa; Avall-Lundqvist, Elisabeth; Johansson, Karl-Axel; Steineck, Gunnar

    2011-07-15

    To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. We analyzed data from 650 survivors (participation rate 79%) with median follow-up of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses <52.5 Gy to the pubic bone and 5/12 (42%) to mean absorbed external beam doses ≥ 52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Pain and Mean Absorbed Dose to the Pubic Bone After Radiotherapy Among Gynecological Cancer Survivors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldenstroem, Ann-Charlotte, E-mail: ann-charlotte.waldenstrom@oncology.gu.se; Department of Oncology, Sahlgrenska University Hospital, Gothenburg; Olsson, Caroline

    Purpose: To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. Methods and Materials: In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. Results: We analyzed data from 650 survivors (participation rate 79%) with median follow-upmore » of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses <52.5 Gy to the pubic bone and 5/12 (42%) to mean absorbed external beam doses {>=}52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Conclusions: Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer.« less

  20. Considerations on the calibration of small thermoluminescent dosimeters used for measurement of beta particle absorbed doses in liquid environments.

    PubMed

    Demidecki, A J; Williams, L E; Wong, J Y; Wessels, B W; Yorke, E D; Strandh, M; Strand, S E

    1993-01-01

    An investigation has been carried out on the factors which affect the absolute calibration of thermoluminescent dosimeters (TLDs) used in beta particle absorbed dose evaluations. Four effects on light output (LO) were considered: decay of detector sensitivity with time, finite TLD volume, dose linearity, and energy dependence. Most important of these was the decay of LO with time in culture medium, muscle tissue, and gels. This permanent loss of sensitivity was as large as an order of magnitude over a 21-day interval for the nominally 20-microns-thick disc-shaped CaSO4(Dy) TLDs in gel. Associated leaching of the dosimeter crystals out of the Teflon matrix was observed using scanning electron microscopy. Large channels leading from the outside environment into the TLDs were identified using SEM images. A possibility of batch dependence of fading was indicated. The second most important effect was the apparent reduction of light output due to finite size and increased specific gravity of the dosimeter (volume effect). We estimated this term by calculations as 10% in standard "mini" rods for beta particles from 90Y, but nearly a factor of 3 for 131I beta particles in the same geometry. No significant nonlinearity of the log (light output) with log (absorbed dose) over the range 0.05-20.00 Gy was discovered. Energy dependence of the LO was found to be not detectable, within measurement errors, over the range of 0.60-6.0 MeV mean energy electrons. With careful understanding of these effects, calibration via gel phantom would appear to be an acceptable strategy for mini TLDs used in beta absorbed dose evaluations in media.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  2. On the suitability of ultrathin detectors for absorbed dose assessment in the presence of high-density heterogeneities.

    PubMed

    Bueno, M; Carrasco, P; Jornet, N; Muñoz-Montplet, C; Duch, M A

    2014-08-01

    The aim of this study was to evaluate the suitability of several detectors for the determination of absorbed dose in bone. Three types of ultrathin LiF-based thermoluminescent dosimeters (TLDs)-two LiF:Mg,Cu,P-based (MCP-Ns and TLD-2000F) and a (7)Li-enriched LiF:Mg,Ti-based (MTS-7s)-as well as EBT2 Gafchromic films were used to measure percentage depth-dose distributions (PDDs) in a water-equivalent phantom with a bone-equivalent heterogeneity for 6 and 18 MV and a set of field sizes ranging from 5 x 5 cm2 to 20 x 20 cm2. MCP-Ns, TLD-2000F, MTS-7s, and EBT2 have active layers of 50, 20, 50, and 30 μm, respectively. Monte Carlo (MC) dose calculations (PENELOPE code) were used as the reference and helped to understand the experimental results and to evaluate the potential perturbation of the fluence in bone caused by the presence of the detectors. The energy dependence and linearity of the TLDs' response was evaluated. TLDs exhibited flat energy responses (within 2.5%) and linearity with dose (within 1.1%) within the range of interest for the selected beams. The results revealed that all considered detectors perturb the electron fluence with respect to the energy inside the bone-equivalent material. MCP-Ns and MTS-7s underestimated the absorbed dose in bone by 4%-5%. EBT2 exhibited comparable accuracy to MTS-7s and MCP-Ns. TLD-2000F was able to determine the dose within 2% accuracy. No dependence on the beam energy or field size was observed. The MC calculations showed that a[Formula: see text] thick detector can provide reliable dose estimations in bone regardless of whether it is made of LiF, water or EBT's active layer material. TLD-2000F was found to be suitable for providing reliable absorbed dose measurements in the presence of bone for high-energy x-ray beams.

  3. Neutron fluence-to-dose conversion coefficients for embryo and fetus.

    PubMed

    Chen, Jing; Meyerhof, Dorothy; Vlahovich, Slavica

    2004-01-01

    A problem of concern in radiation protection is the exposure of pregnant women to ionising radiation, because of the high radiosensitivity of the embryo and fetus. External neutron exposure is of concern when pregnant women travel by aeroplane. Dose assessments for neutrons frequently rely on fluence-to-dose conversion coefficients. While neutron fluence-to-dose conversion coefficients for adults are recommended in International Commission on Radiological Protection publications and International Commission on Radiological Units and Measurements reports, conversion coefficients for embryos and fetuses are not given in the publications. This study undertakes Monte Carlo calculations to determine the mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A new set of mathematical models for the embryo and fetus has been developed at Health Canada and is used together with mathematical phantoms of a pregnant female developed at Oak Ridge National Laboratory. Monoenergetic neutrons from 1 eV to 10 MeV are considered in this study. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO) geometries. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated; for the embryo at 8 weeks and the fetus at 3, 6 or 9 months. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four age groups. Neutron fluence-to-equivalent dose conversion coefficients are given for the AP irradiations which yield the highest radiation dose to the fetal body in the neutron energy range considered here. The results indicate that for neutrons <10 MeV more protection should be given to pregnant women in the first trimester due to the higher absorbed dose per unit neutron fluence to the fetus.

  4. An international dosimetry exchange for boron neutron capture therapy. Part I: Absorbed dose measurements.

    PubMed

    Binns, P J; Riley, K J; Harling, O K; Kiger, W S; Munck af Rosenschöld, P M; Giusti, V; Capala, J; Sköld, K; Auterinen, I; Serén, T; Kotiluoto, P; Uusi-Simola, J; Marek, M; Viererbl, L; Spurny, F

    2005-12-01

    An international collaboration was organized to undertake a dosimetry exchange to enable the future combination of clinical data from different centers conducting neutron capture therapy trials. As a first step (Part I) the dosimetry group from the Americas, represented by MIT, visited the clinical centers at Studsvik (Sweden), VTT Espoo (Finland), and the Nuclear Research Institute (NRI) at Rez (Czech Republic). A combined VTT/NRI group reciprocated with a visit to MIT. Each participant performed a series of dosimetry measurements under equivalent irradiation conditions using methods appropriate to their clinical protocols. This entailed in-air measurements and dose versus depth measurements in a large water phantom. Thermal neutron flux as well as fast neutron and photon absorbed dose rates were measured. Satisfactory agreement in determining absorbed dose within the experimental uncertainties was obtained between the different groups although the measurement uncertainties are large, ranging between 3% and 30% depending upon the dose component and the depth of measurement. To improve the precision in the specification of absorbed dose amongst the participants, the individually measured dose components were normalized to the results from a single method. Assuming a boron concentration of 15 microg g(-1) that is typical of concentrations realized clinically with the boron delivery compound boronophenylalanine-fructose, systematic discrepancies in the specification of the total biologically weighted dose of up to 10% were apparent between the different groups. The results from these measurements will be used in future to normalize treatment plan calculations between the different clinical dosimetry protocols as Part II of this study.

  5. SU-E-T-204: Comparison of Absorbed-Dose to Water in High-Energy Photon Beams Based On Addendum AAPM TG-51, IAEA TRS-398, and JSMP 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, N; Kita, A; Yoshioka, C

    Purpose: Several clinical reference dosimetry protocols for absorbed-dose to water have recently been published: The American Association of Physicists in Medicine (AAPM) published an Addendum to the AAPM’s TG-51 (Addendum TG-51) in April 2014, and the Japan Society of Medical Physics (JSMP) published the Japan Society of Medical Physics 12 (JSMP12), a clinical reference dosimetry protocol, in September 2012. This investigation compared and evaluated the absorbed-dose to water of high-energy photon beams according to Addendum TG-51, International Atomic Energy Agency Technical Report Series No. 398 (TRS-398), and JSMP12. Methods: Differences in the respective beam quality conversion factors with Addendum TG-51,more » TRS-398, and JSMP12 were analyzed and the absorbed-dose to water using 6- and 10-MV photon beams was measured according to the protocols recommended in Addendum TG-51, TRS-398, and JSMP12. The measurements were conducted using two Farmer-type ionization chambers, Exradin A12 and PTW 30013. Results: The beam quality conversion factors for both the 6- and 10-MV photon beams with Addendum TG-51 were within 0.6%, in agreement with the beam quality conversion factors with TRS-398 and JSMP12. The Exradin A12 provided an absorbed-dose to water ratio from 1.003 to 1.006 with TRS-398 / Addendum TG-51 and from 1.004 to 1.005 with JSMP 12 / Addendum TG-51, whereas the PTW 30013 provided a ratio of 1.001 with TRS-398 / Addendum TG-51 and a range from 0.997 to 0.999 with JSMP 12 / Addendum TG-51. Conclusion: Despite differences in the beam quality conversion factor, no major differences were seen in the absorbed-dose to water with Addendum TG-51, TRS-398, and JSMP12. However, Addendum TG-51 provides the most recent data for beam quality conversion factors based on Monte Carlo simulation and greater detail for the measurement protocol. Therefore, the absorbed-dose to water measured with Addendum TG-51 is an estimate with less uncertainty.« less

  6. Assessment of pharmacokinetic proportionality of levofloxacin and cyclosporine over a 100-fold dose range in healthy human volunteers.

    PubMed

    Lim, Mi-sun; Seong, Sook Jin; Park, Jeonghyeon; Seo, Jeong Ju; Lee, Joomi; Yu, Kyung-Sang; Lee, Hae Won; Yoon, Young-Ran

    2012-04-01

    Levofloxacin and cyclosporine show different pharmacokinetic properties, but are known to be dose proportional within the therapeutic range. The authors evaluated the pharmacokinetic proportionality of levofloxacin and cyclosporine over a 100-fold dose range in healthy human volunteers, by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Two independent, randomized, crossover studies were performed. For levofloxacin, eight volunteers were randomly assigned in a 1:1 ratio to receive a low dose (7.5 mg) orally or intravenously, followed by a 1-week washout period and administration via the alternate route. After another 1-week washout period, a therapeutic dose (750 mg) was administered to all eight subjects. For cyclosporine, another eight volunteers received a low dose (2 mg) or a therapeutic dose (200 mg) orally with a 1-week washout period. Drug concentrations were determined by LC-MS/MS. For levofloxacin, the mean values for dose-normalized C(max) and AUC(last) with the two doses were as follows: therapeutic dose, 15.2 ± 4.6 ng/ml/mg and 103.6 ± 15.5 ng·h/ml/mg, respectively; low dose, 17.1 ± 6.5 ng/ml/mg and 72.6 ± 8.7 ng·h/ml/mg, respectively. For cyclosporine, the mean values for dose-normalized C(max) and AUC(last) were as follows: therapeutic dose, 4.9 ± 1.5 ng/ml/mg and 15.4 ± 4.9 ng·h/ml/mg, respectively; low dose, 1.6 ± 0.6 ng/ml/mg and 9.3 ± 7.3 ng·h/ml/mg, respectively. In this study levofloxacin, which is completely absorbed and primarily eliminated renally without modification, showed better pharmacokinetic proportionality than cyclosporine, which is poorly absorbed and extensively metabolized.

  7. The estimation of absorbed dose rates for non-human biota : an extended inter-comparison.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batlle, J. V. I.; Beaugelin-Seiller, K.; Beresford, N. A.

    An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of {+-}20%. Themore » variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.« less

  8. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system.

    PubMed

    Pérez-Andújar, Angélica; Newhauser, Wayne D; Deluca, Paul M

    2009-02-21

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient.

  9. Uncertainty analysis for absorbed dose from a brain receptor imaging agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydogan, B.; Miller, L.F.; Sparks, R.B.

    Absorbed dose estimates are known to contain uncertainties. A recent literature search indicates that prior to this study no rigorous investigation of uncertainty associated with absorbed dose has been undertaken. A method of uncertainty analysis for absorbed dose calculations has been developed and implemented for the brain receptor imaging agent {sup 123}I-IPT. The two major sources of uncertainty considered were the uncertainty associated with the determination of residence time and that associated with the determination of the S values. There are many sources of uncertainty in the determination of the S values, but only the inter-patient organ mass variation wasmore » considered in this work. The absorbed dose uncertainties were determined for lung, liver, heart and brain. Ninety-five percent confidence intervals of the organ absorbed dose distributions for each patient and for a seven-patient population group were determined by the ``Latin Hypercube Sampling`` method. For an individual patient, the upper bound of the 95% confidence interval of the absorbed dose was found to be about 2.5 times larger than the estimated mean absorbed dose. For the seven-patient population the upper bound of the 95% confidence interval of the absorbed dose distribution was around 45% more than the estimated population mean. For example, the 95% confidence interval of the population liver dose distribution was found to be between 1.49E+0.7 Gy/MBq and 4.65E+07 Gy/MBq with a mean of 2.52E+07 Gy/MBq. This study concluded that patients in a population receiving {sup 123}I-IPT could receive absorbed doses as much as twice as large as the standard estimated absorbed dose due to these uncertainties.« less

  10. Absorbed dose kernel and self-shielding calculations for a novel radiopaque glass microsphere for transarterial radioembolization.

    PubMed

    Church, Cody; Mawko, George; Archambault, John Paul; Lewandowski, Robert; Liu, David; Kehoe, Sharon; Boyd, Daniel; Abraham, Robert; Syme, Alasdair

    2018-02-01

    Radiopaque microspheres may provide intraprocedural and postprocedural feedback during transarterial radioembolization (TARE). Furthermore, the potential to use higher resolution x-ray imaging techniques as opposed to nuclear medicine imaging suggests that significant improvements in the accuracy and precision of radiation dosimetry calculations could be realized for this type of therapy. This study investigates the absorbed dose kernel for novel radiopaque microspheres including contributions of both short and long-lived contaminant radionuclides while concurrently quantifying the self-shielding of the glass network. Monte Carlo simulations using EGSnrc were performed to determine the dose kernels for all monoenergetic electron emissions and all beta spectra for radionuclides reported in a neutron activation study of the microspheres. Simulations were benchmarked against an accepted 90 Y dose point kernel. Self-shielding was quantified for the microspheres by simulating an isotropically emitting, uniformly distributed source, in glass and in water. The ratio of the absorbed doses was scored as a function of distance from a microsphere. The absorbed dose kernel for the microspheres was calculated for (a) two bead formulations following (b) two different durations of neutron activation, at (c) various time points following activation. Self-shielding varies with time postremoval from the reactor. At early time points, it is less pronounced due to the higher energies of the emissions. It is on the order of 0.4-2.8% at a radial distance of 5.43 mm with increased size from 10 to 50 μm in diameter during the time that the microspheres would be administered to a patient. At long time points, self-shielding is more pronounced and can reach values in excess of 20% near the end of the range of the emissions. Absorbed dose kernels for 90 Y, 90m Y, 85m Sr, 85 Sr, 87m Sr, 89 Sr, 70 Ga, 72 Ga, and 31 Si are presented and used to determine an overall kernel for the microspheres based on weighted activities. The shapes of the absorbed dose kernels are dominated at short times postactivation by the contributions of 70 Ga and 72 Ga. Following decay of the short-lived contaminants, the absorbed dose kernel is effectively that of 90 Y. After approximately 1000 h postactivation, the contributions of 85 Sr and 89 Sr become increasingly dominant, though the absorbed dose-rate around the beads drops by roughly four orders of magnitude. The introduction of high atomic number elements for the purpose of increasing radiopacity necessarily leads to the production of radionuclides other than 90 Y in the microspheres. Most of the radionuclides in this study are short-lived and are likely not of any significant concern for this therapeutic agent. The presence of small quantities of longer lived radionuclides will change the shape of the absorbed dose kernel around a microsphere at long time points postadministration when activity levels are significantly reduced. © 2017 American Association of Physicists in Medicine.

  11. Nature of gamma rays background radiation in new and old buildings of Qatar University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Houty, L.; Abou-Leila, H.; El-Kameesy, S.

    Measurements and analysis of gamma-background radiation spectrum in four different places of Qatar University campus were performed at the energy range 10 keV-3 MeV using hyper pure Ge-detector. The dependence of the detector absolute photopeak efficiency on gamma-ray energies was determined and correction of the data for that was also done. The absorbed dose for each gamma line was calculated and an estimation of the total absorbed dose for the detected gamma lines in the four different places was obtained. Comparison with other results was also performed.

  12. Effect of low dose and moderate dose gamma irradiation on the mechanical properties of bone and soft tissue allografts.

    PubMed

    Balsly, Colleen R; Cotter, Andrew T; Williams, Lisa A; Gaskins, Barton D; Moore, Mark A; Wolfinbarger, Lloyd

    2008-12-01

    The increased use of allograft tissue for musculoskeletal repair has brought more focus to the safety of allogenic tissue and the efficacy of various sterilization techniques. Gamma irradiation is an effective method for providing terminal sterilization to biological tissue, but it is also reported to have deleterious effects on tissue mechanics in a dose-dependent manner. At irradiation ranges up to 25 kGy, a clear relationship between mechanical strength and dose has yet to be established. The aim of this study was to investigate the mechanical properties of bone and soft tissue allografts, irradiated on dry ice at a low absorbed dose (18.3-21.8 kGy) and a moderate absorbed dose (24.0-28.5 kGy), using conventional compressive and tensile testing, respectively. Bone grafts consisted of Cloward dowels and iliac crest wedges, while soft tissue grafts consisted of patellar tendons, anterior tibialis tendons, semitendinosus tendons, and fascia lata. There were no statistical differences in mechanical strength or modulus of elasticity for any graft irradiated at a low absorbed dose, compared to control groups. Also, bone allografts and two soft tissue allografts (anterior tibialis and semitendinosus tendon) that were irradiated at a moderate dose demonstrated similar strength and modulus of elasticity values to control groups. The results of this study support the use of low dose and moderate dose gamma irradiation of bone grafts. For soft tissue grafts, the results support the use of low dose irradiation.

  13. Radiation absorbed dose estimates for 18F-BPA PET.

    PubMed

    Kono, Yuzuru; Kurihara, Hiroaki; Kawamoto, Hiroshi; Yasui, Naoko; Honda, Naoki; Igaki, Hiroshi; Itami, Jun

    2017-09-01

    Background Boron neutron capture therapy (BNCT) is a molecular radiation therapy approach based on the 10 B (n, α) 7 Li nuclear reaction in cancer cells. In BNCT, delivery of 10 B in the form of 4-borono-phenylalanine conjugated with fructose (BPA-fr) to the cancer cells is important. The PET tracer 4-borono-2-18F-fluoro-phenylalanine (FBPA) has been used to predict the accumulation of BPA-fr before BNCT. Purpose To determine the biodistribution and dosimetric parameters in 18F-BPA PET/CT studies. Material and Methods Human biokinetic data were obtained during clinical 18F-BPA PET studies between February and June 2015 at one institution. Nine consecutive patients were studied prospectively. The internal radiation dose was calculated on the basis of radioactivity data from blood, urine, and normal tissue of the heart, liver, spleen, kidney, and other parts of the body at each time point using OLINDA/EXM1.1 program. We compared our calculations with published 18F-FDG data. Results Adult patients (3 men, 3 women; age range, 28-68 years) had significantly smaller absorbed doses than pediatric patients (3 patients; age range, 5-12 years) ( P = 0.003). The mean effective dose was 57% lower in adult patients compared with pediatric patients. Mean effective doses for 18F-BPA were 25% lower than those for 18F-FDG presented in International Commission of Radiation Protection (ICRP) publication 106. Conclusion We found significant differences in organ absorbed doses for 18F-BPA against those for 18F-FDG presented in ICRP publication 106. Mean effective doses for 18F-BPA were smaller than those for 18F-FDG in the publication by 0.5-38% (mean difference, 25%).

  14. Optimizing a readout protocol for low dose retrospective OSL-dosimetry using household salt.

    PubMed

    Christiansson, Maria; Mattsson, Sören; Bernhardsson, Christian; Rääf, Christopher L

    2012-06-01

    The authors' aim has been to find a single aliquot regenerative dose (SAR) protocol that accurately recovers an unknown absorbed dose in the region between 1-250 mGy in household salt. The main investigation has been conducted on a specific mine salt (>98.5% NaCl) intended for household use, using optical stimulation by blue LED (λ = 462 nm). The most accurate dose recovery for this brand of salt is found to be achieved when using Peak Signal Summing (PSS) of the OSL-decay and a preheat temperature of 200°C after the test dose. A SAR protocol for the household salt with preset values of regenerative doses (R1--R5) and a test dose (TED) of 17 mGy is also suggested here. Under laboratory conditions, the suggested protocol recovers unknown absorbed doses in this particular brand within 5% (2 SD) in the dose range between 1-250 mGy. This is a very promising result for low dose applications of household salt as a retrospective dosimeter after a nuclear or radiological event.

  15. Radiation hardness study of semi-insulating GaAs detectors against 5 MeV electrons

    NASA Astrophysics Data System (ADS)

    Šagátová, A.; Zaťko, B.; Nečas, V.; Sedlačková, K.; Boháček, P.; Fülöp, M.; Pavlovič, M.

    2018-01-01

    A radiation hardness study of Semi-Insulating (SI) GaAs detectors against 5 MeV electrons is described in this paper. The influence of two parameters, the accumulative absorbed dose (from 1 to 200 kGy) and the applied dose rate (20, 40 or 80 kGy/h), on detector spectrometric properties were studied. The accumulative dose has influenced all evaluated spectrometric properties and also negatively affected the detector CCE (Charge Collection Efficiency). We have observed its systematic reduction from an initial 79% before irradiation down to about 51% at maximum dose of 200 kGy. Relative energy resolution was also influenced by electron irradiation. Its degradation was obvious in the range of doses from 24 up to a maximum dose of 200 kGy, where an increase from 19% up to 31% at 200 V reverse voltage was noticed. On the other hand, a global increase of detection efficiency with accumulative absorbed dose was observed for all samples. Concerning the actual detector degradation we can assume that the tested SI GaAs detectors will be able to operate up to a dose of 300 kGy at least, when irradiated by 5 MeV electrons. The second investigated parameter of irradiation, the dose rate of chosen ranges, did not greatly alter the spectrometric properties of studied detectors.

  16. Estimated human absorbed dose of a new (153)Sm bone seeking agent based on biodistribution data in mice: Comparison with (153)Sm-EDTMP.

    PubMed

    Yousefnia, Hassan; Zolghadri, Samaneh

    2015-11-01

    The main goal in radiotherapy is to deliver the absorbed dose within the target organs in highest possible amount, while the absorbed dose of the other organs, especially the critical organs, should be kept as low as possible. In this work, the absorbed dose to human organs for a new (153)Sm bone-seeking agent was investigated. (153)Sm-(4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl) acetic acid ((153)Sm-BPAMD) complex was successfully prepared. The biodistribution of the complex was investigated in male Syrian mice up to 48 h post injection. The human absorbed dose of the complex was estimated based on the biodistribution data of the mice by radiation absorbed dose assessment resource (RADAR) method. The target to non-target absorbed dose ratios for (153)Sm-BPAMD were compared with these ratios for (153)Sm-EDTMP. The highest absorbed dose for (153)Sm-BPAMD was observed in bone surface with 5.828 mGy/MBq. The dose ratios of the bone surface to the red marrow and to the total body for (153)Sm-BPAMD were 5.3 and 20.0, respectively, while these ratios for (153)Sm-EDTMP were 4.4 and 18.3, respectively. This means, for a given dose to the bone surface as the target organ, the red marrow (as the main critical organ) and the total body would receive lesser absorbed dose in the case of (153)Sm-BPAMD. Generally, the human absorbed dose estimation of (153)Sm-BPAMD indicated that all other tissues approximately received insignificant absorbed dose in comparison with bone surface and therefore can be regarded as a new potential agent for bone pain palliation therapy. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Effects of neutron irradiation on optical and chemical properties of CR-39: Potential application in neutron dosimetry.

    PubMed

    Sahoo, G S; Paul, S; Tripathy, S P; Sharma, S C; Jena, S; Rout, S; Joshi, D S; Bandyopadhyay, T

    2014-12-01

    Effects of high-dose neutron irradiation on chemical and optical properties of CR-39 were studied using FTIR (Fourier Transform Infrared) and UV-vis (Ultraviolet-Visible) spectroscopy. The primary goal was to find a correlation between the neutron dose and the corresponding changes in the optical and chemical properties of CR-39 resulted from the neutron irradiation. The neutrons were produced by bombarding a thick Be target with 22-MeV protons. In the FTIR spectra, prominent absorbance peaks were observed at 1735cm(-1) (C=O stretching), 1230cm(-1)(C-O-C stretching), and 783cm(-1)(=C-H bending), the intensities of which decreased with increasing neutron dose. The optical absorbance in the visible range increased linearly with the neutron dose. Empirical relations were established to estimate neutron doses from these optical properties. This technique is particularly useful in measuring high doses, where track analysis with an optical microscope is difficult because of track overlapping. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Assessment of human effective absorbed dose of 67 Ga-ECC based on biodistribution rat data.

    PubMed

    Shanehsazzadeh, Saeed; Yousefnia, Hassan; Lahooti, Afsaneh; Zolghadri, Samaneh; Jalilian, Amir Reza; Afarideh, Hossien

    2015-02-01

    In a diagnostic context, determination of absorbed dose is required before the introduction of a new radiopharmaceutical to the market to obtain marketing authorization from the relevant agencies. In this work, the absorbed dose of [67 Ga]-ethylenecysteamine cysteine [(67 Ga)ECC] to human organs was determined by using distribution data for rats. For biodistribution data, the animals were sacrificed by CO2 asphyxiation at selected times after injection (0.5, 2 and 48 h, n = 3 for each time interval), then the tissue (blood, heart, lung, brain, intestine, feces, skin, stomach, kidneys, liver, muscle and bone) were removed. The absorbed dose was determined by Medical Internal Radiation Dose (MIRD) method after calculating cumulated activities in each organ. Our prediction shows that a 185-MBq injection of (67)Ga-ECC into the humans might result in an estimated absorbed dose of 0.029 mGy in the whole body. The highest absorbed doses are observed in the spleen and liver with 33.766 and 16.847 mGy, respectively. The results show that this radiopharmaceutical can be a good SPECT tracer since it can be produced easily and also the absorbed dose in each organ is less than permitted absorbed dose.

  19. Application of real-time radiation dosimetry using a new silicon LET sensor

    NASA Technical Reports Server (NTRS)

    Doke, T.; Hayashi, T.; Kikuchi, J.; Nagaoka, S.; Nakano, T.; Sakaguchi, T.; Terasawa, K.; Badhwar, G. D.

    1999-01-01

    A new type of real-time radiation monitoring device, RRMD-III, consisting of three double-sided silicon strip detectors (DSSDs), has been developed and tested on-board the Space Shuttle mission STS-84. The test succeeded in measuring the linear energy transfer (LET) distribution over the range of 0.2 keV/micrometer to 600 keV/micrometer for 178 h. The Shuttle cruised at an altitude of 300 to 400 km and an inclination angle of 51.6 degrees for 221.3 h, which is equivalent to the International Space Station orbit. The LET distribution obtained for particles was investigated by separating it into galactic cosmic ray (GCR) particles and trapped particles in the South Atlantic Anomaly (SAA) region. The result shows that the contribution in dose-equivalent due to GCR particles is almost equal to that from trapped particles. The total absorbed dose rate during the mission was 0.611 mGy/day; the effective quality factor, 1.64; and the dose equivalent rate, 0.998 mSv/day. The average absorbed dose rates are 0.158 mGy/min for GCR particles and 3.67 mGy/min for trapped particles. The effective quality factors are 2.48 for GCR particles and 1.19 for trapped particles. The absorbed doses obtained by the RRMD-III and a conventional method using TLD (Mg(2)SiO(4)), which was placed around the RRMD-III were compared. It was found that the TLDs showed a lower efficiency, just 58% of absorbed dose registered by the RRMD-III.

  20. Study of the optical properties and the carbonaceous clusters in DAM-ADC solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Rammah, Y. S.; Abdalla, A. M.

    2017-12-01

    The optical properties of DAM-ADC solid state nuclear track detectors (SSNTDs) were investigated. Samples of DAM-ADC detector were irradiated at room temperature with gamma doses in the range of 100-500 kGy using 1.25 MeV 60Co source of dose rate 4 kGy/h. The optical characterization of these detectors have been studied through the measurements of UV-visible absorption spectra of blank and γ- irradiated samples. The optical energy band gaps, Eg for the detectors were obtained from the direct and the indirect allowed transitions in K-space using two methods (Tauc's model and absorption spectrum fitting (ASF) method). The absorbance of DAM-ADC detector was found to increase with increasing of the gamma absorbed dose. The width of the tail of localized states in the band gap, Eu was evaluated with the Urbach's method. The number of carbon atoms per conjugated length (N), the number of carbon atoms per cluster (M), and refractive index (n) for the present samples were determined. Both of the direct and the indirect band gaps of DAM-ADC detector decrease with increasing of the gamma absorbed dose. Urbach's energy decreased significantly for the detector. An increase in N, M, and n with increasing of the gamma absorbed dose was noticed. Results shed light on the effect of gamma irradiations of DAM-ADC SSNTDs to suitable industrial applications and to modify the optical properties through gamma-induced modifications of the polymer structure.

  1. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system

    PubMed Central

    Pérez-Andújar, Angélica; Newhauser, Wayne D; DeLuca, Paul M

    2014-01-01

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient. PMID:19147903

  2. Detection and quantification of 223Ra uptake in bone metastases of patients with castration resistant prostate carcinoma, with the aim of determining the absorbed dose in the metastases.

    PubMed

    Mínguez, P; Gómez de Iturriaga, A; Fernández, I L; Rodeño, E

    To obtain the necessary acquisition and calibration parameters in order to evaluate the possibility of detecting and quantifying 223 Ra uptake in bone metastases of patients treated for castration resistant prostate carcinoma. Furthermore, in the cases in which the activity can be quantified, to determine the absorbed dose. Acquisitions from a Petri dish filled with 223 Ra were performed in the gamma camera. Monte Carlo simulations were also performed to study the partial volume effect. Formulae to obtain the detection and quantification limits of 223 Ra uptake were applied to planar images of two patients 7 days post-administration of 55kBq/kg of 223 Ra. In order to locate the lesions in advance, whole-body scans and SPECT/CT images were acquired after injecting 99m Tc-HDP. The optimal energy window was found to be at 82keV with a medium-energy collimator MEGP. Of the lesions found in the patients, only those that had been detected in both the AP and PA projections could be quantified. These lesions were those which had shown a higher 99m Tc-HDP uptake. The estimated values of absorbed doses ranged between 0.7Gy and 7.8Gy. Of the lesions that can be detected, it is not possible to quantify the activity uptake in some of them, which means that the absorbed dose cannot be determined either. This does not mean that the absorbed dose in these lesions can be regarded as negligible. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  3. A feasibility study to calculate unshielded fetal doses to pregnant patients in 6-MV photon treatments using Monte Carlo methods and anatomically realistic phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bednarz, Bryan; Xu, X. George

    2008-07-15

    A Monte Carlo-based procedure to assess fetal doses from 6-MV external photon beam radiation treatments has been developed to improve upon existing techniques that are based on AAPM Task Group Report 36 published in 1995 [M. Stovall et al., Med. Phys. 22, 63-82 (1995)]. Anatomically realistic models of the pregnant patient representing 3-, 6-, and 9-month gestational stages were implemented into the MCNPX code together with a detailed accelerator model that is capable of simulating scattered and leakage radiation from the accelerator head. Absorbed doses to the fetus were calculated for six different treatment plans for sites above the fetusmore » and one treatment plan for fibrosarcoma in the knee. For treatment plans above the fetus, the fetal doses tended to increase with increasing stage of gestation. This was due to the decrease in distance between the fetal body and field edge with increasing stage of gestation. For the treatment field below the fetus, the absorbed doses tended to decrease with increasing gestational stage of the pregnant patient, due to the increasing size of the fetus and relative constant distance between the field edge and fetal body for each stage. The absorbed doses to the fetus for all treatment plans ranged from a maximum of 30.9 cGy to the 9-month fetus to 1.53 cGy to the 3-month fetus. The study demonstrates the feasibility to accurately determine the absorbed organ doses in the mother and fetus as part of the treatment planning and eventually in risk management.« less

  4. Development of computational pregnant female and fetus models and assessment of radiation dose from positron-emitting tracers.

    PubMed

    Xie, Tianwu; Zaidi, Habib

    2016-12-01

    Molecular imaging using PET and hybrid (PET/CT and PET/MR) modalities nowadays plays a pivotal role in the clinical setting for diagnosis and staging, treatment response monitoring, and radiation therapy treatment planning of a wide range of oncologic malignancies. The developing embryo/fetus presents a high sensitivity to ionizing radiation. Therefore, estimation of the radiation dose delivered to the embryo/fetus and pregnant patients from PET examinations to assess potential radiation risks is highly praised. We constructed eight embryo/fetus models at various gestation periods with 25 identified tissues according to reference data recommended by the ICRP publication 89 representing the anatomy of the developing embryo/fetus. The developed embryo/fetus models were integrated into realistic anthropomorphic computational phantoms of the pregnant female and used for estimating, using Monte Carlo calculations, S-values of common positron-emitting radionuclides, organ absorbed dose, and effective dose of a number of positron-emitting labeled radiotracers. The absorbed dose is nonuniformly distributed in the fetus. The absorbed dose of the kidney and liver of the 8-week-old fetus are about 47.45 % and 44.76 % higher than the average absorbed dose of the fetal total body for all investigated radiotracers. For 18 F-FDG, the fetal effective doses are 2.90E-02, 3.09E-02, 1.79E-02, 1.59E-02, 1.47E-02, 1.40E-02, 1.37E-02, and 1.27E-02 mSv/MBq at the 8th, 10th, 15th, 20th, 25th, 30th, 35th, and 38th weeks of gestation, respectively. The developed pregnant female/fetus models matching the ICRP reference data can be exploited by dedicated software packages for internal and external dose calculations. The generated S-values will be useful to produce new standardized dose estimates to pregnant patients and embryo/fetus from a variety of positron-emitting labeled radiotracers.

  5. Review of reconstruction of radiation incident air kerma by measurement of absorbed dose in tooth enamel with EPR.

    PubMed

    Wieser, A

    2012-03-01

    Electron paramagnetic resonance dosimetry with tooth enamel has been proved to be a reliable method to determine retrospectively exposures from photon fields with minimal detectable doses of 100 mGy or lower, which is lower than achievable with cytogenetic dose reconstruction methods. For risk assessment or validating dosimetry systems for specific radiation incidents, the relevant dose from the incident has to be calculated from the total absorbed dose in enamel by subtracting additional dose contributions from the radionuclide content in teeth, natural external background radiation and medical exposures. For calculating organ doses or evaluating dosimetry systems the absorbed dose in enamel from a radiation incident has to be converted to air kerma using dose conversion factors depending on the photon energy spectrum and geometry of the exposure scenario. This paper outlines the approach to assess individual dose contributions to absorbed dose in enamel and calculate individual air kerma of a radiation incident from the absorbed dose in tooth enamel.

  6. Comparative study of nuclear magnetic resonance and UV-visible spectroscopy dose-response of polymer gel based on N-(Isobutoxymethyl) acrylamide

    NASA Astrophysics Data System (ADS)

    Lotfy, S.; Basfar, A. A.; Moftah, B.; Al-Moussa, A. A.

    2017-12-01

    A comparative study of nuclear magnetic resonance and UV-visible spectroscopy of dose-response for polymer gel dosimeters was performed. Dosimeters were prepared using N-(Isobutoxymethyl) acrylamide (NIBMA) as a new monomer via radiation induced polymerization for use in radiotherapy planning. The prepared dosimeters were irradiated with doses up to 30 Gy at a constant dose rate of 600 MU/min. Using a medical linear accelerator at irradiation energies of 6, 10 and 18 MV photon beam. The nuclear magnetic resonance (NMR), via spin-spin relaxation rate (R2) for water proton surrounding the polymer formulation and UV-Visible spectroscopy, via the optical absorbance measurements of irradiated dosimeters at selected wavelengths of 500 nm, was used to investigate the dose response of NIBMAGAT gel dosimeters. Scavenge of oxygen was done using tetrakis (hydroxymethyl) phosphonium chloride (THPC). The THPC optimum concentration in the dosimeters formulations were 5 and 10 mM for the NMR and optical absorbance measurements respectively. The quantitative investigation of the dosimeters components reveals the selective formulations based on 4% w/w gelatin, 1% w/w NIBMA, 3% w/w BisAAm, 5 or 10 mM THPC and 17% w/w glycerol which significantly increase the dosimeters dose response. The prepared dosimeters were found to be dose rate and photon beam irradiation energy independent. The stability study shows no change in the relaxation rate or in the optical absorbance of the gel dosimeters up to 8 days post-irradiation. The prepared polymer gel dosimeters at the energies of 6, 10 and 18 MV photon beam irradiation in the range of 1-30 Gy have the linearity of the dose response function in the case of R2 is better than in the case of absorbance measurements; correlation coefficient (r2) equals 0.995 and 0.991, respectively. Dose sensitivity, R2 of NIBMAGAT dosimeters (0.0775 s-1 Gy-1). The absorption band intensity increases linearly with a dose sensitivity of 0.016 cm-1 Gy-1. The detection limit of the present dosimeter analyzed by R2 and absorbance measurements is 1 Gy and 2 Gy respectively. The overall uncertainty measurements of dose approve that by using the absorbance measurements the gel is not useful as a dosimeter like as R2 measurements. It could be a new composition of dosimeters successfully utilized for MRI (Magnetic Resonance Imaging) for radiotherapy treatment planning.

  7. Influence of gamma irradiation on the surface morphology, XRD and thermophysical properties of silicide hexoboride

    NASA Astrophysics Data System (ADS)

    Mirzayev, Matlab N.; Mehdiyeva, Ravan N.; Garibov, Ramin G.; Ismayilova, Narmin A.; Jabarov, Sakin H.

    2018-05-01

    In this study, compounds of B6Si were irradiated using a 60Co gamma source that have an energy line of 1.25 MeV at the absorbed dose rates from 14.6 kGy to 194.4 kGy. Surface morphology images of the sample obtained by Scanning Electron Microscope (SEM) show that the crystal structure at a high absorbed doses (D ≥ 145.8kGy) starts to be destroyed. X-ray diffraction studies revealed that with increasing radiation absorption dose, the spectrum intensity of the sample was decreased 1.96 times compared with the initial value. Thermal properties were studied by Differential scanning calorimetry (DSC) method in the temperature range of 30-1000∘C.

  8. Reconstruction of Absorbed Doses to Fibroglandular Tissue of the Breast of Women undergoing Mammography (1960 to the Present)

    PubMed Central

    Thierry-Chef, Isabelle; Simon, Steven L.; Weinstock, Robert M.; Kwon, Deukwoo; Linet, Martha S.

    2013-01-01

    The assessment of potential benefits versus harms from mammographic examinations as described in the controversial breast cancer screening recommendations of the U.S. Preventive Task Force included limited consideration of absorbed dose to the fibroglandular tissue of the breast (glandular tissue dose), the tissue at risk for breast cancer. Epidemiological studies on cancer risks associated with diagnostic radiological examinations often lack accurate information on glandular tissue dose, and there is a clear need for better estimates of these doses. Our objective was to develop a quantitative summary of glandular tissue doses from mammography by considering sources of variation over time in key parameters including imaging protocols, x-ray target materials, voltage, filtration, incident air kerma, compressed breast thickness, and breast composition. We estimated the minimum, maximum, and mean values for glandular tissue dose for populations of exposed women within 5-year periods from 1960 to the present, with the minimum to maximum range likely including 90% to 95% of the entirety of the dose range from mammography in North America and Europe. Glandular tissue dose from a single view in mammography is presently about 2 mGy, about one-sixth the dose in the 1960s. The ratio of our estimates of maximum to minimum glandular tissue doses for average-size breasts was about 100 in the 1960s compared to a ratio of about 5 in recent years. Findings from our analysis provide quantitative information on glandular tissue doses from mammographic examinations which can be used in epidemiologic studies of breast cancer. PMID:21988547

  9. Characterization of a fiber-coupled Al2O3:C luminescence dosimetry system for online in vivo dose verification during 192Ir brachytherapy.

    PubMed

    Andersen, Claus E; Nielsen, Søren Kynde; Greilich, Steffen; Helt-Hansen, Jakob; Lindegaard, Jacob Christian; Tanderup, Kari

    2009-03-01

    A prototype of a new dose-verification system has been developed to facilitate prevention and identification of dose delivery errors in remotely afterloaded brachytherapy. The system allows for automatic online in vivo dosimetry directly in the tumor region using small passive detector probes that fit into applicators such as standard needles or catheters. The system measures the absorbed dose rate (0.1 s time resolution) and total absorbed dose on the basis of radioluminescence (RL) and optically stimulated luminescence (OSL) from aluminum oxide crystals attached to optical fiber cables (1 mm outer diameter). The system was tested in the range from 0 to 4 Gy using a solid-water phantom, a Varian GammaMed Plus 192Ir PDR afterloader, and dosimetry probes inserted into stainless-steel brachytherapy needles. The calibrated system was found to be linear in the tested dose range. The reproducibility (one standard deviation) for RL and OSL measurements was 1.3%. The measured depth-dose profiles agreed well with the theoretical expectations computed with the EGSNRC Monte Carlo code, suggesting that the energy dependence for the dosimeter probes (relative to water) is less than 6% for source-to-probe distances in the range of 2-50 mm. Under certain conditions, the RL signal could be greatly disturbed by the so-called stem signal (i.e., unwanted light generated in the fiber cable upon irradiation). The OSL signal is not subject to this source of error. The tested system appears to be adequate for in vivo brachytherapy dosimetry.

  10. Probability Estimates of Solar Proton Doses During Periods of Low Sunspot Number for Short Duration Missions

    NASA Technical Reports Server (NTRS)

    Atwell, William; Tylka, Allan J.; Dietrich, William F.; Rojdev, Kristina; Matzkind, Courtney

    2016-01-01

    In an earlier paper presented at ICES in 2015, we investigated solar particle event (SPE) radiation exposures (absorbed dose) to small, thinly-shielded spacecraft during a period when the monthly smoothed sunspot number (SSN) was less than 30. Although such months are generally considered "solar-quiet", SPEs observed during these months even include Ground Level Events, the most energetic type of SPE. In this paper, we add to previous study those SPEs that occurred in 1973-2015 when the SSN was greater than 30 but less than 50. Based on the observable energy range of the solar protons, we classify the event as GLEs, sub-GLEs, and sub-sub-GLEs, all of which are potential contributors to the radiation hazard. We use the spectra of these events to construct a probabilistic model of the absorbed dose due to solar protons when SSN < 50 at various confidence levels for various depths of shielding and for various mission durations. We provide plots and tables of solar proton-induced absorbed dose as functions of confidence level, shielding thickness, and mission-duration that will be useful to system designers.

  11. Dose rate effect of pulsed electron beam on micronucleus frequency in human peripheral blood lymphocytes.

    PubMed

    Acharya, Santhosh; Sanjeev, Ganesh; Bhat, Nagesh N; Narayana, Yerol

    2010-03-01

    The micronucleus assay in human peripheral blood lymphocytes is a sensitive indicator of radiation damage and could serve as a biological dosimeter in evaluating suspected overexposure to ionising radiation. Micronucleus (MN) frequency as a measure of chromosomal damage has also extensively been employed to quantify the effects of radiation dose rate on biological systems. Here we studied the effects of 8 MeV pulsed electron beam emitted by Microtron electron accelerator on MN induction at dose rates between 35 Gy min-1 and 352.5 Gy min-1. These dose rates were achieved by varying the pulse repetition rate (PRR). Fricke dosimeter was employed to measure the absorbed dose at different PRR and to ensure uniform dose distribution of the electron beam. To study the dose rate effect, blood samples were irradiated to an absorbed dose of (4.7+/-0.2) Gy at different rates and cytogenetic damage was quantified using the micronucleus assay. The obtained MN frequency showed no dose rate dependence within the studied dose rate range. Our earlier dose effect study using 8 MeV electrons revealed that the response of MN was linear-quadratic. Therefore, in the event of an accident, dose estimation can be made using linear-quadratic dose response parameters, without adding dose rate as a correction factor.

  12. Dosimetric characterization of GafChromic EBT film and its implication on film dosimetry quality assurance.

    PubMed

    Fuss, Martina; Sturtewagen, Eva; De Wagter, Carlos; Georg, Dietmar

    2007-07-21

    The suitability of radiochromic EBT film was studied for high-precision clinical quality assurance (QA) by identifying the dose response for a wide range of irradiation parameters typically modified in highly-conformal treatment techniques. In addition, uncertainties associated with varying irradiation conditions were determined. EBT can be used for dose assessment of absorbed dose levels as well as relative dosimetry when compared to absolute absorbed dose calibrated using ionization chamber results. For comparison, a silver halide film (Kodak EDR-2) representing the current standard in film dosimetry was included. As an initial step a measurement protocol yielding accurate and precise results was established for a flatbed transparency scanner (Epson Expression 1680 Pro) that was utilized as a film reading instrument. The light transmission measured by the scanner was found to depend on the position of the film on the scanner plate. For three film pieces irradiated with doses of 0 Gy, approximately 1 Gy and approximately 7 Gy, the pixel values measured in portrait or landscape mode differed by 4.7%, 6.2% and 10.0%, respectively. A study of 200 film pieces revealed an excellent sheet-to-sheet uniformity. On a long time scale, the optical development of irradiated EBT film consisted of a slow but steady increase of absorbance which was not observed to cease during 4 months. Sensitometric curves of EBT films obtained under reference conditions (SSD = 95 cm, FS = 5 x 5 cm(2), d = 5 cm) for 6, 10 and 25 MV photon beams did not show any energy dependence. The average separation between all curves was only 0.7%. The variation of the depth d (range 2-25 cm) in the phantom did not affect the dose response of EBT film. Also the influence of the radiation field size (range 3 x 3-40 x 40 cm(2)) on the sensitometric curve was not significant. For EDR-2 films maximum differences between the calibration curves reached 7-8% for X6MV and X25MV. Radiochromic EBT film, in combination with a flatbed scanner, presents a versatile system for high-precision dosimetry in two dimensions, provided that the intrinsic behaviour of the film reading device is taken into account. EBT film itself presents substantial improvements on formerly available models of radiographic and a radiochromic film and its dosimetric characteristics allow us to measure absorbed dose levels in a large variety of situations with a single calibration curve.

  13. Dosimetric characterization of GafChromic EBT film and its implication on film dosimetry quality assurance

    NASA Astrophysics Data System (ADS)

    Fuss, Martina; Sturtewagen, Eva; DeWagter, Carlos; Georg, Dietmar

    2007-07-01

    The suitability of radiochromic EBT film was studied for high-precision clinical quality assurance (QA) by identifying the dose response for a wide range of irradiation parameters typically modified in highly-conformal treatment techniques. In addition, uncertainties associated with varying irradiation conditions were determined. EBT can be used for dose assessment of absorbed dose levels as well as relative dosimetry when compared to absolute absorbed dose calibrated using ionization chamber results. For comparison, a silver halide film (Kodak EDR-2) representing the current standard in film dosimetry was included. As an initial step a measurement protocol yielding accurate and precise results was established for a flatbed transparency scanner (Epson Expression 1680 Pro) that was utilized as a film reading instrument. The light transmission measured by the scanner was found to depend on the position of the film on the scanner plate. For three film pieces irradiated with doses of 0 Gy, ~1 Gy and ~7 Gy, the pixel values measured in portrait or landscape mode differed by 4.7%, 6.2% and 10.0%, respectively. A study of 200 film pieces revealed an excellent sheet-to-sheet uniformity. On a long time scale, the optical development of irradiated EBT film consisted of a slow but steady increase of absorbance which was not observed to cease during 4 months. Sensitometric curves of EBT films obtained under reference conditions (SSD = 95 cm, FS = 5 × 5 cm2, d = 5 cm) for 6, 10 and 25 MV photon beams did not show any energy dependence. The average separation between all curves was only 0.7%. The variation of the depth d (range 2-25 cm) in the phantom did not affect the dose response of EBT film. Also the influence of the radiation field size (range 3 × 3-40 × 40 cm2) on the sensitometric curve was not significant. For EDR-2 films maximum differences between the calibration curves reached 7-8% for X6MV and X25MV. Radiochromic EBT film, in combination with a flatbed scanner, presents a versatile system for high-precision dosimetry in two dimensions, provided that the intrinsic behaviour of the film reading device is taken into account. EBT film itself presents substantial improvements on formerly available models of radiographic and a radiochromic film and its dosimetric characteristics allow us to measure absorbed dose levels in a large variety of situations with a single calibration curve.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woon Hyuk Chung

    Polyvinyl alcohol films containing congo red are useful as gamma and electron radiation dosimeters. Absorbed doses should not exceed 500 kGy. The dose response is rather linear in a higher range, e.g., 100 to 500 kGy. The film is relatively stable before and after irradiation for quite a long time against fading, for example, a change of [approximately]10% in 1 yr following irradiation at room temperature.

  15. Intercomparison of standards of absorbed dose between the USSR and the UK

    NASA Astrophysics Data System (ADS)

    Berlyand, V. A.; Bregadze, J. I.; Burns, J. E.; Dusautoy, A. R.; Sharpe, P. H. G.

    1991-05-01

    A comparison of national standards of absorbed dose was carried out between the All-Union Research Institute for Physical Technical and Radiotechnical Measurements (VNIIFTRI), USSR, and the National Physical Laboratotry (NPL), UK (United Kingdom). Absorbed dose to water for cobalt 60 gamma radiation was compared by means of Fricke dosimeters and ionization chambers in 1985 and 1986. The primary standards used to derive absorbed dose to water were cavity ionization chambers at NPL and a graphite calorimeter at VNIIFTRI. The ratio of absorbed dose to water, NPL to VNIIFTRI, using Fricke dosimeters was 1.008; using ionization chambers it was 1.007. This agreement is within the estimated uncertainties of the standards and measurement methods.

  16. An image-based skeletal model for the ICRP reference adult male—specific absorbed fractions for neutron-generated recoil protons

    NASA Astrophysics Data System (ADS)

    Jokisch, D. W.; Rajon, D. A.; Bahadori, A. A.; Bolch, W. E.

    2011-11-01

    Recoiling hydrogen nuclei are a principle mechanism for energy deposition from incident neutrons. For neutrons incident on the human skeleton, the small sizes of two contrasting media (trabecular bone and marrow) present unique problems due to a lack of charged-particle (protons) equilibrium. Specific absorbed fractions have been computed for protons originating in the human skeletal tissues for use in computing neutron dose response functions. The proton specific absorbed fractions were computed using a pathlength-based range-energy calculation in trabecular skeletal samples of a 40 year old male cadaver.

  17. Detailed Distribution Map of Absorbed Dose Rate in Air in Tokatsu Area of Chiba Prefecture, Japan, Constructed by Car-Borne Survey 4 Years after the Fukushima Daiichi Nuclear Power Plant Accident.

    PubMed

    Inoue, Kazumasa; Arai, Moeko; Fujisawa, Makoto; Saito, Kyouko; Fukushi, Masahiro

    2017-01-01

    A car-borne survey was carried out in the northwestern, or Tokatsu, area of Chiba Prefecture, Japan, to make a detailed distribution map of absorbed dose rate in air four years after the Fukushima Daiichi Nuclear Power Plant accident. This area was chosen because it was the most heavily radionuclide contaminated part of Chiba Prefecture and it neighbors metropolitan Tokyo. Measurements were performed using a 3-in × 3-in NaI(Tl) scintillation spectrometer in June 2015. The survey route covered the whole Tokatsu area which includes six cities. A heterogeneous distribution of absorbed dose rate in air was observed on the dose distribution map. Especially, higher absorbed dose rates in air exceeding 80 nGy h-1 were observed along national roads constructed using high porosity asphalt, whereas lower absorbed dose rates in air were observed along local roads constructed using low porosity asphalt. The difference between these asphalt types resulted in a heterogeneous dose distribution in the Tokatsu area. The mean of the contribution ratio of artificial radionuclides to absorbed dose rate in air measured 4 years after the accident was 29% (9-50%) in the Tokatsu area. The maximum absorbed dose rate in air, 201 nGy h-1 was observed at Kashiwa City. Radiocesium was deposited in the upper 1 cm surface layer of the high porosity asphalt which was collected in Kashiwa City and the environmental half-life of the absorbed dose rate in air was estimated to be 1.7 years.

  18. A retrospective study on annual evaluation of radiation processing for frozen bone allografts complying to quality system requirements.

    PubMed

    Ramalingam, Saravana; Mohd, Suhaili; Samsuddin, Sharifah Mazni; Min, N G Wuey; Yusof, Norimah; Mansor, Azura

    2015-12-01

    Bone allografts have been used widely to fill up essential void in orthopaedic surgeries. The benefit of using allografts to replace and reconstruct musculoskeletal injuries, fractures or disease has obtained overwhelming acceptance from orthopaedic surgeons worldwide. However, bacterial infection and disease transmission through bone allograft transplantation have always been a significant issue. Sterilization by radiation is an effective method to eliminate unwanted microorganisms thus assist in preventing life threatening allograft associated infections. Femoral heads procured from living donors and long bones (femur and tibia) procured from cadaveric donors were sterilized at 25 kGy in compliance with international standard ISO 11137. According to quality requirements, all records of bone banking were evaluated annually. This retrospective study was carried out on annual evaluation of radiation records from 1998 until 2012. The minimum doses absorbed by the bones were ranging from 25.3 to 38.2 kGy while the absorbed maximum doses were from 25.4 to 42.3 kGy. All the bones supplied by our UMMC Bone Bank were sterile at the required minimum dose of 25 kGy. Our analysis on dose variation showed that the dose uniformity ratios in 37 irradiated boxes of 31 radiation batches were in the range of 1.003-1.251, which indicated the doses were well distributed.

  19. Radiolysis products and sensory properties of electron-beam-irradiated high-barrier food-packaging films containing a buried layer of recycled low-density polyethylene.

    PubMed

    Chytiri, S D; Badeka, A V; Riganakos, K A; Kontominas, M G

    2010-04-01

    The aim was to study the effect of electron-beam irradiation on the production of radiolysis products and sensory changes in experimental high-barrier packaging films composed of polyamide (PA), ethylene-vinyl alcohol (EVOH) and low-density polyethylene (LDPE). Films contained a middle buried layer of recycled LDPE, while films containing 100% virgin LDPE as the middle buried layer were taken as controls. Irradiation doses ranged between zero and 60 kGy. Generally, a large number of radiolysis products were produced during electron-beam irradiation, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food 'cold pasteurization'). The quantity of radiolysis products increased with irradiation dose. There were no significant differences in radiolysis products identified between samples containing a recycled layer of LDPE and those containing virgin LDPE (all absorbed doses), indicating the 'functional barrier' properties of external virgin polymer layers. Sensory properties (mainly taste) of potable water were affected after contact with irradiated as low as 5 kGy packaging films. This effect increased with increasing irradiation dose.

  20. The role of a microDiamond detector in the dosimetry of proton pencil beams.

    PubMed

    Gomà, Carles; Marinelli, Marco; Safai, Sairos; Verona-Rinati, Gianluca; Würfel, Jan

    2016-03-01

    In this work, the performance of a microDiamond detector in a scanned proton beam is studied and its potential role in the dosimetric characterization of proton pencil beams is assessed. The linearity of the detector response with the absorbed dose and the dependence on the dose-rate were tested. The depth-dose curve and the lateral dose profiles of a proton pencil beam were measured and compared to reference data. The feasibility of calibrating the beam monitor chamber with a microDiamond detector was also studied. It was found the detector reading is linear with the absorbed dose to water (down to few cGy) and the detector response is independent of both the dose-rate (up to few Gy/s) and the proton beam energy (within the whole clinically-relevant energy range). The detector showed a good performance in depth-dose curve and lateral dose profile measurements; and it might even be used to calibrate the beam monitor chambers-provided it is cross-calibrated against a reference ionization chamber. In conclusion, the microDiamond detector was proved capable of performing an accurate dosimetric characterization of proton pencil beams. Copyright © 2015. Published by Elsevier GmbH.

  1. An example of problems in dose reconstruction from doses formed by electromagnetic irradiation by different energy sources.

    PubMed

    Kirillov, Vladimir; Kuchuro, Joseph; Tolstik, Sergey; Leonova, Tatyana

    2010-02-01

    Dose reconstruction for citizens of Belarus affected by the Chernobyl accident showed an unexpectedly wide range of doses. Using the EPR tooth enamel dosimetry method, it has been demonstrated that when the tooth enamel dose was formed due to x-rays with effective energy of 34 keV and the additional irradiation of enamel samples was performed by gamma radiation with mean energy of 1,250 keV, it led to a considerable increase in the reconstructed absorbed dose as compared with the applied. In the case when the dose was formed due to gamma radiation and the additional irradiation was performed by x-rays, it led to a considerable decrease in the reconstructed dose as compared with the applied. When the dose formation and the additional irradiation were carried out from external sources of electromagnetic radiation of equal energy, the reconstructed dose value was close to that of the applied. The obtained data show that for adequate reconstruction of individual absorbed doses by the EPR tooth enamel spectra, it is necessary to take into account the contribution from diagnostic x-ray examination of the teeth, jaw, and skull of some individuals who were exposed to a combined effect of the external gamma radiation and x-rays.

  2. Digital holographic interferometry: a novel optical calorimetry technique for radiation dosimetry.

    PubMed

    Cavan, Alicia; Meyer, Juergen

    2014-02-01

    To develop and demonstrate the proof-of-principle of a novel optical calorimetry method to determine radiation absorbed dose in a transparent medium. The calorimetric property of water is measured during irradiation by means of an interferometer, which detects temperature-induced changes in the refractive index that can be mathematically related to absorbed dose. The proposed method uses a technique called digital holographic interferometry (DHI), which comprises an optical laser interferometer setup and consecutive physical reconstruction of the recorded wave fronts by means of the Fresnel transform. This paper describes the conceptual framework and provides the mathematical basis for DHI dosimetry. Dose distributions from a high dose rate Brachytherapy source were measured by a prototype optical setup to demonstrate the feasibility of the approach. The developed DHI dosimeter successfully determined absorbed dose distributions in water in the region adjacent to a high dose rate Brachytherapy source. A temperature change of 0.0381 K across a distance of 6.8 mm near the source was measured, corresponding to a dose of 159.3 Gy. The standard deviation in a typical measurement set was ± 3.45 Gy (corresponding to an uncertainty in the temperature value of ± 8.3 × 10(-4) K). The relative dose fall off was in agreement with treatment planning system modeled data. First results with a prototype optical setup and a Brachytherapy source demonstrate the proof-of-principle of the approach. The prototype achieves high spatial resolution of approximately 3 × 10(-4) m. The general approach is fundamentally independent of the radiation type and energy. The sensitivity range determined indicates that the method is predominantly suitable for high dose rate applications. Further work is required to determine absolute dose in all three dimensions.

  3. SU-E-T-592: OSL Response of Al2O3:C Detectors Exposed to Therapeutic Proton Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granville, DA; Flint, DB; Sawakuchi, GO

    Purpose: To characterize the response of Al{sub 2}O{sub 3}:C optically stimulated luminescence (OSL) detectors (OSLDs) exposed to therapeutic proton beams of differing beam quality. Methods: We prepared Al{sub 2}O{sub 3}:C OSLDs from the same material as commercially available nanoDot dosimeters (Landauer, Inc). We irradiated the OSLDs in modulated proton beams of varying quality, as defined by the residual range. An absorbed dose to water of 0.2 Gy was delivered to all OSLDs with the residual range values varying from 0.5 to 23.5 cm (average LET in water from ∼0.5 to 2.5 keV/µm). To investigate the beam quality dependence of differentmore » emission bands within the OSL spectrum, we performed OSLD readouts using both continuous-wave stimulation (CW-OSL) and pulsed stimulation (P-OSL) with two sets of optical filters (Hoya U-340 and Kopp 5113). For all readout modes, the relative absorbed dose sensitivity ( S{sub rel}) for each beam quality was calculated using OSLDs irradiated in a 6 MV photon beam as a reference. Results: We found that the relative absorbed dose sensitivity was highly dependent on both readout mode and integration time of the OSL signal. For CW-OSL signals containing only the blue emission band, S{sub rel} was between 0.85 and 0.94 for 1 s readouts and between 0.82 and 0.93 for 10 s readouts. Similarly, for P-OSL readouts containing only the blue emission band S{sub rel} ranged from 0.86 to 0.91, and 0.82 to 0.93 for 1 s and 10 s readouts, respectively. For OSLD signals containing only the UV emission band, S{sub rel} ranged from 1.00 to 1.46, and 0.97 to 1.30 for P-OSL readouts of 1 s and 10 s, respectively. Conclusion: For measurements of absorbed dose using Al{sub 2}O{sub 3}:C OSLDs in therapeutic proton beams, dependence on beam quality was smallest for readout protocols that selected the blue emission band with small integration times. DA Granville received financial support from the Natural Sciences and Engineering Research Council of Canada.« less

  4. Evaluating health risks from occupational exposure to pesticides and the regulatory response.

    PubMed Central

    Woodruff, T J; Kyle, A D; Bois, F Y

    1994-01-01

    In this study, we used measurements of occupational exposures to pesticides in agriculture to evaluate health risks and analyzed how the federal regulatory program is addressing these risks. Dose estimates developed by the State of California from measured occupational exposures to 41 pesticides were compared to standard indices of acute toxicity (LD50) and chronic effects (reference dose). Lifetime cancer risks were estimated using cancer potencies. Estimated absorbed daily doses for mixers, loaders, and applicators of pesticides ranged from less than 0.0001% to 48% of the estimated human LD50 values, and doses for 10 of 40 pesticides exceeded 1% of the estimated human LD50 values. Estimated lifetime absorbed daily doses ranged from 0.1% to 114,000% of the reference doses developed by the U.S. Environmental Protection Agency, and doses for 13 of 25 pesticides were above them. Lifetime cancer risks ranged from 1 per million to 1700 per million, and estimates for 12 of 13 pesticides were above 1 per million. Similar results were obtained for field workers and flaggers. For the pesticides examined, exposures pose greater risks of chronic effects than acute effects. Exposure reduction measures, including use of closed mixing systems and personal protective equipment, significantly reduced exposures. Proposed regulations rely primarily on requirements for personal protective equipment and use restrictions to protect workers. Chronic health risks are not considered in setting these requirements. Reviews of pesticides by the federal pesticide regulatory program have had little effect on occupational risks. Policy strategies that offer immediate protection for workers and that are not dependent on extensive review of individual pesticides should be pursued. Images Figure 1. PMID:7713022

  5. Effective radiation dose of ProMax 3D cone-beam computerized tomography scanner with different dental protocols.

    PubMed

    Qu, Xing-min; Li, Gang; Ludlow, John B; Zhang, Zu-yan; Ma, Xu-chen

    2010-12-01

    The aim of this study was to compare effective doses resulting from different scan protocols for cone-beam computerized tomography (CBCT) using International Commission on Radiological Protection (ICRP) 1990 and 2007 calculations of dose. Average tissue-absorbed dose, equivalent dose, and effective dose for a ProMax 3D CBCT with different dental protocols were calculated using thermoluminescent dosimeter chips in a human equivalent phantom. Effective doses were derived using ICRP 1990 and the superseding 2007 recommendations. Effective doses (ICRP 2007) for default patient sizes from small to large ranged from 102 to 298 μSv. The coefficient of determination (R(2)) between tube current and effective dose (ICRP 2007) was 0.90. When scanning with lower resolution settings, the effective doses were reduced significantly (P < .05). ProMax 3D can provide a wide range of radiation dose levels. Reduction in radiation dose can be achieved when using lower settings of exposure parameters. Copyright © 2010 Mosby, Inc. All rights reserved.

  6. Impact of interpatient variability on organ dose estimates according to MIRD schema: Uncertainty and variance-based sensitivity analysis.

    PubMed

    Zvereva, Alexandra; Kamp, Florian; Schlattl, Helmut; Zankl, Maria; Parodi, Katia

    2018-05-17

    Variance-based sensitivity analysis (SA) is described and applied to the radiation dosimetry model proposed by the Committee on Medical Internal Radiation Dose (MIRD) for the organ-level absorbed dose calculations in nuclear medicine. The uncertainties in the dose coefficients thus calculated are also evaluated. A Monte Carlo approach was used to compute first-order and total-effect SA indices, which rank the input factors according to their influence on the uncertainty in the output organ doses. These methods were applied to the radiopharmaceutical (S)-4-(3- 18 F-fluoropropyl)-L-glutamic acid ( 18 F-FSPG) as an example. Since 18 F-FSPG has 11 notable source regions, a 22-dimensional model was considered here, where 11 input factors are the time-integrated activity coefficients (TIACs) in the source regions and 11 input factors correspond to the sets of the specific absorbed fractions (SAFs) employed in the dose calculation. The SA was restricted to the foregoing 22 input factors. The distributions of the input factors were built based on TIACs of five individuals to whom the radiopharmaceutical 18 F-FSPG was administered and six anatomical models, representing two reference, two overweight, and two slim individuals. The self-absorption SAFs were mass-scaled to correspond to the reference organ masses. The estimated relative uncertainties were in the range 10%-30%, with a minimum and a maximum for absorbed dose coefficients for urinary bladder wall and heart wall, respectively. The applied global variance-based SA enabled us to identify the input factors that have the highest influence on the uncertainty in the organ doses. With the applied mass-scaling of the self-absorption SAFs, these factors included the TIACs for absorbed dose coefficients in the source regions and the SAFs from blood as source region for absorbed dose coefficients in highly vascularized target regions. For some combinations of proximal target and source regions, the corresponding cross-fire SAFs were found to have an impact. Global variance-based SA has been for the first time applied to the MIRD schema for internal dose calculation. Our findings suggest that uncertainties in computed organ doses can be substantially reduced by performing an accurate determination of TIACs in the source regions, accompanied by the estimation of individual source region masses along with the usage of an appropriate blood distribution in a patient's body and, in a few cases, the cross-fire SAFs from proximal source regions. © 2018 American Association of Physicists in Medicine.

  7. Detailed Distribution Map of Absorbed Dose Rate in Air in Tokatsu Area of Chiba Prefecture, Japan, Constructed by Car-Borne Survey 4 Years after the Fukushima Daiichi Nuclear Power Plant Accident

    PubMed Central

    Inoue, Kazumasa; Arai, Moeko; Fujisawa, Makoto; Saito, Kyouko; Fukushi, Masahiro

    2017-01-01

    A car-borne survey was carried out in the northwestern, or Tokatsu, area of Chiba Prefecture, Japan, to make a detailed distribution map of absorbed dose rate in air four years after the Fukushima Daiichi Nuclear Power Plant accident. This area was chosen because it was the most heavily radionuclide contaminated part of Chiba Prefecture and it neighbors metropolitan Tokyo. Measurements were performed using a 3-in × 3-in NaI(Tl) scintillation spectrometer in June 2015. The survey route covered the whole Tokatsu area which includes six cities. A heterogeneous distribution of absorbed dose rate in air was observed on the dose distribution map. Especially, higher absorbed dose rates in air exceeding 80 nGy h-1 were observed along national roads constructed using high porosity asphalt, whereas lower absorbed dose rates in air were observed along local roads constructed using low porosity asphalt. The difference between these asphalt types resulted in a heterogeneous dose distribution in the Tokatsu area. The mean of the contribution ratio of artificial radionuclides to absorbed dose rate in air measured 4 years after the accident was 29% (9–50%) in the Tokatsu area. The maximum absorbed dose rate in air, 201 nGy h-1 was observed at Kashiwa City. Radiocesium was deposited in the upper 1 cm surface layer of the high porosity asphalt which was collected in Kashiwa City and the environmental half-life of the absorbed dose rate in air was estimated to be 1.7 years. PMID:28129382

  8. Neutron relative biological effectiveness for solid cancer incidence in the Japanese A-bomb survivors: an analysis considering the degree of independent effects from γ-ray and neutron absorbed doses with hierarchical partitioning.

    PubMed

    Walsh, Linda

    2013-03-01

    It has generally been assumed that the neutron and γ-ray absorbed doses in the data from the life span study (LSS) of the Japanese A-bomb survivors are too highly correlated for an independent separation of the all solid cancer risks due to neutrons and due to γ-rays. However, with the release of the most recent data for all solid cancer incidence and the increased statistical power over previous datasets, it is instructive to consider alternatives to the usual approaches. Simple excess relative risk (ERR) models for radiation-induced solid cancer incidence fitted to the LSS epidemiological data have been applied with neutron and γ-ray absorbed doses as separate explanatory covariables. A simple evaluation of the degree of independent effects from γ-ray and neutron absorbed doses on the all solid cancer risk with the hierarchical partitioning (HP) technique is presented here. The degree of multi-collinearity between the γ-ray and neutron absorbed doses has also been considered. The results show that, whereas the partial correlation between the neutron and γ-ray colon absorbed doses may be considered to be high at 0.74, this value is just below the level beyond which remedial action, such as adding the doses together, is usually recommended. The resulting variance inflation factor is 2.2. Applying HP indicates that just under half of the drop in deviance resulting from adding the γ-ray and neutron absorbed doses to the baseline risk model comes from the joint effects of the neutrons and γ-rays-leaving a substantial proportion of this deviance drop accounted for by individual effects of the neutrons and γ-rays. The average ERR/Gy γ-ray absorbed dose and the ERR/Gy neutron absorbed dose that have been obtained here directly for the first time, agree well with previous indirect estimates. The average relative biological effectiveness (RBE) of neutrons relative to γ-rays, calculated directly from fit parameters to the all solid cancer ERR model with both colon absorbed dose covariables, is 65 (95 %CI: 11; 170). Therefore, although the 95 % CI is quite wide, reference to the colon doses with a neutron weighting of 10 may not be optimal as the basis for the determination of all solid cancer risks. Further investigations into the neutron RBE are required, ideally based on the LSS data with organ-specific neutron and γ-ray absorbed doses for all organs rather than the RBE weighted absorbed doses currently provided. The HP method is also suggested for use in other epidemiological cohort analyses that involve correlated explanatory covariables.

  9. Using RADFET for the real-time measurement of gamma radiation dose rate

    NASA Astrophysics Data System (ADS)

    Andjelković, Marko S.; Ristić, Goran S.; Jakšić, Aleksandar B.

    2015-02-01

    RADFETs (RADiation sensitive Field Effect Transistors) are integrating ionizing radiation dosimeters operating on the principle of conversion of radiation-induced threshold voltage shift into absorbed dose. However, one of the major drawbacks of RADFETs is the inability to provide the information on the dose rate in real-time using the conventional absorbed dose measurement technique. The real-time monitoring of dose rate and absorbed dose can be achieved with the current mode dosimeters such as PN and PIN diodes/photodiodes, but these dosimeters have some limitations as absorbed dose meters and hence they are often not a suitable replacement for RADFETs. In that sense, this paper investigates the possibility of using the RADFET as a real-time dose rate meter so that it could be applied for simultaneous online measurement of the dose rate and absorbed dose. A RADFET sample, manufactured by Tyndall National Institute, Cork, Ireland, was tested as a dose rate meter under gamma irradiation from a Co-60 source. The RADFET was configured as a PN junction, such that the drain, gate and source terminals were grounded, while the radiation-induced current was measured at the bulk terminal, whereby the bulk was successively biased with 0 , 10 , 20  and 30 V. In zero-bias mode the radiation-induced current was unstable, but in the biased mode the current response was stable for the investigated dose rates from 0.65  to 32.1 Gy h-1 and up to the total absorbed dose of 25 Gy. The current increased with the dose rate in accordance with the power law, whereas the sensitivity of the current read-out was linear with respect to the applied bias voltage. Comparison with previously analyzed PIN photodiodes has shown that the investigated RADFET is competitive with PIN photodiodes as a gamma radiation dose rate meter and therefore has the potential to be employed for the real-time monitoring of the dose rate and absorbed dose.

  10. Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics

    NASA Astrophysics Data System (ADS)

    Rinderknecht, H. G.; Rojas-Herrera, J.; Zylstra, A. B.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Sinenian, N.; Rosenberg, M. J.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.; Filkins, T.; Steidle, Jeffrey A.; Steidle, Jessica A.; Traynor, N.; Freeman, C.

    2015-12-01

    The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1-100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protons with energies in the range 0.5-9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. The impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant.

  11. Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinderknecht, H. G.; Rojas-Herrera, J.; Zylstra, A. B.

    The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1–100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protonsmore » with energies in the range 0.5–9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. Furthermore, the impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant.« less

  12. Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinderknecht, H. G., E-mail: rinderknecht1@llnl.gov; Rojas-Herrera, J.; Zylstra, A. B.

    The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1–100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protonsmore » with energies in the range 0.5–9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. The impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant.« less

  13. Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics

    DOE PAGES

    Rinderknecht, H. G.; Rojas-Herrera, J.; Zylstra, A. B.; ...

    2015-12-23

    The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1–100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protonsmore » with energies in the range 0.5–9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. Furthermore, the impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant.« less

  14. Cytogenetic effect of low dose gamma-radiation in Hordeum vulgare seedlings: non-linear dose-effect relationship.

    PubMed

    Geras'kin, Stanislav A; Oudalova, Alla A; Kim, Jin Kyu; Dikarev, Vladimir G; Dikareva, Nina S

    2007-03-01

    The induction of chromosome aberrations in Hordeum vulgare germinated seeds was studied after ionizing irradiation with doses in the range of 10-1,000 mGy. The relationship between the frequency of aberrant cells and the absorbed dose was found to be nonlinear. A dose-independent plateau in the dose range from about 50 to 500 mGy was observed, where the level of cytogenetic damage was significantly different from the spontaneous level. The comparison of the goodness of the experimental data fitting with mathematical models of different complexity, using the most common quantitative criteria, demonstrated the advantage of a piecewise linear model over linear and polynomial models in approximating the frequency of cytogenetical disturbances. The results of the study support the hypothesis of indirect mechanisms of mutagenesis induced by low doses. Fundamental and applied implications of these findings are discussed.

  15. An automated voxelized dosimetry tool for radionuclide therapy based on serial quantitative SPECT/CT imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Price A.; Kron, Tomas; Beauregard, Jean-Mathieu

    2013-11-15

    Purpose: To create an accurate map of the distribution of radiation dose deposition in healthy and target tissues during radionuclide therapy.Methods: Serial quantitative SPECT/CT images were acquired at 4, 24, and 72 h for 28 {sup 177}Lu-octreotate peptide receptor radionuclide therapy (PRRT) administrations in 17 patients with advanced neuroendocrine tumors. Deformable image registration was combined with an in-house programming algorithm to interpolate pharmacokinetic uptake and clearance at a voxel level. The resultant cumulated activity image series are comprised of values representing the total number of decays within each voxel's volume. For PRRT, cumulated activity was translated to absorbed dose basedmore » on Monte Carlo-determined voxel S-values at a combination of long and short ranges. These dosimetric image sets were compared for mean radiation absorbed dose to at-risk organs using a conventional MIRD protocol (OLINDA 1.1).Results: Absorbed dose values to solid organs (liver, kidneys, and spleen) were within 10% using both techniques. Dose estimates to marrow were greater using the voxelized protocol, attributed to the software incorporating crossfire effect from nearby tumor volumes.Conclusions: The technique presented offers an efficient, automated tool for PRRT dosimetry based on serial post-therapy imaging. Following retrospective analysis, this method of high-resolution dosimetry may allow physicians to prescribe activity based on required dose to tumor volume or radiation limits to healthy tissue in individual patients.« less

  16. SU-G-201-08: Energy Response of Thermoluminescent Microcube Dosimeters in Water for Kilovoltage X-Ray Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Maso, L; Lawless, M; Culberson, W

    Purpose: To characterize the energy dependence for TLD-100 microcubes in water at kilovoltage energies. Methods: TLD-100 microcubes with dimensions of (1 × 1 × 1) mm{sup 3} were irradiated with kilovoltage x-rays in a custom-built thin-window liquid water phantom. The TLD-100 microcubes were held in Virtual Water™ probes and aligned at a 2 cm depth in water. Irradiations were performed using the M-series x-ray beams of energies ranging from 50-250 kVp and normalized to a {sup 60}Co beam located at the UWADCL. Simulations using the EGSnrc Monte Carlo Code System were performed to model the x-ray beams, the {sup 60}Comore » beam, the water phantom and the dosimeters in the phantom. The egs-chamber user code was used to tally the dose to the TLDs and the dose to water. The measurements and calculations were used to determine the intrinsic energy dependence, absorbed-dose energy dependence, and absorbed-dose sensitivity. These values were compared to TLD-100 chips with dimensions of (3.2 × 0.9 × 0.9) mm{sup 3}. Results: The measured TLD-100 microcube response per dose to water among all investigated x-ray energies had a maximum percent difference of 61% relative to {sup 60}Co. The simulated ratio of dose to water to the dose to TLD had a maximum percent difference of 29% relative to {sup 60}Co. The ratio of dose to TLD to the TLD output had a maximum percent difference of 13% relative to {sup 60}Co. The maximum percent difference for the absorbed-dose sensitivity was 15% more than the used value of 1.41. Conclusion: These results confirm that differences in beam quality have a significant effect on TLD response when irradiated in water. These results also indicated a difference in TLD-100 response between microcube and chip geometries. The intrinsic energy dependence and the absorbed-dose energy dependence deviated up to 10% between TLD-100 microcubes and chips.« less

  17. Influence of eye size and beam entry angle on dose to non-targeted tissues of the eye during stereotactic x-ray radiosurgery of AMD

    NASA Astrophysics Data System (ADS)

    Cantley, Justin L.; Hanlon, Justin; Chell, Erik; Lee, Choonsik; Smith, W. Clay; Bolch, Wesley E.

    2013-10-01

    Age-related macular degeneration is a leading cause of vision loss for the elderly population of industrialized nations. The IRay® Radiotherapy System, developed by Oraya® Therapeutics, Inc., is a stereotactic low-voltage irradiation system designed to treat the wet form of the disease. The IRay System uses three robotically positioned 100 kVp collimated photon beams to deliver an absorbed dose of up to 24 Gy to the macula. The present study uses the Monte Carlo radiation transport code MCNPX to assess absorbed dose to six non-targeted tissues within the eye—total lens, radiosensitive tissues of the lens, optic nerve, distal tip of the central retinal artery, non-targeted portion of the retina, and the ciliary body--all as a function of eye size and beam entry angle. The ocular axial length was ranged from 20 to 28 mm in 2 mm increments, with the polar entry angle of the delivery system varied from 18° to 34° in 2° increments. The resulting data showed insignificant variations in dose for all eye sizes. Slight variations in the dose to the optic nerve and the distal tip of the central retinal artery were noted as the polar beam angle changed. An increase in non-targeted retinal dose was noted as the entry angle increased, while the dose to the lens, sensitive volume of the lens, and ciliary body decreased as the treatment polar angle increased. Polar angles of 26° or greater resulted in no portion of the sensitive volume of the lens receiving an absorbed dose of 0.5 Gy or greater. All doses to non-targeted structures reported in this study were less than accepted thresholds for post-procedure complications.

  18. Dose Assessments to the Hands of Radiopharmaceutical Workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Dan; Eckerman, Keith F; Sherbini, Sami

    This paper describes the characterization of radiation doses to the hands of nuclear medicine technicians resulting from the handling of radiopharmaceuticals. Radiation monitoring using ring dosimeters indicates that finger dosimeters may overestimate or underestimate the radiation doses to the skin that are used to show compliance with applicable regulations depending on the nature of the particular procedure and the radioisotope being handled. To better understand the parameters governing the absorbed dose distributions, a detailed model of the hands was created and used in Monte Carlo simulations of selected nuclear medicine procedures. Simulations on realistic configurations typical for workers handling radiopharmaceuticalsmore » were performed for a range of energies of the source photons. The lack of charged-particle equilibrium necessitated full photon-electron coupled transport calculations. The results show that the dose to different regions of the fingers can differ substantially from the dosimeters' readings when the dosimeters are located at the base of the finger. We tried to identify consistent patterns that relate the actual dose to the dosimeter readings. These patterns depend on the specific work conditions and can be used to better assess the absorbed dose to different regions of the exposed skin.« less

  19. Measurements of environmental terrestrial gamma radiation dose rate in three mountainous locations in the western region of Saudi Arabia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ghorabie, Fayez H.H.

    2005-06-01

    This paper describes measurements of external gamma radiation dose rate from terrestrial gamma-rays 1 m above the ground in three different mountainous locations in the western region of the Kingdom of Saudi Arabia. These locations are At-Taif city, Al-Hada village, and Ash-Shafa village. CaSO{sub 4}:Dy (TLD-900) thermoluminescent dosimeters were used for the detection of terrestrial gamma radiation at 40 different places in the three locations. The values of terrestrial gamma radiation dose rate measured ranged between 14 and 279 nGy h{sup -1} for the time interval from June 2001 to June 2002. The measured dose rate varied with the seasonmore » of the year. The average gamma radiation dose rates were 468, 541, and 781 {mu}Gy y{sup -1} for At-Taif city, Al-Hada village, and Ash-Shafa village, respectively. The corresponding average absorbed doses to the population of the three locations were 328, 379, and 547 {mu}Sv y{sup -1}, respectively. The quality factor of 0.7 Sv Gy{sup -1} was applied in the calculations of the absorbed dose to humans.« less

  20. [Investigation of radiation dose for lower tube voltage CT using automatic exposure control].

    PubMed

    Takata, Mitsuo; Matsubara, Kousuke; Koshida, Kichirou; Tarohda, Tohru

    2015-04-01

    The purpose of our study was to investigate radiation dose for lower tube voltage CT using automatic exposure control (AEC). An acrylic body phantom was used, and volume CT dose indices (CTDIvol) for tube voltages of 80, 100, 120, and 135 kV were investigated with combination of AEC. Average absorbed dose in the abdomen for 100 and 120 kV were also measured using thermoluminescence dosimeters. In addition, we examined noise characteristics under the same absorbed doses. As a result, the exposure dose was not decreased even when the tube voltage was lowered, and the organ absorbed dose value became approximately 30% high. And the noise was increased under the radiographic condition to be an equal absorbed dose. Therefore, radiation dose increases when AEC is used for lower tube voltage CT under the same standard deviation (SD) setting with 120 kV, and the optimization of SD setting is crucial.

  1. A new radiochromic dosimeter film

    NASA Astrophysics Data System (ADS)

    Sidney, L. N.; Lynch, D. C.; Willet, P. S.

    By employing acid-sensitive leuco dyes in a chlorine-containing polymer matrix, a new radiochromic dosimeter film has been developed for gamma, electron beam, and ultraviolet radiation. These dosimeter films undergo a color change from colorless to royal blue, red fuchsia, or black, depending on dye selection, and have been characterized using a visible spectrophotometer over an absorbed dose range of 1 to 100 kGy. The primary features of the film are improved color stability before and after irradiation, whether stored in the dark or under artificial lights, and improved moisture resistance. The effects of absorbed dose, dose rate, and storage conditions on dosimeter performance are discussed. The dosimeter material may be produced as a free film or coated onto a transparent substrate and optionally backed with adhesive. Potential applications for these materials include gamma sterilization indicator films for food and medical products, electron beam dosimeters, and in-line radiation monitors for electron beam and ultraviolet processing.

  2. Quantification of damage due to low-dose radiation exposure in mice: construction and application of a biodosimetric model using mRNA indicators in circulating white blood cells

    PubMed Central

    Ishihara, Hiroshi; Tanaka, Izumi; Yakumaru, Haruko; Tanaka, Mika; Yokochi, Kazuko; Fukutsu, Kumiko; Tajima, Katsushi; Nishimura, Mayumi; Shimada, Yoshiya; Akashi, Makoto

    2016-01-01

    Biodosimetry, the measurement of radiation damage in a biologic sample, is a reliable tool for increasing the accuracy of dose estimation. Although established chromosome analyses are suitable for estimating the absorbed dose after high-dose irradiation, biodosimetric methodology to measure damage following low-dose exposure is underdeveloped. RNA analysis of circulating blood containing radiation-sensitive cells is a candidate biodosimetry method. Here we quantified RNA from a small amount of blood isolated from mice following low-dose body irradiation (<0.5 Gy) aimed at developing biodosimetric tools for situations that are difficult to study in humans. By focusing on radiation-sensitive undifferentiated cells in the blood based on Myc RNA expression, we quantified the relative levels of RNA for DNA damage-induced (DDI) genes, such as Bax, Bbc3 and Cdkn1a. The RNA ratios of DDI genes/Myc in the blood increased in a dose-dependent manner 4 h after whole-body irradiation at doses ranging from 0.1 to 0.5 Gy (air-kerma) of X-rays, regardless of whether the mice were in an active or resting state. The RNA ratios were significantly increased after 0.014 Gy (air-kerma) of single X-ray irradiation. The RNA ratios were directly proportional to the absorbed doses in water ranging from 0.1 to 0.5 Gy, based on gamma-irradiation from 137Cs. Four hours after continuous irradiation with gamma-rays or by internal contamination with a beta-emitter, the increased RNA ratios resembled those following single irradiation. These findings indicate that the RNA status can be utilized as a biodosimetric tool to estimate low-dose radiation when focusing on undifferentiated cells in blood. PMID:26589759

  3. On the definition of absorbed dose

    NASA Astrophysics Data System (ADS)

    Grusell, Erik

    2015-02-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before.

  4. Redefining relative biological effectiveness in the context of the EQDX formalism: implications for alpha-particle emitter therapy.

    PubMed

    Hobbs, Robert F; Howell, Roger W; Song, Hong; Baechler, Sébastien; Sgouros, George

    2014-01-01

    Alpha-particle radiopharmaceutical therapy (αRPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, αRPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of α-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by α-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or β-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(α/β), has recently been proposed by the ICRU. In concert with EQD2(α/β), we introduce a new, redefined RBE quantity, named RBE2(α/β), as the ratio of the two linear coefficients that characterize the α particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from irradiation of a breast cancer cell line. Radiobiological parameters are obtained using the linear quadratic model to fit cell survival data for MDA-MB-231 human breast cancer cells that were irradiated with either α particles or a single fraction of low-LET (137)Cs γ rays. From these, the linear coefficient for both the biologically effective dose (BED) and the EQD2(α/β) response lines were derived for fractionated irradiation. The standard RBE calculation, using the traditional single fraction reference radiation, gave RBE values that ranged from 2.4 for a surviving fraction of 0.82-6.0 for a surviving fraction of 0.02, while the dose-independent RBE2(4.6) value was 4.5 for all surviving fraction values. Furthermore, bioeffect modeling with RBE2(α/β) and EQD2(α/β) demonstrated the capacity to predict the surviving fraction of cells irradiated with acute and fractionated low-LET radiation, α particles and chronic exponentially decreasing dose rates of low-LET radiation. RBE2(α/β) is independent of absorbed dose for α-particle emitters and it provides a more logical framework for data reporting and conversion to equieffective dose than the conventional dose-dependent definition of RBE. Moreover, it provides a much needed foundation for the ongoing development of an α-particle dosimetry paradigm and will facilitate the use of tolerance dose data available from external beam radiation therapy, thereby helping to develop αRPT as a single modality as well as for combination therapies.

  5. Redefining Relative Biological Effectiveness in the Context of the EQDX Formalism: Implications for Alpha-Particle Emitter Therapy.

    PubMed

    Hobbs, Robert F; Howell, Roger W; Song, Hong; Baechler, Sébastien; Sgouros, George

    2013-12-30

    Alpha-particle radiopharmaceutical therapy (αRPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, αRPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of α-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by α-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or β-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(α/β), has recently been proposed by the ICRU. In concert with EQD2(α/β), we introduce a new, redefined RBE quantity, named RBE2(α/β), as the ratio of the two linear coefficients that characterize the α particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from irradiation of a breast cancer cell line. Radiobiological parameters are obtained using the linear quadratic model to fit cell survival data for MDA-MB-231 human breast cancer cells that were irradiated with either α particles or a single fraction of low-LET 137 Cs γ rays. From these, the linear coefficient for both the biologically effective dose (BED) and the EQD2(α/β) response lines were derived for fractionated irradiation. The standard RBE calculation, using the traditional single fraction reference radiation, gave RBE values that ranged from 2.4 for a surviving fraction of 0.82-6.0 for a surviving fraction of 0.02, while the dose-independent RBE2(4.6) value was 4.5 for all surviving fraction values. Furthermore, bioeffect modeling with RBE2(α/β) and EQD2(α/β) demonstrated the capacity to predict the surviving fraction of cells irradiated with acute and fractionated low-LET radiation, α particles and chronic exponentially decreasing dose rates of low-LET radiation. RBE2(α/β) is independent of absorbed dose for α-particle emitters and it provides a more logical framework for data reporting and conversion to equieffective dose than the conventional dose-dependent definition of RBE. Moreover, it provides a much needed foundation for the ongoing development of an α-particle dosimetry paradigm and will facilitate the use of tolerance dose data available from external beam radiation therapy, thereby helping to develop αRPT as a single modality as well as for combination therapies.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abayli, D., E-mail: abayli@itu.edu.tr; Baydogan, N., E-mail: dogannil@itu.edu.tr

    In this study, zirconium oxide (ZrO{sub 2}) thin film samples prepared by sol–gel method were irradiated using Co-60 radioisotope as gamma source. Then, it was investigated the ionizing effect on optical properties of ZrO{sub 2} thin film samples with the rise of the absorbed dose. The changes in the optical absorbance of ZrO{sub 2} thin films were determined by using optical transmittance and the reflectance measurements in the range between 190 – 1100 nm obtained from PG Instruments T80 UV-Vis spectrophotometer.

  7. Calorimetry of electron beams and the calibration of dosimeters at high doses

    NASA Astrophysics Data System (ADS)

    Humphreys, J. C.; McLaughlin, W. L.

    Graphite or metal calorimeters are used to make absolute dosimetric measurements of high-energy electron beams. These calibrated beams are then used to calibrate several types of dosimeters for high-dose applications such as medical-product sterilization, polymer modification, food processing, or electronic-device hardness testing. The electron beams are produced either as continuous high-power beams at approximately 4.5 MeV by d.c. type accelerators or in the energy range of approximately 8 to 50 MeV using pulsed microwave linear accelerators (linacs). The continuous beams are generally magnetically scanned to produce a broad, uniform radiation environment for the processing of materials of extended lateral dimensions. The higher-energy pulsed beams may also be scanned for processing applications or may be used in an unscanned, tightly-focused mode to produce maximum absorbed dose rates such as may be required for electronic-device radiation hardness testing. The calorimeters are used over an absorbed dose range of 10 2 to 10 4 Gy. Intercomparison studies are reported between National Institute of Standards and Technology (NIST) and UK National Physical Laboratory (NPL) graphite disk calorimeters at high doses, using the NPL 10-MeV linac, and agreement was found within 1.5%. It was also shown that the electron-beam responses of radiochromic film dosimeters and alanine pellet dosimeters can be accurately calibrated by comparison with calorimeter readings.

  8. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors

    NASA Astrophysics Data System (ADS)

    Garnica-Garza, H. M.

    2009-09-01

    Radiotherapy using kilovoltage x-rays in conjunction with contrast agents incorporated into the tumor, gold nanoparticles in particular, could represent a potential alternative to current techniques based on high-energy linear accelerators. In this paper, using the voxelized Zubal phantom in conjunction with the Monte Carlo code PENELOPE to model a prostate cancer treatment, it is shown that in combination with a 360° arc delivery technique, tumoricidal doses of radiation can be delivered to deep-seated tumors while still providing acceptable doses to the skin and other organs at risk for gold concentrations in the tumor within the range of 7-10 mg-Au per gram of tissue. Under these conditions and using a x-ray beam with 90% of the fluence within the range of 80-200 keV, a 72 Gy physical absorbed dose to the prostate can be delivered, while keeping the rectal wall, bladder, skin and femoral heads below 65 Gy, 55 Gy, 40 Gy and 30 Gy, respectively. However, it is also shown that non-uniformities in the contrast agent concentration lead to a severe degradation of the dose distribution and that, therefore, techniques to locally quantify the presence of the contrast agent would be necessary in order to determine the incident x-ray fluence that best reproduces the dosimetry obtained under conditions of uniform contrast agent distribution.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vostrotin, Vadim; Birchall, Alan; Zhdanov, Alexey

    The distribution of calculated internal doses was determined for 8043 Mayak Production Associate (Mayak PA) workers according to the epidemiological cohorts and groups of raw data used as well as the type of industrial compounds of inhaled aerosols. Statistical characteristics of point estimates of accumulated doses to 17 different tissues and organs and the uncertainty ranges were calculated. Under the MWDS-2013 dosimetry system, the mean accumulated lung dose was 185585 mGy, with a median value of 31 mGy and a maximum of 8980 mGy maximum. The ranges of relative standard uncertainty were: from 40 to 2200% for accumulated lung dose,more » from 25-90% to 2600-3000% for accumulated dose to different regions of respiratory tract, from 13-18% to 2300-2500% for systemic organs and tissues. The Mayak PA workers accumulated internal plutonium lung dose is shown to be close to lognormal. The accumulated internal plutonium dose to systemic organs was close to a log-triangle. The dependency of uncertainty of accumulated absorbed lung and liver doses on the dose estimates itself is also shown. The accumulated absorbed doses to lung, alveolar-interstitial region, liver, bone surface cells and red bone marrow, calculated both with MWDS-2013 and MWDS-2008 have been compared. In general, the accumulated lung doses increased by a factor of 1.8 in median value, while the accumulated doses to systemic organs decreased by factor of 1.3-1.4 in median value. For the cases with identical initial data, accumulated lung doses increased by a factor of 2.1 in median value, while accumulated doses to systemic organs decreased by 8-13% in median value. For the cases with both identical initial data and all of plutonium activity in urine measurements above the decision threshold, accumulated lung doses increased by a factor of 2.8 in median value, while accumulated doses to systemic organs increased by 6-12% in median value.« less

  10. A rule of unity for human intestinal absorption 3: Application to pharmaceuticals.

    PubMed

    Patel, Raj B; Yalkowsky, Samuel H

    2018-02-01

    The rule of unity is based on a simple absorption parameter, Π, that can accurately predict whether or not an orally administered drug will be well absorbed or poorly absorbed. The intrinsic aqueous solubility and octanol-water partition coefficient, along with the drug dose are used to calculate Π. We show that a single delineator value for Π exist that can distinguish whether a drug is likely to be well absorbed (FA ≥ 0.5) or poorly absorbed (FA < 0.5) at any specified dose. The model is shown to give 82.5% correct predictions for over 938 pharmaceuticals. The maximum well-absorbed dose (i.e. the maximum dose that will be more than 50% absorbed) calculated using this model can be utilized as a guideline for drug design and synthesis. Copyright © 2017 John Wiley & Sons, Ltd.

  11. [Radiation effect on cosmonauts during extravehicular activities in 2008-2009].

    PubMed

    Mitrikas, V G

    2010-01-01

    The geometrical model of suited cosmonaut's phantom was used in mathematical modeling of EVAs performed by cosmonauts with consideration of changes in the ISS Russian segment configuration during 2008-2009 and the dependence of space radiation absorbed dose on EVA scene. Influence of spatial position of cosmonaut on absorbed dose value was evaluated with the EVA dosimeter model reproducing the actually determined weight and dimension. Calculated absorbed dose values are in good agreement with experimental data. Absorbed doses imparted to body organs (skin, lens, hemopoietic system, gastrointestinal tract, central nervous system, gonads) were determined for specific EVA events.

  12. [Absorbed doses to critical organs from full mouth dental radiography].

    PubMed

    Zhang, G; Yasuhiko, O; Hidegiko, Y

    1999-01-01

    A few studies were reported in China on radiological risk of dental radiography. The aim of this study is to evaluate the absorbed doses of patients from the full mouth radiographs, and to find out the contribution from each projection to the total absorbed dose of the organs. Absorbed doses to critical organs were measured from 14-film complete dental radiography. The organs included pituitary, optical lens, parotid glands, submandibular glands, sublingual glands, thyroid, breasts, ovary, testes and the skin in center field of each projection were studied. A-radiation analog dosimetry system (RANDO) phantom with thermoluminescent dosimeters (ILD200) was used for the study. All of the exposure parameters were fixed. The total filtration was 2 mm Al equivalent. The column collaboration was 6 cm in diameter and 20 cm in length. The absorbed doses of organs were measured three times in each projection of the full-mouth series (FMS) exposures. The absorbed dose of lenses in FMS (249 microGy) in present study was much less (10%) than the doses (2,630 microGy) reported in 1976. The doses absorbed of other organs in the present study were thyroid gland (125 microGy), pituitary gland (112 microGy), parotid gland (153 microGy), submandibular gland (629 microGy), sublingual gland (1,900 microGy), and breast gland (12 microGy). The doses of the ovary and testis were to small to further analysis. All of the results show that the radiation risk to patients in intraoral radiograph has been reduced significantly. In the pituitary, half of the dose is from both sides of the maxillary molar projection. For the lenses, the largest contribultions of radiation (60%) come from the ipsilateral molar and premolar projection of maxilla. In parotid gland, up to 57% of the dose is from the contralateral molar, pre-molar and canine of maxilla. It could be derived that about 90% of the absorbed doses could be avoided in FMS if the column collimator is 20 cm long and the filter is 2.0 mm thick. If we use the 10-film complete mouth radiograph instead of the 14-film series, more 20% of the doses would be reduced.

  13. Maximum dose rate is a determinant of hypothyroidism after 131I therapy of Graves' disease but the total thyroid absorbed dose is not.

    PubMed

    Krohn, Thomas; Hänscheid, Heribert; Müller, Berthold; Behrendt, Florian F; Heinzel, Alexander; Mottaghy, Felix M; Verburg, Frederik A

    2014-11-01

    The determinants of successful (131)I therapy of Graves' disease (GD) are unclear. To relate dosimetry parameters to outcome of therapy to identify significant determinants eu- and/or hypothyroidism after (131)I therapy in patients with GD. A retrospective study in which 206 Patients with GD treated in University Hospital between November 1999 and January 2011. All received (131)I therapy aiming at a total absorbed dose to the thyroid of 250 Gy based on pre-therapeutic dosimetry. Post-therapy dosimetric thyroid measurements were performed twice daily until discharge. From these measurements, thyroid (131)I half-life, the total thyroid absorbed dose, and the maximum dose rate after (131)I administration were calculated. In all, 48.5% of patients were hypothyroid and 28.6% of patients were euthyroid after (131)I therapy. In univariate analysis, nonhyperthyroid and hyperthyroid patients only differed by sex. A lower thyroid mass, a higher activity per gram thyroid tissue, a shorter effective thyroidal (131)I half-life, and a higher maximum dose rate, but not the total thyroid absorbed dose, were significantly associated with hypothyroidism. In multivariate analysis, the maximum dose rate remained the only significant determinant of hypothyroidism (P < .001). Maximum dose rates of 2.2 Gy/h and higher were associated with a 100% hypothyroidism rate. Not the total thyroid absorbed dose, but the maximum dose rate is a determinant of successfully achieving hypothyroidism in Graves' disease. Dosimetric concepts aiming at a specific total thyroid absorbed dose will therefore require reconsideration if our data are confirmed prospectively.

  14. CT-SPECT fusion plus conjugate views for determining dosimetry in iodine-131-monoclonal antibody therapy of lymphoma patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koral, K.F.; Zasadny, K.R.; Kessler, M.L.

    A method of performing {sup 131}I quantitative SPECT imaging is described which uses the superimposition of markers placed on the skin to accomplish fusion of computed tomography (CT) and SPECT image sets. To calculate mean absorbed dose after administration of one of two {sup 131}I-labeled monoclonal antibodies (Mabs), the shape of the time-activity curve is measured by daily diagnostic conjugate views, the y-axis of that curve is normalized by a quantitative SPECT measurement (usually intra-therapy), and the tumor mass is deduced from a concurrent CT volume measurement. The method is applied to six B-cell non-Hodgkin`s lymphoma patients. For four tumorsmore » in three patients treated with the MB1 Mab, a correlation appears to be present between resulting mean absorbed dose and disease response. Including all dosimetric estimates for both antibodies, the range for the specific absorbed dose is within that found by others in treating B-cell lymphoma patients. Excluding a retreated anti-B1 patient, the tumor-specific absorbed dose during anti-B1 therapy is from 1.4 to 1.7 mGy/MBq. For the one anti-B1 patient, where quantitative SPECT and conjugate-view imaging was carried out back to back , the quantitative SPECT-measured activity was somewhat less for the spleen and much less for the tumor than that from conjugate views. The quantitative SPECT plus conjugate views method may be of general utility for macro-dosimetry of {sup 131}If therapies. 18 refs., 3 figs., 5 tabs.« less

  15. The effect of gamma irradiation on rice protein aqueous solution

    NASA Astrophysics Data System (ADS)

    Baccaro, Stefania; Bal, Oya; Cemmi, Alessia; Di Sarcina, Ilaria

    2018-05-01

    The use of proteins as natural biopolymers are sensibly increasing in several application fields such as food industry, packaging and environment protection. In particular, rice proteins (RP) present good nutritional, hypoallergenic and healthful properties very interesting for human consumption. Since ionizing radiation can be successfully applied on protein containing systems involved in different industrial processes, this work aims to determine the effect of gamma radiation on 5 wt%-7.5 wt% RP aqueous solutions in a wide range of absorbed doses up to around 40 kGy. The changes of RP secondary and tertiary structures and their chemical composition were followed by UV-VIS absorbance spectroscopy, luminescence analysis and pH measurements. The experimental data showed the occurrence of the unfolding of RP chains with the increase of the absorbed dose and the formation of new molecules, due to the reaction among tryptophane and tyrosine amino acids and the radical species induced by gamma radiation. The results are also confirmed by the modification of the pH values measured for the irradiated solutions.

  16. DSC studies on gamma irradiated poly(vinylidene fluoride) applied to high gamma dose dosimetry

    NASA Astrophysics Data System (ADS)

    Batista, Adriana S. M.; Faria, Luiz O.

    2017-11-01

    Poly(vinylidene fluoride) homopolymer (PVDF) was investigated for use on high gamma dose dosimetry. Samples were irradiated with gamma doses ranging from 100 kGy to 3000 kGy. Differential scanning calorimetry (DSC) was used to construct an unambiguous relationship between the melting transition latent heat (LM) and the absorbed dose (D). DSC thermograms were taken immediately, 1, 2 and 8 months after the irradiation process revealing that the LMx D relationship presented no change for doses ranging from 100 to 2750 kGy. FTIR and UV-Vis spectroscopy data revealed the radio-induction of C˭O and C˭C bonds. These radio-induced bonds were responsible by the chain stiffening and chain oxidation, respectively. SEM microscopy demonstrates that the spherulitic large crystalline structures present in pristine PVDF are destroyed with doses as low as 100 kGy. The DRX analysis revealed that the main effect of high gamma doses in the crystalline structure of PVDF is to provoke a change from the pristine PVDF α-phase to the γ-phase. Both the ability to detect gamma doses in a large dose range and the low fading features make PVDF homopolymers good candidates to be investigated as high gamma dose dosimeters.

  17. MONTE CARLO STUDY OF THE CARDIAC ABSORBED DOSE DURING X-RAY EXAMINATION OF AN ADULT PATIENT.

    PubMed

    Kadri, O; Manai, K; Alfuraih, A

    2016-12-01

    The computational voxel phantom 'High-Definition Reference Korean-Man (HDRK-Man)' was implemented into the Monte Carlo transport toolkit Geant4. The voxel model, adjusted to the Reference Korean Man, is 171 cm in height and 68 kg in weight and composed of ∼30 million voxels whose size is 1.981 × 1.981 × 2.0854 mm 3 The Geant4 code is then utilised to compute the dose conversion coefficients (DCCs) expressed in absorbed dose per air kerma free in air for >30 tissues and organs, including almost all organs required in the new recommendation of the ICRP 103, due to a broad parallel beam of monoenergetic photons impinging in antero-postero direction with energy ranging from 10 to 150 keV. The computed DCCs of different organs are found to be in good agreement with data published using other simulation codes. Also, the influence of patient size on DCC values was investigated for a representative body size of the adult Korean patient population. The study was performed using five different sizes covering the range of 0.8-1.2 magnification order of the original HDRK-Man. It focussed on the computation of DCC for the human heart. Moreover, the provided DCCs were used to present an analytical parameterisation for the calculation of the cardiac absorbed dose for any arbitrary X-ray spectrum and for those patient sizes. Thus, the present work can be considered as an enhancement of the continuous studies performed by medical physicist as part of quality control tests and radiation protection dosimetry. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Three-Dimensional Radiobiologic Dosimetry: Application of Radiobiologic Modeling to Patient-Specific 3-Dimensional Imaging–Based Internal Dosimetry

    PubMed Central

    Prideaux, Andrew R.; Song, Hong; Hobbs, Robert F.; He, Bin; Frey, Eric C.; Ladenson, Paul W.; Wahl, Richard L.; Sgouros, George

    2010-01-01

    Phantom-based and patient-specific imaging-based dosimetry methodologies have traditionally yielded mean organ-absorbed doses or spatial dose distributions over tumors and normal organs. In this work, radiobiologic modeling is introduced to convert the spatial distribution of absorbed dose into biologically effective dose and equivalent uniform dose parameters. The methodology is illustrated using data from a thyroid cancer patient treated with radioiodine. Methods Three registered SPECT/CT scans were used to generate 3-dimensional images of radionuclide kinetics (clearance rate) and cumulated activity. The cumulated activity image and corresponding CT scan were provided as input into an EGSnrc-based Monte Carlo calculation: The cumulated activity image was used to define the distribution of decays, and an attenuation image derived from CT was used to define the corresponding spatial tissue density and composition distribution. The rate images were used to convert the spatial absorbed dose distribution to a biologically effective dose distribution, which was then used to estimate a single equivalent uniform dose for segmented volumes of interest. Equivalent uniform dose was also calculated from the absorbed dose distribution directly. Results We validate the method using simple models; compare the dose-volume histogram with a previously analyzed clinical case; and give the mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for an illustrative case of a pediatric thyroid cancer patient with diffuse lung metastases. The mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for the tumor were 57.7, 58.5, and 25.0 Gy, respectively. Corresponding values for normal lung tissue were 9.5, 9.8, and 8.3 Gy, respectively. Conclusion The analysis demonstrates the impact of radiobiologic modeling on response prediction. The 57% reduction in the equivalent dose value for the tumor reflects a high level of dose nonuniformity in the tumor and a corresponding reduced likelihood of achieving a tumor response. Such analyses are expected to be useful in treatment planning for radionuclide therapy. PMID:17504874

  19. Effects of body and organ size on absorbed dose: there is no standard patient. [Radiation dose distribution in patients following radionuclide administration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, J.W.

    1976-01-01

    The problem of estimating the absorbed dose to organs and tissues of the human body due to the presence of a radiopharmaceutical in one or more organs is discussed. Complications are introduced by the fact that the body is not homogeneous and in many cases the organ shapes are not regular. Publications of the MIRD Committee have provided a direct means of estimating the absorbed dose (or absorbed fraction) for a number of radioisotopes. These estimates are based on Monte Carlo calculations for monoenergetic photons distributed uniformly in organs of an adult phantom. The medical physicist finds that his patientmore » does not resemble the adult phantom. In addition, the absorbed fractions for the adult are not reasonable values for the child. This paper examines how these absorbed fraction estimates apply to a nonstandard patient. (auth)« less

  20. Prediction of Normal Organ Absorbed Doses for [177Lu]Lu-PSMA-617 Using [44Sc]Sc-PSMA-617 Pharmacokinetics in Patients With Metastatic Castration Resistant Prostate Carcinoma.

    PubMed

    Khawar, Ambreen; Eppard, Elisabeth; Sinnes, Jean Phlippe; Roesch, Frank; Ahmadzadehfar, Hojjat; Kürpig, Stefan; Meisenheimer, Michael; Gaertner, Florian C; Essler, Markus; Bundschuh, Ralph A

    2018-04-23

    In vivo pharmacokinetic analysis of [Sc]Sc-PSMA-617 was used to determine the normal organ-absorbed doses that may result from therapeutic activity of [Lu]Lu-PSMA-617 and to predict the maximum permissible activity of [Lu]Lu-PSMA-617 for patients with metastatic castration-resistant prostate carcinoma. Pharmacokinetics of [Sc]Sc-PSMA-617 was evaluated in 5 patients with metastatic castration-resistant prostate carcinoma using dynamic PET/CT, followed by 3 static PET/CT acquisitions and blood sample collection over 19.5 hours, as well as urine sample collection at 2 time points. Total activity measured in source organs by PET imaging, as well as counts per milliliter measured in blood and urine samples, was decay corrected back to the time of injection using the half-life of Sc. Afterward, forward decay correction using the half-life of Lu was performed, extrapolating the pharmacokinetics of [Sc]Sc-PSMA-617 to that of [Lu]Lu-PSMA-617. Source organs residence times and organ-absorbed doses for [Lu]Lu-PSMA-617 were calculated using OLINDA/EXM software. Bone marrow self-dose was determined with indirect blood-based method, and urinary bladder contents residence time was estimated by trapezoidal approximation. The maximum permissible activity of [Lu]Lu-PSMA-617 was calculated for each patient considering external beam radiotherapy toxicity limits for radiation absorbed doses to kidneys, bone marrow, salivary glands, and whole body. The predicted mean organ-absorbed doses were highest in the kidneys (0.44 mSv/MBq), followed by the salivary glands (0.23 mSv/MBq). The maximum permissible activity was highly variable among patients; limited by whole body-absorbed dose (1 patient), marrow-absorbed dose (1 patient), and kidney-absorbed dose (3 patients). [Sc]Sc-PSMA-617 PET/CT imaging is feasible and allows theoretical extrapolation of the pharmacokinetics of [Sc]Sc-PSMA-617 to that of [Lu]Lu-PSMA-617, with the intent of predicting normal organ-absorbed doses and maximum permissible activity in patients scheduled for therapy with [Lu]Lu-PSMA-617.

  1. Combination of UV absorbance and electron donating capacity to assess degradation of micropollutants and formation of bromate during ozonation of wastewater effluents.

    PubMed

    Chon, Kangmin; Salhi, Elisabeth; von Gunten, Urs

    2015-09-15

    In this study, the changes in UV absorbance at 254 nm (UVA254) and electron donating capacity (EDC) were investigated as surrogate indicators for assessing removal of micropollutants and bromate formation during ozonation of wastewater effluents. To measure the EDC, a novel method based on size exclusion chromatography followed by a post-column reaction was developed and calibrated against an existing electrochemical method. Low specific ozone doses led to a more efficient abatement of EDC than of UVA254. This was attributed to the abatement of phenolic moieties in the dissolved organic matter (DOM), which lose their EDC upon oxidation, but are partially transformed into quinones, which still absorb in the measured UV range. For higher specific ozone doses, the relative EDC abatement was lower than the relative UVA abatement, which can be explained by the oxidation of UV absorbing moieties (e.g. non-activated aromatic compounds), which contribute less to EDC. The abatement of the selected micropollutants (i.e., 17α-ethinylestradiol (EE2), carbamazepine (CBZ), atenolol (ATE), bezafibrate (BZF), ibuprofen (IBU), and p-chlorobenzoic acid (pCBA)) varied significantly depending on their reactivity with ozone in the examined specific ozone dose range of 0-1.45 mgO3/mgDOC. The decrease of EE2 and CBZ with high ozone reactivity was linearly proportional to the reduction of the relative residuals of UVA254 and EDC. The abatement of ATE, BZF, IBU, and pCBA with intermediate to low ozone reactivities was not significant in a first phase (UVA254/UVA254,0 = 1.00-0.70; EDC/EDC0 = 1.00-0.56) while their abatement was more efficient than the degradation of the relative residual UVA254 and much more noticeable than the degradation of the relative residual EDC in a second phase (UVA254/UVA254,0 = 0.70-0.25; EDC/EDC0 = 0.56-0.25) because the partially destroyed UV absorbing and electron donating DOM moieties become recalcitrant to ozone attack. Bromate formation was pronounced for specific ozone doses >0.25 mgO3/mgDOC. At these ozone doses, the residual DOM competes less with bromide for ozone as the electron-rich DOM moieties are almost completely degraded. Overall, these results imply that a combination of the relative residual UVA254 and EDC more truly reflects the intrinsic reactivity of DOM associated with the removal of micropollutants and bromate formation than the single use of the UV absorbance-based surrogate indicators. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. In Vitro comparison of 213Bi- and 177Lu-radiation for peptide receptor radionuclide therapy.

    PubMed

    Chan, Ho Sze; de Blois, Erik; Morgenstern, Alfred; Bruchertseifer, Frank; de Jong, Marion; Breeman, Wouter; Konijnenberg, Mark

    2017-01-01

    Absorbed doses for α-emitters are different from those for β-emitters, as the high linear energy transfer (LET) nature of α-particles results in a very dense energy deposition over a relatively short path length near the point of emission. This highly localized and therefore high energy deposition can lead to enhanced cell-killing effects at absorbed doses that are non-lethal in low-LET type of exposure. Affinities of DOTA-DPhe1-Tyr3-octreotate (DOTATATE), 115In-DOTATATE, 175Lu-DOTATATE and 209Bi-DOTATATE were determined in the K562-SST2 cell line. Two other cell lines were used for radiation response assessment; BON and CA20948, with a low and high expression of somatostatin receptors, respectively. Cellular uptake kinetics of 111In-DOTATATE were determined in CA20948 cells. CA20948 and BON were irradiated with 137Cs, 177Lu-DTPA, 177Lu-DOTATATE, 213Bi-DTPA and 213Bi-DOTATATE. Absorbed doses were calculated using the MIRDcell dosimetry method for the specific binding and a Monte Carlo model of a cylindrical 6-well plate geometry for the exposure by the radioactive incubation medium. Absorbed doses were compared to conventional irradiation of cells with 137Cs and the relative biological effect (RBE) at 10% survival was calculated. IC50 of (labelled) DOTATATE was in the nM range. Absorbed doses up to 7 Gy were obtained by 5.2 MBq 213Bi-DOTATATE, in majority the dose was caused by α-particle radiation. Cellular internalization determined with 111In-DOTATATE showed a linear relation with incubation time. Cell survival after exposure of 213Bi-DTPA and 213Bi-DOTATATE to BON or CA20948 cells showed a linear-exponential relation with the absorbed dose, confirming the high LET character of 213Bi. The survival of CA20948 after exposure to 177Lu-DOTATATE and the reference 137Cs irradiation showed the typical curvature of the linear-quadratic model. 10% Cell survival of CA20948 was reached at 3 Gy with 213Bi-DOTATATE, a factor 6 lower than the 18 Gy found for 177Lu-DOTATATE and also below the 5 Gy after 137Cs external exposure. 213Bi-DTPA and 213Bi-DOTATATE lead to a factor 6 advantage in cell killing compared to 177Lu-DOTATATE. The RBE at 10% survival by 213Bi-ligand compared to 137Cs was 2.0 whereas the RBE for 177Lu-DOTATATE was 0.3 in the CA20948 in vitro model.

  3. In Vitro comparison of 213Bi- and 177Lu-radiation for peptide receptor radionuclide therapy

    PubMed Central

    de Blois, Erik; Morgenstern, Alfred; Bruchertseifer, Frank; de Jong, Marion; Breeman, Wouter; Konijnenberg, Mark

    2017-01-01

    Background Absorbed doses for α-emitters are different from those for β-emitters, as the high linear energy transfer (LET) nature of α-particles results in a very dense energy deposition over a relatively short path length near the point of emission. This highly localized and therefore high energy deposition can lead to enhanced cell-killing effects at absorbed doses that are non-lethal in low-LET type of exposure. Affinities of DOTA-DPhe1-Tyr3-octreotate (DOTATATE), 115In-DOTATATE, 175Lu-DOTATATE and 209Bi-DOTATATE were determined in the K562-SST2 cell line. Two other cell lines were used for radiation response assessment; BON and CA20948, with a low and high expression of somatostatin receptors, respectively. Cellular uptake kinetics of 111In-DOTATATE were determined in CA20948 cells. CA20948 and BON were irradiated with 137Cs, 177Lu-DTPA, 177Lu-DOTATATE, 213Bi-DTPA and 213Bi-DOTATATE. Absorbed doses were calculated using the MIRDcell dosimetry method for the specific binding and a Monte Carlo model of a cylindrical 6-well plate geometry for the exposure by the radioactive incubation medium. Absorbed doses were compared to conventional irradiation of cells with 137Cs and the relative biological effect (RBE) at 10% survival was calculated. Results IC50 of (labelled) DOTATATE was in the nM range. Absorbed doses up to 7 Gy were obtained by 5.2 MBq 213Bi-DOTATATE, in majority the dose was caused by α-particle radiation. Cellular internalization determined with 111In-DOTATATE showed a linear relation with incubation time. Cell survival after exposure of 213Bi-DTPA and 213Bi-DOTATATE to BON or CA20948 cells showed a linear-exponential relation with the absorbed dose, confirming the high LET character of 213Bi. The survival of CA20948 after exposure to 177Lu-DOTATATE and the reference 137Cs irradiation showed the typical curvature of the linear-quadratic model. 10% Cell survival of CA20948 was reached at 3 Gy with 213Bi-DOTATATE, a factor 6 lower than the 18 Gy found for 177Lu-DOTATATE and also below the 5 Gy after 137Cs external exposure. Conclusion 213Bi-DTPA and 213Bi-DOTATATE lead to a factor 6 advantage in cell killing compared to 177Lu-DOTATATE. The RBE at 10% survival by 213Bi-ligand compared to 137Cs was 2.0 whereas the RBE for 177Lu-DOTATATE was 0.3 in the CA20948 in vitro model. PMID:28732021

  4. Calculated and TLD-based absorbed dose estimates for I-131-labeled 3F8 monoclonal antibody in a human neuroblastoma xenograft nude mouse model.

    PubMed

    Ugur, O; Scott, A M; Kostakoglu, L; Hui, T E; Masterson, M E; Febo, R; Sgouros, G; Rosa, E; Mehta, B M; Fisher, D R

    1995-01-01

    Preclinical evaluation of the therapeutic potential of radiolabeled antibodies is commonly performed in a xenografted nude mouse model. To assess therapeutic efficacy it is important to estimate the absorbed dose to the tumor and normal tissues of the nude mouse. The current study was designed to accurately measure radiation does to human neuroblastoma xenografts and normal organs in nude mice treated with I-131-labeled 3F8 monoclonal antibody (MoAb) against disialoganglioside GD2 antigen. Absorbed dose estimates were obtained using two different approaches: (1) measurement with teflon-imbedded CaSO4:Dy mini-thermoluminescent dosimeters (TLDs) and (2) calculations using mouse S-factors. The calculated total dose to tumor one week after i.v. injection of the 50 microCi I-131-3F8 MoAb was 604 cGy. The corresponding decay corrected and not corrected TLD measurements were 109 +/- 9 and 48.7 +/- 3.4 cGy respectively. The calculated to TLD-derived dose ratios for tumor ranged from 6.1 at 24 h to 5.5 at 1 week. The light output fading rate was found to depend upon the tissue type within which the TLDs were implanted. The decay rate in tumor, muscle, subcutaneous tissue and in vitro, were 9.5, 5.0, 3.7 and 0.67% per day, respectively. We have demonstrated that the type of tissue in which the TLD was implanted strongly influenced the in vivo decay of light output. Even with decay correction, a significant discrepancy was observed between MIRD-based calculated and CaSO4:Dy mini-TLD measured absorbed doses. Batch dependence, pH of the tumor or other variables associated with TLDs which are not as yet well known may account for this discrepancy.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papadimitroulas, P; Kagadis, GC; Loudos, G

    Purpose: Our purpose is to evaluate the administered absorbed dose in pediatric, nuclear imaging studies. Monte Carlo simulations with the incorporation of pediatric computational models can serve as reference for the accurate determination of absorbed dose. The procedure of the calculated dosimetric factors is described, while a dataset of reference doses is created. Methods: Realistic simulations were executed using the GATE toolkit and a series of pediatric computational models, developed by the “IT'IS Foundation”. The series of the phantoms used in our work includes 6 models in the range of 5–14 years old (3 boys and 3 girls). Pre-processing techniquesmore » were applied to the images, to incorporate the phantoms in GATE simulations. The resolution of the phantoms was set to 2 mm3. The most important organ densities were simulated according to the GATE “Materials Database”. Several used radiopharmaceuticals in SPECT and PET applications are being tested, following the EANM pediatric dosage protocol. The biodistributions of the several isotopes used as activity maps in the simulations, were derived by the literature. Results: Initial results of absorbed dose per organ (mGy) are presented in a 5 years old girl from the whole body exposure to 99mTc - SestaMIBI, 30 minutes after administration. Heart, kidney, liver, ovary, pancreas and brain are the most critical organs, in which the S-factors are calculated. The statistical uncertainty in the simulation procedure was kept lower than 5%. The Sfactors for each target organ are calculated in Gy/(MBq*sec) with highest dose being absorbed in kidneys and pancreas (9.29*10{sup 10} and 0.15*10{sup 10} respectively). Conclusion: An approach for the accurate dosimetry on pediatric models is presented, creating a reference dosage dataset for several radionuclides in children computational models with the advantages of MC techniques. Our study is ongoing, extending our investigation to other reference models and evaluating the results with clinical estimated doses.« less

  6. Verification of Internal Dose Calculations.

    NASA Astrophysics Data System (ADS)

    Aissi, Abdelmadjid

    The MIRD internal dose calculations have been in use for more than 15 years, but their accuracy has always been questionable. There have been attempts to verify these calculations; however, these attempts had various shortcomings which kept the question of verification of the MIRD data still unanswered. The purpose of this research was to develop techniques and methods to verify the MIRD calculations in a more systematic and scientific manner. The research consisted of improving a volumetric dosimeter, developing molding techniques, and adapting the Monte Carlo computer code ALGAM to the experimental conditions and vice versa. The organic dosimetric system contained TLD-100 powder and could be shaped to represent human organs. The dosimeter possessed excellent characteristics for the measurement of internal absorbed doses, even in the case of the lungs. The molding techniques are inexpensive and were used in the fabrication of dosimetric and radioactive source organs. The adaptation of the computer program provided useful theoretical data with which the experimental measurements were compared. The experimental data and the theoretical calculations were compared for 6 source organ-7 target organ configurations. The results of the comparison indicated the existence of an agreement between measured and calculated absorbed doses, when taking into consideration the average uncertainty (16%) of the measurements, and the average coefficient of variation (10%) of the Monte Carlo calculations. However, analysis of the data gave also an indication that the Monte Carlo method might overestimate the internal absorbed doses. Even if the overestimate exists, at least it could be said that the use of the MIRD method in internal dosimetry was shown to lead to no unnecessary exposure to radiation that could be caused by underestimating the absorbed dose. The experimental and the theoretical data were also used to test the validity of the Reciprocity Theorem for heterogeneous phantoms, such as the MIRD phantom and its physical representation, Mr. ADAM. The results indicated that the Reciprocity Theorem is valid within an average range of uncertainty of 8%.

  7. Radiation Dosimetry from Intratumoral Injection of Radionuclides in Human Breast Cancer

    DTIC Science & Technology

    2006-07-01

    receive estimated doses of 463cGy in the injection site, with a 10% isodose range of 0.02cm from the injection site edge. Based...predicted before, the radiation absorbed doses to the sentinel lymph nodes will be about one Page 12 of 66 tenth of those to the injection sites in ... on preclinical studies suggesting a total of 2% leakage of radiogallium in the form of free Ga(+3),

  8. Dose perturbation due to the presence of a prostatic urethral stent in patients receiving pelvic radiotherapy: an in vitro study.

    PubMed

    Gez, E; Cederbaum, M; Yachia, D; Bar-Deroma, R; Kuten, A

    1997-01-01

    Temporary metallic intraprostatic stent is a new alternative treatment for patients with urinary obstructive syndrome caused by prostate cancer. Definitive radiotherapy is a treatment of choice for localized prostate cancer. This study evaluates in vitro the effect of a urethral intraprostatic metallic stent on the dose absorbed by the surrounding tissue. The study was designed to mimic the conditions under which the prostatic stent is placed in the body during pelvic irradiation. A urethral stent composed of a 50% nickel-50% titanium alloy (Uracoil-InStent) was imbedded in material mimicking normal tissue (bolus) at a simulated body depth of 10 cm. The distribution of the absorbed dose of irradiation was determined by film dosimetry using Kodak X-Omat V film. Irradiation was done in a single field at the isocenter of a 6 MV linear accelerator with a field size of 7 x 7 cm. The degree of film blackening was in direct proportion to the absorbed dose. The measurements showed an increase in dose of up to 20% immediately before the stent and a decrease of up to 18% immediately after the stent. These changes occurred within a range of 1-3 mm from both sides of the stent. In practice, irradiation in prostate cancer is given by two pairs of opposed co-axial fields; a total of four fields (Box Technique). The dose perturbations are partly cancelled in a pair of opposed beams resulting in a net variation of +/- 4%; therefore, the presence of the intraprostatic stent should not influence radiotherapy planning for prostate cancer.

  9. A small-scale anatomical dosimetry model of the liver

    NASA Astrophysics Data System (ADS)

    Stenvall, Anna; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders

    2014-07-01

    Radionuclide therapy is a growing and promising approach for treating and prolonging the lives of patients with cancer. For therapies where high activities are administered, the liver can become a dose-limiting organ; often with a complex, non-uniform activity distribution and resulting non-uniform absorbed-dose distribution. This paper therefore presents a small-scale dosimetry model for various source-target combinations within the human liver microarchitecture. Using Monte Carlo simulations, Medical Internal Radiation Dose formalism-compatible specific absorbed fractions were calculated for monoenergetic electrons; photons; alpha particles; and 125I, 90Y, 211At, 99mTc, 111In, 177Lu, 131I and 18F. S values and the ratio of local absorbed dose to the whole-organ average absorbed dose was calculated, enabling a transformation of dosimetry calculations from macro- to microstructure level. For heterogeneous activity distributions, for example uptake in Kupffer cells of radionuclides emitting low-energy electrons (125I) or high-LET alpha particles (211At) the target absorbed dose for the part of the space of Disse, closest to the source, was more than eight- and five-fold the average absorbed dose to the liver, respectively. With the increasing interest in radionuclide therapy of the liver, the presented model is an applicable tool for small-scale liver dosimetry in order to study detailed dose-effect relationships in the liver.

  10. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV.

    PubMed

    Gudowska, I; Brahme, A; Andreo, P; Gudowski, W; Kierkegaard, J

    1999-09-01

    The absorbed dose due to photonuclear reactions in soft tissue, lung, breast, adipose tissue and cortical bone has been evaluated for a scanned bremsstrahlung beam of end point 50 MeV from a racetrack accelerator. The Monte Carlo code MCNP4B was used to determine the photon source spectrum from the bremsstrahlung target and to simulate the transport of photons through the treatment head and the patient. Photonuclear particle production in tissue was calculated numerically using the energy distributions of photons derived from the Monte Carlo simulations. The transport of photoneutrons in the patient and the photoneutron absorbed dose to tissue were determined using MCNP4B; the absorbed dose due to charged photonuclear particles was calculated numerically assuming total energy absorption in tissue voxels of 1 cm3. The photonuclear absorbed dose to soft tissue, lung, breast and adipose tissue is about (0.11-0.12)+/-0.05% of the maximum photon dose at a depth of 5.5 cm. The absorbed dose to cortical bone is about 45% larger than that to soft tissue. If the contributions from all photoparticles (n, p, 3He and 4He particles and recoils of the residual nuclei) produced in the soft tissue and the accelerator, and from positron radiation and gammas due to induced radioactivity and excited states of the nuclei, are taken into account the total photonuclear absorbed dose delivered to soft tissue is about 0.15+/-0.08% of the maximum photon dose. It has been estimated that the RBE of the photon beam of 50 MV acceleration potential is approximately 2% higher than that of conventional 60Co radiation.

  11. Pergolide: multiple-dose pharmacokinetics in patients with mild to moderate Parkinson disease.

    PubMed

    Thalamas, Claire; Rajman, Iris; Kulisevsky, Jaime; Lledó, Alberto; Mackie, Alison E; Blin, Olivier; Gillespie, Todd A; Seger, Mary; Rascol, Olivier

    2005-01-01

    The primary objective of this study was to describe the pharmacokinetics of oral pergolide in patients with mild to moderate Parkinson disease using a new high-performance liquid chromatography-tandem mass spectrometry assay. A secondary objective was to investigate the relationship between plasma concentrations and efficacy. Fourteen patients with a diagnosis of Parkinson disease completed this multicenter, open-label, dose-escalating study. Pergolide was administered for 58 days, using increasing daily doses from 0.05 mg daily up to 1 mg three times daily and then tapering the dose. The steady-state pharmacokinetic profile and motor score were determined at dose levels of 0.25, 0.5, and 1 mg three times a day and during elimination after the last dose. Pergolide was absorbed with a median time to maximum concentration of 2 to 3 hours across the dose range. Systemic exposure appeared to increase proportionally with dose over the range of 0.25 to 1 mg three times daily within a patient, but there was a large variability in exposures between patients (interpatient coefficients of variation were 56.4% for the area under the curve). Pergolide was widely distributed (volume of distribution, approximately 14,000 L) and was eliminated with a mean half-life of 21 hours. Motor scores improved as both peak plasma pergolide concentrations and exposure increased. No unexpected safety concerns were identified. Pergolide is absorbed relatively quickly into the systemic circulation, has a large apparent volume of distribution, and has a relatively long half-life (mean, 21 hours). This prolonged half-life is of particular interest, given the current hypothesis that more continuous dopaminergic receptor stimulation may reduce motor complications in patients with Parkinson disease.

  12. Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region (Canakkale), Western Anatolia, Turkey.

    PubMed

    Orgün, Y; Altinsoy, N; Sahin, S Y; Güngör, Y; Gültekin, A H; Karahan, G; Karacik, Z

    2007-06-01

    This paper represents the first reports on the natural and anthropogenic radionuclides in Kestanbol granitic pluton and surrounding rocks, and coastal region of the Ezine town. To assess the radiological hazard of the natural radioactivity, the radium equivalent activity, the absorbed dose rate and the external hazard index were calculated, and in situ gamma dose rates were measured. The high-activity concentrations were measured in the pluton and sands, which was originated mainly from the pluton, due to the presence of zircon, allanite, monazite, thorite, uranothorite and apatite. The average activity concentrations of (238)U, (232)Th and (40)K are 174.78, 204.69 and 1171.95 Bq kg(-1) for pluton, and 290.36, 532.04 and 1160.75 Bq kg(-1) for sands, respectively. (137)Cs in Ezine region ranged from 0-6.57 Bq kg(-1). The average absorbed dose rate for the granitic and sand samples were calculated to be 251.6 and 527.92 nGy h(-1), respectively. The maximum contribution to the total absorbed gamma dose rate in air was due to the (232)Th (52.3% for pluton and 67.1% for sands). The Raeq activities of the pluton and sands are higher than the recommended maximum value of 370 Bq kg(-1) criterion limit of Raeq activity for building materials.

  13. Validating Fricke dosimetry for the measurement of absorbed dose to water for HDR 192Ir brachytherapy: a comparison between primary standards of the LCR, Brazil, and the NRC, Canada.

    PubMed

    Salata, Camila; David, Mariano Gazineu; de Almeida, Carlos Eduardo; El Gamal, Islam; Cojocaru, Claudiu; Mainegra-Hing, Ernesto; McEwen, Malcom

    2018-04-05

    Two Fricke-based absorbed dose to water standards for HDR Ir-192 dosimetry, developed independently by the LCR in Brazil and the NRC in Canada have been compared. The agreement in the determination of the dose rate from a HDR Ir-192 source at 1 cm in a water phantom was found to be within the k  =  1 combined measurement uncertainties of the two standards: D NRC /D LCR   =  1.011, standard uncertainty  =  2.2%. The dose-based standards also agreed within the uncertainties with the manufacturer's stated dose rate value, which is traceable to a national standard of air kerma. A number of possible influence quantities were investigated, including the specific method for producing the ferrous-sulphate Fricke solution, the geometry of the holder, and the Monte Carlo code used to determine correction factors. The comparison highlighted the lack of data on the determination of G(Fe 3+ ) in this energy range and the possibilities for further development of the holders used to contain the Fricke solution. The comparison also confirmed the suitability of Fricke dosimetry for Ir-192 primary standard dose rate determinations at therapy dose levels.

  14. Validating Fricke dosimetry for the measurement of absorbed dose to water for HDR 192Ir brachytherapy: a comparison between primary standards of the LCR, Brazil, and the NRC, Canada

    NASA Astrophysics Data System (ADS)

    Salata, Camila; Gazineu David, Mariano; de Almeida, Carlos Eduardo; El Gamal, Islam; Cojocaru, Claudiu; Mainegra-Hing, Ernesto; McEwen, Malcom

    2018-04-01

    Two Fricke-based absorbed dose to water standards for HDR Ir-192 dosimetry, developed independently by the LCR in Brazil and the NRC in Canada have been compared. The agreement in the determination of the dose rate from a HDR Ir-192 source at 1 cm in a water phantom was found to be within the k  =  1 combined measurement uncertainties of the two standards: D NRC/D LCR  =  1.011, standard uncertainty  =  2.2%. The dose-based standards also agreed within the uncertainties with the manufacturer’s stated dose rate value, which is traceable to a national standard of air kerma. A number of possible influence quantities were investigated, including the specific method for producing the ferrous-sulphate Fricke solution, the geometry of the holder, and the Monte Carlo code used to determine correction factors. The comparison highlighted the lack of data on the determination of G(Fe3+) in this energy range and the possibilities for further development of the holders used to contain the Fricke solution. The comparison also confirmed the suitability of Fricke dosimetry for Ir-192 primary standard dose rate determinations at therapy dose levels.

  15. Radiation Dose Optimization For Critical Organs

    NASA Astrophysics Data System (ADS)

    Khodadadegan, Yasaman

    Ionizing radiation used in the patient diagnosis or therapy has negative effects on the patient body in short term and long term depending on the amount of exposure. More than 700,000 examinations are everyday performed on Interventional Radiology modalities, however; there is no patient-centric information available to the patient or the Quality Assurance for the amount of organ dose received. In this study, we are exploring the methodologies to systematically reduce the absorbed radiation dose in the Fluoroscopically Guided Interventional Radiology procedures. In the first part of this study, we developed a mathematical model which determines a set of geometry settings for the equipment and a level for the energy during a patient exam. The goal is to minimize the amount of absorbed dose in the critical organs while maintaining image quality required for the diagnosis. The model is a large-scale mixed integer program. We performed polyhedral analysis and derived several sets of strong inequalities to improve the computational speed and quality of the solution. Results present the amount of absorbed dose in the critical organ can be reduced up to 99% for a specific set of angles. In the second part, we apply an approximate gradient method to simultaneously optimize angle and table location while minimizing dose in the critical organs with respect to the image quality. In each iteration, we solve a sub-problem as a MIP to determine the radiation field size and corresponding X-ray tube energy. In the computational experiments, results show further reduction (up to 80%) of the absorbed dose in compare with previous method. Last, there are uncertainties in the medical procedures resulting imprecision of the absorbed dose. We propose a robust formulation to hedge from the worst case absorbed dose while ensuring feasibility. In this part, we investigate a robust approach for the organ motions within a radiology procedure. We minimize the absorbed dose for the critical organs across all input data scenarios which are corresponding to the positioning and size of the organs. The computational results indicate up to 26% increase in the absorbed dose calculated for the robust approach which ensures the feasibility across scenarios.

  16. Effect of respiratory motion on internal radiation dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Tianwu; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch; Geneva Neuroscience Center, Geneva University, Geneva CH-1205

    Purpose: Estimation of the radiation dose to internal organs is essential for the assessment of radiation risks and benefits to patients undergoing diagnostic and therapeutic nuclear medicine procedures including PET. Respiratory motion induces notable internal organ displacement, which influences the absorbed dose for external exposure to radiation. However, to their knowledge, the effect of respiratory motion on internal radiation dosimetry has never been reported before. Methods: Thirteen computational models representing the adult male at different respiratory phases corresponding to the normal respiratory cycle were generated from the 4D dynamic XCAT phantom. Monte Carlo calculations were performed using the MCNP transportmore » code to estimate the specific absorbed fractions (SAFs) of monoenergetic photons/electrons, the S-values of common positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124), and the absorbed dose of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) in 28 target regions for both the static (average of dynamic frames) and dynamic phantoms. Results: The self-absorbed dose for most organs/tissues is only slightly influenced by respiratory motion. However, for the lung, the self-absorbed SAF is about 11.5% higher at the peak exhale phase than the peak inhale phase for photon energies above 50 keV. The cross-absorbed dose is obviously affected by respiratory motion for many combinations of source-target pairs. The cross-absorbed S-values for the heart contents irradiating the lung are about 7.5% higher in the peak exhale phase than the peak inhale phase for different positron-emitting radionuclides. For {sup 18}F-FDG, organ absorbed doses are less influenced by respiratory motion. Conclusions: Respiration-induced volume variations of the lungs and the repositioning of internal organs affect the self-absorbed dose of the lungs and cross-absorbed dose between organs in internal radiation dosimetry. The dynamic anatomical model provides more accurate internal radiation dosimetry estimates for the lungs and abdominal organs based on realistic modeling of respiratory motion. This work also contributes to a better understanding of model-induced uncertainties in internal radiation dosimetry.« less

  17. Dosimetric calculations for uranium miners for epidemiological studies.

    PubMed

    Marsh, J W; Blanchardon, E; Gregoratto, D; Hofmann, W; Karcher, K; Nosske, D; Tomásek, L

    2012-05-01

    Epidemiological studies on uranium miners are being carried out to quantify the risk of cancer based on organ dose calculations. Mathematical models have been applied to calculate the annual absorbed doses to regions of the lung, red bone marrow, liver, kidney and stomach for each individual miner arising from exposure to radon gas, radon progeny and long-lived radionuclides (LLR) present in the uranium ore dust and to external gamma radiation. The methodology and dosimetric models used to calculate these organ doses are described and the resulting doses for unit exposure to each source (radon gas, radon progeny and LLR) are presented. The results of dosimetric calculations for a typical German miner are also given. For this miner, the absorbed dose to the central regions of the lung is dominated by the dose arising from exposure to radon progeny, whereas the absorbed dose to the red bone marrow is dominated by the external gamma dose. The uncertainties in the absorbed dose to regions of the lung arising from unit exposure to radon progeny are also discussed. These dose estimates are being used in epidemiological studies of cancer in uranium miners.

  18. Theoretical study of the influence of a heterogeneous activity distribution on intratumoral absorbed dose distribution.

    PubMed

    Bao, Ande; Zhao, Xia; Phillips, William T; Woolley, F Ross; Otto, Randal A; Goins, Beth; Hevezi, James M

    2005-01-01

    Radioimmunotherapy of hematopoeitic cancers and micrometastases has been shown to have significant therapeutic benefit. The treatment of solid tumors with radionuclide therapy has been less successful. Previous investigations of intratumoral activity distribution and studies on intratumoral drug delivery suggest that a probable reason for the disappointing results in solid tumor treatment is nonuniform intratumoral distribution coupled with restricted intratumoral drug penetrance, thus inhibiting antineoplastic agents from reaching the tumor's center. This paper describes a nonuniform intratumoral activity distribution identified by limited radiolabeled tracer diffusion from tumor surface to tumor center. This activity was simulated using techniques that allowed the absorbed dose distributions to be estimated using different intratumoral diffusion capabilities and calculated for tumors of varying diameters. The influences of these absorbed dose distributions on solid tumor radionuclide therapy are also discussed. The absorbed dose distribution was calculated using the dose point kernel method that provided for the application of a three-dimensional (3D) convolution between a dose rate kernel function and an activity distribution function. These functions were incorporated into 3D matrices with voxels measuring 0.10 x 0.10 x 0.10 mm3. At this point fast Fourier transform (FFT) and multiplication in frequency domain followed by inverse FFT (iFFT) were used to effect this phase of the dose calculation process. The absorbed dose distribution for tumors of 1, 3, 5, 10, and 15 mm in diameter were studied. Using the therapeutic radionuclides of 131I, 186Re, 188Re, and 90Y, the total average dose, center dose, and surface dose for each of the different tumor diameters were reported. The absorbed dose in the nearby normal tissue was also evaluated. When the tumor diameters exceed 15 mm, a much lower tumor center dose is delivered compared with tumors between 3 and 5 mm in diameter. Based on these findings, the use of higher beta-energy radionuclides, such as 188Re and 90Y is more effective in delivering a higher absorbed dose to the tumor center at tumor diameters around 10 mm.

  19. Quantities for assessing high photon doses to the body: a calculational approach.

    PubMed

    Eakins, Jonathan S; Ainsbury, Elizabeth A

    2018-06-01

    Tissue reactions are the most clinically significant consequences of high-dose exposures to ionising radiation. However, currently there is no universally recognized dose quantity that can be used to assess and report generalised risks to individuals following whole body exposures in the high-dose range. In this work, a number of potential dose quantities are presented and discussed, with mathematical modelling techniques employed to compare them and explore when their differences are most or least manifest. The results are interpreted to propose the average (D GRB ) of the absorbed doses to the stomach, small intestine, red bone marrow, and brain as the optimum quantity for informing assessments of risk. A second, maximally conservative dose quantity (D Max ) is also suggested, which places limits on any under-estimates resulting from the adoption of D GRB . The primary aim of this work is to spark debate, with further work required to refine the final choice of quantity or quantities most appropriate for the full range of different potential exposure scenarios.

  20. Investigating the dose distribution in the uncompressed breast with a dedicated CT mammotomography system

    NASA Astrophysics Data System (ADS)

    Crotty, Dominic J.; Brady, Samuel L.; Jackson, D'Vone C.; Toncheva, Greta I.; Anderson, Colin E.; Yoshizumi, Terry T.; Tornai, Martin P.

    2010-04-01

    A dual modality SPECT-CT prototype dedicated to uncompressed breast imaging (mammotomography) has been developed. The CT subsystem incorporates an ultra-thick K-edge filtration technique producing a quasi-monochromatic x-ray cone beam to optimize the dose efficiency for uncompressed breast tomography. We characterize the absorbed dose to the breast under normal tomographic cone beam image acquisition protocols using both TLD measurements and ionization chamber-calibrated radiochromic film. Geometric and anthropomorphic breast phantoms are filled with 1000mL of water and oil to simulate different breast compositions and varying object shapes having density bounds of 100% glandular and fatty breast compositions, respectively. Doses to the water filled geometric and anthropomorphic breast phantoms for a tomographic scan range from 1.3-7.3mGy and 1.7-6.3mGy, respectively, with a mean whole-breast dose of 4.5mGy for the water-filled anthropomorphic phantom. Measured dose distribution trends indicate lower doses in the center of the breast phantoms towards the chest wall along with higher doses near the peripheries and nipple regions. Measured doses to the oil-filled phantoms are consistently lower across all volume shapes (mean dose, 3.8mGy for the anthropomorphic breast). Results agree with Monte Carlo dose estimates generated for uncompressed breast imaging and illustrate the advantages of using the novel K-edge filtered beam to minimize absorbed dose to the breast during fully-3D imaging.

  1. Leuco-crystal-violet micelle gel dosimeters: Component effects on dose-rate dependence

    NASA Astrophysics Data System (ADS)

    Xie, J. C.; Katz, E. A. B.; Alexander, K. M.; Schreiner, L. J.; McAuley, K. B.

    2017-05-01

    Designed experiments were performed to produce empirical models for the dose sensitivity, initial absorbance, and dose-rate dependence respectively for leucocrystal violet (LCV) micelle gel dosimeters containing cetyltrimethylammonium bromide (CTAB) and 2,2,2-trichloroethanol (TCE). Previous gels of this type showed dose-rate dependent behaviour, producing an ˜18% increase in dose sensitivity between dose rates of 100 and 600 cGy min-1. Our models predict that the dose rate dependence can be reduced by increasing the concentration of TCE, CTAB and LCV. Increasing concentrations of LCV and CTAB produces a significant increase in dose sensitivity with a corresponding increase in initial absorbance. An optimization procedure was used to determine a nearly dose-rate independent gel which maintained high sensitivity and low initial absorbance. This gel which contains 33 mM CTAB, 1.25 mM LCV, and 96 mM TCE in 25 mM trichloroacetic acid and 4 wt% gelatin showed an increase in dose sensitivity of only 4% between dose rates of 100 and 600 cGy min-1, and provides an 80% greater dose sensitivity compared to Jordan’s standard gels with similar initial absorbance.

  2. Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy

    NASA Astrophysics Data System (ADS)

    Giménez-Alventosa, Vicent; Antunes, Paula C. G.; Vijande, Javier; Ballester, Facundo; Pérez-Calatayud, José; Andreo, Pedro

    2017-01-01

    The AAPM TG-43 brachytherapy dosimetry formalism, introduced in 1995, has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations, except in the vicinity of the source capsule. Subsequent dosimetry developments, based on Monte Carlo calculations or analytical solutions of transport equations, do not rely on the CPE assumption and determine directly the dose to different tissues. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seeds is proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences. State-of-the art Monte Carlo calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone), which in all cases include a realistic modelling of low-energy brachytherapy sources in order to benchmark the formalism proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases (e.g. bone tissue).

  3. Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy.

    PubMed

    Giménez-Alventosa, Vicent; Antunes, Paula C G; Vijande, Javier; Ballester, Facundo; Pérez-Calatayud, José; Andreo, Pedro

    2017-01-07

    The AAPM TG-43 brachytherapy dosimetry formalism, introduced in 1995, has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations, except in the vicinity of the source capsule. Subsequent dosimetry developments, based on Monte Carlo calculations or analytical solutions of transport equations, do not rely on the CPE assumption and determine directly the dose to different tissues. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seeds is proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences. State-of-the art Monte Carlo calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone), which in all cases include a realistic modelling of low-energy brachytherapy sources in order to benchmark the formalism proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases (e.g. bone tissue).

  4. Gamma irradiation induced effects of butyl rubber based damping material

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Bing; Wang, Pu-Cheng; Liu, Bo; Zhang, Feng-Shun; Ao, Yin-Yong

    2018-04-01

    The effects of gamma irradiation on the butyl rubber based damping material (BRP) at various doses in nitrogen were investigated in this study. The results show that irradiation leads to radiolysis of BRP, with extractives increasing from 14.9 ± 0.8% of control to 37.2 ± 1.2% of sample irradiated at 350 kGy, while the swelling ratio increasing from 294 ± 3% to 766 ± 4%. The further investigation of the extractives with FTIR shows that the newly generated extractives are organic compounds containing C-H and C˭C bonds, with molecular weight ranging from 26,500 to 46,300. SEM characterization shows smoother surface with holes disappearing with increasing absorbed doses, consistent with "softer" material because of radiolysis. Dynamic mechanical study of BRP show that tan δ first slightly then obviously increases with increasing absorbed dose, while storage modulus slightly decreases. The tensile testing shows that the tensile strength decreases while the elongation at break increases with increasing dose. The positron annihilation lifetime spectroscopy show no obvious relations between free volume parameters and the damping properties, indicating the complicated influencing factors of damping properties.

  5. Limitations of body surface area-based activity calculation for radioembolization of hepatic metastases in colorectal cancer.

    PubMed

    Lam, Marnix G E H; Louie, John D; Abdelmaksoud, Mohamed H K; Fisher, George A; Cho-Phan, Cheryl D; Sze, Daniel Y

    2014-07-01

    To calculate absorbed radiation doses in patients treated with resin microspheres prescribed by the body surface area (BSA) method and to analyze dose-response and toxicity relationships. A retrospective review was performed of 45 patients with colorectal carcinoma metastases who received single-session whole-liver resin microsphere radioembolization. Prescribed treatment activity was calculated using the BSA method. Liver volumes and whole-liver absorbed doses (D(WL)) were calculated. D(WL) was correlated with toxicity and radiographic and biochemical response. The standard BSA-based administered activity (range, 0.85-2.58 GBq) did not correlate with D(WL) (mean, 50.4 Gy; range, 29.8-74.7 Gy; r = -0.037; P = .809) because liver weight was highly variable (mean, 1.89 kg; range, 0.94-3.42 kg) and strongly correlated with D(WL) (r = -0.724; P < .001) but was not accounted for in the BSA method. Patients with larger livers were relatively underdosed, and patients with smaller livers were relatively overdosed. Patients who received D(WL) > 50 Gy experienced more toxicity and adverse events (> grade 2 liver toxicity, 46% vs 17%; P < .05) but also responded better to the treatment than patients who received D(WL)< 50 Gy (disease control, 88% vs 24%; P < .01). Using the standard BSA formula, the administered activity did not correlate with D(WL). Based on this short-term follow-up after salvage therapy in patients with late stage metastatic colorectal carcinoma, dose-response and dose-toxicity relationships support using a protocol based on liver volume rather than BSA to prescribe the administered activity. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.

  6. Measurement of absorbed dose during the phantom torso experiment on the International Space Station

    NASA Astrophysics Data System (ADS)

    Semones, E.; Gibbons, F.; Golightly, M.; Weyland, M.; Johnson, A.; Smith, G.; Shelfer, T.; Zapp, N.

    The Phantom Torso Experiment (PTE) was flown on the International Space Station (ISS) during Increment 2 (April-August 2001). The experiment was located in the US Lab module Human Research Facility (HRF) rack. The objective of the passive dosimetry portion of the experiment was to measure spatial distributions of absorbed dose in the 34, 1 inch sections of a modified RandoTM phantom. In each section of the phantom, thermoluminescent detectors (TLDs) were placed at various locations (depths) to provide the spatial measurement. TLDs were also located at several radiosensitive organ locations (brain, thyroid, heart/lung, stomach and colon) and two locations on the surface (skin). Active silicon detectors were also placed at these organ locations to provide time resolved results of the absorbed dose rates. Using these detectors, it is possible to separate the trapped and galactic cosmic ray components of the absorbed dose. The TLD results of the spatial and organ dose measurements will be presented and comparisons of the TLD and silicon detector organ absorbed doses will be made.

  7. Calibration of GafChromic EBT3 for absorbed dose measurements in 5 MeV proton beam and (60)Co γ-rays.

    PubMed

    Vadrucci, M; Esposito, G; Ronsivalle, C; Cherubini, R; Marracino, F; Montereali, R M; Picardi, L; Piccinini, M; Pimpinella, M; Vincenti, M A; De Angelis, C

    2015-08-01

    To study EBT3 GafChromic film in low-energy protons, and for comparison purposes, in a reference (60)Co beam in order to use it as a calibrated dosimetry system in the proton irradiation facility under construction within the framework of the Oncological Therapy with Protons (TOP)-Intensity Modulated Proton Linear Accelerator for RadioTherapy (IMPLART) Project at ENEA-Frascati, Italy. EBT3 film samples were irradiated at the Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Legnaro, Italy, with a 5 MeV proton beam generated by a 7 MV Van de Graaff CN accelerator. The nominal dose rates used were 2.1 Gy/min and 40 Gy/min. The delivered dose was determined by measuring the particle fluence and the energy spectrum in air with silicon surface barrier detector monitors. A preliminary study of the EBT3 film beam quality dependence in low-energy protons was conducted by passively degrading the beam energy. EBT3 films were also irradiated at ENEA-National Institute of Ionizing Radiation Metrology with gamma radiation produced by a (60)Co source characterized by an absorbed dose to water rate of 0.26 Gy/min as measured by a calibrated Farmer type ionization chamber. EBT3 film calibration curves were determined by means of a set of 40 film pieces irradiated to various doses ranging from 0.5 Gy to 30 Gy absorbed dose to water. An EPSON Expression 11000XL color scanner in transmission mode was used for film analysis. Scanner response stability, intrafilm uniformity, and interfilm reproducibility were verified. Optical absorption spectra measurements were performed on unirradiated and irradiated EBT3 films to choose the most sensitive color channel to the dose range used. EBT3 GafChromic films show an under response up to about 33% for low-energy protons with respect to (60)Co gamma radiation, which is consistent with the linear energy transfer dependence already observed with higher energy protons, and a negligible dose-rate dependence in the 2-40 Gy/min range. Short- and long-term scanner stabilities were 0.5% and 1.5%, respectively; film uniformity and reproducibility were better than 0.5%. The main purpose of this study was to implement EBT3 dosimetry in the proton low-energy radiobiology line of the TOP-IMPLART accelerator, having a maximum energy of 7 MeV. Low-energy proton and (60)Co calibrated sources were used to investigate the behavior of film response vs to be written in italicum dose. The calibration in 5 MeV protons is currently used for dose assessment in the radiobiological experiments at the TOP-IMPLART accelerator carried out at that energy value.

  8. Influence of gamma radiation on the physicochemical and rheological properties of sterculia gum polysaccharides

    NASA Astrophysics Data System (ADS)

    Singh, Baljit; Sharma, Vikrant

    2013-11-01

    Keeping in view the influence of gamma radiation on the physiochemical properties of the polysaccharides and their importance in the food and pharmaceutical industry, in the present study attempt has been made to investigate the effects of absorbed dose on FTIR, XRD, SEMs, absorbance, pH, solubility, water absorption capacity, emulsion stability and rheology of sterculia gum. Increase in solubility and decrease in swellability of gum has been observed on increasing the absorbed dose. The emulsion stability has improved for the gum sample irradiated with total dose of 8.1±0.2 kGy. Apparent viscosity of gum solution first increased with increase in dose from 0 to 8.1±0.2 kGy than decreased with regular trends with further increase in total absorbed dose. Flow behavior of gum solution shifted to Newtonian from non-Newtonian with increasing the dose.

  9. [Carcinogenic efficacy of the transuranium elements americium-241 and curium-244].

    PubMed

    Rudnitskaia, E I

    1984-01-01

    Albino female rats were used in the experiments. After a single intraperitoneal administration of 241Am and 244Cm chloride is doses ranging from 0.37 to 185 kBq/kg (14 doses were used) it was established that the doses applied had different effect on the average life of animals. The largest doses shortened and the lowest increased the life span of experimental animals as compared to the controls. The carcinogenic effect of the studied radionuclides and the development of malignant tumors were detected at sufficiently low doses absorbed. Malignant tumors developed in the experimental and control animals were different not only in their incidence but also their localization and spectrum.

  10. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies.

    PubMed

    Sutton, Kristin A; Black, Paul J; Mercer, Kermit R; Garman, Elspeth F; Owen, Robin L; Snell, Edward H; Bernhard, William A

    2013-12-01

    Electron paramagnetic resonance (EPR) and online UV-visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV-visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5-0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.

  11. Radiation accumulation of F{sub 2} color centers in LiF crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisitsyna, L. A.

    2016-01-15

    The paper presents the results of the research of the F{sub 2} centers accumulation dose dependences in the LiF crystals, the kinetics of absorption relaxation initiated by exposure to a single electron pulse in the band maxima of different electron centers obtained by time-resolved spectrometry with nanosecond resolution. An analytical description of the F{sub 2} center accumulation in an absorbed dose range ≤10{sup 3} Gy is provided.

  12. Model-based versus specific dosimetry in diagnostic context: Comparison of three dosimetric approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcatili, S., E-mail: sara.marcatili@inserm.fr; Villoing, D.; Mauxion, T.

    Purpose: The dosimetric assessment of novel radiotracers represents a legal requirement in most countries. While the techniques for the computation of internal absorbed dose in a therapeutic context have made huge progresses in recent years, in a diagnostic scenario the absorbed dose is usually extracted from model-based lookup tables, most often derived from International Commission on Radiological Protection (ICRP) or Medical Internal Radiation Dose (MIRD) Committee models. The level of approximation introduced by these models may impact the resulting dosimetry. The aim of this work is to establish whether a more refined approach to dosimetry can be implemented in nuclearmore » medicine diagnostics, by analyzing a specific case. Methods: The authors calculated absorbed doses to various organs in six healthy volunteers administered with flutemetamol ({sup 18}F) injection. Each patient underwent from 8 to 10 whole body 3D PET/CT scans. This dataset was analyzed using a Monte Carlo (MC) application developed in-house using the toolkit GATE that is capable to take into account patient-specific anatomy and radiotracer distribution at the voxel level. They compared the absorbed doses obtained with GATE to those calculated with two commercially available software: OLINDA/EXM and STRATOS implementing a dose voxel kernel convolution approach. Results: Absorbed doses calculated with GATE were higher than those calculated with OLINDA. The average ratio between GATE absorbed doses and OLINDA’s was 1.38 ± 0.34 σ (from 0.93 to 2.23). The discrepancy was particularly high for the thyroid, with an average GATE/OLINDA ratio of 1.97 ± 0.83 σ for the six patients. Differences between STRATOS and GATE were found to be higher. The average ratio between GATE and STRATOS absorbed doses was 2.51 ± 1.21 σ (from 1.09 to 6.06). Conclusions: This study demonstrates how the choice of the absorbed dose calculation algorithm may introduce a bias when gamma radiations are of importance, as is the case in nuclear medicine diagnostics.« less

  13. SU-E-CAMPUS-I-06: Y90 PET/CT for the Instantaneous Determination of Both Target and Non-Target Absorbed Doses Following Hepatic Radioembolization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasciak, A; Kao, J

    2014-06-15

    Purpose The process of converting Yttrium-90 (Y90) PET/CT images into 3D absorbed dose maps will be explained. The simple methods presented will allow the medical physicst to analyze Y90 PET images following radioembolization and determine the absorbed dose to tumor, normal liver parenchyma and other areas of interest, without application of Monte-Carlo radiation transport or dose-point-kernel (DPK) convolution. Methods Absorbed dose can be computed from Y90 PET/CT images based on the premise that radioembolization is a permanent implant with a constant relative activity distribution after infusion. Many Y90 PET/CT publications have used DPK convolution to obtain 3D absorbed dose maps.more » However, this method requires specialized software limiting clinical utility. The Local Deposition method, an alternative to DPK convolution, can be used to obtain absorbed dose and requires no additional computer processing. Pixel values from regions of interest drawn on Y90 PET/CT images can be converted to absorbed dose (Gy) by multiplication with a scalar constant. Results There is evidence that suggests the Local Deposition method may actually be more accurate than DPK convolution and it has been successfully used in a recent Y90 PET/CT publication. We have analytically compared dose-volume-histograms (DVH) for phantom hot-spheres to determine the difference between the DPK and Local Deposition methods, as a function of PET scanner point-spread-function for Y90. We have found that for PET/CT systems with a FWHM greater than 3.0 mm when imaging Y90, the Local Deposition Method provides a more accurate representation of DVH, regardless of target size than DPK convolution. Conclusion Using the Local Deposition Method, post-radioembolization Y90 PET/CT images can be transformed into 3D absorbed dose maps of the liver. An interventional radiologist or a Medical Physicist can perform this transformation in a clinical setting, allowing for rapid prediction of treatment efficacy by comparison to published tumoricidal thresholds.« less

  14. Evaluation of variations in absorbed dose and image noise according to patient forms in X-ray computed tomography.

    PubMed

    Matsubara, Kosuke; Koshida, Kichiro; Suzuki, Masayuki; Hayakawa, Mayumi; Tsujii, Hideo; Yamamoto, Tomoyuki

    2005-12-20

    Excessive radiation exposure in pediatric computed tomography (CT) scanning has become a serious problem, and it is difficult to select scan parameters for the scanning of small patients such as children. We investigated differences in absorbed dose and standard deviation (SD) in Hounsfield unit (HU) caused by differences in the form of the subject using a body-type phantom with removable body parts. Using four X-ray CT scanners, measurements were made with values from 50 mAs to 300 mAs, with slices of 50 mAs, using scan protocols that were assumed to perform thorough examinations. The results showed that the mAs values and absorbed doses were almost proportional, and the absorbed doses in the phantom without body parts were about 1.1-2.2-fold higher than those of the phantom with body parts at the same points. The SD values obtained indicated that the absorbed doses in the phantom with body parts were 0.3-0.6 times those of the phantom without body parts when the mAs values used were adjusted so that both SD values were the same. The absorbed doses in various patient forms can be estimated from these results, and they will become critical data for the selection of appropriate scan protocols.

  15. Absorbed radiation doses to staff after implementation of a radiopharmacy clean room.

    PubMed

    Ponto, James A

    2014-12-01

    In response to U.S. Pharmacopeia general chapter <797> standards, a clean room was constructed for our in-house radiopharmacy. Previously, most patient doses were prepared as needed just before injection. Currently, to minimize repeated entries into the clean room, most patient doses are prepared in batches; that is, early morning and noontime preparation of doses to be injected at various times throughout the morning and the afternoon, respectively. Because these patient doses may be prepared well before injection time, radioactive decay necessitates higher amounts of radioactivity to be handled for patient dose preparation. Hence, absorbed radiation doses to staff, all of whom rotate into the radiopharmacy clean room in addition to their regular patient-related activities, were retrospectively evaluated. Monthly dosimetry reports for body (chest badge) and extremities (finger ring) were retrospectively reviewed for each staff member for 12 mo before and 12 mo after implementation of the radiopharmacy clean room. Monthly data were evaluated for average and SD, and 12-mo groups were evaluated using a paired t test. Data for the second 12-mo period were also normalized to the same number of patient doses to account for an increase in procedure volume and were reevaluated. Before the radiopharmacy clean room had been implemented, average monthly absorbed radiation doses to body and extremities were 23 ± 15 mrem (0.23 ± 0.15 mSv) and 93 ± 59 mrem (0.93 ± 0.59 mSv), respectively. After the clean room had been implemented, average monthly absorbed radiation doses increased to 32 ± 16 mrem (0.32 ± 0.16 mSv) (P < 0.001) and 121 ± 89 mrem (1.21 ± 0.89 mSv) (P = 0.0015), respectively. When normalized for procedure volume, average monthly absorbed radiation doses after implementation of the clean room were still higher, at 29 ± 15 mrem (0.29 ± 0.15 mSv) (P = 0.001) and 110 ± 80 mrem (1.10 ± 0.80 mSv) (P = 0.039), respectively. After implementation of a radiopharmacy clean room, absorbed radiation doses to body and extremities increased by 26% and 18%, respectively, even after normalizing for procedure volume. Because absorbed radiation doses from other activities, such as patient dose administration and patient imaging, are assumed to remain relatively constant, these increases in absorbed radiation doses to staff are attributed to changes in work flow after implementation of the radiopharmacy clean room. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  16. Dose-specific transcriptional responses in thyroid tissue in mice after (131)I administration.

    PubMed

    Rudqvist, Nils; Schüler, Emil; Parris, Toshima Z; Langen, Britta; Helou, Khalil; Forssell-Aronsson, Eva

    2015-03-01

    In the present investigation, microarray analysis was used to monitor transcriptional activity in thyroids in mice 24 h after (131)I exposure. The aims of this study were to 1) assess the transcriptional patterns associated with (131)I exposure in normal mouse thyroid tissue and 2) propose biomarkers for (131)I exposure of the thyroid. Adult BALB/c nude mice were i.v. injected with 13, 130 or 260 kBq of (131)I and killed 24h after injection (absorbed dose to thyroid: 0.85, 8.5, or 17 Gy). Mock-treated mice were used as controls. Total RNA was extracted from thyroids and processed using the Illumina platform. In total, 497, 546, and 90 transcripts were regulated (fold change ≥1.5) in the thyroid after 0.85, 8.5, and 17 Gy, respectively. These were involved in several biological functions, e.g. oxygen access, inflammation and immune response, and apoptosis/anti-apoptosis. Approximately 50% of the involved transcripts at each absorbed dose level were dose-specific, and 18 transcripts were commonly detected at all absorbed dose levels. The Agpat9, Plau, Prf1, and S100a8 gene expression displayed a monotone decrease in regulation with absorbed dose, and further studies need to be performed to evaluate if they may be useful as dose-related biomarkers for 131I exposure. Distinct and substantial differences in gene expression and affected biological functions were detected at the different absorbed dose levels. The transcriptional profiles were specific for the different absorbed dose levels. We propose that the Agpat9, Plau, Prf1, and S100a8 genes might be novel potential absorbed dose-related biomarkers to (131)I exposure of thyroid. During the recent years, genomic techniques have been developed; however, they have not been fully utilized in nuclear medicine and radiation biology. We have used RNA microarrays to investigate genome-wide transcriptional regulations in thyroid tissue in mice after low, intermediate, and high absorbed doses from (131)I exposure in vivo. Using this approach, we have identified novel biological responses and potential absorbed dose-related biomarkers to (131)I exposure. Our research shows the importance of embracing technological advances and multi-disciplinary collaboration in order to apply them in radiation therapy, nuclear medicine, and radiation biology. This work may contribute with new knowledge of potential normal tissue effects or complications that may occur after exposure to ionizing radiation in diagnostic and therapeutic nuclear medicine, and due to radioactive fallout or accident with radionuclide spread. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. A method to incorporate the effect of beam quality on image noise in a digitally reconstructed radiograph (DRR) based computer simulation for optimisation of digital radiography

    NASA Astrophysics Data System (ADS)

    Moore, Craig S.; Wood, Tim J.; Saunderson, John R.; Beavis, Andrew W.

    2017-09-01

    The use of computer simulated digital x-radiographs for optimisation purposes has become widespread in recent years. To make these optimisation investigations effective, it is vital simulated radiographs contain accurate anatomical and system noise. Computer algorithms that simulate radiographs based solely on the incident detector x-ray intensity (‘dose’) have been reported extensively in the literature. However, while it has been established for digital mammography that x-ray beam quality is an important factor when modelling noise in simulated images there are no such studies for diagnostic imaging of the chest, abdomen and pelvis. This study investigates the influence of beam quality on image noise in a digital radiography (DR) imaging system, and incorporates these effects into a digitally reconstructed radiograph (DRR) computer simulator. Image noise was measured on a real DR imaging system as a function of dose (absorbed energy) over a range of clinically relevant beam qualities. Simulated ‘absorbed energy’ and ‘beam quality’ DRRs were then created for each patient and tube voltage under investigation. Simulated noise images, corrected for dose and beam quality, were subsequently produced from the absorbed energy and beam quality DRRs, using the measured noise, absorbed energy and beam quality relationships. The noise images were superimposed onto the noiseless absorbed energy DRRs to create the final images. Signal-to-noise measurements in simulated chest, abdomen and spine images were within 10% of the corresponding measurements in real images. This compares favourably to our previous algorithm where images corrected for dose only were all within 20%.

  18. 226Ra activity in the mullet species Liza aurata and South Adriatic Sea marine.

    PubMed

    Antovic, N M; Antovic, I; Svrkota, N

    2010-08-01

    (226)Ra activity in the South Adriatic Sea-water, surface sediment, mud with detritus, seagrass (Posidonia oceanica) samples and the mullet (Mugilidae) species Liza aurata, as well as soil and sand from the Montenegrin Coast-was measured using the six-crystal gamma-coincidence spectrometer PRIPYAT-2M. The results are used for calculation of the absorbed (and annual effective) dose rates in air due to the (226)Ra gamma radiation. The absorbed dose rates ranged from 5.94 to 97.16 nGy h(-1) (soil) and from 0.65 to 7.65 nGy h(-1) (sand). In seawater (226)Ra activity is found to be from 0.08 to 0.15 Bq l(-1), while in whole L. aurata individuals from 0.58 to 1.97 Bq kg(-1). Annual intake of (226)Ra by human consumers of this fish species has been estimated to provide an effective dose of 0.006 mSv y(-1).

  19. Role of shielding in modulating the effects of solar particle events: Monte Carlo calculation of absorbed dose and DNA complex lesions in different organs

    NASA Technical Reports Server (NTRS)

    Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.; hide

    2004-01-01

    Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes--such as FLUKA--yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy-1 Da-1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the absorbed dose, due to their higher LET and thus higher biological effectiveness. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  20. Role of shielding in modulating the effects of solar particle events: Monte Carlo calculation of absorbed dose and DNA complex lesions in different organs

    NASA Astrophysics Data System (ADS)

    Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.; Zankl, M.

    2004-01-01

    Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes - such as FLUKA - yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy -1 Da -1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm 2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the absorbed dose, due to their higher LET and thus higher biological effectiveness.

  1. Dual-energy computed tomography of the head: a phantom study assessing axial dose distribution, eye lens dose, and image noise level

    NASA Astrophysics Data System (ADS)

    Matsubara, Kosuke; Kawashima, Hiroki; Hamaguchi, Takashi; Takata, Tadanori; Kobayashi, Masanao; Ichikawa, Katsuhiro; Koshida, Kichiro

    2016-03-01

    The aim of this study was to propose a calibration method for small dosimeters to measure absorbed doses during dual- source dual-energy computed tomography (DECT) and to compare the axial dose distribution, eye lens dose, and image noise level between DE and standard, single-energy (SE) head CT angiography. Three DE (100/Sn140 kVp 80/Sn140 kVp, and 140/80 kVp) and one SE (120 kVp) acquisitions were performed using a second-generation dual-source CT device and a female head phantom, with an equivalent volumetric CT dose index. The axial absorbed dose distribution at the orbital level and the absorbed doses for the eye lens were measured using radiophotoluminescent glass dosimeters. CT attenuation numbers were obtained in the DE composite images and the SE images of the phantom at the orbital level. The doses absorbed at the orbital level and in the eye lens were lower and standard deviations for the CT attenuation numbers were slightly higher in the DE acquisitions than those in the SE acquisition. The anterior surface dose was especially higher in the SE acquisition than that in the DE acquisitions. Thus, DE head CT angiography can be performed with a radiation dose lower than that required for a standard SE head CT angiography, with a slight increase in the image noise level. The 100/Sn140 kVp acquisition revealed the most balanced axial dose distribution. In addition, our proposed method was effective for calibrating small dosimeters to measure absorbed doses in DECT.

  2. Improved safety and efficacy of 213Bi-DOTATATE-targeted alpha therapy of somatostatin receptor-expressing neuroendocrine tumors in mice pre-treated with L-lysine.

    PubMed

    Chan, Ho Sze; Konijnenberg, Mark W; Daniels, Tamara; Nysus, Monique; Makvandi, Mehran; de Blois, Erik; Breeman, Wouter A; Atcher, Robert W; de Jong, Marion; Norenberg, Jeffrey P

    2016-12-01

    Targeted alpha therapy (TAT) offers advantages over current β-emitting conjugates for peptide receptor radionuclide therapy (PRRT) of neuroendocrine tumors. PRRT with 177 Lu-DOTATATE or 90 Y-DOTATOC has shown dose-limiting nephrotoxicity due to radiopeptide retention in the proximal tubules. Pharmacological protection can reduce renal uptake of radiopeptides, e.g., positively charged amino acids, to saturate in the proximal tubules, thereby enabling higher radioactivity to be safely administered. The aim of this preclinical study was to evaluate the therapeutic effect of 213 Bi-DOTATATE with and without renal protection using L-lysine in mice. Tumor uptake and kinetics as a function of injected mass of peptide (range 0.03-3 nmol) were investigated using 111 In-DOTATATE. These results allowed estimation of the mean radiation absorbed tumor dose for 213 Bi-DOTATATE. Pharmacokinetics and dosimetry of 213 Bi-DOTATATE was determined in mice, in combination with renal protection. A dose escalation study with 213 Bi-DOTATATE was performed to determine the maximum tolerated dose (MTD) with and without pre-administration of L-lysine as for renal protection. Neutrophil gelatinase-associated lipocalin (NGAL) served as renal biomarker to determine kidney injury. The maximum mean radiation absorbed tumor dose occurred at 0.03 nmol and the minimum at 3 nmol. Similar mean radiation absorbed tumor doses were determined for 0.1 and 0.3 nmol with a mean radiation absorbed dose of approximately 0.5 Gy/MBq 213 Bi-DOTATATE. The optimal mass of injected peptide was found to be 0.3 nmol. Tumor uptake was similar for 111 In-DOTATATE and 213 Bi-DOTATATE at 0.3 nmol peptide. Lysine reduced the renal uptake of 213 Bi-DOTATATE by 50% with no effect on the tumor uptake. The MTD was <13.0 ± 1.6 MBq in absence of L-lysine and 21.7 ± 1.9 MBq with L-lysine renal protection, both imparting an LD 50 mean renal radiation absorbed dose of 20 Gy. A correlation was found between the amount of injected radioactivity and NGAL levels. The therapeutic potential of 213 Bi-DOTATATE was illustrated by significantly decreased tumor burden and improved overall survival. Renal protection with L-lysine immediately prior to TAT with 213 Bi-DOTATATE prolonged survival providing substantial evidence for pharmacological nephron blockade to mitigate nephrotoxicity.

  3. Dose Response for Chromosome Aberrations in Human Lymphocytes and Fibroblasts after Exposure to Very Low Doses of High LET Radiation

    NASA Technical Reports Server (NTRS)

    Hada, M.; George, Kerry; Cucinotta, Francis A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivors with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (1-20 cGy) of 170 MeV/u Si-28- ions or 600 MeV/u Fe-56-ions. Chromosomes were analyzed using the whole chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving greater than 2 breaks in 2 or more chromosomes). The curves for doses above 10 cGy were fitted with linear or linear-quadratic functions. For Si-28- ions no dose response was observed in the 2-10 cGy dose range, suggesting a non-target effect in this range.

  4. SU-F-T-222: Dose of Fetus and Infant Following Accidental Intakes of I-131 by the Mother

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y; Hu, P

    Purpose: To estimate the calculation of absorbed dose to the fetus and infants from intakes of I-131 by the mother. Thus provide some advice to the radioprotection of radioactive accident. Methods: In this clinical case, a staff of nuclear medicine accidently intake I-131 during (10–12 weeks) and after pregnancy. The infant was born at full term, but both lobes of the thyroid gland were found to be absent (bilobar thyroid agenesis). It was suspected that the fetal thyroid agenesis may be related with mother’s contamination of I-131 during pregnancy. Urine samples for 24h were collected at different times after administeredmore » and radioactivity were measured to calculate the dose of intake I-131. Calculate the intake I-131 by the results of personal TLD dosimeter. We adopted the mean of two calculated results as the I-131 intake. According to the dose of intake I-131 by the mother, effective dose and absorbed dose of thyroid for mother, fetus and infant were calculated. Results: The intake of I-131 was estimated for 8.18 mCi. I-131 intake was calculated for 7.9 mCi based on data of TLD dosimeter. We adopted the mean of two results as the I-131 intake. The final result was 8.0 mCi. Effective dose and absorbed dose of thyroid for mother were 7.3Sv and 164 Gy, effective dose and absorbed dose of thyroid for fetus were 2.035 Sv and 40.7 Gy, effective dose and absorbed dose of thyroid for infant were 16.25 Sv and 355Gy. Conclusion: The intake during pregnancy was about 1mCi. The absorbed dose of thyroid of the mother was 19.5Gy, whereas the effective of infant was estimated for 40.7Gy. The function of the mother’s thyroid was normal after diagnosis. But the infant was diagnosed as bilobar thyroid agenesis.« less

  5. ESR dosimetry for atomic bomb survivors and radiologic technologists

    NASA Astrophysics Data System (ADS)

    Tatsumi-Miyajima, Junko

    1987-06-01

    An individual absorbed dose for atomic bomb (A-bomb) survivors and radiologic technologists has been estimated using a new personal dosimetry. This dosimetry is based on the electron spin resonance (ESR) spectroscopy of the CO 33- radicals, which are produced in their teeth by radiation. Measurements were carried out to study the characteristics of the dosimetry; the ESR signals of the CO 33- radicals were stable and increased linearly with the radiation dose. In the evaluation of the absorbed dose, the ESR signals were considered to be a function of photon energy. The absorbed doses in ten cases of A-bomb victims and eight cases of radiologic technologists were determined. For A-bomb survivors, the adsorbed doses, which were estimated using the ESR dosimetry, were consistent with the ones obtained using the calculations of the tissue dose in air of A-bomb, and also with the ones obtained using the chromosome measurements. For radiologic technologists, the absorbed doses, which were estimated using the ESR dosimetry, agreed with the ones calculated using the information on the occupational history and conditions. The advantages of this method are that the absorbed dose can be directly estimated by measuring the ESR signals obtained from the teeth of persons, who are exposed to radiation. Therefore, the ESR dosimetry is useful to estimate the accidental exposure and the long term cumulative dose.

  6. [Assessment of radiation exposure level for hydrobionts in some special industrial ponds at the "Mayak" PA].

    PubMed

    Triapitsyna, G A; Andreev, S S; Osipov, D I; Stukalov, P M; Ivanov, I A; Aleksandrova, O N; Kostiuchenko, A V; Priakhin, E A; Akleev, A V

    2012-01-01

    Evaluation of the radionuclide content in the ecosystem components (water, sediments, aquatic organisms) of industrial reservoirs-storages of liquid radioactive waste of the "Mayak" PA (reservoirs R-4, R-10, R-11, R-17, R-9) and the estimation of the absorbed dose rate in aquatic organisms of these reservoirs using the software package ERICA Assessment Tool 1.0 May 2009 have been performed. Gradient of the absorbed dose rate for the detected taxonomic groups of hydrobionts in the series of the studied reservoirs R-11 --> R-10 --> R-4 --> R-17 --> R-9 was almost equal to one order of magnitude. The estimated absorbed dose rate for phytoplankton ranged from 5.4 x 10(0) mGy/day (R-11) to 4.0 x 10(4) mGy/day (R-9), for zooplankton--from 6.4 x 10(-1) mGy/day (R-11) to 3.8 x 10(3) mGy/day (R-9), for zoobenthos (chironomids)--from 5.6 x 10(0) mGy/day (R-11) to 1.1 x 10(3) mGy/day (R-17), for fish (roach)--from 8.0 x 10(-1) mGy/day (R-11) to 1.9 x 10(1) mGy/day (R-4).

  7. A Biodosimeter for Multiparametric Determination of Radiation Dose, Radiation Quality, and Radiation Risk

    NASA Technical Reports Server (NTRS)

    Richmond, Robert; Cruz, Angela; Jansen, Heather; Bors, Karen

    2003-01-01

    Predicting risk of human cancer following exposure of an individual or a population to ionizing radiation is challenging. To an approximation, this is because uncertainties of uniform absorption of dose and the uniform processing of dose-related damage at the cellular level within a complex set of biological variables degrade the confidence of predicting the delayed expression of cancer as a relatively rare event. Cellular biodosimeters that simultaneously report: 1) the quantity of absorbed dose after exposure to ionizing radiation, 2) the quality of radiation delivering that dose, and 3) the risk of developing cancer by the cells absorbing that dose would therefore be useful. An approach to such a multiparametric biodosimeter will be reported. This is the demonstration of a dose responsive field effect of enhanced expression of keratin 18 (K18) in cultures of human mammary epithelial cells irradiated with cesium-1 37 gamma-rays. Dose response of enhanced K18 expression was experimentally extended over a range of 30 to 90 cGy for cells evaluated at mid-log phase. K18 has been reported to be a marker for tumor staging and for apoptosis, and thereby serves as an example of a potential marker for cancer risk, where the reality of such predictive value would require additional experimental development. Since observed radiogenic increase in expression of K18 is a field effect, ie., chronically present in all cells of the irradiated population, it may be hypothesized that K18 expression in specific cells absorbing particulate irradiation, such as the high-LET-producing atomic nuclei of space radiation, will report on both the single-cell distributions of those particles amongst cells within the exposed population, and that the relatively high dose per cell delivered by densely ionizing tracks of those intersecting particles will lead to cell-specific high-expression levels of K18, thereby providing analytical end points that may be used to resolve both the quantity and the quality of the radiation dose absorbed by individual cells. The principal value of this reported potential multiparametric cellular biodosimeter is suggested to be that it justifies a search for similar but more robust radiogenic assays. That is, K18 is only one radiation dose-sensitive expressed protein, whereas analytical techniques of genomics and proteomics can be used to simultaneously analyze multiple gene and protein expressions resulting from radiation-dose absorption. The potential usefulness of multiparametric cellular biodosimeters will be best realized from quantitatively profiling these multiple markers using these modern techniques.

  8. SU-F-J-56: The Connection Between Cherenkov Light Emission and Radiation Absorbed Dose in Proton Irradiated Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darafsheh, A; Kassaee, A; Finlay, J

    Purpose: Range verification in proton therapy is of great importance. Cherenkov light follows the photon and electron energy deposition in water phantom. The purpose of this study is to investigate the connection between Cherenkov light generation and radiation absorbed dose in a water phantom irradiated with proton beams. Methods: Monte Carlo simulation was performed by employing FLUKA Monte Carlo code to stochastically simulate radiation transport, ionizing radiation dose deposition, and Cherenkov radiation in water phantoms. The simulations were performed for proton beams with energies in the range 50–600 MeV to cover a wide range of proton energies. Results: The mechanismmore » of Cherenkov light production depends on the initial energy of protons. For proton energy with 50–400 MeV energy that is below the threshold (∼483 MeV in water) for Cherenkov light production directly from incident protons, Cherenkov light is produced mainly from the secondary electrons liberated as a result of columbic interactions with the incident protons. For proton beams with energy above 500 MeV, in the initial depth that incident protons have higher energy than the Cherenkov light production threshold, the light has higher intensity. As the slowing down process results in lower energy protons in larger depths in the water phantom, there is a knee point in the Cherenkov light curve vs. depth due to switching the Cherenkov light production mechanism from primary protons to secondary electrons. At the end of the depth dose curve the Cherenkov light intensity does not follow the dose peak because of the lack of high energy protons to produce Cherenkov light either directly or through secondary electrons. Conclusion: In contrast to photon and electron beams, Cherenkov light generation induced by proton beams does not follow the proton energy deposition specially close to the end of the proton range near the Bragg peak.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baiden, H.N.; Ercanli-Huffman, F.G.

    Bioavailability of zinc from sweet potato (SP) roots and leaves were determined, by extrinsic labeling technique, in rats fed control and zinc deficient diets. Weanling male Sprague Dawley (SD) rats (60-75g) were divided into 4 groups, and fed laboratory chow, a control diet (ad libitum and pair fed) and a zinc deficient diet, for 4 weeks. Each group then was divided into at least 2 sub groups, containing 6 rats, which were intubated with one of 3 tubing solutions extrinsically labeled with /sup 65/Zn; baked sweet potato roots (BSPR), raw sweet potato leaves (RSPL) and cooked sweet potato leaves (CSPL).more » Five hours after intubation the rats were sacrificed, blood, liver, testes, spleen, heart, brain, thymus and lungs were removed. Feces, urine, and GI tract contents were collected and their /sup 65/Zn activity was determined in a gamma counter. In all treatment groups zinc bioavailability from BSPR, RSPL or CSPL were not significantly different. Zinc deficient rats absorbed significantly more (P < 0.01) /sup 65/Zn (86-90% of the dose), regardless of type of tubing solution than the pairfed or control animals (35-58% of the dose). The highest retention of /sup 65/Zn was found in the liver (12-20% of absorbed dose), GI tract (6-17% of absorbed dose), kidney (2-8% of absorbed dose), and blood (1-5% of absorbed dose). The lowest retention was found in the brain, heart, thymus and testes. (< 1% of absorbed dose).« less

  10. Evaluation of S-values and dose distributions for {sup 90}Y, {sup 131}I, {sup 166}Ho, and {sup 188}Re in seven lobes of the rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Tianwu; Liu Qian; Zaidi, Habib

    2012-03-15

    Purpose: Rats have been widely used in radionuclide therapy research for the treatment of hepatocellular carcinoma (HCC). This has created the need to assess rat liver absorbed radiation dose. In most dose estimation studies, the rat liver is considered as a homogeneous integrated target organ with a tissue composition assumed to be similar to that of human liver tissue. However, the rat liver is composed of several lobes having different anatomical and chemical characteristics. To assess the overall impact on rat liver dose calculation, the authors use a new voxel-based rat model with identified suborgan regions of the liver. Methods:more » The liver in the original cryosectional color images was manually segmented into seven individual lobes and subsequently integrated into a voxel-based computational rat model. Photon and electron particle transport was simulated using the MCNPX Monte Carlo code to calculate absorbed fractions and S-values for {sup 90}Y, {sup 131}I, {sup 166}Ho, and {sup 188}Re for the seven liver lobes. The effect of chemical composition on organ-specific absorbed dose was investigated by changing the chemical composition of the voxel filling liver material. Radionuclide-specific absorbed doses at the voxel level were further assessed for a small spherical hepatic tumor. Results: The self-absorbed dose for different liver lobes varied depending on their respective masses. A maximum difference of 3.5% was observed for the liver self-absorbed fraction between rat and human tissues for photon energies below 100 keV. {sup 166}Ho and {sup 188}Re produce a uniformly distributed high dose in the tumor and relatively low absorbed dose for surrounding tissues. Conclusions: The authors evaluated rat liver radiation doses from various radionuclides used in HCC treatments using a realistic computational rat model. This work contributes to a better understanding of all aspects influencing radiation transport in organ-specific radiation dose evaluation for preclinical therapy studies, from tissue composition to organ morphology and activity distribution.« less

  11. Analysis of the Body Distribution of Absorbed Dose in the Organs of Three Species of Fish from Sepetiba Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Wagner de S; Universidade Federal Fluminense, Programa de Pos-graduacao em Biologia Marinha; Kelecom, Alphonse

    2008-08-07

    The body distribution of Polonium-210 in three fishes from the Sepetiba Bay (Macrodon ancylodon, Micropogonias furnieri and Mugil curema) has been studied under the approach of the Department of Energy of the United States of America (DOE) that set the limit of absorbed dose rate in biota equal to 3.5x10{sup 3} {mu}Gy/y, and that also established the relation between dose rate (D) and radionuclide concentration (c) on a fish muscle fresh weight basis, as follows: D = 5.05 ExNxC, assuming that the radionuclide distribution is homogenous among organs. Two hypotheses were tested here, using statistical tools: 1) is the bodymore » distribution of absorbed dose homogenous among organs? and 2) is the body distribution of absorbed dose identical among studied fishes? It was concluded, as expected, that the distribution among organs is heterogeneous; but, unexpectedly, that the three fishes display identical body distribution pattern, although they belong to different trophic levels. Hence, concerning absorbed dose calculation, the statement that data distribution is homogenous must be understood merely as an approximation, at least in the case of Polonium-210.« less

  12. Measurement of Absorbed Dose from Radionuclide Solutions Mixed Intimately with the Fbx Dosimeter.

    NASA Astrophysics Data System (ADS)

    Benedetto, Anthony Richard

    Chemical dosimeters are used widely for accurate measurement of large radiation doses due to external beam irradiation from radioisotope sources and from particle accelerators. Their use for measurement of absorbed doses from radioactive solutions mixed in the dosimeter solution was reported as early as 1952, but the large activities needed to produce suitable absorbance values in the relatively insensitive dosimeters of that time discouraged further work. This manuscript reports the results of an investigation into the suitability of the ferrous sulfate-benzoic acid -xylenol orange (FBX) dosimeter for measurement of small absorbed doses caused by radionuclide solutions dissolved in the dosimeter solution. The FBX dosimeter exhibited a linear dose response as a function of activity for two common radiopharmaceuticals, technetium-99m sodium pertechnetate and iodine-131 sodium iodide. Conditions under which the FBX dosimeter may be used with radionuclide solutions were studied and were found to be amenable to routine use by laboratories possessing relatively unsophisticated instrumentation. It appears likely that any radionuclide could be studied using this dosimeter. Finally, potential applications and future research work are suggested, including measurement of absorbed dose from radiopharmaceuticals using realistic human-like phantoms to assess the risk from clinical nuclear medicine studies.

  13. Probability Estimates of Solar Particle Event Doses During a Period of Low Sunspot Number for Thinly-Shielded Spacecraft and Short Duration Missions

    NASA Technical Reports Server (NTRS)

    Atwell, William; Tylka, Allan J.; Dietrich, William; Rojdev, Kristina; Matzkind, Courtney

    2016-01-01

    In an earlier paper (Atwell, et al., 2015), we investigated solar particle event (SPE) radiation exposures (absorbed dose) to small, thinly-shielded spacecraft during a period when the sunspot number (SSN) was less than 30. These SPEs contain Ground Level Events (GLE), sub-GLEs, and sub-sub-GLEs (Tylka and Dietrich, 2009, Tylka and Dietrich, 2008, and Atwell, et al., 2008). GLEs are extremely energetic solar particle events having proton energies extending into the several GeV range and producing secondary particles in the atmosphere, mostly neutrons, observed with ground station neutron monitors. Sub-GLE events are less energetic, extending into the several hundred MeV range, but do not produce secondary atmospheric particles. Sub-sub GLEs are even less energetic with an observable increase in protons at energies greater than 30 MeV, but no observable proton flux above 300 MeV. In this paper, we consider those SPEs that occurred during 1973-2010 when the SSN was greater than 30 but less than 50. In addition, we provide probability estimates of absorbed dose based on mission duration with a 95% confidence level (CL). We also discuss the implications of these data and provide some recommendations that may be useful to spacecraft designers of these smaller spacecraft.

  14. Natural radioactivity in soil in the Baluchistan province of Pakistan.

    PubMed

    Mujahid, S A; Hussain, S

    2010-08-01

    The measurements of natural radioactivity and the assessment of radiological hazards in the soil samples of Baluchistan province of Pakistan have been carried out using HPGe detector. The soil gas radon activities in these areas have also been measured using lucas cell technique. The measured activities of (226)Ra, (232)Th and (40)K were found in the range of 15-27, 20-37 and 328-648 Bq kg(-1), respectively. The calculated absorbed dose rate in air and the annual effective dose were in the range of 35-59 nGy h(-1) and 0.17-0.29 mSv, respectively. Radon activity in the soil gas was found in the range of 357-2476 Bq m(-3).

  15. Estimation of Organ Absorbed Doses in Patients from 99mTc-diphosphonate Using the Data of MIRDose Software

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Cheki, Mohsen; Moslehi, Masoud

    2012-01-01

    The purpose of this study was to compare estimation of radiation absorbed doses to patients following bone scans with technetium-99m-labeled methylene diphosphonate (MDP) with the estimates given in MIRDose software. In this study, each patient was injected 25 mCi of 99mTc-MDP. Whole-body images from thirty patients were acquired by gamma camera at 10, 60, 90, 180 minutes after 99mTc-MDP injection. To determine the amount of activity in each organ, conjugate view method was applied on images. MIRD equation was then used to estimate absorbed doses in different organs of patients. At the end, absorbed dose values obtained in this study were compared with the data of MIRDose software. The absorbed doses per unit of injected activity (mGy/MBq × 10–4) for liver, kidneys, bladder wall and spleen were 3.86 ± 1.1, 38.73 ± 4.7, 4.16 ± 1.8 and 3.91 ± 1.3, respectively. The results of this study may be useful to estimate the amount of activity that can be administered to the patient and also showed that methods used in the study for absorbed dose calculation is in good agreement with the data of MIRDose software and it is possible to use by a clinician. PMID:23724374

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farfan, E.; Jannik, T.

    This article describes major studies performed by the Chernobyl Center's International Radioecology Laboratory (Slavutich, Ukraine) on radioecology of murine rodents and shrews inhabiting the Chernobyl Exclusion Zone. The article addresses the long-term (1986-2005) and seasonal dynamics of radioactive contamination of animals, and reviews interspecies differences in radionuclide accumulations and factors affecting the radionuclide accumulations. It is shown that bioavailability of radionuclides in the 'soil-to-plant' chain and a trophic specialization of animals play key roles in determining their actual contamination levels. The total absorbed dose rates in small mammals significantly reduced during the years following the Chernobyl Nuclear Power Plant accident.more » In 1986, the absorbed dose rate reached 1.3-6.0 Gy hr{sup -1} in the central areas of the Chernobyl Exclusion Zone (the 'Red Forest'). In 1988 and 1990, the total absorbed dose rates were 1.3 and 0.42 Gy hr{sup -1}, respectively. In 1995, 2000, and 2005, according to the present study, the total absorbed dose rates rarely exceeded 0.00023, 0.00018, and 0.00015 Gy hr{sup -1}, respectively. Contributions of individual radiation sources into the total absorbed dose are described.« less

  17. New Energy-Dependent Soft X-Rav Damage In MOS Devices

    NASA Astrophysics Data System (ADS)

    Chan, Tung-Yi; Gaw, Henry; Seligson, Daniel; Pan, Lawrence; King, Paul L.; Pianetta, Piero

    1988-06-01

    An energy-dependent soft x-ray-induced device damage has been discovered in MOS devices fabricated using standard CMOS process. MOS devices were irradiated by monochromatic x-rays in energy range just above and below the silicon K-edge (1.84 keV). Photons below the K-edge is found to create more damage in the oxide and oxide/silicon interface than photons above the K-edge. This energy-dependent damage effect is believed to be due to charge traps generated during device fabrication. It is found that data for both n- and p-type devices lie along a universal curve if normalized threshold voltage shifts are plotted against absorbed dose in the oxide. The threshold voltage shift saturates when the absorbed dose in the oxide exceeds 1.4X105 mJ/cm3, corresponding to 6 Mrad in the oxide. Using isochronal anneals, the trapped charge damage is found to recover with an activation energy of 0.38 eV. A discrete radiation-induced damage state appears in the low frequency C-V curve in a temperature range from 1750C to 325°C.

  18. Real-time measurement and monitoring of absorbed dose for electron beams

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey; Korenev, Ivan; Rumega, Stanislav; Grossman, Leon

    2004-09-01

    The real-time method and system for measurement and monitoring of absorbed dose for industrial and research electron accelerators is considered in the report. The system was created on the basis of beam parameters method. The main concept of this method consists in the measurement of dissipated kinetic energy of electrons in the irradiated product, determination of number of electrons and mass of irradiated product in the same cell by following calculation of absorbed dose in the cell. The manual and automation systems for dose measurements are described. The systems are acceptable for all types of electron accelerators.

  19. Absorbed radiation dose in adults from iodine-131 and iodine-123 orthoiodohippurate and technetium-99m DTPA renography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsen, O.

    1988-03-01

    A mathematic model for evaluation of absorbed dose in radionuclide renography has been developed and programmed for automatic calculation in the computer. Input data to the model are readily available from the results of the renography and, hence, the method described is suitable for individual dose determinations in adults. Apart from the situation with very considerable outflow obstructions (/sup 131/I)OIH single probe renography involves a 15-20 times smaller dose to radiation sensitive organs than (/sup 123/I)OIH gamma camera renography. Further, the latter examination results in a 2-10 times smaller dose than (/sup 99m/Tc)DTPA gamma camera renography under normal outflow conditions.more » Absorbed renal dose is large, approximately 70 mGy, in the three renographies in the borderline case with total outflow obstructions. For comparison, i.v. pyelography, which is the x-ray examination often used instead of radionuclide renography, involves an absorbed dose to ovaries 10-1000 times larger than in radionuclide renography« less

  20. Hepatic radioembolization with yttrium-90 containing glass microspheres: Preliminary results and clinical follow-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, J.C.; Walker, S.C.; Ackermann, R.J.

    1994-10-01

    The treatment of hepatic tumors remains unsatisfactory. These lesions receive most of their blood supply from the hepatic artery, therefore the hepatic artery administration of beta-emitting particulate radiopharmaceuticals is an attractive approach to deliver therapeutic irradiation to the liver and differentially to tumors within the liver. A Phase 1 dose escalation study of the hepatic tolerance to radiation delivered by {sup 90}Y containing glass microspheres was carried out in 24 patients with hepatic malignancy. Doses of {sup 90}Y microspheres to achieve an estimated whole-liver nominal absorbed radiation dose of 5000 cGy (two patients), 7500cGy (six patients), 10,000 cGy (seven patients),more » 12,500 cGy (six patients), and 15,000 cGy (three patients) were administered via the hepatic artery. The administered nominal absorbed radiation dose (NARD) was estimated based on liver volume determined from CT scans and the assumption of uniform distribution of microspheres throughout the liver. No hematologic, hepatic or pulmonary toxicity was encountered in the dose range examined during a mean follow-up period of up to 53 mo. Reversible gastritis or duodenitis was encountered in four patients without imaging or biopsy evidence for extra-hepatic deposition of microspheres. Response data, based on CT scans obtained 16 wk after treatment, showed progressive disease in eight patients, stable disease in seven patients, minimal response in four patients and partial response in five patients. Subsequent follow-up revealed three long-term survivors at 204, 216 and 228 wk. These preliminary data demonstrates that in the examined dose range, radiation may be safely delivered to liver tumors by means of {sup 90}Y glass microspheres with encouraging response data. 39 refs., 3 figs., 1 tab.« less

  1. Thyroid disorders in patients treated with radiotherapy for head-and-neck cancer: A retrospective analysis of seventy-three patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alterio, Daniela; Jereczek-Fossa, Barbara Alicja; University of Milan, Milan

    2007-01-01

    Purpose: To evaluate the incidence of thyroid disorders and dose distribution to the thyroid in patients treated with radiotherapy for head-and-neck carcinomas. Methods and Materials: A retrospective evaluation of data from 73 patients treated for head-and-neck cancers in our department was performed. Thyroid function was evaluated mainly by the measurement of thyrotropin (thyroid stimulating hormone [TSH]). A retrospective analysis of treatment plans was performed for 57 patients. Percentages of thyroid glandular volume absorbing 10, 30, and 50 Gy (V10, V30, and V50 respectively) were considered for statistical analysis. Results: A majority of patients (61%) had a normal thyroid function whereasmore » 19 patients (26%) had hypothyroidism. Mean thyroid volume was 30.39 cc. Point 3 (located at isthmus) absorbed lower doses compared with other points (p < 0.0001). Median values of V10, V30, and V50 were 92% (range, 57-100%), 75% (range, 28.5-100%), and 35% (range, 3-83%) respectively. Gender was associated with toxicity (presence of any kind of thyroid disorders) (p < 0.05), with females displaying higher levels of TSHr (relative TSH = patient's value/maximum value of the laboratory range) (p = 0.0005) and smaller thyroid volume (p 0.0012) compared with male population. TSHr values were associated with thyroid volume, and the presence of midline shielding block in the anterior field was associated with relative free thyroxine (FT4r = patient's value/maximum value of the laboratory range) values. Conclusions: Gender and thyroid volume seem to play an important role in the occurrence of thyroid toxicity, but further studies on dose-effect relationship for radiotherapy-induced thyroid toxicity are needed.« less

  2. Absorption of ethanol, acetone, benzene and 1,2-dichloroethane through human skin in vitro: a test of diffusion model predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gajjar, Rachna M.; Kasting, Gerald B., E-mail: Gerald.Kasting@uc.edu

    The overall goal of this research was to further develop and improve an existing skin diffusion model by experimentally confirming the predicted absorption rates of topically-applied volatile organic compounds (VOCs) based on their physicochemical properties, the skin surface temperature, and the wind velocity. In vitro human skin permeation of two hydrophilic solvents (acetone and ethanol) and two lipophilic solvents (benzene and 1,2-dichloroethane) was studied in Franz cells placed in a fume hood. Four doses of each {sup 14}C-radiolabed compound were tested — 5, 10, 20, and 40 μL cm{sup −2}, corresponding to specific doses ranging in mass from 5.0 tomore » 63 mg cm{sup −2}. The maximum percentage of radiolabel absorbed into the receptor solutions for all test conditions was 0.3%. Although the absolute absorption of each solvent increased with dose, percentage absorption decreased. This decrease was consistent with the concept of a stratum corneum deposition region, which traps small amounts of solvent in the upper skin layers, decreasing the evaporation rate. The diffusion model satisfactorily described the cumulative absorption of ethanol; however, values for the other VOCs were underpredicted in a manner related to their ability to disrupt or solubilize skin lipids. In order to more closely describe the permeation data, significant increases in the stratum corneum/water partition coefficients, K{sub sc}, and modest changes to the diffusion coefficients, D{sub sc}, were required. The analysis provided strong evidence for both skin swelling and barrier disruption by VOCs, even by the minute amounts absorbed under these in vitro test conditions. - Highlights: • Human skin absorption of small doses of VOCs was measured in vitro in a fume hood. • The VOCs tested were ethanol, acetone, benzene and 1,2-dichloroethane. • Fraction of dose absorbed for all compounds at all doses tested was less than 0.3%. • The more aggressive VOCs absorbed at higher levels than diffusion model predictions. • We conclude that even small exposures to VOCs temporarily alter skin permeability.« less

  3. Performance of Al2O3:C optically stimulated luminescence dosimeters for clinical radiation therapy applications.

    PubMed

    Hu, B; Wang, Y; Zealey, W

    2009-12-01

    A commercial Optical Stimulated Luminescence (OSL) dosimetry system developed by Landauer was tested to analyse the possibility of using OSL dosimetry for external beam radiotherapy planning checks. Experiments were performed to determine signal sensitivity, dose response range, beam type/energy dependency, reproducibility and linearity. Optical annealing processes to test OSL material reusability were also studied. In each case the measurements were converted into absorbed dose. The experimental results show that OSL dosimetry provides a wide dose response range, good linearity and reproducibility for the doses up to 800cGy. The OSL output is linear with dose up to 600cGy range showing a maximum deviation from linearity of 2.0% for the doses above 600cGy. The standard deviation in response of 20 dosimeters was 3.0%. After optical annealing using incandescent light, the readout intensity decreased by approximately 98% in the first 30 minutes. The readout intensity, I, decreased after repeated optical annealing as a power law, given by I infinity t (-1.3). This study concludes that OSL dosimetry can provide an alternative dosimetry technique for use in in-vivo dosimetry if rigorous measurement protocols are established.

  4. Estimation of background radiation doses for the Peninsular Malaysia's population by ESR dosimetry of tooth enamel.

    PubMed

    Rodzi, Mohd; Zhumadilov, Kassym; Ohtaki, Megu; Ivannikov, Alexander; Bhattacharjee, Deborshi; Fukumura, Akifumi; Hoshi, Masaharu

    2011-08-01

    Background radiation dose is used in dosimetry for estimating occupational doses of radiation workers or determining radiation dose of an individual following accidental exposure. In the present study, the absorbed dose and the background radiation level are determined using the electron spin resonance (ESR) method on tooth samples. The effect of using different tooth surfaces and teeth exposed with single medical X-rays on the absorbed dose are also evaluated. A total of 48 molars of position 6-8 were collected from 13 district hospitals in Peninsular Malaysia. Thirty-six teeth had not been exposed to any excessive radiation, and 12 teeth had been directly exposed to a single X-ray dose during medical treatment prior to extraction. There was no significant effect of tooth surfaces and exposure with single X-rays on the measured absorbed dose of an individual. The mean measured absorbed dose of the population is 34 ± 6.2 mGy, with an average tooth enamel age of 39 years. From the slope of a regression line, the estimated annual background dose for Peninsular Malaysia is 0.6 ± 0.3 mGy y(-1). This value is slightly lower than the yearly background dose for Malaysia, and the radiation background dose is established by ESR tooth measurements on samples from India and Russia.

  5. Measurements of LET distribution and dose equivalent onboard the Space Shuttle IML-2 (STS-65) and S/MM#4 (STS-79).

    PubMed

    Hayashi, T; Doke, T; Kikuchi, J; Sakaguchi, T; Takeuchi, R; Takashima, T; Kobayashi, M; Terasawa, K; Takahashi, K; Watanabe, A; Kyan, A; Hasebe, N; Kashiwagi, T; Ogura, K; Nagaoka, S; Kato, M; Nakano, T; Takahashi, S; Yamanaka, H; Yamaguchi, K; Badhwar, G D

    1997-12-01

    Space radiation dosimetry measurements have been made onboard the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2: 28.5 degrees x 300 km: 14.68 days) and the STS-79 in the 4th Shuttle MIR mission (S/MM#4: 51.6 degrees x 300-400km: 10.2 days). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD-I for IML-2 and RRMD-II with improved triggering system for S/MM#4)" utilizing silicon semi-conductor detectors and the other detectors are conventional passive detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. The main contribution to dose equivalent for particles with LET > 5.0 keV/micrometer (IML-2) and LET > 3.5 keV/micrometer (S/MM#4) is seen to be due to galactic cosmic rays (GCRs) and the contribution of the South Atlantic Anomaly (SAA) is less than 5% (IML-2: 28.5 degrees x 300 km) and 15% (S/MM#4: 51.6 degrees x 400 km) in the above RRMD LET detection conditions. For the whole LET range (> 0.2 kev/micrometer) obtained by TLDs and CR-39 in these two typical orbits (a small inclination x low altitude and a large inclination x high altitude), absorbed dose rates range from 94 to 114 microGy/day, dose equivalent rates from 186 to 207 microSv/day and average quality factors from 1.82 to 2.00 depending on the locations and directions of detectors inside the Spacelab at the highly protected IML-2 orbit (28.5 degrees x 300 km), and also, absorbed dose rates range from 290 to 367 microGy/day, dose equivalent rates from 582 to 651 microSv/day and average quality factors from 1.78 to 2.01 depending on the dosimeter packages around the RRMD-II "Detector Unit" at the S/MM#4 orbit (5l.6 degrees x 400km). In general, it is seen that absorbed doses depend on the orbit altitude (SAA trapped particles contribution dominant) and dose equivalents on the orbit inclination (GCR contribution dominant). The LET distributions obtained by two different types of active and passive detectors, RRMDs and CR-39, are in good agreement for LET of 15 - 200 kev/micrometer and difference of these distributions in the regions of LET < 15 kev/micrometer and LET > 200 kev/micrometer can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks and chemical etching conditions.

  6. Measurements of LET distribution and dose equivalent onboard the Space Shuttle IML-2 (STS-65) and S/MM#4 (STS-79)

    NASA Technical Reports Server (NTRS)

    Hayashi, T.; Doke, T.; Kikuchi, J.; Sakaguchi, T.; Takeuchi, R.; Takashima, T.; Kobayashi, M.; Terasawa, K.; Takahashi, K.; Watanabe, A.; hide

    1997-01-01

    Space radiation dosimetry measurements have been made onboard the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2: 28.5 degrees x 300 km: 14.68 days) and the STS-79 in the 4th Shuttle MIR mission (S/MM#4: 51.6 degrees x 300-400km: 10.2 days). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD-I for IML-2 and RRMD-II with improved triggering system for S/MM#4)" utilizing silicon semi-conductor detectors and the other detectors are conventional passive detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. The main contribution to dose equivalent for particles with LET > 5.0 keV/micrometer (IML-2) and LET > 3.5 keV/micrometer (S/MM#4) is seen to be due to galactic cosmic rays (GCRs) and the contribution of the South Atlantic Anomaly (SAA) is less than 5% (IML-2: 28.5 degrees x 300 km) and 15% (S/MM#4: 51.6 degrees x 400 km) in the above RRMD LET detection conditions. For the whole LET range (> 0.2 kev/micrometer) obtained by TLDs and CR-39 in these two typical orbits (a small inclination x low altitude and a large inclination x high altitude), absorbed dose rates range from 94 to 114 microGy/day, dose equivalent rates from 186 to 207 microSv/day and average quality factors from 1.82 to 2.00 depending on the locations and directions of detectors inside the Spacelab at the highly protected IML-2 orbit (28.5 degrees x 300 km), and also, absorbed dose rates range from 290 to 367 microGy/day, dose equivalent rates from 582 to 651 microSv/day and average quality factors from 1.78 to 2.01 depending on the dosimeter packages around the RRMD-II "Detector Unit" at the S/MM#4 orbit (5l.6 degrees x 400km). In general, it is seen that absorbed doses depend on the orbit altitude (SAA trapped particles contribution dominant) and dose equivalents on the orbit inclination (GCR contribution dominant). The LET distributions obtained by two different types of active and passive detectors, RRMDs and CR-39, are in good agreement for LET of 15 - 200 kev/micrometer and difference of these distributions in the regions of LET < 15 kev/micrometer and LET > 200 kev/micrometer can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks and chemical etching conditions.

  7. Plasma Membrane Permeabilization by 60- and 600-ns Electric Pulses Is Determined by the Absorbed Dose

    PubMed Central

    Ibey, Bennett L.; Xiao, Shu; Schoenbach, Karl H.; Murphy, Michael R.; Pakhomov, Andrei G.

    2008-01-01

    We explored how the effect of plasma membrane permeabilization by nanosecond-duration electric pulses (nsEP) depends on the physical characteristics of exposure. The resting membrane resistance (Rm) and membrane potential (MP) were measured in cultured GH3 and CHO cells by conventional whole-cell patch-clamp technique. Intact cells were exposed to a single nsEP (60 or 600 ns duration, 0-22 kV/cm), followed by patch-clamp measurements after a 2-3 min delay. Consistent with earlier findings, nsEP caused long-lasting Rm decrease, accompanied by the loss of MP. The threshold for these effects was about 6 kV/cm for 60 ns pulses, and about 1 kV/cm for 600 ns pulses. Further analysis established that it was neither pulse duration nor the E-field amplitude per se, but the absorbed dose that determined the magnitude of the biological effect. In other words, exposure to nsEP at either pulse duration caused equal effects if the absorbed doses were equal. The threshold absorbed dose to produce plasma membrane effects in either GH3 or CHO cells at either pulse duration was found to be at or below 10 mJ/g. Despite being determined by the dose, the nsEP effect clearly is not thermal, as the maximum heating at the threshold dose is less than 0.01 °C. The use of the absorbed dose as a universal exposure metric may help to compare and quantify nsEP sensitivity of different cell types and of cells in different physiological conditions. The absorbed dose may also prove to be a more useful metric than the incident E-field in determining safety limits for high peak, lowaverage power EMF emissions. PMID:18839412

  8. A calibration method for realistic neutron dosimetry in radiobiological experiments assisted by MCNP simulation.

    PubMed

    Shahmohammadi Beni, Mehrdad; Krstic, Dragana; Nikezic, Dragoslav; Yu, Kwan Ngok

    2016-09-01

    Many studies on biological effects of neutrons involve dose responses of neutrons, which rely on accurately determined absorbed doses in the irradiated cells or living organisms. Absorbed doses are difficult to measure, and are commonly surrogated with doses measured using separate detectors. The present work describes the determination of doses absorbed in the cell layer underneath a medium column (D A ) and the doses absorbed in an ionization chamber (D E ) from neutrons through computer simulations using the MCNP-5 code, and the subsequent determination of the conversion coefficients R (= D A /D E ). It was found that R in general decreased with increase in the medium thickness, which was due to elastic and inelastic scattering. For 2-MeV neutrons, conspicuous bulges in R values were observed at medium thicknesses of about 500, 1500, 2500 and 4000 μm, and these were attributed to carbon, oxygen and nitrogen nuclei, and were reflections of spikes in neutron interaction cross sections with these nuclei. For 0.1-MeV neutrons, no conspicuous bulges in R were observed (except one at ~2000 μm that was due to photon interactions), which was explained by the absence of prominent spikes in the interaction cross-sections with these nuclei for neutron energies <0.1 MeV. The ratio R could be increased by ~50% for small medium thickness if the incident neutron energy was reduced from 2 MeV to 0.1 MeV. As such, the absorbed doses in cells (D A ) would vary with the incident neutron energies, even when the absorbed doses shown on the detector were the same. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  9. A calibration method for realistic neutron dosimetry in radiobiological experiments assisted by MCNP simulation

    PubMed Central

    Shahmohammadi Beni, Mehrdad; Krstic, Dragana; Nikezic, Dragoslav; Yu, Kwan Ngok

    2016-01-01

    Many studies on biological effects of neutrons involve dose responses of neutrons, which rely on accurately determined absorbed doses in the irradiated cells or living organisms. Absorbed doses are difficult to measure, and are commonly surrogated with doses measured using separate detectors. The present work describes the determination of doses absorbed in the cell layer underneath a medium column (DA) and the doses absorbed in an ionization chamber (DE) from neutrons through computer simulations using the MCNP-5 code, and the subsequent determination of the conversion coefficients R (= DA/DE). It was found that R in general decreased with increase in the medium thickness, which was due to elastic and inelastic scattering. For 2-MeV neutrons, conspicuous bulges in R values were observed at medium thicknesses of about 500, 1500, 2500 and 4000 μm, and these were attributed to carbon, oxygen and nitrogen nuclei, and were reflections of spikes in neutron interaction cross sections with these nuclei. For 0.1-MeV neutrons, no conspicuous bulges in R were observed (except one at ~2000 μm that was due to photon interactions), which was explained by the absence of prominent spikes in the interaction cross-sections with these nuclei for neutron energies <0.1 MeV. The ratio R could be increased by ~50% for small medium thickness if the incident neutron energy was reduced from 2 MeV to 0.1 MeV. As such, the absorbed doses in cells (DA) would vary with the incident neutron energies, even when the absorbed doses shown on the detector were the same. PMID:27380801

  10. ANALYSIS OF UNCERTAINTIES IN DOSE RECONSTRUCTION FROM BIOMARKERS: IMPACT ON STUDY DESIGN

    EPA Science Inventory

    The absorbed dose is defined as the quantity which has passed through the barriers (skin, GI tract, The absorbed dose of a pesticide can be estimated from its established urinary biomarker. ungs). For an exposure study, there are several options for biomarker collection, each w...

  11. Determination of gonad doses during robotic stereotactic radiosurgery for various tumor sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorlu, Faruk; Dugel, Gozde; Ozyigit, Gokhan

    Purpose: The authors evaluated the absorbed dose received by the gonads during robotic stereotactic radiosurgery (SRS) for the treatment of different tumor localizations. Methods: The authors measured the gonad doses during the treatment of head and neck, thoracic, abdominal, or pelvic tumors in both RANDO phantom and actual patients. The computerized tomography images were transferred to the treatment planning system. The contours of tumor and critical organs were delineated on each slice, and treatment plans were generated. Measurements for gonad doses were taken from the geometric projection of the ovary onto the skin for female patients, and from the scrotalmore » skin for male patients by attaching films and Thermoluminescent dosimeters (TLDs). SRS was delivered with CyberKnife (Accuray Inc., Sunnyvale, CA). Results: The median gonadal doses with TLD and film dosimeter in actual patients were 0.19 Gy (range, 0.035-2.71 Gy) and 0.34 Gy (range, 0.066-3.18 Gy), respectively. In the RANDO phantom, the median ovarian doses with TLD and film dosimeter were 0.08 Gy (range, 0.03-0.159 Gy) and 0.05 Gy (range, 0.015-0.13 Gy), respectively. In the RANDO phantom, the median testicular doses with TLD and film dosimeter were 0.134 Gy (range 0.056-1.97 Gy) and 0.306 Gy (range, 0.065-2.25 Gy). Conclusions: Gonad doses are below sterility threshold in robotic SRS for different tumor localizations. However, particular attention should be given to gonads during robotic SRS for pelvic tumors.« less

  12. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions

    NASA Astrophysics Data System (ADS)

    La Tessa, C.; Berger, T.; Kaderka, R.; Schardt, D.; Burmeister, S.; Labrenz, J.; Reitz, G.; Durante, M.

    2014-04-01

    Short- and long-term side effects following the treatment of cancer with radiation are strongly related to the amount of dose deposited to the healthy tissue surrounding the tumor. The characterization of the radiation field outside the planned target volume is the first step for estimating health risks, such as developing a secondary radioinduced malignancy. In ion and high-energy photon treatments, the major contribution to the dose deposited in the far-out-of-field region is given by neutrons, which are produced by nuclear interaction of the primary radiation with the beam line components and the patient’s body. Measurements of the secondary neutron field and its contribution to the absorbed dose and equivalent dose for different radiotherapy technologies are presented in this work. An anthropomorphic RANDO phantom was irradiated with a treatment plan designed for a simulated 5 × 2 × 5 cm3 cancer volume located in the center of the head. The experiment was repeated with 25 MV IMRT (intensity modulated radiation therapy) photons and charged particles (protons and carbon ions) delivered with both passive modulation and spot scanning in different facilities. The measurements were performed with active (silicon-scintillation) and passive (bubble, thermoluminescence 6LiF:Mg, Ti (TLD-600) and 7LiF:Mg, Ti (TLD-700)) detectors to investigate the production of neutral particles both inside and outside the phantom. These techniques provided the whole energy spectrum (E ⩽ 20 MeV) and corresponding absorbed dose and dose equivalent of photo neutrons produced by x-rays, the fluence of thermal neutrons for all irradiation types and the absorbed dose deposited by neutrons with 0.8 < E < 10 MeV during the treatment with scanned carbon ions. The highest yield of thermal neutrons is observed for photons and, among ions, for passively modulated beams. For the treatment with high-energy x-rays, the contribution of secondary neutrons to the dose equivalent is of the same order of magnitude as the primary radiation. In carbon therapy delivered with raster scanning, the absorbed dose deposited by neutrons in the energy region between 0.8 and 10 MeV is almost two orders of magnitude lower than charged fragments. We conclude that, within the energy range explored in this experimental work, the out-of-field dose from secondary neutrons is lowest for ions delivered by scanning, followed by passive modulation, and finally by high-energy IMRT photons.

  13. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions.

    PubMed

    Tessa, C La; Berger, T; Kaderka, R; Schardt, D; Burmeister, S; Labrenz, J; Reitz, G; Durante, M

    2014-04-21

    Short- and long-term side effects following the treatment of cancer with radiation are strongly related to the amount of dose deposited to the healthy tissue surrounding the tumor. The characterization of the radiation field outside the planned target volume is the first step for estimating health risks, such as developing a secondary radioinduced malignancy. In ion and high-energy photon treatments, the major contribution to the dose deposited in the far-out-of-field region is given by neutrons, which are produced by nuclear interaction of the primary radiation with the beam line components and the patient's body. Measurements of the secondary neutron field and its contribution to the absorbed dose and equivalent dose for different radiotherapy technologies are presented in this work. An anthropomorphic RANDO phantom was irradiated with a treatment plan designed for a simulated 5 × 2 × 5 cm³ cancer volume located in the center of the head. The experiment was repeated with 25 MV IMRT (intensity modulated radiation therapy) photons and charged particles (protons and carbon ions) delivered with both passive modulation and spot scanning in different facilities. The measurements were performed with active (silicon-scintillation) and passive (bubble, thermoluminescence ⁶LiF:Mg, Ti (TLD-600) and ⁷LiF:Mg, Ti (TLD-700)) detectors to investigate the production of neutral particles both inside and outside the phantom. These techniques provided the whole energy spectrum (E ≤ 20 MeV) and corresponding absorbed dose and dose equivalent of photo neutrons produced by x-rays, the fluence of thermal neutrons for all irradiation types and the absorbed dose deposited by neutrons with 0.8 < E < 10 MeV during the treatment with scanned carbon ions. The highest yield of thermal neutrons is observed for photons and, among ions, for passively modulated beams. For the treatment with high-energy x-rays, the contribution of secondary neutrons to the dose equivalent is of the same order of magnitude as the primary radiation. In carbon therapy delivered with raster scanning, the absorbed dose deposited by neutrons in the energy region between 0.8 and 10 MeV is almost two orders of magnitude lower than charged fragments. We conclude that, within the energy range explored in this experimental work, the out-of-field dose from secondary neutrons is lowest for ions delivered by scanning, followed by passive modulation, and finally by high-energy IMRT photons.

  14. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies

    PubMed Central

    Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.; Garman, Elspeth F.; Owen, Robin L.; Snell, Edward H.; Bernhard, William A.

    2013-01-01

    Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure. PMID:24311579

  15. Radiation Dose Testing on Juno High Voltage Cables

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Kirkham, Harold; Kim, Wousik; McAlpine, Bill

    2008-01-01

    The Juno mission to Jupiter will have a highly elliptical orbit taking the spacecraft through the radiation belts surrounding the planet. During these passes through the radiation belts, the spacecraft will be subject to high doses of radiation from energetic electrons and protons with energies ranging from 10 keV to 1 GeV. While shielding within the spacecraft main body will reduce the total absorbed dose to much of the spacecraft electronics, instruments and cables on the outside of the spacecraft will receive much higher levels of absorbed dose. In order to estimate the amount of degradation to two such cables, testing has been performed on two coaxial cables intended to provide high voltages to three of the instruments on Juno. Both cables were placed in a vacuum of 5x10(exp -6) torr and cooled to -50(deg)C prior to exposure to the radiation sources. Measurements of the coaxial capacitance per unit length and partial discharge noise floor indicate that increasing levels of radiation make measurable but acceptably small changes to the F EP Teflon utilized in the construction of these cables. In addition to the radiation dose testing, observations were made on the internal electrostatic charging characteristics of these cables and multiple discharges were recorded.

  16. Radiation Dose Testing on Juno High Voltage Cables

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Kirkham, Harold; Kim, Wousik; McAlpine, Bill

    2008-01-01

    The Juno mission to Jupiter will have a highly elliptical orbit taking the spacecraft through the radiation belts surrounding the planet. During these passes through the radiation belts, the spacecraft will be subject to high doses of radiation from energetic electrons and protons with energies ranging from 10 keV to 1 GeV. While shielding within the spacecraft main body will reduce the total absorbed dose to much of the spacecraft electronics, instruments and cables on the outside of the spacecraft will receive much higher levels of absorbed dose. In order to estimate the amount of degradation to two such cables, testing has been performed on two coaxial cables intended to provide high voltages to three of the instruments on Juno. Both cables were placed in a vacuum of 5x10-6 torr and cooled to -50 C prior to exposure to the radiation sources. Measurements of the coaxial capacitance per unit length and partial discharge noise floor indicate that increasing levels of radiation make measurable but acceptably small changes to the F EP Teflon utilized in the construction of these cables. In addition to the radiation dose testing, observations were made on the internal electrostatic charging characteristics of these cables and multiple discharges were recorded.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, R; Le, Y; Armour, E

    Purpose: Dose-response studies in radiation therapy are typically using single response values for tumors across ensembles of tumors. Using the high dose rate (HDR) treatment plan dose grid and pre- and post-therapy FDG-PET images, we look for correlations between voxelized dose and FDG uptake response in individual tumors. Methods: Fifteen patients were treated for localized rectal cancer using 192Ir HDR brachytherapy in conjunction with surgery. FDG-PET images were acquired before HDR therapy and 6–8 weeks after treatment (prior to surgery). Treatment planning was done on a commercial workstation and the dose grid was calculated. The two PETs and the treatmentmore » dose grid were registered to each other using non-rigid registration. The difference in PET SUV values before and after HDR was plotted versus absorbed radiation dose for each voxel. The voxels were then separated into bins for every 400 cGy of absorbed dose and the bin average values plotted similarly. Results: Individual voxel doses did not correlate with PET response; however, when group into tumor subregions corresponding to dose bins, eighty percent of the patients showed a significant positive correlation (R2 > 0) between PET uptake difference in the targeted region and the absorbed dose. Conclusion: By considering larger ensembles of voxels, such as organ average absorbed dose or the dose bins considered here, valuable information may be obtained. The dose-response correlations as measured by FDG-PET difference potentially underlines the importance of FDG-PET as a measure of response, as well as the value of voxelized information.« less

  18. Female gonadal shielding with automatic exposure control increases radiation risks.

    PubMed

    Kaplan, Summer L; Magill, Dennise; Felice, Marc A; Xiao, Rui; Ali, Sayed; Zhu, Xiaowei

    2018-02-01

    Gonadal shielding remains common, but current estimates of gonadal radiation risk are lower than estimated risks to colon and stomach. A female gonadal shield may attenuate active automatic exposure control (AEC) sensors, resulting in increased dose to colon and stomach as well as to ovaries outside the shielded area. We assess changes in dose-area product (DAP) and absorbed organ dose when female gonadal shielding is used with AEC for pelvis radiography. We imaged adult and 5-year-old equivalent dosimetry phantoms using pelvis radiograph technique with AEC in the presence and absence of a female gonadal shield. We recorded DAP and mAs and measured organ absorbed dose at six internal sites using film dosimetry. Female gonadal shielding with AEC increased DAP 63% for the 5-year-old phantom and 147% for the adult phantom. Absorbed organ dose at unshielded locations of colon, stomach and ovaries increased 21-51% in the 5-year-old phantom and 17-100% in the adult phantom. Absorbed organ dose sampled under the shield decreased 67% in the 5-year-old phantom and 16% in the adult phantom. Female gonadal shielding combined with AEC during pelvic radiography increases absorbed dose to organs with greater radiation sensitivity and to unshielded ovaries. Difficulty in proper use of gonadal shields has been well described, and use of female gonadal shielding may be inadvisable given the risks of increasing radiation.

  19. Key comparison BIPM.RI(I)-K9 of the absorbed dose to water standards of the PTB, Germany and the BIPM in medium-energy x-rays

    NASA Astrophysics Data System (ADS)

    Burns, D. T.; Kessler, C.; Büermann, L.; Ketelhut, S.

    2018-01-01

    A key comparison has been made between the absorbed dose to water standards of the PTB, Germany and the BIPM in the medium-energy x-ray range. The results show the standards to be in general agreement at the level of the standard uncertainty of the comparison of 9 to 11 parts in 103. The results are combined with those of a EURAMET comparison and presented in terms of degrees of equivalence for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  20. Editor's choice--Use of disposable radiation-absorbing surgical drapes results in significant dose reduction during EVAR procedures.

    PubMed

    Kloeze, C; Klompenhouwer, E G; Brands, P J M; van Sambeek, M R H M; Cuypers, P W M; Teijink, J A W

    2014-03-01

    Because of the increasing number of interventional endovascular procedures with fluoroscopy and the corresponding high annual dose for interventionalists, additional dose-protecting measures are desirable. The purpose of this study was to evaluate the effect of disposable radiation-absorbing surgical drapes in reducing scatter radiation exposure for interventionalists and supporting staff during an endovascular aneurysm repair (EVAR) procedure. This was a randomized control trial in which 36 EVAR procedures were randomized between execution with and without disposable radiation-absorbing surgical drapes (Radpad: Worldwide Innovations & Technologies, Inc., Kansas City, US, type 5511A). Dosimetric measurements were performed on the interventionalist (hand and chest) and theatre nurse (chest) with and without the use of the drapes to obtain the dose reduction and effect on the annual dose caused by the drapes. Use of disposable radiation-absorbing surgical drapes resulted in dose reductions of 49%, 55%, and 48%, respectively, measured on the hand and chest of the interventionalist and the chest of the theatre nurse. The use of disposable radiation-absorbing surgical drapes significantly reduces scatter radiation exposure for both the interventionalist and the supporting staff during EVAR procedures. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  1. Commissioning dosimetry and in situ dose mapping of a semi-industrial Cobalt-60 gamma-irradiation facility using Fricke and Ceric-cerous dosimetry system and comparison with Monte Carlo simulation data

    NASA Astrophysics Data System (ADS)

    Mortuza, Md Firoz; Lepore, Luigi; Khedkar, Kalpana; Thangam, Saravanan; Nahar, Arifatun; Jamil, Hossen Mohammad; Bandi, Laxminarayan; Alam, Md Khorshed

    2018-03-01

    Characterization of a 90 kCi (3330 TBq), semi-industrial, cobalt-60 gamma irradiator was performed by commissioning dosimetry and in-situ dose mapping experiments with Ceric-cerous and Fricke dosimetry systems. Commissioning dosimetry was carried out to determine dose distribution pattern of absorbed dose in the irradiation cell and products. To determine maximum and minimum absorbed dose, overdose ratio and dwell time of the tote boxes, homogeneous dummy product (rice husk) with a bulk density of 0.13 g/cm3 were used in the box positions of irradiation chamber. The regions of minimum absorbed dose of the tote boxes were observed in the lower zones of middle plane and maximum absorbed doses were found in the middle position of front plane. Moreover, as a part of dose mapping, dose rates in the wall positions and some selective strategic positions were also measured to carry out multiple irradiation program simultaneously, especially for low dose research irradiation program. In most of the cases, Monte Carlo simulation data, using Monte Carlo N-Particle eXtended code version MCNPX 2.7., were found to be in congruence with experimental values obtained from Ceric-cerous and Fricke dosimetry; however, in close proximity positions from the source, the dose rate variation between chemical dosimetry and MCNP was higher than distant positions.

  2. Cosmic ray LET spectra and doses on board Cosmos-2044 biosatellite

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Kovalev, E. E.; Potapov, Y. V.; Benton, E. V.; Frank, A. L.; Benton, E. R.; Watts, J. W. Jr; Parnell, T. A.; Schopper, E.; Baican, B.; hide

    1992-01-01

    Results of the experiments on board Cosmos-2044 (Biosatellite 9) are presented. Various nuclear track detectors (NTD) (dielectric, AgCl-based, nuclear emulsions) were used to obtain the LET spectra inside and outside the satellite. The spectra from the different NTDs have proved to be in general agreement. The results of LET spectra calculations using two different models are also presented. The resultant LET distributions are used to calculate the absorbed and equivalent doses and the orbit-averaged quality factors (QF) of the cosmic rays (CR). Absorbed dose rates inside (approximately 20 g cm-2 shielding) and outside (1 g cm-2) the spacecraft, omitting electrons, were found to be 4.8 and 8.6 mrad d-1, respectively, while the corresponding equivalent doses were 8.8 and 19.7 mrem d-1. The effects of the flight parameters on the total fluence of, and on the dose from, the CR particles are analyzed. Integral dose distributions of the detected particles are also determined. The LET values which separate absorbed and equivalent doses into 50% intervals are estimated. The CR-39 dielectric NTD is shown to detect 20-30% of the absorbed dose and 60-70% of the equivalent dose in the Cosmos-2044 orbit. The influence of solar activity phase on the magnitude of CR flux is discussed.

  3. Radiochromic film calibration for the RQT9 quality beam

    NASA Astrophysics Data System (ADS)

    Costa, K. C.; Gomez, A. M. L.; Alonso, T. C.; Mourao, A. P.

    2017-11-01

    When ionizing radiation interacts with matter it generates energy deposition. Radiation dosimetry is important for medical applications of ionizing radiation due to the increasing demand for diagnostic radiology and radiotherapy. Different dosimetry methods are used and each one has its advantages and disadvantages. The film is a dose measurement method that records the energy deposition by the darkening of its emulsion. Radiochromic films have a little visible light sensitivity and respond better to ionizing radiation exposure. The aim of this study is to obtain the resulting calibration curve by the irradiation of radiochromic film strips, making it possible to relate the darkening of the film with the absorbed dose, in order to measure doses in experiments with X-ray beam of 120 kV, in computed tomography (CT). Film strips of GAFCHROMIC XR-QA2 were exposed according to RQT9 reference radiation, which defines an X-ray beam generated from a voltage of 120 kV. Strips were irradiated in "Laboratório de Calibração de Dosímetros do Centro de Desenvolvimento da Tecnologia Nuclear" (LCD / CDTN) at a dose range of 5-30 mGy, corresponding to the range values commonly used in CT scans. Digital images of the irradiated films were analyzed by using the ImageJ software. The darkening responses on film strips according to the doses were observed and they allowed obtaining the corresponding numeric values to the darkening for each specific dose value. From the numerical values of darkening, a calibration curve was obtained, which correlates the darkening of the film strip with dose values in mGy. The calibration curve equation is a simplified method for obtaining absorbed dose values using digital images of radiochromic films irradiated. With the calibration curve, radiochromic films may be applied on dosimetry in experiments on CT scans using X-ray beam of 120 kV, in order to improve CT acquisition image processes.

  4. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    PubMed

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-03-08

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance.

  5. Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite

    NASA Technical Reports Server (NTRS)

    Watts, J. W., Jr.; Parnell, T. A.; Akatov, Yu. A.; Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.

    1995-01-01

    Significant absorbed dose levels exceeding 1.0 Gy day(exp -1) have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLD's) made in U.S.S.R. and U.S.A. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.

  6. Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.; Watts, J. W. Jr; Parnell, T. A.

    1990-01-01

    Significant absorbed dose levels exceeding 1.0 Gy day-1 have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLDs) of U.S.S.R. and U.S.A. manufacture. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.

  7. Radiation ecology issues associated with murine rodents and shrews in the Chernobyl exclusion zone.

    PubMed

    Gaschak, Sergey P; Maklyuk, Yulia A; Maksimenko, Andrey M; Bondarkov, Mikhail D; Jannik, G Timothy; Farfán, Eduardo B

    2011-10-01

    This article describes major studies performed by the Chernobyl Center's International Radioecology Laboratory (Slavutich, Ukraine) on radioecology of murine rodents and shrews inhabiting the Chernobyl Exclusion Zone. The article addresses the long-term (1986-2005) and seasonal dynamics of radioactive contamination of animals and reviews interspecies differences in radionuclide accumulations and factors affecting the radionuclide accumulations. It is shown that bioavailability of radionuclides in the "soil-to-plant" chain and a trophic specialization of animals play key roles in determining their actual contamination levels. The total absorbed dose rates in small mammals significantly reduced during the years following the Chernobyl Nuclear Power Plant accident. In 1986, the absorbed dose rate reached 1.3-6.0 Gy h(-1) in the central areas of the Chernobyl Exclusion Zone (the "Red Forest"). In 1988 and 1990, the total absorbed dose rates were 1.3 and 0.42 Gy h(-1), respectively. In 1995, 2000, and 2005, according to the present study, the total absorbed dose rates rarely exceeded 0.00023, 0.00018, and 0.00015 Gy h(-1), respectively. Contributions of individual radiation sources into the total absorbed dose are described.

  8. Determination of spatial dose distribution in UCC treatments with LDR brachytherapy using Monte Carlo methods.

    PubMed

    Benites-Rengifo, Jorge Luis; Vega-Carrillo, Hector Rene

    2018-05-19

    Using Monte Carlos methods, with the MCNP5 code, a gynecological phantom and a vaginal cylinder were modeled. The spatial distribution of absorbed dose rates in Uterine Cervical Cancer treatment through low dose rate brachytherapy was determined. A liquid water gynecology computational phantom, including a vaginal cylinder applicator made of Lucite, was designed. The applicator has a linear array of four radioactive sources of Cesium 137. Around the vaginal cylinder, 13 water spherical cells of 0.5 cm-diameter were modeled to calculate absorbed dose emulating the procedure made by the treatment planning system. The gamma-ray fluence distribution was estimated, as well as the absorbed doses resulting approximately symmetrical for cells located at upper and lower of vaginal cylinder. Obtained results allow the use of the radioactive decay law to determine dose rate for Uterine Cervical Cancer using low dose rate brachytherapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Absorbed doses of lungs from radon retained in airway lumens of mice and rats.

    PubMed

    Sakoda, Akihiro; Ishimori, Yuu; Yamaoka, Kiyonori; Kataoka, Takahiro; Mitsunobu, Fumihiro

    2013-08-01

    This paper provides absorbed doses arising from radon gas in air retained in lung airway lumens. Because radon gas exposure experiments often use small animals, the calculation was performed for mice and rats. For reference, the corresponding computations were also done for humans. Assuming that radon concentration in airway lumens is the same as that in the environment, its progeny's production in and clearance from airways were simulated. Absorbed dose rates were obtained for three lung regions and the whole lung, considering that secretory and basal cells are sensitive to radiation. The results showed that absorbed dose rates for all lung regions and whole lung generally increase from mice to rats to humans. For example, the dose rates for the whole lung were 25.4 in mice, 41.7 in rats, and 59.9 pGy (Bq m⁻³)⁻¹ h⁻¹ in humans. Furthermore, these values were also compared with lung dose rates from two other types of exposures, that is, due to inhalation of radon or its progeny, which were already reported. It was confirmed that the direct inhalation of radon progeny in the natural environment, which is known as a cause of lung cancer, results in the highest dose rates for all species. Based on the present calculations, absorbed dose rates of the whole lung from radon gas were lower by a factor of about 550 (mice), 200 (rats), or 70 (humans) than those from radon progeny inhalation. The calculated dose rate values are comparatively small. Nevertheless, the present study is considered to contribute to our understanding of doses from inhalation of radon and its progeny.

  10. Comparison of estimated human dose of (68)Ga-MAA with (99m)Tc-MAA based on rat data.

    PubMed

    Shanehsazzadeh, Saeed; Lahooti, Afsaneh; Yousefnia, Hassan; Geramifar, Parham; Jalilian, Amir Reza

    2015-10-01

    (99m)Tc macroaggregated albumin ((99m)Tc-MAA) that had been used as a perfusion agent has been evaluated. In this study, we tried to estimate human absorbed dose of ⁶⁸Ga-MAA via commercially available kit from Pars-Isotopes, based on biodistribution data in wild-type rats, and compare our estimation with the available absorbed dose data from (99m)Tc-MAA. For biodistribution of ⁶⁸Ga-MAA, three rats were sacrificed at each selected times after injection (15, 30, 45, 60, and 120 min) and the percentage of injected dose per gram of each organ was measured by direct counting from rats data from 11 harvested organs. The medical internal radiation dose formulation was applied to extrapolate from rats to human and to project the absorbed radiation dose for various organs in humans. The biodistribution data for ⁶⁸Ga-MAA showed that the most of the activity was taken up by the lung (more than 97 %) in no time. Our dose prediction shows that a 185-MBq injection of ⁶⁸Ga-MAA into humans might result in an estimated absorbed dose of 4.31 mGy in the whole body. The highest absorbed doses are observed in the adrenals, spleen, pancreas, and red marrow with 0.36, 0.34, 0.26, and 0.19 mGy, respectively. Since the (99m)Tc-MAA remains longer than ⁶⁸Ga-MAA in the lung and ⁶⁸Ga-MAA has good image qualities and results in lower amounts of dose delivery to the critical organs such as gonads, red marrow, and adrenals, the use of ⁶⁸Ga-MAA is recommended.

  11. Calculation of Blood Dose in Patients Treated With 131I Using MIRD, Imaging, and Blood Sampling Methods

    PubMed Central

    Piruzan, Elham; Haghighatafshar, Mahdi; Faghihi, Reza; Entezarmahdi, Seyed Mohammad

    2016-01-01

    Abstract Radioiodine therapy is known as the most effective treatment of differentiated thyroid carcinoma (DTC) to ablate remnant thyroid tissue after surgery. In patients with DTC treated with radioiodine, internal radiation dosimetry of radioiodine is useful for radiation risk assessment. The aim of this study is to describe a method to estimate the absorbed dose to the blood using medical internal radiation dosimetry methods. In this study, 23 patients with DTC with different administrated activities, 3.7, 4.62, and 5.55 GBq after thyroidectomy, were randomly selected. Blood dosimetry of treated patients was performed with external whole body counting using a dual-head gamma camera imaging device and also with blood sample activity measurements using a dose calibrator. Absorbed dose to the blood was measured at 2, 6, 12, 24, 48, and 96 hours after the administration of radioiodine with the 2 methods. Based on the results of whole body counting and blood sample activity dose rate measurements, 96 hours after administration of 3.7, 4.62, and 5.55 GBq of radioiodine, absorbed doses to patients’ blood were 0.65 ± 0.20, 0.67 ± 0.18, 0.79 ± 0.51 Gy, respectively. Increasing radioiodine activity from 3.7 to 5.55 GBq increased blood dose significantly, while there was no significant difference in blood dose between radioiodine dosages of 3.7 and 4.62 GBq. Our results revealed a significant correlation between the blood absorbed dose and blood sample activity and between the blood absorbed dose and whole body counts 24 to 48 hours after the administration of radioiodine. PMID:26986171

  12. Calculation of Blood Dose in Patients Treated With 131I Using MIRD, Imaging, and Blood Sampling Methods.

    PubMed

    Piruzan, Elham; Haghighatafshar, Mahdi; Faghihi, Reza; Entezarmahdi, Seyed Mohammad

    2016-03-01

    Radioiodine therapy is known as the most effective treatment of differentiated thyroid carcinoma (DTC) to ablate remnant thyroid tissue after surgery. In patients with DTC treated with radioiodine, internal radiation dosimetry of radioiodine is useful for radiation risk assessment. The aim of this study is to describe a method to estimate the absorbed dose to the blood using medical internal radiation dosimetry methods. In this study, 23 patients with DTC with different administrated activities, 3.7, 4.62, and 5.55 GBq after thyroidectomy, were randomly selected. Blood dosimetry of treated patients was performed with external whole body counting using a dual-head gamma camera imaging device and also with blood sample activity measurements using a dose calibrator. Absorbed dose to the blood was measured at 2, 6, 12, 24, 48, and 96 hours after the administration of radioiodine with the 2 methods. Based on the results of whole body counting and blood sample activity dose rate measurements, 96 hours after administration of 3.7, 4.62, and 5.55 GBq of radioiodine, absorbed doses to patients' blood were 0.65 ± 0.20, 0.67 ± 0.18, 0.79 ± 0.51 Gy, respectively. Increasing radioiodine activity from 3.7 to 5.55 GBq increased blood dose significantly, while there was no significant difference in blood dose between radioiodine dosages of 3.7 and 4.62 GBq. Our results revealed a significant correlation between the blood absorbed dose and blood sample activity and between the blood absorbed dose and whole body counts 24 to 48 hours after the administration of radioiodine.

  13. Absorbed dose measurement in low temperature samples:. comparative methods using simulated material

    NASA Astrophysics Data System (ADS)

    Garcia, Ruth; Harris, Anthony; Winters, Martell; Howard, Betty; Mellor, Paul; Patil, Deepak; Meiner, Jason

    2004-09-01

    There is a growing need to reliably measure absorbed dose in low temperature samples, especially in the pharmaceutical and tissue banking industries. All dosimetry systems commonly used in the irradiation industry are temperature sensitive. Radiation of low temperature samples, such as those packaged with dry ice, must therefore take these dosimeter temperature effects into consideration. This paper will suggest a method to accurately deliver an absorbed radiation dose using dosimetry techniques designed to abrogate the skewing effects of low temperature environments on existing dosimetry systems.

  14. Study on the quality assurance of diagnostic X-ray machines and assessment of the absorbed dose to patients

    NASA Astrophysics Data System (ADS)

    Hassan, G. M.; Rabie, N.; Mustafa, K. A.; Abdel-Khalik, S. S.

    2012-09-01

    Radiation exposure and image quality in X-ray diagnostic radiology provide a clear understanding of the relationship between the radiation dose delivered to a patient and image quality in optimizing medical diagnostic radiology. Because a certain amount of radiation is unavoidably delivered to patients, this should be as low as reasonably achievable. Several X-ray diagnostic machines were used at different medical diagnostic centers in Egypt for studying the beam quality and the dose delivered to the patient. This article studies the factors affecting the beam quality, such as the kilo-volt peak (kVp), exposure time (mSc), tube current (mAs) and the absorbed dose in (μGy) for different examinations. The maximum absorbed dose measured per mAs was 594±239 and 12.5±3.7 μGy for the abdomen and the chest, respectively, while the absorbed dose at the elbow was 18±6 μGy, which was the minimum dose recorded. The compound and expanded uncertainties accompanying these measurements were 4±0.35% and 8±0.7%, respectively. The measurements were done through quality control tests as acceptance procedures.

  15. Absorbed dose measurements for kV-cone beam computed tomography in image-guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Hioki, Kazunari; Araki, Fujio; Ohno, Takeshi; Nakaguchi, Yuji; Tomiyama, Yuuki

    2014-12-01

    In this study, we develope a novel method to directly evaluate an absorbed dose-to-water for kilovoltage-cone beam computed tomography (kV-CBCT) in image-guided radiation therapy (IGRT). Absorbed doses for the kV-CBCT systems of the Varian On-Board Imager (OBI) and the Elekta X-ray Volumetric Imager (XVI) were measured by a Farmer ionization chamber with a 60Co calibration factor. The chamber measurements were performed at the center and four peripheral points in body-type (30 cm diameter and 51 cm length) and head-type (16 cm diameter and 33 cm length) cylindrical water phantoms. The measured ionization was converted to the absorbed dose-to-water by using a 60Co calibration factor and a Monte Carlo (MC)-calculated beam quality conversion factor, kQ, for 60Co to kV-CBCT. The irradiation for OBI and XVI was performed with pelvis and head modes for the body- and the head-type phantoms, respectively. In addition, the dose distributions in the phantom for both kV-CBCT systems were calculated with MC method and were compared with measured values. The MC-calculated doses were calibrated at the center in the water phantom and compared with measured doses at four peripheral points. The measured absorbed doses at the center in the body-type phantom were 1.96 cGy for OBI and 0.83 cGy for XVI. The peripheral doses were 2.36-2.90 cGy for OBI and 0.83-1.06 cGy for XVI. The doses for XVI were lower up to approximately one-third of those for OBI. Similarly, the measured doses at the center in the head-type phantom were 0.48 cGy for OBI and 0.21 cGy for XVI. The peripheral doses were 0.26-0.66 cGy for OBI and 0.16-0.30 cGy for XVI. The calculated peripheral doses agreed within 3% in the pelvis mode and within 4% in the head mode with measured doses for both kV-CBCT systems. In addition, the absorbed dose determined in this study was approximately 4% lower than that in TG-61 but the absorbed dose by both methods was in agreement within their combined uncertainty. This method is more robust and accurate compared to the dosimetry based on a conventional air-kerma calibration factor. Therefore, it is possible to be used as a standard dosimetry protocol for kV-CBCT in IGRT.

  16. Calculation of radiation therapy dose using all particle Monte Carlo transport

    DOEpatents

    Chandler, William P.; Hartmann-Siantar, Christine L.; Rathkopf, James A.

    1999-01-01

    The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media.

  17. Calculation of radiation therapy dose using all particle Monte Carlo transport

    DOEpatents

    Chandler, W.P.; Hartmann-Siantar, C.L.; Rathkopf, J.A.

    1999-02-09

    The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media. 57 figs.

  18. Evaluation of Beta-Absorbed Fractions in a Mouse Model for 90Y, 188Re, 166Ho, 149Pm, 64Cu, and 177Lu Radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, William H.; Hartmann-Siantar, Christine; Fisher, Darrell R.

    2005-08-01

    Several short-lived, high-energy beta emitters are being proposed as the radionuclide components for molecular-targeted potential cancer therapeutic agents. The laboratory mice used to determine the efficacy of these new agents have organs that are relatively small compared to the ranges of these high-energy particles. The dosimetry model developed by Hui et al. was extended to provide realistic beta-dose estimates for organs in mice that received therapeutic radiopharmaceuticals containing 90Y, 188Re, 166Ho, 149Pm, 64Cu, and 177 Lu. Major organs in this model included the liver, spleen, kidneys, lungs, heart, stomach, small and large bowel, thyroid, pancreas, bone, marrow, carcass, and amore » 0.025-g tumor. The study as reported in this paper verifies their results for 90Y and extends them by using their organ geometry factors combined with newly calculated organ self-absorbed fractions from PEREGRINE and MCNP. PEREGRINE and MCNP agree to within 8% for the worst-case organ with average differences (averaged over all organs) decreasing from 5% for 90Y to 1% for 177Lu. When used with typical biodistribution data, the three different models predict doses that are in agreement to within 5% for the worst-case organ. The beta-absorbed fractions and cross-organ-deposited energy provided in this paper can be used by researchers to predict mouse-organ doses and should contribute to an improved understanding of the relationship between dose and radiation toxicity in mouse models where use of these isotopes is favorable.« less

  19. Air kerma and absorbed dose standards for reference dosimetry in brachytherapy

    PubMed Central

    2014-01-01

    This article reviews recent developments in primary standards for the calibration of brachytherapy sources, with an emphasis on the currently most common photon-emitting radionuclides. The introduction discusses the need for reference dosimetry in brachytherapy in general. The following section focuses on the three main quantities, i.e. reference air kerma rate, air kerma strength and absorbed dose rate to water, which are currently used for the specification of brachytherapy photon sources and which can be realized with primary standards from first principles. An overview of different air kerma and absorbed dose standards, which have been independently developed by various national metrology institutes over the past two decades, is given in the next two sections. Other dosimetry techniques for brachytherapy will also be discussed. The review closes with an outlook on a possible transition from air kerma to absorbed dose to water-based calibrations for brachytherapy sources in the future. PMID:24814696

  20. Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose

    NASA Technical Reports Server (NTRS)

    Welton, Andrew; Lee, Kerry

    2010-01-01

    While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.

  1. A new label dosimetry system based on pentacosa-diynoic acid monomer for low dose applications

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, A. A.; Abdel-Rehim, F.; Soliman, Y. S.

    2012-01-01

    The dosimetric characteristics of γ-radiation sensitive labels based on polyvinyl butyral (PVB) and a conjugated diacetylene monomer, 10,12-pentacosa-diynoic acid (PCDA) have been investigated using reflectance colorimeter. Two types of labels (colourless and yellow) based on PCDA monomer were prepared using an Automatic Film Applicator System. Upon γ-ray exposure, the colourless label turns progressively blue, while the yellow colour label turns to green then to dark blue. The colour intensity of the labels is proportional to the radiation absorbed dose. The useful dose range was 15 Gy-2 kGy depending on PCDA monomer concentration. The expanded uncertainty of dose measurement of the colourless label was 6.06 (2 σ).

  2. MIRD Pamphlet No. 21: A Generalized Schema for Radiopharmaceutical Dosimetry-Standardization of Nomenclature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolch, W E; Eckerman, Keith F; Sgouros, George

    2009-03-01

    The internal dosimetry schema of the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine has provided a broad framework for assessment of the absorbed dose to whole organs, tissue subregions, voxelized tissue structures, and individual cellular compartments for use in both diagnostic and therapeutic nuclear medicine. The schema was originally published in 1968, revised in 1976, and republished in didactic form with comprehensive examples as the MIRD primer in 1988 and 1991. The International Commission on Radiological Protection (ICRP) is an organization that also supplies dosimetric models and technical data, for use in providing recommendations formore » limits on ionizing radiation exposure to workers and members of the general public. The ICRP has developed a dosimetry schema similar to that of the MIRD Committee but has used different terminology and symbols for fundamental quantities such as the absorbed fraction, specific absorbed fraction, and various dose coefficients. The MIRD Committee objectives for this pamphlet are 3-fold: to restate its schema for assessment of absorbed dose in a manner consistent with the needs of both the nuclear medicine and the radiation protection communities, with the goal of standardizing nomenclature; to formally adopt the dosimetry quantities equivalent dose and effective dose for use in comparative evaluations of potential risks of radiation-induced stochastic effects to patients after nuclear medicine procedures; and to discuss the need to identify dosimetry quantities based on absorbed dose that address deterministic effects relevant to targeted radionuclide therapy.« less

  3. A mathematical model for calculation of 90Sr absorbed dose in dental tissues: elaboration and comparison to EPR measurements.

    PubMed

    Shishkina, E A; Lyubashevskii, N M; Tolstykh, E I; Ignatiev, E A; Betenekova, T A; Nikiforov, S V

    2001-09-01

    A mathematical model for calculation of the 90Sr absorbed doses in dental tissues is presented. The results of the Monte-Carlo calculations are compared to the data obtained by EPR measurements of dental tissues. Radiometric measurements of the 90Sr concentrations. TLD and EPR dosimetry investigations were performed in animal (dog) study. The importance of the irregular 90Sr distribution in the dentine for absorbed dose formation has been shown. The dominant dose formation factors (main source-tissues) were identified for the crown dentine and enamel. The model has shown agreement with experimental data which allows to determine further directions of the human tooth model development.

  4. Determination of absorbed dose to water around a clinical HDR {sup 192}Ir source using LiF:Mg,Ti TLDs demonstrates an LET dependence of detector response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsson Tedgren, Aasa; Elia, Rouba; Hedtjaern, Haakan

    2012-02-15

    Purpose: Experimental radiation dosimetry with thermoluminescent dosimeters (TLDs), calibrated in a {sup 60}Co or megavoltage (MV) photon beam, is recommended by AAPM TG-43U1for verification of Monte Carlo calculated absorbed doses around brachytherapy sources. However, it has been shown by Carlsson Tedgren et al.[Med. Phys. 38, 5539-5550 (2011)] that for TLDs of LiF:Mg,Ti, detector response was 4% higher in a {sup 137}Cs beam than in a {sup 60}Co one. The aim of this work was to investigate if similar over-response exists when measuring absorbed dose to water around {sup 192}Ir sources, using LiF:Mg,Ti dosimeters calibrated in a 6 MV photon beam.more » Methods: LiF dosimeters were calibrated to measure absorbed dose to water in a 6 MV photon beam and used to measure absorbed dose to water at distances of 3, 5, and 7 cm from a clinical high dose rate (HDR) {sup 192}Ir source in a polymethylmethacrylate (PMMA) phantom. Measured values were compared to values of absorbed dose to water calculated using a treatment planning system (TPS) including corrections for the difference in energy absorption properties between calibration quality and the quality in the users'{sup 192}Ir beam and for the use of a PMMA phantom instead of the water phantom underlying dose calculations in the TPS. Results: Measured absorbed doses to water around the {sup 192}Ir source were overestimated by 5% compared to those calculated by the TPS. Corresponding absorbed doses to water measured in a previous work with lithium formate electron paramagnetic resonance (EPR) dosimeters by Antonovic et al. [Med. Phys. 36, 2236-2247 (2009)], using the same irradiation setup and calibration procedure as in this work, were 2% lower than those calculated by the TPS. The results obtained in the measurements in this work and those obtained using the EPR lithium formate dosimeters were, within the expanded (k = 2) uncertainty, in agreement with the values derived by the TPS. The discrepancy between the results using LiF:Mg,Ti TLDs and the EPR lithium formate dosimeters was, however, statistically significant and in agreement with the difference in relative detector responses found for the two detector systems by Carlsson Tedgren et al. [Med. Phys. 38, 5539-5550 (2011)] and by Adolfsson et al.[Med. Phys. 37, 4946-4959 (2010)]. Conclusions: When calibrated in {sup 60}Co or MV photon beams, correction for the linear energy transfer (LET) dependence of LiF:Mg,Ti detector response will be needed as to measure absorbed doses to water in a {sup 192}Ir beam with highest accuracy. Such corrections will depend on the manufacturing process (MTS-N Poland or Harshaw TLD-100) and details of the annealing and read-out schemes used.« less

  5. Determination of absorbed dose to water around a clinical HDR (192)Ir source using LiF:Mg,Ti TLDs demonstrates an LET dependence of detector response.

    PubMed

    Carlsson Tedgren, Asa; Elia, Rouba; Hedtjarn, Hakan; Olsson, Sara; Alm Carlsson, Gudrun

    2012-02-01

    Experimental radiation dosimetry with thermoluminescent dosimeters (TLDs), calibrated in a (60)Co or megavoltage (MV) photon beam, is recommended by AAPM TG-43U1for verification of Monte Carlo calculated absorbed doses around brachytherapy sources. However, it has been shown by Carlsson Tedgren et al. [Med. Phys. 38, 5539-5550 (2011)] that for TLDs of LiF:Mg,Ti, detector response was 4% higher in a (137)Cs beam than in a (60)Co one. The aim of this work was to investigate if similar over-response exists when measuring absorbed dose to water around (192)Ir sources, using LiF:Mg,Ti dosimeters calibrated in a 6 MV photon beam. LiF dosimeters were calibrated to measure absorbed dose to water in a 6 MV photon beam and used to measure absorbed dose to water at distances of 3, 5, and 7 cm from a clinical high dose rate (HDR) (192)Ir source in a polymethylmethacrylate (PMMA) phantom. Measured values were compared to values of absorbed dose to water calculated using a treatment planning system (TPS) including corrections for the difference in energy absorption properties between calibration quality and the quality in the users' (192)Ir beam and for the use of a PMMA phantom instead of the water phantom underlying dose calculations in the TPS. Measured absorbed doses to water around the (192)Ir source were overestimated by 5% compared to those calculated by the TPS. Corresponding absorbed doses to water measured in a previous work with lithium formate electron paramagnetic resonance (EPR) dosimeters by Antonovic et al. [Med. Phys. 36, 2236-2247 (2009)], using the same irradiation setup and calibration procedure as in this work, were 2% lower than those calculated by the TPS. The results obtained in the measurements in this work and those obtained using the EPR lithium formate dosimeters were, within the expanded (k = 2) uncertainty, in agreement with the values derived by the TPS. The discrepancy between the results using LiF:Mg,Ti TLDs and the EPR lithium formate dosimeters was, however, statistically significant and in agreement with the difference in relative detector responses found for the two detector systems by Carlsson Tedgren et al. [Med. Phys. 38, 5539-5550 (2011)] and by Adolfsson et al. [Med. Phys. 37, 4946-4959 (2010)]. When calibrated in (60)Co or MV photon beams, correction for the linear energy transfer (LET) dependence of LiF:Mg,Ti detector response will be needed as to measure absorbed doses to water in a (192)Ir beam with highest accuracy. Such corrections will depend on the manufacturing process (MTS-N Poland or Harshaw TLD-100) and details of the annealing and read-out schemes used.

  6. Graves' disease radioiodine-therapy: Choosing target absorbed doses for therapy planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willegaignon, J., E-mail: j.willegaignon@gmail.com; Sapienza, M. T.; Coura-Filho, G. B.

    Purpose: The precise determination of organ mass (m{sub th}) and total number of disintegrations within the thyroid gland (A{sup ~}) are essential for thyroid absorbed-dose calculations for radioiodine therapy. Nevertheless, these parameters may vary according to the method employed for their estimation, thus introducing uncertainty in the estimated thyroid absorbed dose and in any dose–response relationship derived using such estimates. In consideration of these points, thyroid absorbed doses for Graves’ disease (GD) treatment planning were calculated using different approaches to estimating the m{sub th} and the A{sup ~}. Methods: Fifty patients were included in the study. Thyroid{sup 131}I uptake measurementsmore » were performed at 2, 6, 24, 48, 96, and 220 h postadministration of a tracer activity in order to estimate the effective half-time (T{sub eff}) of {sup 131}I in the thyroid; the thyroid cumulated activity was then estimated using the T{sub eff} thus determined or, alternatively, calculated by numeric integration of the measured time-activity data. Thyroid mass was estimated by ultrasonography (USG) and scintigraphy (SCTG). Absorbed doses were calculated with the OLINDA/EXM software. The relationships between thyroid absorbed dose and therapy response were evaluated at 3 months and 1 year after therapy. Results: The average ratio (±1 standard deviation) betweenm{sub th} estimated by SCTG and USG was 1.74 (±0.64) and that between A{sup ~} obtained by T{sub eff} and the integration of measured activity in the gland was 1.71 (±0.14). These differences affect the calculated absorbed dose. Overall, therapeutic success, corresponding to induction of durable hypothyroidism or euthyroidism, was achieved in 72% of all patients at 3 months and in 90% at 1 year. A therapeutic success rate of at least 95% was found in the group of patients receiving doses of 200 Gy (p = 0.0483) and 330 Gy (p = 0.0131) when m{sub th} was measured by either USG or SCTG and A{sup ~} was determined by the integration of measured {sup 131}I activity in the thyroid gland and based on T{sub eff}, respectively. No statistically significant relationship was found between therapeutic response and patients’ age, administered {sup 131}I activity (MBq), 24-h thyroid {sup 131}I uptake (%) or T{sub eff} (p ≥ 0.064); nonetheless, a good relationship was found between the therapeutic response and m{sub th} (p ≤ 0.035). Conclusions: According to the results of this study, the most effective thyroid absorbed dose to be targeted in GD therapy should not be based on a fixed dose but rather should be individualized based on the patient'sm{sub th} and A{sup ~}. To achieve a therapeutic success (i.e., durable euthyroidism or hypothyroidism) rate of at least 95%, a thyroid absorbed dose of 200 or 330 Gy is required depending on the methodology used for estimating m{sub th} and A{sup ~}.« less

  7. Graves' disease radioiodine-therapy: Choosing target absorbed doses for therapy planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willegaignon, J., E-mail: j.willegaignon@gmail.com; Sapienza, M. T.; Coura-Filho, G. B.

    2014-01-15

    Purpose: The precise determination of organ mass (m{sub th}) and total number of disintegrations within the thyroid gland (A{sup ~}) are essential for thyroid absorbed-dose calculations for radioiodine therapy. Nevertheless, these parameters may vary according to the method employed for their estimation, thus introducing uncertainty in the estimated thyroid absorbed dose and in any dose–response relationship derived using such estimates. In consideration of these points, thyroid absorbed doses for Graves’ disease (GD) treatment planning were calculated using different approaches to estimating the m{sub th} and the A{sup ~}. Methods: Fifty patients were included in the study. Thyroid{sup 131}I uptake measurementsmore » were performed at 2, 6, 24, 48, 96, and 220 h postadministration of a tracer activity in order to estimate the effective half-time (T{sub eff}) of {sup 131}I in the thyroid; the thyroid cumulated activity was then estimated using the T{sub eff} thus determined or, alternatively, calculated by numeric integration of the measured time-activity data. Thyroid mass was estimated by ultrasonography (USG) and scintigraphy (SCTG). Absorbed doses were calculated with the OLINDA/EXM software. The relationships between thyroid absorbed dose and therapy response were evaluated at 3 months and 1 year after therapy. Results: The average ratio (±1 standard deviation) betweenm{sub th} estimated by SCTG and USG was 1.74 (±0.64) and that between A{sup ~} obtained by T{sub eff} and the integration of measured activity in the gland was 1.71 (±0.14). These differences affect the calculated absorbed dose. Overall, therapeutic success, corresponding to induction of durable hypothyroidism or euthyroidism, was achieved in 72% of all patients at 3 months and in 90% at 1 year. A therapeutic success rate of at least 95% was found in the group of patients receiving doses of 200 Gy (p = 0.0483) and 330 Gy (p = 0.0131) when m{sub th} was measured by either USG or SCTG and A{sup ~} was determined by the integration of measured {sup 131}I activity in the thyroid gland and based on T{sub eff}, respectively. No statistically significant relationship was found between therapeutic response and patients’ age, administered {sup 131}I activity (MBq), 24-h thyroid {sup 131}I uptake (%) or T{sub eff} (p ≥ 0.064); nonetheless, a good relationship was found between the therapeutic response and m{sub th} (p ≤ 0.035). Conclusions: According to the results of this study, the most effective thyroid absorbed dose to be targeted in GD therapy should not be based on a fixed dose but rather should be individualized based on the patient'sm{sub th} and A{sup ~}. To achieve a therapeutic success (i.e., durable euthyroidism or hypothyroidism) rate of at least 95%, a thyroid absorbed dose of 200 or 330 Gy is required depending on the methodology used for estimating m{sub th} and A{sup ~}.« less

  8. A Monte Carlo model for the internal dosimetry of choroid plexuses in nuclear medicine procedures.

    PubMed

    Amato, Ernesto; Cicone, Francesco; Auditore, Lucrezia; Baldari, Sergio; Prior, John O; Gnesin, Silvano

    2018-05-01

    Choroid plexuses are vascular structures located in the brain ventricles, showing specific uptake of some diagnostic and therapeutic radiopharmaceuticals currently under clinical investigation, such as integrin-binding arginine-glycine-aspartic acid (RGD) peptides. No specific geometry for choroid plexuses has been implemented in commercially available software for internal dosimetry. The aims of the present study were to assess the dependence of absorbed dose to the choroid plexuses on the organ geometry implemented in Monte Carlo simulations, and to propose an analytical model for the internal dosimetry of these structures for 18 F, 64 Cu, 67 Cu, 68 Ga, 90 Y, 131 I and 177 Lu nuclides. A GAMOS Monte Carlo simulation based on direct organ segmentation was taken as the gold standard to validate a second simulation based on a simplified geometrical model of the choroid plexuses. Both simulations were compared with the OLINDA/EXM sphere model. The gold standard and the simplified geometrical model gave similar dosimetry results (dose difference < 3.5%), indicating that the latter can be considered as a satisfactory approximation of the real geometry. In contrast, the sphere model systematically overestimated the absorbed dose compared to both Monte Carlo models (range: 4-50% dose difference), depending on the isotope energy and organ mass. Therefore, the simplified geometric model was adopted to introduce an analytical approach for choroid plexuses dosimetry in the mass range 2-16 g. The proposed model enables the estimation of the choroid plexuses dose by a simple bi-parametric function, once the organ mass and the residence time of the radiopharmaceutical under investigation are provided. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Diamond detector in absorbed dose measurements in high‐energy linear accelerator photon and electron beams

    PubMed Central

    Binukumar, John Pichy; Amri, Iqbal Al; Davis, Cheriyathmanjiyil Antony

    2016-01-01

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue‐equivalent properties. We investigated a commercially available ‘microdiamond’ detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1 mm, thickness 1×10−3mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ±0.17% (1 SD) (n=11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stopping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long‐term stability and reproducibility. Based on micro‐dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance. PACS number(s): 87.56.Da PMID:27074452

  10. Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements.

    PubMed

    Jursinic, Paul A

    2007-12-01

    Optically stimulated luminescent dosimeters, OSLDs, are plastic disks infused with aluminum oxide doped with carbon (Al2O3 : C). These disks are encased in a light-tight plastic holder. Crystals of Al2O3 : C when exposed to ionizing radiation store energy that is released as luminescence (420 nm) when the OSLD is illuminated with stimulation light (540 nm). The intensity of the luminescence depends on the dose absorbed by the OSLD and the intensity of the stimulation light. OSLDs used in this work were InLight/OSL Dot dosimeters, which were read with a MicroStar reader (Landauer, Inc., Glenwood, IL). The following are dosimetric properties of the OSLD that were determined: After a single irradiation, repeated readings cause the signal to decrease by 0.05% per reading; the signal could be discharged by greater than 98% by illuminating them for more than 45 s with a 150 W tungsten-halogen light; after irradiation there was a transient signal that decayed with a 0.8 min halftime; after the transient signal decay the signal was stable for days; repeated irradiations and readings of an individual OSLD gave a signal with a coefficient of variation of 0.6%; the dose sensitivity of OSLDs from a batch of detectors has a coefficient of variation of 0.9%, response was linear with absorbed dose over a test range of 1-300 cGy; above 300 cGy a small supra-linear behavior occurs; there was no dose-per-pulse dependence over a 388-fold range; there was no dependence on radiation energy or mode for 6 and 15 MV x rays and 6-20 MeV electrons; for Ir-192 gamma rays OSLD had 6% higher sensitivity; the dose sensitivity was unchanged up to an accumulated dose of 20 Gy and thereafter decreased by 4% per 10 Gy of additional accumulated dose; dose sensitivity was not dependent on the angle of incidence of radiation; the OSLD in its light-tight case has an intrinsic buildup of 0.04 g/cm2; dose sensitivity of the OSLD was not dependent on temperature at the time of irradiation in the range of 10-40 degrees C. The clinical use of OSLDs for in vivo dosimetric measurements is shown to be feasible.

  11. Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jursinic, Paul A.

    2007-12-15

    Optically stimulated luminescent dosimeters, OSLDs, are plastic disks infused with aluminum oxide doped with carbon (Al{sub 2}O{sub 3}:C). These disks are encased in a light-tight plastic holder. Crystals of Al{sub 2}O{sub 3}:C when exposed to ionizing radiation store energy that is released as luminescence (420 nm) when the OSLD is illuminated with stimulation light (540 nm). The intensity of the luminescence depends on the dose absorbed by the OSLD and the intensity of the stimulation light. OSLDs used in this work were InLight/OSL Dot dosimeters, which were read with a MicroStar reader (Landauer, Inc., Glenwood, IL). The following are dosimetricmore » properties of the OSLD that were determined: After a single irradiation, repeated readings cause the signal to decrease by 0.05% per reading; the signal could be discharged by greater than 98% by illuminating them for more than 45 s with a 150 W tungsten-halogen light; after irradiation there was a transient signal that decayed with a 0.8 min halftime; after the transient signal decay the signal was stable for days; repeated irradiations and readings of an individual OSLD gave a signal with a coefficient of variation of 0.6%; the dose sensitivity of OSLDs from a batch of detectors has a coefficient of variation of 0.9%, response was linear with absorbed dose over a test range of 1-300 cGy; above 300 cGy a small supra-linear behavior occurs; there was no dose-per-pulse dependence over a 388-fold range; there was no dependence on radiation energy or mode for 6 and 15 MV x rays and 6-20 MeV electrons; for Ir-192 gamma rays OSLD had 6% higher sensitivity; the dose sensitivity was unchanged up to an accumulated dose of 20 Gy and thereafter decreased by 4% per 10 Gy of additional accumulated dose; dose sensitivity was not dependent on the angle of incidence of radiation; the OSLD in its light-tight case has an intrinsic buildup of 0.04 g/cm{sup 2}; dose sensitivity of the OSLD was not dependent on temperature at the time of irradiation in the range of 10-40 deg. C. The clinical use of OSLDs for in vivo dosimetric measurements is shown to be feasible.« less

  12. Cosmic ray LET spectra and doses on board Cosmos-2044 biosatellite

    NASA Technical Reports Server (NTRS)

    Watts, J. W., Jr.; Parnell, T. A.; Dudkin, V. E.; Kovalev, E. E.; Potapov, Yu. V.; Benton, E. V.; Frank, A. L.; Benton, E. R.; Beaujean, R.; Heilmann, C.

    1995-01-01

    Results of the experiments on board Cosmos-2044 (Biosatellite 9) are presented. Various nuclear track detectors (NTD) (dielectric, AgCl-based, nuclear emulsions) were used to obtain the Linear Energy Transfer (LET) spectra inside and outside the satellite. The spectra from the different NTDs have proved to be in general agreement. The results of LET spectra calculations using two different models are also presented. The resultant LET distributions are used to calculate the absorbed and equivalent doses and the orbit-averaged quality factors (QF) of the cosmic rays (CR). Absorbed dose rates inside (approximately 20 g cm (exp -2) shielding) and outside (1 g cm(exp -2) the spacecraft, omitting electrons, were found to be 4.8 and 8.6 mrad d (exp -1), respectively, while the corresponding equivalent doses were 8.8 and 19.7 mrem d(exp -1). The effects of the flight parameters on the total fluence of, and on the dose from the CR particles are analyzed. Integral dose distributions of the detected particles are also determined. The LET values which separate absorbed and equivalent doses into 50% intervals are estimated. The CR-39 dielectric NTD is shown to detect 20-30% of the absorbed dose and 60-70% of the equivalent dose in the Cosmos-2044 orbit. The influence of solar activity phase on the magnitude of CR flux is discussed.

  13. Assessment of Mean Glandular Dose in Mammography System with Different Anode-Filter Combinations Using MCNP Code.

    PubMed

    Gholamkar, Lida; Mowlavi, Ali Asghar; Sadeghi, Mahdi; Athari, Mitra

    2016-10-01

    X-ray mammography is one of the general methods for early detection of breast cancer. Since glandular tissue in the breast is sensitive to radiation and it increases the risk of cancer, the given dose to the patient is very important in mammography. The aim of this study was to determine the average absorbed dose of X-ray radiation in the glandular tissue of the breast during mammography examinations as well as investigating factors that influence the mean glandular dose (MGD). One of the precise methods for determination of MGD absorbed by the breast is Monte Carlo simulation method which is widely used to assess the dose. We studied some different X-ray sources and exposure factors that affect the MGD. "Midi-future" digital mammography system with amorphous-selenium detector was simulated using the Monte Carlo N-particle extended (MCNPX) code. Different anode/filter combinations such as tungsten/silver (W/Ag), tungsten/rhodium (W/Rh), and rhodium/aluminium (Rh/Al) were simulated in this study. The voltage of X-ray tube ranged from 24 kV to 32 kV with 2 kV intervals and the breast phantom thickness ranged from 3 to 8 cm, and glandular fraction g varied from 10% to 100%. MGD was measured for different anode/filter combinations and the effects of changing tube voltage, phantom thickness, combination and glandular breast tissue on MGD were studied. As glandular g and X-ray tube voltage increased, the breast dose increased too, and the increase of breast phantom thickness led to the decrease of MGD. The obtained results for MGD were consistent with the result of Boone et al. that was previously reported. By comparing the results, we saw that W/Rh anode/filter combination is the best choice in breast mammography imaging because of the lowest delivered dose in comparison with W/Ag and Rh/Al. Moreover, breast thickness and g value have significant effects on MGD.

  14. Pharmacokinetics of sarizotan after oral administration of single and repeat doses in healthy subjects.

    PubMed

    Krösser, S; Tillner, J; Fluck, M; Ungethüm, W; Wolna, P; Kovar, A

    2007-05-01

    Sarizotan is a 5-HTIA receptor agonist with high affinity for D3 and D4 receptors. Here we report the pharmacokinetic and tolerability results from four Phase 1 studies. Two single-dose (5 -25 mg, n = 25, 0.5 - 5 mg, n = 16) and two multiple-dose (10 and 20 mg b.i.d., n = 30, 5 mg b.i.d., n = 12) studies with orally administered sarizotan HCl were carried out in healthy subjects. Plasma sarizotan HCl concentrations were measured using a validated HPLC method and fluorescence or MS/MS detection. Pharmacokinetic parameters were obtained using standard non-compartmental methods. Sarizotan was rapidly absorbed, group-median times to reach maximum concentration (tmax) ranged from 0.5 -2.25 h after single doses and during steady state. Maximum plasma concentration (Cmax) and tmax were slightly dependent on formulation and food intake, whereas area under the curve (AUC) was unaffected by these factors. AUC and Cmax increased dose-proportionally over the tested dose range. Independently of dose and time, sarizotan HCl plasma concentrations declined polyexponentially with a terminal elimination half-life (t1/2) of 5 - 7 h. Accumulation factors corresponded to t1/2 values, and steady state was reached within 24 h. Plasma metabolite concentrations were considerably lower than those of the parent drug. The ratio metabolite AUC : parent drug AUC was time- and dose-independent for all three metabolites suggesting that the metabolism of sarizotan is non-saturable in the tested dose range. The pharmacokinetics of sarizotan were dose-proportional and time-independent for the dose range 0.5 -25 mg). The drug was well-tolerated by healthy subjects up to a single dose of 20 mg.

  15. MCNP simulation of radiation doses distributions in a water phantoms simulating interventional radiology patients

    NASA Astrophysics Data System (ADS)

    He, Wenjun; Mah, Eugene; Huda, Walter; Selby, Bayne; Yao, Hai

    2011-03-01

    Purpose: To investigate the dose distributions in water cylinders simulating patients undergoing Interventional Radiological examinations. Method: The irradiation geometry consisted of an x-ray source, dose-area-product chamber, and image intensifier as currently used in Interventional Radiology. Water cylinders of diameters ranging between 17 and 30 cm were used to simulate patients weighing between 20 and 90 kg. X-ray spectra data with peak x-ray tube voltages ranging from 60 to 120 kV were generated using XCOMP3R. Radiation dose distributions inside the water cylinder (Dw) were obtained using MCNP5. The depth dose distribution along the x-ray beam central axis was normalized to free-in-air air kerma (AK) that is incident on the phantom. Scattered radiation within the water cylinders but outside the directly irradiated region was normalized to the dose at the edge of the radiation field. The total absorbed energy to the directly irradiated volume (Ep) and indirectly irradiated volume (Es) were also determined and investigated as a function of x-ray tube voltage and phantom size. Results: At 80 kV, the average Dw/AK near the x-ray entrance point was 1.3. The ratio of Dw near the entrance point to Dw near the exit point increased from ~ 26 for the 17 cm water cylinder to ~ 290 for the 30 cm water cylinder. At 80 kV, the relative dose for a 17 cm water cylinder fell to 0.1% at 49 cm away from the central ray of the x-ray beam. For a 30 cm water cylinder, the relative dose fell to 0.1% at 53 cm away from the central ray of the x-ray beam. At a fixed x-ray tube voltage of 80 kV, increasing the water cylinder diameter from 17 to 30 cm increased the Es/(Ep+Es) ratio by about 50%. At a fixed water cylinder diameter of 24 cm, increasing the tube voltage from 60 kV to 120 kV increased the Es/(Ep+Es) ratio by about 12%. The absorbed energy from scattered radiation was between 20-30% of the total energy absorbed by the water cylinder, and was affected more by patient size than x-ray beam energy. Conclusion: MCNP offers a powerful tool to study the absorption and transmission of x-ray energy in phantoms that can be designed to represent patients undergoing Interventional Radiological procedures. This ability will permit a systematic investigation of the relationship between patient dose and diagnostic image quality, and thereby keep patient doses As Low As Reasonably Achievable (ALARA).

  16. On the need for quality assurance in superficial kilovoltage radiotherapy.

    PubMed

    Austerlitz, C; Mota, H; Gay, H; Campos, D; Allison, R; Sibata, C

    2008-01-01

    External auditing of beam output and energy qualities of four therapeutic X-ray machines were performed in three radiation oncology centres in northeastern Brazil. The output and half-value layers (HVLs) were determined using a parallel-plate ionisation chamber and high-purity aluminium foils, respectively. The obtained values of absorbed dose to water and energy qualities were compared with those obtained by the respective institutions. The impact on the prescribed dose was analysed by determining the half-value depth (D(1/2)). The beam outputs presented percent differences ranging from -13 to +25%. The ratio between the HVL in use by the institution and the measurements obtained in this study ranged from 0.75 to 2.33. Such deviations in HVL result in percent differences in dose at D(1/2) ranging from -52 to +8%. It was concluded that dosimetric quality audit programmes in radiation therapy should be expanded to include dermatological radiation therapy and such audits should include HVL verification.

  17. Radioactivity of peat mud used in therapy.

    PubMed

    Karpińska, Maria; Mnich, Krystian; Kapała, Jacek; Bielawska, Agnieszka; Kulesza, Grzegorz; Mnich, Stanisław

    2016-02-01

    The aim of the study was to determine the contents of natural and artificial isotopes in peat mud and to estimate the radiation dose absorbed via skin in patients during standard peat mud treatment. The analysis included 37 samples collected from 8 spas in Poland. The measurements of isotope concentration activity were conducted with the use of gamma spectrometry methods. The skin dose in a standard peat mud bath therapy is approximately 300 nSv. The effective dose of such therapy is considered to be 22 nSv. The doses absorbed during peat mud therapy are 5 orders of magnitude lower than effective annual dose absorbed from the natural radiation background by a statistical Pole (3.5 mSv). Neither therapeutic nor harmful effect is probable in case of such a small dose of ionising radiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. High resolution digital autoradiographic and dosimetric analysis of heterogeneous radioactivity distribution in xenografted prostate tumors.

    PubMed

    Timmermand, Oskar V; Nilsson, Jenny; Strand, Sven-Erik; Elgqvist, Jörgen

    2016-12-01

    The first main aim of this study was to illustrate the absorbed dose rate distribution from 177 Lu in sections of xenografted prostate cancer (PCa) tumors using high resolution digital autoradiography (DAR) and compare it with hypothetical identical radioactivity distributions of 90 Y or 7 MeV alpha-particles. Three dosimetry models based on either dose point kernels or Monte Carlo simulations were used and evaluated. The second and overlapping aim, was to perform DAR imaging and dosimetric analysis of the distribution of radioactivity, and hence the absorbed dose rate, in tumor sections at an early time point after injection during radioimmunotherapy using 177 Lu-h11B6, directed against the human kallikrein 2 antigen. Male immunodeficient BALB/c nude mice, aged 6-8 w, were inoculated by subcutaneous injection of ∼10 7 LNCaP cells in a 200 μl suspension of a 1:1 mixture of medium and Matrigel. The antibody h11B6 was conjugated with the chelator CHX-A″-DTPA after which conjugated h11B6 was mixed with 177 LuCl 3 . The incubation was performed at room temperature for 2 h, after which the labeling was terminated and the solution was purified on a NAP-5 column. About 20 MBq 177 Lu-h11B6 was injected intravenously in the tail vein. At approximately 10 h postinjection (hpi), the mice were sacrificed and one tumor was collected from each of the five animals and cryosectioned into 10 μm thick slices. The tumor slices were measured and imaged using the DAR MicroImager system and the M3Vision software. Then the absorbed dose rate was calculated using a dose point kernel generated with the Monte Carlo code gate v7.0. The DAR system produced high resolution images of the radioactivity distribution, close to the resolution of single PCa cells. The DAR images revealed a pronounced heterogeneous radioactivity distribution, i.e., count rate per area, in the tumors, indicated by the normalized intensity variations along cross sections as mean ± SD: 0.15 ± 0.15, 0.20 ± 0.18, 0.12 ± 0.17, 0.15 ± 0.16, and 0.23 ± 0.22, for each tumor section, respectively. The absorbed dose rate distribution for 177 Lu at the time of dissection 10 hpi showed a maximum value of 2.9 ± 0.4 Gy/h (mean ± SD), compared to 6.0 ± 0.9 and 159 ± 25 Gy/h for the hypothetical 90 Y and 7 MeV alpha-particle cases assuming the same count rate densities. Mean absorbed dose rate values were 0.13, 0.53, and 6.43 Gy/h for 177 Lu, 90 Y, and alpha-particles, respectively. The initial uptake of 177 Lu-h11B6 produces a high absorbed dose rate, which is important for a successful therapeutic outcome. The hypothetical 90 Y case indicates a less heterogeneous absorbed dose rate distribution and a higher mean absorbed dose rate compared to 177 Lu, although with a potentially increased irradiation of surrounding healthy tissue. The hypothetical alpha-particle case indicates the possibility of a higher maximum absorbed dose rate, although with a more heterogeneous absorbed dose rate distribution.

  19. Safety, tolerability, pharmacokinetics and pharmacodynamics of single doses of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in healthy Japanese subjects.

    PubMed

    Sarashina, Akiko; Koiwai, Kazuki; Seman, Leo J; Yamamura, Norio; Taniguchi, Atsushi; Negishi, Takahiro; Sesoko, Shogo; Woerle, Hans J; Dugi, Klaus A

    2013-01-01

    This randomized, placebo-controlled within dose groups, double-blind, single rising dose study investigated the safety, tolerability, pharmacokinetics and pharmacodynamics of 1 mg to 100 mg doses of empagliflozin in 48 healthy Japanese male subjects. Empagliflozin was rapidly absorbed, reaching peak levels in 1.25 to 2.50 h; thereafter, plasma concentrations declined in a biphasic fashion, with mean terminal elimination half-life ranging from 7.76 to 11.7 h. Increase in empagliflozin exposure was proportional to dose. Oral clearance was dose independent and ranged from 140 to 172 mL/min. In the 24 h following 100 mg empagliflozin administration, the mean (%CV) amount of glucose excreted in urine was 74.3 (17.1) g. The amount and the maximum rate of glucose excreted via urine increased with dose of empagliflozin. Nine adverse events, all of mild intensity, were reported by 8 subjects (7 with empagliflozin and 1 with the placebo). No hypoglycemia was reported. In conclusion, 1 mg to 100 mg doses of empagliflozin had a good safety and tolerability profile in healthy Japanese male subjects. Exposure to empagliflozin was dose proportional. The amount and rate of urinary glucose excretion were higher with empagliflozin than with the placebo, and increased with empagliflozin dose.

  20. In Vitro Dosimetry of Silver Nanoparticles

    EPA Science Inventory

    An important issue for interpreting in vitro nanomaterial testing is quantifying the dose absorbed by target cells. Considerations include the concentration added to the culture and the proportion of the applied dose that is absorbed by the target cells. Rapid and efficient techn...

  1. Radiation dose reduction efficiency of buildings after the accident at the Fukushima Daiichi Nuclear Power Station.

    PubMed

    Monzen, Satoru; Hosoda, Masahiro; Osanai, Minoru; Tokonami, Shinji

    2014-01-01

    Numerous radionuclides were released from the Fukushima Daiichi Nuclear Power Station (F1-NPS) in Japan following the magnitude 9.0 earthquake and tsunami on March 11, 2011. Local residents have been eager to calculate their individual radiation exposure. Thus, absorbed dose rates in the indoor and outdoor air at evacuation sites in the Fukushima Prefecture were measured using a gamma-ray measuring devices, and individual radiation exposure was calculated by assessing the radiation dose reduction efficiency (defined as the ratio of absorbed dose rate in the indoor air to the absorbed dose rate in the outdoor air) of wood, aluminum, and reinforced concrete buildings. Between March 2011 and July 2011, dose reduction efficiencies of wood, aluminum, and reinforced concrete buildings were 0.55 ± 0.04, 0.15 ± 0.02, and 0.19 ± 0.04, respectively. The reduction efficiency of wood structures was 1.4 times higher than that reported by the International Atomic Energy Agency. The efficiency of reinforced concrete was similar to previously reported values, whereas that of aluminum structures has not been previously reported. Dose reduction efficiency increased in proportion to the distance from F1-NPS at 8 of the 18 evacuation sites. Time variations did not reflect dose reduction efficiencies at evacuation sites although absorbed dose rates in the outdoor air decreased. These data suggest that dose reduction efficiency depends on structure types, levels of contamination, and evacuee behaviors at evacuation sites.

  2. Pharmacokinetics of opicapone, a third-generation COMT inhibitor, after single and multiple oral administration: A comparative study in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonçalves, Daniela

    Opicapone is a novel potent, reversible and purely peripheral catechol-O-methyltransferase inhibitor that has been developed to be used as an adjunct to levodopa/aromatic L-amino acid decarboxylase inhibitor therapy for Parkinson's disease. Thus, this study aimed to compare the plasma pharmacokinetics of opicapone and its active metabolite (BIA 9-1079) after the administration of single and multiple oral doses to rats. Wistar rats (n = 8 per group) were orally treated with single (30, 60 or 90 mg/kg) or multiple (30 mg/kg once-daily for seven consecutive days) oral doses of opicapone. Blood samples were collected up to 24 h post-dosing through amore » cannula introduced in the tail vein of rats. After quantifying opicapone and BIA 9-1079 in plasma, a non-compartmental pharmacokinetic analysis was performed. Opicapone was quickly absorbed (time to reach the maximum plasma concentration ≤ 2 h) in both dosage regimens and the extent of systemic exposure to opicapone increased approximately in a dose-proportional manner after single-dosing within the studied dose range (30–90 mg/kg). Opicapone and BIA 9-1079 showed a relatively short plasma elimination half-life (1.58–4.50 h) and a small systemic accumulation after multiple-dosing. Hence, no pharmacokinetic concerns are expected when opicapone is administered with a once-daily dosing regimen. - Highlights: • Opicapone is relatively rapid absorbed after oral administration to rats. • Systemic exposure to opicapone increases approximately in a dose-proportional manner. • Opicapone and BIA 9-1079 show a small systemic accumulation after multiple-dosing.« less

  3. Estimated ultraviolet radiation doses in wetlands in six national parks

    USGS Publications Warehouse

    Diamond, S.A.; Trenham, P.C.; Adams, Michael J.; Hossack, B.R.; Knapp, R.A.; Stark, L.; Bradford, D.; Corn, P.S.; Czarnowski, K.; Brooks, P.D.; Fagre, D.B.; Breen, B.; Dentenbeck, N.E.; Tonnessen, K.

    2005-01-01

    Ultraviolet-B radiation (UV-B, 280–320-nm wavelengths) doses were estimated for 1024 wetlands in six national parks: Acadia (Acadia), Glacier (Glacier), Great Smoky Mountains (Smoky), Olympic (Olympic), Rocky Mountain (Rocky), and Sequoia/Kings Canyon (Sequoia). Estimates were made using ground-based UV-B data (Brewer spectrophotometers), solar radiation models, GIS tools, field characterization of vegetative features, and quantification of DOC concentration and spectral absorbance. UV-B dose estimates were made for the summer solstice, at a depth of 1 cm in each wetland. The mean dose across all wetlands and parks was 19.3 W-h m−2 (range of 3.4–32.1 W-h m−2). The mean dose was lowest in Acadia (13.7 W-h m−2) and highest in Rocky (24.4 W-h m−2). Doses were significantly different among all parks. These wetland doses correspond to UV-B flux of 125.0 μW cm−2 (range 21.4–194.7 μW cm−2) based on a day length, averaged among all parks, of 15.5 h. Dissolved organic carbon (DOC), a key determinant of water-column UV-B flux, ranged from 0.6 (analytical detection limit) to 36.7 mg C L−1 over all wetlands and parks, and reduced potential maximal UV-B doses at 1-cm depth by 1%–87 %. DOC concentration, as well as its effect on dose, was lowest in Sequoia and highest in Acadia (DOC was equivalent in Acadia, Glacier, and Rocky). Landscape reduction of potential maximal UV-B doses ranged from zero to 77% and was lowest in Sequoia. These regional differences in UV-B wetland dose illustrate the importance of considering all aspects of exposure in evaluating the potential impact of UV-B on aquatic organisms.

  4. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter.

    PubMed

    Harty, P D; Lye, J E; Ramanathan, G; Butler, D J; Hall, C J; Stevenson, A W; Johnston, P N

    2014-05-01

    The absolute dose rate of the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter. The calorimetry results were compared to measurements from the existing free-air chamber, to provide a robust determination of the absolute dose in the synchrotron beam and provide confidence in the first implementation of a graphite calorimeter on a synchrotron medical beam line. The graphite calorimeter has a core which rises in temperature when irradiated by the beam. A collimated x-ray beam from the synchrotron with well-defined edges was used to partially irradiate the core. Two filtration sets were used, one corresponding to an average beam energy of about 80 keV, with dose rate about 50 Gy/s, and the second filtration set corresponding to average beam energy of 90 keV, with dose rate about 20 Gy/s. The temperature rise from this beam was measured by a calibrated thermistor embedded in the core which was then converted to absorbed dose to graphite by multiplying the rise in temperature by the specific heat capacity for graphite and the ratio of cross-sectional areas of the core and beam. Conversion of the measured absorbed dose to graphite to absorbed dose to water was achieved using Monte Carlo calculations with the EGSnrc code. The air kerma measurements from the free-air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. Absolute measurements of the IMBL dose rate were made using the graphite calorimeter and compared to measurements with the free-air chamber. The measurements were at three different depths in graphite and two different filtrations. The calorimetry measurements at depths in graphite show agreement within 1% with free-air chamber measurements, when converted to absorbed dose to water. The calorimetry at the surface and free-air chamber results show agreement of order 3% when converted to absorbed dose to water. The combined standard uncertainty is 3.9%. The good agreement of the graphite calorimeter and free-air chamber results indicates that both devices are performing as expected. Further investigations at higher dose rates than 50 Gy/s are planned. At higher dose rates, recombination effects for the free-air chamber are much higher and expected to lead to much larger uncertainties. Since the graphite calorimeter does not have problems associated with dose rate, it is an appropriate primary standard detector for the synchrotron IMBL x rays and is the more accurate dosimeter for the higher dose rates expected in radiotherapy applications.

  5. Estimation of Second Primary Cancer Risk After Treatment with Radioactive Iodine for Differentiated Thyroid Carcinoma.

    PubMed

    Corrêa, Nilton Lavatori; de Sá, Lidia Vasconcellos; de Mello, Rossana Corbo Ramalho

    2017-02-01

    An increase in the incidence of second primary cancers is the late effect of greatest concern that could occur in differentiated thyroid carcinoma (DTC) patients treated with radioactive iodine (RAI). The decision to treat a patient with RAI should therefore incorporate a careful risk-benefit analysis. The objective of this work was to adapt the risk-estimation models developed by the Biological Effects of Ionizing Radiation Committee to local epidemiological characteristics in order to assess the carcinogenesis risk from radiation in a population of Brazilian DTC patients treated with RAI. Absorbed radiation doses in critical organs were also estimated to determine whether they exceeded the thresholds for deterministic effects. A total of 416 DTC patients treated with RAI were retrospectively studied. Four organs were selected for absorbed dose estimation and subsequent calculation of carcinogenic risk: the kidney, stomach, salivary glands, and bone marrow. Absorbed doses were calculated by dose factors (absorbed dose per unit activity administered) previously established and based on standard human models. The lifetime attributable risk (LAR) of incidence of cancer as a function of age, sex, and organ-specific dose was estimated, relating it to the activity of RAI administered in the initial treatment. The salivary glands received the greatest absorbed doses of radiation, followed by the stomach, kidney, and bone marrow. None of these, however, surpassed the threshold for deterministic effects for a single administration of RAI. Younger patients received the same level of absorbed dose in the critical organs as older patients did. The lifetime attributable risk for stomach cancer incidence was by far the highest, followed in descending order by salivary-gland cancer, leukemia, and kidney cancer. RAI in a single administration is safe in terms of deterministic effects because even high-administered activities do not result in absorbed doses that exceed the thresholds for significant tissue reactions. The Biological Effects of Ionizing Radiation Committee mathematical models are a practical method of quantifying the risks of a second primary cancer, demonstrating a marked decrease in risk for younger patients with the administration of lower RAI activities and suggesting that only the smallest activities necessary to promote an effective ablation should be administered in low-risk DTC patients.

  6. Radiation absorbed dose to bladder walls from positron emitters in the bladder content.

    PubMed

    Powell, G F; Chen, C T

    1987-01-01

    A method to calculate absorbed doses at depths in the walls of a static spherical bladder from a positron emitter in the bladder content has been developed. The beta ray dose component is calculated for a spherical model by employing the solutions to the integration of Loevinger and Bochkarev point source functions over line segments and a line segment source array technique. The gamma ray dose is determined using the specific gamma ray constant. As an example, absorbed radiation doses to the bladder walls from F-18 in the bladder content are presented for static spherical bladder models having radii of 2.0 and 3.5 cm, respectively. Experiments with ultra-thin thermoluminescent dosimeters (TLD's) were performed to verify the results of the calculations. Good agreement between TLD measurements and calculations was obtained.

  7. A system for electron therapy dosimetry surveys with thermoluminescence dosimeters.

    PubMed

    Soares, C G; Ehrlich, M; Padikal, T N; Gromadzki, Z C

    1982-11-01

    Radiation-therapy dosimetry surveys employing thermoluminescence dosimeters (TLDs) are now being considered for high-energy electron beams. Using a system of individually calibrated pressed LiF TLDs in a water and a polystyrene phantom, we established that the distortions of depth-dose distributions in non-conducting materials previously observed at high absorbed doses and high dose rates were not detectable in the present geometry at doses and dose rates as much as 40 times higher than those employed in radiation therapy. The system was then used to measure TLD response in water and in polystyrene in the nominal electron-energy range from 7 to 18 MeV. In the water phantom, the well-known trend for TLD response to decrease with increasing electron energy was observed. In the polystyrene phantom, TLD response was found to be independent of electron energy.

  8. Randomized comparison of operator radiation exposure comparing transradial and transfemoral approach for percutaneous coronary procedures: rationale and design of the minimizing adverse haemorrhagic events by TRansradial access site and systemic implementation of angioX - RAdiation Dose study (RAD-MATRIX).

    PubMed

    Sciahbasi, Alessandro; Calabrò, Paolo; Sarandrea, Alessandro; Rigattieri, Stefano; Tomassini, Francesco; Sardella, Gennaro; Zavalloni, Dennis; Cortese, Bernardo; Limbruno, Ugo; Tebaldi, Matteo; Gagnor, Andrea; Rubartelli, Paolo; Zingarelli, Antonio; Valgimigli, Marco

    2014-06-01

    Radiation absorbed by interventional cardiologists is a frequently under-evaluated important issue. Aim is to compare radiation dose absorbed by interventional cardiologists during percutaneous coronary procedures for acute coronary syndromes comparing transradial and transfemoral access. The randomized multicentre MATRIX (Minimizing Adverse Haemorrhagic Events by TRansradial Access Site and Systemic Implementation of angioX) trial has been designed to compare the clinical outcome of patients with acute coronary syndromes treated invasively according to the access site (transfemoral vs. transradial) and to the anticoagulant therapy (bivalirudin vs. heparin). Selected experienced interventional cardiologists involved in this study have been equipped with dedicated thermoluminescent dosimeters to evaluate the radiation dose absorbed during transfemoral or right transradial or left transradial access. For each access we evaluate the radiation dose absorbed at wrist, at thorax and at eye level. Consequently the operator is equipped with three sets (transfemoral, right transradial or left transradial access) of three different dosimeters (wrist, thorax and eye dosimeter). Primary end-point of the study is the procedural radiation dose absorbed by operators at thorax. An important secondary end-point is the procedural radiation dose absorbed by operators comparing the right or left radial approach. Patient randomization is performed according to the MATRIX protocol for the femoral or radial approach. A further randomization for the radial approach is performed to compare right and left transradial access. The RAD-MATRIX study will probably consent to clarify the radiation issue for interventional cardiologist comparing transradial and transfemoral access in the setting of acute coronary syndromes. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Comparison of microdosimetry-based absorbed doses to control tumours and clinically obtained tumour absorbed doses in treatments with 223Ra.

    PubMed

    Minguez Gabina, Pablo; Roeske, John C; Mínguez, Ricardo; Gomez de Iturriaga, Alfonso; Rodeño, Emilia

    2018-06-20

    We performed Monte Carlo simulations in order to determine by means of microdosimetry calculations the average number of hits to the cell nucleus required to reach a tumour control probability (TCP) of 0.9, 〈n<sub>0.9</sub> 〉, for the source geometry of a nucleus embedded in a homogeneous distribution of <sup>223</sup>Ra atoms. From the results obtained and following the MIRD methodology, we determined the values of lesion absorbed doses needed to reach a TCP of 0.9, D<sub>0.9</sub>, for different values of mass density, cell radiosensitivity, nucleus radius and lesion volume. The greatest variation of those absorbed doses occurred with cell radiosensitivity and no dependence was found on mass density. The source geometry used was chosen because we aimed to compare the values of D<sub>0.9</sub> with the lesion absorbed doses obtained from image-based macrodosimetry in treatments of metastatic castration-resistant prostate cancer with <sup>223</sup>Ra which were obtained assuming a homogeneous distribution of <sup>223</sup>Ra atoms within the lesion. In a comparison with a study including 29 lesions, results showed that even for the case of the most radiosensitive cells simulated, 45% of the lesions treated following a schedule of two cycles of 110 kBq/kg body mass would receive absorbed doses below the values of D<sub>0.9</sub> determined in this study. © 2018 Institute of Physics and Engineering in Medicine.

  10. Case control study to assess the possibility of decrease the risk of osteoradionecrosis in relation to the dose of radiation absorbed by the jaw

    PubMed Central

    Carini, Fabrizio; Bucalo, Concetta; Saggese, Vito; Monai, Dario; Porcaro, Gianluca

    2012-01-01

    Summary Aims the assessment of the limit dose for the organs at risk in external radiotherapy is a fundamental step to guarantee an optimal risk-benefit ratio. The aim of this study was to assess, through contouring the single dental cavities, the absorbed radiation dose on irradiated alveolar bones during the treatment of cervico-facial tumours, so as to test the correlation between the absorbed dose of radiation at alveolar level and the level of individual surgical risk for osteonecrosis. Materials and methods we selected 45 out of 89 patients on the basis of different exclusion criteria. Nine of these patients showed evidence of osteoradionecrosis. The patients were treated either with 3D conformational radiation therapy (3D-CRT) or with intensity-modulated radiation therapy (IMRT), there after alveolar bones were contoured using computed axial tomography (CAT scans) carried out following oncological and dental treatment. The dose-volume histograms (DVH) were obtained on the basis of such data, which included those relating to the dental cavities in addition to those inherent to the tumours and the organs at risk. Results all patients, irrespective of type of treatment, received an average of 60 to 70 grays in 30/35 sittings. The patients treated with IMRT showed higher variation in absorbed radiation dose than those treated with 3D-CRT. The alveolar encirclement allowed the assessment of the absorbed radiation dose, and consequently it also allowed to assess the individual surgical risk for osteonecrosis in patients with head and neck tumours who underwent radiography treatment. Conclusions the study of DVH allows the assessment of limit dose and the detection of the areas at greater risk for osteoradionecrosis before dental surgery. PMID:23285316

  11. TU-H-CAMPUS-IeP1-05: A Framework for the Analytic Calculation of Patient-Specific Dose Distribution Due to CBCT Scan for IGRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youn, H; Jeon, H; Nam, J

    Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law.more » In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion: This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.« less

  12. Postlumpectomy Focal Brachytherapy for Simultaneous Treatment of Surgical Cavity and Draining Lymph Nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrycushko, Brian A.; Li Shihong; Shi Chengyu

    2011-03-01

    Purpose: The primary objective was to investigate a novel focal brachytherapy technique using lipid nanoparticle (liposome)-carried {beta}-emitting radionuclides (rhenium-186 [{sup 186}Re]/rhenium-188 [{sup 188}Re]) to simultaneously treat the postlumpectomy surgical cavity and draining lymph nodes. Methods and Materials: Cumulative activity distributions in the lumpectomy cavity and lymph nodes were extrapolated from small animal imaging and human lymphoscintigraphy data. Absorbed dose calculations were performed for lumpectomy cavities with spherical and ellipsoidal shapes and lymph nodes within human subjects by use of the dose point kernel convolution method. Results: Dose calculations showed that therapeutic dose levels within the lumpectomy cavity wall can covermore » 2- and 5-mm depths for {sup 186}Re and {sup 188}Re liposomes, respectively. The absorbed doses at 1 cm sharply decreased to only 1.3% to 3.7% of the doses at 2 mm for {sup 186}Re liposomes and 5 mm for {sup 188}Re liposomes. Concurrently, the draining sentinel lymph nodes would receive a high focal therapeutic absorbed dose, whereas the average dose to 1 cm of surrounding tissue received less than 1% of that within the nodes. Conclusions: Focal brachytherapy by use of {sup 186}Re/{sup 188}Re liposomes was theoretically shown to be capable of simultaneously treating the lumpectomy cavity wall and draining sentinel lymph nodes with high absorbed doses while significantly lowering dose to surrounding healthy tissue. In turn, this allows for dose escalation to regions of higher probability of containing residual tumor cells after lumpectomy while reducing normal tissue complications.« less

  13. Study of Fricke-gel dosimeter calibration for attaining precise measurements of the absorbed dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liosi, Giulia Maria; Benedini, Sara; Giacobbo, Francesca

    2015-07-01

    A method has been studied for attaining, with good precision, absolute measurements of the spatial distribution of the absorbed dose by means of the Fricke gelatin Xylenol Orange dosimetric system. With this aim, the dose response to subsequent irradiations was analyzed. In fact, the proposed modality is based on a pre-irradiation of each single dosimeter in a uniform field with a known dose, in order to extrapolate a calibration image for a subsequent non-uniform irradiation with an un-known dose to be measured. (authors)

  14. Dose rate effect on micronuclei induction in human blood lymphocytes exposed to single pulse and multiple pulses of electrons.

    PubMed

    Acharya, Santhosh; Bhat, N N; Joseph, Praveen; Sanjeev, Ganesh; Sreedevi, B; Narayana, Y

    2011-05-01

    The effects of single pulses and multiple pulses of 7 MV electrons on micronuclei (MN) induction in cytokinesis-blocked human peripheral blood lymphocytes (PBLs) were investigated over a wide range of dose rates per pulse (instantaneous dose rate). PBLs were exposed to graded doses of 2, 3, 4, 6, and 8 Gy of single electron pulses of varying pulse widths at different dose rates per pulse, ranging from 1 × 10(6) Gy s(-1) to 3.2 × 10(8) Gy s(-1). Different dose rates per pulse were achieved by changing the dose per electron pulse by adjusting the beam current and pulse width. MN yields per unit absorbed dose after irradiation with single electron pulses were compared with those of multiple pulses of electrons. A significant decrease in the MN yield with increasing dose rates per pulse was observed, when dose was delivered by a single electron pulse. However, no reduction in the MN yield was observed when dose was delivered by multiple pulses of electrons. The decrease in the yield at high dose rates per pulse suggests possible radical recombination, which leads to decreased biological damage. Cellular response to the presence of very large numbers of chromosomal breaks may also alter the damage.

  15. Secondary neutron dose measurement for proton eye treatment using an eye snout with a borated neutron absorber

    PubMed Central

    2013-01-01

    Background We measured and assessed ways to reduce the secondary neutron dose from a system for proton eye treatment. Methods Proton beams of 60.30 MeV were delivered through an eye-treatment snout in passive scattering mode. Allyl diglycol carbonate (CR-39) etch detectors were used to measure the neutron dose in the external field at 0.00, 1.64, and 6.00 cm depths in a water phantom. Secondary neutron doses were measured and compared between those with and without a high-hydrogen–boron-containing block. In addition, the neutron energy and vertices distribution were obtained by using a Geant4 Monte Carlo simulation. Results The ratio of the maximum neutron dose equivalent to the proton absorbed dose (H(10)/D) at 2.00 cm from the beam field edge was 8.79 ± 1.28 mSv/Gy. The ratio of the neutron dose equivalent to the proton absorbed dose with and without a high hydrogen-boron containing block was 0.63 ± 0.06 to 1.15 ± 0.13 mSv/Gy at 2.00 cm from the edge of the field at depths of 0.00, 1.64, and 6.00 cm. Conclusions We found that the out-of-field secondary neutron dose in proton eye treatment with an eye snout is relatively small, and it can be further reduced by installing a borated neutron absorbing material. PMID:23866307

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cederkrantz, Elin; Andersson, Håkan; Bernhardt, Peter

    Purpose: Ovarian cancer is often diagnosed at an advanced stage with dissemination in the peritoneal cavity. Most patients achieve clinical remission after surgery and chemotherapy, but approximately 70% eventually experience recurrence, usually in the peritoneal cavity. To prevent recurrence, intraperitoneal (i.p.) targeted α therapy has been proposed as an adjuvant treatment for minimal residual disease after successful primary treatment. In the present study, we calculated absorbed and relative biological effect (RBE)-weighted (equivalent) doses in relevant normal tissues and estimated the effective dose associated with i.p. administration of {sup 211}At-MX35 F(ab'){sub 2}. Methods and Materials: Patients in clinical remission after salvage chemotherapymore » for peritoneal recurrence of ovarian cancer underwent i.p. infusion of {sup 211}At-MX35 F(ab'){sub 2}. Potassium perchlorate was given to block unwanted accumulation of {sup 211}At in thyroid and other NIS-containing tissues. Mean absorbed doses to normal tissues were calculated from clinical data, including blood and i.p. fluid samples, urine, γ-camera images, and single-photon emission computed tomography/computed tomography images. Extrapolation of preclinical biodistribution data combined with clinical blood activity data allowed us to estimate absorbed doses in additional tissues. The equivalent dose was calculated using an RBE of 5 and the effective dose using the recommended weight factor of 20. All doses were normalized to the initial activity concentration of the infused therapy solution. Results: The urinary bladder, thyroid, and kidneys (1.9, 1.8, and 1.7 mGy per MBq/L) received the 3 highest estimated absorbed doses. When the tissue-weighting factors were applied, the largest contributors to the effective dose were the lungs, stomach, and urinary bladder. Using 100 MBq/L, organ equivalent doses were less than 10% of the estimated tolerance dose. Conclusion: Intraperitoneal {sup 211}At-MX35 F(ab'){sub 2} treatment is potentially a well-tolerated therapy for locally confined microscopic ovarian cancer. Absorbed doses to normal organs are low, but because the effective dose potentially corresponds to a risk of treatment-induced carcinogenesis, optimization may still be valuable.« less

  17. Long-term accumulation of uranium in bones of Wistar rats as a function of intake dosages.

    PubMed

    Arruda-Neto, J D T; Guevara, M V Manso; Nogueira, G P; Saiki, M; Cestari, A C; Shtejer, K; Deppman, A; Pereira Filho, J W; Garcia, F; Geraldo, L P; Gouveia, A N; Guzmán, F; Mesa, J; Rodriguez, O; Semmler, R; Vanin, V R

    2004-01-01

    Groups of Wistar rats were fed with ration doped with uranyl nitrate at concentration A ranging from 0.5 to 100 ppm, starting after the weaning period and lasting until the postpuberty period when the animals were sacrificed. Uranium in the ashes of bones was determined by neutron activation analysis. It was found that the uranium concentration in the bones, as a function of A, exhibits a change in its slope at approximately 20 ppm-a probable consequence of the malfunctioning of kidneys. The uranium transfer coefficient was obtained and an analytical expression was fitted into the data, thus allowing extrapolation down to low doses. Internal and localized doses were calculated. Absorbed doses exceeded the critical dose, even for the lowest uranium dosage.

  18. Electron paramagnetic resonance (EPR) dosimetry using lithium formate in radiotherapy: comparison with thermoluminescence (TL) dosimetry using lithium fluoride rods.

    PubMed

    Vestad, Tor Arne; Malinen, Eirik; Olsen, Dag Rune; Hole, Eli Olaug; Sagstuen, Einar

    2004-10-21

    Solid-state radiation dosimetry by electron paramagnetic resonance (EPR) spectroscopy and thermoluminescence (TL) was utilized for the determination of absorbed doses in the range of 0.5-2.5 Gy. The dosimeter materials used were lithium formate and lithium fluoride (TLD-100 rods) for EPR dosimetry and TL dosimetry, respectively. 60Co gamma-rays and 4, 6, 10 and 15 MV x-rays were employed. The main objectives were to compare the variation in dosimeter reading of the respective dosimetry systems and to determine the photon energy dependence of the two dosimeter materials. The EPR dosimeter sensitivity was constant over the dose range in question, while the TL sensitivity increased by more than 5% from 0.5 to 2.5 Gy, thus displaying a supralinear dose response. The average relative standard deviation in the dosimeter reading per dose was 3.0% and 1.2% for the EPR and TL procedures, respectively. For EPR dosimeters, the relative standard deviation declined significantly from 4.3% to 1.1% over the dose range in question. The dose-to-water energy response for the megavoltage x-ray beams relative to 60Co gamma-rays was in the range of 0.990-0.979 and 0.984-0.962 for lithium formate and lithium fluoride, respectively. The results show that EPR dosimetry with lithium formate provides dose estimates with a precision comparable to that of TL dosimetry (using lithium fluoride) for doses above 2 Gy, and that lithium formate is slightly less dependent on megavoltage photon beam energy than lithium fluoride.

  19. Electron paramagnetic resonance (EPR) dosimetry using lithium formate in radiotherapy: comparison with thermoluminescence (TL) dosimetry using lithium fluoride rods

    NASA Astrophysics Data System (ADS)

    Vestad, Tor Arne; Malinen, Eirik; Rune Olsen, Dag; Olaug Hole, Eli; Sagstuen, Einar

    2004-10-01

    Solid-state radiation dosimetry by electron paramagnetic resonance (EPR) spectroscopy and thermoluminescence (TL) was utilized for the determination of absorbed doses in the range of 0.5-2.5 Gy. The dosimeter materials used were lithium formate and lithium fluoride (TLD-100 rods) for EPR dosimetry and TL dosimetry, respectively. 60Co ggr-rays and 4, 6, 10 and 15 MV x-rays were employed. The main objectives were to compare the variation in dosimeter reading of the respective dosimetry systems and to determine the photon energy dependence of the two dosimeter materials. The EPR dosimeter sensitivity was constant over the dose range in question, while the TL sensitivity increased by more than 5% from 0.5 to 2.5 Gy, thus displaying a supralinear dose response. The average relative standard deviation in the dosimeter reading per dose was 3.0% and 1.2% for the EPR and TL procedures, respectively. For EPR dosimeters, the relative standard deviation declined significantly from 4.3% to 1.1% over the dose range in question. The dose-to-water energy response for the megavoltage x-ray beams relative to 60Co ggr-rays was in the range of 0.990-0.979 and 0.984-0.962 for lithium formate and lithium fluoride, respectively. The results show that EPR dosimetry with lithium formate provides dose estimates with a precision comparable to that of TL dosimetry (using lithium fluoride) for doses above 2 Gy, and that lithium formate is slightly less dependent on megavoltage photon beam energy than lithium fluoride.

  20. Assessment of radiation-induced secondary cancer risk in the Brazilian population from left-sided breast-3D-CRT using MCNPX.

    PubMed

    Mendes, Bruno Melo; Trindade, Bruno Machado; Fonseca, Telma Cristina Ferreira; de Campos, Tarcisio Passos Ribeiro

    2017-12-01

    The aim of this work was to simulate a 6MV conventional breast 3D conformational radiation therapy (3D-CRT) with physical wedges (50 Gy/25#) in the left breast, calculate the mean absorbed dose in the body organs using robust models and computational tools and estimate the secondary cancer-incidence risk to the Brazilian population. The VW female phantom was used in the simulations. Planning target volume (PTV) was defined in the left breast. The 6MV parallel-opposed fields breast-radiotherapy (RT) protocol was simulated with MCNPx code. The absorbed doses were evaluated in all the organs. The secondary cancer-incidence risk induced by radiotherapy was calculated for different age groups according to the BEIR VII methodology. RT quality indexes indicated that the protocol was properly simulated. Significant absorbed dose values in red bone marrow, RBM (0.8 Gy) and stomach (0.6 Gy) were observed. The contralateral breast presented the highest risk of incidence of a secondary cancer followed by leukaemia, lung and stomach. The risk of a secondary cancer-incidence by breast-RT, for the Brazilian population, ranged between 2.2-1.7% and 0.6-0.4%. RBM and stomach, usually not considered as OAR, presented high second cancer incidence risks of 0.5-0.3% and 0.4-0.1%, respectively. This study may be helpful for breast-RT risk/benefit assessment. Advances in knowledge: MCNPX-dosimetry was able to provide the scatter radiation and dose for all body organs in conventional breast-RT. It was found a relevant risk up to 2.2% of induced-cancer from breast-RT, considering the whole thorax organs and Brazilian cancer-incidence.

  1. Preclinical Study of 68Ga-DOTATOC: Biodistribution Assessment in Syrian Rats and Evaluation of Absorbed Dose in Human Organs.

    PubMed

    Naderi, Mojdeh; Zolghadri, Samaneh; Yousefnia, Hassan; Ramazani, Ali; Jalilian, Amir Reza

    2016-01-01

    Gallium-68 DOTA-DPhe 1 -Tyr 3 -Octreotide ( 68 Ga-DOTATOC) has been applied by several European centers for the treatment of a variety of human malignancies. Nevertheless, definitive dosimetric data are yet unavailable. According to the Society of Nuclear Medicine and Molecular Imaging, researchers are investigating the safety and efficacy of this radiotracer to meet Food and Drug Administration requirements. The aim of this study was to introduce the optimized procedure for 68 Ga-DOTATOC preparation, using a novel germanium-68 ( 68 Ge)/ 68 Ga generator in Iran and evaluate the absorbed doses in numerous organs with high accuracy. The optimized conditions for preparing the radiolabeled complex were determined via several experiments by changing the ligand concentration, pH, temperature and incubation time. Radiochemical purity of the complex was assessed, using high-performance liquid chromatography and instant thin-layer chromatography. The absorbed dose of human organs was evaluated, based on biodistribution studies on Syrian rats via Radiation Absorbed Dose Assessment Resource Method. 68 Ga-DOTATOC was prepared with radiochemical purity of >98% and specific activity of 39.6 MBq/nmol. The complex demonstrated great stability at room temperature and in human serum at 37°C at least two hours after preparation. Significant uptake was observed in somatostatin receptor-positive tissues such as pancreatic and adrenal tissues (12.83 %ID/g and 0.91 %ID/g, respectively). Dose estimations in human organs showed that the pancreas, kidneys and adrenal glands received the maximum absorbed doses (0.105, 0.074 and 0.010 mGy/MBq, respectively). Also, the effective absorbed dose was estimated at 0.026 mSv/MBq for 68 Ga-DOTATOC. The obtained results showed that 68 Ga-DOTATOC can be considered as an effective agent for clinical PET imaging in Iran.

  2. Dosimetric results in treatments of neuroblastoma and neuroendocrine tumors with {sup 131}I-metaiodobenzylguanidine with implications for the activity to administer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mínguez, Pablo, E-mail: pablo.minguezgabina@osakidetza.net; Flux, Glenn; Genollá, José

    2015-07-15

    Purpose: The aim was to investigate whole-body and red marrow absorbed doses in treatments of neuroblastoma (NB) and adult neuroendocrine tumors (NETs) with {sup 131}I-metaiodobenzylguanidine and to propose a simple method for determining the activity to administer when dosimetric data for the individual patient are not available. Methods: Nine NB patients and six NET patients were included, giving in total 19 treatments as four patients were treated twice. Whole-body absorbed doses were determined from dose-rate measurements and planar gamma-camera imaging. For six NB and five NET treatments, red marrow absorbed doses were also determined using the blood-based method. Results: Dosimetricmore » data from repeated administrations in the same patient were consistent. In groups of NB and NET patients, similar whole-body residence times were obtained, implying that whole-body absorbed dose per unit of administered activity could be reasonably well described as a power function of the patient mass. For NB, this functional form was found to be consistent with dosimetric data from previously published studies. The whole-body to red marrow absorbed dose ratio was similar among patients, with values of 1.4 ± 0.6–1.7 ± 0.7 (1 standard deviation) in NB treatments and between 1.5 ± 0.6 and 1.7 ± 0.7 (1 standard deviation) in NET treatments. Conclusions: The consistency of dosimetric results between administrations for the same patient supports prescription of the activity based on dosimetry performed in pretreatment studies, or during the first administration in a fractionated schedule. The expressions obtained for whole-body absorbed doses per unit of administered activity as a function of patient mass for NB and NET treatments are believed to be a useful tool to estimate the activity to administer at the stage when the individual patient biokinetics has not yet been measured.« less

  3. Preclinical Study of 68Ga-DOTATOC: Biodistribution Assessment in Syrian Rats and Evaluation of Absorbed Dose in Human Organs

    PubMed Central

    Naderi, Mojdeh; Zolghadri, Samaneh; Yousefnia, Hassan; Ramazani, Ali; Jalilian, Amir Reza

    2016-01-01

    Objective(s): Gallium-68 DOTA-DPhe1-Tyr3-Octreotide (68Ga-DOTATOC) has been applied by several European centers for the treatment of a variety of human malignancies. Nevertheless, definitive dosimetric data are yet unavailable. According to the Society of Nuclear Medicine and Molecular Imaging, researchers are investigating the safety and efficacy of this radiotracer to meet Food and Drug Administration requirements. The aim of this study was to introduce the optimized procedure for 68Ga-DOTATOC preparation, using a novel germanium-68 (68Ge)/68Ga generator in Iran and evaluate the absorbed doses in numerous organs with high accuracy. Methods: The optimized conditions for preparing the radiolabeled complex were determined via several experiments by changing the ligand concentration, pH, temperature and incubation time. Radiochemical purity of the complex was assessed, using high-performance liquid chromatography and instant thin-layer chromatography. The absorbed dose of human organs was evaluated, based on biodistribution studies on Syrian rats via Radiation Absorbed Dose Assessment Resource Method. Results: 68Ga-DOTATOC was prepared with radiochemical purity of >98% and specific activity of 39.6 MBq/nmol. The complex demonstrated great stability at room temperature and in human serum at 37°C at least two hours after preparation. Significant uptake was observed in somatostatin receptor-positive tissues such as pancreatic and adrenal tissues (12.83 %ID/g and 0.91 %ID/g, respectively). Dose estimations in human organs showed that the pancreas, kidneys and adrenal glands received the maximum absorbed doses (0.105, 0.074 and 0.010 mGy/MBq, respectively). Also, the effective absorbed dose was estimated at 0.026 mSv/MBq for 68Ga-DOTATOC. Conclusion: The obtained results showed that 68Ga-DOTATOC can be considered as an effective agent for clinical PET imaging in Iran. PMID:27904870

  4. [Identification of irradiated abalone by ESR spectroscopy].

    PubMed

    Song, Yeping; Wang, Chuanxian; Yang, Zhenyu; Zhong, Weike; Geng, Jinpei; Lu, Di; Ding, Zhuoping

    2012-05-01

    To establish an analytical method for the detection and identification of irradiated abalone by electron spin resonance spectroscopy. Electron spin resonance (ESR) was used to study the spectral characteristics of abalone and the characteristic peak for quantitation. There were obvious different ESR spectra between unirradiated and irradiated abalone. The g factor for unirradiated abalone was 2.0055-2.0060, the g1 and g2 factor for irradiated abalone were (2.0027 +/- 0.0001) and (1.9994 +/- 0.0001), respectively. The ESR signal intensity of characteristic peak was positively correlated with absorbed dose in the range of 0.5 - 10 kGy, left peak was the characteristic peak for quantitation and the detection limit was < or = 0.5 kGy. It was difficult to quantitate when the absorbed dose was over 10 kGy. ESR characteristic peak and g factor were able to qualitatively determine the irradiation of abalone. ESR spectroscopy is an effective method to determine whether the abalone being irradiated or not.

  5. Cumulative effective dose and cancer risk for pediatric population in repetitive full spine follow-up imaging: How micro dose is the EOS microdose protocol?

    PubMed

    Law, Martin; Ma, Wang-Kei; Lau, Damian; Cheung, Kenneth; Ip, Janice; Yip, Lawrance; Lam, Wendy

    2018-04-01

    To evaluate and to obtain analytic formulation for the calculation of the effective dose and associated cancer risk using the EOS microdose protocol for scoliotic pediatric patients undergoing full spine imaging at different age of exposure; to demonstrate the microdose protocol capable of delivering lesser radiation dose and hence of further reducing cancer risk induction when compared with the EOS low dose protocol; to obtain cumulative effective dose and cancer risk for both genders scoliotic pediatrics of US and Hong Kong population using the microdose protocol. Organ absorbed doses of full spine exposed scoliotic pediatric patients have been simulated with the use of EOS microdose protocol imaging parameters input to the Monte Carlo software PCXMC. Gender and age specific effective dose has been calculated with the simulated organ absorbed dose using the ICRP-103 approach. The associated radiation induced cancer risk, expressed as lifetime attributable risk (LAR), has been estimated according to the method introduced in the Biological Effects of Ionizing Radiation VII report. Values of LAR have been estimated for scoliotic patients exposed repetitively during their follow up period at different age for US and Hong Kong population. The effective doses of full spine imaging with simultaneous posteroanterior and lateral projection for patients exposed at the age between 5 and 18 years using the EOS microdose protocol have been calculated within the range of 2.54-14.75 μSv. The corresponding LAR for US and Hong Kong population was ranged between 0.04 × 10 -6 and 0.84 × 10 -6 . Cumulative effective dose and cancer risk during follow-up period can be estimated using the results and are of information to patients and their parents. With the use of computer simulation and analytic formulation, we obtained the cumulative effective dose and cancer risk at any age of exposure for pediatric patients of US and Hong Kong population undergoing repetitive microdose protocol full spine imaging. Girls would be at a statistically significant higher cumulative cancer risk than boys undergoing the same microdose full spine imaging protocol and the same follow-up schedule. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The effect of systematic set-up deviations on the absorbed dose distribution for left-sided breast cancer treated with respiratory gating

    NASA Astrophysics Data System (ADS)

    Edvardsson, A.; Ceberg, S.

    2013-06-01

    The aim of this study was 1) to investigate interfraction set-up uncertainties for patients treated with respiratory gating for left-sided breast cancer, 2) to investigate the effect of the inter-fraction set-up on the absorbed dose-distribution for the target and organs at risk (OARs) and 3) optimize the set-up correction strategy. By acquiring multiple set-up images the systematic set-up deviation was evaluated. The effect of the systematic set-up deviation on the absorbed dose distribution was evaluated by 1) simulation in the treatment planning system and 2) measurements with a biplanar diode array. The set-up deviations could be decreased using a no action level correction strategy. Not using the clinically implemented adaptive maximum likelihood factor for the gating patients resulted in better set-up. When the uncorrected set-up deviations were simulated the average mean absorbed dose was increased from 1.38 to 2.21 Gy for the heart, 4.17 to 8.86 Gy to the left anterior descending coronary artery and 5.80 to 7.64 Gy to the left lung. Respiratory gating can induce systematic set-up deviations which would result in increased mean absorbed dose to the OARs if not corrected for and should therefore be corrected for by an appropriate correction strategy.

  7. Photon spectrum and absorbed dose in brain tumor.

    PubMed

    Vega-Carrillo, Hector Rene; Silva-Sanchez, Angeles; Rivera-Montalvo, Teodoro

    2016-11-01

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is and 15.7 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 37.1 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Absorbed dose measurements on external surface of Kosmos-satellites with glass thermoluminescent detectors.

    PubMed

    Akatov YuA; Arkhangelsky, V V; Kovalev, E E; Spurny, F; Votochkova, I

    1989-01-01

    In this paper we present absorbed dose measurements with glass thermoluminescent detectors on external surface of satellites of Kosmos-serie flying in 1983-87. Experiments were performed with thermoluminescent aluminophosphate glasses of thicknesses 0.1, 0.3, 0.4, 0.5, and 1 mm. They were exposed in sets of total thickness between 5 and 20 mm, which were protected against sunlight with thin aluminized foils. In all missions, extremely high absorbed dose values were observed in the first layers of detectors, up to the thickness of 0.2 to 0.5 gcm-2. These experimental results confirm that, during flights at 250 to 400 km, doses on the surface of the satellites are very high, due to the low energy component of the proton and electron radiation.

  9. Degradation of phorbol 12,13-diacetate in aqueous solution by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Kongmany, Santi; Furuta, Masakazu; Matsuura, Hiroto; Okuda, Shuichi; Imamura, Kiyoshi; Maeda, Yasuaki

    2014-12-01

    Phorbol esters (PEs) are highly toxic compounds that cause skin irritation, inflammation, and tumor promotion upon contact with humans or animals. These compounds are naturally present in Jatropha curcas L. To promote the use of J. curcas seed oil in bio-diesel production industries and reduce environmental concerns, it is necessary to find methods of degrading PEs. In this study, the degradation of phorbol 12,13-diacetate (PDA), as a representative PE, in aqueous solution at a concentration of 10 mg/L by 60Co-γ-irradiation was investigated. The results demonstrate that PDA was effectively degraded by this treatment and the degradation efficiency increased with the absorbed dose within the range of 0.5-3 kGy. Complete degradation of PDA was achieved at a dose of 3 kGy. In the presence of radical scavengers (i.e., methanol, tert-butanol, 2-propanol), reactive species from water radiolysis were scavenged, and significant inhibition of PDA degradation was observed at absorbed doses less than 1 kGy. In the presence of nitrous oxide, the generation of hydroxyl radicals (rad OH) was promoted during gamma irradiation and PDA degradation was drastically enhanced.

  10. Electrosynthesis of magnetoresponsive microrobot for targeted drug delivery using calcium alginate.

    PubMed

    Chengzhi Hu; Riederer, Katharina; Klemmer, Michael; Pane, Salvador; Nelson, Bradley J

    2016-08-01

    Targeted drug delivery systems deliver drugs precisely to a specific targeted site inside the body, and can also release the drugs with controlled kinetics to prolong the efficacy of single dose administration. The advantageous properties of hydrogels make them attractive for use in the area of drug delivery. Calcium alginate is a pH sensitive hydrogel stable in acidic media and soluble in basic media. This enables the hydrogel to absorb and release aqueous solutions at certain ranges of pH values. By absorbing an aqueous solution containing a drug, an active drug release can be triggered at a specified range of pH value. In this paper, we combined calcium alginate with cobalt nickel (CoNi) in a cylindrical hybrid micro robot by electrodeposition. The designed microrobot can be wirelessly actuated with an external magnetic manipulation system and, hence, targeted to a specific location in the human body. At this specific location, characterized by its pH range, the absorbed drug will be released. Here, the fabrication steps of the specified microrobot are characterized, namely the production of a template on a silicon chip and the subsequent template-assisted electrodeposition of CoNi and alginate. Additionally, the dynamics of drug release of calcium alginate is studied.

  11. The Effect of Diagnostic Absorbed Doses from 131I on Human Thyrocytes in Vitro.

    PubMed

    Adamczewski, Zbigniew; Stasiołek, Mariusz; Karwowski, Bolesław; Dedecjus, Marek; Orszulak-Michalak, Daria; Merecz, Anna; Śliwka, Przemysław W; Puła, Bartosz; Lewiński, Andrzej

    2015-06-29

    Administration of diagnostic activities of 131I, performed in order to detect thyroid remnants after surgery and/or thyroid cancer recurrence/metastases, may lead to reduction of iodine uptake. This phenomenon is called "thyroid stunning". We estimated radiation absorbed dose-dependent changes in genetic material, in particular in sodium iodide symporter (NIS) gene promoter, and NIS protein level in human thyrocytes (HT). We used unmodified HT isolated from patients subjected to thyroidectomy exposed to 131I in culture. The different 131I activities applied were calculated to result in absorbed doses of 5, 10, and 20 Gy. According to flow cytometry analysis and comet assay, 131I did not influence the HT viability in culture. Temporary increase of 8-oxo-dG concentration in HT directly after 24 h (p < 0.05) and increase in the number of AP-sites 72 h after termination of exposition to 20 Gy dose (p < 0.0001) were observed. The signs of dose-dependent DNA damage were not associated with essential changes in the NIS expression on mRNA and protein levels. Our observation constitutes a first attempt to evaluate the effect of the absorbed dose of 131I on HT. The results have not confirmed the theory that the "thyroid stunning" reduces the NIS protein synthesis.

  12. SU-F-207-01: Comparison of Beam Characteristics and Organ Dose From Four Commercial Multidetector Computed Tomography Scanners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, T; Araki, F

    2015-06-15

    Purpose: To compare dosimetric properties and patient organ doses from four commercial multidetector CT (MDCT) using Monte Carlo (MC) simulation based on the absorbed dose measured using a Farmer chamber and cylindrical water phantoms according to AAPM TG-111. Methods: Four commercial MDCT were modeled using the GMctdospp (IMPS, Germany) based on the EGSnrc user code. The incident photon spectrum and bowtie filter for MC simulations were determined so that calculated values of aluminum half-value layer (Al-HVL) and off-center ratio (OCR) profile in air agreed with measured values. The MC dose was calibrated from absorbed dose measurements using a Farmer chambermore » and cylindrical water phantoms. The dose distributions of head, chest, and abdominal scan were calculated using patient CT images and mean organ doses were evaluated from dose volume histograms. Results: The HVLs at 120 kVp of Brilliance, LightSpeed, Aquilion, and SOMATOM were 9.1, 7.5, 7.2, and 8.7 mm, respectively. The calculated Al-HVLs agreed with measurements within 0.3%. The calculated and measured OCR profiles agreed within 5%. For adult head scans, mean doses for eye lens from Brilliance, LightSpeed, Aquilion, and SOMATOM were 21.7, 38.5, 47.2 and 28.4 mGy, respectively. For chest scans, mean doses for lung from Brilliance, LightSpeed, Aquilion, and SOMATOM were 21.1, 26.1, 35.3 and 24.0 mGy, respectively. For adult abdominal scans, the mean doses for liver from Brilliance, LightSpeed, Aquilion, and SOMATOM were 16.5, 21.3, 22.7, and 18.0 mGy, respectively. The absorbed doses increased with decreasing Al-HVL. The organ doses from Aquilion were two greater than those from Brilliance in head scan. Conclusion: MC dose distributions based on absorbed dose measurement in cylindrical water phantom are useful to evaluate individual patient organ doses.« less

  13. Kinetic microplate bioassays for relative potency of antibiotics improved by partial Least Square (PLS) regression.

    PubMed

    Francisco, Fabiane Lacerda; Saviano, Alessandro Morais; Almeida, Túlia de Souza Botelho; Lourenço, Felipe Rebello

    2016-05-01

    Microbiological assays are widely used to estimate the relative potencies of antibiotics in order to guarantee the efficacy, safety, and quality of drug products. Despite of the advantages of turbidimetric bioassays when compared to other methods, it has limitations concerning the linearity and range of the dose-response curve determination. Here, we proposed to use partial least squares (PLS) regression to solve these limitations and to improve the prediction of relative potencies of antibiotics. Kinetic-reading microplate turbidimetric bioassays for apramacyin and vancomycin were performed using Escherichia coli (ATCC 8739) and Bacillus subtilis (ATCC 6633), respectively. Microbial growths were measured as absorbance up to 180 and 300min for apramycin and vancomycin turbidimetric bioassays, respectively. Conventional dose-response curves (absorbances or area under the microbial growth curve vs. log of antibiotic concentration) showed significant regression, however there were significant deviation of linearity. Thus, they could not be used for relative potency estimations. PLS regression allowed us to construct a predictive model for estimating the relative potencies of apramycin and vancomycin without over-fitting and it improved the linear range of turbidimetric bioassay. In addition, PLS regression provided predictions of relative potencies equivalent to those obtained from agar diffusion official methods. Therefore, we conclude that PLS regression may be used to estimate the relative potencies of antibiotics with significant advantages when compared to conventional dose-response curve determination. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Absorbed dose rates in tissue from prompt gamma emissions from near-thermal neutron absorption

    DOE PAGES

    Schwahn, Scott O.

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency s Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.

  15. Effects of body habitus on internal radiation dose calculations using the 5-year-old anthropomorphic male models.

    PubMed

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-07-13

    Computational phantoms are commonly used in internal radiation dosimetry to assess the amount and distribution pattern of energy deposited in various parts of the human body from different internal radiation sources. Radiation dose assessments are commonly performed on predetermined reference computational phantoms while the argument for individualized patient-specific radiation dosimetry exists. This study aims to evaluate the influence of body habitus on internal dosimetry and to quantify the uncertainties in dose estimation correlated with the use of fixed reference models. The 5-year-old IT'IS male phantom was modified to match target anthropometric parameters, including body weight, body height and sitting height/stature ratio (SSR), determined from reference databases, thus enabling the creation of 125 5-year-old habitus-dependent male phantoms with 10th, 25th, 50th, 75th and 90th percentile body morphometries. We evaluated the absorbed fractions and the mean absorbed dose to the target region per unit cumulative activity in the source region (S-values) of F-18 in 46 source regions for the generated 125 anthropomorphic 5-year-old hybrid male phantoms using the Monte Carlo N-Particle eXtended general purpose Monte Carlo transport code and calculated the absorbed dose and effective dose of five 18 F-labelled radiotracers for children of various habitus. For most organs, the S-value of F-18 presents stronger statistical correlations with body weight, standing height and sitting height than BMI and SSR. The self-absorbed fraction and self-absorbed S-values of F-18 and the absorbed dose and effective dose of 18 F-labelled radiotracers present with the strongest statistical correlations with body weight. For 18 F-Amino acids, 18 F-Brain receptor substances, 18 F-FDG, 18 F-L-DOPA and 18 F-FBPA, the mean absolute effective dose differences between phantoms of different habitus and fixed reference models are 11.4%, 11.3%, 10.8%, 13.3% and 11.4%, respectively. Total body weight, standing height and sitting height have considerable effects on human internal dosimetry. Radiation dose calculations for individual subjects using the most closely matched habitus-dependent computational phantom should be considered as an alternative to improve the accuracy of the estimates.

  16. Effects of body habitus on internal radiation dose calculations using the 5-year-old anthropomorphic male models

    NASA Astrophysics Data System (ADS)

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-08-01

    Computational phantoms are commonly used in internal radiation dosimetry to assess the amount and distribution pattern of energy deposited in various parts of the human body from different internal radiation sources. Radiation dose assessments are commonly performed on predetermined reference computational phantoms while the argument for individualized patient-specific radiation dosimetry exists. This study aims to evaluate the influence of body habitus on internal dosimetry and to quantify the uncertainties in dose estimation correlated with the use of fixed reference models. The 5-year-old IT’IS male phantom was modified to match target anthropometric parameters, including body weight, body height and sitting height/stature ratio (SSR), determined from reference databases, thus enabling the creation of 125 5-year-old habitus-dependent male phantoms with 10th, 25th, 50th, 75th and 90th percentile body morphometries. We evaluated the absorbed fractions and the mean absorbed dose to the target region per unit cumulative activity in the source region (S-values) of F-18 in 46 source regions for the generated 125 anthropomorphic 5-year-old hybrid male phantoms using the Monte Carlo N-Particle eXtended general purpose Monte Carlo transport code and calculated the absorbed dose and effective dose of five 18F-labelled radiotracers for children of various habitus. For most organs, the S-value of F-18 presents stronger statistical correlations with body weight, standing height and sitting height than BMI and SSR. The self-absorbed fraction and self-absorbed S-values of F-18 and the absorbed dose and effective dose of 18F-labelled radiotracers present with the strongest statistical correlations with body weight. For 18F-Amino acids, 18F-Brain receptor substances, 18F-FDG, 18F-L-DOPA and 18F-FBPA, the mean absolute effective dose differences between phantoms of different habitus and fixed reference models are 11.4%, 11.3%, 10.8%, 13.3% and 11.4%, respectively. Total body weight, standing height and sitting height have considerable effects on human internal dosimetry. Radiation dose calculations for individual subjects using the most closely matched habitus-dependent computational phantom should be considered as an alternative to improve the accuracy of the estimates.

  17. PLASTIC SCINTILLATOR FOR RADIATION DOSIMETRY.

    PubMed

    Kim, Yewon; Yoo, Hyunjun; Kim, Chankyu; Lim, Kyung Taek; Moon, Myungkook; Kim, Jongyul; Cho, Gyuseong

    2016-09-01

    Inorganic scintillators, composed of high-atomic-number materials such as the CsI(Tl) scintillator, are commonly used in commercially available a silicon diode and a scintillator embedded indirect-type electronic personal dosimeters because the light yield of the inorganic scintillator is higher than that of an organic scintillator. However, when it comes to tissue-equivalent dose measurements, a plastic scintillator such as polyvinyl toluene (PVT) is a more appropriate material than an inorganic scintillator because of the mass energy absorption coefficient. To verify the difference in the absorbed doses for each scintillator, absorbed doses from the energy spectrum and the calculated absorbed dose were compared. From the results, the absorbed dose of the plastic scintillator was almost the same as that of the tissue for the overall photon energy. However, in the case of CsI, it was similar to that of the tissue only for a photon energy from 500 to 4000 keV. Thus, the values and tendency of the mass energy absorption coefficient of the PVT are much more similar to those of human tissue than those of the CsI. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Uncertainty propagation for SPECT/CT-based renal dosimetry in 177Lu peptide receptor radionuclide therapy

    NASA Astrophysics Data System (ADS)

    Gustafsson, Johan; Brolin, Gustav; Cox, Maurice; Ljungberg, Michael; Johansson, Lena; Sjögreen Gleisner, Katarina

    2015-11-01

    A computer model of a patient-specific clinical 177Lu-DOTATATE therapy dosimetry system is constructed and used for investigating the variability of renal absorbed dose and biologically effective dose (BED) estimates. As patient models, three anthropomorphic computer phantoms coupled to a pharmacokinetic model of 177Lu-DOTATATE are used. Aspects included in the dosimetry-process model are the gamma-camera calibration via measurement of the system sensitivity, selection of imaging time points, generation of mass-density maps from CT, SPECT imaging, volume-of-interest delineation, calculation of absorbed-dose rate via a combination of local energy deposition for electrons and Monte Carlo simulations of photons, curve fitting and integration to absorbed dose and BED. By introducing variabilities in these steps the combined uncertainty in the output quantity is determined. The importance of different sources of uncertainty is assessed by observing the decrease in standard deviation when removing a particular source. The obtained absorbed dose and BED standard deviations are approximately 6% and slightly higher if considering the root mean square error. The most important sources of variability are the compensation for partial volume effects via a recovery coefficient and the gamma-camera calibration via the system sensitivity.

  19. Model-Based Radiation Dose Correction for Yttrium-90 Microsphere Treatment of Liver Tumors With Central Necrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ching-Sheng; Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Lin, Ko-Han

    Purpose: The objectives of this study were to model and calculate the absorbed fraction {phi} of energy emitted from yttrium-90 ({sup 90}Y) microsphere treatment of necrotic liver tumors. Methods and Materials: The tumor necrosis model was proposed for the calculation of {phi} over the spherical shell region. Two approaches, the semianalytic method and the probabilistic method, were adopted. In the former method, the range--energy relationship and the sampling of electron paths were applied to calculate the energy deposition within the target region, using the straight-ahead and continuous-slowing-down approximation (CSDA) method. In the latter method, the Monte Carlo PENELOPE code wasmore » used to verify results from the first method. Results: The fraction of energy, {phi}, absorbed from {sup 90}Y by 1-cm thickness of tumor shell from microsphere distribution by CSDA with complete beta spectrum was 0.832 {+-} 0.001 and 0.833 {+-} 0.001 for smaller (r{sub T} = 5 cm) and larger (r{sub T} = 10 cm) tumors (where r is the radii of the tumor [T] and necrosis [N]). The fraction absorbed depended mainly on the thickness of the tumor necrosis configuration, rather than on tumor necrosis size. The maximal absorbed fraction {phi} that occurred in tumors without central necrosis for each size of tumor was different: 0.950 {+-} 0.000, and 0.975 {+-} 0.000 for smaller (r{sub T} = 5 cm) and larger (r{sub T} = 10 cm) tumors, respectively (p < 0.0001). Conclusions: The tumor necrosis model was developed for dose calculation of {sup 90}Y microsphere treatment of hepatic tumors with central necrosis. With this model, important information is provided regarding the absorbed fraction applicable to clinical {sup 90}Y microsphere treatment.« less

  20. Comparison of the IAEA TRS-398 and AAPM TG-51 absorbed dose to water protocols in the dosimetry of high-energy photon and electron beams

    NASA Astrophysics Data System (ADS)

    Saiful Huq, M.; Andreo, Pedro; Song, Haijun

    2001-11-01

    The International Atomic Energy Agency (IAEA TRS-398) and the American Association of Physicists in Medicine (AAPM TG-51) have published new protocols for the calibration of radiotherapy beams. These protocols are based on the use of an ionization chamber calibrated in terms of absorbed dose to water in a standards laboratory's reference quality beam. This paper compares the recommendations of the two protocols in two ways: (i) by analysing in detail the differences in the basic data included in the two protocols for photon and electron beam dosimetry and (ii) by performing measurements in clinical photon and electron beams and determining the absorbed dose to water following the recommendations of the two protocols. Measurements were made with two Farmer-type ionization chambers and three plane-parallel ionization chamber types in 6, 18 and 25 MV photon beams and 6, 8, 10, 12, 15 and 18 MeV electron beams. The Farmer-type chambers used were NE 2571 and PTW 30001, and the plane-parallel chambers were a Scanditronix-Wellhöfer NACP and Roos, and a PTW Markus chamber. For photon beams, the measured ratios TG-51/TRS-398 of absorbed dose to water Dw ranged between 0.997 and 1.001, with a mean value of 0.999. The ratios for the beam quality correction factors kQ were found to agree to within about +/-0.2% despite significant differences in the method of beam quality specification for photon beams and in the basic data entering into kQ. For electron beams, dose measurements were made using direct ND,w calibrations of cylindrical and plane-parallel chambers in a 60Co gamma-ray beam, as well as cross-calibrations of plane-parallel chambers in a high-energy electron beam. For the direct ND,w calibrations the ratios TG-51/TRS-398 of absorbed dose to water Dw were found to lie between 0.994 and 1.018 depending upon the chamber and electron beam energy used, with mean values of 0.996, 1.006, and 1.017, respectively, for the cylindrical, well-guarded and not well-guarded plane-parallel chambers. The Dw ratios measured for the cross-calibration procedures varied between 0.993 and 0.997. The largest discrepancies for electron beams between the two protocols arise from the use of different data for the perturbation correction factors pwall and pdis of cylindrical and plane-parallel chambers, all in 60Co. A detailed analysis of the reasons for the discrepancies is made which includes comparing the formalisms, correction factors and the quantities in the two protocols.

  1. Selective irradiation of the vascular endothelium has no effect on the survival of murine intestinal crypt stem cells

    PubMed Central

    Schuller, Bradley W.; Binns, Peter J.; Riley, Kent J.; Ma, Ling; Hawthorne, M. Frederick; Coderre, Jeffrey A.

    2006-01-01

    The possible role of vascular endothelial cell damage in the loss of intestinal crypt stem cells and the subsequent development of the gastrointestinal (GI) syndrome is addressed. Mice received whole-body epithermal neutron irradiation at a dose rate of 0.57 ± 0.04 Gy·min−1. An additional dose was selectively targeted to endothelial cells from the short-ranged (5–9 μm) particles released from neutron capture reactions in 10B confined to the blood by incorporation into liposomes 70–90 nm in diameter. Different liposome formulations produced 45 ± 7 or 118 ± 12 μg/g 10B in the blood at the time of neutron irradiation, which resulted in total absorbed dose rates in the endothelial cells of 1.08 ± 0.09 or 1.90 ± 0.16 Gy·min−1, respectively. At 3.5 d after irradiation, the intestinal crypt microcolony assay showed that the 2- to 3-fold increased doses to the microvasculature, relative to the nonspecific whole-body neutron beam doses, caused no additional crypt stem cell loss beyond that produced by the neutron beam alone. The threshold dose for death from the GI syndrome after neutron-beam-only irradiation was 9.0 ± 0.6 Gy. There were no deaths from the GI syndrome, despite calculated absorbed doses to endothelial cells as high as 27.7 Gy, in the groups that received neutron beam doses of <9.0 Gy with boronated liposomes in the blood. These data indicate that endothelial cell damage is not causative in the loss of intestinal crypt stem cells and the eventual development of the GI syndrome. PMID:16505359

  2. Selective irradiation of the vascular endothelium has no effect on the survival of murine intestinal crypt stem cells

    NASA Astrophysics Data System (ADS)

    Schuller, Bradley W.; Binns, Peter J.; Riley, Kent J.; Ma, Ling; Hawthorne, M. Frederick; Coderre, Jeffrey A.

    2006-03-01

    The possible role of vascular endothelial cell damage in the loss of intestinal crypt stem cells and the subsequent development of the gastrointestinal (GI) syndrome is addressed. Mice received whole-body epithermal neutron irradiation at a dose rate of 0.57 ± 0.04 Gy·min-1. An additional dose was selectively targeted to endothelial cells from the short-ranged (5-9 μm) particles released from neutron capture reactions in 10B confined to the blood by incorporation into liposomes 70-90 nm in diameter. Different liposome formulations produced 45 ± 7 or 118 ± 12 μg/g 10B in the blood at the time of neutron irradiation, which resulted in total absorbed dose rates in the endothelial cells of 1.08 ± 0.09 or 1.90 ± 0.16 Gy·min-1, respectively. At 3.5 d after irradiation, the intestinal crypt microcolony assay showed that the 2- to 3-fold increased doses to the microvasculature, relative to the nonspecific whole-body neutron beam doses, caused no additional crypt stem cell loss beyond that produced by the neutron beam alone. The threshold dose for death from the GI syndrome after neutron-beam-only irradiation was 9.0 ± 0.6 Gy. There were no deaths from the GI syndrome, despite calculated absorbed doses to endothelial cells as high as 27.7 Gy, in the groups that received neutron beam doses of <9.0 Gy with boronated liposomes in the blood. These data indicate that endothelial cell damage is not causative in the loss of intestinal crypt stem cells and the eventual development of the GI syndrome. gastrointestinal syndrome | boron | liposomes | neutron capture

  3. SU-E-T-408: Determination of KQ,Q0-Factors From Water and Graphite Calorimetry in a 60 MeV Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossomme, S; Renaud, J; Sarfehnia, A

    2014-06-01

    Purpose: To reduce the uncertainty of the beam quality correction factor k Q,Q0, for scattered proton beams (SPB). This factor is used in dosimetry protocols, to determine absorbed dose-to-water with ionization chambers. For the Roos plane parallel chambers (RPPICs), the IAEA TRS-398 protocol estimates k Q,Q0-factor to be 1.004(for a beam quality Rres=2 g.cm{sup 2}), with an uncertainty of 2.1%. Methods: A graphite calorimeter (GCal), a water calorimeter (WCal) and RPPICs were exposed, in a single experiment, to a 60 MeV non-modulated SPB. RPPICs were calibrated in terms of absorbed dose-to-water in a 20 MeV electron beam. The calibration coefficientmore » is traceable to NPL's absorbed dose standards. Chamber measurements were corrected for environmental conditions, recombination and polarity. The WCal corrections include heat loss, heat defect and vessel perturbation. The GCal corrections include heat loss and absorbed dose conversion. Except for heat loss correction and its uncertainty in the WCal system, all major corrections were included in the analysis. Other minor corrections, such as beam profile non-uniformity, are still to be evaluated. Experimental k Q,Q0-factors were derived by comparing the results obtained with both calorimeters and ionometry. Results: The absorbed dose-to-water from both calorimeters was found to be within 1.3% with an uncertainty of 1.2%. k Q,Q0-factor for a RPPIC was found to be 0.998 and 1.011, with a standard uncertainty of 1.4% and 0.9% when the dose is based on the GCal and the WCal, respectively. Conclusion: Results suggest the possibility to determine k Q,Q0-values for PPICs in SPB with a lower uncertainty than specified in the TRS-398 thereby helping to reduce uncertainty on absorbed dose-to-water. The agreement between calorimeters confirms the possibility to use GCal or WCal as primary standard in SPB. Because of the dose conversion, the use of GCal may lead to slightly higher uncertainty, but is, at present, considerably easier to operate.« less

  4. Characterization and implementation of OSL dosimeters for use in evaluating the efficacy of organ-based tube current modulation for CT scans of the face and orbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, R. M.; Silosky, M., E-mail: michael.silosky@ucdenver.edu

    Purpose: The purpose of this work was to characterize commercially available optically stimulated luminescent (OSL) dosimeters for general clinical applications and apply the results to the development of a method to evaluate the efficacy of a vendor-specific organ-based tube current modulation application for both phantom and clinical computed tomography (CT) scans of the face and orbits. Methods: This study consisted of three components: (1) thorough characterization of the dosimeters for CT scans in phantom, including evaluations of depletion, fading, angular dependence, and conversion from counts to absorbed dose; (2) evaluation of the efficacy of using plastic glasses to position themore » dosimeters over the eyes in both phantom and clinical studies; and (3) preliminary dosimetry measurements made using organ-based tube current modulation in computed tomography dose index (CTDI) and anthropomorphic phantom studies. Results: (1) Depletion effects were found to have a linear relationship with the output of the OSL dosimeters (R{sup 2} = 0.96). Fading was found to affect dosimeter readings during the first two hours following exposure but had no effect during the remaining 60-h period observed. No significant angular dependence was observed for the exposure conditions used in this study (with p-values ranging from 0.9 to 0.26 for all t-tests). Dosimeter counts varied linearly with absorbed dose when measured in the center and 12 o’clock positions of the CTDI phantoms. These linear models of counts versus absorbed dose had overlapping 95% confidence intervals for the intercepts but not for the slopes. (2) When dosimeters were positioned using safety glasses, there was no adverse effect on image quality, and there was no statistically significant difference between this placement and placement of the dosimeters directly on the eyes of the phantom (p = 0.24). (3) When using organ-based tube current modulation, the dose to the lens of the eye was reduced between 19% and 43%, depending on the scan protocol used and the positioning of the phantom. Furthermore, the amount of dose reduction was significantly affected by the vertical position of the phantom, with the largest reduction in dose seen when the phantom was centered in the gantry. Conclusions: (1) An appropriate correction factor, specific to CT scanning, was developed to account for depletion and fading characteristics of the dosimeters. Additionally, an equation to convert dosimeter counts to absorbed dose was established. (2) The use of plastic safety glasses was validated as an appropriate positioning device when measuring dose to the lens of the eye. (3) The use of organ-based tube current modulation can reduce dose to the lens of the eye during CT scanning. The amount of dose reduction, however, is largely influenced by the positioning of the anatomy in the gantry.« less

  5. Characterization and implementation of OSL dosimeters for use in evaluating the efficacy of organ-based tube current modulation for CT scans of the face and orbits.

    PubMed

    Marsh, R M; Silosky, M

    2015-04-01

    The purpose of this work was to characterize commercially available optically stimulated luminescent (OSL) dosimeters for general clinical applications and apply the results to the development of a method to evaluate the efficacy of a vendor-specific organ-based tube current modulation application for both phantom and clinical computed tomography (CT) scans of the face and orbits. This study consisted of three components: (1) thorough characterization of the dosimeters for CT scans in phantom, including evaluations of depletion, fading, angular dependence, and conversion from counts to absorbed dose; (2) evaluation of the efficacy of using plastic glasses to position the dosimeters over the eyes in both phantom and clinical studies; and (3) preliminary dosimetry measurements made using organ-based tube current modulation in computed tomography dose index (CTDI) and anthropomorphic phantom studies. (1) Depletion effects were found to have a linear relationship with the output of the OSL dosimeters (R(2) = 0.96). Fading was found to affect dosimeter readings during the first two hours following exposure but had no effect during the remaining 60-h period observed. No significant angular dependence was observed for the exposure conditions used in this study (with p-values ranging from 0.9 to 0.26 for all t-tests). Dosimeter counts varied linearly with absorbed dose when measured in the center and 12 o'clock positions of the CTDI phantoms. These linear models of counts versus absorbed dose had overlapping 95% confidence intervals for the intercepts but not for the slopes. (2) When dosimeters were positioned using safety glasses, there was no adverse effect on image quality, and there was no statistically significant difference between this placement and placement of the dosimeters directly on the eyes of the phantom (p = 0.24). (3) When using organ-based tube current modulation, the dose to the lens of the eye was reduced between 19% and 43%, depending on the scan protocol used and the positioning of the phantom. Furthermore, the amount of dose reduction was significantly affected by the vertical position of the phantom, with the largest reduction in dose seen when the phantom was centered in the gantry. (1) An appropriate correction factor, specific to CT scanning, was developed to account for depletion and fading characteristics of the dosimeters. Additionally, an equation to convert dosimeter counts to absorbed dose was established. (2) The use of plastic safety glasses was validated as an appropriate positioning device when measuring dose to the lens of the eye. (3) The use of organ-based tube current modulation can reduce dose to the lens of the eye during CT scanning. The amount of dose reduction, however, is largely influenced by the positioning of the anatomy in the gantry.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinhua; Zhang, Da; Liu, Bob, E-mail: bliu7@mgh.harvard.edu

    Purpose: The knowledge of longitudinal dose distribution provides the most direct view of the accumulated dose in computed tomography (CT) scanning. The purpose of this work was to perform a comprehensive study of dose distribution width and energy absorption with a wide range of subject sizes and beam irradiated lengths. Methods: Cumulative dose distribution along the z-axis was calculated based on the previously published CT dose equilibration data by Li, Zhang, and Liu [Med. Phys. 40, 031903 (10pp.) (2013)] and a mechanism for computing dose on axial lines by Li, Zhang, and Liu [Med. Phys. 39, 5347–5352 (2012)]. Full widthmore » at half maximum (FWHM), full width at tenth maximum (FWTM), the total energy (E) absorbed in a small cylinder of unit mass per centimeter square about the central or peripheral axis, and the energy (E{sub in}) absorbed inside irradiated length (L) were subsequently extracted from the dose distribution. Results: Extensive results of FWHM, FWTM, and E{sub in}/E were presented on the central and peripheral axes of infinitely long PMMA (diameters 6–50 cm) and water (diameters 6–55 cm) cylinders with L < 100 cm. FWHM was greater than the primary beam width only on the central axes of large phantoms and also with L ranging from a few centimeter to about 33 cm. FWTM generally increased with phantom diameter, and could be up to 32 cm longer than irradiated length, depending on L, phantom diameter and axis, but was insensitive to phantom material (PMMA or water). E{sub in}/E increased with L and asymptotically approached unity for large L. As phantom diameter increased, E{sub in}/E generally decreased, but asymptotically approached constant levels on the peripheral axes of large phantoms. A heuristic explanation of dose distribution width results was presented. Conclusions: This study enables the reader to gain a comprehensive view of dose distribution width and energy absorption and provides useful data for estimating doses to organs inside or beyond the irradiated region. The dose length product (DLP) presented by CT scanners is equal to neither E nor E{sub in}. Both E and E{sub in} can be evaluated using the equations and results presented in this paper and are robust with both constant and variable tube current scanning techniques.« less

  7. The application of polymer gel dosimeters to dosimetry for targeted radionuclide therapy

    NASA Astrophysics Data System (ADS)

    Gear, J. I.; Flux, G. D.; Charles-Edwards, E.; Partridge, M.; Cook, G.; Ott, R. J.

    2006-07-01

    There is a lack of standardized methodology to perform dose calculations for targeted radionuclide therapy and at present no method exists to objectively evaluate the various approaches employed. The aim of the work described here was to investigate the practicality and accuracy of calibrating polymer gel dosimeters such that dose measurements resulting from complex activity distributions can be verified. Twelve vials of the polymer gel dosimeter, 'MAGIC', were uniformly mixed with varying concentrations of P-32 such that absorbed doses ranged from 0 to 30 Gy after a period of 360 h before being imaged on a magnetic resonance scanner. In addition, nine vials were prepared and irradiated using an external 6 MV x-ray beam. Magnetic resonance transverse relaxation time, T2, maps were obtained using a multi-echo spin echo sequence and converted to R2 maps (where T2 = 1/R2). Absorbed doses for P-32 irradiated gel were calculated according to the medical internal radiation dose schema using EGSnrc Monte Carlo simulations. Here the energy deposited in cylinders representing the irradiated vials was scored. A relationship between dose and R2 was determined. Effects from oxygen contamination were present in the internally irradiated vials. An increase in O2 sensitivity over those gels irradiated externally was thought to be a result of the longer irradiation period. However, below the region of contamination dose response appeared homogenous. Due do a drop-off of dose at the periphery of the internally irradiated vials, magnetic resonance ringing artefacts were observed. The ringing did not greatly affect the accuracy of calibration, which was comparable for both methods. The largest errors in calculated dose originated from the initial activity measurements, and were approximately 10%. Measured R2 values ranged from 5-35 s-1 with an average standard deviation of 1%. A clear relationship between R2 and dose was observed, with up to 40% increased sensitivity for internally irradiated gels. Curve fits to the calibration data followed a single exponential function. The correlation coefficients for internally and externally irradiated gels were 0.991 and 0.985, respectively. With the ability to accurately calibrate internally dosed polymer gels, this technology shows promise as a means to evaluate dosimetry methods, particularly in cases of non-uniform uptake of a radionuclide.

  8. Prediction of Therapy Tumor-Absorbed Dose Estimates in I-131 Radioimmunotherapy Using Tracer Data Via a Mixed-Model Fit to Time Activity

    PubMed Central

    Koral, Kenneth F.; Avram, Anca M.; Kaminski, Mark S.; Dewaraja, Yuni K.

    2012-01-01

    Abstract Background For individualized treatment planning in radioimmunotherapy (RIT), correlations must be established between tracer-predicted and therapy-delivered absorbed doses. The focus of this work was to investigate this correlation for tumors. Methods The study analyzed 57 tumors in 19 follicular lymphoma patients treated with I-131 tositumomab and imaged with SPECT/CT multiple times after tracer and therapy administrations. Instead of the typical least-squares fit to a single tumor's measured time-activity data, estimation was accomplished via a biexponential mixed model in which the curves from multiple subjects were jointly estimated. The tumor-absorbed dose estimates were determined by patient-specific Monte Carlo calculation. Results The mixed model gave realistic tumor time-activity fits that showed the expected uptake and clearance phases even with noisy data or missing time points. Correlation between tracer and therapy tumor-residence times (r=0.98; p<0.0001) and correlation between tracer-predicted and therapy-delivered mean tumor-absorbed doses (r=0.86; p<0.0001) were very high. The predicted and delivered absorbed doses were within±25% (or within±75 cGy) for 80% of tumors. Conclusions The mixed-model approach is feasible for fitting tumor time-activity data in RIT treatment planning when individual least-squares fitting is not possible due to inadequate sampling points. The good correlation between predicted and delivered tumor doses demonstrates the potential of using a pretherapy tracer study for tumor dosimetry-based treatment planning in RIT. PMID:22947086

  9. Gamma-radiation induced synthesis of silver nanoparticles in gelatin and its application for radiotherapy dose measurements

    NASA Astrophysics Data System (ADS)

    Soliman, Y. S.

    2014-09-01

    A new gel dosimeter based on a radiation-sensitive silver nitrate was formulated and investigated for its potential use in γ-radiation treatment, from 3 to 100 Gy. This gel matrix is analyzed by UV-vis spectrophotometry and X-ray diffraction (XRD). Subjecting the gel to γ-rays produces Ag nanoparticles that exhibit a plasmon resonance absorption band at 450 nm. The intensity of this band increases linearly with the increase of absorbed dose up to 100 Gy. Stability of Ag nanoparticle in the dark at 6 °C is good. The overall uncertainty (2σ) of the gel dosimeter is estimated as ~4.65% in the dose range of 5-100 Gy.

  10. Assessment of natural radioactivity and radiological hazards in building materials used in Yan'an, China.

    PubMed

    Lu, Xinwei; Li, Nan; Yang, Guang; Zhao, Caifeng

    2013-03-01

    The concentration of natural radionuclides in commonly used building materials collected from Yan'an, China, was determined using gamma ray spectroscopy with a NaI(Tl) detector. The activity concentration of ²²⁶Ra, ²³²Th, and ⁴⁰K in the studied building materials ranges from 9.4-73.1, 11.5-86.9, and 258.9-1,055.1 Bq kg⁻¹, respectively. The concentrations for these natural radionuclides were compared with the reported data of other countries and the world mean values for soil. The radium equivalent activity (Raeq), external hazard index (Hex), internal hazard index (Hin), indoor air absorbed dose rate, and annual effective dose rate due to natural radionuclides in samples were estimated to assess radiological hazards for people living in dwellings made of the studied building materials. The calculated Raeq values of all building materials (75.7-222.1 Bq kg⁻¹) are lower than the limit of 370 Bq kg⁻¹. The values of Hex and Hin are less than unity. The mean values of indoor air absorbed dose rates of all building materials (101.0 ± 14.1-177.0 ± 6.8 nGy h⁻¹) are higher than the world population-weighted average of 84 nGy h⁻¹, while the mean values of annual effective dose range from 0.50 ± 0.07-0.87 ± 0.03 mSv y⁻¹, which are lower than the recommended limit of 1 mSv y⁻¹. It is found that these materials may be used safely as construction materials and do not pose significant radiation hazards to inhabitants.

  11. Estimated human absorbed dose of ¹⁷⁷Lu-BPAMD based on mice data: Comparison with ¹⁷⁷Lu-EDTMP.

    PubMed

    Yousefnia, Hassan; Zolghadri, Samaneh; Shanehsazzadeh, Saeed

    2015-10-01

    In this work, the absorbed dose of human organs for (177)Lu-BPAMD was evaluated based on biodistribution studies into the Syrian mice by RADAR method and was compared with (177)Lu-EDTMP as the only clinically used Lu-177 bone-seeking agent. The highest absorbed dose for both (177)Lu-BPAMD and (177)Lu-EDTMP is observed on the bone surface with 8.007 and 4.802 mSv/MBq. Generally, (177)Lu-BPAMD has considerable characteristics compared with (177)Lu-EDTMP and can be considered as a promising agent for the bone pain palliation therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Measurement of absorbed dose with a bone-equivalent extrapolation chamber.

    PubMed

    DeBlois, François; Abdel-Rahman, Wamied; Seuntjens, Jan P; Podgorsak, Ervin B

    2002-03-01

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to approximately 2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams.

  13. Organ dose measurement using Optically Stimulated Luminescence Detector (OSLD) during CT examination

    NASA Astrophysics Data System (ADS)

    Yusuf, Muhammad; Alothmany, Nazeeh; Abdulrahman Kinsara, Abdulraheem

    2017-10-01

    This study provides detailed information regarding the imaging doses to patient radiosensitive organs from a kilovoltage computed tomography (CT) scan procedure using OSLD. The study reports discrepancies between the measured dose and the calculated dose from the ImPACT scan, as well as a comparison with the dose from a chest X-ray radiography procedure. OSLDs were inserted in several organs, including the brain, eyes, thyroid, lung, heart, spinal cord, breast, spleen, stomach, liver and ovaries, of the RANDO phantom. Standard clinical scanning protocols were used for each individual site, including the brain, thyroid, lung, breast, stomach, liver and ovaries. The measured absorbed doses were then compared with the simulated dose obtained from the ImPACT scan. Additionally, the equivalent doses for each organ were calculated and compared with the dose from a chest X-ray radiography procedure. Absorbed organ doses measured by OSLD in the RANDO phantom of up to 17 mGy depend on the organ scanned and the scanning protocols used. A maximum 9.82% difference was observed between the target organ dose measured by OSLD and the results from the ImPACT scan. The maximum equivalent organ dose measured during this experiment was equal to 99.899 times the equivalent dose from a chest X-ray radiography procedure. The discrepancies between the measured dose with the OSLD and the calculated dose from the ImPACT scan were within 10%. This report recommends the use of OSLD for measuring the absorbed organ dose during CT examination.

  14. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.

    2013-12-01

    Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage, to confirm a multi-track radiation-damage process and to develop a model of that process. Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. Themore » observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.« less

  15. Treatment planning for internal emitter therapy: Methods, applications and clinical implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sgouros, G.

    1999-01-01

    Treatment planning involves three basic steps: (1) a procedure must be devised that will provide the most relevant information, (2) the procedure must be applied and (3) the resulting information must be translated into a definition of the optimum implementation. There are varying degrees of treatment planning that may be implemented in internal emitter therapy. As in chemotherapy, the information from a Phase 1 study may be used to treat patients based upon body surface area. If treatment planning is included on a patient-specific basis, a pretherapy, trace-labeled, administration of the radiopharmaceutical is generally required. The data collected following themore » tracer dose may range from time-activity curves of blood and whole-body for use in blood, marrow or total body absorbed dose estimation to patient imaging for three-dimensional internal emitter dosimetry. The most ambitious approach requires a three-dimensional set of images representing radionuclide distribution (SPECT or PET) and a corresponding set of images representing anatomy (CT or MRI). The absorbed dose (or dose-rate) distribution may be obtained by convolution of a point kernel with the radioactivity distribution or by direct Monte Carlo calculation. A critical requirement for both techniques is the development of an overall structure that makes it possible, in a routine manner, to input the images, to identify the structures of interest and to display the results of the dose calculations in a clinically relevant manner. 52 refs., 4 figs., 1 tab.« less

  16. Organ and effective dose conversion coefficients for a sitting female hybrid computational phantom exposed to monoenergetic protons in idealized irradiation geometries.

    PubMed

    Alves, M C; Santos, W S; Lee, Choonsik; Bolch, Wesley E; Hunt, John G; Carvalho Júnior, A B

    2014-12-21

    The conversion coefficients (CCs) relate protection quantities, mean absorbed dose (DT) and effective dose (E), with physical radiation field quantities, such as fluence (Φ). The calculation of CCs through Monte Carlo simulations is useful for estimating the dose in individuals exposed to radiation. The aim of this work was the calculation of conversion coefficients for absorbed and effective doses per fluence (DT/ Φ and E/Φ) using a sitting and standing female hybrid phantom (UFH/NCI) exposure to monoenergetic protons with energy ranging from 2 MeV to 10 GeV. The radiation transport code MCNPX was used to develop exposure scenarios implementing the female UFH/NCI phantom in sitting and standing postures. Whole-body irradiations were performed using the recommended irradiation geometries by ICRP publication 116 (AP, PA, RLAT, LLAT, ROT and ISO). In most organs, the conversion coefficients DT/Φ were similar for both postures. However, relative differences were significant for organs located in the abdominal region, such as ovaries, uterus and urinary bladder, especially in the AP, RLAT and LLAT geometries. Anatomical differences caused by changing the posture of the female UFH/NCI phantom led an attenuation of incident protons with energies below 150 MeV by the thigh of the phantom in the sitting posture, for the front-to-back irradiation, and by the arms and hands of the phantom in the standing posture, for the lateral irradiation.

  17. Natural radioactivity (226Ra, 232Th and 40K) and assessment of radiological hazards in the Kestanbol granitoid, Turkey.

    PubMed

    Canbaz, Buket; Cam, N Füsun; Yaprak, Günseli; Candan, Osman

    2010-09-01

    The surveys of natural gamma-emitting radionuclides in rocks and soils from the Ezine plutonic area were conducted during 2007. Direct dose measurement using a survey meter was carried out simultaneously. The present study, which is part of the survey, analysed the activity concentrations of (238)U, (232)Th and (40)K in granitoid samples from all over the region by HPGe gamma spectrometry. The activity concentrations of (226)Ra ranged from 94 to 637 Bq kg(-1), those of (232)Th ranged from 120 to 601 Bq kg(-1)and those of (40)K ranged from 1074 to 1527 Bq kg(-1) in the analysed rock samples from different parts of the pluton. To evaluate the radiological hazard of the natural radioactivity in the samples, the absorbed dose rate (D), the annual effective dose rate, the radium equivalent activity (Ra(eq)) and the external (H(ex)) hazard index were calculated according to the UNSCEAR 2000 report. The thorium-to-uranium concentration ratios were also estimated.

  18. Neutron dose estimation in a zero power nuclear reactor

    NASA Astrophysics Data System (ADS)

    Triviño, S.; Vedelago, J.; Cantargi, F.; Keil, W.; Figueroa, R.; Mattea, F.; Chautemps, A.; Santibañez, M.; Valente, M.

    2016-10-01

    This work presents the characterization and contribution of neutron and gamma components to the absorbed dose in a zero power nuclear reactor. A dosimetric method based on Fricke gel was implemented to evaluate the separation between dose components in the mixed field. The validation of this proposed method was performed by means of direct measurements of neutron flux in different positions using Au and Mg-Ni activation foils. Monte Carlo simulations were conversely performed using the MCNP main code with a dedicated subroutine to incorporate the exact complete geometry of the nuclear reactor facility. Once nuclear fuel elements were defined, the simulations computed the different contributions to the absorbed dose in specific positions inside the core. Thermal/epithermal contributions of absorbed dose were assessed by means of Fricke gel dosimetry using different isotopic compositions aimed at modifying the sensitivity of the dosimeter for specific dose components. Clear distinctions between gamma and neutron capture dose were obtained. Both Monte Carlo simulations and experimental results provided reliable estimations about neutron flux rate as well as dose rate during the reactor operation. Simulations and experimental results are in good agreement in every positions measured and simulated in the core.

  19. New Radiation Dosimetry Estimates for [18F]FLT based on Voxelized Phantoms.

    PubMed

    Mendes, B M; Ferreira, A V; Nascimento, L T C; Ferreira, S M Z M D; Silveira, M B; Silva, J B

    2018-04-25

    3'-Deoxy-3-[ 18 F]fluorothymidine, or [ 18 F]FLT, is a positron emission tomography (PET) tracer used in clinical studies for noninvasive assessment of proliferation activity in several types of cancer. Although the use of this PET tracer is expanding, to date, few studies concerning its dosimetry have been published. In this work, new [ 18 F]FLT dosimetry estimates are determined for human and mice using Monte Carlo simulations. Modern voxelized male and female phantoms and [ 18 F]FLT biokinetic data, both published by the ICRP, were used for simulations of human cases. For most human organs/tissues the absorbed doses were higher than those reported in ICRP Publication 128. An effective dose of 1.70E-02 mSv/MBq to the whole body was determined, which is 13.5% higher than the ICRP reference value. These new human dosimetry estimates obtained using more realistic human phantoms represent an advance in the knowledge of [ 18 F]FLT dosimetry. In addition, mice biokinetic data were obtained experimentally. These data and a previously developed voxelized mouse phantom were used for simulations of animal cases. Concerning animal dosimetry, absorbed doses for organs/tissues ranged from 4.47 ± 0.75 to 155.74 ± 59.36 mGy/MBq. The obtained set of organ/tissue radiation doses for healthy Swiss mice is a useful tool for application in animal experiment design.

  20. Application of Al2O3:C+fibre dosimeters for 290 MeV/n carbon therapeustic beam dosimetry.

    NASA Astrophysics Data System (ADS)

    Nascimento, L. F.; Vanhavere, F.; Kodaira, S.; Kitamura, H.; Verellen, D.; De Deene, Y.

    2015-10-01

    The capability of radioluminescence (RL) dosimeters composed of carbon-doped aluminium oxide (Al2O3:C) detectors+optical fibre has been verified for absorbed dose-rate measurements during carbon radiotherapy. The RL signals from two separate Al2O3:C detectors (single crystal 'CG' and droplet 'P1') have been systematically measured and compared along the Bragg-curve and Spread-Out Bragg-Peak of 290 MeV/n carbon beams in the water. The absorbed dose response was assessed for the range of 0.5-10 Gy. For doses up to 6 Gy, we observed a linear response for both types of detectors, while for higher doses CG presented a more prominent supraliearity than P1. The RL response for low-LET protons in the entrance from the curve was found to closely resemble that observed for a clinical 6 MV X-ray beam, while it was found that P1 has a better agreement with the reference data from standard ionization chamber than CG. We observed a significant decrease in luminescence efficiency with LET in the Bragg peak region. The Al2O3:C RL luminescence efficiency differs from Al2O3:C OSL results, which implies that the signal can be corrected for LET dependency to match the correct SOBP and Bragg Peak.

  1. Radioiodine therapy in Graves' disease based on tissue-absorbed dose calculations: effect of pre-treatment thyroid volume on clinical outcome.

    PubMed

    Reinhardt, Michael J; Brink, Ingo; Joe, Alexius Y; Von Mallek, Dirk; Ezziddin, Samer; Palmedo, Holger; Krause, Thomas M

    2002-09-01

    This study was performed with three aims. The first was to analyse the effectiveness of radioiodine therapy in Graves' disease patients with and without goitres under conditions of mild iodine deficiency using several tissue-absorbed doses. The second aim was to detect further parameters which might be predictive for treatment outcome. Finally, we wished to determine the deviation of the therapeutically achieved dose from that intended. Activities of 185-2,220 MBq radioiodine were calculated by means of Marinelli's formula to deliver doses of 150, 200 or 300 Gy to the thyroids of 224 patients with Graves' disease and goitres up to 130 ml in volume. Control of hyperthyroidism, change in thyroid volume and thyrotropin-receptor antibodies were evaluated 15+/-9 months after treatment for each dose. The results were further evaluated with respect to pre-treatment parameters which might be predictive for therapy outcome. Thyroidal radioiodine uptake was measured every day during therapy to determine the therapeutically achieved target dose and its coefficient of variation. There was a significant dose dependency in therapeutic outcome: frequency of hypothyroidism increased from 27.4% after 150 Gy to 67.7% after 300 Gy, while the frequency of persistent hyperthyroidism decreased from 27.4% after 150 Gy to 8.1% after 300 Gy. Patients who became hypothyroid had a maximum thyroid volume of 42 ml and received a target dose of 256+/-80 Gy. The coefficient of variation for the achieved target dose ranged between 27.7% for 150 Gy and 17.8% for 300 Gy. When analysing further factors which might influence therapeutic outcome, only pre-treatment thyroid volume showed a significant relationship to the result of treatment. It is concluded that a target dose of 250 Gy is essential to achieve hypothyroidism within 1 year after radioiodine therapy in Graves' disease patients with goitres up to 40 ml in volume. Patients with larger goitres might need higher doses.

  2. Investigation of the chamber correction factor (k(ch)) for the UK secondary standard ionization chamber (NE2561/NE2611) using medium-energy x-rays.

    PubMed

    Rosser, K E

    1998-11-01

    This paper evaluates the characteristics of ionization chambers for the measurement of absorbed dose to water for medium-energy x-rays. The values of the chamber correction factor, k(ch), used in the IPEMB code of practice for the UK secondary standard (NE2561/NE2611) ionization chamber are derived and their constituent factors examined. The comparison of the chambers' responses in air revealed that of the chambers tested only the NE2561, NE2571 and NE2505 exhibit a flat (within 5%) energy response in air. Under no circumstances should the NACP, Sanders electron chamber, or any chamber that has a wall made of high atomic number material, be used for medium-energy x-ray dosimetry. The measurements in water reveal that a chamber that has a substantial housing, such as the PTW Grenz chamber, should not be used to measure absorbed dose to water in this energy range. The value of k(ch) for an NE2561 chamber was determined by measuring the absorbed dose to water and comparing it with that for an NE2571 chamber, for which k(ch) data have been published. The chamber correction factor varies from 1.023 +/- 0.03 to 1.018 +/- 0.001 for x-ray beams with HVL between 0.15 and 4 mm Cu. The values agree with that for an NE2571 chamber within the experimental uncertainty. The corrections due to the stem, waterproof sleeve and replacement of the phantom material by the chamber for an NE2561 chamber are described.

  3. Patient-specific dosimetry calculations using mathematic models of different anatomic sizes during therapy with 111In-DTPA-D-Phe1-octreotide infusions after catheterization of the hepatic artery.

    PubMed

    Kontogeorgakos, Dimitrios K; Dimitriou, Panagiotis A; Limouris, Georgios S; Vlahos, Lambros J

    2006-09-01

    The aim of the study was to provide dosimetric data on intrahepatic (111)In-diethylenetriaminepentaacetic acid (DTPA)-D-Phe(1)-octreotide therapy for neuroendocrine tumors with overexpression of somatostatin receptors. A dosimetric protocol was designed to estimate the absorbed dose to the tumor and healthy tissue in a course of 48 treatments for 12 patients, who received a mean activity of 5.4 +/- 1.7 GBq per session. The patient-specific dosimetry calculations, based on quantitative biplanar whole-body scintigrams, were performed using a Monte Carlo simulation program for 3 male and 3 female mathematic models of different anatomic sizes. Thirty minutes and 2, 6, 24, and 48 h after the radionuclide infusion, blood-sample data were collected for estimation of the red marrow radiation burden. The mean absorbed doses per administered activity (mGy/MBq) by the critical organs liver, spleen, kidneys, bladder wall, and bone marrow were 0.14 +/- 0.04, 1.4 +/- 0.6, 0.41 +/- 0.08, 0.094 +/- 0.013, and (3.5 +/- 0.8) x 10(-3), respectively; the tumor absorbed dose ranged from 2.2 to 19.6 mGy/MBq, strongly depending on the lesion size and tissue type. The results of the present study quantitatively confirm the therapeutic efficacy of transhepatic administration; the tumor-to-healthy-tissue uptake ratio was enhanced, compared with the results after antecubital infusions. Planning of treatment was also optimized by use of the patient-specific dosimetric protocol.

  4. Background radiation dose of dumpsites in Ota and Environs

    NASA Astrophysics Data System (ADS)

    Usikalu, M. R.; Ola, O. O.; Achuka, J. A.; Babarimisa, I. O.; Ayara, W. A.

    2017-05-01

    In-situ measurement of background radiation dose from selected dumpsites in Ota and its environs was done using Radialert Nuclear Radiation Monitor (Digilert 200). Ten measurements were taken from each dumpsite. The measured background radiation range between 0.015 mRhr-1 for AOD and 0.028 mRhr-1 for SUS dumpsites. The calculated annual equivalent doses vary between 1.31 mSvyr-1 for AOD and 2.28 mSv/yr for SUS dumpsites. The air absorbed dose calculated ranged from 150 nGyhr-1 to 280 nGy/hr for AOD and SUS dumpsites respectively with an average value of 217 nGyhr-1 for all the locations. All the estimated parameters were higher than permissible limit set for background radiation for the general public. Conclusively, the associated challenge and radiation burden posed by the wastes on the studied locations and scavengers is high. Therefore, there is need by the regulatory authorities to look into the way and how waste can be properly managed so as to alleviate the effects on the populace leaving and working in the dumpsites vicinity.

  5. The Effect of Diagnostic Absorbed Doses from 131I on Human Thyrocytes in Vitro

    PubMed Central

    Adamczewski, Zbigniew; Stasiołek, Mariusz; Karwowski, Bolesław; Dedecjus, Marek; Orszulak-Michalak, Daria; Merecz, Anna; Śliwka, Przemysław W.; Puła, Bartosz; Lewiński, Andrzej

    2015-01-01

    Background: Administration of diagnostic activities of 131I, performed in order to detect thyroid remnants after surgery and/or thyroid cancer recurrence/metastases, may lead to reduction of iodine uptake. This phenomenon is called “thyroid stunning”. We estimated radiation absorbed dose-dependent changes in genetic material, in particular in sodium iodide symporter (NIS) gene promoter, and NIS protein level in human thyrocytes (HT). Materials and Methods: We used unmodified HT isolated from patients subjected to thyroidectomy exposed to 131I in culture. The different 131I activities applied were calculated to result in absorbed doses of 5, 10, and 20 Gy. Results: According to flow cytometry analysis and comet assay, 131I did not influence the HT viability in culture. Temporary increase of 8-oxo-dG concentration in HT directly after 24 h (p < 0.05) and increase in the number of AP-sites 72 h after termination of exposition to 20 Gy dose (p < 0.0001) were observed. The signs of dose-dependent DNA damage were not associated with essential changes in the NIS expression on mRNA and protein levels. Conclusions: Our observation constitutes a first attempt to evaluate the effect of the absorbed dose of 131I on HT. The results have not confirmed the theory that the “thyroid stunning” reduces the NIS protein synthesis. PMID:26132566

  6. Assessment of Mean Glandular Dose in Mammography System with Different Anode-Filter Combinations Using MCNP Code

    PubMed Central

    Gholamkar, Lida; Mowlavi, Ali Asghar; Sadeghi, Mahdi; Athari, Mitra

    2016-01-01

    Background X-ray mammography is one of the general methods for early detection of breast cancer. Since glandular tissue in the breast is sensitive to radiation and it increases the risk of cancer, the given dose to the patient is very important in mammography. Objectives The aim of this study was to determine the average absorbed dose of X-ray radiation in the glandular tissue of the breast during mammography examinations as well as investigating factors that influence the mean glandular dose (MGD). One of the precise methods for determination of MGD absorbed by the breast is Monte Carlo simulation method which is widely used to assess the dose. Materials and Methods We studied some different X-ray sources and exposure factors that affect the MGD. “Midi-future” digital mammography system with amorphous-selenium detector was simulated using the Monte Carlo N-particle extended (MCNPX) code. Different anode/filter combinations such as tungsten/silver (W/Ag), tungsten/rhodium (W/Rh), and rhodium/aluminium (Rh/Al) were simulated in this study. The voltage of X-ray tube ranged from 24 kV to 32 kV with 2 kV intervals and the breast phantom thickness ranged from 3 to 8 cm, and glandular fraction g varied from 10% to 100%. Results MGD was measured for different anode/filter combinations and the effects of changing tube voltage, phantom thickness, combination and glandular breast tissue on MGD were studied. As glandular g and X-ray tube voltage increased, the breast dose increased too, and the increase of breast phantom thickness led to the decrease of MGD. The obtained results for MGD were consistent with the result of Boone et al. that was previously reported. Conclusion By comparing the results, we saw that W/Rh anode/filter combination is the best choice in breast mammography imaging because of the lowest delivered dose in comparison with W/Ag and Rh/Al. Moreover, breast thickness and g value have significant effects on MGD. PMID:27895876

  7. Absorbed dose to man from the Se-75 labeled conjugated bile salt SeHCAT: concise communication.

    PubMed

    Soundy, R G; Simpson, J D; Ross, H M; Merrick, M V

    1982-02-01

    The absorbed radiation dose that would result from the oral or intravenous administration of SeHCAT (23-[75Se]selena-25-homotaurocholate) has been calculated using the MIRD tables and formulas and data from measurements of whole-body distribution and from long-term whole-body counting in rats, mice, and man. When SeHCAT is administered to normal subjects, the gallbladder is the critical organ, receiving 12 mrad (oral dose) or 22 mrad (i.v.) per microcurie. The whole-body dose is 1 mrad/microCi, whatever the route of administration. In severe hepatic failure the liver might receive 200 mrad/microCi. The activity likely to be used in routine clinical practice is 10 microCi. Where a whole-body counter is used, an activity of 1 microCi has proved adequate. Even at an administered activity of 25 microCi, the absorbed dose is small compared with established techniques of investigating the gastrointestinal tract.

  8. Boron Neutron Capture Therapy (BNCT) Dose Calculation using Geometrical Factors Spherical Interface for Glioblastoma Multiforme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zasneda, Sabriani; Widita, Rena

    2010-06-22

    Boron Neutron Capture Therapy (BNCT) is a cancer therapy by utilizing thermal neutron to produce alpha particles and lithium nuclei. The superiority of BNCT is that the radiation effects could be limited only for the tumor cells. BNCT radiation dose depends on the distribution of boron in the tumor. Absorbed dose to the cells from the reaction 10B (n, {alpha}) 7Li was calculated near interface medium containing boron and boron-free region. The method considers the contribution of the alpha particle and recoiled lithium particle to the absorbed dose and the variation of Linear Energy Transfer (LET) charged particles energy. Geometricalmore » factor data of boron distribution for the spherical surface is used to calculate the energy absorbed in the tumor cells, brain and scalp for case Glioblastoma Multiforme. The result shows that the optimal dose in tumor is obtained for boron concentrations of 22.1 mg {sup 10}B/g blood.« less

  9. Primary DNA damage assessed with the comet assay and comparison to the absorbed dose of diagnostic X-rays in children.

    PubMed

    Milkovic, Durdica; Garaj-Vrhovac, Vera; Ranogajec-Komor, Mária; Miljanic, Saveta; Gajski, Goran; Knezevic, Zeljka; Beck, Natko

    2009-01-01

    The aim of this work is to assess DNA damage in peripheral blood lymphocytes of children prior to and following airway X-ray examinations of the chest using the alkaline comet assay and to compare data with the measured absorbed dose. Twenty children with pulmonary diseases, between the ages of 5 and 14 years, are assessed. Absorbed dose measurements are conducted for posterior-anterior projection on the forehead, thyroid gland, gonads, chest, and back. Doses are measured using thermoluminescent and radiophotoluminescent dosimetry systems. Differences between tail lengths, tail intensity, and tail moments as well as for the long-tailed nuclei before and after exposures are statistically significant and are dependent on the individual. The results demonstrate the usefulness of the comet assay as a measure of X-ray damage to lymphocytes in a clinical setting. Doses measured with both dosimeters show satisfactory agreement (0.01 mSv) and are suitable for dosimetric measurements in X-ray diagnostics.

  10. [Radioecological studies of freshwater mollusks in the Chernobyl accident exclusion zone].

    PubMed

    Gudkov, D I; Nazarov, A B; Dziubenko, E V; Kaglian, A E; Klenus, V G

    2009-01-01

    Species-specificity and dynamics of 90Sr, 137Cs and some transuranic elements accumulation in bivalve and gastropod freshwater molluscs of the Chernobyl exclusion zone during 1997-2008 was analyzed. The results of radiation dose and chromosome aberration rate estimation and the analysis of hemolymph composition of freshwater snail (Lymnaea stagnalis L.) was produced. The absorbed dose rate was registered in the range of 0.3-85.0 microGy/h. In closed water bodies the heightened chromosome aberration rate (up to 27%) in embryo tissues, and also the change of haematological indexes for the adult individuals of snails was registered.

  11. Heavy-ion-induced sucrose radicals investigated using EPR and UV spectroscopy

    PubMed Central

    Nakagawa, Kouichi; Karakirova, Yordanka; Yordanov, Nicola D.

    2015-01-01

    The potential use of a sucrose dosimeter for estimating both linear energy transfer (LET) and the absorbed dose of heavy ion and X-ray radiation was investigated. The stable free radicals were produced when sucrose was irradiated with heavy ions, such as helium, carbon, silicon and neon ions, and when the X-ray radiation was similar to the obtained electron paramagnetic resonance (EPR) spectra, which were ∼7 mT wide and composed of several hyperfine structures. In addition, the total spin concentration resulting from heavy-ion irradiation increased linearly as the absorbed dose increased, and decreased logarithmically as the LET increased. These empirical relations imply that the LET at a certain dose can be determined from the spin concentration. For sucrose and alanine, both cross-sections following C-ion irradiation with a 50 Gy dose were ∼1.3 × 10−12 [μm2], taking into account the molecular size of the samples. The values of these cross-sections imply that multiple ionizing particles were involved in the production of stable radicals. Furthermore, UV absorbance at 267 nm of an aqueous solution of irradiated sucrose was found to linearly increase with increasing absorbed dose. Therefore, the EPR and UV results suggest that sucrose can be a useful dosimeter for heavy-ion irradiation. PMID:25480828

  12. Real-time in vivo rectal wall dosimetry using plastic scintillation detectors for patients with prostate cancer

    PubMed Central

    Wootton, Landon; Kudchadker, Rajat; Lee, Andrew; Beddar, Sam

    2014-01-01

    We designed and constructed an in vivo dosimetry system using plastic scintillation detectors (PSDs) to monitor dose to the rectal wall in patients undergoing intensity-modulated radiation therapy for prostate cancer. Five patients were enrolled in an Institutional Review Board–approved protocol for twice weekly in vivo dose monitoring with our system, resulting in a total of 142 in vivo dose measurements. PSDs were attached to the surface of endorectal balloons used for prostate immobilization to place the PSDs in contact with the rectal wall. Absorbed dose was measured in real time and the total measured dose was compared with the dose calculated by the treatment planning system on the daily CT image dataset. The mean difference between measured and calculated doses for the entire patient population was −0.4% (standard deviation 2.8%). The mean difference between daily measured and calculated doses for each patient ranged from −3.3% to 3.3% (standard deviation ranged from 5.6% to 7.1% for 4 patients and was 14.0% for the last, for whom optimal positioning of the detector was difficult owing to the patient’s large size). Patients tolerated the detectors well and the treatment workflow was not compromised. Overall, PSDs performed well as in vivo dosimeters, providing excellent accuracy, real-time measurement, and reusability. PMID:24434775

  13. Real-time in vivo rectal wall dosimetry using plastic scintillation detectors for patients with prostate cancer

    NASA Astrophysics Data System (ADS)

    Wootton, Landon; Kudchadker, Rajat; Lee, Andrew; Beddar, Sam

    2014-02-01

    We designed and constructed an in vivo dosimetry system using plastic scintillation detectors (PSDs) to monitor dose to the rectal wall in patients undergoing intensity-modulated radiation therapy for prostate cancer. Five patients were enrolled in an Institutional Review Board-approved protocol for twice weekly in vivo dose monitoring with our system, resulting in a total of 142 in vivo dose measurements. PSDs were attached to the surface of endorectal balloons used for prostate immobilization to place the PSDs in contact with the rectal wall. Absorbed dose was measured in real time and the total measured dose was compared with the dose calculated by the treatment planning system on the daily computed tomographic image dataset. The mean difference between measured and calculated doses for the entire patient population was -0.4% (standard deviation 2.8%). The mean difference between daily measured and calculated doses for each patient ranged from -3.3% to 3.3% (standard deviation ranged from 5.6% to 7.1% for four patients and was 14.0% for the last, for whom optimal positioning of the detector was difficult owing to the patient's large size). Patients tolerated the detectors well and the treatment workflow was not compromised. Overall, PSDs performed well as in vivo dosimeters, providing excellent accuracy, real-time measurement and reusability.

  14. Space dosimetry with the application of a 3D silicon detector telescope: response function and inverse algorithm.

    PubMed

    Pázmándi, Tamás; Deme, Sándor; Láng, Edit

    2006-01-01

    One of the many risks of long-duration space flights is the excessive exposure to cosmic radiation, which has great importance particularly during solar flares and higher sun activity. Monitoring of the cosmic radiation on board space vehicles is carried out on the basis of wide international co-operation. Since space radiation consists mainly of charged heavy particles (protons, alpha and heavier particles), the equivalent dose differs significantly from the absorbed dose. A radiation weighting factor (w(R)) is used to convert absorbed dose (Gy) to equivalent dose (Sv). w(R) is a function of the linear energy transfer of the radiation. Recently used equipment is suitable for measuring certain radiation field parameters changing in space and over time, so a combination of different measurements and calculations is required to characterise the radiation field in terms of dose equivalent. The objectives of this project are to develop and manufacture a three-axis silicon detector telescope, called Tritel, and to develop software for data evaluation of the measured energy deposition spectra. The device will be able to determine absorbed dose and dose equivalent of the space radiation.

  15. Abdominal Pediatric Cancer Surveillance using Serial CT: Evaluation of Organ Absorbed Dose and Effective Dose

    PubMed Central

    Lam, Diana; Wootton-Gorges, Sandra L.; McGahan, John P.; Stern, Robin; Boone, John M.

    2012-01-01

    Computed tomography (CT) is used extensively in cancer diagnosis, staging, evaluation of response to treatment, and in active surveillance for cancer reoccurrence. A review of CT technology is provided, at a level of detail appropriate for a busy clinician to review. The basis of x-ray CT dosimetry is also discussed, and concepts of absorbed dose and effective dose are distinguished. Absorbed dose is a physical quantity (measured in milliGray) equal to the x-ray energy deposited in a mass of tissue, whereas effective dose utilizes an organ-specific weighting method which converts organ doses to effective dose measured in milliSieverts. The organ weighting values carry with them a measure of radiation risk, and so effective dose (in mSv) is not a physical dose metric but rather is one that conveys radiation risk. The use of CT in a cancer surveillance protocol was used as an example of a pediatric patient who had kidney cancer, with surgery and radiation therapy. The active use of CT for cancer surveillance along with diagnostic CT scans led to a total of 50 CT scans performed on this child in a 7 year period. It was estimated that the patient received an average organ dose of 431 mGy from these CT scans. By comparison, the radiation therapy was performed and delivered 50.4 Gy to the patient’s abdomen. Thus, the total dose from CT represented only 0.8% of the patients radiation dose. PMID:21362521

  16. Olive oil phenolics are dose-dependently absorbed in humans.

    PubMed

    Visioli, F; Galli, C; Bornet, F; Mattei, A; Patelli, R; Galli, G; Caruso, D

    2000-02-25

    Olive oil phenolic constituents have been shown, in vitro, to be endowed with potent biological activities including, but not limited to, an antioxidant action. To date, there is no information on the absorption and disposition of such compounds in humans. We report that olive oil phenolics, namely tyrosol and hydroxytyrosol, are dose-dependently absorbed in humans after ingestion and that they are excreted in the urine as glucuronide conjugates. Furthermore, an increase in the dose of phenolics administered increased the proportion of conjugation with glucuronide.

  17. Estimation of absorbed radiation dose rates in wild rodents inhabiting a site severely contaminated by the Fukushima Dai-ichi nuclear power plant accident.

    PubMed

    Kubota, Yoshihisa; Takahashi, Hiroyuki; Watanabe, Yoshito; Fuma, Shoichi; Kawaguchi, Isao; Aoki, Masanari; Kubota, Masahide; Furuhata, Yoshiaki; Shigemura, Yusaku; Yamada, Fumio; Ishikawa, Takahiro; Obara, Satoshi; Yoshida, Satoshi

    2015-04-01

    The dose rates of radiation absorbed by wild rodents inhabiting a site severely contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident were estimated. The large Japanese field mouse (Apodemus speciosus), also called the wood mouse, was the major rodent species captured in the sampling area, although other species of rodents, such as small field mice (Apodemus argenteus) and Japanese grass voles (Microtus montebelli), were also collected. The external exposure of rodents calculated from the activity concentrations of radiocesium ((134)Cs and (137)Cs) in litter and soil samples using the ERICA (Environmental Risk from Ionizing Contaminants: Assessment and Management) tool under the assumption that radionuclides existed as the infinite plane isotropic source was almost the same as those measured directly with glass dosimeters embedded in rodent abdomens. Our findings suggest that the ERICA tool is useful for estimating external dose rates to small animals inhabiting forest floors; however, the estimated dose rates showed large standard deviations. This could be an indication of the inhomogeneous distribution of radionuclides in the sampled litter and soil. There was a 50-fold difference between minimum and maximum whole-body activity concentrations measured in rodents at the time of capture. The radionuclides retained in rodents after capture decreased exponentially over time. Regression equations indicated that the biological half-life of radiocesium after capture was 3.31 d. At the time of capture, the lowest activity concentration was measured in the lung and was approximately half of the highest concentration measured in the mixture of muscle and bone. The average internal absorbed dose rate was markedly smaller than the average external dose rate (<10% of the total absorbed dose rate). The average total absorbed dose rate to wild rodents inhabiting the sampling area was estimated to be approximately 52 μGy h(-1) (1.2 mGy d(-1)), even 3 years after the accident. This dose rate exceeds 0.1-1 mGy d(-1) derived consideration reference level for Reference rat proposed by the International Commission on Radiological Protection (ICRP). Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Internal photon and electron dosimetry of the newborn patient—a hybrid computational phantom study

    NASA Astrophysics Data System (ADS)

    Wayson, Michael; Lee, Choonsik; Sgouros, George; Treves, S. Ted; Frey, Eric; Bolch, Wesley E.

    2012-03-01

    Estimates of radiation absorbed dose to organs of the nuclear medicine patient are a requirement for administered activity optimization and for stochastic risk assessment. Pediatric patients, and in particular the newborn child, represent that portion of the patient population where such optimization studies are most crucial owing to the enhanced tissue radiosensitivities and longer life expectancies of this patient subpopulation. In cases where whole-body CT imaging is not available, phantom-based calculations of radionuclide S values—absorbed dose to a target tissue per nuclear transformation in a source tissue—are required for dose and risk evaluation. In this study, a comprehensive model of electron and photon dosimetry of the reference newborn child is presented based on a high-resolution hybrid-voxel phantom from the University of Florida (UF) patient model series. Values of photon specific absorbed fraction (SAF) were assembled for both the reference male and female newborn using the radiation transport code MCNPX v2.6. Values of electron SAF were assembled in a unique and time-efficient manner whereby the collisional and radiative components of organ dose--for both self- and cross-dose terms—were computed separately. Dose to the newborn skeletal tissues were assessed via fluence-to-dose response functions reported for the first time in this study. Values of photon and electron SAFs were used to assemble a complete set of S values for some 16 radionuclides commonly associated with molecular imaging of the newborn. These values were then compared to those available in the OLINDA/EXM software. S value ratios for organ self-dose ranged from 0.46 to 1.42, while similar ratios for organ cross-dose varied from a low of 0.04 to a high of 3.49. These large discrepancies are due in large part to the simplistic organ modeling in the stylized newborn model used in the OLINDA/EXM software. A comprehensive model of internal dosimetry is presented in this study for the newborn nuclear medicine patient based upon the UF hybrid computational phantom. Photon dose response functions, photon and electron SAFs, and tables of radionuclide S values for the newborn child--both male and female--are given in a series of four electronic annexes available at stacks.iop.org/pmb/57/1433/mmedia. These values can be applied to optimization studies of image quality and stochastic risk for this most vulnerable class of pediatric patients.

  19. Individual dose reconstruction among residents living in the vicinity of the Semipalatinsk nuclear test site using EPR spectroscopy of tooth enamel.

    PubMed

    Ivannikov, A I; Zhumadilov, Zh; Gusev, B I; Miyazawa, Ch; Jiao, L; Skvortsov, V G; Stepanenko, V F; Takada, J; Hoshi, M

    2002-08-01

    Individual accumulated doses were determined by EPR spectroscopy of tooth enamel for 26 adult persons residing in territories adjacent to the Semipalatinsk Nuclear Test Site (SNTS). The absorbed dose values due to radiation from nuclear tests were obtained after subtracting the contribution of natural background radiation from the total accumulated dose. The determined dose values ranged up to 250 mGy, except for one person from Semipalatinsk city with a measured dose of 2.8 +/- 0.4 Gy. Increased dose values were determined for the individuals whose teeth were formed before 1962, the end of the atmospheric nuclear tests. These values were found to be significantly larger than those obtained for a group of younger residents of heavily exposed territories and the residents of territories not exposed to radioactive fallout. These increased dose values are consistent with those based on officially registered data for the Northeastern part of Kazakstan adjacent to SNTS, which was exposed to high levels of radioactive fallout from nuclear tests in period 1949-1962.

  20. Dose Calculations for [131I] Meta-Iodobenzylguanidine-Induced Bystander Effects

    PubMed Central

    Gow, M. D.; Seymour, C. B.; Boyd, M.; Mairs, R. J.; Prestiwch, W. V.; Mothersill, C. E.

    2014-01-01

    Targeted radiotherapy is a potentially useful treatment for some cancers and may be potentiated by bystander effects. However, without estimation of absorbed dose, it is difficult to compare the effects with conventional external radiation treatment. Methods: Using the Vynckier – Wambersie dose point kernel, a model for dose rate evaluation was created allowing for calculation of absorbed dose values to two cell lines transfected with the noradrenaline transporter (NAT) gene and treated with [131I]MIBG. Results: The mean doses required to decrease surviving fractions of UVW/NAT and EJ138/NAT cells, which received medium from [131I]MIBG-treated cells, to 25 – 30% were 1.6 and 1.7 Gy respectively. The maximum mean dose rates achieved during [131I]MIBG treatment were 0.09 – 0.75 Gy/h for UVW/NAT and 0.07 – 0.78 Gy/h for EJ138/NAT. These were significantly lower than the external beam gamma radiation dose rate of 15 Gy/h. In the case of control lines which were incapable of [131I]MIBG uptake the mean absorbed doses following radiopharmaceutical were 0.03 – 0.23 Gy for UVW and 0.03 – 0.32 Gy for EJ138. Conclusion: [131I]MIBG treatment for ICCM production elicited a bystander dose-response profile similar to that generated by external beam gamma irradiation but with significantly greater cell death. PMID:24659931

  1. Infrared spectroscopy of radiation-chemical transformation of n-hexane on a beryllium surface

    NASA Astrophysics Data System (ADS)

    Gadzhieva, N. N.

    2017-07-01

    The radiation-chemical decomposition of n-hexane in a Be- n-hexane system under the effect of γ-irradiation at room temperature is studied by infrared reflection-absorption spectroscopy. In the absorbed dose range 5 kGy ≤ Vγ ≤ 50 kGy, intermediate surface products of radiation-heterogeneous decomposition of n-hexane (beryllium alkyls, π-olefin complexes, and beryllium hydrides) are detected. It is shown that complete radiolysis occurs at Vγ = 30 kGy; below this dose, decomposition of n-hexane occurs only partially, while higher doses lead to steady-state saturation. The radiation-chemical yield of the final decomposition product—molecular hydrogen—is determined to be G ads(H2) = 24.8 molecules/100 eV. A possible mechanism of this process is discussed.

  2. Pediatric personalized CT-dosimetry Monte Carlo simulations, using computational phantoms

    NASA Astrophysics Data System (ADS)

    Papadimitroulas, P.; Kagadis, G. C.; Ploussi, A.; Kordolaimi, S.; Papamichail, D.; Karavasilis, E.; Syrgiamiotis, V.; Loudos, G.

    2015-09-01

    The last 40 years Monte Carlo (MC) simulations serve as a “gold standard” tool for a wide range of applications in the field of medical physics and tend to be essential in daily clinical practice. Regarding diagnostic imaging applications, such as computed tomography (CT), the assessment of deposited energy is of high interest, so as to better analyze the risks and the benefits of the procedure. The last few years a big effort is done towards personalized dosimetry, especially in pediatric applications. In the present study the GATE toolkit was used and computational pediatric phantoms have been modeled for the assessment of CT examinations dosimetry. The pediatric models used come from the XCAT and IT'IS series. The X-ray spectrum of a Brightspeed CT scanner was simulated and validated with experimental data. Specifically, a DCT-10 ionization chamber was irradiated twice using 120 kVp with 100 mAs and 200 mAs, for 1 sec in 1 central axial slice (thickness = 10mm). The absorbed dose was measured in air resulting in differences lower than 4% between the experimental and simulated data. The simulations were acquired using ˜1010 number of primaries in order to achieve low statistical uncertainties. Dose maps were also saved for quantification of the absorbed dose in several children critical organs during CT acquisition.

  3. SU-E-T-638: Evaluation and Comparison of Landauer Microstar (OSLD) Readers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souri, S; Ahmed, Y; Cao, Y

    2014-06-15

    Purpose: To evaluate and compare characteristic performance of a new Landauer nanodot Reader with the previous model. Methods: In order to calibrate and test the reader, a set of nanodots were irradiated using a Varian Truebeam Linac. Solid water slabs and bolus were used in the process of irradiation. Calibration sets of nanodots were irradiated for radiation dose ranges: 0 to 10 and 20 to 1000 cGy, using 6MV photons. Additionally, three sets of nanodots were each irradiated using 6MV, 10MV and 15MV beams. For each beam energy, and selected dose in the range of 3 to 1000 cGy, amore » pair of nanodots was irradiated and three readings were obtained with both readers. Results: The analysis shows that for 3 photon beam energies and selected ranges of dose, the calculated absorbed dose agrees well with the expected value. The results illustrate that the new Microstar II reader is a highly consistent system and that the repeated readings provide results with a reasonably small standard deviation. For all practical purposes, the response of system is linear for all radiation beam energies. Conclusion: The Microstar II nanodot reader is consistent, accurate, and reliable. The new hardware design and corresponding software contain several advantages over the previous model. The automatic repeat reading mechanism, that helps improve reproducibility and reduce processing time, and the smaller unit size that renders ease of transport, are two of such features. Present study shows that for high dose ranges a polynomial calibration equation provides more consistent results. A 3rd order polynomial calibration curve was used to analyze the readings of dosimeters exposed to high dose range radiation. It was observed that the results show less error compared to those calculated by using linear calibration curves, as provided by Landauer system software for all dose ranges.« less

  4. Jet Fuel Exposure and Neurological Health in Military Personnel

    DTIC Science & Technology

    2011-07-01

    and dermal samples E Absorbed Dose measure: Exhaled breath, urine , blood F Lifestyle factors (smoking), use of protective equipment (gloves...toluene, ethylbenzene, xylene, and naphthalene. To assess personal absorbed dose levels to JP8 components, exhaled breath and urine samples were...the following primary analytes of interest were measured: benzene, toluene, ethylbenzene, xylene, and naphthalene. Pre- and post- shift urine samples

  5. Analysis of localised dose distribution in human body by Monte Carlo code system for photon irradiation.

    PubMed

    Ohnishi, S; Odano, N; Nariyama, N; Saito, K

    2004-01-01

    In usual personal dosimetry, whole body irradiation is assumed. However, the opportunity of partial irradiation is increasing and the tendencies of protection quantities caused under those irradiation conditions are different. The code system has been developed and effective dose and organ absorbed doses have been calculated in the case of horizontal narrow photon beam irradiated from various directions at three representative body sections, 40, 50 and 60 cm originating from the top of the head. This work covers 24 beam directions, each 15 degrees angle ranging from 0 degrees to 345 degrees, three energy levels, 45 keV, 90 keV and 1.25 MeV, and three beam diameters of 1, 2 and 4 cm. These results show that the beam injected from diagonally front or other specific direction causes peak dose in the case of partial irradiation.

  6. Radiation exposures during space flight and their measurement.

    PubMed

    Benton, E V; Henke, R P

    1983-01-01

    The paper reviews radiation exposures recorded during space flights of the US and USSR. Most of the data are from manned missions and include discussion of absorbed dose and dose rates as a function of parameters such as altitude, inclination, spacecraft type and shielding. Preliminary data exist on the neutron and HZE-particle component, as well as the LET spectra. For low Earth-orbit missions, the dose encountered is strongly altitude-dependent, with a weaker dependence upon inclination. The doses range from about 6 millirad per day for the Space Transportation System No. 3 flight to about 90 mrad per day for Skylab. The effective quality factor (QF) for the near-Earth orbits and free space has been estimated to be about 1.5 and about 5.5 respectively. Complete shielding from the galactic cosmic rays does not appear practical because of spacecraft weight limitations.

  7. Preliminary investigation of PAGAT polymer gel radionuclide dosimetry of Tc-99m

    NASA Astrophysics Data System (ADS)

    Braun, Kelly; Bailey, Dale; Hill, Brendan; Baldock, Clive

    2009-05-01

    PAGAT polymer gel was investigated as a suitable dosimeter materials for measuring absorbed dose from the unsealed source radionuclide Tc-99m. Differing amounts of Tc-99m over the range of 25-5000 MBq were introduced into a normoxic polymer gel mixture (PAGAT) in sealed nitrogen-filled P6 glass vials. After irradiation the gels were evaluated using MRI more than 48 hours after preparation to allow for radioactive decay. The dose delivered to the vial was also calculated empirically. R2 versus total activity curves were obtained over a number of experiments and these were used to evaluate the relationship between the amount of gel polymerization and the dose deposited by the radionuclide. A linear response up to 1000 MBq (corresponding to 20Gy) was displayed and was still behaving monotonically at 5000 MBq. Polymer gels offer the potential to measure radiation dose three-dimensionally using MRI.

  8. Microdosimetric intercomparison of BNCT beams at BNL and MIT.

    PubMed

    Burmeister, Jay; Riley, Kent; Coderre, Jeffrey A; Harling, Otto K; Ma, Ruimei; Wielopolski, Lucian; Kota, Chandrasekhar; Maughan, Richard L

    2003-08-01

    Microdosimetric measurements have been performed at the clinical beam intensities in two epithermal neutron beams, the Brookhaven Medical Research Reactor and the M67 beam at the Massachusetts Institute of Technology Research Reactor, which have been used to treat patients with Boron Neutron Capture Therapy (BNCT). These measurements offer an independent assessment of the dosimetry used at these two facilities, as well as provide information about the radiation quality not obtainable from conventional macrodosimetric techniques. Moreover, they provide a direct measurement of the absorbed dose resulting from the BNC reaction. BNC absorbed doses measured within this study are approximately 15% lower than those estimated using foil activation at both MIT and BNL. Finally, an intercomparison of the characteristics and radiation quality of these two clinical beams is presented. The techniques described here allow an accurate quantitative comparison of the physical absorbed dose as well as a measure of the biological effectiveness of the absorbed dose delivered by different epithermal beams. No statistically significant differences were observed in the predicted RBEs of these two beams. The methodology presented here can help to facilitate the effective sharing of clinical results in an effort to demonstrate the clinical utility of BNCT.

  9. Germanium-doped optical fiber for real-time radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Mizanur Rahman, A. K. M.; Zubair, H. T.; Begum, Mahfuza; Abdul-Rashid, H. A.; Yusoff, Z.; Ung, N. M.; Mat-Sharif, K. A.; Wan Abdullah, W. S.; Amouzad Mahdiraji, Ghafour; Amin, Y. M.; Maah, M. J.; Bradley, D. A.

    2015-11-01

    Over the past three decades growing demand for individualized in vivo dosimetry and subsequent dose verification has led to the pursuit of newer, novel and economically feasible materials for dosimeters. These materials are to facilitate features such as real-time sensing and fast readouts. In this paper, purposely composed SiO2:Ge optical fiber is presented as a suitable candidate for dosimetry. The optical fiber is meant to take advantage of the RL/OSL technique, providing both online remote monitoring of dose rate, and fast readouts for absorbed dose. A laboratory-assembled OSL reader has been used to acquire the RL/OSL response to LINAC irradiations (6 MV photons). The notable RL characteristics observed include constant level of luminescence for the same dose rate (providing better consistency compared to TLD-500), and linearity of response in the radiotherapy range (1 Gy/min to 6 Gy/min). The OSL curve was found to conform to an exponential decay characteristic (illumination with low LED source). The Ge doping resulted in an effective atomic number, Zeff, of 13.5 (within the bone equivalent range). The SiO2:Ge optical fiber sensor, with efficient coupling, can be a viable solution for in vivo dosimetry, besides a broad range of applications.

  10. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations

    NASA Astrophysics Data System (ADS)

    Nogueira, P.; Zankl, M.; Schlattl, H.; Vaz, P.

    2011-11-01

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation—the germinative cells—absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  11. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations.

    PubMed

    Nogueira, P; Zankl, M; Schlattl, H; Vaz, P

    2011-11-07

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation-the germinative cells-absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  12. Optimization of reaction parameters of radiation induced grafting of 1-vinylimidazole onto poly(ethylene-co-tetraflouroethene) using response surface method

    NASA Astrophysics Data System (ADS)

    Nasef, Mohamed Mahmoud; Aly, Amgad Ahmed; Saidi, Hamdani; Ahmad, Arshad

    2011-11-01

    Radiation induced grafting of 1-vinylimidazole (1-VIm) onto poly(ethylene-co-tetraflouroethene) (ETFE) was investigated. The grafting parameters such as absorbed dose, monomer concentration, grafting time and temperature were optimized using response surface method (RSM). The Box-Behnken module available in the design expert software was used to investigate the effect of reaction conditions (independent parameters) varied in four levels on the degree of grafting ( G%) (response parameter). The model yielded a polynomial equation that relates the linear, quadratic and interaction effects of the independent parameters to the response parameter. The analysis of variance (ANOVA) was used to evaluate the results of the model and detect the significant values for the independent parameters. The optimum parameters to achieve a maximum G% were found to be monomer concentration of 55 vol%, absorbed dose of 100 kGy, time in the range of 14-20 h and a temperature of 61 °C. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to investigate the properties of the obtained films and provide evidence for grafting.

  13. Dose distribution for dental cone beam CT and its implication for defining a dose index

    PubMed Central

    Pauwels, R; Theodorakou, C; Walker, A; Bosmans, H; Jacobs, R; Horner, K; Bogaerts, R

    2012-01-01

    Objectives To characterize the dose distribution for a range of cone beam CT (CBCT) units, investigating different field of view sizes, central and off-axis geometries, full or partial rotations of the X-ray tube and different clinically applied beam qualities. The implications of the dose distributions on the definition and practicality of a CBCT dose index were assessed. Methods Dose measurements on CBCT devices were performed by scanning cylindrical head-size water and polymethyl methacrylate phantoms, using thermoluminescent dosemeters, a small-volume ion chamber and radiochromic films. Results It was found that the dose distribution can be asymmetrical for dental CBCT exposures throughout a homogeneous phantom, owing to an asymmetrical positioning of the isocentre and/or partial rotation of the X-ray source. Furthermore, the scatter tail along the z-axis was found to have a distinct shape, generally resulting in a strong drop (90%) in absorbed dose outside the primary beam. Conclusions There is no optimal dose index available owing to the complicated exposure geometry of CBCT and the practical aspects of quality control measurements. Practical validation of different possible dose indices is needed, as well as the definition of conversion factors to patient dose. PMID:22752320

  14. 3D dosimetry estimation for selective internal radiation therapy (SIRT) using SPECT/CT images: a phantom study

    NASA Astrophysics Data System (ADS)

    Debebe, Senait A.; Franquiz, Juan; McGoron, Anthony J.

    2015-03-01

    Selective Internal Radiation Therapy (SIRT) is a common way to treat liver cancer that cannot be treated surgically. SIRT involves administration of Yttrium - 90 (90Y) microspheres via the hepatic artery after a diagnostic procedure using 99mTechnetium (Tc)-macroaggregated albumin (MAA) to detect extrahepatic shunting to the lung or the gastrointestinal tract. Accurate quantification of radionuclide administered to patients and radiation dose absorbed by different organs is of importance in SIRT. Accurate dosimetry for SIRT allows optimization of dose delivery to the target tumor and may allow for the ability to assess the efficacy of the treatment. In this study, we proposed a method that can efficiently estimate radiation absorbed dose from 90Y bremsstrahlung SPECT/CT images of liver and the surrounding organs. Bremsstrahlung radiation from 90Y was simulated using the Compton window of 99mTc (78keV at 57%). 99mTc images acquired at the photopeak energy window were used as a standard to examine the accuracy of dosimetry prediction by the simulated bremsstrahlung images. A Liqui-Phil abdominal phantom with liver, stomach and two tumor inserts was imaged using a Philips SPECT/CT scanner. The Dose Point Kernel convolution method was used to find the radiation absorbed dose at a voxel level for a three dimensional dose distribution. This method will allow for a complete estimate of the distribution of radiation absorbed dose by tumors, liver, stomach and other surrounding organs at the voxel level. The method provides a quantitative predictive method for SIRT treatment outcome and administered dose response for patients who undergo the treatment.

  15. Phase I study on the pharmacokinetics and tolerance of ZT-1, a prodrug of huperzine A, for the treatment of Alzheimer's disease

    PubMed Central

    Jia, Jing-ying; Zhao, Qian-hua; Liu, Yun; Gui, Yu-zhou; Liu, Gang-yi; Zhu, Da-yuan; Yu, Chen; Hong, Zhen

    2013-01-01

    Aim: Huperzine A isolated from the Chinese herb Huperzia serrata (Thunb) Trev is a novel reversible and selective AChE inhibitor. The aim of this study was to evaluate the pharmacokinetics and tolerance of single and multiple doses of ZT-1, a novel analogue of huperzine A, in healthy Chinese subjects. Methods: This was a double-blinded, placebo-controlled, randomized, single- and multiple-dose study. For the single-dose study, 9 subjects were randomly divided into 3 groups receiving ZT-1 (0.5, 0.75 or 1 mg, po) according to a Three-way Latin Square Design. For the multiple-dose study, 9 subjects receiving ZT-1 (0.75 mg/d, po) for 8 consecutive days. In the tolerance study, 40 subjects were randomly divided into 5 groups receiving a single dose of ZT-1 (0.5, 0.75, 1, 1.25 or 1.5 mg, po). Plasma and urine concentrations of ZT-1 and Hup A were determined using LC-MS/MS. Pharmacokinetic parameters, including Cmax, AUC0–72 h and AUC0–∞ were calculated. Tolerance assessments were conducted throughout the study. Results: ZT-1 was rapidly absorbed and converted into huperzine A, thus the plasma and urine concentrations of ZT-1 were below the limit of quantification (<0.05 ng/mL). After single-dose administration of ZT-1, the mean tmax of huperzine A was 0.76–0.82 h; the AUC0–72 h and Cmax of huperzine A showed approximately dose-proportional increase over the dose range of 0.5–1 mg. After the multiple-dose administration of ZT-1, a steady-state level of huperzine A was achieved within 2 d. No serious adverse events were observed. Conclusion: ZT-1 is a pro-drug that is rapidly absorbed and converted into huperzine A, and ZT-1 is well tolerated in healthy Chinese volunteers. PMID:23624756

  16. PET/CT-Based Dosimetry in 90Y-Microsphere Selective Internal Radiation Therapy: Single Cohort Comparison With Pretreatment Planning on (99m)Tc-MAA Imaging and Correlation With Treatment Efficacy.

    PubMed

    Song, Yoo Sung; Paeng, Jin Chul; Kim, Hyo-Cheol; Chung, Jin Wook; Cheon, Gi Jeong; Chung, June-Key; Lee, Dong Soo; Kang, Keon Wook

    2015-06-01

    ⁹⁰Y PET/CT can be acquired after ⁹⁰Y-microsphere selective radiation internal therapy (SIRT) to describe radioactivity distribution. We performed dosimetry using ⁹⁰Y-microsphere PET/CT data to evaluate treatment efficacy and appropriateness of activity planning from (99m)Tc-MAA scan and SPECT/CT. Twenty-three patients with liver malignancy were included in the study. (99m)Tc-MAA was injected during planning angiography and whole body (99m)Tc-MAA scan and liver SPECT/CT were acquired. After SIRT using ⁹⁰Y-resin microsphere, ⁹⁰Y-microsphere PET/CT was acquired. A partition model (PM) using 4 compartments (tumor, intarget normal liver, out-target normal liver, and lung) was adopted, and absorbed dose to each compartment was calculated based on measurements from (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT, respectively, to be compared with each other. Progression-free survival (PFS) was evaluated in terms of tumor absorbed doses calculated by (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT results. Lung shunt fraction was overestimated on (99m)Tc-MAA scan compared with ⁹⁰Y-microsphere PET/CT (0.060 ± 0.037 vs. 0.018 ± 0.026, P < 0.01). Tumor absorbed dose exhibited a close correlation between the results from (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT (r = 0.64, P < 0.01), although the result from (99m)Tc-MAA SPECT/CT was significantly lower than that from ⁹⁰Y-microsphere PET/CT (135.4 ± 64.2 Gy vs. 185.0 ± 87.8 Gy, P < 0.01). Absorbed dose to in-target normal liver was overestimated on (99m)Tc-MAA SPECT/CT compared with PET/CT (62.6 ± 38.2 Gy vs. 45.2 ± 32.0 Gy, P = 0.02). Absorbed dose to out-target normal liver did not differ between (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT (P = 0.49). Patients with tumor absorbed dose >200 Gy on ⁹⁰Y-microsphere PET/CT had longer PFS than those with tumor absorbed dose ≤200 Gy (286 ± 56 days vs. 92 ± 20 days, P = 0.046). Tumor absorbed dose calculated by (99m)Tc-MAA SPECT/CT was not a significant predictor for PFS. Activity planning based on (99m)Tc-MAA scan and SPECT/CT can be effectively used as a conservative method. Post-SIRT dosimetry based on ⁹⁰Y-microsphere PET/CT is an effective method to predict treatment efficacy.

  17. PET/CT-Based Dosimetry in 90Y-Microsphere Selective Internal Radiation Therapy: Single Cohort Comparison With Pretreatment Planning on 99mTc-MAA Imaging and Correlation With Treatment Efficacy

    PubMed Central

    Song, Yoo Sung; Paeng, Jin Chul; Kim, Hyo-Cheol; Chung, Jin Wook; Cheon, Gi Jeong; Chung, June-Key; Lee, Dong Soo; Kang, Keon Wook

    2015-01-01

    Abstract 90Y PET/CT can be acquired after 90Y-microsphere selective radiation internal therapy (SIRT) to describe radioactivity distribution. We performed dosimetry using 90Y-microsphere PET/CT data to evaluate treatment efficacy and appropriateness of activity planning from 99mTc-MAA scan and SPECT/CT. Twenty-three patients with liver malignancy were included in the study. 99mTc-MAA was injected during planning angiography and whole body 99mTc-MAA scan and liver SPECT/CT were acquired. After SIRT using 90Y-resin microsphere, 90Y-microsphere PET/CT was acquired. A partition model (PM) using 4 compartments (tumor, intarget normal liver, out-target normal liver, and lung) was adopted, and absorbed dose to each compartment was calculated based on measurements from 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT, respectively, to be compared with each other. Progression-free survival (PFS) was evaluated in terms of tumor absorbed doses calculated by 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT results. Lung shunt fraction was overestimated on 99mTc-MAA scan compared with 90Y-microsphere PET/CT (0.060 ± 0.037 vs. 0.018 ± 0.026, P < 0.01). Tumor absorbed dose exhibited a close correlation between the results from 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT (r = 0.64, P < 0.01), although the result from 99mTc-MAA SPECT/CT was significantly lower than that from 90Y-microsphere PET/CT (135.4 ± 64.2 Gy vs. 185.0 ± 87.8 Gy, P < 0.01). Absorbed dose to in-target normal liver was overestimated on 99mTc-MAA SPECT/CT compared with PET/CT (62.6 ± 38.2 Gy vs. 45.2 ± 32.0 Gy, P = 0.02). Absorbed dose to out-target normal liver did not differ between 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT (P = 0.49). Patients with tumor absorbed dose >200 Gy on 90Y-microsphere PET/CT had longer PFS than those with tumor absorbed dose ≤200 Gy (286 ± 56 days vs. 92 ± 20 days, P = 0.046). Tumor absorbed dose calculated by 99mTc-MAA SPECT/CT was not a significant predictor for PFS. Activity planning based on 99mTc-MAA scan and SPECT/CT can be effectively used as a conservative method. Post-SIRT dosimetry based on 90Y-microsphere PET/CT is an effective method to predict treatment efficacy. PMID:26061323

  18. [Absorbed dose and the effective dose of panoramic temporo mandibular joint radiography].

    PubMed

    Matsuo, Ayae; Okano, Tsuneichi; Gotoh, Kenichi; Yokoi, Midori; Hirukawa, Akiko; Okumura, Shinji; Koyama, Syuji

    2011-01-01

    This study measured the radiation doses absorbed by the patient during Panoramic temporo mandibular joint radiography (Panoramic TMJ), Schüllers method and Orbitoramus projection. The dose of the frontal view in Panoramic TMJ was compared to that with Orbitoramus projection and the lateral view in Panoramic TMJ was compared to that with Schüllers method. We measured the doses received by various organs and calculated the effective doses using the guidelines of the International Commission on Radiological Protection in Publication 103. Organ absorbed doses were measured using an anthropomorphic phantom, loaded with thermoluminescent dosimeters (TLD), located at 160 sensitive sites. The dose shows the sum value of irradiation on both the right and left sides. In addition, we set a few different exposure field sizes. The effective dose for a frontal view in Panoramic TMJ was 11 µSv, and that for the lateral view was 14 µSv. The lens of the Orbitoramus projection was 40 times higher than the frontal view in Panoramic TMJ. Although the effective dose of the lateral view in Panoramic TMJ was 3 times higher than that of the small exposure field (10×10 cm on film) in Schüller's method, it was the same as that of a mid-sized exposure field. When the exposure field in the inferior 1/3 was reduced during panoramic TMJ, the effective doses could be decreased. Therefore we recommend that the size of the exposure field in Panoramic TMJ be decreased.

  19. MO-FG-CAMPUS-IeP1-05: New Ionization Chamber Dosimetry of Absorbed Dose to Water in Diagnostic KV X-Ray Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araki, F; Ohno, T

    Purpose: To develop new ionization chamber dosimetry of absorbed dose to water in diagnostic kV x-ray beams, by using a beam quality conversion factor, kQ, for Co-60 to kV x-ray and an ionization conversion factor for a water-substitute plastic phantom. Methods: kQ was calculated for aluminum half value-layers (Al-HVLs) of 1.5 mm to 8 mm which were generated by kV x-ray beams of 50 to 120 kVp. Twenty-two energy spectra for ten effective energies (Eeff) were calculated by a SpecCalc program. Depth doses in water were calculated at 5 × 5 to 30 × 30 cm{sup 2} fields. Output factorsmore » were also obtained from the dose ratio for a 10 × 10 cm{sup 2} field. kQ was obtained for a PTW30013 Former ion chamber. In addition, an ionization conversion factor of the PWDT phantom to water was calculated. All calculations were performed with EGSnrc/cavity code and egs-chamber codes. Results: The x-ray beam energies for 1.5 mm to 8 mm Al-HVLs ranged in Eeff of 25.7 to 54.3 keV. kQ for 1.5 mm to 8 mm Al-HVLs were 0.831 to 0.897, at 1 and 2 cm depths for a 10 × 10 cm2 field. Similarly, output factors for 5 × 5 to 30 × 30 cm{sup 2} fields were 0.937 to 1.033 for 25.7 keV and 0.857 to 1.168 for 54.3 keV. The depth dose in a PWDT phantom decreased up to 5% compared to that in water at depth of ten percent of maximum dose for 1.5 mm Al-HVL. The ionization ratios of water/PWDT phantoms for the PTW30013 chamber were 1.012 to 1.007 for 1.5 mm to 8 mm Al-HVLs at 1 cm depth. Conclusion: It became possible to directly measure the absorbed dose to water with the ionization chamber in diagnostic kV x-ray beams, by using kQ and the PWDT phantom.« less

  20. Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy

    PubMed Central

    Butterworth, K T; Coulter, J A; Jain, S; Forker, J; McMahon, S J; Schettino, G; Prise, K M; Currell, F J; Hirst, D G

    2010-01-01

    High atomic number (Z) materials such as gold preferentially absorb kilovoltage x-rays compared to soft tissue and may be used to achieve local dose enhancement in tumours during treatment with ionizing radiation. Gold nanoparticles have been demonstrated as radiation dose enhancing agents in vivo and in vitro. In the present study, we used multiple endpoints to characterize the cellular cytotoxic response of a range of cell lines to 1.9 nm gold particles and measured dose modifying effects following transient exposure at low concentrations. Gold nanoparticles caused significant levels of cell type specific cytotoxicity, apoptosis and increased oxidative stress. When used as dose modifying agents, dose enhancement factors varied between the cell lines investigated with the highest enhancement being 1.9 in AGO-1522B cells at a nanoparticle concentration of 100 μg ml−1. This study shows exposure to 1.9 nm gold particles to induce a range of cell line specific responses including decreased clonogenic survival, increased apoptosis and induction of DNA damage which may be mediated through the production of reactive oxygen species. This is the first study involving 1.9 nm nanometre sized particles to report multiple cellular responses which impact on the radiation dose modifying effect. The findings highlight the need for extensive characterization of responses to gold nanoparticles when assessing dose enhancing potential in cancer therapy. PMID:20601762

  1. Effective dose equivalent on the ninth Shuttle--Mir mission (STS-91)

    NASA Technical Reports Server (NTRS)

    Yasuda, H.; Badhwar, G. D.; Komiyama, T.; Fujitaka, K.

    2000-01-01

    Organ and tissue doses and effective dose equivalent were measured using a life-size human phantom on the ninth Shuttle-Mir Mission (STS-91, June 1998), a 9.8-day spaceflight at low-Earth orbit (about 400 km in altitude and 51.65 degrees in inclination). The doses were measured at 59 positions using a combination of thermoluminescent dosimeters of Mg(2)SiO(4):Tb (TDMS) and plastic nuclear track detectors (PNTD). In correcting the change in efficiency of the TDMS, it was assumed that reduction of efficiency is attributed predominantly to HZE particles with energy greater than 100 MeV nucleon(-1). A conservative calibration curve was chosen for determining LET from the PNTD track-formation sensitivities. The organ and tissue absorbed doses during the mission ranged from 1.7 to 2.7 mGy and varied by a factor of 1.6. The dose equivalent ranged from 3.4 to 5.2 mSv and varied by a factor of 1.5 on the basis of the dependence of Q on LET in the 1990 recommendations of the ICRP. The effective quality factor (Q(e)) varied from 1.7 to 2.4. The dose equivalents for several radiation-sensitive organs, such as the stomach, lung, gonad and breast, were not significantly different from the skin dose equivalent (H(skin)). The effective dose equivalent was evaluated as 4.1 mSv, which was about 90% of the H(skin).

  2. Evaluation of inhaled and cutaneous doses of imidacloprid during stapling ornamental plants in tunnels or greenhouses.

    PubMed

    Aprea, Cristina; Lunghini, Liana; Banchi, Bruno; Peruzzi, Antonio; Centi, Letizia; Coppi, Luana; Bogi, Mirella; Marianelli, Enrico; Fantacci, Mariella; Catalano, Pietro; Benvenuti, Alessandra; Miligi, Lucia; Sciarra, Gianfranco

    2009-09-01

    The aim of this research was to assess dermal and respiratory exposure of workers to imidacloprid during manual operations with ornamental plants previously treated in greenhouses or tunnels. A total of 10 female workers, 5 in greenhouses and 5 in tunnels, were monitored for 3 or 5 consecutive days. Actual skin contamination, excluding hands, was evaluated using nine filter paper pads placed directly on the skin. To evaluate the efficacy of protective clothing in reducing occupational exposure we also placed four pads on top of the outer clothing. Hand contamination was evaluated by washing with 95% ethanol. Respiratory exposure was evaluated by personal air sampling. Respiratory dose was calculated on the basis of a lung ventilation of 15 l/min. Absorbed doses were calculated assuming a skin penetration of 10% and a respiratory retention of 100%. Dislodgeable foliar residues (DFRs) were determined during the days of re-entry in order to determine the dermal transfer factor. From the dependence of dermal exposure of hands from DFRs, a mean transfer factor was estimated to be 36.4 cm(2)/h. Imidacloprid was determined by liquid chromatography with selective mass detection and electrospray interface in all matrices analysed. Respiratory dose was 4.1+/-4.0 (0.1-14.3)% and 3.0+/-2.0 (0.6-6.9)% (mean+/-SD (range)) of the total real dose during work in tunnels and greenhouses, respectively. The estimated absorbed doses, 0.29+/-0.45 microg/kg (0.06-2.25 microg/kg) body weight and 0.32+/-0.18 microg/kg (0.07-0.66 microg/kg) body weight (mean+/-SD (range)) in tunnels and in greenhouses, respectively, were less than the acceptable operator exposure level of 0.15 mg/kg body weight and than the acceptable daily intake of 0.05 mg/kg body weight. The hands and exposed skin of all workers were found to be contaminated, indicating that greater precautions, such as daily changing of gloves and clothing, are necessary to reduce skin exposure.

  3. Results of EPR dosimetry for population in the vicinity of the most contaminating radioactive fallout trace after the first nuclear test in the Semipalatinsk test site.

    PubMed

    Ivannikov, Alexander; Zhumadilov, Kassym; Tieliewuhan, Eldana; Jiao, Ling; Zharlyganova, Dinara; Apsalikov, Kazbek N; Berekenova, Gulnara; Zhumadilov, Zhaxybay; Toyoda, Shin; Miyazawa, Chuzou; Skvortsov, Valeriy; Stepanenko, Valeriy; Endo, Satoru; Tanaka, Kenichi; Hoshi, Masaharu

    2006-02-01

    The method of electron paramagnetic resonance (EPR) spectroscopy for tooth enamel is applied to individual radiation dose determination to residents of two villages (Dolon and Mostik) in the vicinity of the Semipalatinsk nuclear test site in Kazakhstan. These villages are located near the central axis of the radioactive fallout trace of the most contaminating surface nuclear test conducted in 1949. It is found that excess doses obtained by subtraction of natural background dose from dose absorbed in enamel range up to 440 mGy to residents of Dolon, whose enamel was formed before 1949, and do not exceed 120 mGy to younger residents. To residents of Mostik, excess doses do not exceed 100 mGy regardless of age except for one resident with an extremely high dose of 1.25 Gy. These results are in agreement with the pattern of radioactive contamination of the territory after the nuclear test of 1949 except one case of extremely high dose, which should be additionally investigated.

  4. The development of fetal dosimetry and its application to A-bomb survivors exposed in utero.

    PubMed

    Chen, Jing

    2012-03-01

    The cohort of the atomic bomb survivors of Hiroshima and Nagasaki comprises the major basis for investigations of health effects induced by ionising radiation in humans. To study the health effects associated with radiation exposure before birth, fetal dosimetry is needed if significant differences exist between the fetal absorbed dose and the mother's uterine dose. Combining total neutron and gamma ray free-in-air fluences at 1 m above ground with fluence-to-absorbed dose conversion coefficients, fetal doses were calculated for various exposure orientations at the ground distance of 1500 m from the hypocentres in Hiroshima and Nagasaki. The results showed that the mother's uterine dose can serve as a good surrogate for the dose of the embryo and fetus in the first trimester. However, significant differences exist between doses of the fetus of different ages. If the mother's uterine dose were used as a surrogate, doses to the fetus in the last two trimesters could be overestimated by more than 20 % for exposure orientations facing towards and away from the hypocentre while significantly underestimated for lateral positions relative to the hypocentre. In newer fetal models, the brain is modelled for all fetal ages. Brain doses to the 3-month fetus are generally higher than those to an embryo and fetus of other ages. In most cases, brain absorbed doses differ significantly from the doses to the entire fetal body. In order to accurately assess radiation effects to the fetal brain, it is necessary to determine brain doses separately.

  5. Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norris, Edward T.; Liu, Xin, E-mail: xinliu@mst.edu; Hsieh, Jiang

    Purpose: Organ dose estimation for a patient undergoing computed tomography (CT) scanning is very important. Although Monte Carlo methods are considered gold-standard in patient dose estimation, the computation time required is formidable for routine clinical calculations. Here, the authors instigate a deterministic method for estimating an absorbed dose more efficiently. Methods: Compared with current Monte Carlo methods, a more efficient approach to estimating the absorbed dose is to solve the linear Boltzmann equation numerically. In this study, an axial CT scan was modeled with a software package, Denovo, which solved the linear Boltzmann equation using the discrete ordinates method. Themore » CT scanning configuration included 16 x-ray source positions, beam collimators, flat filters, and bowtie filters. The phantom was the standard 32 cm CT dose index (CTDI) phantom. Four different Denovo simulations were performed with different simulation parameters, including the number of quadrature sets and the order of Legendre polynomial expansions. A Monte Carlo simulation was also performed for benchmarking the Denovo simulations. A quantitative comparison was made of the simulation results obtained by the Denovo and the Monte Carlo methods. Results: The difference in the simulation results of the discrete ordinates method and those of the Monte Carlo methods was found to be small, with a root-mean-square difference of around 2.4%. It was found that the discrete ordinates method, with a higher order of Legendre polynomial expansions, underestimated the absorbed dose near the center of the phantom (i.e., low dose region). Simulations of the quadrature set 8 and the first order of the Legendre polynomial expansions proved to be the most efficient computation method in the authors’ study. The single-thread computation time of the deterministic simulation of the quadrature set 8 and the first order of the Legendre polynomial expansions was 21 min on a personal computer. Conclusions: The simulation results showed that the deterministic method can be effectively used to estimate the absorbed dose in a CTDI phantom. The accuracy of the discrete ordinates method was close to that of a Monte Carlo simulation, and the primary benefit of the discrete ordinates method lies in its rapid computation speed. It is expected that further optimization of this method in routine clinical CT dose estimation will improve its accuracy and speed.« less

  6. Dosimetric and microdosimetric analyses for blood exposed to reactor-derived thermal neutrons.

    PubMed

    Ali, F; Atanackovic, J; Boyer, C; Festarini, A; Kildea, J; Paterson, L C; Rogge, R; Stuart, M; Richardson, R B

    2018-06-06

    Thermal neutrons are found in reactor, radiotherapy, aircraft, and space environments. The purpose of this study was to characterise the dosimetry and microdosimetry of thermal neutron exposures, using three simulation codes, as a precursor to quantitative radiobiological studies using blood samples. An irradiation line was designed employing a pyrolytic graphite crystal or-alternatively-a super mirror to expose blood samples to thermal neutrons from the National Research Universal reactor to determine radiobiological parameters. The crystal was used when assessing the relative biological effectiveness for dicentric chromosome aberrations, and other biomarkers, in lymphocytes over a low absorbed dose range of 1.2-14 mGy. Higher exposures using a super mirror will allow the additional quantification of mitochondrial responses. The physical size of the thermal neutron fields and their respective wavelength distribution was determined using the McStas Monte Carlo code. Spinning the blood samples produced a spatially uniform absorbed dose as determined from Monte Carlo N-Particle version 6 simulations. The major part (71%) of the total absorbed dose to blood was determined to be from the 14 N(n,p) 14 C reaction and the remainder from the 1 H(n,γ) 2 H reaction. Previous radiobiological experiments at Canadian Nuclear Laboratories involving thermal neutron irradiation of blood yielded a relative biological effectiveness of 26 ± 7. Using the Particle and Heavy Ion Transport Code System, a similar value of ∼19 for the quality factor of thermal neutrons initiating the 14 N(n,p) 14 C reaction in soft tissue was determined by microdosimetric simulations. This calculated quality factor is of similar high value to the experimentally-derived relative biological effectiveness, and indicates the potential of thermal neutrons to induce deleterious health effects in superficial organs such as cataracts of the eye lens.

  7. Dosimetric properties of radiophotoluminescent glass detector in low-energy photon beams.

    PubMed

    Kadoya, Noriyuki; Shimomura, Kouhei; Kitou, Satoshi; Shiota, Yasuo; Fujita, Yukio; Dobashi, Suguru; Takeda, Ken; Jingu, Keiichi; Matsushita, Haruo; Namito, Yoshihito; Ban, Syuichi; Koyama, Syuji; Tabushi, Katsuyoshi

    2012-10-01

    A radiophotoluminescent glass rod dosimeter (RGD) has recently become commercially available. It is being increasingly used for dosimetry in radiotherapy to measure the absorbed dose including scattered low-energy photons on the body surface of a patient and for postal dosimetry audit. In this article, the dosimetric properties of the RGD, including energy dependence of the dose response, reproducibly, variation in data obtained by the RGD for each energy, and angular dependence in low-energy photons, are discussed. An RGD (GD-301, Asahi Techno Glass Corporation, Shizuoka, Japan) was irradiated with monochromatic low-energy photon beams generated by synchrotron radiation at Photon Factory, High Energy Accelerator Research Organization (KEK). The size of GD-301 was 1.5 mm in diameter and 8.5 mm in length and the active dose readout volume being 1 mm diameter and 0.6 mm depth located 0.7 mm from the end of the detector. The energy dependence of the dose response and reproducibility and variation were investigated for RGDs irradiated with a plastic holder and those irradiated without the plastic holder. Response of the RGD was obtained by not only conventional single field irradiation but also bilateral irradiation. Angular dependence of the RGD was measured in the range of 0°-90° for 13, 17, 40, and 80 keV photon beams by conventional single field irradiation. The dose responses had a peak at around 40 keV. For the energy range of less than 25 keV, all dose response curves steeply decreased in comparison with the ratio of mass energy absorption coefficient of the RGD to that of air. As for the reproducibility and variation in data obtained by the RGD, the coefficient of variance increased with decrease in photon energy. Furthermore, the variation for bilateral irradiation was less than that for single field irradiation. Regarding angular dependence of the RGD, for energies of 13 and 17 keV, the response decreased with increase in the irradiation angle, and the minimum values were 93.5% and 86%, respectively. Our results showed the dosimetric properties of the RGD, including the energy dependence of the dose response, reproducibly, variation, and angular dependence in low-energy photons and suggest that the accuracy of the absorbed dose in low-energy photons is affected by the readout method and the distribution of radiophotoluminescence centers in the RGD.

  8. SU-E-I-85: Absorbed Dose Estimation for a Commercially Available MicroCT Scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, A; Ahmad, S; Chen, Y

    2015-06-15

    Purpose: To quantify the simulated absorbed dose delivered for a typical scan from a commercially available microCT scanner in order to aid in the dose estimation. Methods: The simulations were conducted using the Geant4 Monte Carlo Toolkit (version 10) with the standard electromagnetic classes. The Quantum FX microCT scanner (PerkinElmer, Waltham, MA) was modeled incorporating the energy fluence and angular distributions of generated photons, spatial dimensions of nominal source-to-object and source-to-detector distances. The energy distribution was measured using a spectrometer (X-123CdTe, Amptek Inc., Bedford, USA) with a 300 angular spread from the source for the 90 kVp X-ray beams withmore » no additional filtration. The nominal distances from the source to object consisted of three setups: 154.0 mm, 104.0 mm, and 51.96 mm. Our simulations recorded the dose absorbed in a cylindrical phantom of PMMA with a fixed length of 2 cm and varying radii (10, 20, 30 and 40 mm) using 100 million incident photons. The averaged absorbed dose in the object was then quantified for all setups. An exposure measurement of 417 mR was taken using a Radcal 9095 system utilizing 10×9–180 ion chamber with the given technique of 90 kVp, 63 μA, and 12 s. The exposure rate was also simulated with same setup to calculate the conversion factor of the beam current and the number of incident photons. Results: For a typical cone-beam scan with non-filtered 90kVp, the dose coefficients (the absorbed dose per mAs) were 2.614, 2.549 and 2.467 μGy/mAs under source to object distance of 104 mm for the object diameters of 10 mm, 20 mm and 30 mm, respectively. Conclusion: A look-up table was developed where an investigator can estimate the delivered dose using this particular microCT given the scanning protocol (kVp and mAs) as well as the size of the scanned object.« less

  9. Gamma-radiation effects on luminescence properties of Eu3+ activated LaPO4 phosphor

    NASA Astrophysics Data System (ADS)

    Vujčić, Ivica; Gavrilović, Tamara; Sekulić, Milica; Mašić, Slobodan; Putić, Slaviša; Papan, Jelena; Dramićanin, Miroslav D.

    2018-05-01

    Eu3+ activated LaPO4 phosphors were prepared by a high-temperature solid-state method and irradiated to different high-doses gamma-radiation in the 0-4 MGy range. No effects of high-doses of high-energy radiation on phosphor's morphology and structure were observed, as documented by electron microscopy and X-ray diffraction measurements. On the other hand, photoluminescence measurements showed that emission properties of phosphor were affected by gamma-radiation; changes in radiative properties being prominent for absorbed radiation doses up to 250 kGy after which no additional changes are observed. Judd-Ofelt analysis of emission spectra is performed to thoroughly investigate radiative properties of phosphors. Analysis showed that radiative transition probability of Eu3+ emission decreases while non-radiative probability increases upon gamma-irradiation. Quantum efficiency of emission is decreased from about 46% to 35% when Eu3+ doped LaPO4 powders are exposed to gamma-radiation of 250 kGy dose, showing no additional decrease for higher gamma-radiation doses.

  10. Neutron dosimetry in organs of an adult human phantom using linacs with multileaf collimator in radiotherapy treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Ovalle, S. A.; Barquero, R.; Gomez-Ros, J. M.

    Purpose: To calculate absorbed doses due to neutrons in 87 organs/tissues for anthropomorphic phantoms, irradiated in position supine (head first into the gantry) with orientations anteroposterior (AP) and right-left (RLAT) with a 18 MV accelerator. Conversion factors from monitor units to {mu}Gy per neutron in organs, equivalent doses in organs/tissues, and effective doses, which permit to quantify stochastic risks, are estimated. Methods: MAX06 and FAX06 phantoms were modeled with MCNPX and irradiated with a 18 MV Varian Clinac 2100C/D accelerator whose geometry included a multileaf collimator. Two actual fields of a pelvic treatment were simulated using electron-photon-neutron coupled transport. Absorbedmore » doses due to neutrons were estimated from kerma. Equivalent doses were estimated using the radiation weighting factor corresponding to an average incident neutron energy 0.47 MeV. Statistical uncertainties associated to absorbed doses, as calculated by MCNPX, were also obtained. Results: Largest doses were absorbed in shallowest (with respect to the neutron pathway) organs. In {mu}GyMU{sup -1}, values of 2.66 (for penis) and 2.33 (for testes) were found in MAX06, and 1.68 (for breasts), 1.05 (for lenses of eyes), and 0.94 (for sublingual salivary glands) in FAX06, in AP orientation. In RLAT, the largest doses were found for bone tissues (leg) just at the entrance of the beam in the body (right side in our case). Values, in {mu}GyMU{sup -1}, of 1.09 in upper leg bone right spongiosa, for MAX06, and 0.63 in mandible spongiosa, for FAX06, were found. Except for gonads, liver, and stomach wall, equivalent doses found for FAX06 were, in both orientations, higher than for MAX06. Equivalent doses in AP are higher than in RLAT for all organs/tissues other than brain and liver. Effective doses of 12.6 and 4.1 {mu}SvMU{sup -1} were found for AP and RLAT, respectively. The organs/tissues with larger relative contributions to the effective dose were testes and breasts, in AP, and breasts and red marrow, in RLAT. Equivalent and effective doses obtained for MAX06/FAX06 were smaller (between 2 and 20 times) than those quoted for the mathematical phantoms ADAM/EVA in ICRP-74. Conclusions: The new calculations of conversion coefficients for neutron irradiation in AP and RLAT irradiation geometries show a reduction in the values of effective dose by factors 7 (AP) and 6 (RLAT) with respect to the old data obtained with mathematical phantoms. The existence of tissues or anatomical regions with maximum absorbed doses, such as penis, lens of eyes, fascia (part of connective tissue), etc., organs/tissues that classic mathematical phantoms did not include because they were not considered for the study of stochastic effects, has been revealed. Absorbed doses due to photons, obtained following the same simulation methodology, are larger than those due to neutrons, reaching values 100 times larger as the primary beam is approached. However, for organs far from the treated volume, absorbed photon doses can be up to three times smaller than neutron ones. Calculations using voxel phantoms permitted to know the organ dose conversion coefficients per MU due to secondary neutrons in the complete anatomy of a patient.« less

  11. Evaluation of lens absorbed dose with Cone Beam IGRT procedures.

    PubMed

    Palomo, R; Pujades, M C; Gimeno-Olmos, J; Carmona, V; Lliso, F; Candela-Juan, C; Vijande, J; Ballester, F; Perez-Calatayud, J

    2015-12-01

    The purpose of this work is to evaluate the absorbed dose to the eye lenses due to the cone beam computed tomography (CBCT) system used to accurately position the patient during head-and-neck image guided procedures. The on-board imaging (OBI) systems (v.1.5) of Clinac iX and TrueBeam (Varian) accelerators were used to evaluate the imparted dose to the eye lenses and some additional points of the head. All CBCT scans were acquired with the Standard-Dose Head protocol from Varian. Doses were measured using thermoluminescence dosimeters (TLDs) placed in an anthropomorphic phantom. TLDs were calibrated at the beam quality used to reduce their energy dependence. Average dose to the lens due to the OBI systems of the Clinac iX and the TrueBeam were 0.71  ±  0.07 mGy/CBCT and 0.70  ±  0.08 mGy/CBCT, respectively. The extra absorbed dose received by the eye lenses due to one CBCT acquisition with the studied protocol is far below the 500 mGy threshold established by ICRP for cataract formation (ICRP 2011 Statement on Tissue Reactions). However, the incremental effect of several CBCT acquisitions during the whole treatment should be taken into account.

  12. Natural radioactivity measurements in building materials used in Samsun, Turkey.

    PubMed

    Tufan, M Çagatay; Disci, Tugba

    2013-01-01

    In this study, radioactivity levels of 35 different samples of 11 commonly used building materials in Samsun were measured by using a gamma spectrometry system. The analysis carried out with the high purity Germanium gamma spectrometry system. Radioactivity concentrations of (226)Ra, (232)Th and (40)K range from 6 to 54 Bq kg(-1), 5 to 88 Bq kg(-1) and 6 to 1070 Bq kg(-1), respectively. From these results, radium equivalent activities, gamma indexes, absorbed dose rates and annual effective doses were calculated for all samples. Obtained results were compared with the available data, and it was concluded that all the investigated materials did not have radiological risk.

  13. Gamma radiation effects on silicon photonic waveguides.

    PubMed

    Grillanda, Stefano; Singh, Vivek; Raghunathan, Vivek; Morichetti, Francesco; Melloni, Andrea; Kimerling, Lionel; Agarwal, Anuradha M

    2016-07-01

    To support the use of integrated photonics in harsh environments, such as outer space, the hardness threshold to high-energy radiation must be established. Here, we investigate the effects of gamma (γ) rays, with energy in the MeV-range, on silicon photonic waveguides. By irradiation of high-quality factor amorphous silicon core resonators, we measure the impact of γ rays on the materials incorporated in our waveguide system, namely amorphous silicon, silicon dioxide, and polymer. While we show the robustness of amorphous silicon and silicon dioxide up to an absorbed dose of 15 Mrad, more than 100× higher than previous reports on crystalline silicon, polymer materials exhibit changes with doses as low as 1 Mrad.

  14. Extravasation of radiopharmaceuticals - a study of its frequency and estimation of absorbed doses in diagnosis and therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strand, S.E.; Grafstroem, G.; Kontestabile, E.

    In all injection procedures exists a risk for extravasation. For radiopharmaceuticals, the absorbed dose at the injection site can be high because of high activity concentrations. In radionuclide therapy (RNT), this can cause deterministic effects such as tissue necrosis. To estimate the risk for extravasation, we studied various injection techniques at two nuclear medicine clinics. The frequency and magnitude of extravasations was studied in randomly selected patients. Clinic A used peripheral venous cathethers (PVC), and clinic B used direct injections with injection needles (IN). At clinic A 203 patients were investigated and at clinic B 90. All of these patientsmore » were injected with either 99mTc-DTPA, 99mTc-MAA, 99mTc-MDP or pertechnetate. Both arms were imaged with a scintillation camera as soon as possible after the injection. In the case of an extravasation, the retention time at the injection site was determined with multiple imaging, together with volume estimates. The results for PVC injected patients showed one complete extravasation. We also found that in 8% of these patients the remaining activity at the injection site was up to 2%. For the IN injected patients there was none with complete extravasation. However, in 33% of these patients the remaining activity was up to 18%. The locally absorbed doses in these diagnostically investigated patients were estimated with the MIRD formalism to be up to 0.1 Sv (10 rem). Transforming these results to the RNT, the absorbed doses can be up to 1000 times higher. In addition to the calculated absorbed doses, radionuclides localizing to the cell nucleus could enhance the effects.« less

  15. Comparison of absorbed-dose-to-water units for Co-60 and high-energy x-rays between PTB and LNE-LNHB

    NASA Astrophysics Data System (ADS)

    Delaunay, F.; Kapsch, R.-P.; Gouriou, J.; Illemann, J.; Krauss, A.; Le Roy, M.; Ostrowsky, A.; Sommier, L.; Vermesse, D.

    2012-10-01

    During the Euramet project JRP7 ‘External Beam Cancer Therapy’, PTB and LNE-LNHB used primary standards to determine the absorbed dose to water under IMRT conditions (in small fields). PTB used a water calorimeter to determine the absorbed-dose-to-water references in 6 MV and 10 MV beams for field sizes of 10 cm × 10 cm and 3 cm × 3 cm while LNE-LNHB used graphite calorimeters in 6 MV and 12 MV beams for field sizes of 10 cm × 10 cm, 4 cm × 4 cm and 2 cm × 2 cm. The purpose of this study is to compare PTB and LNE-LNHB new absorbed-dose-to-water references. LNE-LNHB sent an Exradin A1SL ionization chamber traceable to its primary standard to the PTB for calibration in 60Co and in linac beams and PTB sent a PTW 31010 ionization chamber traceable to its primary standard to LNE-LNHB for calibration in 60Co and in linac beams. Calculated Sw,air will be used as beam quality specifier for the ionization chamber comparison at different field sizes. The standard uncertainties (k = 1) of PTB and LNE-LNHB calibration coefficients lie respectively between 0.25% (60Co) and 0.40% (linac) and between 0.29% and 0.46%. PTB and LNE-LNHB absorbed-dose-to-water references developed for this project, based respectively on water calorimetry and on graphite calorimetry, agree within 1.5 standard deviations for field size of 10 cm × 10 cm down to 2 cm × 2 cm and for beams of 6 MV to 10 MV.

  16. Assessment of the actual light dose in photodynamic therapy.

    PubMed

    Schaberle, Fabio A

    2018-06-09

    Photodynamic therapy (PDT) initiates with the absorption of light, which depends on the spectral overlap between the light source emission and the photosensitizer absorption, resulting in the number of photons absorbed, the key parameter starting PDT processes. Most papers report light doses regardless if the light is only partially absorbed or shifted relatively to the absorption peak, misleading the actual light dose value and not allowing quantitative comparisons between photosensitizers and light sources. In this manuscript a method is presented to calculate the actual light dose delivered by any light source for a given photosensitizer. This method allows comparing light doses delivered for any combination of light source (broad or narrow band or daylight) and photosensitizer. Copyright © 2018. Published by Elsevier B.V.

  17. MAGIC-f Gel in Nuclear Medicine Dosimetry: study in an external beam of Iodine-131

    NASA Astrophysics Data System (ADS)

    Schwarcke, M.; Marques, T.; Garrido, C.; Nicolucci, P.; Baffa, O.

    2010-11-01

    MAGIC-f gel applicability in Nuclear Medicine dosimetry was investigated by exposure to a 131I source. Calibration was made to provide known absorbed doses in different positions around the source. The absorbed dose in gel was compared with a Monte Carlo Simulation using PENELOPE code and a thermoluminescent dosimetry (TLD). Using MRI analysis for the gel a R2-dose sensitivity of 0.23 s-1Gy-1was obtained. The agreement between dose-distance curves obtained with Monte Carlo simulation and TLD was better than 97% and for MAGIC-f and TLD was better than 98%. The results show the potential of polymer gel for application in nuclear medicine where three dimensional dose distribution is demanded.

  18. Comparison of the ionizing radiation effects on cochineal, annatto and turmeric natural dyes

    NASA Astrophysics Data System (ADS)

    Cosentino, Helio M.; Takinami, Patricia Y. I.; del Mastro, Nelida L.

    2016-07-01

    As studies on radiation stability of food dyes are scarce, commercially important natural food grade dyes were evaluated in terms of their sensitivity against gamma ionizing radiation. Cochineal, annatto and turmeric dyes with suitable concentrations were subjected to increasing doses up to 32 kGy and analyzed by spectrophotometry and capillary electrophoresis. The results showed different pattern of absorbance versus absorbed dose for the three systems. Carmine, the glucosidal coloring matter from the scale insect Coccus cacti L., Homoptera (cochineal) remained almost unaffected by radiation up to doses of about 32 kGy (absorbance at 494 nm). Meanwhile, at that dose, a plant-derived product annatto or urucum (Bixa orellana L.) tincture presented a nearly 58% reduction in color intensity. Tincture of curcumin (diferuloylmethane) the active ingredient in the eastern spice turmeric (Curcuma longa) showed to be highly sensitive to radiation when diluted. These data shall be taken in account whenever food products containing these food colors were going to undergo radiation processing.

  19. Space radiation absorbed dose distribution in a human phantom

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose-rate predictions are 20% lower than the observations. Assuming that the trapped-belt models lead to a correct orbit-averaged energy spectrum, the measurements of dose rates inside the phantom cannot be fully understood. Passive measurements using 6Li- and 7Li-based detectors on the astronauts and inside the brain and thyroid of the phantom show the presence of a significant contribution due to thermal neutrons, an area requiring additional study.

  20. Dosimetric evaluation of nanotargeted (188)Re-liposome with the MIRDOSE3 and OLINDA/EXM programs.

    PubMed

    Chang, Chih-Hsien; Chang, Ya-Jen; Lee, Te-Wei; Ting, Gann; Chang, Kwo-Ping

    2012-06-01

    The OLINDA/EXM computer code was created as a replacement for the widely used MIRDOSE3 code for radiation dosimetry in nuclear medicine. A dosimetric analysis with these codes was performed to evaluate nanoliposomes as carriers of radionuclides ((188)Re-liposomes) in colon carcinoma-bearing mice. Pharmacokinetic data for (188)Re-N, N-bis (2-mercaptoethyl)-N',N'-diethylethylenediamine ((188)Re-BMEDA) and (188)Re-liposome were obtained for estimation of absorbed doses in normal organs. Radiation dose estimates for normal tissues were calculated using the MIRDOSE3 and OLINDA/EXM programs for a colon carcinoma solid tumor mouse model. Mean absorbed doses derived from(188)Re-BMEDA and (188)Re-liposome in normal tissues were generally similar as calculated by MIRDOSE3 and OLINDA/EXM programs. One notable exception to this was red marrow, wherein MIRDOSE3 resulted in higher absorbed doses than OLINDA/EXM (1.53- and 1.60-fold for (188)Re-BMEDA and (188)Re-liposome, respectively). MIRDOSE3 and OLINDA have very similar residence times and organ doses. Bone marrow doses were estimated by designating cortical bone rather than bone marrow as a source organ. The bone marrow doses calculated by MIRDOSE3 are higher than those by OLINDA. If the bone marrow is designated as a source organ, the doses estimated by MIRDOSE3 and OLINDA programs will be very similar.

  1. Absorbed Dose Determination Using Experimental and Analytical Predictions of X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Edwards, D. L.; Carruth, Ralph (Technical Monitor)

    2001-01-01

    Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the U.S. Space Shuttle. This series of experiments was named the international space welding experiment (ISWE). The hardware associated with the ISWE was leased to NASA by the Paton Welding Institute (PWI) in Ukraine for ground-based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used thermoluminescence dosimeters (TLD's) shielded with material currently used by astronauts during extravehicular activities to measure the radiation dose. The TLD's were exposed to x-ray radiation generated by operation of the ISWE in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure, then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in agreement with the measured TLD values.

  2. Image quality and absorbed dose comparison of single- and dual-source cone-beam computed tomography.

    PubMed

    Miura, Hideharu; Ozawa, Shuichi; Okazue, Toshiya; Kawakubo, Atsushi; Yamada, Kiyoshi; Nagata, Yasushi

    2018-05-01

    Dual-source cone-beam computed tomography (DCBCT) is currently available in the Vero4DRT image-guided radiotherapy system. We evaluated the image quality and absorbed dose for DCBCT and compared the values with those for single-source CBCT (SCBCT). Image uniformity, Hounsfield unit (HU) linearity, image contrast, and spatial resolution were evaluated using a Catphan phantom. The rotation angle for acquiring SCBCT and DCBCT images is 215° and 115°, respectively. The image uniformity was calculated using measurements obtained at the center and four peripheral positions. The HUs of seven materials inserted into the phantom were measured to evaluate HU linearity and image contrast. The Catphan phantom was scanned with a conventional CT scanner to measure the reference HU for each material. The spatial resolution was calculated using high-resolution pattern modules. Image quality was analyzed using ImageJ software ver. 1.49. The absorbed dose was measured using a 0.6-cm 3 ionization chamber with a 16-cm-diameter cylindrical phantom, at the center and four peripheral positions of the phantom, and calculated using weighted cone-beam CT dose index (CBCTDI w ). Compared with that of SCBCT, the image uniformity of DCBCT was slightly reduced. A strong linear correlation existed between the measured HU for DCBCT and the reference HU, although the linear regression slope was different from that of the reference HU. DCBCT had poorer image contrast than did SCBCT, particularly with a high-contrast material. There was no significant difference between the spatial resolutions of SCBCT and DCBCT. The absorbed dose for DCBCT was higher than that for SCBCT, because in DCBCT, the two x-ray projections overlap between 45° and 70°. We found that the image quality was poorer and the absorbed dose was higher for DCBCT than for SCBCT in the Vero4DRT. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  3. Comparative dosimetric evaluation of nanotargeted (188)Re-(DXR)-liposome for internal radiotherapy.

    PubMed

    Chang, Chih-Hsien; Stabin, Michael G; Chang, Ya-Jen; Chen, Liang-Cheng; Chen, Min-Hua; Chang, Tsui-Jung; Lee, Te-Wei; Ting, Gann

    2008-12-01

    A dosimetric analysis was performed to evaluate nanoliposomes as carriers of radionuclides ((188)Re-liposomes) and radiochemotherapeutic drugs [(188)Re-doxorubicin (DXR)-liposomes] in internal radiotherapy for colon carcinoma, as evaluated in mice. Pharmacokinetic data for (188)Re-N, N-bis (2-mercaptoethyl)-N',N'-diethylethylenediamine (BMEDA), (188)Re-liposome, and (188)Re-DXR-liposome were obtained for the estimation of absorbed doses in tumors and normal organs. Two colon carcinoma mouse models were employed: subcutaneous growing solid tumor and malignant ascites pervading tumor models. Radiation-dose estimates for normal tissues and tumors were calculated by using the OLINDA/EXM program. An evaluation of a recommended maximum administered activity (MAA) for the nanotargeted drugs was also made. Mean absorbed doses derived from (188)Re-liposome and (188)Re-DXR-liposome in normal tissues were generally similar to those from (188)Re-BMEDA in intraperitoneal and intravenous administration. Tissue-absorbed dose in the liver was 0.24-0.40 and 0.17-0.26 (mGy/MBq) and in red marrow was 0.033-0.050 and 0.038-0.046 (mGy/MBq), respectively, for (188)Re-liposome and (188)Re-DXR-liposome. Tumor-absorbed doses for the nanotargeted (188)Re-liposome and (188)Re-DXR-liposome were higher than those of (188)Re-BMEDA for both routes of administration (4-26-fold). Dose to red marrow defined the recommended MAA. Our results suggest that radionuclide and chemoradiotherapeutic passive targeting delivery, using nanoliposomes as the carrier, is feasible and promising in systemic-targeted radionuclide therapy.

  4. Modeling the dose effects of soybean oil in salad dressing on carotenoid and fat-soluble vitamin bioavailability in salad vegetables.

    PubMed

    White, Wendy S; Zhou, Yang; Crane, Agatha; Dixon, Philip; Quadt, Frits; Flendrig, Leonard M

    2017-10-01

    Background: Previously, we showed that vegetable oil is necessary for carotenoid absorption from salad vegetables. Research is needed to better define the dose effect and its interindividual variation for carotenoids and fat-soluble vitamins. Objective: The objective was to model the dose-response relation between the amount of soybean oil in salad dressing and the absorption of 1 ) carotenoids, phylloquinone, and tocopherols in salad vegetables and 2 ) retinyl palmitate formed from the provitamin A carotenoids. Design: Women ( n = 12) each consumed 5 vegetable salads with salad dressings containing 0, 2, 4, 8, or 32 g soybean oil. Blood was collected at selected time points. The outcome variables were the chylomicron carotenoid and fat-soluble vitamin area under the curve (AUC) and maximum content in the plasma chylomicron fraction ( C max ). The individual-specific and group-average dose-response relations were investigated by fitting linear mixed-effects random coefficient models. Results: Across the entire 0-32-g range, soybean oil was linearly related to the chylomicron AUC and C max values for α-carotene, lycopene, phylloquinone, and retinyl palmitate. Across 0-8 g of soybean oil, there was a linear increase in the chylomicron AUC and C max values for β-carotene. Across a more limited 0-4-g range of soybean oil, there were minor linear increases in the chylomicron AUC for lutein and α- and total tocopherol. Absorption of all carotenoids and fat-soluble vitamins was highest with 32 g oil ( P < 0.002). For 32 g oil, the interindividual rank order of the chylomicron AUCs was consistent across the carotenoids and fat-soluble vitamins ( P < 0.0001). Conclusions: Within the linear range, the average absorption of carotenoids and fat-soluble vitamins could be largely predicted by the soybean oil effect. However, the effect varied widely, and some individuals showed a negligible response. There was a global soybean oil effect such that those who absorbed more of one carotenoid and fat-soluble vitamin also tended to absorb more of the others. This trial was registered at clinicaltrials.gov as NCT02867488. © 2017 American Society for Nutrition.

  5. Organ and effective doses in newborn patients during helical multislice computed tomography examination

    NASA Astrophysics Data System (ADS)

    Staton, Robert J.; Lee, Choonik; Lee, Choonsik; Williams, Matt D.; Hintenlang, David E.; Arreola, Manuel M.; Williams, Jonathon L.; Bolch, Wesley E.

    2006-10-01

    In this study, two computational phantoms of the newborn patient were used to assess individual organ doses and effective doses delivered during head, chest, abdomen, pelvis, and torso examinations using the Siemens SOMATOM Sensation 16 helical multi-slice computed tomography (MSCT) scanner. The stylized phantom used to model the patient anatomy was the revised ORNL newborn phantom by Han et al (2006 Health Phys.90 337). The tomographic phantom used in the study was that developed by Nipper et al (2002 Phys. Med. Biol. 47 3143) as recently revised by Staton et al (2006 Med. Phys. 33 3283). The stylized model was implemented within the MCNP5 radiation transport code, while the tomographic phantom was incorporated within the EGSnrc code. In both codes, the x-ray source was modelled as a fan beam originating from the focal spot at a fan angle of 52° and a focal-spot-to-axis distance of 57 cm. The helical path of the source was explicitly modelled based on variations in collimator setting (12 mm or 24 mm), detector pitch and scan length. Tube potentials of 80, 100 and 120 kVp were considered in this study. Beam profile data were acquired using radiological film measurements on a 16 cm PMMA phantom, which yielded effective beam widths of 14.7 mm and 26.8 mm for collimator settings of 12 mm and 24 mm, respectively. Values of absolute organ absorbed dose were determined via the use of normalization factors defined as the ratio of the CTDI100 measured in-phantom and that determined by Monte Carlo simulation of the PMMA phantom and ion chamber. Across various technique factors, effective dose differences between the stylized and tomographic phantoms ranged from +2% to +9% for head exams, -4% to -2% for chest exams, +8% to +24% for abdominal exams, -16% to -12% for pelvic exams and -7% to 0% for chest-abdomen-pelvis (CAP) exams. In many cases, however, relatively close agreement in effective dose was accomplished at the expense of compensating errors in individual organ dose. Per cent differences in organ dose between the stylized and tomographic phantoms at 120 kVp and 12 mm collimator setting ranged from -25% (skin) to +164% (muscle) for head exams, -92% (thyroid) to +98% (ovaries) for chest exams, -144% (uterus) to +112% (ovaries) for abdominal exams, -98% (SI wall) to +20% (thymus) for pelvic exams and -60% (extrathoracic airways) to +13% (ovaries) for CAP exams. Better agreement was seen between the two phantom types for organs entirely within the scan field. In these cases, corresponding per cent differences in organ absorbed dose did not vary more than 17%. For all scans, the effective dose was found to range approximately 1-13 mSv across the scan parameters and scan regions. The largest effective dose occurred for CAP scans at 120 kVp.

  6. The effect of poorly absorbed solute on intestinal absorption.

    PubMed

    Menzies, I S; Jenkins, A P; Heduan, E; Catt, S D; Segal, M B; Creamer, B

    1990-12-01

    To determine the effects of poorly absorbed solute on intestinal absorption, the urinary recovery of ingested lactulose, L-rhamnose, D-xylose, and 3-O-methyl-D-glucose was measured after simultaneous ingestion of various 'loads' of mannitol given in iso-osmolar solution. Mannitol reduced intestinal uptake of the poorly absorbed test sugars, lactulose and L-rhamnose; uptake of D-xylose and 3-O-methyl-D-glucose, which are absorbed by carrier-mediated transport largely from the jejunum, was less affected. The dose-response effect of mannitol on the absorption of L-rhamnose was approximately exponential; doses of 5, 10, and 20 g mannitol reduced the average urinary excretion of L-rhamnose by 34.7%, 51.7%, and 61.2%, respectively. In this respect, an osmotically equivalent load of lactulose, ingested as 'solute', was approximately twice as effective as mannitol in reducing L-rhamnose absorption, probably because lactulose is more poorly absorbed than mannitol (less than 1.0% versus 32-41%). Ingestion of other poorly absorbed solutes such as raffinose, sorbitol, xylitol, magnesium sulphate, and sodium sulphate also significantly depressed the absorption of L-rhamnose; in contrast, more efficiently absorbed solutes, such as sodium chloride, glucose, glycerol, and urea had little effect.

  7. Safety, pharmacokinetics, and pharmacodynamics of BMS-986142, a novel reversible BTK inhibitor, in healthy participants.

    PubMed

    Lee, Sun Ku; Xing, Jun; Catlett, Ian M; Adamczyk, Robert; Griffies, Amber; Liu, Ang; Murthy, Bindu; Nowak, Miroslawa

    2017-06-01

    BMS-986142 is an oral, small-molecule reversible inhibitor of Bruton's tyrosine kinase. The main objectives of our phase I studies were to characterize the safety and tolerability, pharmacokinetics, and pharmacodynamics of BMS-986142 in healthy participants, and to investigate the potential for the effect of BMS-986142 on the PK of methotrexate (MTX) in combination. In a combined single ascending dose and multiple ascending dose study, the safety, pharmacokinetics, and pharmacodynamics of BMS-986142 were assessed in healthy non-Japanese participants following administration of a single dose (5-900 mg) or multiple doses (25-350 mg, once daily for 14 days). In a drug-drug interaction study, the effect of BMS-986142 (350 mg, once daily for 5 days) on the single-dose pharmacokinetics of MTX (7.5 mg) was assessed in healthy participants. BMS-986142 was generally well tolerated, alone and in combination with MTX. BMS-986142 was rapidly absorbed with peak concentrations occurring within 2 h, and was eliminated with a mean half-life ranging from 7 to 11 h. Exposure of BMS-986142 appeared dose proportional within the dose ranges tested. A dose- and concentration-dependent inhibition of CD69 expression was observed following administration of BMS-986142. BMS-986142 did not affect the pharmacokinetics of MTX. BMS-986142 was well tolerated at the doses tested, had pharmacokinetic and pharmacodynamic profiles which support once-daily dosing, and can be coadministered with MTX without the pharmacokinetic interaction of BMS-986142 on MTX.

  8. Health assessment of natural radioactivity and radon exhalation rate in granites used as building materials in Lebanon.

    PubMed

    Kobeissi, M A; El-Samad, O; Rachidi, I

    2013-03-01

    Measurements of specific activities (Bq kg(-1)) of gamma-emissions from radioactive nuclides, (238)U, (226)Ra, (214)Bi, (232)Th, (212)Pb and (40)K, contained in 28 granite types, used as building materials in indoors in Lebanon, were performed on the powdered granites. The concentration of the nuclides, (226)Ra, (232)Th and (40)K, in the granites varied from below detection level (BDL) to 494 Bq kg(-1), BDL to 157.2 Bq kg(-1) and BDL to 1776 Bq kg(-1), respectively. (226)Ra concentration equivalents, C(Raeq), were obtained and ranged between 37 and 591 Bq kg(-1), with certain values above the allowed limit of 370 Bq kg(-1). Calculated annual gamma-absorbed dose in air, D(aR), varied from 17.7 to 274.5 (nGy h(-1)). Annual effective dose, E (mSv y(-1)), of gamma radiations related to the studied granites and absorbed by the inhabitants was evaluated. E (mSv y(-1)) ranged from 0.09 to 1.35 mSv y(-1). Some granite types produced E above the allowed limit of 1 mSv y(-1) set by ICRP. Values of (222)Rn mass exhalation rate, E(M) (mBq kg(-1)h(-1))(,) in granite powder were obtained using the CR-39 detector technique. Diffusion factors, f, in 23 granite types were calculated with f ranging between (0.1 ± 0.02)×10(-2) and (6.6 ± 1.01)×10(-2).

  9. The impact of emollients on phototherapy: a review.

    PubMed

    Asztalos, Manuela L; Heller, Misha M; Lee, Eric S; Koo, John

    2013-05-01

    When treating psoriasis, various topical emollients exist that can affect the penetration of ultraviolet radiation in phototherapy. Compared with normal-appearing skin with a reflectance of 4% to 5%, psoriatic skin has higher reflectance as a result of its increased air-to-corneocyte interfaces. Studies have tested the effect of emollients on light penetration by assessing psoriatic plaque clearance, differences in minimal erythema dose, and physical properties of the emollient (eg, monochromatic protection factor and absorbance). Psoriatic plaque clearance was found to improve with serous (thin liquid)-based emollients (eg, Vaseline oil [Unilever, Blackfriars, London, UK], mineral oil, and glycerol), whereas clearance decreased with salicylic acid and viscous-based emollients (eg, petrolatum). Emollients with high ultraviolet absorbance properties increased minimal erythema dose, and those with low absorbance properties decreased minimal erythema dose. Interestingly, when a liquid emollient with a refractive index close to that of normal-appearing skin was applied, there was a net increase in light absorption, or a reduction in reflection that exceeded the emollient's innate ability to absorb light. Copyright © 2012 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  10. Estimation of absorbed doses from paediatric cone-beam CT scans: MOSFET measurements and Monte Carlo simulations.

    PubMed

    Kim, Sangroh; Yoshizumi, Terry T; Toncheva, Greta; Frush, Donald P; Yin, Fang-Fang

    2010-03-01

    The purpose of this study was to establish a dose estimation tool with Monte Carlo (MC) simulations. A 5-y-old paediatric anthropomorphic phantom was computed tomography (CT) scanned to create a voxelised phantom and used as an input for the abdominal cone-beam CT in a BEAMnrc/EGSnrc MC system. An X-ray tube model of the Varian On-Board Imager((R)) was built in the MC system. To validate the model, the absorbed doses at each organ location for standard-dose and low-dose modes were measured in the physical phantom with MOSFET detectors; effective doses were also calculated. In the results, the MC simulations were comparable to the MOSFET measurements. This voxelised phantom approach could produce a more accurate dose estimation than the stylised phantom method. This model can be easily applied to multi-detector CT dosimetry.

  11. Internal dosimetry with the Monte Carlo code GATE: validation using the ICRP/ICRU female reference computational model

    NASA Astrophysics Data System (ADS)

    Villoing, Daphnée; Marcatili, Sara; Garcia, Marie-Paule; Bardiès, Manuel

    2017-03-01

    The purpose of this work was to validate GATE-based clinical scale absorbed dose calculations in nuclear medicine dosimetry. GATE (version 6.2) and MCNPX (version 2.7.a) were used to derive dosimetric parameters (absorbed fractions, specific absorbed fractions and S-values) for the reference female computational model proposed by the International Commission on Radiological Protection in ICRP report 110. Monoenergetic photons and electrons (from 50 keV to 2 MeV) and four isotopes currently used in nuclear medicine (fluorine-18, lutetium-177, iodine-131 and yttrium-90) were investigated. Absorbed fractions, specific absorbed fractions and S-values were generated with GATE and MCNPX for 12 regions of interest in the ICRP 110 female computational model, thereby leading to 144 source/target pair configurations. Relative differences between GATE and MCNPX obtained in specific configurations (self-irradiation or cross-irradiation) are presented. Relative differences in absorbed fractions, specific absorbed fractions or S-values are below 10%, and in most cases less than 5%. Dosimetric results generated with GATE for the 12 volumes of interest are available as supplemental data. GATE can be safely used for radiopharmaceutical dosimetry at the clinical scale. This makes GATE a viable option for Monte Carlo modelling of both imaging and absorbed dose in nuclear medicine.

  12. Patient dose, gray level and exposure index with a computed radiography system

    NASA Astrophysics Data System (ADS)

    Silva, T. R.; Yoshimura, E. M.

    2014-02-01

    Computed radiography (CR) is gradually replacing conventional screen-film system in Brazil. To assess image quality, manufactures provide the calculation of an exposure index through the acquisition software of the CR system. The objective of this study is to verify if the CR image can be used as an evaluator of patient absorbed dose too, through a relationship between the entrance skin dose and the exposure index or the gray level values obtained in the image. The CR system used for this study (Agfa model 30-X with NX acquisition software) calculates an exposure index called Log of the Median (lgM), related to the absorbed dose to the IP. The lgM value depends on the average gray level (called Scan Average Level (SAL)) of the segmented pixel value histogram of the whole image. A Rando male phantom was used to simulate a human body (chest and head), and was irradiated with an X-ray equipment, using usual radiologic techniques for chest exams. Thermoluminescent dosimeters (LiF, TLD100) were used to evaluate entrance skin dose and exit dose. The results showed a logarithm relation between entrance dose and SAL in the image center, regardless of the beam filtration. The exposure index varies linearly with the entrance dose, but the angular coefficient is beam quality dependent. We conclude that, with an adequate calibration, the CR system can be used to evaluate the patient absorbed dose.

  13. Calculation of Absorbed Dose in Target Tissue and Equivalent Dose in Sensitive Tissues of Patients Treated by BNCT Using MCNP4C

    NASA Astrophysics Data System (ADS)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Pooya, S. M. Hosseini

    Boron Neutron Capture Therapy (BNCT) is used for treatment of many diseases, including brain tumors, in many medical centers. In this method, a target area (e.g., head of patient) is irradiated by some optimized and suitable neutron fields such as research nuclear reactors. Aiming at protection of healthy tissues which are located in the vicinity of irradiated tissue, and based on the ALARA principle, it is required to prevent unnecessary exposure of these vital organs. In this study, by using numerical simulation method (MCNP4C Code), the absorbed dose in target tissue and the equiavalent dose in different sensitive tissues of a patiant treated by BNCT, are calculated. For this purpose, we have used the parameters of MIRD Standard Phantom. Equiavelent dose in 11 sensitive organs, located in the vicinity of target, and total equivalent dose in whole body, have been calculated. The results show that the absorbed dose in tumor and normal tissue of brain equal to 30.35 Gy and 0.19 Gy, respectively. Also, total equivalent dose in 11 sensitive organs, other than tumor and normal tissue of brain, is equal to 14 mGy. The maximum equivalent doses in organs, other than brain and tumor, appear to the tissues of lungs and thyroid and are equal to 7.35 mSv and 3.00 mSv, respectively.

  14. The space radiation environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, D E

    There are three primary sources of space radiation: galactic cosmic rays (GCR), trapped belt radiation, and solar particle events (SPE). All are composed of ions, the nuclei of atoms. Their energies range from a few MeV u{sup -1} to over a GeV u{sup -1}. These ions can fragment when they interact with spacecraft materials and produce energetic neutrons and ions of lower atomic mass. Absorbed dose rates inside a typical spacecraft (like the Space Shuttle) in a low inclination (28.5 degrees) orbit range between 0.05 and 2 mGy d{sup -1} depending on the altitude and flight inclination (angle of orbitmore » with the equator). The quality factor of radiation in orbit depends on the relative contributions of trapped belt radiation and GCR, and the dose rate varies both with orbital altitude and inclination. The corresponding equivalent dose rate ranges between 0.1 and 4 mSv d{sup -1}. In high inclination orbits, like that of the Mir Space Station and as is planned for the International Space Station, blood-forming organ (BFO) equivalent dose rates as high as 1.5 mSv d{sup -1}. Thus, on a 1 y mission, a crew member could obtain a total dose of 0.55 Sv. Maximum equivalent dose rates measured in high altitude passes through the South Atlantic Anomaly (SAA) were 10 mSv h{sup -1}. For an interplanetary space mission (e.g., to Mars) annual doses from GCR alone range between 150 mSv y{sup -1} at solar maximum and 580 mSv y{sup -1} at solar minimum. Large SPE, like the October 1989 series, are more apt to occur in the years around solar maximum. In free space, such an event could contribute another 300 mSv, assuming that a warning system and safe haven can be effectively used with operational procedures to minimize crew exposures. Thus, the total dose for a 3 y mission to Mars could exceed 2 Sv.« less

  15. SU-F-T-159: Monte Carlo Simulation Studies of Three-Dimensional Dose Distribution for Polymer Gel Dosimeter and Radiochromic Gel Dosimeter in a Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Kim, G; Jung, H

    Purpose: The purpose of this simulation study is to evaluate the proton detectability of gel dosimeters, and estimate the three-dimensional dose distribution of protons in the radiochromic gel and polymer gel dosimeter compared with the dose distribution in water. Methods: The commercial composition ratios of normoxic polymer gel and LCV micelle radiochromic gel were included in this simulation study. The densities of polymer and radiochromic gel were 1.024 and 1.005 g/cm3, respectively. The 50, 80 and 140 MeV proton beam energies were selected. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiationmore » transport code (MCNPX 2.7.0, Los Alamos Laboratory). The water equivalent depth profiles and the dose distributions of two gel dosimeters were compared for the water. Results: In case of irradiating 50, 80 and 140 MeV proton beam to water phantom, the reference Bragg-peak depths are represented at 2.22, 5.18 and 13.98 cm, respectively. The difference in the water equivalent depth is represented to about 0.17 and 0.37 cm in the radiochromic gel and polymer gel dosimeter, respectively. The proton absorbed doses in the radiochromic gel dosimeter are calculated to 2.41, 3.92 and 6.90 Gy with increment of incident proton energies. In the polymer gel dosimeter, the absorbed doses are calculated to 2.37, 3.85 and 6.78 Gy with increment of incident proton energies. The relative absorbed dose in radiochromic gel (about 0.47 %) is similar to that of water than the relative absorbed dose of polymer gel (about 2.26 %). In evaluating the proton dose distribution, we found that the dose distribution of both gel dosimeters matched that of water in most cases. Conclusion: As the dosimetry device, the radiochromic gel dosimeter has the potential particle detectability and is feasible to use for quality assurance of proton beam therapy beam.« less

  16. SU-E-T-753: Three-Dimensional Dose Distributions of Incident Proton Particle in the Polymer Gel Dosimeter and the Radiochromic Gel Dosimeter: A Simulation Study with MCNP Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Kim, G; Ji, Y

    Purpose: The purpose of this study is to estimate the three-dimensional dose distributions in the polymer and the radiochromic gel dosimeter, and to identify the detectability of both gel dosimeters by comparing with the water phantom in case of irradiating the proton particles. Methods: The normoxic polymer gel and the LCV micelle radiochromic gel were used in this study. The densities of polymer and the radiochromic gel dosimeter were 1.024 and 1.005 g/cm{sup 3}, respectively. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiation transport code (MCNPX, Los Alamos National Laboratory). Themore » shape of phantom irradiated by proton particles was a hexahedron with the dimension of 12.4 × 12.4 × 15.0 cm{sup 3}. The energies of proton beam were 50, 80, and 140 MeV energies were directed to top of the surface of phantom. The cross-sectional view of proton dose distribution in both gel dosimeters was estimated with the water phantom and evaluated by the gamma evaluation method. In addition, the absorbed dose(Gy) was also calculated for evaluating the proton detectability. Results: The evaluation results show that dose distributions in both gel dosimeters at intermediated section and Bragg-peak region are similar with that of the water phantom. At entrance section, however, inconsistencies of dose distribution are represented, compared with water. The relative absorbed doses in radiochromic and polymer gel dosimeter were represented to be 0.47 % and 2.26 % difference, respectively. These results show that the radiochromic gel dosimeter was better matched than the water phantom in the absorbed dose evaluation. Conclusion: The polymer and the radiochromic gel dosimeter show similar characteristics in dose distributions for the proton beams at intermediate section and Bragg-peak region. Moreover the calculated absorbed dose in both gel dosimeters represents similar tendency by comparing with that in water phantom.« less

  17. 42 CFR 81.4 - Definition of terms used in this part.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...]. (e) Equivalent dose means the absorbed dose in a tissue or organ multiplied by a radiation weighting... dose means the portion of the equivalent dose that is received from radiation sources outside of the... pattern and level of radiation exposure. (h) Internal dose means the portion of the equivalent dose that...

  18. Performance improvement of pentacosa-diynoic acid label dosimeter for radiation processing technology

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, A. A.; Soliman, Y. S.

    2017-12-01

    A radiation sensitive material, 10,12-pentacosa-diynoic acid (PCDA), was incorporated into polyvinyl butyral (PVB) films to develop indicators/dosimeters for blood and food irradiation. The present study aims to improve the dosimetric performance of these previously prepared dosimeters and to extend their shelf life by the combination of a radical scavenger, propyl gallate (PG), and a UV absorber, tinuvin-p (TP). The X-ray diffraction (XRD) patterns of the dosimeters were analysed and their dosimetric characteristics were investigated by specular reflectance in the visible spectrum range of 400-700 nm. Upon irradiation, the films turn blue exhibiting two main bands around 670 and 620 nm. Their dose-response functions were fitted by a double exponential growth, 5 parameters, equation. Irradiation temperature influences the dosimeter response at 670 nm without causing thermochromic transition up to 50 °C in poly-PCDA. The useful dose range is 5-4000 Gy depending on the wavelengths of analysis and PCDA content in the films. The overall uncertainty of dose measurement is less than 6% at 2σ.

  19. Absorbed Dose Rate Due to Intake of Natural Radionuclides by Tilapia Fish (Tilapia nilotica,Linnaeus, 1758) Estimated Near Uranium Mining at Caetité, Bahia, Brazil

    NASA Astrophysics Data System (ADS)

    Pereira, Wagner de S.; Kelecom, Alphonse; Py Júnior, Delcy de Azevedo

    2008-08-01

    The uranium mining at Caetité (Uranium Concentrate Unit—URA) is in its operational phase. Aiming to estimate the radiological environmental impact of the URA, a monitoring program is underway. In order to preserve the biota of the deleterious effects from radiation and to act in a pro-active way as expected from a licensing body, the present work aims to use an environmental protection methodology based on the calculation of absorbed dose rate in biota. Thus, selected target organism was the Tilapia fish (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210). As, in Brazil there are no radiation exposure limits adopted for biota the value proposed by the Department of Energy (DOE) of the United States of 3.5×103 μGy y-1 has been used. The derived absorbed dose rate calculated for Tilapia was 2.51×100 μGy y-1, that is less than 0.1% of the dose limit established by DOE. The critical radionuclide was Ra-226, with 56% of the absorbed dose rate, followed by U-238 with 34% and Th-232 with 9%. This value of 0.1% of the limit allows to state that, in the operational conditions analyzed, natural radionuclides do not represent a radiological problem to biota.

  20. Absorbed Dose Rate Due to Intake of Natural Radionuclides by Tilapia Fish (Tilapia nilotica,Linnaeus, 1758) Estimated Near Uranium Mining at Caetite, Bahia, Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Wagner de S; Universidade Federal Fluminense, Programa de Pos-graduacao em Biologia Marinha; Kelecom, Alphonse

    2008-08-07

    The uranium mining at Caetite (Uranium Concentrate Unit--URA) is in its operational phase. Aiming to estimate the radiological environmental impact of the URA, a monitoring program is underway. In order to preserve the biota of the deleterious effects from radiation and to act in a pro-active way as expected from a licensing body, the present work aims to use an environmental protection methodology based on the calculation of absorbed dose rate in biota. Thus, selected target organism was the Tilapia fish (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210).more » As, in Brazil there are no radiation exposure limits adopted for biota the value proposed by the Department of Energy (DOE) of the United States of 3.5x10{sup 3} {mu}Gy y{sup -1} has been used. The derived absorbed dose rate calculated for Tilapia was 2.51x10{sup 0} {mu}Gy y{sup -1}, that is less than 0.1% of the dose limit established by DOE. The critical radionuclide was Ra-226, with 56% of the absorbed dose rate, followed by U-238 with 34% and Th-232 with 9%. This value of 0.1% of the limit allows to state that, in the operational conditions analyzed, natural radionuclides do not represent a radiological problem to biota.« less

  1. Heavy-ion-induced sucrose radicals investigated using EPR and UV spectroscopy.

    PubMed

    Nakagawa, Kouichi; Karakirova, Yordanka; Yordanov, Nicola D

    2015-05-01

    The potential use of a sucrose dosimeter for estimating both linear energy transfer (LET) and the absorbed dose of heavy ion and X-ray radiation was investigated. The stable free radicals were produced when sucrose was irradiated with heavy ions, such as helium, carbon, silicon and neon ions, and when the X-ray radiation was similar to the obtained electron paramagnetic resonance (EPR) spectra, which were ∼7 mT wide and composed of several hyperfine structures. In addition, the total spin concentration resulting from heavy-ion irradiation increased linearly as the absorbed dose increased, and decreased logarithmically as the LET increased. These empirical relations imply that the LET at a certain dose can be determined from the spin concentration. For sucrose and alanine, both cross-sections following C-ion irradiation with a 50 Gy dose were ∼1.3 × 10(-12) [μm(2)], taking into account the molecular size of the samples. The values of these cross-sections imply that multiple ionizing particles were involved in the production of stable radicals. Furthermore, UV absorbance at 267 nm of an aqueous solution of irradiated sucrose was found to linearly increase with increasing absorbed dose. Therefore, the EPR and UV results suggest that sucrose can be a useful dosimeter for heavy-ion irradiation. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heintz, P; Heintz, B; Sandoval, D

    Purpose: Computerized radiation therapy treatment planning is performed on almost all patients today. However it is seldom used for laboratory irradiations. The first objective is to assess whether modern radiation therapy treatment planning (RTP) systems accurately predict the subject dose by comparing in vivo and decedent dose measurements to calculated doses. The other objective is determine the importance of using a RTP system for laboratory irradiations. Methods: 5 MOSFET radiation dosimeters were placed enterically in each subject (2 sedated Rhesus Macaques) to measure the absorbed dose at 5 levels (carina, lung, heart, liver and rectum) during whole body irradiation. Themore » subjects were treated with large opposed lateral fields and extended distances to cover the entire subject using a Varian 600C linac. CT simulation was performed ante-mortem (AM) and post-mortem (PM). To compare AM and PM doses, calculation points were placed at the location of each dosimeter in the treatment plan. The measured results were compared to the results using Varian Eclipse and Prowess Panther RTP systems. Results: The Varian and Prowess treatment planning system agreed to within in +1.5% for both subjects. However there were significant differences between the measured and calculated doses. For both animals the calculated central axis dose was higher than prescribed by 3–5%. This was caused in part by inaccurate measurement of animal thickness at the time of irradiation. For one subject the doses ranged from 4% to 7% high and the other subject the doses ranged 7% to 14% high when compared to the RTP doses. Conclusions: Our results suggest that using proper CT RTP system can more accurately deliver the prescribed dose to laboratory subjects. It also shows that there is significant dose variation in such subjects when inhomogeneities are not considered in the planning process.« less

  3. Monte Carlo dose distribution calculation at nuclear level for Auger-emitting radionuclide energies.

    PubMed

    Di Maria, S; Belchior, A; Romanets, Y; Paulo, A; Vaz, P

    2018-05-01

    The distribution of radiopharmaceuticals in tumor cells represents a fundamental aspect for a successful molecular targeted radiotherapy. It was largely demonstrated at microscopic level that only a fraction of cells in tumoral tissues incorporate the radiolabel. In addition, the distribution of the radionuclides at sub-cellular level, namely inside each nucleus, should also be investigated for accurate dosimetry estimation. The most used method to perform cellular dosimetry is the MIRD one, where S-values are able to estimate cellular absorbed doses for several electron energies, nucleus diameters, and considering homogeneous source distributions. However the radionuclide distribution inside nuclei can be also highly non-homogeneous. The aim of this study is to show in what extent a non-accurate cellular dosimetry could lead to misinterpretations of surviving cell fraction vs dose relationship; in this context, a dosimetric case study with 99m Tc is also presented. The state-of-art MCNP6 Monte Carlo simulation was used in order to model cell structures both in MIRD geometry (MG) and MIRD modified geometries (MMG), where also entire mitotic chromosome volumes were considered (each structure was modeled as liquid water material). In order to simulate a wide energy range of Auger emitting radionuclides, four mono energetic electron emissions were considered, namely 213eV, 6keV, 11keV and 20keV. A dosimetric calculation for 99m Tc undergoing inhomogeneous nuclear internalization was also performed. After a successful validation step between MIRD and our computed S-values for three Auger-emitting radionuclides ( 99m Tc, 125 I and 64 Cu), absorbed dose results showed that the standard MG could differ from the MMG from one to three orders of magnitude. These results were also confirmed by considering the 99m Tc spectrum emission (Auger and internal conversion electrons). Moreover, considering an inhomogeneous radionuclide distribution, the average electron energy that maximizes the absorbed dose was found to be different for MG and MMG. The modeling of realistic radionuclide localization inside cells, including a inhomogeneous nuclear distribution, revealed that i) a strong bias in surviving cell fraction vs dose relationships (taking to different radiobiological models) can arise; ii) the alternative models might contribute to a more accurate prediction of the radiobiological effects inherent to more specific molecular targeted radiotherapy strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. A Novel Simple Phantom for Verifying the Dose of Radiation Therapy

    PubMed Central

    Lee, J. H.; Chang, L. T.; Shiau, A. C.; Chen, C. W.; Liao, Y. J.; Li, W. J.; Lee, M. S.; Hsu, S. M.

    2015-01-01

    A standard protocol of dosimetric measurements is used by the organizations responsible for verifying that the doses delivered in radiation-therapy institutions are within authorized limits. This study evaluated a self-designed simple auditing phantom for use in verifying the dose of radiation therapy; the phantom design, dose audit system, and clinical tests are described. Thermoluminescent dosimeters (TLDs) were used as postal dosimeters, and mailable phantoms were produced for use in postal audits. Correction factors are important for converting TLD readout values from phantoms into the absorbed dose in water. The phantom scatter correction factor was used to quantify the difference in the scattered dose between a solid water phantom and homemade phantoms; its value ranged from 1.084 to 1.031. The energy-dependence correction factor was used to compare the TLD readout of the unit dose irradiated by audit beam energies with 60Co in the solid water phantom; its value was 0.99 to 1.01. The setup-condition factor was used to correct for differences in dose-output calibration conditions. Clinical tests of the device calibrating the dose output revealed that the dose deviation was within 3%. Therefore, our homemade phantoms and dosimetric system can be applied for accurately verifying the doses applied in radiation-therapy institutions. PMID:25883980

  5. Errors and Uncertainties in Dose Reconstruction for Radiation Effects Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strom, Daniel J.

    Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers. For such studies to be credible, significant effort must be put into applying the best science to reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more and more sophisticated dose reconstruction methods have been developed as studies progressed. For the example of the Japanese bomb survivors, the dose surrogatemore » “distance from the hypocenter” was replaced by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it has become increasingly clear that an equal level of effort must be expended on the quantitative assessment of uncertainty in such doses, and to reducing and managing uncertainty. In this context, this paper reviews difficulties in terminology, explores the nature of Berkson and classical uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of effort for DOSES-2008.« less

  6. Diagnostic x-ray dosimetry using Monte Carlo simulation.

    PubMed

    Ioppolo, J L; Price, R I; Tuchyna, T; Buckley, C E

    2002-05-21

    An Electron Gamma Shower version 4 (EGS4) based user code was developed to simulate the absorbed dose in humans during routine diagnostic radiological procedures. Measurements of absorbed dose using thermoluminescent dosimeters (TLDs) were compared directly with EGS4 simulations of absorbed dose in homogeneous, heterogeneous and anthropomorphic phantoms. Realistic voxel-based models characterizing the geometry of the phantoms were used as input to the EGS4 code. The voxel geometry of the anthropomorphic Rando phantom was derived from a CT scan of Rando. The 100 kVp diagnostic energy x-ray spectra of the apparatus used to irradiate the phantoms were measured, and provided as input to the EGS4 code. The TLDs were placed at evenly spaced points symmetrically about the central beam axis, which was perpendicular to the cathode-anode x-ray axis at a number of depths. The TLD measurements in the homogeneous and heterogenous phantoms were on average within 7% of the values calculated by EGS4. Estimates of effective dose with errors less than 10% required fewer numbers of photon histories (1 x 10(7)) than required for the calculation of dose profiles (1 x 10(9)). The EGS4 code was able to satisfactorily predict and thereby provide an instrument for reducing patient and staff effective dose imparted during radiological investigations.

  7. Diagnostic x-ray dosimetry using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Ioppolo, J. L.; Price, R. I.; Tuchyna, T.; Buckley, C. E.

    2002-05-01

    An Electron Gamma Shower version 4 (EGS4) based user code was developed to simulate the absorbed dose in humans during routine diagnostic radiological procedures. Measurements of absorbed dose using thermoluminescent dosimeters (TLDs) were compared directly with EGS4 simulations of absorbed dose in homogeneous, heterogeneous and anthropomorphic phantoms. Realistic voxel-based models characterizing the geometry of the phantoms were used as input to the EGS4 code. The voxel geometry of the anthropomorphic Rando phantom was derived from a CT scan of Rando. The 100 kVp diagnostic energy x-ray spectra of the apparatus used to irradiate the phantoms were measured, and provided as input to the EGS4 code. The TLDs were placed at evenly spaced points symmetrically about the central beam axis, which was perpendicular to the cathode-anode x-ray axis at a number of depths. The TLD measurements in the homogeneous and heterogenous phantoms were on average within 7% of the values calculated by EGS4. Estimates of effective dose with errors less than 10% required fewer numbers of photon histories (1 × 107) than required for the calculation of dose profiles (1 × 109). The EGS4 code was able to satisfactorily predict and thereby provide an instrument for reducing patient and staff effective dose imparted during radiological investigations.

  8. Determination of absorbed dose to water from a miniature kilovoltage x-ray source using a parallel-plate ionization chamber

    NASA Astrophysics Data System (ADS)

    Watson, Peter G. F.; Popovic, Marija; Seuntjens, Jan

    2018-01-01

    Electronic brachytherapy sources are widely accepted as alternatives to radionuclide-based systems. Yet, formal dosimetry standards for these devices to independently complement the dose protocol provided by the manufacturer are lacking. This article presents a formalism for calculating and independently verifying the absorbed dose to water from a kV x-ray source (The INTRABEAM System) measured in a water phantom with an ionization chamber calibrated in terms of air-kerma. This formalism uses a Monte Carlo (MC) calculated chamber conversion factor, CQ , to convert air-kerma in a reference beam to absorbed dose to water in the measurement beam. In this work CQ was determined for a PTW 34013 parallel-plate ionization chamber. Our results show that CQ was sensitive to the chamber plate separation tolerance, with differences of up to 15%. CQ was also found to have a depth dependence which varied with chamber plate separation (0 to 10% variation for the smallest and largest cavity height, over 3 to 30 mm depth). However for all chamber dimensions investigated, CQ was found to be significantly larger than the manufacturer reported value, suggesting that the manufacturer recommended method of dose calculation could be underestimating the dose to water.

  9. Whole-body biodistribution and estimation of radiation-absorbed doses of the dopamine D1 receptor radioligand 11C-NNC 112 in humans.

    PubMed

    Cropley, Vanessa L; Fujita, Masahiro; Musachio, John L; Hong, Jinsoo; Ghose, Subroto; Sangare, Janet; Nathan, Pradeep J; Pike, Victor W; Innis, Robert B

    2006-01-01

    The present study estimated radiation-absorbed doses of the dopamine D(1) receptor radioligand [(11)C]((+)-8-chloro-5-(7-benzofuranyl)-7-hydroxy-3-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine) (NNC 112) in humans, based on dynamic whole-body PET in healthy subjects. Whole-body PET was performed on 7 subjects after injection of 710 +/- 85 MBq of (11)C-NNC 112. Fourteen frames were acquired for a total of 120 min in 7 segments of the body. Regions of interest were drawn on compressed planar images of source organs that could be identified. Radiation dose estimates were calculated from organ residence times using the OLINDA 1.0 program. The organs with the highest radiation-absorbed doses were the gallbladder, liver, lungs, kidneys, and urinary bladder wall. Biexponential fitting of mean bladder activity demonstrated that 15% of activity was excreted via the urine. With a 2.4-h voiding interval, the effective dose was 5.7 microSv/MBq (21.1 mrem/mCi). (11)C-NNC 112 displays a favorable radiation dose profile in humans and would allow multiple PET examinations per year to be performed on the same subject.

  10. Degradation and decoloration of textiles wastewater by electron beam irradiation: Effect of energy, current and absorbed dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakar, Khomsaton Abu; Zulkafli,; Hashim, Siti A'aisah

    2014-09-03

    In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev butmore » at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD{sub 5}, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.« less

  11. Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats

    PubMed Central

    Wang, Jing; He, Linfeng; Fan, Dunhuang; Ding, Defang; Wang, Xufei; Gao, Yun; Zhang, Xuxia; Li, Qiang; Chen, Honghong

    2016-01-01

    The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1–3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure. PMID:27445126

  12. Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats

    NASA Astrophysics Data System (ADS)

    Wang, Jing; He, Linfeng; Fan, Dunhuang; Ding, Defang; Wang, Xufei; Gao, Yun; Zhang, Xuxia; Li, Qiang; Chen, Honghong

    2016-07-01

    The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1-3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure.

  13. Monte Carlo Estimation of Absorbed Dose Distributions Obtained from Heterogeneous 106Ru Eye Plaques.

    PubMed

    Zaragoza, Francisco J; Eichmann, Marion; Flühs, Dirk; Sauerwein, Wolfgang; Brualla, Lorenzo

    2017-09-01

    The distribution of the emitter substance in 106 Ru eye plaques is usually assumed to be homogeneous for treatment planning purposes. However, this distribution is never homogeneous, and it widely differs from plaque to plaque due to manufacturing factors. By Monte Carlo simulation of radiation transport, we study the absorbed dose distribution obtained from the specific CCA1364 and CCB1256 106 Ru plaques, whose actual emitter distributions were measured. The idealized, homogeneous CCA and CCB plaques are also simulated. The largest discrepancy in depth dose distribution observed between the heterogeneous and the homogeneous plaques was 7.9 and 23.7% for the CCA and CCB plaques, respectively. In terms of isodose lines, the line referring to 100% of the reference dose penetrates 0.2 and 1.8 mm deeper in the case of heterogeneous CCA and CCB plaques, respectively, with respect to the homogeneous counterpart. The observed differences in absorbed dose distributions obtained from heterogeneous and homogeneous plaques are clinically irrelevant if the plaques are used with a lateral safety margin of at least 2 mm. However, these differences may be relevant if the plaques are used in eccentric positioning.

  14. Development of a portable graphite calorimeter for radiation dosimetry.

    PubMed

    Sakama, Makoto; Kanai, Tatsuaki; Fukumura, Akifumi

    2008-01-01

    We developed and performance-tested a portable graphite calorimeter designed to measure the absolute dosimetry of various beams including heavy-ion beams, based on a flexible and convenient means of measurement. This measurement system is fully remote-controlled by the GPIB system. This system uses a digital PID (Proportional, Integral, Derivative) control method based on the LabVIEW software. It was possible to attain stable conditions in a shorter time by this system. The standard deviation of the measurements using the calorimeter was 0.79% at a dose rate of 0.8 Gy/min in 17 calorimeter runs for a (60)Co photon beam. The overall uncertainties for the absorbed dose to graphite and water of the (60)Co photon beam using the developed calorimeter were 0.89% and 1.35%, respectively. Estimations of the correction factors due to vacuum gaps, impurities in the core, the dose gradient and the radiation profile were included in the uncertainties. The absorbed doses to graphite and water irradiated by the (60)Co photon beam were compared with dosimetry measurements obtained using three ionization chambers. The absorbed doses to graphite and water estimated by the two dosimetry methods agreed within 0.1% and 0.3%, respectively.

  15. Modeling gamma radiation dose in dwellings due to building materials.

    PubMed

    de Jong, Peter; van Dijk, Willem

    2008-01-01

    A model is presented that calculates the absorbed dose rate in air of gamma radiation emitted by building materials in a rectangular body construction. The basis for these calculations is formed by a fixed set of specific absorbed dose rates (the dose rate per Bq kg(-1) 238U, 232Th, and 40K), as determined for a standard geometry with the dimensions 4 x 5 x 2.8 m3. Using the computer codes Marmer and MicroShield, correction factors are assessed that quantify the influence of several room and material related parameters on the specific absorbed dose rates. The investigated parameters are the position in the construction; the thickness, density, and dimensions of the construction parts; the contribution from the outer leave; the presence of doors and windows; the attenuation by internal partition walls; the contribution from building materials present in adjacent rooms; and the effect of non-equilibrium due to 222Rn exhalation. To verify the precision, the proposed method is applied to three Dutch reference dwellings, i.e., a row house, a coupled house, and a gallery apartment. The averaged difference with MCNP calculations is found to be 4%.

  16. [Analysis of the importance of cosmonaut's location and orientation onboard the International space station to levels of visceral irradiation during traverse of the region of the South Atlantic Anomaly].

    PubMed

    Drobyshev, S G; Benghin, V V

    2015-01-01

    Parametric analysis of absorbed radiation dose to the cosmonaut working in the Service module (SM) of the International space station (ISS) was made with allowance for anisotropy of the radiation field of the South Atlantic Anomaly. Calculation data show that in weakly shielded SM compartments the radiation dose to poorly shielded viscera may depend essentially on cosmonaut's location and orientation relative to the ISS shell. Difference of the lens absorbed dose can be as high as 5 times depending on orientation of the cosmonaut and the ISS. The effect is less pronounced on the deep seated hematopoietic system; however, it may increase up to 2.5 times during the extravehicular activities. When the cosmonaut is outside on the ISS SM side presented eastward, the absorbed dose can be affected noticeably by remoteness from the SM. At a distance less than 1.5 meters away from the SM east side in the course of ascending circuits, the calculated lens dose is approximately half as compared with the situation when the cosmonaut is not shielded by the ISS material.

  17. The Mobile Dosimetric Telescope - A Small Size Active Personal Dosimeter for Application at High Altitudes and Onboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Ritter, B.; Marsalek, K.; Berger, T.; Burmeister, S.; Reitz, G.; Heber, B.

    2012-12-01

    The radiation environment at cruising altitudes, as well as in Low Earth Orbit - like on the International Space Station - differs significantly from the natural radiation environment on Earth. Especially in Low Earth Orbit it poses one of the main health risks for long duration human missions. Therefore, it is essential to monitor the properties of the radiation field in such environments. The Mobile Dosimetric Telescope MDT, is a small size battery driven personal dosimeter based on silicon detector technology that has been developed to observe absorbed dose and dose rate in real time. Two silicon diodes are arranged in a telescope configuration, which allows the measurement of the ionizing constituents of the radiation field and partially the neutral contribution to the dose. The absorbed dose is obtained by considering every particle in either of the detectors. Particles traversing both diodes are detected as coincidence events that enable to derive linear energy transfer (LET) spectra. From these the quality factor of the field is determined, which is necessary for the estimation of the dose equivalent. The detection range of the device covers energy depositions from minimal ionizing particles up to relativistic heavy ions. Calibrations of the detector system have been performed with various radioactive sources and with heavy ions at the Heavy Ion Medical Accelerator (HIMAC) facility at the National Institute for Radiological Sciences (NIRS) in Chiba, Japan. Additionally, the MDT has been successfully tested onboard aircraft. The results of these measurements are in good agreement with those from other radiation detectors. The presentation will focus on data taken during long haul flights in the northern hemisphere.

  18. Comparative Pharmacokinetics of the Organophosphorus Insecticide Chlorpyrifos and its Major Metabolites Diethylphosphate, Diethylthiophosphate and 3,5,6-Trichloro-2-pyridinol in the Rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timchalk, Chuck; Busby, Andrea L; Campbell, James A

    2007-07-31

    Abstract Chlorpyrifos (CPF) is a commonly used diethylphosphorothionate organophosphorus (OP) insecticide. Diethylphosphate (DEP), diethylthiophosphate (DETP) and 3,5,6-trichloro-2-pyridinol (TCPy) are products of metabolism and of environmental degradation of CPF and are routinely measured in urine as biomarkers of exposure. However, because these same chemicals can result from metabolism or by biodegradation, monitoring total urinary metabolite levels may be reflective of not only an individual’s contact with the parent pesticide, but also exposure with the metabolites, which are present in the environment. The objective of the current study was to compare the pharmacokinetics of orally administered DEP, DETP and TCPy with theirmore » kinetics following oral dosing with the parent insecticide CPF in the rat. Groups of rats were orally administered CPF, DEP, TCPy or DETP at doses of 140 μmol/kg body weight, and the time-courses of the metabolites were evaluated in blood and urine. Following oral administration, all three metabolites were well absorbed with peak blood concentrations being attained between 1-3 h post-dosing. In the case of DEP and TCPy virtually all the administered dose was recovered in the urine by 72 h post-dosing, suggesting negligible, if any, metabolism; whereas with DETP, ~50% of the orally administered dose was recovered in the urine. The CPF oral dose was likewise rapidly absorbed and metabolized to DEP, TCPy and DETP, with the distribution of metabolites in the urine followed the order: TCPy (22 ± 3 μmol) > DETP (14 ± 2 μmol) > DEP (1.4 ± 0.7 μmol). Based upon the total amount of TCPy detected in the urine a minimum of 63% of the oral CPF dose was absorbed. These studies support the hypotheses that DEP, DETP and TCPy present in the environment can be readily absorbed and eliminated in the urine of rats and potentially humans.« less

  19. Dose estimation for astronauts using dose conversion coefficients calculated with the PHITS code and the ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Sihver, Lembit; Niita, Koji

    2011-03-01

    Absorbed-dose and dose-equivalent rates for astronauts were estimated by multiplying fluence-to-dose conversion coefficients in the units of Gy.cm(2) and Sv.cm(2), respectively, and cosmic-ray fluxes around spacecrafts in the unit of cm(-2) s(-1). The dose conversion coefficients employed in the calculation were evaluated using the general-purpose particle and heavy ion transport code system PHITS coupled to the male and female adult reference computational phantoms, which were released as a common ICRP/ICRU publication. The cosmic-ray fluxes inside and near to spacecrafts were also calculated by PHITS, using simplified geometries. The accuracy of the obtained absorbed-dose and dose-equivalent rates was verified by various experimental data measured both inside and outside spacecrafts. The calculations quantitatively show that the effective doses for astronauts are significantly greater than their corresponding effective dose equivalents, because of the numerical incompatibility between the radiation quality factors and the radiation weighting factors. These results demonstrate the usefulness of dose conversion coefficients in space dosimetry. © Springer-Verlag 2010

  20. A new tissue segmentation method to calculate 3D dose in small animal radiation therapy.

    PubMed

    Noblet, C; Delpon, G; Supiot, S; Potiron, V; Paris, F; Chiavassa, S

    2018-02-26

    In pre-clinical animal experiments, radiation delivery is usually delivered with kV photon beams, in contrast to the MV beams used in clinical irradiation, because of the small size of the animals. At this medium energy range, however, the contribution of the photoelectric effect to absorbed dose is significant. Accurate dose calculation therefore requires a more detailed tissue definition because both density (ρ) and elemental composition (Z eff ) affect the dose distribution. Moreover, when applied to cone beam CT (CBCT) acquisitions, the stoichiometric calibration of HU becomes inefficient as it is designed for highly collimated fan beam CT acquisitions. In this study, we propose an automatic tissue segmentation method of CBCT imaging that assigns both density (ρ) and elemental composition (Z eff ) in small animal dose calculation. The method is based on the relationship found between CBCT number and ρ*Z eff product computed from known materials. Monte Carlo calculations were performed to evaluate the impact of ρZ eff variation on the absorbed dose in tissues. These results led to the creation of a tissue database composed of artificial tissues interpolated from tissue values published by the ICRU. The ρZ eff method was validated by measuring transmitted doses through tissue substitute cylinders and a mouse with EBT3 film. Measurements were compared to the results of the Monte Carlo calculations. The study of the impact of ρZ eff variation over the range of materials, from ρZ eff  = 2 g.cm - 3 (lung) to 27 g.cm - 3 (cortical bone) led to the creation of 125 artificial tissues. For tissue substitute cylinders, the use of ρZ eff method led to maximal and average relative differences between the Monte Carlo results and the EBT3 measurements of 3.6% and 1.6%. Equivalent comparison for the mouse gave maximal and average relative differences of 4.4% and 1.2%, inside the 80% isodose area. Gamma analysis led to a 94.9% success rate in the 10% isodose area with 4% and 0.3 mm criteria in dose and distance. Our new tissue segmentation method was developed for 40kVp CBCT images. Both density and elemental composition are assigned to each voxel by using a relationship between HU and the product ρZ eff . The method, validated by comparing measurements and calculations, enables more accurate small animal dose distribution calculated on low energy CBCT images.

  1. Absorbed dose to water based dosimetry versus air kerma based dosimetry for high-energy photon beams: an experimental study.

    PubMed

    Palmans, Hugo; Nafaa, Laila; De, Jans Jo; Gillis, Sofie; Hoornaert, Marie-Thérèse; Martens, Chantal; Piessens, Marleen; Thierens, Hubert; Van der Plaetsen, Ann; Vynckier, Stefaan

    2002-02-07

    In recent years, a change has been proposed from air kerma based reference dosimetry to absorbed dose based reference dosimetry for all radiotherapy beams of ionizing radiation. In this paper, a dosimetry study is presented in which absorbed dose based dosimetry using recently developed formalisms was compared with air kerma based dosimetry using older formalisms. Three ionization chambers of each of three different types were calibrated in terms of absorbed dose to water and air kerma and sent to five hospitals. There, reference dosimetry with all the chambers was performed in a total of eight high-energy clinical photon beams. The selected chamber types were the NE2571, the PTW-30004 and the Wellhöfer-FC65G (previously Wellhöfer-IC70). Having a graphite wall, they exhibit a stable volume and the presence of an aluminium electrode ensures the robustness of these chambers. The data were analysed with the most important recommendations for clinical dosimetry: IAEA TRS-398, AAPM TG-51, IAEA TRS-277, NCS report-2 (presently recommended in Belgium) and AAPM TG-21. The necessary conversion factors were taken from those protocols, or calculated using the data in the different protocols if data for a chamber type are lacking. Polarity corrections were within 0.1% for all chambers in all beams. Recombination corrections were consistent with theoretical predictions, did not vary within a chamber type and only slightly between different chamber types. The maximum chamber-to-chamber variations of the dose obtained with the different formalisms within the same chamber type were between 0.2% and 0.6% for the NE2571, between 0.2% and 0.6% for the PTW-30004 and 0.1% and 0.3% for the Wellhöfer-FC65G for the different beams. The absorbed dose results for the NE2571 and Wellhöfer-FC65G chambers were in good agreement for all beams and all formalisms. The PTW-30004 chambers gave a small but systematically higher result compared to the result for the NE2571 chambers (on the average 0.1% for IAEA TRS-277, 0.3% for NCS report-2 and AAPM TG-21 and 0.4% for IAEA TRS-398 and AAPM TG-51). Within the air kerma based protocols, the results obtained with the TG-21 protocol were 0.4-0.8% higher mainly due to the differences in the data used. Both absorbed dose to water based formalisms resulted in consistent values within 0.3%. The change from old to new formalisms is discussed together with the traceability of calibration factors obtained at the primary absorbed dose and air kerma standards in the reference beams (60Co). For the particular situation in Belgium (calibrations at the Laboratory for Standard Dosimetry of Ghent) the change amounts to 0.1-0.6%. This is similar to the magnitude of the change determined in other countries.

  2. Evaluation of external exposures of the population of Ozyorsk, Russia, with luminescence measurements of bricks.

    PubMed

    Woda, Clemens; Jacob, P; Ulanovsky, A; Fiedler, I; Mokrov, Y; Rovny, S

    2009-11-01

    Recently discovered historical documents indicate that large releases of noble gases (mainly (41)Ar and radioactive isotopes of Kr and Xe) from the Mayak Production Association (MPA) over the period from 1948 to 1956 may have caused considerable external exposures of both, inhabitants of Ozyorsk and former inhabitants of villages at the upper Techa River. To quantify this exposure, seven brick samples from three buildings in Ozyorsk, located 8-10 km north-northwest from the radioactive gas release points, were taken. The absorbed dose in brick was measured in a depth interval of 3-13 mm below the exposed surface of the bricks by means of the thermoluminescence (TL) and the optically stimulated luminescence (OSL) method. Generally, luminescence properties using TL were more favorable for precise dose determination than using OSL, but within their uncertainties the results from both methods agree well with each other. The absorbed dose due to natural radiation was assessed and subtracted under the assumption of the bricks to be completely dry. The weighted average of the anthropogenic dose for all samples measured by TL and OSL is 10 +/- 9 and 1 +/- 9 mGy, respectively. An upper limit for a possible anthropogenic dose in brick that would not be detected due to the measurement uncertainties is estimated at 24 mGy. This corresponds to an effective dose of about 21 mSv. A similar range of values is obtained in recently published dispersion calculations that were based on reconstructed MPA releases. It is concluded that the release of radioactive noble gases from the radiochemical and reactor plants at Mayak PA did not lead to a significant external exposure of the population of Ozyorsk. In addition, the study demonstrates the detection limit for anthropogenic doses in ca. 60-year-old bricks to be about 24 mGy, if luminescence methods are used.

  3. MO-AB-BRA-03: Calorimetry-Based Absorbed Dose to Water Measurements Using Interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores-Martinez, E; Malin, M; DeWerd, L

    2015-06-15

    Purpose: Interferometry-based calorimetry is a novel technique to measure radiation-induced temperature changes allowing the measurement of absorbed dose to water (ADW). There are no mechanical components in the field. This technique also has the possibility of obtaining 2D dose distributions. The goal of this investigation is to calorimetrically-measure doses between 2.5 and 5 Gy over a single projection in a photon beam using interferometry and compare the results with doses calculated using the TG-51 linac calibration. Methods: ADW was determined by measuring radiation-induced phase shifts (PSs) of light passing through water irradiated with a 6 MV photon beam. A 9×9×9more » cm{sup 3} glass phantom filled with water and placed in an arm of a Michelson interferometer was irradiated with 300, 400, 500 and 600 monitor units. The whole system was thermally insulated to achieve sufficient passive temperature control. The depth of measurement was 4.5 cm with a field size of 7×7 cm{sup 2}. The intensity of the fringe pattern was monitored with a photodiode and used to calculate the time-dependent PS curve. Data was acquired 60 s before and after the irradiation. The radiation-induced PS was calculated by taking the difference in the pre- and post-irradiation drifts extrapolated to the midpoint of the irradiation. Results were compared to computed doses. Results: Average comparison of calculated ADW values with interferometry-measured values showed an agreement to within 9.5%. k=1 uncertainties were 4.3% for calculations and 14.7% for measurements. The dominant source of uncertainty for the measurements was a temperature drift of about 30 µK/s caused by heat conduction from the interferometer’s surroundings. Conclusion: This work presented the first absolute ADW measurements using interferometry in the dose range of linac-based radiotherapy. Future work to improve measurements’ reproducibility includes the implementation of active thermal control techniques.« less

  4. Correlation of Radiation Dose Estimates by DIC with the METREPOL Hematological Classes of Disease Severity.

    PubMed

    Port, M; Pieper, B; Dörr, H D; Hübsch, A; Majewski, M; Abend, M

    2018-05-01

    The degree of severity of hematologic acute radiation syndrome (HARS) may vary across the range of radiation doses, such that dose alone may be a less reliable predictor of clinical course. We sought to elucidate the relationship between absorbed dose and risk of clinically relevant HARS in humans. We used the database SEARCH (System for Evaluation and Archiving of Radiation Accidents based on Case Histories), which contains the histories of radiation accident victims. From 153 cases we extracted data on dose estimates using the dicentric assay to measure individual biological dosimetry. The data were analyzed according to the corresponding hematological response categories of clinical significance (H1-4). These categories are derived from the medical treatment protocols for radiation accident victims (METREPOL) and represent the clinical outcome of HARS based on severity categories ranging from 1-4. In addition, the category H0 represents a post-exposure hematological response that is within the normal range for nonexposed individuals. Age at exposure, gender and ethnicity were considered as potential confounders in unconditional cumulative logistic regression analysis. In most cases, victims were Caucasian (82.4%) and male (92.8%), who originated from either the Chernobyl (69.3%) or Goiânia (10.5%) accident, and nearly 60% were aged 20-40 years at time of exposure. All individuals were whole-body exposed (mean 3.8 Gy, stdev ±3.1), and single exposures were predominantly reported (79%). Seventy percent of victims in category H0 were exposed to ≤1 Gy, with rapidly decreasing proportions of H0 seen at doses up to 5 Gy. There were few HARS H4 cases reported at exposed dose of 1-2 Gy, while 82% of H4 cases received doses of >5 Gy. HARS H1-3 cases varied among dose ranges from 1-5 Gy. In summary, single whole-body radiation doses <1 Gy and >5 Gy corresponded in general with H0 and H3-4, respectively, and this was consistent with medical expectations. This underlines the usefulness of dose estimates for HARS prediction. However, whole-body doses between 1-5 Gy poorly corresponded to HARS H1-3. The dose range of 1-5 Gy was of limited value for medical decision-making regarding, e.g., hospitalization for H2-3, but not H1 and treatment decisions that differ between H1-3. Also, there were some H0 cases at high doses and H2-4 cases at low doses, thereby challenging an individual recommendation based solely on dose.

  5. Chlorpyrifos accumulation patterns for child-accessible surfaces and objects and urinary metabolite excretion by children for 2 weeks after crack-and-crevice application.

    PubMed

    Hore, Paromita; Robson, Mark; Freeman, Natalie; Zhang, Jim; Wartenberg, Daniel; Ozkaynak, Halûk; Tulve, Nicolle; Sheldon, Linda; Needham, Larry; Barr, Dana; Lioy, Paul J

    2005-02-01

    The Children's Post-Pesticide Application Exposure Study (CPPAES) was conducted to look at the distribution of chlorpyrifos within a home environment for 2 weeks after a routine professional crack-and-crevice application and to determine the amount of the chlorpyrifos that is absorbed by a child living within the home. Ten residential homes with a 2- to 5-year-old child in each were selected for study, and the homes were treated with chlorpyrifos. Pesticide measurements were made from the indoor air, indoor surfaces, and plush toys. In addition, periodic morning urine samples were collected from each of the children throughout the 2-week period. We analyzed the urine samples for 3,5,6-trichloropyridinol, the primary urinary metabolite of chlorpyrifos, and used the results to estimate the children's absorbed dose. Average chlorpyrifos levels in the indoor air and surfaces were 26 (pretreatment)/120 (posttreatment) ng/m3 and 0.48 (pretreatment)/2.8 (posttreatment) ng/cm2, respectively, reaching peak levels between days 0 and 2; subsequently, concentrations decreased throughout the 2-week period. Chlorpyrifos in/on the plush toys ranged from 7.3 to 1,949 ng/toy postapplication, with concentrations increasing throughout the 2-week period, demonstrating a cumulative adsorption/absorption process indoors. The daily amount of chlorpyrifos estimated to be absorbed by the CPPAES children postapplication ranged from 0.04 to 4.8 microg/kg/day. During the 2 weeks after the crack-and-crevice application, there was no significant increase in the amount of chlorpyrifos absorbed by the CPPAES children.

  6. Influence of Exposure and Toxicokinetics on Measures of Aquatic Toxicity for Organic Contaminants: A Case Study Review

    PubMed Central

    Landrum, Peter F; Chapman, Peter M; Neff, Jerry; Page, David S

    2013-01-01

    This theoretical and case study review of dynamic exposures of aquatic organisms to organic contaminants examines variables important for interpreting exposure and therefore toxicity. The timing and magnitude of the absorbed dose change when the dynamics of exposure change. Thus, the dose metric for interpreting toxic responses observed during such exposure conditions is generally limited to the specific experiment and cannot be extrapolated to either other experiments with different exposure dynamics or to field exposures where exposure dynamics usually are different. This is particularly true for mixture exposures, for which the concentration and composition and, therefore, the timing and magnitude of exposure to individual components of different potency and potentially different mechanisms of action can vary. Aquatic toxicology needs studies that develop temporal thresholds for absorbed toxicant doses to allow for better extrapolation between conditions of dynamic exposure. Improved experimental designs are required that include high-quality temporal measures of both the exposure and the absorbed dose to allow better interpretation of data. For the short term, initial water concentration can be considered a conservative measure of exposure, although the extent to which this is true cannot be estimated specifically unless the dynamics of exposure as well as the toxicokinetics of the chemicals in the exposure scenario for the organism of interest are known. A better, but still limited, metric for interpreting the exposure and, therefore, toxicity is the peak absorbed dose, although this neglects toxicodynamics, requires appropriate temporal measures of accumulated dose to determine the peak concentration, and requires temporal thresholds for critical body residue for each component of the mixture. Integr Environ Assess Manag 2013; 9: 196–210. © 2012 SETAC PMID:23229376

  7. Assessment of exposure to pesticides during mixing/loading and spraying of tomatoes in the open field.

    PubMed

    Aprea, Maria Cristina; Bosi, Anna; Manara, Michele; Mazzocchi, Barbara; Pompini, Alessandra; Sormani, Francesca; Lunghini, Liana; Sciarra, Gianfranco

    2016-01-01

    Some evidence of exposure-response of metolachlor and pendimethalin for lung cancer and an association of metribuzin with risk of glioma have been reported. The primary objectives in this study were to evaluate exposure and occupational risk during mixing/loading of pesticides and during their application to tomatoes cultivated in open fields. Sixteen farmers were sampled. Respiratory exposure was estimated by personal air sampling using fiberglass filters in a IOM device. Dermal exposure was assessed using skin pads and hand washing. Absorbed doses were estimated assuming 100% lung retention, and 50% or 10% skin absorption for metribuzin, and pendimethalin and metolachlor, respectively. The three pesticides were quantified by gas chromatography tandem mass spectrometry in all matrices. Metolachlor was used as a tracer of contamination of clothes and tractors unrelated to the exposure monitored. Respiratory exposure to metribuzin, used in granular form, was on average more than one order of magnitude higher than exposure to pendimethalin, used in the form of microencapsulated liquid. The actual doses were 0.067-8.08 µg/kg bw, 0.420-12.6 µg/kg bw, and 0.003-0.877 µg/kg bw for pendimethalin, metribuzin, and metolachlor, respectively. Dermal exposure was about 88% of the actual dose for metribuzin and more than 95%, for pendimethalin and metolachlor. For risk assessment, the total absorbed doses (sum of respiratory and skin absorbed doses) were compared with the AOEL for each compound. The actual and absorbed doses of the three pesticides were always lower than the acceptable operator exposure level (AOEL), which are reported to be 234 µg/kg bw, 20 µg/kg bw, and 150 µg/kg bw for pendimethalin, metribuzin, and metolachlor, respectively. In any case, personal protective equipment and spraying devices should be chosen with care to minimize exposure.

  8. Calculated organ doses using Monte Carlo simulations in a reference male phantom undergoing HDR brachytherapy applied to localized prostate carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candela-Juan, Cristian; Perez-Calatayud, Jose; Ballester, Facundo

    Purpose: The aim of this study was to obtain equivalent doses in radiosensitive organs (aside from the bladder and rectum) when applying high-dose-rate (HDR) brachytherapy to a localized prostate carcinoma using {sup 60}Co or {sup 192}Ir sources. These data are compared with results in a water phantom and with expected values in an infinite water medium. A comparison with reported values from proton therapy and intensity-modulated radiation therapy (IMRT) is also provided. Methods: Monte Carlo simulations in Geant4 were performed using a voxelized phantom described in International Commission on Radiological Protection (ICRP) Publication 110, which reproduces masses and shapes frommore » an adult reference man defined in ICRP Publication 89. Point sources of {sup 60}Co or {sup 192}Ir with photon energy spectra corresponding to those exiting their capsules were placed in the center of the prostate, and equivalent doses per clinical absorbed dose in this target organ were obtained in several radiosensitive organs. Values were corrected to account for clinical circumstances with the source located at various positions with differing dwell times throughout the prostate. This was repeated for a homogeneous water phantom. Results: For the nearest organs considered (bladder, rectum, testes, small intestine, and colon), equivalent doses given by {sup 60}Co source were smaller (8%-19%) than from {sup 192}Ir. However, as the distance increases, the more penetrating gamma rays produced by {sup 60}Co deliver higher organ equivalent doses. The overall result is that effective dose per clinical absorbed dose from a {sup 60}Co source (11.1 mSv/Gy) is lower than from a {sup 192}Ir source (13.2 mSv/Gy). On the other hand, equivalent doses were the same in the tissue and the homogeneous water phantom for those soft tissues closer to the prostate than about 30 cm. As the distance increased, the differences of photoelectric effect in water and soft tissue, and appearance of other materials such as air, bone, or lungs, produced variations between both phantoms which were at most 35% in the considered organ equivalent doses. Finally, effective doses per clinical absorbed dose from IMRT and proton therapy were comparable to those from both brachytherapy sources, with brachytherapy being advantageous over external beam radiation therapy for the furthest organs. Conclusions: A database of organ equivalent doses when applying HDR brachytherapy to the prostate with either {sup 60}Co or {sup 192}Ir is provided. According to physical considerations, {sup 192}Ir is dosimetrically advantageous over {sup 60}Co sources at large distances, but not in the closest organs. Damage to distant healthy organs per clinical absorbed dose is lower with brachytherapy than with IMRT or protons, although the overall effective dose per Gy given to the prostate seems very similar. Given that there are several possible fractionation schemes, which result in different total amounts of therapeutic absorbed dose, advantage of a radiation treatment (according to equivalent dose to healthy organs) is treatment and facility dependent.« less

  9. Measurements of radioactivity and dose assessments in some building materials in Bitlis, Turkey.

    PubMed

    Kayakökü, Halime; Karatepe, Şule; Doğru, Mahmut

    2016-09-01

    In this study, samples of perlite, pumice and Ahlat stones (Ignimbrite) extracted from mines in Bitlis and samples of other building materials produced in facilities in Bitlis were collected and analyzed. Activity concentrations of (226)Ra, (232)Th and (40)K in samples of building materials were measured using NaI detector (NaI(Tl)) with an efficiency of 24%. The radon measurements of building material samples were determined using CR-39 nuclear track detectors. (226)Ra, (232)Th and (40)K radioactivity concentrations ranged from (29.6±5.9 to 228.2±38.1Bq/kg), (10.8±5.4 to 95.5±26.1Bq/kg) and (249.3±124.7 to 2580.1±266.9Bq/kg), respectively. Radon concentration, radium equivalent activities, absorbed dose rate, excess lifetime cancer risk and the values of hazard indices were calculated for the measured samples to assess the radiation hazards arising from using those materials in the construction of dwellings. Radon concentration ranged between 89.2±12.0Bq/m(3) and 1141.0±225.0Bq/m(3). It was determined that Raeq values of samples conformed to world standards except for perlite and single samples of brick and Ahlat stone. Calculated values of absorbed dose rate ranged from 81.3±20.5 to 420.6±42.8nGy/h. ELCR values ranged from (1.8±0.3)×10(-3) to (9.0±1.0)×10(-3). All samples had ELCR values higher than the world average. The values of Hin and Hex varied from 0.35±0.11 to 1.78±0.18 and from 0.37±0.09 to 1.17±0.13, respectively. The results were compared with standard radioactivity values determined by international organizations and with similar studies. There would be a radiation risk for people living in buildings made of perlite, Ahlat-1 and Brick-3. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The NUKDOS software for treatment planning in molecular radiotherapy.

    PubMed

    Kletting, Peter; Schimmel, Sebastian; Hänscheid, Heribert; Luster, Markus; Fernández, Maria; Nosske, Dietmar; Lassmann, Michael; Glatting, Gerhard

    2015-09-01

    The aim of this work was the development of a software tool for treatment planning prior to molecular radiotherapy, which comprises all functionality to objectively determine the activity to administer and the pertaining absorbed doses (including the corresponding error) based on a series of gamma camera images and one SPECT/CT or probe data. NUKDOS was developed in MATLAB. The workflow is based on the MIRD formalism For determination of the tissue or organ pharmacokinetics, gamma camera images as well as probe, urine, serum and blood activity data can be processed. To estimate the time-integrated activity coefficients (TIAC), sums of exponentials are fitted to the time activity data and integrated analytically. To obtain the TIAC on the voxel level, the voxel activity distribution from the quantitative 3D SPECT/CT (or PET/CT) is used for scaling and weighting the TIAC derived from the 2D organ data. The voxel S-values are automatically calculated based on the voxel-size of the image and the therapeutic nuclide ((90)Y, (131)I or (177)Lu). The absorbed dose coefficients are computed by convolution of the voxel TIAC and the voxel S-values. The activity to administer and the pertaining absorbed doses are determined by entering the absorbed dose for the organ at risk. The overall error of the calculated absorbed doses is determined by Gaussian error propagation. NUKDOS was tested for the operation systems Windows(®) 7 (64 Bit) and 8 (64 Bit). The results of each working step were compared to commercially available (SAAMII, OLINDA/EXM) and in-house (UlmDOS) software. The application of the software is demonstrated using examples form peptide receptor radionuclide therapy (PRRT) and from radioiodine therapy of benign thyroid diseases. For the example from PRRT, the calculated activity to administer differed by 4% comparing NUKDOS and the final result using UlmDos, SAAMII and OLINDA/EXM sequentially. The absorbed dose for the spleen and tumour differed by 7% and 8%, respectively. The results from the example from radioiodine therapy of benign thyroid diseases and the example given in the latest corresponding SOP were identical. The implemented, objective methods facilitate accurate and reproducible results. The software is freely available. Copyright © 2015. Published by Elsevier GmbH.

  11. Skeletal dosimetry based on µCT images of trabecular bone: update and comparisons

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Cassola, V. F.; Vieira, J. W.; Khoury, H. J.; de Oliveira Lira, C. A. B.; Robson Brown, K.

    2012-06-01

    Two skeletal dosimetry methods using µCT images of human bone have recently been developed: the paired-image radiation transport (PIRT) model introduced by researchers at the University of Florida (UF) in the US and the systematic-periodic cluster (SPC) method developed by researchers at the Federal University of Pernambuco in Brazil. Both methods use µCT images of trabecular bone (TB) to model spongiosa regions of human bones containing marrow cavities segmented into soft tissue volumes of active marrow (AM), trabecular inactive marrow and the bone endosteum (BE), which is a 50 µm thick layer of marrow on all TB surfaces and on cortical bone surfaces next to TB as well as inside the medullary cavities. With respect to the radiation absorbed dose, the AM and the BE are sensitive soft tissues for the induction of leukaemia and bone cancer, respectively. The two methods differ mainly with respect to the number of bone sites and the size of the µCT images used in Monte Carlo calculations and they apply different methods to simulate exposure from radiation sources located outside the skeleton. The PIRT method calculates dosimetric quantities in isolated human bones while the SPC method uses human bones embedded in the body of a phantom which contains all relevant organs and soft tissues. Consequently, the SPC method calculates absorbed dose to the AM and to the BE from particles emitted by radionuclides concentrated in organs or from radiation sources located outside the human body in one calculation step. In order to allow for similar calculations of AM and BE absorbed doses using the PIRT method, the so-called dose response functions (DRFs) have been developed based on absorbed fractions (AFs) of energy for electrons isotropically emitted in skeletal tissues. The DRFs can be used to transform the photon fluence in homogeneous spongiosa regions into absorbed dose to AM and BE. This paper will compare AM and BE AFs of energy from electrons emitted in skeletal tissues calculated with the SPC and the PIRT method and AM and BE absorbed doses and AFs calculated with PIRT-based DRFs and with the SPC method. The results calculated with the two skeletal dosimetry methods agree well if one takes the differences between the two models properly into account. Additionally, the SPC method will be updated with larger µCT images of TB.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Bria M.; Brady, Samuel L., E-mail: samuel.brady@stjude.org; Kaufman, Robert A.

    Purpose: To investigate the correlation of size-specific dose estimate (SSDE) with absorbed organ dose, and to develop a simple methodology for estimating patient organ dose in a pediatric population (5–55 kg). Methods: Four physical anthropomorphic phantoms representing a range of pediatric body habitus were scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations to determine absolute organ dose. Phantom absolute organ dose was divided by phantom SSDE to determine correlation between organ dose and SSDE. Organ dose correlation factors (CF{sub SSDE}{sup organ}) were then multiplied by patient-specific SSDE to estimate patient organ dose. Themore » CF{sub SSDE}{sup organ} were used to retrospectively estimate individual organ doses from 352 chest and 241 abdominopelvic pediatric CT examinations, where mean patient weight was 22 kg ± 15 (range 5–55 kg), and mean patient age was 6 yrs ± 5 (range 4 months to 23 yrs). Patient organ dose estimates were compared to published pediatric Monte Carlo study results. Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm; thus, showing appropriate scalability of the phantoms across the entire pediatric population in this study. IndividualCF{sub SSDE}{sup organ} were determined for a total of 23 organs in the chest and abdominopelvic region across nine weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7–1.4) and abdominopelvic region (average 0.9; range 0.7–1.3) was near unity. For organ/tissue that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1–0.4) for both the chest and abdominopelvic regions, respectively. A means to estimate patient organ dose was demonstrated. Calculated patient organ dose, using patient SSDE and CF{sub SSDE}{sup organ}, was compared to previously published pediatric patient doses that accounted for patient size in their dose calculation, and was found to agree in the chest to better than an average of 5% (27.6/26.2) and in the abdominopelvic region to better than 2% (73.4/75.0). Conclusions: For organs fully covered within the scan volume, the average correlation of SSDE and organ absolute dose was found to be better than ±10%. In addition, this study provides a complete list of organ dose correlation factors (CF{sub SSDE}{sup organ}) for the chest and abdominopelvic regions, and describes a simple methodology to estimate individual pediatric patient organ dose based on patient SSDE.« less

  13. The thermoluminescence response of doped SiO2 optical fibres subjected to photon and electron irradiations.

    PubMed

    Hashim, S; Al-Ahbabi, S; Bradley, D A; Webb, M; Jeynes, C; Ramli, A T; Wagiran, H

    2009-03-01

    Modern linear accelerators, the predominant teletherapy machine in major radiotherapy centres worldwide, provide multiple electron and photon beam energies. To obtain reasonable treatment times, intense electron beam currents are achievable. In association with this capability, there is considerable demand to validate patient dose using systems of dosimetry offering characteristics that include good spatial resolution, high precision and accuracy. Present interest is in the thermoluminescence response and dosimetric utility of commercially available doped optical fibres. The important parameter for obtaining the highest TL yield during this study is to know the dopant concentration of the SiO2 fibre because during the production of the optical fibres, the dopants tend to diffuse. To achieve this aim, proton-induced X-ray emission (PIXE), which has no depth resolution but can unambiguously identify elements and analyse for trace elements with detection limits approaching microg/g, was used. For Al-doped fibres, the dopant concentration in the range 0.98-2.93 mol% have been estimated, with equivalent range for Ge-doped fibres being 0.53-0.71 mol%. In making central-axis irradiation measurements a solid water phantom was used. For 6-MV photons and electron energies in the range 6, 9 and 12 MeV, a source to surface distance of 100 cm was used, with a dose rate of 400 cGy/min for photons and electrons. The TL measurements show a linear dose-response over the delivered range of absorbed dose from 1 to 4 Gy. Fading was found to be minimal, less than 10% over five days subsequent to irradiation. The minimum detectable dose for 6-MV photons was found to be 4, 30 and 900 microGy for TLD-100 chips, Ge- and Al-doped fibres, respectively. For 6-, 9- and 12-MeV electron energies, the minimum detectable dose were in the range 3-5, 30-50 and 800-1400 microGy for TLD-100 chip, Ge-doped and Al-doped fibres, respectively.

  14. Characterization and application of two kinds of ESR dosimeters

    NASA Astrophysics Data System (ADS)

    Marchioni, Eric; Pabst, Jean-Yves; Kuntz, Florent

    2002-09-01

    Many previous papers described the use of low-concentration alanine pellets, powder or films for industrial high-dose application, but very few authors presented applications of such dosimeters to the low-dose range used for wastewater, flowers or radiotherapy treatment. The present paper describes the large-scale manufacturing process of high-concentration alanine pellets used for radiotherapy dose control in some French hospitals. The fading process due to sunlight exposure has been evaluated by means of direct UV light irradiation. The major disadvantage of alanine is its strong solubility in water (the pellets are completely dissolved when immersed for 10 min in pure water). The use of barium sulphate, not soluble in water, made it possible to carry out dosimetric measurements even when the dosimeter is completely immersed in water or stored after irradiation in high humidity levels. The paper presents manufacturing process of barium sulphate pellets, their dosimetric characteristics and one application of this dosimeter for the control of the absorbed doses during wastewater treatments.

  15. Grain boundary resistance to amorphization of nanocrystalline silicon carbide

    PubMed Central

    Chen, Dong; Gao, Fei; Liu, Bo

    2015-01-01

    Under the C displacement condition, we have used molecular dynamics simulation to examine the effects of grain boundaries (GBs) on the amorphization of nanocrystalline silicon carbide (nc-SiC) by point defect accumulation. The results show that the interstitials are preferentially absorbed and accumulated at GBs that provide the sinks for defect annihilation at low doses, but also driving force to initiate amorphization in the nc-SiC at higher doses. The majority of surviving defects are C interstitials, as either C-Si or C-C dumbbells. The concentration of defect clusters increases with increasing dose, and their distributions are mainly observed along the GBs. Especially these small clusters can subsequently coalesce and form amorphous domains at the GBs during the accumulation of carbon defects. A comparison between displacement amorphized nc-SiC and melt-quenched single crystal SiC shows the similar topological features. At a dose of 0.55 displacements per atom (dpa), the pair correlation function lacks long range order, demonstrating that the nc-SiC is fully amorphilized. PMID:26558694

  16. Grain boundary resistance to amorphization of nanocrystalline silicon carbide.

    PubMed

    Chen, Dong; Gao, Fei; Liu, Bo

    2015-11-12

    Under the C displacement condition, we have used molecular dynamics simulation to examine the effects of grain boundaries (GBs) on the amorphization of nanocrystalline silicon carbide (nc-SiC) by point defect accumulation. The results show that the interstitials are preferentially absorbed and accumulated at GBs that provide the sinks for defect annihilation at low doses, but also driving force to initiate amorphization in the nc-SiC at higher doses. The majority of surviving defects are C interstitials, as either C-Si or C-C dumbbells. The concentration of defect clusters increases with increasing dose, and their distributions are mainly observed along the GBs. Especially these small clusters can subsequently coalesce and form amorphous domains at the GBs during the accumulation of carbon defects. A comparison between displacement amorphized nc-SiC and melt-quenched single crystal SiC shows the similar topological features. At a dose of 0.55 displacements per atom (dpa), the pair correlation function lacks long range order, demonstrating that the nc-SiC is fully amorphilized.

  17. Lead shot toxicity to passerines

    USGS Publications Warehouse

    Vyas, N.B.; Spann, J.W.; Heinz, G.H.

    2001-01-01

    This study evaluated the toxicity of a single size 7.5 lead shot to passerines. No mortalities or signs of plumbism were observed in dosed cowbirds (Molothrus ater) fed a commercial diet, but when given a more natural diet, three of 10 dosed birds died within 1 day. For all survivors from which shot were recovered, all but one excreted the shot within 24 h of dosing, whereas, the dead birds retained their shot. Shot erosion was significantly greater (P < 0.05) when weathered shot were ingested compared to new shot, and the greatest erosion was observed in those birds that died (2.2-9.7%). Blood lead concentrations of birds dosed with new shot were not significantly different (P=0.14) from those of birds exposed to weathered shot. Liver lead concentrations of birds that died ranged from 71 to 137 ppm, dry weight. Despite the short amount of time the shot was retained, songbirds may absorb sufficient lead to compromise their survival.

  18. Tolrestat kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, D.R.; Kraml, M.; Cayen, M.N.

    The kinetics of tolrestat, a potent inhibitor of aldose reductase, were examined. Serum concentrations of tolrestat and of total /sup 14/C were measured after dosing normal subjects and subjects with diabetes with /sup 14/C-labeled tolrestat. In normal subjects, tolrestat was rapidly absorbed and disappearance from serum was biphasic. Distribution and elimination t 1/2s were approximately 2 and 10 to 12 hr, respectively, after single and multiple doses. Unchanged tolrestat accounted for the major portion of /sup 14/C in serum. Radioactivity was rapidly and completely excreted in urine and feces in an approximate ratio of 2:1. Findings were much the samemore » in subjects with diabetes. In normal subjects, the kinetics of oral tolrestat were independent of dose in the 10 to 800 mg range. Repetitive dosing did not result in unexpected cumulation. Tolrestat was more than 99% bound to serum protein; it did not compete with warfarin for binding sites but was displaced to some extent by high concentrations of tolbutamide or salicylate.« less

  19. The reactivity of natural organic matter to disinfection by-products formation and its relation to specific ultraviolet absorbance.

    PubMed

    Kitis, M; Karanfil, T; Kilduff, J E; Wigton, A

    2001-01-01

    Five natural waters with a broad range of DOC concentrations were fractionated using various coal- and wood-based granular activated carbons (GAC) and alum coagulation. Adsorption and alum coagulation fractionated NOM solutions by preferentially removing components having high specific ultraviolet absorbance (SUVA). UV absorbing fractions of NOM were found to be the major contributors to DBP formation. SUVA appears to be an accurate predictor of reactivity with chlorine in terms of DBP yield; however, it was also found that low-SUVA components of NOM have higher bromine incorporation. SUVA has promise as a parameter for on-line monitoring and control of DBP formation in practical applications; however, the effects of bromide concentration may also need to be considered. Understanding how reactivity is correlated to SUVA may allow utilities to optimize the degree of treatment required to comply with DBP regulations. The reactive components that require removal, and the degree of treatment necessary to accomplish this removal, may be directly obtained from the relationship between SUVA removal and the degree of treatment (e.g., alum dose).

  20. The leaded apron revisited: does it reduce gonadal radiation dose in dental radiology?

    PubMed

    Wood, R E; Harris, A M; van der Merwe, E J; Nortjé, C J

    1991-05-01

    A tissue-equivalent anthropomorphic human phantom was used with a lithium fluoride thermoluminescent dosimetry system to evaluate the radiation absorbed dose to the ovarian and testicular region during dental radiologic procedures. Measurements were made with and without personal lead shielding devices consisting of thyroid collar and apron of 0.25 mm lead thickness equivalence. The radiation absorbed dose with or without lead shielding did not differ significantly from control dosimeters in vertex occlusal and periapical views (p greater than 0.05). Personal lead shielding devices did reduce gonadal dose in the case of accidental exposure (p less than 0.05). A leaded apron of 0.25 mm lead thickness equivalent was permeable to radiation in direct exposure testing.

  1. The advantages of absorbed-dose calibration factors.

    PubMed

    Rogers, D W

    1992-01-01

    A formalism for clinical external beam dosimetry based on use of ion chamber absorbed-dose calibration factors is outlined in the context and notation of the AAPM TG-21 protocol. It is shown that basing clinical dosimetry on absorbed-dose calibration factors ND leads to considerable simplification and reduced uncertainty in dose measurement. In keeping with a protocol which is used in Germany, a quantity kQ is defined which relates an absorbed-dose calibration factor in a beam of quality Q0 to that in a beam of quality Q. For 38 cylindrical ion chambers, two sets of values are presented for ND/NX and Ngas/ND and for kQ for photon beams with beam quality specified by the TPR20(10) ratio. One set is based on TG-21's protocol to allow the new formalism to be used while maintaining equivalence to the TG-21 protocol. To demonstrate the magnitude of the overall error in the TG-21 protocol, the other set uses corrected versions of the TG-21 equations and the more consistent physical data of the IAEA Code of Practice. Comparisons are made to procedures based on air-kerma or exposure calibration factors and it is shown that accuracy and simplicity are gained by avoiding the determination of Ngas from NX. It is also shown that the kQ approach simplifies the use of plastic phantoms in photon beams since kQ values change by less than 0.6% compared to those in water although an overall correction factor of 0.973 is needed to go from absorbed dose in water calibration factors to those in PMMA or polystyrene. Values of kQ calculated using the IAEA Code of Practice are presented but are shown to be anomalous because of the way the effective point of measurement changes for 60Co beams. In photon beams the major difference between the IAEA Code of Practice and the corrected AAPM TG-21 protocol is shown to be the Prepl correction factor. Calculated kQ curves and three parameter equations for them are presented for each wall material and are shown to represent accurately the kQ curve for all ion chambers in this study with a wall of that specified material and a thickness less than 0.25 g/cm2. Values of kQ can be measured using the primary standards for absorbed dose in photon beams.

  2. Concentrations of 226Ra, 232Th and 40K in industrial kaolinized granite.

    PubMed

    Todorović, Nataša; Hansman, Jan; Mrđa, Dušan; Nikolov, Jovana; Kardos, Richárd; Krmar, Miodrag

    2017-03-01

    Activity concentrations of 226 Ra, 232 Th and 4 0 K in 120 kaolinized granite samples imported in Serbia from the Motajica mine, Bosnia and Herzegovina, were measured. The 226 Ra concentration ranged from 61 to 319 Bq kg -1 , the 232 Th from 44 to 272 Bq kg -1 , and the 4 0 K from 590 to 1470 Bq kg -1 . The frequency distribution of 4 0 K concentrations was near-Gaussian, where those of 226 Ra and 232 Th were right-skewed. In 6 samples, the gamma index, I, was higher than 2, which exceeds the exemption dose criterion (0.3 mSv y -1 ). The absorbed dose rate and annual effective doses for workers in the ceramic industries in Serbia who worked with kaolinized granite were below levels of concern. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Bioavailability of suppository acetaminophen in healthy and hospitalized ill dogs.

    PubMed

    Sikina, E R; Bach, J F; Lin, Z; Gehring, R; KuKanich, B

    2018-05-13

    To determine the plasma pharmacokinetics of suppository acetaminophen (APAP) in healthy dogs and clinically ill dogs. This prospective study used six healthy client-owned and 20 clinically ill hospitalized dogs. The healthy dogs were randomized by coin flip to receive APAP orally or as a suppository in crossover study design. Blood samples were collected up to 10 hr after APAP dosing. The hospitalized dogs were administered APAP as a suppository, and blood collected at 2 and 6 hr after dosing. Plasma samples were analyzed by ultra-performance liquid chromatography with triple quadrupole mass spectrometry. In healthy dogs, oral APAP maximal concentration (C MAX =2.69 μg/ml) was reached quickly (T MAX =1.04 hr) and eliminated rapidly (T1/2 = 1.81 hr). Suppository APAP was rapidly, but variably absorbed (C MAX =0.52 μg/ml T MAX =0.67 hr) and eliminated (T 1/2  = 3.21 hr). The relative (to oral) fraction of the suppository dose absorbed was 30% (range <1%-67%). In hospitalized ill dogs, the suppository APAP mean plasma concentration at 2 hr and 6 hr was 1.317 μg/ml and 0.283 μg/ml. Nonlinear mixed-effects modeling did not identify significant covariates affecting variability and was similar to noncompartmental results. Results supported that oral and suppository acetaminophen in healthy and clinical dogs did not reach or sustain concentrations associated with efficacy. Further studies performed on different doses are needed. © 2018 John Wiley & Sons Ltd.

  4. SU-E-T-507: Internal Dosimetry in Nuclear Medicine Using GATE and XCAT Phantom: A Simulation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallahpoor, M; Abbasi, M; Sen, A

    Purpose Monte Carlo simulations are routinely used for internal dosimetry studies. These studies are conducted with humanoid phantoms such as the XCAT phantom. In this abstract we present the absorbed doses for various pairs of source and target organs using three common radiotracers in nuclear medicine. Methods The GATE software package is used for the Monte Carlo simulations. A typical female XCAT phantom is used as the input. Three radiotracers 153Sm, 131I and 99mTc are studied. The Specific Absorbed Fraction (SAF) for gamma rays (99mTc, 153Sm and 131I) and Specific Fraction (SF) for beta particles (153Sm and 131I) are calculatedmore » for all 100 pairs of source target organs including brain, liver, lung, pancreas, kidney, adrenal, spleen, rib bone, bladder and ovaries. Results The source organs themselves gain the highest absorbed dose as compared to other organs. The dose is found to be inversely proportional to distance from the source organ. In SAF results of 153Sm, when the source organ is lung, the rib bone, gain 0.0730 (Kg-1) that is more than lung itself. Conclusion The absorbed dose for various organs was studied in terms of SAF and SF. Such studies hold importance for future therapeutic procedures and optimization of induced radiotracer.« less

  5. Dose response evaluation of a low-density normoxic polymer gel dosimeter using MRI

    NASA Astrophysics Data System (ADS)

    Haraldsson, P.; Karlsson, A.; Wieslander, E.; Gustavsson, H.; Bäck, S. Å. J.

    2006-02-01

    A low-density (~0.6 g cm-3) normoxic polymer gel, containing the antioxidant tetrakis (hydroxymethyl) phosponium (THP), has been investigated with respect to basic absorbed dose response characteristics. The low density was obtained by mixing the gel with expanded polystyrene spheres. The depth dose data for 6 and 18 MV photons were compared with Monte Carlo calculations. A large volume phantom was irradiated in order to study the 3D dose distribution from a 6 MV field. Evaluation of the gel was carried out using magnetic resonance imaging. An approximately linear response was obtained for 1/T2 versus dose in the dose range of 2 to 8 Gy. A small decrease in the dose response was observed for increasing concentrations of THP. A good agreement between measured and Monte Carlo calculated data was obained, both for test tubes and the larger 3D phantom. It was shown that a normoxic polymer gel with a reduced density could be obtained by adding expanded polystyrene spheres. In order to get reliable results, it is very important to have a uniform distribution of the gel and expanded polystyrene spheres in the phantom volume.

  6. Study the Characterization of Spectral Absorbance on Irradiated Milk Protein

    NASA Astrophysics Data System (ADS)

    Fohely, F.; Suardi, N.

    2018-04-01

    The milk has been adopted as a structural nature food for a long era since it is containing most of the growth factors, protective agents, and enzymes needed for the body. a few attempts have been conducted to treat the dairy products especially raw milk by the means of ionizing radiation. as its production has been an expanding industry for many years due to the high demands from the consumers worldwide, there is still some doubt about preserving these products by irradiation. In this work, a preliminary effort to describe the influences of ionizing radiation on raw milk’s protein will be devoted to measuring the spectral absorbance of the total protein (after subjected to varied radiation doses) by UV-VIS-NIR spectroscopy analysis. The absorbance spectrum then analyzed based on absorbance spectra of organic compounds. A comparison is made between the effects of different radiation doses to estimate the influence in milk’s structure.

  7. Microionization chamber for reference dosimetry in IMRT verification: clinical implications on OAR dosimetric errors

    NASA Astrophysics Data System (ADS)

    Sánchez-Doblado, Francisco; Capote, Roberto; Leal, Antonio; Roselló, Joan V.; Lagares, Juan I.; Arráns, Rafael; Hartmann, Günther H.

    2005-03-01

    Intensity modulated radiotherapy (IMRT) has become a treatment of choice in many oncological institutions. Small fields or beamlets with sizes of 1 to 5 cm2 are now routinely used in IMRT delivery. Therefore small ionization chambers (IC) with sensitive volumes <=0.1 cm3are generally used for dose verification of an IMRT treatment. The measurement conditions during verification may be quite different from reference conditions normally encountered in clinical beam calibration, so dosimetry of these narrow photon beams pertains to the so-called non-reference conditions for beam calibration. This work aims at estimating the error made when measuring the organ at risk's (OAR) absolute dose by a micro ion chamber (μIC) in a typical IMRT treatment. The dose error comes from the assumption that the dosimetric parameters determining the absolute dose are the same as for the reference conditions. We have selected two clinical cases, treated by IMRT, for our dose error evaluations. Detailed geometrical simulation of the μIC and the dose verification set-up was performed. The Monte Carlo (MC) simulation allows us to calculate the dose measured by the chamber as a dose averaged over the air cavity within the ion-chamber active volume (Dair). The absorbed dose to water (Dwater) is derived as the dose deposited inside the same volume, in the same geometrical position, filled and surrounded by water in the absence of the ion chamber. Therefore, the Dwater/Dair dose ratio is the MC estimator of the total correction factor needed to convert the absorbed dose in air into the absorbed dose in water. The dose ratio was calculated for the μIC located at the isocentre within the OARs for both clinical cases. The clinical impact of the calculated dose error was found to be negligible for the studied IMRT treatments.

  8. Computational assessment of effective dose and patient specific doses for kilovoltage stereotactic radiosurgery of wet age-related macular degeneration

    NASA Astrophysics Data System (ADS)

    Hanlon, Justin Mitchell

    Age-related macular degeneration (AMD) is a leading cause of vision loss and a major health problem for people over the age of 50 in industrialized nations. The current standard of care, ranibizumab, is used to help slow and in some cases stabilize the process of AMD, but requires frequent invasive injections into the eye. Interest continues for stereotactic radiosurgery (SRS), an option that provides a non-invasive treatment for the wet form of AMD, through the development of the IRay(TM) (Oraya Therapeutics, Inc., Newark, CA). The goal of this modality is to destroy choroidal neovascularization beneath the pigment epithelium via delivery of three 100 kVp photon beams entering through the sclera and overlapping on the macula delivering up to 24 Gy of therapeutic dose over a span of approximately 5 minutes. The divergent x-ray beams targeting the fovea are robotically positioned and the eye is gently immobilized by a suction-enabled contact lens. Device development requires assessment of patient effective dose, reference patient mean absorbed doses to radiosensitive tissues, and patient specific doses to the lens and optic nerve. A series of head phantoms, including both reference and patient specific, was derived from CT data and employed in conjunction with the MCNPX 2.5.0 radiation transport code to simulate treatment and evaluate absorbed doses to potential tissues-at-risk. The reference phantoms were used to evaluate effective dose and mean absorbed doses to several radiosensitive tissues. The optic nerve was modeled with changeable positions based on individual patient variability seen in a review of head CT scans gathered. Patient specific phantoms were used to determine the effect of varying anatomy and gaze. The results showed that absorbed doses to the non-targeted tissues were below the threshold levels for serious complications; specifically the development of radiogenic cataracts and radiation induced optic neuropathy (RON). The effective dose determined (0.29 mSv) is comparable to diagnostic procedures involving the head, such as an x-ray or CT scan. Thus, the computational assessment performed indicates that a previously established therapeutic dose can be delivered effectively to the macula with IRay(TM) without the potential for secondary complications.

  9. Criticality accident dosimetry with ESR spectroscopy.

    PubMed

    d'Errico, F; Fattibene, P; Onori, S; Pantaloni, M

    1996-01-01

    The suitability of the ESR alanine and sugar detectors for criticality accident dosimetry was experimentally investigated during an intercomparison of dosimetry techniques. Tests were performed irradiating detectors both free-in-air and on-phantom during controlled critcality excursions at the SILENE reactor in Valduc, France. Several grays of absorbed dose were imparted in neutron gamma-ray fields of various relative intensities and spectral distributions. Analysed results confirmed the potential of these systems which can immediately provide an acute dose assessment with an average underestimate of 30%in the various fields. This performance allows for the screening of severely exposed individuals and meets the IAEA recommendations on the early estimate of accident absorbed doses.

  10. Impact Properties of Irradiated HT9 from the Fuel Duct of FFTF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byun, Thak Sang; Maloy, S; Toloczko, M

    2012-01-01

    This paper reports Charpy impact test data for the ACO-3 duct material (HT9) from the Fast Flux Test Facility (FFTF) and its archive material. Irradiation doses for the specimens were in the range of 3 148 dpa and irradiation temperatures in the range of 378 504 oC. The impact tests were performed for the small V-notched Charpy specimens with dimensions of 3 4 27 mm at an impact speed of 3.2 m/s in a 25J capacity machine. Irradiation lowered the upper-shelf energy (USE) and increased the transition temperatures significantly. The shift of transition temperatures was greater after relatively low temperaturemore » irradiation. The USE values were in the range of 5.5 6.7 J before irradiation and decreased to the range of 2 5 J after irradiation. Lower USEs were measured for lower irradiation temperatures and specimens with T-L orientation. For the irradiated specimens, the dose dependences of transition temperature and USE were not significant because of the radiation effect on impact behavior nearly saturated at the lowest dose of about 3 dpa. A comparison showed that the lateral expansion of specimens showed a linear correlation with absorbed impact energy, but with large scatter in the results. The size effect was also discussed to clarify the differences in the impact data of subsize and standard specimens.« less

  11. Electron absorbed fractions of energy and S-values in an adult human skeleton based on µCT images of trabecular bone

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Richardson, R. B.; Cassola, V. F.; Vieira, J. W.; Khoury, H. J.; Lira, C. A. B. de O.; Robson Brown, K.

    2011-03-01

    When the human body is exposed to ionizing radiation, among the soft tissues at risk are the active marrow (AM) and the bone endosteum (BE) located in tiny, irregular cavities of trabecular bone. Determination of absorbed fractions (AFs) of energy or absorbed dose in the AM and the BE represent one of the major challenges of dosimetry. Recently, at the Department of Nuclear Energy at the Federal University of Pernambuco, a skeletal dosimetry method based on µCT images of trabecular bone introduced into the spongiosa voxels of human phantoms has been developed and applied mainly to external exposure to photons. This study uses the same method to calculate AFs of energy and S-values (absorbed dose per unit activity) for electron-emitting radionuclides known to concentrate in skeletal tissues. The modelling of the skeletal tissue regions follows ICRP110, which defines the BE as a 50 µm thick sub-region of marrow next to the bone surfaces. The paper presents mono-energetic AFs for the AM and the BE for eight different skeletal regions for electron source energies between 1 keV and 10 MeV. The S-values are given for the beta emitters 14C, 59Fe, 131I, 89Sr, 32P and 90Y. Comparisons with results from other investigations showed good agreement provided that differences between methodologies and trabecular bone volume fractions were properly taken into account. Additionally, a comparison was made between specific AFs of energy in the BE calculated for the actual 50 µm endosteum and the previously recommended 10 µm endosteum. The increase in endosteum thickness leads to a decrease of the endosteum absorbed dose by up to 3.7 fold when bone is the source region, while absorbed dose increases by ~20% when the beta emitters are in marrow.

  12. Gamma radiation effects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (Zea mays).

    PubMed

    Marcu, Delia; Damian, Grigore; Cosma, Constantin; Cristea, Victoria

    2013-09-01

    The effects of gamma radiation are investigated by studying plant germination, growth and development, and biochemical characteristics of maize. Maize dry seeds are exposed to a gamma source at doses ranging from 0.1 to 1 kGy. Our results show that the germination potential, expressed through the final germination percentage and the germination index, as well as the physiological parameters of maize seedlings (root and shoot lengths) decreased by increasing the irradiation dose. Moreover, plants derived from seeds exposed at higher doses (≤0.5 kGy) did not survive more than 10 days. Biochemical differences based on photosynthetic pigment (chlorophyll a, chlorophyll b, carotenoids) content revealed an inversely proportional relationship to doses of exposure. Furthermore, the concentration of chlorophyll a was higher than chlorophyll b in both irradiated and non-irradiated seedlings. Electron spin resonance spectroscopy used to evaluate the amount of free radicals induced by gamma ray treatment demonstrates that the relative concentration of radiation-induced free radicals depends linearly on the absorbed doses.

  13. Feasibility of the Utilization of BNCT in the Fast Neutron Therapy Beam at Fermilab

    DOE R&D Accomplishments Database

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.

    2000-06-01

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.

  14. Risks of secondary malignancies with heterotopic bone radiation therapy for patients younger than 40 years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadieux, Catherine L., E-mail: ccadieux@umail.iu.edu; DesRosiers, Colleen; McMullen, Kevin

    Heterotopic ossification (HO) of the bone is defined as a benign condition in which abnormal bone formation occurs in soft tissue. One of the most common prophylactic treatments for HO is radiation therapy (RT). This study retrospectively reviewed 20 patients younger than the age of 40 who received radiation to prevent HO in a single fraction of 7 Gray. The purpose of this study is to assess the risk of a second malignancy in these patients by recreating their treatment fields and contouring organs at risk to estimate the radiation dose absorbed by normal tissues outside the radiation treatment field.more » Diagnostic computed tomography (CT) scans for each patient were used to recreate treatment fields and to calculate dose to structures of interest. The distance from the field edge to each structure and its depth was recorded. Dose measurements in a water phantom were performed for the range of depths, distances, and field sizes used in the actual treatment plans. Computer-generated doses were compared to estimates based on measurement. The structure dose recorded was the higher dose generated between the 2 methods. Scatter dose was recorded to the rectum, bladder, sigmoid colon, small bowel, ovaries and utero-cervix in female patients, and prostate and gonads in male patients. In some patients, there is considerable dose received by certain organs from scatter because of their proximity to the radiation field. The average dose to the ovarian region was 4.125 Gy with a range of 1.085 to 6.228 Gy. The risk estimate for these patients ranged from 0.16% to 0.93%. The average total lifetime risk estimate for the bladder in all patients is 0.22% and the average total lifetime risk estimate for the remainder organs in all patients is 1.25%. In conclusions, proper shielding created from multileaf collimators (MLCs), blocks, and shields should always be used when possible.« less

  15. Internal dose assessment of 210Po using biokinetic modeling and urinary excretion measurement.

    PubMed

    Li, Wei Bo; Gerstmann, Udo; Giussani, Augusto; Oeh, Uwe; Paretzke, Herwig G

    2008-02-01

    The mysterious death of Mr. Alexander Litvinenko who was most possibly poisoned by Polonium-210 ((210)Po) in November 2006 in London attracted the attention of the public to the kinetics, dosimetry and the risk of this high radiotoxic isotope in the human body. In the present paper, the urinary excretion of seven persons who were possibly exposed to traces of (210)Po was monitored. The values measured in the GSF Radioanalytical Laboratory are in the range of natural background concentration. To assess the effective dose received by those persons, the time-dependence of the organ equivalent dose and the effective dose after acute ingestion and inhalation of (210)Po were calculated using the biokinetic model for polonium (Po) recommended by the International Commission on Radiological Protection (ICRP) and the one recently published by Leggett and Eckerman (L&E). The daily urinary excretion to effective dose conversion factors for ingestion and inhalation were evaluated based on the ICRP and L&E models for members of the public. The ingestion (inhalation) effective dose per unit intake integrated over one day is 1.7 x 10(-8) (1.4 x 10(-7)) Sv Bq(-1), 2.0 x 10(-7) (9.6 x 10(-7)) Sv Bq(-1) over 10 days, 5.2 x 10(-7) (2.0 x 10(-6)) Sv Bq(-1) over 30 days and 1.0 x 10(-6) (3.0 x 10(-6)) Sv Bq(-1) over 100 days. The daily urinary excretions after acute ingestion (inhalation) of 1 Bq of (210)Po are 1.1 x 10(-3) (1.0 x 10(-4)) on day 1, 2.0 x 10(-3) (1.9 x 10(-4)) on day 10, 1.3 x 10(-3) (1.7 x 10(-4)) on day 30 and 3.6 x 10(-4) (8.3 x 10(-5)) Bq d(-1) on day 100, respectively. The resulting committed effective doses range from 2.1 x 10(-3) to 1.7 x 10(-2) mSv by an assumption of ingestion and from 5.5 x 10(-2) to 4.5 x 10(-1) mSv by inhalation. For the case of Mr. Litvinenko, the mean organ absorbed dose as a function of time was calculated using both the above stated models. The red bone marrow, the kidneys and the liver were considered as the critical organs. Assuming a value of lethal absorbed dose of 5 Gy to the bone marrow, 6 Gy to the kidneys and 8 Gy to the liver, the amount of (210)Po which Mr. Litvinenko might have ingested is therefore estimated to range from 27 to 1,408 MBq, i.e 0.2-8.5 microg, depending on the modality of intake and on different assumptions about blood absorption.

  16. Depth dose measurements with the Liulin-5 experiment inside the spherical phantom of the MATROSHKA-R project onboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Semkova, J.; Koleva, R.; Maltchev, St.; Bankov, N.; Benghin, V.; Chernykh, I.; Shurshakov, V.; Petrov, V.; Drobyshev, S.; Nikolaev, I.

    2012-02-01

    The Liulin-5 experiment is a part of the international project MATROSHKA-R on the Russian segment of the ISS, which uses a tissue-equivalent spherical phantom equipped with a set of radiation detectors. The objective of the MATROSHKA-R project is to provide depth dose distribution of the radiation field inside the sphere in order to get more information on the distribution of dose in a human body. Liulin-5 is a charged particle telescope using three silicon detectors. It measures time resolved energy deposition spectra, linear energy transfer (LET) spectra, particle flux, and absorbed doses of electrons, protons and heavy ions, simultaneously at three depths along the radius of the phantom. Measurements during the minimum of the solar activity in cycle 23 show that the average absorbed daily doses at 40 mm depth in the phantom are between 180 μGy/day and 220 μGy/day. The absorbed doses at 165 mm depth in the phantom decrease by a factor of 1.6-1.8 compared to the doses at 40 mm depth due to the self-shielding of the phantom from trapped protons. The average dose equivalent at 40 mm depth is 590 ± 32 μSV/day and the galactic cosmic rays (GCR) contribute at least 70% of the total dose equivalent at that depth. Shown is that due to the South Atlantic Anomaly (SAA) trapped protons asymmetry and the direction of Liulin-5 lowest shielding zone the dose rates on ascending and descending nodes in SAA are different. The data obtained are compared to data from other radiation detectors on ISS.

  17. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers

    NASA Astrophysics Data System (ADS)

    Lye, J. E.; Harty, P. D.; Butler, D. J.; Crosbie, J. C.; Livingstone, J.; Poole, C. M.; Ramanathan, G.; Wright, T.; Stevenson, A. W.

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3-5% higher than the calorimetry, within the stated uncertainties.

  18. Assessment of the Technologies for Molecular Biodosimetry for Human Low-Dose Radiation Exposure Symposium: Agenda and Abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Matthew A.; Ramakrishnan, Narayani

    In the event of a radiological accident, the rapid evaluation of the individual absorbed dose is paramount to discriminate those individuals who must receive medical attention. New research with genomic- and proteomic-wide tools is showing that within minutes to hours after exposure to ionizing radiation the cellular machinery is modified. For example: large-scale changes occur in the gene expression profiles involving a broad variety of cellular pathways after a wide range of both low dose (<10 cGy) and high dose (>10 cGy) ionizing radiation exposures. Symposium 12 was organized to address a wide range of biological effects using the latestmore » technologies. To address current models following ionizing radiation exposure, methods in biodosimetry and dose effects the symposia featured a general overview titled “Model Systems and Current Approaches in Biodosimetry” by Matthew A. Coleman, from Lawrence Livermore National Laboratory and a talk entitled “Brief Overview of Biodosimetry Projects in the NIH Rad/Nuc Program” by Dr. Narayani Ramakrishnan, National Institute of Allergy and Infectious Diseases. These two talk set the tone for issues in data and model integration as well as addressing the national need for robust technologies for biological dosimetry. The report continues with more description of the presentations, along with the agenda and abstracts of the papers presented.« less

  19. SU-D-213-06: Dosimetry of Modulated Electron Radiation Therapy Using Fricke Gel Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gawad, M Abdel; Elgohary, M; Hassaan, M

    Purpose: Modulated electron radiation therapy (MERT) has been proposed as an effective modality for treatment of superficial targets. MERT utilizes multiple beams of different energies which are intensity modulated to deliver optimized dose distribution. Energy independent dosimeters are thus needed for quantitative evaluations of MERT dose distributions and measurements of absolute doses delivered to patients. Thus in the current work we study the feasibility of Fricke gel dosimeters in MERT dosimetry. Methods: Batches of radiation sensitive Fricke gel is fabricated and poured into polymethyl methacrylate cuvettes. The samples were irradiated in solid water phantom and a thick layer of bolusmore » was used as a buildup. A spectrophotometer system was used for measuring the color changes (the absorbance) before and after irradiation and then we calculate net absorbance. We constructed calibration curves to relate the measured absorbance in terms of absorbed dose for all available electron energies. Dosimetric measurements were performed for mixed electron beam delivery and we also performed measurement for segmented field delivery with the dosimeter placed at the junction of two adjacent electron beams of different energies. Dose measured by our gel dosimetry is compared to that calculation from our precise treatment planning system. We also initiated a Monte Carlo study to evaluate the water equivalence of our dosimeters. MCBEAM and MCSIM codes were used for treatment head simulation and phantom dose calculation. PDDs and profiles were calculated for electron beams incident on a phantom designed with 1cm slab of Fricke gel. Results: The calibration curves showed no observed energy dependence with all studied electron beam energies. Good agreement was obtained between dose calculated and that obtained by gel dosimetry. Monte Carlo results illustrated the tissue equivalency of our Gel dosimeters. Conclusion: Fricke Gel dosimeters represent a good option for the dosimetric quality assurance prior to MERT application.« less

  20. Absorbed dose determination using experimental and analytical predictions of x-ray spectra

    NASA Astrophysics Data System (ADS)

    Edwards, David Lee

    1999-10-01

    Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate radiation shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) to measure the radiation dose. The TLD's were exposed to x- ray radiation generated by operation of the ISWE in- vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in good agreement with the measured TLD values.

  1. Evaluation of factors to convert absorbed dose calibrations from graphite to water for the NPL high-energy photon calibration service.

    PubMed

    Nutbrown, R F; Duane, S; Shipley, D R; Thomas, R A S

    2002-02-07

    The National Physical Laboratory (NPL) provides a high-energy photon calibration service using 4-19 MV x-rays and 60Co gamma-radiation for secondary standard dosemeters in terms of absorbed dose to water. The primary standard used for this service is a graphite calorimeter and so absorbed dose calibrations must be converted from graphite to water. The conversion factors currently in use were determined prior to the launch of this service in 1988. Since then, it has been found that the differences in inherent filtration between the NPL LINAC and typical clinical machines are large enough to affect absorbed dose calibrations and, since 1992, calibrations have been performed in heavily filtered qualities. The conversion factors for heavily filtered qualities were determined by interpolation and extrapolation of lightly filtered results as a function of tissue phantom ratio 20,10 (TPR20,10). This paper aims to evaluate these factors for all mega-voltage photon energies provided by the NPL LINAC for both lightly and heavily filtered qualities and for 60Co y-radiation in two ways. The first method involves the use of the photon fluence-scaling theorem. This states that if two blocks of different material are irradiated by the same photon beam, and if all dimensions are scaled in the inverse ratio of the electron densities of the two media, then, assuming that all photon interactions occur by Compton scatter the photon attenuation and scatter factors at corresponding scaled points of measurement in the phantom will be identical. The second method involves making in-phantom measurements of chamber response at a constant target-chamber distance. Monte Carlo techniques are then used to determine the corresponding dose to the medium in order to determine the chamber calibration factor directly. Values of the ratio of absorbed dose calibration factors in water and in graphite determined in these two ways agree with each other to within 0.2% (1sigma uncertainty). The best fit to both sets of results agrees with values determined in previous work to within 0.3% (1sigma uncertainty). It is found that the conversion factor is not sensitive to beam filtration.

  2. Errors in the absorbed and the administered 131I therapeutic dose in patients with Graves' disease. A suggested more precise technique.

    PubMed

    Chen, Yangchun; Huang, Jincheng; Wang, Yuehui; Xie, Sipei; He, Fang

    2017-01-01

    The aim of this study was to evaluate the relative error (RE) in the thyroid absorbed dose (TD) of iodine-131 ( 131 I) in patients with Graves' disease comparing the simplified Quimby-Marinelli-Hine formula method (sQMHF) and the Standard Operational Procedures for dosimetry (SOPD) recommended by the European Association of Nuclear Medicine. This study included 45 patients with Graves' disease 12 men and 33 women; age 44.1±12.8 years. Thyroid mass (TM) was measured using ultrasound. Uptake of 131 I (RAIU) was tested at 2, 4-6, 24, 48-72, and 96-168h after its administration and the half-life (T 1/2eff ) and resident time (RT) of 131 I were computed. According to the sQMHF, a prescribed TD of 75Gy required 3.7MBq/g of 131 I, correction based on the RAIU 24h and T 1/2eff . Subsequently, the therapeutic TD was computed according to the SOPD and the RE was recorded. The data were analyzed using t-tests. The TM, RAIU 24h , therapeutic TD, and RE were 36.5±23.9g, 0.54±0.14, 89.4±9.4Gy, and -0.01±0.02, respectively. There was a significant difference (t-value 9.84, P<0.01) between the prescribed and therapeutic TD because the sQMHF ignores the absorbed dose deposited in the thyroid during the first 24h, which is included in the SOPD. In addition, the RE was significantly smaller than the variable coefficient (VC) of the therapeutic TD (t=-39.6, P<0.01). When the activity of 131 I was calculated using the simplified Q-M-H formula, the therapeutic absorbed thyroid dose was significantly higher than what was expected for the prescribed dose. Precision of the individualized therapeutic absorbed dose could be improved by computing the activity of 131 I using the standard operational procedures for dosimetry of the EANM.

  3. Evaluation of 2 possible further developments of the UK in-flight radiation warning meter for SSTS

    NASA Technical Reports Server (NTRS)

    Wilson, I. J.; Eustace, R. C.

    1972-01-01

    A mass reduction of the moderator and the response to the nucleon flux, responsible for the tissue-star component of the total-dose equivalent rate using a high atomic number material, are discussed. Radiation situations at SST cruising altitudes (approximately 20 km) due to solar proton flares were simulated in the stratosphere and on the ground. Actual stratospheric situations due to galactic cosmic radiation with a limited range of quality factor values (2-4) were encountered during slow ascents by balloons to 36 km. Synthetic situations obtained from high and low energy acclerator radiations were used to obtain radiation distributions having a larger range of quality factor values (11/2-9) than experienced in the stratosphere. The measurements made in these simulations related to the directly ionizing, neutron and tissue-star components of dose-equivalent rate. Due to the restricted range of neutron spectra encountered in the stratosphere, a significant mass reduction of the moderator by 4 kg was made, with the moderator clad with cadmium or some other slow neutron absorber.

  4. A radiation-sensitive monomer of 2,4-hexadiyn-1,6-bis(p-toluene sulphonyl urethane) in PVA as a radiochromic film dosimeter

    NASA Astrophysics Data System (ADS)

    Soliman, Yasser S.; Abdel-Fattah, A. A.; Hamed, A. A.; Bayomi, A. M. M.

    2018-03-01

    A conjugated monomer 2,4-hexadiyn-1,6-bis(p-toluene sulphonyl urethane) (HDTU) was synthesized. Thereafter, it was incorporated into polyvinyl alcohol (PVA), and coated on self-adhesive sheet, thus to prepare film dosimeters. The monomer and films were analyzed using X-ray diffraction (XRD), FTIR spectroscopy and specular reflectance colorimetry. This monomer polymerizes in the films by radiation and turns progressively blue in proportion to absorbed dose, indicating the formation of π-conjugated colored poly-HDTU. Color development was investigated at 480 nm and 610 nm for dose monitoring ranging from 10 Gy to 15 kGy. HDTU in PVA film is highly ordered and crystalline and, upon irradiation, it forms a semi-crystalline polymer with nearly the same interplanar distances as the monomer, indicating the occurrence of topochemical polymerization. During irradiation, polymerization of the monomer is nearly independent of humidity in the range of 0-53% and temperature in the range of 25-45 °C. The uncertainty of this system is 5.16% at 95% confidence level.

  5. Enhancement of neutron radiation dose by the addition of sulphur-33 atoms.

    PubMed

    Porras, I

    2008-04-07

    The use of neutrons in radiotherapy allows the possibility of producing nuclear reactions in a specific target inserted in the medium. (10)B is being used to induce reactions (n, alpha), a technique called boron neutron capture therapy. I have studied the possibility of inducing a similar reaction using the nucleus of (33)S, for which the reaction cross section presents resonances for keV neutrons, the highest peak occurring at 13.5 keV. Here shown, by means of Monte Carlo simulation of point-like sources of neutrons in this energy range, is an enhancement effect on the absorbed dose in water by the addition of (33)S atoms. In addition to this, as the range of the alpha particle is of the order of a mammalian cell size, the energy deposition via this reaction results mainly inside the cells adjacent to the interaction site. The main conclusion of the present work is that the insertion of these sulphur atoms in tumoral cells would enhance the effect of neutron irradiation in the keV range.

  6. Pathogen-Reduced, Plasmalyte-Extended Stored Platelets (PREPS)

    DTIC Science & Technology

    2013-10-01

    if the 1:1:1 strategy is failing, the use of warm FWB is permitted. Such intensive plasma-based therapy early in resuscitation has led to a 50...radiolabeled with 51Cr or 111In. On that day, the subject will return to the Blood Center and provide a 43 mL fresh blood sample. Platelets from...will be infused. The total radiation dose is approximately 40 µCi for a total body absorbed dose of 0.0273 rad (0.273 mSv) and a splenic absorbed

  7. External exposure doses due to gamma emitting natural radionuclides in some Egyptian building materials.

    PubMed

    Moharram, B M; Suliman, M N; Zahran, N F; Shennawy, S E; El Sayed, A R

    2012-01-01

    Using of building materials containing naturally occurring radionuclides as (238)U, (232)Th and (40)K and their progeny results in an external exposures of the housing of such buildings. In the present study, indoor dose rates for typical Egyptian rooms are calculated using the analytical method and activity concentrations of natural radionuclides in some building materials. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling assumed. Different room models are assumed to discuss variation of indoor dose rates according to variation in room construction. Activity concentrations of (238)U, (232)Th and (40)K content in eight samples representative Clay soil and different building materials used in most recent Egyptian building were measured using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The specific activity for (238)U, (232)Th and (40)K, from the selected samples, were in the range 14.15-60.64, 2.75-84.66 and 7.35-554.4Bqkg(-1), respectively. The average indoor absorbed dose rates in air ranged from 0.005μGyh(-1) to 0.071μGyh(-1) and the corresponding population-weighted annual effective dose due to external gamma radiation varies from 0.025 to 0.345mSv. An outdoor dose rate for typical building samples in addition to some radiological hazards has been introduced for comparison. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Effect of multiple short highly energetic X-ray pulses on the synthesis of endoglucanase by a mutant strain of Trichoderma reesei-M7.

    PubMed

    Gemishev, Orlin; Zapryanov, Stanislav; Blagoev, Alexander; Markova, Maya; Savov, Valentin

    2014-09-03

    Bioconversion of cellulose-containing substrate to glucose represents an important area of modern biotechnology. Enzymes for the degradation of the polysaccharide part of biomass have been produced, mostly by fungi belonging to genus Trichoderma . Studies were carried out with the mutant strain Trichoderma reesei- M7, a cellulase producer. Spores of the enzyme producer were irradiated with different doses of characteristic X-ray radiation from metallic tungsten (mainly the W Kα1 and Kα2 lines) with a high dose rate. The latter is a specific property of the dense plasma focus (DPF) device, which has pulsed operation and thus gives short and highly energetic pulses of multiple types of rays and particles. In this case, we focused our study on the influence of hard X-rays. The doses of X-rays absorbed by the spores varied in the range of approximately 5-11,000 mSv measured with thermoluminescent dosimeters (TLD). The influence of the applied doses in combination with exceptionally high dose rates (in the order of tens of millisieverts per microsecond) on the activity of the produced endoglucanase, amount of biomass and extra-cellular protein, was studied in batch cultivation conditions. In the dose range of 200-1200 mSv, some enhancement of endoglucanase activity was obtained: around 18%-32%, despite the drop of the biomass amount, compared with the untreated material.

  9. Effect of multiple short highly energetic X-ray pulses on the synthesis of endoglucanase by a mutant strain of Trichoderma reesei-M7

    PubMed Central

    Gemishev, Orlin; Zapryanov, Stanislav; Blagoev, Alexander; Markova, Maya; Savov, Valentin

    2014-01-01

    Bioconversion of cellulose-containing substrate to glucose represents an important area of modern biotechnology. Enzymes for the degradation of the polysaccharide part of biomass have been produced, mostly by fungi belonging to genus Trichoderma. Studies were carried out with the mutant strain Trichoderma reesei-M7, a cellulase producer. Spores of the enzyme producer were irradiated with different doses of characteristic X-ray radiation from metallic tungsten (mainly the W Kα1 and Kα2 lines) with a high dose rate. The latter is a specific property of the dense plasma focus (DPF) device, which has pulsed operation and thus gives short and highly energetic pulses of multiple types of rays and particles. In this case, we focused our study on the influence of hard X-rays. The doses of X-rays absorbed by the spores varied in the range of approximately 5–11,000 mSv measured with thermoluminescent dosimeters (TLD). The influence of the applied doses in combination with exceptionally high dose rates (in the order of tens of millisieverts per microsecond) on the activity of the produced endoglucanase, amount of biomass and extra-cellular protein, was studied in batch cultivation conditions. In the dose range of 200–1200 mSv, some enhancement of endoglucanase activity was obtained: around 18%–32%, despite the drop of the biomass amount, compared with the untreated material. PMID:26019569

  10. Outdoor solar UVA dose assessment with EBT2 radiochromic film using spectrophotometer and densitometer measurements.

    PubMed

    Abukassem, I; Bero, M A

    2015-04-01

    Direct measurements of solar ultraviolet radiations (UVRs) have an important role in the protection of humans against UVR hazard. This work presents simple technique based on the application of EBT2 GAFCHROMIC(®) film for direct solar UVA dose assessment. It demonstrates the effects of different parts of the solar spectrum (UVB, visible and infrared) on performed UVA field measurements and presents the measurement uncertainty budget. The gradient of sunlight exposure level permitted the authors to establish the mathematical relationships between the measured solar UVA dose and two measured quantities: the first was the changes in spectral absorbance at the wavelength 633 nm (A633) and the second was the optical density (OD). The established standard relations were also applied to calculate the solar UVA dose variations during the whole day; 15 min of exposure each hour between 8:00 and 17:00 was recorded. Results show that both applied experimental methods, spectrophotometer absorbance and densitometer OD, deliver comparable figures for EBT2 solar UVA dose assessment with relative uncertainty of 11% for spectral absorbance measurements and 15% for OD measurements. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. A comparison of simple and realistic eye models for calculation of fluence to dose conversion coefficients in a broad parallel beam incident of protons

    NASA Astrophysics Data System (ADS)

    Sakhaee, Mahmoud; Vejdani-Noghreiyan, Alireza; Ebrahimi-Khankook, Atiyeh

    2015-01-01

    Radiation induced cataract has been demonstrated among people who are exposed to ionizing radiation. To evaluate the deterministic effects of ionizing radiation on the eye lens, several papers dealing with the eye lens dose have been published. ICRP Publication 103 states that the lens of the eye may be more radiosensitive than previously considered. Detailed investigation of the response of the lens showed that there are strong differences in sensitivity to ionizing radiation exposure with respect to cataract induction among the tissues of the lens of the eye. This motivated several groups to look deeper into issue of the dose to a sensitive cell population within the lens, especially for radiations with low energy penetrability that have steep dose gradients inside the lens. Two sophisticated mathematical models of the eye including the inner structure have been designed for the accurate dose estimation in recent years. This study focuses on the calculations of the absorbed doses of different parts of the eye using the stylized models located in UF-ORNL phantom and comparison with the data calculated with the reference computational phantom in a broad parallel beam incident of protons with energies between 20 MeV and 10 GeV. The obtained results indicate that the total lens absorbed doses of reference phantom has good compliance with those of the more sensitive regions of stylized models. However, total eye absorbed dose of these models greatly differ with each other for lower energies.

  12. Comparative Monte Carlo study on the performance of integration- and list-mode detector configurations for carbon ion computed tomography

    NASA Astrophysics Data System (ADS)

    Meyer, Sebastian; Gianoli, Chiara; Magallanes, Lorena; Kopp, Benedikt; Tessonnier, Thomas; Landry, Guillaume; Dedes, George; Voss, Bernd; Parodi, Katia

    2017-02-01

    Ion beam therapy offers the possibility of a highly conformal tumor-dose distribution; however, this technique is extremely sensitive to inaccuracies in the treatment procedures. Ambiguities in the conversion of Hounsfield units of the treatment planning x-ray CT to relative stopping power (RSP) can cause uncertainties in the estimated ion range of up to several millimeters. Ion CT (iCT) represents a favorable solution allowing to directly assess the RSP. In this simulation study we investigate the performance of the integration-mode configuration for carbon iCT, in comparison with a single-particle approach under the same set-up. The experimental detector consists of a stack of 61 air-filled parallel-plate ionization chambers, interleaved with 3 mm thick PMMA absorbers. By means of Monte Carlo simulations, this design was applied to acquire iCTs of phantoms of tissue-equivalent materials. An optimization of the acquisition parameters was performed to reduce the dose exposure, and the implications of a reduced absorber thickness were assessed. In order to overcome limitations of integration-mode detection in the presence of lateral tissue heterogeneities a dedicated post-processing method using a linear decomposition of the detector signal was developed and its performance was compared to the list-mode acquisition. For the current set-up, the phantom dose could be reduced to below 30 mGy with only minor image quality degradation. By using the decomposition method a correct identification of the components and a RSP accuracy improvement of around 2.0% was obtained. The comparison of integration- and list-mode indicated a slightly better image quality of the latter, with an average median RSP error below 1.8% and 1.0%, respectively. With a decreased absorber thickness a reduced RSP error was observed. Overall, these findings support the potential of iCT for low dose RSP estimation, showing that integration-mode detectors with dedicated post-processing strategies can provide a RSP accuracy comparable to list-mode configurations.

  13. Medipix in space on-board the ISS

    PubMed Central

    Pinsky, Lawrence S.; Idarraga-Munoz, J.; Kroupa, M.; Son, H.M.; Stoffle, N.N.; Semones, E.J.; Bahadori, A.A.; Turecek, D.; Pospíšil, S.; Jakubek, J.; Vykydal, Z.; Kitamura, H.; Uchihori, Y.

    2014-01-01

    On 16 October 2012, five active radiation detectors (referred to by NASA as Radiation Environment Monitors, or REMs) employing the Timepix version of the technology developed by the CERN-based Medipix2 Collaboration were deployed on-board the International Space Station (ISS) using simple USB interfaces to the existing ISS laptops for power, control and readout [ 1– 3]. These devices successfully demonstrated the capabilities of this technology by providing reliable dose and dose-equivalent information based on a track-by-track analysis. Figure 1 shows a sample comparison of the output from all five devices with respect to the on-board tissue equivalent proportional counter (TEPC) for both absorbed dose (top) and dose-equivalent (bottom) as defined in NCRP 142. The lower graph in each set is the TEPC. Several issues were identified and solutions to adjust for them have been included in the analysis. These include items such as the need to identify nuclear interactions in the silicon sensor layer, and to separate penetrating from stopping tracks. The wide effective range in fluence and particle type of this technology was also verified through the highest rates seen during the South Atlantic Anomaly passes and the heavy ions nominally seen in the Galactic Cosmic Rays. Corrections for detector response saturation effects were also successfully implemented as verified by reference to ground-based accelerator data taken at the Heavy-Ion Medical Accelerator Center (HIMAC) facility at the National Institute for Radiological Sciences in Japan, and at the NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory in New York. Flight hardware has been produced that will be flown on the first launch of the new Orion spacecraft, and flight hardware development is ongoing to accommodate the next generation of this technology as a baseline for radiation monitoring and dosimetry on future operational manned missions. Fig 1.Five ISS REM units compared with ISS IVTEPC in absorbed dose (a) and dose-equivalent (b).

  14. Human radiation dosimetry of 6-[{sup 18}F]FDG predicted from preclinical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzic, Raymond F., E-mail: raymond.muzic@case.edu; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106; Case Center for Imaging Research, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106

    Purpose: The authors are developing 6-[{sup 18}F]fluoro-6-deoxy-D-glucose (6-[{sup 18}F]FDG) as an in vivo tracer of glucose transport. While 6-[{sup 18}F]FDG has the same radionuclide half-life as 2-[{sup 18}F]fluoro-2-deoxy-D-glucose (2-[{sup 18}F]FDG) which is ubiquitously used for PET imaging, 6-[{sup 18}F]FDG has special biologic properties and different biodistributions that make it preferable to 2-[{sup 18}F]FDG for assessing glucose transport. In preparation for 6-[{sup 18}F]FDG use in human PET scanning, the authors would like to determine the amount of 6-[{sup 18}F]FDG to inject while maintaining radiation doses in a safe range. Methods: Rats were injected with 6-[{sup 18}F]FDG, euthanized at specified times, andmore » tissues were collected and assayed for activity content. For each tissue sample, the percent of injected dose per gram was calculated and extrapolated to that for humans in order to construct predicted time-courses. Residence times were calculated as areas under the curves and were used as inputs to OLINDA/EXM in order to calculate the radiation doses. Results: Unlike with 2-[{sup 18}F]FDG for which the urinary bladder wall receives the highest absorbed dose due to urinary excretion, with 6-[{sup 18}F]FDG there is little urinary excretion and osteogenic cells and the liver are predicted to receive the highest absorbed doses: 0.027 mGy/MBq (0.100 rad/mCi) and 0.018 mGy/MBq (0.066 rad/mCi), respectively. Also, the effective dose from 6-[{sup 18}F]FDG, i.e., 0.013 mSv/MBq (0.046 rem/mCi), is predicted to be approximately 30% lower than that from 2-[{sup 18}F]FDG. Conclusions: 6-[{sup 18}F]FDG will be safe for use in the PET scanning of humans.« less

  15. Calibration of an eye lens dosemeter in terms of Hp(3) to be used in interventional radiology

    NASA Astrophysics Data System (ADS)

    Borges, F. L. S.; Guimarães, M. C.; Da Silva, T. A.; Nogueira Tavares, M. S.

    2014-11-01

    Recently, the International Commission on Radiological Protection has reviewed epidemiological evidences suggesting that there were tissue reaction effects in the eye lens below the previously considered absorbed dose threshold. A new statement related to the eye lens was issued that changed the absorbed dose threshold and reduced the dose limits for occupationally exposed persons. As consequence, some planned exposures require eye lens dosimetry and a debate was raised on the adequacy of the dosimetric quantity and on its method of measurement. The aim of this work was to study the methodology for calibrating the EYE-DTM holder with a TLD-100H Harshaw chip detector and to determine its angular and energy dependences in terms of personal dose equivalent, Hp(3).

  16. Linear energy transfer in water phantom within SHIELD-HIT transport code

    NASA Astrophysics Data System (ADS)

    Ergun, A.; Sobolevsky, N.; Botvina, A. S.; Buyukcizmeci, N.; Latysheva, L.; Ogul, R.

    2017-02-01

    The effect of irradiation in tissue is important in hadron therapy for the dose measurement and treatment planning. This biological effect is defined by an equivalent dose H which depends on the Linear Energy Transfer (LET). Usually, H can be expressed in terms of the absorbed dose D and the quality factor K of the radiation under consideration. In literature, various types of transport codes have been used for modeling and simulation of the interaction of the beams of protons and heavier ions with tissue-equivalent materials. In this presentation we used SHIELD-HIT code to simulate decomposition of the absorbed dose by LET in water for 16O beams. A more detailed description of capabilities of the SHIELD-HIT code can be found in the literature.

  17. Calibration and error analysis of metal-oxide-semiconductor field-effect transistor dosimeters for computed tomography radiation dosimetry.

    PubMed

    Trattner, Sigal; Prinsen, Peter; Wiegert, Jens; Gerland, Elazar-Lars; Shefer, Efrat; Morton, Tom; Thompson, Carla M; Yagil, Yoad; Cheng, Bin; Jambawalikar, Sachin; Al-Senan, Rani; Amurao, Maxwell; Halliburton, Sandra S; Einstein, Andrew J

    2017-12-01

    Metal-oxide-semiconductor field-effect transistors (MOSFETs) serve as a helpful tool for organ radiation dosimetry and their use has grown in computed tomography (CT). While different approaches have been used for MOSFET calibration, those using the commonly available 100 mm pencil ionization chamber have not incorporated measurements performed throughout its length, and moreover, no previous work has rigorously evaluated the multiple sources of error involved in MOSFET calibration. In this paper, we propose a new MOSFET calibration approach to translate MOSFET voltage measurements into absorbed dose from CT, based on serial measurements performed throughout the length of a 100-mm ionization chamber, and perform an analysis of the errors of MOSFET voltage measurements and four sources of error in calibration. MOSFET calibration was performed at two sites, to determine single calibration factors for tube potentials of 80, 100, and 120 kVp, using a 100-mm-long pencil ion chamber and a cylindrical computed tomography dose index (CTDI) phantom of 32 cm diameter. The dose profile along the 100-mm ion chamber axis was sampled in 5 mm intervals by nine MOSFETs in the nine holes of the CTDI phantom. Variance of the absorbed dose was modeled as a sum of the MOSFET voltage measurement variance and the calibration factor variance, the latter being comprised of three main subcomponents: ionization chamber reading variance, MOSFET-to-MOSFET variation and a contribution related to the fact that the average calibration factor of a few MOSFETs was used as an estimate for the average value of all MOSFETs. MOSFET voltage measurement error was estimated based on sets of repeated measurements. The calibration factor overall voltage measurement error was calculated from the above analysis. Calibration factors determined were close to those reported in the literature and by the manufacturer (~3 mV/mGy), ranging from 2.87 to 3.13 mV/mGy. The error σ V of a MOSFET voltage measurement was shown to be proportional to the square root of the voltage V: σV=cV where c = 0.11 mV. A main contributor to the error in the calibration factor was the ionization chamber reading error with 5% error. The usage of a single calibration factor for all MOSFETs introduced an additional error of about 5-7%, depending on the number of MOSFETs that were used to determine the single calibration factor. The expected overall error in a high-dose region (~30 mGy) was estimated to be about 8%, compared to 6% when an individual MOSFET calibration was performed. For a low-dose region (~3 mGy), these values were 13% and 12%. A MOSFET calibration method was developed using a 100-mm pencil ion chamber and a CTDI phantom, accompanied by an absorbed dose error analysis reflecting multiple sources of measurement error. When using a single calibration factor, per tube potential, for different MOSFETs, only a small error was introduced into absorbed dose determinations, thus supporting the use of a single calibration factor for experiments involving many MOSFETs, such as those required to accurately estimate radiation effective dose. © 2017 American Association of Physicists in Medicine.

  18. Primary and secondary particle contributions to the depth dose distribution in a phantom shielded from solar flare and Van Allen protons

    NASA Technical Reports Server (NTRS)

    Santoro, R. T.; Claiborne, H. C.; Alsmiller, R. G., Jr.

    1972-01-01

    Calculations have been made using the nucleon-meson transport code NMTC to estimate the absorbed dose and dose equivalent distributions in astronauts inside space vehicles bombarded by solar flare and Van Allen protons. A spherical shell shield of specific radius and thickness with a 30-cm-diam. tissue ball at the geometric center was used to simulate the spacecraft-astronaut configuration. The absorbed dose and the dose equivalent from primary protons, secondary protons, heavy nuclei, charged pions, muons, photons, and positrons and electrons are given as a function of depth in the tissue phantom. Results are given for solar flare protons with a characteristic rigidity of 100 MV and for Van Allen protons in a 240-nautical-mile circular orbit at 30 degree inclination angle incident on both 20-g/sq cm-thick aluminum and polyethylene spherical shell shields.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vega-Carrillo, Hector Rene; Manzanares-Acuna, Eduardo; Hernandez-Davila, Victor Martin

    The use of 131I is widely used in diagnostic and treatment of patients. If the patient is pregnant the 131I presence in the thyroid it becomes a source of constant exposition to other organs and the fetus. In this study the absorbed dose in the uterus of a 3 months pregnant woman with 131I in her thyroid gland has been calculated. The dose was determined using Monte Carlo methods in which a detailed model of the woman has been developed. The dose was also calculated using a simple procedure that was refined including the photons' attenuation in the woman organsmore » and body. To verify these results an experiment was carried out using a neck phantom with 131I. Comparing the results it was found that the simple calculation tend to overestimate the absorbed dose, by doing the corrections due to body and organs photon attenuation the dose is 0.14 times the Monte Carlo estimation.« less

  20. Environmental Radiation Measurements on MIR Station

    NASA Astrophysics Data System (ADS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.

    1997-04-01

    Environmental radiation levels on the Russian space station Mir are being monitored under differing shielding conditions by a series of six area passive dosimeters (APDs) placed at individual locations inside the Core and Kvant 2 modules, and by an External Dosimeter Array (EDA) to be-deployed on the exterior surface of the Kvant 2 module. Each APD and the EDA contains CR-39 plastic nuclear track detectors (PNTDs) for measurement of LET spectra and TLDs for absorbed dose measurements. Two of the missions, NASA-2/Mir-21 and NASA-3/Mir-22 have been completed and the six APDs from each mission returned to Earth from Mir. This report covers progress to date on the analysis of TLDs and PNTDs from these two missions. For NASA-2/Mir-21, average mission absorbed dose rates varied from 271 to 407 micro-Gy/d at the APDS. For NASA-3/Mir-22, average mission absorbed dose rates varied from 265 to 421 micro-Gy/d.

  1. Environmental Radiation Measurements on MIR Station. Program 1; Internal Experiment

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.

    1997-01-01

    Environmental radiation levels on the Russian space station Mir are being monitored under differing shielding conditions by a series of six area passive dosimeters (APDs) placed at individual locations inside the Core and Kvant 2 modules, and by an External Dosimeter Array (EDA) to be-deployed on the exterior surface of the Kvant 2 module. Each APD and the EDA contains CR-39 plastic nuclear track detectors (PNTDs) for measurement of LET spectra and TLDs for absorbed dose measurements. Two of the missions, NASA-2/Mir-21 and NASA-3/Mir-22 have been completed and the six APDs from each mission returned to Earth from Mir. This report covers progress to date on the analysis of TLDs and PNTDs from these two missions. For NASA-2/Mir-21, average mission absorbed dose rates varied from 271 to 407 micro-Gy/d at the APDS. For NASA-3/Mir-22, average mission absorbed dose rates varied from 265 to 421 micro-Gy/d.

  2. Head and neck tumors after energetic proton irradiation in rats

    NASA Astrophysics Data System (ADS)

    Wood, D.; Cox, A.; Hardy, K.; Salmon, Y.; Trotter, R.

    1994-10-01

    This is a two-year progress report on a life span dose-response study of brain tumor risk at moderate to high doses of energetic protons. It was initiated because a joint NASA/USAF life span study of rhesus monkeys that were irradiated with 55-MeV protons (average surface dose, 3.5 Gy) indicated that the incidence of brain tumors per unit surface absorbed dose was over 19 times that of the human tinea capitis patients whose heads were exposed to 100 kv x-rays. Examination of those rats that died in the two-year interval after irradiation of the head revealed a linear dose-response for total head and neck tumor incidence in the dose range of 0-8.5 Gy. The exposed rats had a greater incidence of pituitary chromophobe adenomas, epithelial and mesothelial cell tumors than the unexposed controls but the excessive occurrence of malignant gliomas that was observed in the monkeys was absent in the rats. The estimated dose required to double the number of all types of head and neck tumors was 5.2 Gy. The highest dose, 18 Gy, resulted in high mortality due to obstructive squamous metaplasia at less than 50 weeks, prompting a new study of the relative bological effectiveness of high energy protons in producing this lesion.

  3. NOTE: Dose area product evaluations with Gafchromic® XR-R films and a flat-bed scanner

    NASA Astrophysics Data System (ADS)

    Rampado, O.; Garelli, E.; Deagostini, S.; Ropolo, R.

    2006-12-01

    Gafchromic® XR-R films are a useful tool to evaluate entrance skin dose in interventional radiology. Another dosimetric quantity of interest in diagnostic and interventional radiology is the dose area product (DAP). In this study, a method to evaluate DAP using Gafchromic® XR-R films and a flat-bed scanner was developed and tested. Film samples were exposed to an x-ray beam of 80 kVp over a dose range of 0 10 Gy. DAP measurements with films were obtained from the digitalization of a film sample positioned over the x-ray beam window during the exposure. DAP values obtained with this method were compared for 23 cardiological interventional procedures with DAP values displayed by the equipment. The overall one-sigma dose measurement uncertainty depended on the absorbed dose, with values below 6% for doses above 1 Gy. A maximum discrepancy of 16% was found, which is of the order of the differences in the DAP measurements that may occur with different calibration procedures. Based on the results presented, after an accurate calibration procedure and a thorough inspection of the relationship between the actual dose and the direct measured quantity (net optical density or net pixel value variation), Gafchromic® XR-R films can be used to assess the DAP.

  4. Lithium formate EPR dosimetry for verifications of planned dose distributions prior to intensity-modulated radiation therapy.

    PubMed

    Gustafsson, H; Lund, E; Olsson, S

    2008-09-07

    The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor kappa = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.

  5. Lithium formate EPR dosimetry for verifications of planned dose distributions prior to intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Gustafsson, H.; Lund, E.; Olsson, S.

    2008-09-01

    The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor k = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.

  6. Mean Absorbed Dose to the Anal-Sphincter Region and Fecal Leakage among Irradiated Prostate Cancer Survivors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsadius, David, E-mail: david.alsadius@oncology.gu.se; Hedelin, Maria; Division of Clinical Cancer Epidemiology, Department of Oncology-Pathology, Karolinska Institute, Stockholm

    2012-10-01

    Purpose: To supplement previous findings that the absorbed dose of ionizing radiation to the anal sphincter or lower rectum affects the occurrence of fecal leakage among irradiated prostate-cancer survivors. We also wanted to determine whether anatomically defining the anal-sphincter region as the organ at risk could increase the degree of evidence underlying clinical guidelines for restriction doses to eliminate this excess risk. Methods and Materials: We identified 985 men irradiated for prostate cancer between 1993 and 2006. In 2008, we assessed long-term gastrointestinal symptoms among these men using a study-specific questionnaire. We restrict the analysis to the 414 men whomore » had been treated with external beam radiation therapy only (no brachytherapy) to a total dose of 70 Gy in 2-Gy daily fractions to the prostate or postoperative prostatic region. On reconstructed original radiation therapy dose plans, we delineated the anal-sphincter region as an organ at risk. Results: We found that the prevalence of long-term fecal leakage at least once per month was strongly correlated with the mean dose to the anal-sphincter region. Examining different dose intervals, we found a large increase at 40 Gy; {>=}40 Gy compared with <40 Gy gave a prevalence ratio of 3.8 (95% confidence interval 1.6-8.6). Conclusions: This long-term study shows that mean absorbed dose to the anal-sphincter region is associated with the occurrence of long-term fecal leakage among irradiated prostate-cancer survivors; delineating the anal-sphincter region separately from the rectum and applying a restriction of a mean dose <40 Gy will, according to our data, reduce the risk considerably.« less

  7. Depth dependence of absorbed dose, dose equivalent and linear energy transfer spectra of galactic and trapped particles in polyethylene and comparison with calculations of models

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Cucinotta, F. A.; Wilson, J. W. (Principal Investigator)

    1998-01-01

    A matched set of five tissue-equivalent proportional counters (TEPCs), embedded at the centers of 0 (bare), 3, 5, 8 and 12-inch-diameter polyethylene spheres, were flown on the Shuttle flight STS-81 (inclination 51.65 degrees, altitude approximately 400 km). The data obtained were separated into contributions from trapped protons and galactic cosmic radiation (GCR). From the measured linear energy transfer (LET) spectra, the absorbed dose and dose-equivalent rates were calculated. The results were compared to calculations made with the radiation transport model HZETRN/NUCFRG2, using the GCR free-space spectra, orbit-averaged geomagnetic transmission function and Shuttle shielding distributions. The comparison shows that the model fits the dose rates to a root mean square (rms) error of 5%, and dose-equivalent rates to an rms error of 10%. Fairly good agreement between the LET spectra was found; however, differences are seen at both low and high LET. These differences can be understood as due to the combined effects of chord-length variation and detector response function. These results rule out a number of radiation transport/nuclear fragmentation models. Similar comparisons of trapped-proton dose rates were made between calculations made with the proton transport model BRYNTRN using the AP-8 MIN trapped-proton model and Shuttle shielding distributions. The predictions of absorbed dose and dose-equivalent rates are fairly good. However, the prediction of the LET spectra below approximately 30 keV/microm shows the need to improve the AP-8 model. These results have strong implications for shielding requirements for an interplanetary manned mission.

  8. Using LiF:Mg,Cu,P TLDs to estimate the absorbed dose to water in liquid water around an 192Ir brachytherapy source.

    PubMed

    Lucas, P Avilés; Aubineau-Lanièce, I; Lourenço, V; Vermesse, D; Cutarella, D

    2014-01-01

    The absorbed dose to water is the fundamental reference quantity for brachytherapy treatment planning systems and thermoluminescence dosimeters (TLDs) have been recognized as the most validated detectors for measurement of such a dosimetric descriptor. The detector response in a wide energy spectrum as that of an (192)Ir brachytherapy source as well as the specific measurement medium which surrounds the TLD need to be accounted for when estimating the absorbed dose. This paper develops a methodology based on highly sensitive LiF:Mg,Cu,P TLDs to directly estimate the absorbed dose to water in liquid water around a high dose rate (192)Ir brachytherapy source. Different experimental designs in liquid water and air were constructed to study the response of LiF:Mg,Cu,P TLDs when irradiated in several standard photon beams of the LNE-LNHB (French national metrology laboratory for ionizing radiation). Measurement strategies and Monte Carlo techniques were developed to calibrate the LiF:Mg,Cu,P detectors in the energy interval characteristic of that found when TLDs are immersed in water around an (192)Ir source. Finally, an experimental system was designed to irradiate TLDs at different angles between 1 and 11 cm away from an (192)Ir source in liquid water. Monte Carlo simulations were performed to correct measured results to provide estimates of the absorbed dose to water in water around the (192)Ir source. The dose response dependence of LiF:Mg,Cu,P TLDs with the linear energy transfer of secondary electrons followed the same variations as those of published results. The calibration strategy which used TLDs in air exposed to a standard N-250 ISO x-ray beam and TLDs in water irradiated with a standard (137)Cs beam provided an estimated mean uncertainty of 2.8% (k = 1) in the TLD calibration coefficient for irradiations by the (192)Ir source in water. The 3D TLD measurements performed in liquid water were obtained with a maximum uncertainty of 11% (k = 1) found at 1 cm from the source. Radial dose values in water were compared against published results of the American Association of Physicists in Medicine and the European Society for Radiotherapy and Oncology and no significant differences (maximum value of 3.1%) were found within uncertainties except for one position at 9 cm (5.8%). At this location the background contribution relative to the TLD signal is relatively small and an unexpected experimental fluctuation in the background estimate may have caused such a large discrepancy. This paper shows that reliable measurements with TLDs in complex energy spectra require a study of the detector dose response with the radiation quality and specific calibration methodologies which model accurately the experimental conditions where the detectors will be used. The authors have developed and studied a method with highly sensitive TLDs and contributed to its validation by comparison with results from the literature. This methodology can be used to provide direct estimates of the absorbed dose rate in water for irradiations with HDR (192)Ir brachytherapy sources.

  9. Biodistribution and Radiation Dosimetry for the Novel SV2A Radiotracer [(18)F]UCB-H: First-in-Human Study.

    PubMed

    Bretin, F; Bahri, M A; Bernard, C; Warnock, G; Aerts, J; Mestdagh, N; Buchanan, T; Otoul, C; Koestler, F; Mievis, F; Giacomelli, F; Degueldre, C; Hustinx, R; Luxen, A; Seret, A; Plenevaux, A; Salmon, E

    2015-08-01

    [(18)F]UCB-H is a novel radiotracer with a high affinity for synaptic vesicle glycoprotein 2A (SV2A), a protein expressed in synaptic vesicles. SV2A is the binding site of levetiracetam, a "first-in-class" antiepileptic drug with a distinct but still poorly understood mechanism of action. The objective of this study was to determine the biodistribution and radiation dosimetry of [(18)F]UCB-H in a human clinical trial and to establish injection limits according to biomedical research guidelines. Additionally, the clinical radiation dosimetry results were compared to estimations in previously published preclinical data. Dynamic whole body positron emission tomography/X-ray computed tomography (PET/CT) imaging was performed over approximately 110 min on five healthy male volunteers after injection of 144.5 ± 7.1 MBq (range, 139.1-156.5 MBq) of [(18)F]UCB-H. Major organs were delineated on CT images, and time-activity curves were obtained from co-registered dynamic PET emission scans. The bladder could only be delineated on PET images. Time-integrated activity coefficients were calculated as area under the curve using trapezoidal numerical integration. Urinary excretion data based on PET activities including voiding was also simulated using the dynamic bladder module of OLINDA/EXM. The radiation dosimetry was calculated using OLINDA/EXM. The effective dose to the OLINDA/EXM 70-kg standard male was 1.54 × 10(-2) ± 6.84 × 10(-4) millisieverts (mSv)/MBq, with urinary bladder wall, gallbladder wall, and the liver receiving the highest absorbed dose. The brain, the tracer's main organ of interest, received an absorbed dose of 1.89 × 10(-2) ± 2.32 × 10(-3) mGy/MBq. This first human dosimetry study of [(18)F]UCB-H indicated that the tracer shows similar radiation burdens to widely used common clinical tracers. Single injections of at maximum 672 MBq for US practice and 649 MBq for European practice keep radiation exposure below recommended limits. Recently published preclinical dosimetry data extrapolated from mice provided satisfactory prediction of total body and effective dose but showed significant differences in organ absorbed doses compared to human data.

  10. Dosimetric characteristics of the University of Washington Clinical Neutron Therapy System

    NASA Astrophysics Data System (ADS)

    Moffitt, Gregory B.; Stewart, Robert D.; Sandison, George A.; Goorley, John T.; Argento, David C.; Jevremovic, Tatjana; Emery, Robert; Wootton, Landon S.; Parvathaneni, Upendra; Laramore, George E.

    2018-05-01

    The University of Washington (UW) Clinical Neutron Therapy System (CNTS), which generates high linear energy transfer fast neutrons through interactions of 50.5 MeV protons incident on a Be target, has depth-dose characteristics similar to 6 MV x-rays. In contrast to the fixed beam angles and primitive blocking used in early clinical trials of neutron therapy, the CNTS has a gantry with a full 360° of rotation, internal wedges, and a multi-leaf collimator (MLC). Since October of 1984, over 3178 patients have received conformal neutron therapy treatments using the UW CNTS. In this work, the physical and dosimetric characteristics of the CNTS are documented through comparisons of measurements and Monte Carlo simulations. A high resolution computed tomography scan of the model 17 ionization chamber (IC-17) has also been used to improve the accuracy of simulations of the absolute calibration geometry. The response of the IC-17 approximates well the kinetic energy released per unit mass (KERMA) in water for neutrons and photons for energies from a few tens of keV up to about 20 MeV. Above 20 MeV, the simulated model 17 ion chamber response is 20%–30% higher than the neutron KERMA in water. For CNTS neutrons, simulated on- and off-axis output factors in water match measured values within ~2%  ±  2% for rectangular and irregularly shaped field with equivalent square areas ranging in a side dimension from 2.8 cm to 30.7 cm. Wedge factors vary by less than 1.9% of the measured dose in water for clinically relevant field sizes. Simulated tissue maximum ratios in water match measured values within 3.3% at depths up to 20 cm. Although the absorbed dose for water and adipose tissue are within 2% at a depth of 1.7 cm, the absorbed dose in muscle and bone can be as much as 12 to 40% lower than the absorbed dose in water. The reported studies are significant from a historical perspective and as additional validation of a new tool for patient quality assurance and as an aid in ongoing efforts to clinically implement advanced treatment techniques, such as intensity modulated neutron therapy, at the UW.

  11. Comparison between X-rays spectra and their effective energies in small animal CT tomographic imaging and dosimetry.

    PubMed

    Hamdi, Mahdjoub; Mimi, Malika; Bentourkia, M'hamed

    2017-03-01

    Small animal CT imaging and dosimetry usually rely on X-ray radiation produced by X-ray tubes. These X-rays typically cover a large energy range. In this study, we compared poly-energetic X-ray spectra against estimated equivalent (effective) mono-energetic beams with the same number of simulated photons for small animal CT imaging and dosimetry applications. Two poly-energetic X-ray spectra were generated from a tungsten anode at 50 and 120 kVp. The corresponding effective mono-energetic beams were established as 36 keV for the 50 kVp spectrum and 49.5 keV for the 120 kVp spectrum. To assess imaging applications, we investigated the spatial resolution by a tungsten wire, and the contrast-to-noise ratio in a reference phantom and in a realistic mouse phantom. For dosimetry investigation, we calculated the absorbed dose in a segmented digital mouse atlas in the skin, fat, heart and bone tissues. Differences of 2.1 and 2.6% in spatial resolution were respectively obtained between the 50 and 120 kVp poly-energetic spectra and their respective 36 and 49.5 keV mono-energetic beams. The differences in contrast-to-noise ratio between the poly-energetic 50 kVp spectrum and its corresponding mono-energetic 36 keV beam for air, fat, brain and bone were respectively -2.9, -0.2, 11.2 and -4.8%, and similarly between the 120 kVp and its effective energy 49.5 keV: -11.3, -20.2, -4.2 and -13.5%. Concerning the absorbed dose, for the lower X-ray beam energies, 50 kVp against 36 keV, the poly-energetic radiation doses were higher than the mono-energetic doses. Instead, for the higher X-ray beam energies, 120 kVp and 49.5 keV, the absorbed dose to the bones and lungs were higher for the mono-energetic 49.5 keV. The intensity and energy of the X-ray beam spectrum have an impact on both imaging and dosimetry in small animal studies. Simulations with mono-energetic beams should take into account these differences in order to study biological effects or to be compared to experimental data.

  12. SU-E-CAMPUS-I-05: Internal Dosimetric Calculations for Several Imaging Radiopharmaceuticals in Preclinical Studies and Quantitative Assessment of the Mouse Size Impact On Them. Realistic Monte Carlo Simulations Based On the 4D-MOBY Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostou, T; Papadimitroulas, P; Kagadis, GC

    2014-06-15

    Purpose: Commonly used radiopharmaceuticals were tested to define the most important dosimetric factors in preclinical studies. Dosimetric calculations were applied in two different whole-body mouse models, with varying organ size, so as to determine their impact on absorbed doses and S-values. Organ mass influence was evaluated with computational models and Monte Carlo(MC) simulations. Methods: MC simulations were executed on GATE to determine dose distribution in the 4D digital MOBY mouse phantom. Two mouse models, 28 and 34 g respectively, were constructed based on realistic preclinical exams to calculate the absorbed doses and S-values of five commonly used radionuclides in SPECT/PETmore » studies (18F, 68Ga, 177Lu, 111In and 99mTc).Radionuclide biodistributions were obtained from literature. Realistic statistics (uncertainty lower than 4.5%) were acquired using the standard physical model in Geant4. Comparisons of the dosimetric calculations on the two different phantoms for each radiopharmaceutical are presented. Results: Dose per organ in mGy was calculated for all radiopharmaceuticals. The two models introduced a difference of 0.69% in their brain masses, while the largest differences were observed in the marrow 18.98% and in the thyroid 18.65% masses.Furthermore, S-values of the most important target-organs were calculated for each isotope. Source-organ was selected to be the whole mouse body.Differences on the S-factors were observed in the 6.0–30.0% range. Tables with all the calculations as reference dosimetric data were developed. Conclusion: Accurate dose per organ and the most appropriate S-values are derived for specific preclinical studies. The impact of the mouse model size is rather high (up to 30% for a 17.65% difference in the total mass), and thus accurate definition of the organ mass is a crucial parameter for self-absorbed S values calculation.Our goal is to extent the study for accurate estimations in small animal imaging, whereas it is known that there is a large variety in the anatomy of the organs.« less

  13. Effective atomic numbers and electron densities of bioactive glasses for photon interaction

    NASA Astrophysics Data System (ADS)

    Shantappa, Anil; Hanagodimath, S. M.

    2015-08-01

    This work was carried out to study the nature of mass attenuation coefficient of bioactive glasses for gamma rays. Bioactive glasses are a group of synthetic silica-based bioactive materials with unique bone bonding properties. In the present study, we have calculated the effective atomic number, electron density for photon interaction of some selected bioactive glasses viz., SiO2-Na2O, SiO2-Na2O-CaO and SiO2-Na2O-P2O5 in the energy range 1 keV to 100 MeV. We have also computed the single valued effective atomic number by using XMuDat program. It is observed that variation in effective atomic number (ZPI, eff) depends also upon the weight fractions of selected bioactive glasses and range of atomic numbers of the elements. The results shown here on effective atomic number, electron density will be more useful in the medical dosimetry for the calculation of absorbed dose and dose rate.

  14. KEY COMPARISON: Comparison of the standards for absorbed dose to water of the ENEA-INMRI (Italy) and the BIPM for 60Co γ rays

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Allisy-Roberts, P. J.; Burns, D. T.; Guerra, A. S.; Laitano, R. F.; Pimpinella, M.

    2010-01-01

    A comparison of the standards for absorbed dose to water of the Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti of the Ente per le Nuove Tecnologie, l'Energia e l'Ambiente, Italy (ENEA-INMRI), and of the Bureau International des Poids et Mesures (BIPM) has been made in 60Co gamma radiation under the auspices of the key comparison BIPM.RI(I)-K4. The comparison result, based on the calibration coefficients for three transfer standards and expressed as a ratio of the ENEA and the BIPM standards for absorbed dose to water, is 0.9999 (0.0044). The present 2007 result replaces the earlier ENEA value in this key comparison. The degrees of equivalence between the ENEA and the other participants in this comparison have been calculated and the results are given in the form of a matrix for the ten national metrology institutes (NMIs) that have published results in this ongoing comparison for absorbed dose to water. A graphical presentation is also given. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section I, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  15. Influence of lead apron shielding on absorbed doses from cone-beam computed tomography.

    PubMed

    Rottke, Dennis; Andersson, Jonas; Ejima, Ken-Ichiro; Sawada, Kunihiko; Schulze, Dirk

    2017-06-01

    The aim of the present work was to investigate absorbed and to calculate effective doses (EDs) in cone-beam computed tomography (CBCT). The study was conducted using examination protocols with and without lead apron shielding. A full-body male RANDO® phantom was loaded with 110 GR200A thermoluminescence dosemeter chips at 55 different sites and set up in two different CBCT systems (CS 9500®, ProMax® 3D). Two different protocols were performed: the phantom was set up (1) with and (2) without a lead apron. No statistically significant differences in organ and absorbed doses from regions outside the primary beam could be found when comparing results from exposures with and without lead apron shielding. Consequently, calculating the ED showed no significant differences between the examination protocols with and without lead apron shielding. For the ProMax® 3D with shielding, the ED was 149 µSv, and for the examination protocol without shielding 148 µSv (SD = 0.31 µSv). For the CS 9500®, the ED was 88 and 86 µSv (SD = 0.95 µSv), respectively, with and without lead apron shielding. The results revealed no statistically significant differences in the absorbed doses between examination with and without lead apron shielding, especially in organs outside the primary beam. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Production, PET performance and dosimetric considerations of 134Ce/134La, an Auger electron and positron-emitting generator for radionuclide therapy.

    PubMed

    Lubberink, Mark; Lundqvist, Hans; Tolmachev, Vladimir

    2002-02-21

    We propose the use of the Auger electron and positron-emitting generator 134Ce/134La (half-lives 3.16 d and 6.45 min) for radionuclide therapy. It combines emission of high-energy beta particles with Auger electrons. The high-energy beta particles have similar energies as those emitted by 90Y. Many cancer patients receiving radionuclide therapy have both bulk tumours, which are best treated with high-energy beta particles, and single spread cells or micrometastasis, which are preferably treated with low-energy electrons such as Auger and conversion electrons. Furthermore, the positron-emitting 134La can be used to study kinetics and dosimetry using PET. Production and PET performance were investigated and theoretical dosimetry calculations were made. PET resolution, recovery and quantitative accuracy were slightly degraded for 134La compared to 18F. 134Ce/134La absorbed doses to single cells were higher than absorbed doses from 90Y and 111In. Absorbed doses to spheres representing bulk tumours were almost as high as for 90Y, and a factor 10 higher than for 111In. Whole-body absorbed doses, based on kinetics of the somatostatin analogue octreotide, were higher for 134Ce/134La than for 90Y because of the 134La annihilation photons. This initial study of the therapeutic possibilities of 134Ce/134La is encouraging and justifies further investigations.

  17. Dose conversion coefficients for electron exposure of the human eye lens: calculations including a whole body phantom.

    PubMed

    Behrens, R

    2013-07-01

    In this work, conversion coefficients from electron fluence to absorbed dose to the eye lens were calculated using Monte Carlo simulations based on a detailed stylised eye model and a very simple but whole body phantom. These data supersede and complement data published earlier based on the simulation of only a single stylised eye. The new data differ from the old ones by not more than 3, 4, 7 and 16 % for angles of radiation incidence of α=0°, 15°, 30° and 45°, respectively, due to the inclusion of the whole body phantom. The data presented in the present work also complement those of a recent report of the International Commission on Radiological Protection (ICRP) (ICRP Publication 116), where conversion coefficients from electron fluence to absorbed dose to the lens of the eye are shown for solely 0°, 180° and isotropic radiation incidence (but for a much broader range of energies). In this article, values are provided for angles of incidence of 0° up to 180° in steps of 15° and for rotational geometry; no systematic deviation was observed from the values given in ICRP Publication 116 for 0° (based on the application of a bare eye) and 180° (based on the application of a voxel whole body phantom). Data are given for monoenergetic electrons from 0.1 up to 10 MeV and for a broad parallel beam geometry in vacuum.

  18. Monte Carlo Analysis of Pion Contribution to Absorbed Dose from Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Aghara, S.K.; Battnig, S.R.; Norbury, J.W.; Singleterry, R.C.

    2009-01-01

    Accurate knowledge of the physics of interaction, particle production and transport is necessary to estimate the radiation damage to equipment used on spacecraft and the biological effects of space radiation. For long duration astronaut missions, both on the International Space Station and the planned manned missions to Moon and Mars, the shielding strategy must include a comprehensive knowledge of the secondary radiation environment. The distribution of absorbed dose and dose equivalent is a function of the type, energy and population of these secondary products. Galactic cosmic rays (GCR) comprised of protons and heavier nuclei have energies from a few MeV per nucleon to the ZeV region, with the spectra reaching flux maxima in the hundreds of MeV range. Therefore, the MeV - GeV region is most important for space radiation. Coincidentally, the pion production energy threshold is about 280 MeV. The question naturally arises as to how important these particles are with respect to space radiation problems. The space radiation transport code, HZETRN (High charge (Z) and Energy TRaNsport), currently used by NASA, performs neutron, proton and heavy ion transport explicitly, but it does not take into account the production and transport of mesons, photons and leptons. In this paper, we present results from the Monte Carlo code MCNPX (Monte Carlo N-Particle eXtended), showing the effect of leptons and mesons when they are produced and transported in a GCR environment.

  19. Dosimetric results on EURECA

    NASA Technical Reports Server (NTRS)

    Reitz, G.

    1995-01-01

    Detector packages were exposed on the European Retrievable Carrier (EURECA) as part of the Biostack experiment inside the Exobiology and Radiation Assembly (ERA) and at several locations around EURECA. The packages consist of different plastic nuclear track detectors, nuclear emulsions and thermoluminescence dosimeters (TLD's). Evaluation of these detectors yields data on absorbed dose and particle and LET spectra. Preliminary results of absorbed dose measurements in the EURECA dosimeter packages are reported and compared to results of the LDEF experiments. The highest dose rate measured on EURECA is 63.3 plus or minus 0.4 mGy d(exp -1) behind a shielding thickness of 0.09 g cm(exp -2) in front of the detector package.

  20. Dose control in electron beam processing: Comparison of results from a graphite charge collector, routine dosimeters and the ISS alanine-based dosimeter

    NASA Astrophysics Data System (ADS)

    Fuochi, P. G.; Onori, S.; Casali, F.; Chirco, P.

    1993-10-01

    A 12 MeV linear accelerator is currently used for electron beam processing of power semiconductor devices for lifetime control and, on an experimental basis, for food irradiation, sludge treatment etc. In order to control the irradiation process a simple, quick and reliable method for a direct evaluation of dose and fluence in a broad electron beam has been developed. This paper presents the results obtained using a "charge collector" which measures the charge absorbed in a graphite target exposed in air. Calibration of the system with super-Fricke dosimeter and comparison of absorbed dose results obtained with plastic dosimeters and alanine pellets are discussed.

Top