Science.gov

Sample records for absorbed optical energy

  1. Optical analysis of solar energy tubular absorbers.

    PubMed

    Saltiel, C; Sokolov, M

    1982-11-15

    The energy absorbed by a solar energy tubular receiver element for a single incident ray is derived. Two types of receiver elements were analyzed: (1) an inner tube with an absorbing coating surrounded by a semitransparent cover tube, and (2) a semitransparent inner tube filled with an absorbing fluid surrounded by a semitransparent cover tube. The formation of ray cascades in the semitransparent tubes is considered. A numerical simulation to investigate the influence of the angle of incidence, sizing, thickness, and coefficient of extinction of the tubes was performed. A comparison was made between receiver elements with and without cover tubes. Ray tracing analyses in which rays were followed within the tubular receiver element as well as throughout the rest of the collector were performed for parabolic and circular trough concentrating collectors.

  2. New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Yu, Haitong; Duan, Yuanyuan; Li, Qiang; Xuan, Yimin

    2016-09-01

    Two challenging problems still remain for optical absorbers consisting of an ultrathin planar semiconductor film on top of an opaque metallic substrate. One is the angle-insensitive mechanism and the other is the system design needed for broadband solar energy harvesting. Here, first we theoretically demonstrates that the high refractive index, instead of the ultrathin feature as reported in previous studies, is the physical origin of the angle insensitivity for ultrathin planar optical absorbers. They exhibit omnidirectional resonance for TE polarization due to the high complex refractive index difference between the semiconductor and the air, while for TM polarization the angle insensitivity persists up to an incident angle related to the semiconductor refractive index. These findings were validated by fabricating and characterizing an 18 nm Ge/Ag absorber sample (representative of small band gap semiconductors for photovoltaic applications) and a 22 nm hematite/Ag sample (representative of large band gap semiconductors for photoelectrochemical applications). Then, we took advantage of angle insensitivity and designed a spectrum splitting configuration for broadband solar energy harvesting. The cascaded solar cell and unassisted solar water splitting systems have photovoltaic and photoelectrochemical cells that are also spectrum splitters, so an external spectrum splitting element is not needed.

  3. New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting.

    PubMed

    Liu, Dong; Yu, Haitong; Duan, Yuanyuan; Li, Qiang; Xuan, Yimin

    2016-01-01

    Two challenging problems still remain for optical absorbers consisting of an ultrathin planar semiconductor film on top of an opaque metallic substrate. One is the angle-insensitive mechanism and the other is the system design needed for broadband solar energy harvesting. Here, first we theoretically demonstrates that the high refractive index, instead of the ultrathin feature as reported in previous studies, is the physical origin of the angle insensitivity for ultrathin planar optical absorbers. They exhibit omnidirectional resonance for TE polarization due to the high complex refractive index difference between the semiconductor and the air, while for TM polarization the angle insensitivity persists up to an incident angle related to the semiconductor refractive index. These findings were validated by fabricating and characterizing an 18 nm Ge/Ag absorber sample (representative of small band gap semiconductors for photovoltaic applications) and a 22 nm hematite/Ag sample (representative of large band gap semiconductors for photoelectrochemical applications). Then, we took advantage of angle insensitivity and designed a spectrum splitting configuration for broadband solar energy harvesting. The cascaded solar cell and unassisted solar water splitting systems have photovoltaic and photoelectrochemical cells that are also spectrum splitters, so an external spectrum splitting element is not needed. PMID:27582317

  4. New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting.

    PubMed

    Liu, Dong; Yu, Haitong; Duan, Yuanyuan; Li, Qiang; Xuan, Yimin

    2016-09-01

    Two challenging problems still remain for optical absorbers consisting of an ultrathin planar semiconductor film on top of an opaque metallic substrate. One is the angle-insensitive mechanism and the other is the system design needed for broadband solar energy harvesting. Here, first we theoretically demonstrates that the high refractive index, instead of the ultrathin feature as reported in previous studies, is the physical origin of the angle insensitivity for ultrathin planar optical absorbers. They exhibit omnidirectional resonance for TE polarization due to the high complex refractive index difference between the semiconductor and the air, while for TM polarization the angle insensitivity persists up to an incident angle related to the semiconductor refractive index. These findings were validated by fabricating and characterizing an 18 nm Ge/Ag absorber sample (representative of small band gap semiconductors for photovoltaic applications) and a 22 nm hematite/Ag sample (representative of large band gap semiconductors for photoelectrochemical applications). Then, we took advantage of angle insensitivity and designed a spectrum splitting configuration for broadband solar energy harvesting. The cascaded solar cell and unassisted solar water splitting systems have photovoltaic and photoelectrochemical cells that are also spectrum splitters, so an external spectrum splitting element is not needed.

  5. New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting

    PubMed Central

    Liu, Dong; Yu, Haitong; Duan, Yuanyuan; Li, Qiang; Xuan, Yimin

    2016-01-01

    Two challenging problems still remain for optical absorbers consisting of an ultrathin planar semiconductor film on top of an opaque metallic substrate. One is the angle-insensitive mechanism and the other is the system design needed for broadband solar energy harvesting. Here, first we theoretically demonstrates that the high refractive index, instead of the ultrathin feature as reported in previous studies, is the physical origin of the angle insensitivity for ultrathin planar optical absorbers. They exhibit omnidirectional resonance for TE polarization due to the high complex refractive index difference between the semiconductor and the air, while for TM polarization the angle insensitivity persists up to an incident angle related to the semiconductor refractive index. These findings were validated by fabricating and characterizing an 18 nm Ge/Ag absorber sample (representative of small band gap semiconductors for photovoltaic applications) and a 22 nm hematite/Ag sample (representative of large band gap semiconductors for photoelectrochemical applications). Then, we took advantage of angle insensitivity and designed a spectrum splitting configuration for broadband solar energy harvesting. The cascaded solar cell and unassisted solar water splitting systems have photovoltaic and photoelectrochemical cells that are also spectrum splitters, so an external spectrum splitting element is not needed. PMID:27582317

  6. Mechanical energy absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J. (Inventor)

    1993-01-01

    An energy absorbing system for controlling the force where a moving object engages a stationary stop and where the system utilized telescopic tubular members, energy absorbing diaphragm elements, force regulating disc springs, and a return spring to return the telescoping member to its start position after stroking is presented. The energy absorbing system has frusto-conical diaphragm elements frictionally engaging the shaft and are opposed by a force regulating set of disc springs. In principle, this force feedback mechanism serves to keep the stroking load at a reasonable level even if the friction coefficient increases greatly. This force feedback device also serves to desensitize the singular and combined effects of manufacturing tolerances, sliding surface wear, temperature changes, dynamic effects, and lubricity.

  7. Metal-shearing energy absorber

    NASA Technical Reports Server (NTRS)

    Fay, R. J.; Wittrock, E. P.

    1971-01-01

    Device, consisting of tongue of thin aluminum alloy strip, pull tab, slotted steel plate which serves as cutter, and steel buckle, absorbs mechanical energy when its ends are subjected to tensile loading. Device is applicable as auxiliary shock absorbing anchor for automobile and airplane safety belts.

  8. Energy-Absorbing, Lightweight Wheels

    NASA Technical Reports Server (NTRS)

    Waydo, Peter

    2003-01-01

    Improved energy-absorbing wheels are under development for use on special-purpose vehicles that must traverse rough terrain under conditions (e.g., extreme cold) in which rubber pneumatic tires would fail. The designs of these wheels differ from those of prior non-pneumatic energy-absorbing wheels in ways that result in lighter weights and more effective reduction of stresses generated by ground/wheel contact forces. These wheels could be made of metals and/or composite materials to withstand the expected extreme operating conditions. As shown in the figure, a wheel according to this concept would include an isogrid tire connected to a hub via spring rods. The isogrid tire would be a stiff, lightweight structure typically made of aluminum. The isogrid aspect of the structure would both impart stiffness and act as a traction surface. The hub would be a thin-walled body of revolution having a simple or compound conical or other shape chosen for structural efficiency. The spring rods would absorb energy and partially isolate the hub and the supported vehicle from impact loads. The general spring-rod configuration shown in the figure was chosen because it would distribute contact and impact loads nearly evenly around the periphery of the hub, thereby helping to protect the hub against damage that would otherwise be caused by large loads concentrated onto small portions of the hub.

  9. TPX/TFTR Neutral Beam energy absorbers

    SciTech Connect

    Dahlgren, F.; Wright, K.; Kamperschroer, J.; Grisham, L.; Lontai, L.; Peters, C.; VonHalle, A.

    1993-11-01

    The present beam energy absorbing surfaces on the TFTR Neutral Beams such as Ion Dumps, Calorimeters, beam defining apertures, and scrapers, are simple water cooled copper plates which wee designed to absorb (via their thermal inertia) the incident beam power for two seconds with a five minute coal down interval between pulses. These components are not capable of absorbing the anticipated beam power loading for 1000 second TPX pulses and will have to be replaced with an actively cooled design. While several actively cooled energy absorbing designs were considered,, the hypervapotron elements currently being used on the JET beamlines were chosen due to their lower cooling water demands and reliable performance on JET.

  10. Energy absorber uses expanded coiled tube

    NASA Technical Reports Server (NTRS)

    Johnson, E. F.

    1972-01-01

    Mechanical shock mitigating device, based on working material to its failure point, absorbs mechanical energy by bending or twisting tubing. It functions under axial or tangential loading, has no rebound, is area independent, and is easy and inexpensive to build.

  11. Moving core beam energy absorber and converter

    DOEpatents

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  12. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers

    SciTech Connect

    Cai, Yijun; Zhu, Jinfeng; Liu, Qing Huo

    2015-01-26

    Enhancement and manipulation of light absorption in graphene is a significant issue for applications of graphene-based optoelectronic devices. In order to achieve this purpose in the visible region, we demonstrate a design of a graphene optical absorber inspired by metal-dielectric-metal metamaterial for perfect absorption of electromagnetic waves. The optical absorbance ratios of single and three atomic layer graphene are enhanced up to 37.5% and 64.8%, respectively. The graphene absorber shows polarization-dependence and tolerates a wide range of incident angles. Furthermore, the peak position and bandwidth of graphene absorption spectra are tunable in a wide wavelength range through a specific structural configuration. These results imply that graphene in combination with plasmonic perfect absorbers have a promising potential for developing advanced nanophotonic devices.

  13. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers

    NASA Astrophysics Data System (ADS)

    Cai, Yijun; Zhu, Jinfeng; Liu, Qing Huo

    2015-01-01

    Enhancement and manipulation of light absorption in graphene is a significant issue for applications of graphene-based optoelectronic devices. In order to achieve this purpose in the visible region, we demonstrate a design of a graphene optical absorber inspired by metal-dielectric-metal metamaterial for perfect absorption of electromagnetic waves. The optical absorbance ratios of single and three atomic layer graphene are enhanced up to 37.5% and 64.8%, respectively. The graphene absorber shows polarization-dependence and tolerates a wide range of incident angles. Furthermore, the peak position and bandwidth of graphene absorption spectra are tunable in a wide wavelength range through a specific structural configuration. These results imply that graphene in combination with plasmonic perfect absorbers have a promising potential for developing advanced nanophotonic devices.

  14. Absorbing Boundary Conditions For Optical Pulses In Dispersive, Nonlinear Materials

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Kwak, Dochan (Technical Monitor)

    1995-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that provides absorbing boundary conditions for optical pulses in dispersive, nonlinear materials. A new numerical absorber at the boundaries has been developed that is responsive to the spectral content of the pulse. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of "light bullet" like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. Comparisons will be shown of calculations that use the standard boundary conditions and the new ones.

  15. Tech Transfer Webinar: Energy Absorbing Materials

    SciTech Connect

    Duoss, Eric

    2014-06-17

    A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  16. Design and Manufacture of Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2016-07-12

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  17. Lightweight Energy Absorbers for Blast Containers

    NASA Technical Reports Server (NTRS)

    Balles, Donald L.; Ingram, Thomas M.; Novak, Howard L.; Schricker, Albert F.

    2003-01-01

    Kinetic-energy-absorbing liners made of aluminum foam have been developed to replace solid lead liners in blast containers on the aft skirt of the solid rocket booster of the space shuttle. The blast containers are used to safely trap the debris from small explosions that are initiated at liftoff to sever frangible nuts on hold-down studs that secure the spacecraft to a mobile launch platform until liftoff.

  18. Tech Transfer Webinar: Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2016-07-12

    A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  19. Design and Manufacture of Energy Absorbing Materials

    SciTech Connect

    Duoss, Eric

    2014-05-28

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  20. Load limiting energy absorbing lightweight debris catcher

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B. (Inventor); Schneider, William C. (Inventor)

    1991-01-01

    In the representative embodiment of the invention disclosed, a load limiting, energy absorbing net is arranged to overlay a normally-covered vent opening in the rear bulkhead of the space orbiter vehicle. Spatially-disposed flexible retainer straps are extended from the net and respectively secured to bulkhead brackets spaced around the vent opening. The intermediate portions of the straps are doubled over and stitched together in a pattern enabling the doubled-over portions to progressively separate at a predicable load designed to be well below the tensile capability of the straps as the stitches are successively torn apart by the forces imposed on the retainer members whenever the cover plate is explosively separated from the bulkhead and propelled into the net. By arranging these stitches to be successively torn away at a load below the strap strength in response to forces acting on the retainers that are less than the combined strength of the retainers, this tearing action serves as a predictable compact energy absorber for safely halting the cover plate as the retainers are extended as the net is deployed. The invention further includes a block of an energy-absorbing material positioned in the net for receiving loose debris produced by the explosive release of the cover plate.

  1. Development of optical tools for the characterization of selective solar absorber at elevated temperature

    NASA Astrophysics Data System (ADS)

    Giraud, Philemon; Braillon, Julien; Delord, Christine; Raccurt, Olivier

    2016-05-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The objective is to develop new optical equipment for characterization of this solar absorber in condition of use that is to say in air and at elevated temperature. In this paper we present two new optical test benches developed for optical characterization of solar absorbers in condition of use up to 800°C. The first equipment is an integrated sphere with heated sample holder which measures the hemispherical reflectance between 280 and 2500 nm to calculate the solar absorbance at high temperature. The second optical test bench measures the emittance of samples up to 1000°C in the range of 1.25 to 28.57 µm. Results of high temperature measurements on a series of metallic absorbers with selective coating and refractory material for high thermal receiver are presented.

  2. Optical tomography by the temporally extrapolated absorbance method

    NASA Astrophysics Data System (ADS)

    Oda, Ichiro; Eda, Hideo; Tsunazawa, Yoshio; Takada, Michinosuke; Yamada, Yukio; Nishimura, Goro; Tamura, Mamoru

    1996-01-01

    The concept of the temporally extrapolated absorbance method (TEAM) for optical tomography of turbid media has been verified by fundamental experiments and image reconstruction. The TEAM uses the time-resolved spectroscopic data of the reference and object to provide projection data that are processed by conventional backprojection. Optical tomography images of a phantom consisting of axisymmetric double cylinders were experimentally obtained with the TEAM and time-gating and continuous-wave (CW) methods. The reconstructed TEAM images are compared with those obtained with the time-gating and CW methods and are found to have better spatial resolution.

  3. Thermally Resilient, Broadband Optical Absorber from UV to IR Derived from Carbon Nanostructures

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Coles, James B.

    2012-01-01

    Optical absorber coatings have been developed from carbon-based paints, metal blacks, or glassy carbon. However, such materials are not truly black and have poor absorption characteristics at longer wavelengths. The blackness of such coatings is important to increase the accuracy of calibration targets used in radiometric imaging spectrometers since blackbody cavities are prohibitively large in size. Such coatings are also useful potentially for thermal detectors, where a broadband absorber is desired. Au-black has been a commonly used broadband optical absorber, but it is very fragile and can easily be damaged by heat and mechanical vibration. An optically efficient, thermally rugged absorber could also be beneficial for thermal solar cell applications for energy harnessing, particularly in the 350-2,500 nm spectral window. It has been demonstrated that arrays of vertically oriented carbon nanotubes (CNTs), specifically multi-walled-carbon- nanotubes (MWCNTs), are an exceptional optical absorber over a broad range of wavelengths well into the infrared (IR). The reflectance of such arrays is 100x lower compared to conventional black materials, such as Au black in the spectral window of 350-2,500 nm. Total hemispherical measurements revealed a reflectance of approximately equal to 1.7% at lambda approximately equal to 1 micrometer, and at longer wavelengths into the infrared (IR), the specular reflectance was approximately equal to 2.4% at lambda approximately equal to 7 micrometers. The previously synthesized CNTs for optical absorber applications were formed using water-assisted thermal chemical vapor deposition (CVD), which yields CNT lengths in excess of 100's of microns. Vertical alignment, deemed to be a critical feature in enabling the high optical absorption from CNT arrays, occurs primarily via the crowding effect with thermal CVD synthesized CNTs, which is generally not effective in aligning CNTs with lengths less than 10 m. Here it has been shown that the

  4. The optical properties of using graphene as a saturable absorber

    NASA Astrophysics Data System (ADS)

    Keschl, Nathan; Schibli, Thomas; Lee, Chien-Chung; Xie, Wanyan

    2012-10-01

    Graphene, a single-atom layer of carbon atoms in a honeycomb lattice, has been on the forefront of research since it's discovery in 2005 [1]. Although it has many applications, my research is specialized in the field of utilizing the graphene as a saturable absorber for mode-locking lasers. Currently, the most common method to mode-lock a laser is by using a Semi-conductor Saturable Absorber Mirror (SESAM). Graphene is a substitute for SESAMs with pulse generation as low as 260 fs [2]. However, graphene will begin to ``burn'' as the laser approaches the intensity it needs to mode-lock. We have experimented with various methods of protecting the graphene from burning so it can be used at higher intensity domains.[4pt] [1] A. K. Geim, K. S. Novoselov, ``The rise of graphene.'' Nat Mater. 2007/03//print[0pt] [2] G. Acosta, J.S. Bunch, C.C. Lee, T.R. Schibli, ``Ultra-Short Optical Pulse Generation with Single-Layer Graphene.'' Journal of Nonlinear Optical Physics and Materials, Volume 19, Issue 04, pp. 767-771. 00/2010.

  5. Optical absorbance measurements and photoacoustic evaluation of freeze-thawed polyvinyl-alcohol vessel phantoms

    NASA Astrophysics Data System (ADS)

    Arabul, M. U.; Heres, H. M.; Rutten, M.; van de Vosse, F.; Lopata, R.

    2015-03-01

    Multispectral photoacoustic (MPA) imaging is a promising tool for the diagnosis of atherosclerotic carotids. Excitation of different constituents of a plaque with different wavelengths of the light may provide morphological information to evaluate plaque vulnerability. Preclinical validation of in vivo photoacoustic (PA) imaging requires a comprehensive phantom study. In this study, the design of optically realistic vessel phantoms for photoacoustics was examined by characterizing their optical properties for different dye concentrations, and comparing those to PA measurements. Four different concentrations of Indian ink and molecular dye were added to a 15 wt% PVA and 1 wt% orgasol mixture. Next, the homogeneously mixed gels were subjected to five freeze - thaw cycles to increase the stiffness of vessel phantoms (rinner = 2:5mm, router = 4mm). For each cycle, the optical absorbance was measured between 400 nm 990 nm using a plate reader. Additionally, photoacoustic responses of each vessel phantom at 808 nm were tested with a novel, hand-held, integrated PA probe. Measurements show that the PA signal intensity increases with the optical absorber concentration (0.3 to 0.9) in close agreement with the absorbance measurements. The freeze - thaw process has no significant effect on PA intensity. However, the total attenuation of optical energy increases after each freeze-thaw cycle, which is primarily due to the increase in the scattering coefficient. In future work, the complexity of these phantoms will be increased to examine the feasibility of distinguishing different constituents with MPA imaging.

  6. The changes in optical absorbance of ZrO2 thin film with the rise of the absorbed dose

    NASA Astrophysics Data System (ADS)

    Abayli, D.; Baydogan, N.

    2016-03-01

    In this study, zirconium oxide (ZrO2) thin film samples prepared by sol-gel method were irradiated using Co-60 radioisotope as gamma source. Then, it was investigated the ionizing effect on optical properties of ZrO2 thin film samples with the rise of the absorbed dose. The changes in the optical absorbance of ZrO2 thin films were determined by using optical transmittance and the reflectance measurements in the range between 190 - 1100 nm obtained from PG Instruments T80 UV-Vis spectrophotometer.

  7. Optoacoustic control of laser energy absorbed inside tissue

    NASA Astrophysics Data System (ADS)

    Genina, Elina A.; Lapin, Sergey A.; Petrov, Vladimir V.; Tuchin, Valery V.

    2001-06-01

    Monitoring of laser energy absorbed inside tissue is very impotent for laser thermocoagulation of tumors, laser surgery etc. Experimental results have shown that analysis of optoacoustic signal magnitude induced by short laser pulse inside tissue can give quantitative information about laser fluence absorbed by the tissue. We have investigated some tissue phantoms with absorbing objects inside. The first harmonic (1064 nm) of Q-switched Nd:YAG-laser was used for generation of optoacoustic signals.

  8. Absorbed XFEL Dose in the Components of the LCLS X-Ray Optics

    SciTech Connect

    Hau-Riege, Stefan

    2010-12-03

    There is great concern that the short, intense XFEL pulse of the LCLS will damage the optics that will be placed into the beam. We have analyzed the extent of the problem by considering the anticipated materials and position of the optical components in the beam path, calculated the absorbed dose as a function of photon energy, and compared these doses with the expected doses required (i) to observe rapid degradation due to thermal fatigue, (ii) to reach the melting temperature, or (iii) to actually melt the material. We list the materials that are anticipated to be placed into the Linac Coherent Light Source (LCLS) x-ray free electron laser (XFEL) beam line, their positions, and the absorbed dose, and compare this dose with anticipated damage thresholds.

  9. Development of optical tool for the characterization of selective solar absorber tubes

    NASA Astrophysics Data System (ADS)

    Braillon, Julien; Stollo, Alessio; Delord, Christine; Raccurt, Olivier

    2016-05-01

    In the Concentrated Solar Power (CSP) technologies, selective solar absorbers, which have a cylindrical geometry, are submitted to strong environmental constraints. The degradation of their optical properties (total solar absorbance and total emittance) has a direct impact on the performances. In order to know optical properties of absorber tubes, we present in this article a new optical tool developed by our laboratory which fit onto commercial spectrometers. Total solar absorbance and total emittance are calculated from total reflectance spectra measured by UV-Vis and IR spectrophotometry. To verify and validate the measurement method, we performed a comparative study between flat and cylindrical samples with same surface properties.

  10. Optical architecture design for detection of absorbers embedded in visceral fat

    PubMed Central

    Francis, Robert; Florence, James; MacFarlane, Duncan

    2014-01-01

    Optically absorbing ducts embedded in scattering adipose tissue can be injured during laparoscopic surgery. Non-sequential simulations and theoretical analysis compare optical system configurations for detecting these absorbers. For absorbers in deep scattering volumes, trans-illumination is preferred instead of diffuse reflectance. For improved contrast, a scanning source with a large area detector is preferred instead of a large area source with a pixelated detector. PMID:24877008

  11. Optical architecture design for detection of absorbers embedded in visceral fat.

    PubMed

    Francis, Robert; Florence, James; MacFarlane, Duncan

    2014-05-01

    Optically absorbing ducts embedded in scattering adipose tissue can be injured during laparoscopic surgery. Non-sequential simulations and theoretical analysis compare optical system configurations for detecting these absorbers. For absorbers in deep scattering volumes, trans-illumination is preferred instead of diffuse reflectance. For improved contrast, a scanning source with a large area detector is preferred instead of a large area source with a pixelated detector. PMID:24877008

  12. Delayed-feedback vibration absorbers to enhance energy harvesting

    NASA Astrophysics Data System (ADS)

    Kammer, Ayhan S.; Olgac, Nejat

    2016-02-01

    Recovering energy from ambient vibrations has recently been a popular research topic. This article is conceived as a concept study that explores new directions to enhance the performance of such energy harvesting devices from base excitation. The main idea revolves around the introduction of delayed feedback sensitization (or tuning) of an active vibration absorber setup. To clarify the concept, the Delayed Resonator theory is reviewed and its suitability for energy harvesting purposes is studied. It is recognized that an actively tuned and purely resonant absorber is infeasible for such applications. The focus is then shifted to alternative tuning schemes that deviate from resonance conditions. Also called Delayed Feedback Vibration Absorbers, these devices may indeed provide significant enhancements in energy harvesting capacity. Analytical developments are presented to study energy generation and consumption characteristics. Effects of excitation frequency and absorber damping are investigated. The influences of time-delayed feedback on the stability and the transient performance of the system are also treated. The analysis starts from a stand-alone absorber, emulating seismic mass type harvesters. The work is then extended to vibration control applications, where an absorber/harvester is coupled with a primary structure. The results are demonstrated with numerical simulations on a case study.

  13. Self-stabilizing optical clock pulse-train generator using SOA and saturable absorber for asynchronous optical packet processing.

    PubMed

    Nakahara, Tatsushi; Takahashi, Ryo

    2013-05-01

    We propose a novel, self-stabilizing optical clock pulse-train generator for processing preamble-free, asynchronous optical packets with variable lengths. The generator is based on an optical loop that includes a semiconductor optical amplifier (SOA) and a high-extinction spin-polarized saturable absorber (SA), with the loop being self-stabilized by balancing out the gain and absorption provided by the SOA and SA, respectively. The optical pulse train is generated by tapping out a small portion of a circulating seed pulse. The convergence of the generated pulse energy is enabled by the loop round-trip gain function that has a negative slope due to gain saturation in the SOA. The amplified spontaneous emission (ASE) of the SOA is effectively suppressed by the SA, and a backward optical pulse launched into the SOA enables overcoming the carrier-recovery speed mismatch between the SOA and SA. Without external control for the loop gain, a stable optical pulse train consisting of more than 50 pulses with low jitter is generated from a single 10-ps seed optical pulse even with a variation of 10 dB in the seed pulse intensity. PMID:23669927

  14. Near-ideal optical metamaterial absorbers with super-octave bandwidth.

    PubMed

    Bossard, Jeremy A; Lin, Lan; Yun, Seokho; Liu, Liu; Werner, Douglas H; Mayer, Theresa S

    2014-02-25

    Nanostructured optical coatings with tailored spectral absorption properties are of interest for a wide range of applications such as spectroscopy, emissivity control, and solar energy harvesting. Optical metamaterial absorbers have been demonstrated with a variety of customized single band, multiple band, polarization, and angular configurations. However, metamaterials that provide near unity absorptivity with super-octave bandwidth over a specified optical wavelength range have not yet been demonstrated experimentally. Here, we show a broadband, polarization-insensitive metamaterial with greater than 98% measured average absorptivity that is maintained over a wide ± 45° field-of-view for mid-infrared wavelengths between 1.77 and 4.81 μm. The nearly ideal absorption is realized by using a genetic algorithm to identify the geometry of a single-layer metal nanostructure array that excites multiple overlapping electric resonances with high optical loss across greater than an octave bandwidth. The response is optimized by substituting palladium for gold to increase the infrared metallic loss and by introducing a dielectric superstrate to suppress reflection over the entire band. This demonstration advances the state-of-the-art in high-performance broadband metamaterial absorbers that can be reliably fabricated using a single patterned layer of metal nanostructures. PMID:24472069

  15. Neutron absorbed dose determination by calculations of recoil energy.

    PubMed

    Wrobel, F; Benabdesselam, M; Iacconi, P; Lapraz, D

    2004-01-01

    The aim of this work is to calculate the absorbed dose to matter due to neutrons in the 5-150 MeV energy range. Materials involved in the calculations are Al2O3, CaSO4 and CaS, which may be used as dosemeters and have already been studied for their luminescent properties. The absorbed dose is assumed to be mainly due to the energy deposited by the recoils. Elastic reactions are treated with the ECIS code while for the non-elastic ones, a Monte Carlo code has been developed and allowed to follow the nucleus decay and to determine its characteristics (nature and energy). Finally, the calculations show that the absorbed dose is mainly due to non-elastic process and that above 20 MeV this dose decreases slightly with the neutron energy. PMID:15353750

  16. Thermally induced nonlinear optical absorption in metamaterial perfect absorbers

    SciTech Connect

    Guddala, Sriram Kumar, Raghwendra; Ramakrishna, S. Anantha

    2015-03-16

    A metamaterial perfect absorber consisting of a tri-layer (Al/ZnS/Al) metal-dielectric-metal system with top aluminium nano-disks was fabricated by laser-interference lithography and lift-off processing. The metamaterial absorber had peak resonant absorbance at 1090 nm and showed nonlinear absorption for 600ps laser pulses at 1064 nm wavelength. A nonlinear saturation of reflectance was measured to be dependent on the average laser power incident and not the peak laser intensity. The nonlinear behaviour is shown to arise from the heating due to the absorbed radiation and photo-thermal changes in the dielectric properties of aluminium. The metamaterial absorber is seen to be damage resistant at large laser intensities of 25 MW/cm{sup 2}.

  17. Thermally induced nonlinear optical absorption in metamaterial perfect absorbers

    NASA Astrophysics Data System (ADS)

    Guddala, Sriram; Kumar, Raghwendra; Ramakrishna, S. Anantha

    2015-03-01

    A metamaterial perfect absorber consisting of a tri-layer (Al/ZnS/Al) metal-dielectric-metal system with top aluminium nano-disks was fabricated by laser-interference lithography and lift-off processing. The metamaterial absorber had peak resonant absorbance at 1090 nm and showed nonlinear absorption for 600ps laser pulses at 1064 nm wavelength. A nonlinear saturation of reflectance was measured to be dependent on the average laser power incident and not the peak laser intensity. The nonlinear behaviour is shown to arise from the heating due to the absorbed radiation and photo-thermal changes in the dielectric properties of aluminium. The metamaterial absorber is seen to be damage resistant at large laser intensities of 25 MW/cm2.

  18. Energy deposition studies for the LBNE beam absorber

    SciTech Connect

    Rakhno, Igor L.; Mokhov, Nikolai V.; Tropin, Igor S.

    2015-01-29

    Results of detailed Monte Carlo energy deposition studies performed for the LBNE absorber core and the surrounding shielding with the MARS15 code are described. The model of the entire facility, that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system – all with corresponding radiation shielding – was developed using the recently implemented ROOT-based geometry option in the MARS15 code. This option provides substantial flexibility and automation when developing complex geometry models. Both normal operation and accidental conditions were studied. Various design options were considered, in particular the following: (i) filling the decay pipe with air or helium; (ii) the absorber mask material and shape; (iii) the beam spoiler material and size. Results of detailed thermal calculations with the ANSYS code helped to select the most viable absorber design options.

  19. Novel Ultraviolet Light Absorbing Polymers For Optical Applications

    NASA Astrophysics Data System (ADS)

    Doddi, Namassivaya; Yamada, Akira; Dunks, Gary B.

    1988-07-01

    Ultraviolet light absorbing monomers have been developed that can be copolymerized with acrylates. The composition of the resultant stable copolymers can be adjusted to totally block the transmission of light below about 430 nm. Fabrication of lenses from the materials is accomplished by lathe cutting and injection molding procedures. These ultraviolet light absorbing materials are non-mutagenic and non-toxic and are currently being used in intraocular lenses.

  20. Energy absorber for sodium-heated heat exchanger

    DOEpatents

    Essebaggers, J.

    1975-12-01

    A heat exchanger is described in which water-carrying tubes are heated by liquid sodium and in which the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes is minimized. An energy absorbing chamber contains a compressible gas and is connected to the body of flowing sodium by a channel so that, in the event of a sodium-water reaction, products of the reaction will partially fill the energy absorbing chamber to attenuate the rise in pressure within the heat exchanger.

  1. Simultaneous measurements of absorbed dose and linear energy transfer in therapeutic proton beams.

    PubMed

    Granville, Dal A; Sahoo, Narayan; Sawakuchi, Gabriel O

    2016-02-21

    The biological response resulting from proton therapy depends on both the absorbed dose in the irradiated tissue and the linear energy transfer (LET) of the beam. Currently, optimization of proton therapy treatment plans is based only on absorbed dose. However, recent advances in proton therapy delivery have made it possible to vary the LET distribution for potential therapeutic gain, leading to investigations of using LET as an additional parameter in plan optimization. Having a method to measure and verify both absorbed dose and LET as part of a quality assurance program would be ideal for the safe delivery of such plans. Here we demonstrated the potential of an optically stimulated luminescence (OSL) technique to simultaneously measure absorbed dose and LET. We calibrated the ratio of ultraviolet (UV) to blue emission intensities from Al2O3:C OSL detectors as a function of LET to facilitate LET measurements. We also calibrated the intensity of the blue OSL emission for absorbed dose measurements and introduced a technique to correct for the LET-dependent dose response of OSL detectors exposed to therapeutic proton beams. We demonstrated the potential of our OSL technique by using it to measure LET and absorbed dose under new irradiation conditions, including patient-specific proton therapy treatment plans. In the beams investigated, we found the OSL technique to measure dose-weighted LET within 7.9% of Monte Carlo-simulated values and absorbed dose within 2.5% of ionization chamber measurements.

  2. Simultaneous measurements of absorbed dose and linear energy transfer in therapeutic proton beams.

    PubMed

    Granville, Dal A; Sahoo, Narayan; Sawakuchi, Gabriel O

    2016-02-21

    The biological response resulting from proton therapy depends on both the absorbed dose in the irradiated tissue and the linear energy transfer (LET) of the beam. Currently, optimization of proton therapy treatment plans is based only on absorbed dose. However, recent advances in proton therapy delivery have made it possible to vary the LET distribution for potential therapeutic gain, leading to investigations of using LET as an additional parameter in plan optimization. Having a method to measure and verify both absorbed dose and LET as part of a quality assurance program would be ideal for the safe delivery of such plans. Here we demonstrated the potential of an optically stimulated luminescence (OSL) technique to simultaneously measure absorbed dose and LET. We calibrated the ratio of ultraviolet (UV) to blue emission intensities from Al2O3:C OSL detectors as a function of LET to facilitate LET measurements. We also calibrated the intensity of the blue OSL emission for absorbed dose measurements and introduced a technique to correct for the LET-dependent dose response of OSL detectors exposed to therapeutic proton beams. We demonstrated the potential of our OSL technique by using it to measure LET and absorbed dose under new irradiation conditions, including patient-specific proton therapy treatment plans. In the beams investigated, we found the OSL technique to measure dose-weighted LET within 7.9% of Monte Carlo-simulated values and absorbed dose within 2.5% of ionization chamber measurements. PMID:26859539

  3. Scaling of energy absorbing composite plates

    NASA Technical Reports Server (NTRS)

    Jackson, Karen; Morton, John; Traffanstedt, Catherine; Boitnott, Richard

    1992-01-01

    The energy absorption response and crushing characteristics of geometrically scaled graphite-Kevlar epoxy composite plates were investigated. Three different trigger mechanisms including chamfer, notch, and steeple geometries were incorporated into the plate specimens to initiate crushing. Sustained crushing was achieved with a simple test fixture which provided lateral support to prevent global buckling. Values of specific sustained crushing stress (SSCS) were obtained which were comparable to values reported for tube specimens from previously published data. Two sizes of hybrid plates were fabricated; a baseline or model plate, and a full-scale plate with in-plane dimensions scaled by a factor of two. The thickness dimension of the full-scale plates was increased using two different techniques; the ply-level method in which each ply orientation in the baseline laminate stacking sequence is doubled, and the sublaminate technique in which the baseline laminate stacking sequence is repeated as a group. Results indicated that the SSCS is independent of trigger mechanism geometry. However, a reduction in the SSCS of 10-25 percent was observed for the full-scale plates as compared with the baseline specimens, indicating a scaling effect in the crushing response.

  4. Kinetic-energy absorber employs frictional force between mating cylinders

    NASA Technical Reports Server (NTRS)

    Conrad, E. W.

    1964-01-01

    A kinetic energy absorbing device uses a series of coaxial, mating cylindrical surfaces. These surfaces have high frictional resistance to relative motion when axial impact forces are applied. The device is designed for safe deceleration of vehicles impacting on landing surfaces.

  5. Energy Deposition and Radiological Studies for the LBNF Hadron Absorber

    SciTech Connect

    Rakhno, I. L.; Mokhov, N. V.; Tropin, I. S.; Eidelman, Y. I.

    2015-06-25

    Results of detailed Monte Carlo energy deposition and radiological studies performed for the LBNF hadron absorber with the MARS15 code are described. The model of the entire facility, that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system – all with corresponding radiation shielding – was developed using the recently implemented ROOT-based geometry option in the MARS15 code. Both normal operation and accidental conditions were studied. Results of detailed thermal calculations with the ANSYS code helped to select the most viable design options.

  6. Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation.

    PubMed

    Martelli, Fabrizio; Di Ninni, Paola; Zaccanti, Giovanni; Contini, Davide; Spinelli, Lorenzo; Torricelli, Alessandro; Cubeddu, Rinaldo; Wabnitz, Heidrun; Mazurenka, Mikhail; Macdonald, Rainer; Sassaroli, Angelo; Pifferi, Antonio

    2014-01-01

    We present the experimental implementation and validation of a phantom for diffuse optical imaging based on totally absorbing objects for which, in the previous paper [J. Biomed. Opt.18(6), 066014, (2013)], we have provided the basic theory. Totally absorbing objects have been manufactured as black polyvinyl chloride (PVC) cylinders and the phantom is a water dilution of intralipid-20% as the diffusive medium and India ink as the absorber, filled into a black scattering cell made of PVC. By means of time-domain measurements and of Monte Carlo simulations, we have shown the reliability, the accuracy, and the robustness of such a phantom in mimicking typical absorbing perturbations of diffuse optical imaging. In particular, we show that such a phantom can be used to generate any absorption perturbation by changing the volume and position of the totally absorbing inclusion.

  7. Extrinsic chirality: Tunable optically active reflectors and perfect absorbers

    NASA Astrophysics Data System (ADS)

    Plum, Eric

    2016-06-01

    Conventional three-dimensional (3D) chiral media can exhibit optical activity for transmitted waves, but optical activity for reflected waves is negligible. This work shows that mirror asymmetry of the experimental arrangement—extrinsic 3D chirality—leads to giant optical activity for reflected waves with fundamentally different characteristics. It is demonstrated experimentally that extrinsically 3D-chiral illumination of a lossy metasurface backed by a mirror enables tunable circular dichroism and circular birefringence as well as perfect absorption of circularly polarized waves. In contrast, such polarization phenomena vanish for conventional optically active media backed by a mirror.

  8. Lattice-Matched Hot Carrier Solar Cell with Energy Selectivity Integrated into Hot Carrier Absorber

    NASA Astrophysics Data System (ADS)

    König, Dirk; Takeda, Yasuhiko; Puthen-Veettil, Binesh; Conibeer, Gavin

    2012-10-01

    We propose a technologically feasible concept of a hot carrier (HC) solar cell (SC) which fulfills the electronic, optical, and to some extent the phononic criteria required. The energy selective process of HCs is implemented into the hot carrier absorber (HCA). Its electronic properties are investigated by a Monte-Carlo code which simulates random deviations of structure thickness and a normal distribution of random elastic electron (e-) scattering. The structure can be grown epitaxially as a HC-SC test device.

  9. Optically controlled in-line graphene saturable absorber for the manipulation of pulsed fiber laser operation.

    PubMed

    Gene, Jinhwa; Park, Nam Hun; Jeong, Hwanseong; Choi, Sun Young; Rotermund, Fabian; Yeom, Dong-Il; Kim, Byoung Yoon

    2016-09-19

    We demonstrate an optically tunable graphene saturable absorber to manipulate the laser operation in pulsed fiber laser system. Owing to the strongly enhanced evanescent field interaction with monolayer graphene, we could realize an efficient control of modulation depth in the graphene saturable absorber by optical means through cross absorption modulation method. By integrating the tunable graphene saturable absorber into the fiber laser system, we could switch the laser operation from Q-switching through Q-switched mode-locking to continuous wave mode-locking by adjusting only the optical power of the control beam. In addition, we realized a hybrid Q-switching of fiber laser by periodical modulation of the absorption of the graphene saturable absorber, where we observed that the repetition rate of the Q-switched laser could be continuously tuned according to the modulation frequency of the applied external signal. PMID:27661873

  10. A novel self-locked energy absorbing system

    NASA Astrophysics Data System (ADS)

    Chen, Yuli; Qiao, Chuan; Qiu, Xinming; Zhao, Shougen; Zhen, Cairu; Liu, Bin

    2016-02-01

    Metallic thin-walled round tubes are widely used as energy absorption elements. However, lateral splash of the round tubes under impact loadings reduces the energy absorption efficiency and may cause secondary damage. Therefore, it is necessary to assemble and fasten round tubes together by boundary constraints and/or fasteners between tubes, which increases the time and labor cost and affects the mechanical performance of round tubes. In an effort to break through this limitation, a novel self-locked energy-absorbing system has been proposed in this paper. The proposed system is made up of thin-walled tubes with dumbbell-shaped cross section, which are specially designed to interlock with each other and thus provide lateral constraint under impact loadings. Both finite element simulations and impact experiment demonstrated that without boundary constraints or fasteners between tubes, the proposed self-locked energy-absorbing system can still effectively attenuate impact loads while the round tube systems fail to carry load due to the lateral splashing of tubes. Furthermore, the geometric design for a single dumbbell-shaped tube and the stacking arrangement for the system are discussed, and a general guideline on the structural design of the proposed self-locked energy absorbing system is provided.

  11. Innovative energy absorbing devices based on composite tubes

    NASA Astrophysics Data System (ADS)

    Tiwari, Chandrashekhar

    Analytical and experimental study of innovative load limiting and energy absorbing devices are presented here. The devices are based on composite tubes and can be categorized in to two groups based upon the energy absorbing mechanisms exhibited by them, namely: foam crushing and foam fracturing. The device based on foam crushing as the energy absorbing mechanism is composed of light weight elastic-plastic foam filling inside an angle ply composite tube. The tube is tailored to have a high Poisson’s ratio (>20). Upon being loaded the device experiences large transverse contraction resulting in rapid decrease in diameter. At a certain axial load the foam core begins to crush and energy is dissipated. This device is termed as crush tube device. The device based upon foam shear fracture as the energy absorbing mechanism involves an elastic-plastic core foam in annulus of two concentric extension-twist coupled composite tubes with opposite angles of fibers. The core foam is bonded to the inner and outer tube walls. Upon being loaded axially, the tubes twist in opposite directions and fracture the core foam in out of plane shear and thus dissipate the energy stored. The device is termed as sandwich core device (SCD). The devices exhibit variations in force-displacement characteristics with changes in design and material parameters, resulting in wide range of energy absorption capabilities. A flexible matrix composite system was selected, which was composed of high stiffness carbon fibers as reinforcements in relatively low stiffness polyurethane matrix, based upon large strain to failure capabilities and large beneficial elastic couplings. Linear and non-linear analytical models were developed encapsulating large deformation theory of the laminated composite shells (using non-linear strain energy formulation) to the fracture mechanics of core foam and elastic-plastic deformation theory of the foam filling. The non-linear model is capable of including material and

  12. Energy Absorbing Seat System for an Agricultural Aircraft

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jones, Lisa E. (Technical Monitor)

    2002-01-01

    A task was initiated to improve the energy absorption capability of an existing aircraft seat through cost-effective retrofitting, while keeping seat-weight increase to a minimum. This task was undertaken as an extension of NASA ongoing safety research and commitment to general aviation customer needs. Only vertical crash scenarios have been considered in this task which required the energy absorbing system to protect the seat occupant in a range of crash speeds up to 31 ft/sec. It was anticipated that, the forward and/or side crash accelerations could be attenuated with the aid of airbags, the technology of which is currently available in automobiles and military helicopters. Steps which were followed include, preliminary crush load determination, conceptual design of cost effective energy absorbers, fabrication and testing (static and dynamic) of energy absorbers, system analysis, design and fabrication of dummy seat/rail assembly, dynamic testing of dummy seat/rail assembly, and finally, testing of actual modified seat system with a dummy occupant. A total of ten full scale tests have been performed including three of the actual aircraft seat. Results from full-scale tests indicated that occupant loads were attenuated successfully to survivable levels.

  13. Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber.

    PubMed

    Chen, Xi; Shi, Yuechun; Lou, Fei; Chen, Yiting; Yan, Min; Wosinski, Lech; Qiu, Min

    2014-10-20

    An optically pumped thermo-optic (TO) silicon ring add-drop filter with fast thermal response is experimentally demonstrated. We propose that metal-insulator-metal (MIM) light absorber can be integrated into silicon TO devices, acting as a localized heat source which can be activated remotely by a pump beam. The MIM absorber design introduces less thermal capacity to the device, compared to conventional electrically-driven approaches. Experimentally, the absorber-integrated add-drop filter shows an optical response time of 13.7 μs following the 10%-90% rule (equivalent to a exponential time constant of 5 μs) and a wavelength shift over pump power of 60 pm/mW. The photothermally tunable add-drop filter may provide new perspectives for all-optical routing and switching in integrated Si photonic circuits. PMID:25401557

  14. Partial Pressures for Several In-Se Compositions from Optical Absorbance of the Vapor

    NASA Technical Reports Server (NTRS)

    Brebrick, R. F.; Su, Ching-Hua

    2001-01-01

    The optical absorbance of the vapor phase over various In-Se compositions between 33.3-60.99 at.% Se and 673-1418 K was measured and used to obtain the partial pressures of Se2(g) and In2Se(g). The results are in agreement with silica Bourdon gauge measurements for compositions between 50-61 at.%, but significantly higher than those from Knudsen cell and simultaneous Knudsen-torsion cell measurements. It is found that 60.99 at.% Se lies outside the sesquiselenide homogeneity range and 59.98 at.% Se lies inside and is the congruently melting composition. The Gibbs energy of formation of the liquid from its pure liquid elements between 1000-1300 K is essentially independent of temperature and falls between -36 to -38 kJ per g atomic weight for 50 and 56% Se at 1200 and 1300 K.

  15. Partial Pressures of In-Se from Optical Absorbance of the Vapor

    NASA Technical Reports Server (NTRS)

    Brebrick, R. F.; Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    The optical absorbance of the vapor phase over various In-Se compositions between 33.3 and 61 atomic percent and 673 and 1418K has been measured and used to obtain the partial pressures of Se2(g) and In2Se(g). The results are in agreement with silica Bourdon gage measurements for compositions between 50 and 61 atomic percent but significantly higher than those from Knudsen cell and simultaneous Torsion-Knudsen cell measurements. The sequiselenide is found to sublime incongruently. Congruent vaporization occurs for the liquid above 1000 K between 50.08 and 56 at. percent Se. The Gibbs energy of formation of the liquid from its pure liquid elements between 1000 and 1300K is essentially independent of temperature and falls between -36 and -38 kJ per gram atomic weight for 50 and 56 percent Se at 1200 and 1300K.

  16. Energy scavenging strain absorber: application to kinetic dielectric elastomer generator

    NASA Astrophysics Data System (ADS)

    Jean-Mistral, C.; Beaune, M.; Vu-Cong, T.; Sylvestre, A.

    2014-03-01

    Dielectric elastomer generators (DEGs) are light, compliant, silent energy scavengers. They can easily be incorporated into clothing where they could scavenge energy from the human kinetic movements for biomedical applications. Nevertheless, scavengers based on dielectric elastomers are soft electrostatic generators requiring a high voltage source to polarize them and high external strain, which constitutes the two major disadvantages of these transducers. We propose here a complete structure made up of a strain absorber, a DEG and a simple electronic power circuit. This new structure looks like a patch, can be attached on human's wear and located on the chest, knee, elbow… Our original strain absorber, inspired from a sailing boat winch, is able to heighten the external available strain with a minimal factor of 2. The DEG is made of silicone Danfoss Polypower and it has a total area of 6cm per 2.5cm sustaining a maximal strain of 50% at 1Hz. A complete electromechanical analytical model was developed for the DEG associated to this strain absorber. With a poling voltage of 800V, a scavenged energy of 0.57mJ per cycle is achieved with our complete structure. The performance of the DEG can further be improved by enhancing the imposed strain, by designing a stack structure, by using a dielectric elastomer with high dielectric permittivity.

  17. Structural and optical properties of copper-coated substrates for solar thermal absorbers

    NASA Astrophysics Data System (ADS)

    Pratesi, Stefano; De Lucia, Maurizio; Meucci, Marco; Sani, Elisa

    2016-10-01

    Spectral selectivity, i.e. merging a high absorbance at sunlight wavelengths to a low emittance at the wavelengths of thermal spectrum, is a key characteristics for materials to be used for solar thermal receivers. It is known that spectrally selective absorbers can raise the receiver efficiency for all solar thermal technologies. Tubular sunlight receivers for parabolic trough collector (PTC) systems can be improved by the use of spectrally selective coatings. Their absorbance is increased by deposing black films, while the thermal emittance is minimized by the use of properly-prepared substrates. In this work we describe the intermediate step in the fabrication of black-chrome coated solar absorbers, namely the fabrication and characterization of copper coatings on previously nickel-plated stainless steel substrates. We investigate the copper surface features and optical properties, correlating them to the coating thickness and to the deposition process, in the perspective to assess optimal conditions for solar absorber applications.

  18. Optically Excited Surface Polaritons Using Strongly Absorbing Media.

    NASA Astrophysics Data System (ADS)

    Yang, Fuzi

    1991-08-01

    Available from UMI in association with The British Library. The results of several experiments, performed using the Otto configuration and infrared radiation to excite such modes supported at the surface of several transition metals having strong absorption at the wavelength, proves that even if the active medium has very strong absorption, a surface polariton can still be excited. Experiments, which use the Kretschmann configuration to measure the permittivity and thickness of the thin active film deposited on the prism together with the use of the hybrid Otto-Kretschmann geometry to excite the interaction between a surface plasmon - and a surface exciton-polariton have also been performed. These show the strong influences of the large imaginary component of the permittivity of the active medium. A detailed analysis of the surface modes of a thin slab of material of dielectric constant epsilon _2(= epsilon_{r2 } + iepsilon_{i2 }) surrounded symmetrically by dielectric media is also presented in this thesis. We also find that a long range surface mode may arise from the coupling between two surfaces which individually cannot support a surface mode. These are a pair of special coupled-surface modes which may exist below a certain critical film thickness and which have two separate propagation vectors each with the same field symmetry. It is also found that the inverse situation may pertain. The analysis has also been extended to practical situations with weakly absorbing surrounding media and to circumstances where the dielectric constants of the surrounding media are slightly different. The role played by the imaginary part of the permittivity of the active layers in a multi-layered geometry is discussed. The redistribution of the field in the multi-layered structure explains why a long range surface polariton can be supported on very strongly absorbing films and the effect from the prism coupling may introduce a lower loss of a LRSEP than one of its uncoupled

  19. Optical closure study on light-absorbing aerosols

    NASA Astrophysics Data System (ADS)

    Petzold, Andreas; Bundke, Ulrich; Freedman, Andrew; Onasch, Timothy B.; Massoli, Paola; Andrews, Elizabeth; Hallar, Anna G.

    2014-05-01

    The in situ measurement of atmospheric aerosol optical properties is an important component of quantifying climate change. In particular, the in-situ measurement of the aerosol single-scattering albedo (SSA), which is the ratio of aerosol scattering to aerosol extinction, is identified as a key challenge in atmospheric sciences and climate change research. Ideally, the complete set of aerosol optical properties is measured through optical closure studies which simultaneous measure aerosol extinction, scattering and absorption coefficients. The recent development of new optical instruments have made real-time in situ optical closure studies attainable, however, many of these instruments are state-of-the-art but not practical for routine monitoring. In our studies we deployed a suit of well-established and recently developed instruments including the cavity attenuated phase shift (CAPS) method for aerosol light extinction, multi-angle absorption photometer (MAAP) and particle soot absorption photometer (PSAP) for aerosol light absorption, and an integrating nephelometer (NEPH) for aerosol light scattering measurements. From these directly measured optical properties we calculated light absorption from extinction minus scattering (difference method), light extinction from scattering plus absorption, and aerosol single-scattering albedo from combinations CAPS + MAAP, NEPH + PSAP, NEPH + MAAP, CAPS + NEPH. Closure studies were conducted for laboratory-generated aerosols composed of various mixtures of black carbon (Regal 400R pigment black, Cabot Corp.) and ammonium sulphate, urban aerosol (Billerica, MA), and background aerosol (Storm Peak Lab.). Key questions addressed in our closure studies are: (1) how well can we measure aerosol light absorption by various methods, and (2) how well can we measure the aerosol single-scattering albedo by various instrument combinations? In particular we investigated (3) whether the combination of a CAPS and NEPH provides a reasonable

  20. A universal electromagnetic energy conversion adapter based on a metamaterial absorber.

    PubMed

    Xie, Yunsong; Fan, Xin; Wilson, Jeffrey D; Simons, Rainee N; Chen, Yunpeng; Xiao, John Q

    2014-09-09

    On the heels of metamaterial absorbers (MAs) which produce near perfect electromagnetic (EM) absorption and emission, we propose a universal electromagnetic energy conversion adapter (UEECA) based on MA. By choosing the appropriate energy converting sensors, the UEECA is able to achieve near 100% signal transfer ratio between EM energy and various forms of energy such as thermal, DC electric, or higher harmonic EM energy. The inherited subwavelength dimension and the EM field intensity enhancement can further empower UEECA in many critical applications such as energy harvesting, photoconductive antennas, and nonlinear optics. The principle of UEECA is understood with a transmission line model, which further provides a design strategy that can incorporate a variety of energy conversion devices. The concept is experimentally validated at a microwave frequency with a signal transfer ratio of 96% by choosing an RF diode as the energy converting sensor.

  1. A universal electromagnetic energy conversion adapter based on a metamaterial absorber.

    PubMed

    Xie, Yunsong; Fan, Xin; Wilson, Jeffrey D; Simons, Rainee N; Chen, Yunpeng; Xiao, John Q

    2014-01-01

    On the heels of metamaterial absorbers (MAs) which produce near perfect electromagnetic (EM) absorption and emission, we propose a universal electromagnetic energy conversion adapter (UEECA) based on MA. By choosing the appropriate energy converting sensors, the UEECA is able to achieve near 100% signal transfer ratio between EM energy and various forms of energy such as thermal, DC electric, or higher harmonic EM energy. The inherited subwavelength dimension and the EM field intensity enhancement can further empower UEECA in many critical applications such as energy harvesting, photoconductive antennas, and nonlinear optics. The principle of UEECA is understood with a transmission line model, which further provides a design strategy that can incorporate a variety of energy conversion devices. The concept is experimentally validated at a microwave frequency with a signal transfer ratio of 96% by choosing an RF diode as the energy converting sensor. PMID:25200005

  2. A universal electromagnetic energy conversion adapter based on a metamaterial absorber

    PubMed Central

    Xie, Yunsong; Fan, Xin; Wilson, Jeffrey D.; Simons, Rainee N.; Chen, Yunpeng; Xiao, John Q.

    2014-01-01

    On the heels of metamaterial absorbers (MAs) which produce near perfect electromagnetic (EM) absorption and emission, we propose a universal electromagnetic energy conversion adapter (UEECA) based on MA. By choosing the appropriate energy converting sensors, the UEECA is able to achieve near 100% signal transfer ratio between EM energy and various forms of energy such as thermal, DC electric, or higher harmonic EM energy. The inherited subwavelength dimension and the EM field intensity enhancement can further empower UEECA in many critical applications such as energy harvesting, photoconductive antennas, and nonlinear optics. The principle of UEECA is understood with a transmission line model, which further provides a design strategy that can incorporate a variety of energy conversion devices. The concept is experimentally validated at a microwave frequency with a signal transfer ratio of 96% by choosing an RF diode as the energy converting sensor. PMID:25200005

  3. Fiber optic moisture sensor with moisture-absorbing reflective target

    DOEpatents

    Kirkham, Randy R.

    1987-01-01

    A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.

  4. Crash-Energy Absorbing Composite Structure and Method of Fabrication

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris (Inventor); Carden, Huey D. (Inventor)

    1998-01-01

    A stand-alone, crash-energy absorbing structure and fabrication method are provided. A plurality of adjoining rigid cells are each constructed of resin-cured fiber reinforcement and are arranged in a geometric configuration. The geometric configuration of cells is integrated by means of continuous fibers wrapped thereabout in order to maintain the cells in the geometric configuration. The cured part results in a net shape, stable structure that can function on its own with no additional reinforcement and can withstand combined loading while crushing in a desired direction.

  5. Optical design of nanowire absorbers for wavelength selective photodetectors

    PubMed Central

    Mokkapati, S.; Saxena, D.; Tan, H. H.; Jagadish, C.

    2015-01-01

    We propose the optical design for the absorptive element of photodetectors to achieve wavelength selective photo response based on resonant guided modes supported in semiconductor nanowires. We show that the waveguiding properties of nanowires result in very high absorption efficiency that can be exploited to reduce the volume of active semiconductor compared to planar photodetectors, without compromising the photocurrent. We present a design based on a group of nanowires with varying diameter for multi-color photodetectors with small footprint. We discuss the effect of a dielectric shell around the nanowires on the absorption efficiency and present a simple approach to optimize the nanowire diameter-dielectric shell thickness for maximizing the absorption efficiency. PMID:26469227

  6. Uniaxial absorbing media: conditions for refraction in the direction of the optical axis.

    PubMed

    Diñeiro, J M; Alberdi, C; Hernández, B; Sáenz, C

    2013-03-01

    When a plane wave is incident from an isotropic medium into a uniaxial transparent medium so that the ordinary wave propagates in the direction of the optical axis, the extraordinary wave will also propagate in the same direction and with the same refractive index. We will show that this is not the case when the second medium is a uniaxial absorbing material. In this work, we will state a clear and precise interpretation of the meaning of propagation in the direction of the optical axis in the case of uniaxial absorbing media. Assuming that the ordinary wave is refracted in the direction of the optical axis we will analyze the refraction of the extraordinary wave and we will compare it with the case of transparent media. The necessary conditions to have both ordinary and extraordinary waves refracted in the direction of the optical axis will be obtained.

  7. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators.

    PubMed

    Yao, Yu; Shankar, Raji; Kats, Mikhail A; Song, Yi; Kong, Jing; Loncar, Marko; Capasso, Federico

    2014-11-12

    Dynamically reconfigurable metasurfaces open up unprecedented opportunities in applications such as high capacity communications, dynamic beam shaping, hyperspectral imaging, and adaptive optics. The realization of high performance metasurface-based devices remains a great challenge due to very limited tuning ranges and modulation depths. Here we show that a widely tunable metasurface composed of optical antennas on graphene can be incorporated into a subwavelength-thick optical cavity to create an electrically tunable perfect absorber. By switching the absorber in and out of the critical coupling condition via the gate voltage applied on graphene, a modulation depth of up to 100% can be achieved. In particular, we demonstrated ultrathin (thickness < λ0/10) high speed (up to 20 GHz) optical modulators over a broad wavelength range (5-7 μm). The operating wavelength can be scaled from the near-infrared to the terahertz by simply tailoring the metasurface and cavity dimensions. PMID:25310847

  8. Detection of Organic Compounds in Water by an Optical Absorbance Method

    PubMed Central

    Kim, Chihoon; Eom, Joo Beom; Jung, Soyoun; Ji, Taeksoo

    2016-01-01

    This paper proposes an optical method which allows determination of the organic compound concentration in water by measurement of the UV (ultraviolet) absorption at a wavelength of 250 nm~300 nm. The UV absorbance was analyzed by means of a multiple linear regression model for estimation of the total organic carbon contents in water, which showed a close correlation with the UV absorbance, demonstrating a high adjusted coefficient of determination, 0.997. The comparison of the TOC (total organic carbon) concentrations for real samples (tab water, sea, and river) calculated from the UV absorbance spectra, and those measured by a conventional TOC analyzer indicates that the higher the TOC value the better the agreement. This UV absorbance method can be easily configured for real-time monitoring water pollution, and built into a compact system applicable to industry areas. PMID:26742043

  9. Material Model Evaluation of a Composite Honeycomb Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.

  10. Experimental verification of reconstructed absorbers embedded in scattering media by optical power ratio distribution.

    PubMed

    Yamaoki, Toshihiko; Hamada, Hiroaki; Matoba, Osamu

    2016-09-01

    Experimental investigation to show the effectiveness of the extraction method of absorber information in a scattering medium by taking the output power ratio distribution is presented. In the experiment, two metallic wires sandwiched by three homogeneous scattering media are used as absorbers in transmission geometry. The output power ratio distributions can extract the influence of the absorbers to enhance the optical signal. The peak position of the output power ratio distributions agree with the results suggested by numerical simulation. From the reconstructed results of tomography in the scattering media, we have confirmed that the tomographic image of two wires can distinguish them successfully from 41×21 output power ratio distributions by using continuous-wave light. PMID:27607261

  11. Influence of inhomogeneity of optical absorbers on optoacoustic signals: a comparison between experiment and theory

    NASA Astrophysics Data System (ADS)

    Gertsch, A. G.; Jaeger, M.; Bush, N. L.; Frenz, M.; Bamber, J. C.

    2009-02-01

    Optoacoustic (OA) imaging allows optical absorption contrast to be visualised using thermoelastically generated ultrasound. To date, optoacoustic theory has been applied to homogeneously absorbing tissue models that may describe, for example, large vessels filled with blood, where the whole target will act as a coherent source of sound. Here we describe a new model in which the optical absorbers are distributed inhomogeneously, as appropriate to describe microvasculature, or perhaps the distribution of molecularly targeted OA contrast agents inside a tumour. The degree of coherence over the resulting distributed acoustic source is influenced by parameters that describe the scale of the inhomogeneity, such as the sizes of the absorbers and the distances between them. To investigate the influence of these parameters on OA image appearance, phantoms with homogeneously and imhomogeneously absorbing regions were built and imaged. Simulations of the same situation were conducted using a time domain acoustic propagation method. Both simulations and experiments showed that introducing inhomogeneity of absorption produces more complete images of macroscopic targets than are obtained with a homogeneous absorption. Image improvement and target detectability were found to reach a maximum at an intermediate value of the length-scale of the inhomogeneity that was similar to the axial resolution of the acoustic receiver employed. As the scale of inhomogeneity became finer than this the target's detectability and appearance began to revert to that for homogeneous absorption. Further understanding of this topic is believed to be important for optimising the design of clinical optoacoustic imaging systems.

  12. The effects of optical scattering on pulsed photoacoustic measurement in weakly absorbing liquids

    NASA Astrophysics Data System (ADS)

    Zhao, Zuomin; Myllylä, Risto

    2001-12-01

    In this article, a photoacoustic technique, excited by a pulsed diode laser, is used in a study of optically absorbing and scattering liquids. The article discusses the effects of optical scattering on the photoacoustic source and signal. In the empirical part, varying amounts of milk and carbon powder were added to water to control the absorption and scattering coefficients of the resulting liquids. The results showed that scattering increases the duration of the photoacoustic signal while decreasing the signal amplitude to some degree. This paper also shows a quite simple method for measuring the scattering coefficient in weakly absorbing materials using a PZT transducer, which can be used to determine the concentration of highly scattering compositions in some cases.

  13. Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation

    PubMed Central

    Zapata, J. D.; Steinberg, D.; Saito, L. A. M.; de Oliveira, R. E. P.; Cárdenas, A. M.; de Souza, E. A. Thoroh

    2016-01-01

    We demonstrated a method to construct high efficiency saturable absorbers based on the evanescent light field interaction of CVD monolayer graphene deposited on side-polished D-shaped optical fiber. A set of samples was fabricated with two different core-graphene distances (0 and 1 μm), covered with graphene ranging between 10 and 25 mm length. The mode-locking was achieved and the best pulse duration was 256 fs, the shortest pulse reported in the literature with CVD monolayer graphene in EDFL. As result, we find a criterion between the polarization relative extinction ratio in the samples and the pulse duration, which relates the better mode-locking performance with the higher polarization extinction ratio of the samples. This criterion also provides a better understanding of the graphene distributed saturable absorbers and their reproducible performance as optoelectronic devices for optical applications. PMID:26856886

  14. Improvement of Energy Deposition in Absorber-free Laser Welding through Quasi-simultaneous Irradiation

    NASA Astrophysics Data System (ADS)

    Mamuschkin, Viktor; Engelmann, Christoph; Olowinsky, Alexander

    Laser transmission welding is usually known to put little thermal stress on the joining partners, indicated by a small heat affected zone (HAZ). However, this only applies when the joining partners have adapted optical properties. When it comes to welding of optically equal thermoplastics without absorbers, the main issue is the HAZ extending far from the interface. To enable welding without absorbers, lasers emitting within the polymer's intrinsic absorption bands are used. So far, different beam shaping approaches have already been investigated to achieve a selective energy deposition at the interface but, with little success to date. The approach presented in this paper is irradiating the welding path quasi-simultaneously to exploit the poor heat conductivity of polymers. Therefore, the influence of the irradiation regime on the seam formation is considered in detail. Another aspect investigated is the length of the irradiated contour which is a crucial factor in quasi-simultaneous welding. The results show that the energy deposition can be significantly improved when the welding contour length does not exceed a critical length determined by the capability of the welding system. However, by welding in segments the approach can also be applied to longer contours without any noticeable loss in welding time. The ideal irradiation regime obtained in the trials corresponds to an effective welding speed of 37mm/s and reduces the vertical extent of the HAZ by 30%.

  15. Anti-terrorist vehicle crash impact energy absorbing barrier

    DOEpatents

    Swahlan, David J.

    1989-01-01

    An anti-terrorist vehicle crash barrier includes side support structures, crushable energy absorbing aluminum honeycomb modules, and an elongated impact-resistant beam extending between, and at its opposite ends through vertical guideways defined by, the side support structures. An actuating mechanism supports the beam at its opposite ends for movement between a lowered barrier-withdrawn position in which a traffic-supporting side of the beam is aligned with a traffic-bearing surface permitting vehicular traffic between the side support structures and over the beam, and a raised barrier-imposed position in which the beam is aligned with horizontal guideways defined in the side support structures above the traffic-bearing surface, providing an obstruction to vehicular traffic between the side support structures. The beam is movable rearwardly in the horizontal guideways with its opposite ends disposed transversely therethrough upon being impacted at its forward side by an incoming vehicle. The crushable modules are replaceably disposed in the horizontal guideways between aft ends thereof and the beam. The beam, replaceable modules, side support structures and actuating mechanism are separate and detached from one another such that the beam and replaceable modules are capable of coacting to disable and stop an incoming vehicle without causing structural damage to the side support structures and actuating mechanism.

  16. Nonlinear modeling of magnetorheological energy absorbers under impact conditions

    NASA Astrophysics Data System (ADS)

    Mao, Min; Hu, Wei; Choi, Young-Tai; Wereley, Norman M.; Browne, Alan L.; Ulicny, John; Johnson, Nancy

    2013-11-01

    Magnetorheological energy absorbers (MREAs) provide adaptive vibration and shock mitigation capabilities to accommodate varying payloads, vibration spectra, and shock pulses, as well as other environmental factors. A key performance metric is the dynamic range, which is defined as the ratio of the force at maximum field to the force in the absence of field. The off-state force is typically assumed to increase linearly with speed, but at the higher shaft speeds occurring in impact events, the off-state damping exhibits nonlinear velocity squared damping effects. To improve understanding of MREA behavior under high-speed impact conditions, this study focuses on nonlinear MREA models that can more accurately predict MREA dynamic behavior for nominal impact speeds of up to 6 m s-1. Three models were examined in this study. First, a nonlinear Bingham-plastic (BP) model incorporating Darcy friction and fluid inertia (Unsteady-BP) was formulated where the force is proportional to the velocity. Second, a Bingham-plastic model incorporating minor loss factors and fluid inertia (Unsteady-BPM) to better account for high-speed behavior was formulated. Third, a hydromechanical (HM) analysis was developed to account for fluid compressibility and inertia as well as minor loss factors. These models were validated using drop test data obtained using the drop tower facility at GM R&D Center for nominal drop speeds of up to 6 m s-1.

  17. Sound-absorbing slabs and structures based on granular materials (bound and unbound). [energy absorbing efficiency of porous material

    NASA Technical Reports Server (NTRS)

    Petre-Lazar, S.; Popeea, G.

    1974-01-01

    Sound absorbing slabs and structures made up of bound or unbound granular materials are considered and how to manufacture these elements at the building site. The raw material is a single grain powder (sand, expanded blast furnace slag, etc.) that imparts to the end products an apparent porosity of 25-45% and an energy dissipation within the structure leading to absorption coefficients that can be compared with those of mineral wool and urethane.

  18. Phantoms for diffuse optical imaging based on totally absorbing objects, part 1: basic concepts

    PubMed Central

    Pifferi, Antonio; Contini, Davide; Spinelli, Lorenzo; Torricelli, Alessandro; Wabnitz, Heidrun; Macdonald, Rainer; Sassaroli, Angelo; Zaccanti, Giovanni

    2013-01-01

    Abstract. The design of inhomogeneous phantoms for diffuse optical imaging purposes using totally absorbing objects embedded in a diffusive medium is proposed and validated. From time-resolved and continuous-wave Monte Carlo simulations, it is shown that a given or desired perturbation strength caused by a realistic absorbing inhomogeneity of a certain absorption and volume can be approximately mimicked by a small totally absorbing object of a so-called equivalent black volume (equivalence relation). This concept can be useful in two ways. First, it can be exploited to design realistic inhomogeneous phantoms with different perturbation strengths simply using a set of black objects with different volumes. Further, it permits one to grade physiological or pathological changes on a reproducible scale of perturbation strengths given as equivalent black volumes, thus facilitating the performance assessment of clinical instruments. A set of plots and interpolating functions to derive the equivalent black volume corresponding to a given absorption change is provided. The application of the equivalent black volume concept for grading different optical perturbations is demonstrated for some examples. PMID:23778947

  19. Moving body velocity arresting line. [stainless steel cables with energy absorbing sleeves

    NASA Technical Reports Server (NTRS)

    Hull, R. A. (Inventor)

    1981-01-01

    The arresting of a moving body is improved through the use of steel cables that elongate to absorb the kinetic energy of the body. A sleeve surrounds the cables, protecting them from chafing and providing a failsafe energy absorbing system should the cables fail.

  20. Broadband optical absorbance spectroscopy using a whispering gallery mode microsphere resonator

    NASA Astrophysics Data System (ADS)

    Westcott, Sarah L.; Zhang, Jiangquan; Shelton, Robert K.; Bruce, Nellie M. K.; Gupta, Sachin; Keen, Steven L.; Tillman, Jeremy W.; Wald, Lara B.; Strecker, Brian N.; Rosenberger, A. T.; Davidson, Roy R.; Chen, Wei; Donovan, Kevin G.; Hryniewicz, John V.

    2008-03-01

    We demonstrate the ability to excite and monitor many whispering gallery modes (WGMs) of a microsphere resonator simultaneously in order to make broadband optical absorbance measurements. The 340μm diameter microsphere is placed in a microfluidic channel. A hemispherical prism is used for coupling the WGMs into and out of the microsphere. The flat surface of the prism seals the microfluidic channel. The slight nonsphericity in the microsphere results in coupling to precessed modes whose emission is spatially separated from the reflected excitation light. The evanescent fields of the light trapped in WGMs interact with the surrounding environment. The change in transmission observed in the precessed modes is used to determine the absorbance of the surrounding environment. In contrast to our broadband optical absorbance measurements, previous WGM sensors have used only a single narrow mode to measure properties such as refractive index. With the microfluidic cell, we have measured the absorbance of solutions of dyes (lissamine green B, sunset yellow, orange G, and methylene blue), aromatic molecules (benzylamine and benzoic acid), and biological molecules (tryptophan, phenylalanine, tyrosine, and o-phospho-L-tyrosine) at visible and ultraviolet wavelengths. The microsphere surface was reacted with organosilane molecules to attach octadecyl groups, amino groups, and fluorogroups to the surface. Both electrostatic and hydrophobic interactions were observed between the analytes and the microsphere surface, as indicated by changes in the measured effective pathlength with different organosilanes. For a given analyte and coated microsphere, the pathlength measurement was repeatable within a few percent. Methylene blue dye had a very strong interaction with the surface and pathlengths of several centimeters were measured. Choosing an appropriate surface coating to interact with a specific analyte should result in the highest sensitivity detection.

  1. Reprint of : Thermoelectricity without absorbing energy from the heat sources

    NASA Astrophysics Data System (ADS)

    Whitney, Robert S.; Sánchez, Rafael; Haupt, Federica; Splettstoesser, Janine

    2016-08-01

    We analyze the power output of a quantum dot machine coupled to two electronic reservoirs via thermoelectric contacts, and to two thermal reservoirs - one hot and one cold. This machine is a nanoscale analogue of a conventional thermocouple heat-engine, in which the active region being heated is unavoidably also exchanging heat with its cold environment. Heat exchange between the dot and the thermal reservoirs is treated as a capacitive coupling to electronic fluctuations in localized levels, modeled as two additional quantum dots. The resulting multiple-dot setup is described using a master equation approach. We observe an "exotic" power generation, which remains finite even when the heat absorbed from the thermal reservoirs is zero (in other words the heat coming from the hot reservoir all escapes into the cold environment). This effect can be understood in terms of a non-local effect in which the heat flow from heat source to the cold environment generates power via a mechanism which we refer to as Coulomb heat drag. It relies on the fact that there is no relaxation in the quantum dot system, so electrons within it have a non-thermal energy distribution. More poetically, one can say that we find a spatial separation of the first-law of thermodynamics (heat to work conversion) from the second-law of thermodynamics (generation of entropy). We present circumstances in which this non-thermal system can generate more power than any conventional macroscopic thermocouple (with local thermalization), even when the latter works with Carnot efficiency.

  2. Thermoelectricity without absorbing energy from the heat sources

    NASA Astrophysics Data System (ADS)

    Whitney, Robert S.; Sánchez, Rafael; Haupt, Federica; Splettstoesser, Janine

    2016-01-01

    We analyze the power output of a quantum dot machine coupled to two electronic reservoirs via thermoelectric contacts, and to two thermal reservoirs - one hot and one cold. This machine is a nanoscale analogue of a conventional thermocouple heat-engine, in which the active region being heated is unavoidably also exchanging heat with its cold environment. Heat exchange between the dot and the thermal reservoirs is treated as a capacitive coupling to electronic fluctuations in localized levels, modeled as two additional quantum dots. The resulting multiple-dot setup is described using a master equation approach. We observe an "exotic" power generation, which remains finite even when the heat absorbed from the thermal reservoirs is zero (in other words the heat coming from the hot reservoir all escapes into the cold environment). This effect can be understood in terms of a non-local effect in which the heat flow from heat source to the cold environment generates power via a mechanism which we refer to as Coulomb heat drag. It relies on the fact that there is no relaxation in the quantum dot system, so electrons within it have a non-thermal energy distribution. More poetically, one can say that we find a spatial separation of the first-law of thermodynamics (heat to work conversion) from the second-law of thermodynamics (generation of entropy). We present circumstances in which this non-thermal system can generate more power than any conventional macroscopic thermocouple (with local thermalization), even when the latter works with Carnot efficiency.

  3. Optical trapping and rotation of airborne absorbing particles with a single focused laser beam

    NASA Astrophysics Data System (ADS)

    Lin, Jinda; Li, Yong-qing

    2014-03-01

    We measure the periodic circular motion of single absorbing aerosol particles that are optically trapped with a single focused Gaussian beam and rotate around the laser propagation direction. The scattered light from the trapped particle is observed to be directional and change periodically at 0.4-20 kHz. The instantaneous positions of the moving particle within a rotation period are measured by a high-speed imaging technique using a charge coupled device camera and a repetitively pulsed light-emitting diode illumination. The centripetal acceleration of the trapped particle as high as ˜20 times the gravitational acceleration is observed and is attributed to the photophoretic forces.

  4. Optical trapping and rotation of airborne absorbing particles with a single focused laser beam

    SciTech Connect

    Lin, Jinda; Li, Yong-qing

    2014-03-10

    We measure the periodic circular motion of single absorbing aerosol particles that are optically trapped with a single focused Gaussian beam and rotate around the laser propagation direction. The scattered light from the trapped particle is observed to be directional and change periodically at 0.4–20 kHz. The instantaneous positions of the moving particle within a rotation period are measured by a high-speed imaging technique using a charge coupled device camera and a repetitively pulsed light-emitting diode illumination. The centripetal acceleration of the trapped particle as high as ∼20 times the gravitational acceleration is observed and is attributed to the photophoretic forces.

  5. Solar concentrator/absorber

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  6. Laser ablation of absorbing liquids under transparent cover: acoustical and optical monitoring

    NASA Astrophysics Data System (ADS)

    Samokhin, A. A.; Il'ichev, N. N.; Pivovarov, P. A.; Sidorin, A. V.

    2016-06-01

    Phase transition induced with infrared (λ = 2920 nm and λ = 2940 nm) nanosecond laser pulses in strongly absorbing liquids (water, ethanol) under transparent solid cover is investigated with the help of acoustical and optical monitoring. LiNbO3 transducer is used for registration of pressure pulses generated in irradiated liquids. Optical signals due to scattering and specular reflection of probing optical beams are explored with the schemes involving total internal reflection and interference effects. Combination of these two optical diagnostic methods permits for the first time to show that irradiation of covered liquids leads to vapor cavity formation which is divided from the cover with thin (submicron) liquid film despite the fact that radiation intensity maximum is located just at the liquid-plate boundary. The cavity formation is due to explosive boiling which occurs when the superheated liquid reaches its superheating limit in near critical region. After the first acoustical signal, the second signal is observed with several hundreds microseconds time delay which is caused by the vapor cavity collapse. Some results of optical and acoustical diagnostics in the case of free liquid surface are also presented.

  7. Impact resistance of fiber composites: Energy absorbing mechanisms and environmental effects

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1983-01-01

    Energy absorbing mechanisms were identified by several approaches. The energy absorbing mechanisms considered are those in unidirectional composite beams subjected to impact. The approaches used include: mechanic models, statistical models, transient finite element analysis, and simple beam theory. Predicted results are correlated with experimental data from Charpy impact tests. The environmental effects on impact resistance are evaluated. Working definitions for energy absorbing and energy releasing mechanisms are proposed and a dynamic fracture progression is outlined. Possible generalizations to angle-plied laminates are described.

  8. Impact resistance of fiber composites - Energy-absorbing mechanisms and environmental effects

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1985-01-01

    Energy absorbing mechanisms were identified by several approaches. The energy absorbing mechanisms considered are those in unidirectional composite beams subjected to impact. The approaches used include: mechanic models, statistical models, transient finite element analysis, and simple beam theory. Predicted results are correlated with experimental data from Charpy impact tests. The environmental effects on impact resistance are evaluated. Working definitions for energy absorbing and energy releasing mechanisms are proposed and a dynamic fracture progression is outlined. Possible generalizations to angle-plied laminates are described.

  9. Reducing heat loss from the energy absorber of a solar collector

    DOEpatents

    Chao, Bei Tse; Rabl, Ari

    1976-01-01

    A device is provided for reducing convective heat loss in a cylindrical radiant energy collector. It includes a curved reflective wall in the shape of the arc of a circle positioned on the opposite side of the exit aperture from the reflective side walls of the collector. Radiant energy exiting the exit aperture is directed by the curved wall onto an energy absorber such that the portion of the absorber upon which the energy is directed faces downward to reduce convective heat loss from the absorber.

  10. Determination of optical parameters and thickness of weakly absorbing thin films from reflectance and transmittance spectra

    NASA Astrophysics Data System (ADS)

    Kutavichus, Vitaly P.; Filippov, Valery V.; Huzouski, Vitali H.

    2006-07-01

    A method for determining the optical constants and the thickness of weakly absorbing thin films on substrates is proposed. In this method only the reflectance and transmittance spectra obtained at a single arbitrary angle of incidence are used, provided that the former reveals several interference extrema. The calculation procedure is based on relatively simple relations suitable for the programmed realization and does not call for the prescription of the initial values of the parameters to be determined. The method proposed is fairly accurate and allows one to uniquely solve the inverse problem of spectrophotometry. The optical constants and the thickness of an AsxSey film formed on a glass substrate have been determined by the proposed method in the visible region of the spectrum.

  11. Optical properties and aging of light-absorbing secondary organic aerosol

    DOE PAGES

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; Laskin, Julia; Kathmann, Shawn M.; Wise, Matthew; Caylor, Ryan; Imholt, Felisha; Selimovic, Vanessa; Shilling, John E.

    2016-10-14

    The light-absorbing organic aerosol (OA) commonly referred to as “brown carbon” (BrC) has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC) precursors, NOx concentrations, photolysis time, and relative humidity (RH) on the light absorptionmore » of selected secondary organic aerosols (SOA). Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC) value is observed from toluene SOA products formed under high-NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis) and ultraviolet (UV) light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.« less

  12. Optical properties and aging of light-absorbing secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; Laskin, Julia; Kathmann, Shawn M.; Wise, Matthew; Caylor, Ryan; Imholt, Felisha; Selimovic, Vanessa; Shilling, John E.

    2016-10-01

    The light-absorbing organic aerosol (OA) commonly referred to as "brown carbon" (BrC) has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC) precursors, NOx concentrations, photolysis time, and relative humidity (RH) on the light absorption of selected secondary organic aerosols (SOA). Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC) value is observed from toluene SOA products formed under high-NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis) and ultraviolet (UV) light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  13. Interior radiances in optically deep absorbing media. 3: Scattering from Haze L

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Plass, G. N.

    1974-01-01

    The interior radiances are calculated within an optically deep absorbing medium scattering according to the Haze L phase function. The dependence on the solar zenith angle, the single scattering albedo, and the optical depth within the medium is calculated by the matrix operator method. The development of the asymptotic angular distribution of the radiance in the diffusion region is illustrated through a number of examples; it depends only on the single scattering albedo and on the phase function for single scattering. The exact values of the radiance in the diffusion region are compared with values calculated from the approximate equations proposed by Van de Hulst. The variation of the radiance near the lower boundary of an optically thick medium is illustrated with examples. The attenuation length is calculated for various single scattering albedos and compared with the corresponding values for Rayleigh scattering. The ratio of the upward to the downward flux is found to be remarkably constant within the medium. The heating rate is calculated and found to have a maximum value at an optical depth of two within a Haze L layer when the sun is at the zenith.

  14. Two-photon or higher-order absorbing optical materials and methods of use

    NASA Technical Reports Server (NTRS)

    Marder, Seth (Inventor); Perry, Joseph (Inventor)

    2001-01-01

    Compositions capable of simultaneous two-photon absorption and higher order absorptivities are disclosed. Many of these compositions are compounds satisfying the formulae D-.PI.-D, A-.PI.-A, D-A-D and A-D-A, wherein D is an electron donor group, A is an electron acceptor group and .PI. comprises a bridge of .pi.-conjugated bonds connecting the electron donor groups and electron acceptor groups. In A-D-A and D-A-D compounds, the .pi. bridge is substituted with electron donor groups and electron acceptor groups, respectively. Also disclosed are methods that generate an electronically excited state of a compound, including those satisfying one of these formulae. The electronically excited state is achieved in a method that includes irradiating the compound with light. Then, the compound is converted to a multi-photon electronically excited state upon simultaneous absorption of at least two photons of light. The sum of the energies of all of the absorbed photons is greater than or equal to the transition energy from a ground state of the compound to the multi-photon excited state. The energy of each absorbed photon is less than the transition energy between the ground state and the lowest single-photon excited state of the compound is less than the transition energy between the multi-photon excited state and the ground state.

  15. Molecules and metals in the distant universe: Sub-mm and optical spectroscopy of quasar absorbers

    NASA Astrophysics Data System (ADS)

    Morrison, Sean Stephen

    In order to gain a complete understanding of galaxy formation and evolution, knowledge of the atomic and molecular gas in the interstellar medium (ISM) is required. Absorption-line spectroscopy of quasars offer a powerful and luminosity independent probe of gas to high redshifts. The sub-Damped Lyman-alpha systems (sub-DLAs; 19.0 < log NHI < 20.3), and Damped Lyman-alpha systems (DLAs; 20.3 < log NHI), are the highest neutral hydrogen column density quasar absorbers contain most of the neutral gas available for star formation in the high-redshift Universe. This thesis presents photometric measurements of 10 quasars absorbers with redshifts 0.652 < zabs < 3.104 taken with the Spectral and Photometric Imaging Receiver (SPIRE) on Herschel. Of these 10 objects, 3 showed fluxes > 1 Jy. In addition spectra for 5 other quasars with DLAs (0.524 < zabs < 1.173) were taken with SPIRE and Heterodyne Instrument for the far-infrared (HIFI) on Herschel. These observations, in the far-IR and sub-mm bands, were optimized for detection of molecular lines of CO, 13CO, C 18O, H2O, HCO, and the forbidden transitions of [C II] and [N II]. Two targets, the DLA towards PKS0420-014 at z = 0.633 and the DLA towards AO0235+164 at z = 0.524, had a tentative detection of C18O, and another, the DLA towards TXS0827+243 at z = 0.52476, had a tentative detection of HCO. There were a number of other 3 sigma limits, with at least one limit for each of the 5 systems. In addition to the DLAs, 2 super-DLAs (with z = 2.5036 and z = 2.045) were observed using the echellette mode on Keck Echellette Spectrograph and Imager (ESI). These observations, in the optical and ultraviolet wavelengths, were optimized to detect metal lines. Both absorbers show remarkably similar metallicities of ~ -1.3 to ~ -1.4 dex and comparable, definitive depletion levels, as judged from [Fe/Zn] and [Ni/Zn]. One of the absorbers shows supersolar [S/Zn] and [Si/Zn]. Using potential detections of weak Ly-alpha emission at the

  16. A Titanium Nitride Absorber for Controlling Optical Crosstalk in Horn-Coupled Aluminum LEKID Arrays for Millimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    McCarrick, H.; Flanigan, D.; Jones, G.; Johnson, B. R.; Ade, P. A. R.; Bradford, K.; Bryan, S.; Cantor, R.; Che, G.; Day, P.; Doyle, S.; Leduc, H.; Limon, M.; Mauskopf, P.; Miller, A.; Mroczkowski, T.; Tucker, C.; Zmuidzinas, J.

    2016-07-01

    We discuss the design and measured performance of a titanium nitride (TiN) mesh absorber we are developing for controlling optical crosstalk in horn-coupled lumped-element kinetic inductance detector (LEKID) arrays for millimeter wavelengths. This absorber was added to the fused silica anti-reflection coating attached to previously characterized, 20-element prototype arrays of LEKIDs fabricated from thin-film aluminum on silicon substrates. To test the TiN crosstalk absorber, we compared the measured response and noise properties of LEKID arrays with and without the TiN mesh. For this test, the LEKIDs were illuminated with an adjustable, incoherent electronic millimeter-wave source. Our measurements show that the optical crosstalk in the LEKID array with the TiN absorber is reduced by 66 % on average, so the approach is effective and a viable candidate for future kilo-pixel arrays.

  17. Development of 2 underseat energy absorbers for application to crashworthy passenger seats for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Warrick, J. C.; Desjardins, S. P.

    1979-01-01

    This report presents the methodology and results of a program conducted to develop two underseat energy absorber (E/A) concepts for application to nonadjustable crashworthy passenger seats for general aviation aircraft. One concept utilizes an inflated air bag, and the other, a convoluted sheet metal bellows. Prototypes of both were designed, built, and tested. Both concepts demonstrated the necessary features of an energy absorber (load-limiter); however, the air bag concept is particularly encouraging because of its light weight. Several seat frame concepts also were investigated as a means of resisting longitudinal and lateral loads and of guiding the primary vertical stroke of the underseat energy absorber. Further development of a seat system design using the underseat energy absorbers is recommended because they provide greatly enhanced crash survivability as compared with existing general aviation aircraft seats.

  18. Optimization of doubly Q-switched lasers with both an acousto-optic modulator and a GaAs saturable absorber

    SciTech Connect

    Li Dechun; Zhao Shengzhi; Li Guiqiu; Yang Kejian

    2007-08-20

    A doubly Q-switched laser with both an acousto-optic (AO) modulator and a GaAs saturable absorber can obtain a more symmetric and shorter pulse with high pulse peak power, which has been experimentally proved. The key parameters of an optimally coupled doubly Q-switched laser with both an AO modulator and a GaAs saturable absorber are determined, and a group of general curves are generated for what we believe is the first time, when the single-photon absorption (SPA) and two-photon absorption (TPA) processes of GaAs are combined, and the Gaussian spatial distributions of the intracavity photon density and the initial population-inversion density as well as the influence of the AO Q-switch are considered. These key parameters include the optimal normalized coupling parameter, the optimal normalized GaAs saturable absorber parameters, and the normalized parameters of the AO Q-switch, which can maximize the output energy. Meanwhile, the corresponding normalized energy, the normalized peak power, and the normalized pulse width are given. The curves clearly show the dependence of the optimal key parameters on the parameters of the gain medium, the GaAs saturable absorber,the AO Q-switch, and the resonator. Sample calculations for a diode-pumpedNd3+:YVO4 laser with both an AO modulator and a GaAs saturable absorber are presented to demonstrate the use of the curves and the relevant formulas.

  19. Optimization of doubly Q-switched lasers with both an acousto-optic modulator and a GaAs saturable absorber.

    PubMed

    Li, Dechun; Zhao, Shengzhi; Li, Guiqiu; Yang, Kejian

    2007-08-20

    A doubly Q-switched laser with both an acousto-optic (AO) modulator and a GaAs saturable absorber can obtain a more symmetric and shorter pulse with high pulse peak power, which has been experimentally proved. The key parameters of an optimally coupled doubly Q-switched laser with both an AO modulator and a GaAs saturable absorber are determined, and a group of general curves are generated for what we believe is the first time, when the single-photon absorption (SPA) and two-photon absorption (TPA) processes of GaAs are combined, and the Gaussian spatial distributions of the intracavity photon density and the initial population-inversion density as well as the influence of the AO Q-switch are considered. These key parameters include the optimal normalized coupling parameter, the optimal normalized GaAs saturable absorber parameters, and the normalized parameters of the AO Q-switch, which can maximize the output energy. Meanwhile, the corresponding normalized energy, the normalized peak power, and the normalized pulse width are given. The curves clearly show the dependence of the optimal key parameters on the parameters of the gain medium, the GaAs saturable absorber, the AO Q-switch, and the resonator. Sample calculations for a diode-pumped Nd3+:YVO4 laser with both an AO modulator and a GaAs saturable absorber are presented to demonstrate the use of the curves and the relevant formulas.

  20. Roadmap on optical energy conversion

    NASA Astrophysics Data System (ADS)

    Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang

    2016-07-01

    For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light–matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the

  1. Roadmap on optical energy conversion

    NASA Astrophysics Data System (ADS)

    Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang

    2016-07-01

    For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap

  2. High efficiency, low weight and volume energy absorbent seam

    NASA Astrophysics Data System (ADS)

    Buckley, James A.; Hennings, Elsa J.

    1992-06-01

    A parachute canopy seam joint for fastening a ribbon seam and a radial seam of a parachute canopy together is presented. This parachute canopy seam joint combines a ribbon seam using a zigzag stitch pattern and narrow strips of radial tape sewn together with multiple rows of a straight stitch pattern. The ribbon seam attaches two overlapping ribbons within the parachute. The narrow strips of radial tape shroud the ribbon seam which result in a high strength and low weight and volume radial seam and seam joint. This new configuration of a parachute seam joint has distinct advantages in terms of strength and shock absorbing capacity. Specifically, this new parachute seam joint has a seam strength equal to or greater than the minimum rated strength of the ad-joining materials and employs a smaller weight and volume of material than conventional radial seams and seam joints.

  3. Harnessing snap-through instability for shape-recoverable energy-absorbing structure

    NASA Astrophysics Data System (ADS)

    Kang, Sung; Shan, Sicong; Raney, Jordan; Wang, Pai; Candido, Francisco; Lewis, Jennifer; Bertoldi, Katia

    2015-03-01

    Energy absorbing materials and structures are used in numerous areas for maintaining structural integrity, protection and comfort. To absorb/dissipate energy from shock/vibration, one generally relies on processes such as plastic deformation and damping as the case of metal foams and suspensions. Because plastic deformation and damping induce irreversible change in the energy-absorbing systems such as shape changes and degradation of damping elements by heat dissipation, it would be desirable to develop a new energy-absorption mechanism with reversibility. Furthermore, it would be desirable to implement energy-absorption mechanisms whose behavior is not affected by the rate of loading. Here, we report a shape-recoverable system that absorbs energy without degradation by harnessing multistability in elastic structures. Using numerical simulations, we investigate geometrical parameters that determine the onset of the snap-through and multi-stability. We subsequently manufacture structures with different geometrical parameters and sizes using a scalable direct-write 3D printing approach. We experimentally demonstrate reversible energy-absorption in these structures at strain rates over three orders of magnitudes, with reduced peak acceleration under impact by up to one order of magnitude compared with control samples. Our findings can open new opportunities for scalable design and manufacturing of energy-absorbing materials and structures.

  4. Modeling of optically controlled reflective bistability in a vertical cavity semiconductor saturable absorber

    NASA Astrophysics Data System (ADS)

    Mishra, L.

    2015-05-01

    Bistability switching between two optical signals has been studied theoretically utilizing the concept of cross absorption modulation in a vertical cavity semiconductor saturable absorber (VCSSA). The probe beam is fixed at a wavelength other than the low power cavity resonance wavelength, which exhibits bistable characteristic by controlling the power of a pump beam (λpump≠λprobe). The cavity nonlinear effects that arises simultaneously from the excitonic absorption bleaching, and the carrier induced nonlinear index change has been considered in the model. The high power absorption in the active region introduces thermal effects within the nonlinear cavity due to which the effective cavity length changes. This leads to a red-shift of the cavity resonance wavelength, which results a change in phase of the optical fields within the cavity. In the simulation, the phase-change due to this resonance shifting is considered to be constant over time, and it assumes the value corresponding to the maximum input power. Further, an initial phase detuning of the probe beam has been considered to investigate its effect on switching. It is observed from the simulated results that, the output of the probe beam exhibits either clockwise or counter-clockwise bistability, depending on its initial phase detuning.

  5. A Phosphorus Phthalocyanine Formulation with Intense Absorbance at 1000 nm for Deep Optical Imaging

    PubMed Central

    Zhou, Yang; Wang, Depeng; Zhang, Yumiao; Chitgupi, Upendra; Geng, Jumin; Wang, Yuehang; Zhang, Yuzhen; Cook, Timothy R.; Xia, Jun; Lovell, Jonathan F.

    2016-01-01

    Although photoacoustic computed tomography (PACT) operates with high spatial resolution in biological tissues deeper than other optical modalities, light scattering is a limiting factor. The use of longer near infrared wavelengths reduces scattering. Recently, the rational design of a stable phosphorus phthalocyanine (P-Pc) with a long wavelength absorption band beyond 1000 nm has been reported. Here, we show that when dissolved in liquid surfactants, P-Pc can give rise to formulations with absorbance of greater than 1000 (calculated for a 1 cm path length) at wavelengths beyond 1000 nm. Using the broadly accessible Nd:YAG pulse laser emission output of 1064 nm, P-Pc could be imaged through 11.6 cm of chicken breast with PACT. P-Pc accumulated passively in tumors following intravenous injection in mice as observed by PACT. Following oral administration, P-Pc passed through the intestine harmlessly, and PACT could be used to non-invasively observe intestine function. When the contrast agent placed under the arm of a healthy adult human, a PACT transducer on the top of the arm could readily detect P-Pc through the entire 5 cm limb. Thus, the approach of using contrast media with extreme absorption at 1064 nm readily enables high quality optical imaging in vitro and in vivo in humans at exceptional depths. PMID:27022416

  6. A Phosphorus Phthalocyanine Formulation with Intense Absorbance at 1000 nm for Deep Optical Imaging.

    PubMed

    Zhou, Yang; Wang, Depeng; Zhang, Yumiao; Chitgupi, Upendra; Geng, Jumin; Wang, Yuehang; Zhang, Yuzhen; Cook, Timothy R; Xia, Jun; Lovell, Jonathan F

    2016-01-01

    Although photoacoustic computed tomography (PACT) operates with high spatial resolution in biological tissues deeper than other optical modalities, light scattering is a limiting factor. The use of longer near infrared wavelengths reduces scattering. Recently, the rational design of a stable phosphorus phthalocyanine (P-Pc) with a long wavelength absorption band beyond 1000 nm has been reported. Here, we show that when dissolved in liquid surfactants, P-Pc can give rise to formulations with absorbance of greater than 1000 (calculated for a 1 cm path length) at wavelengths beyond 1000 nm. Using the broadly accessible Nd:YAG pulse laser emission output of 1064 nm, P-Pc could be imaged through 11.6 cm of chicken breast with PACT. P-Pc accumulated passively in tumors following intravenous injection in mice as observed by PACT. Following oral administration, P-Pc passed through the intestine harmlessly, and PACT could be used to non-invasively observe intestine function. When the contrast agent placed under the arm of a healthy adult human, a PACT transducer on the top of the arm could readily detect P-Pc through the entire 5 cm limb. Thus, the approach of using contrast media with extreme absorption at 1064 nm readily enables high quality optical imaging in vitro and in vivo in humans at exceptional depths.

  7. Stowable Energy-Absorbing Rocker-Bogie Suspensions

    NASA Technical Reports Server (NTRS)

    Harrington, Brian; Voorhees, Christopher

    2007-01-01

    A report discusses the design of the rocker-bogie suspensions of the Mars Exploration Rover vehicles, which were landed on Mars in January 2004. Going beyond the basic requirements regarding mobility on uneven terrain, the design had to satisfy requirements (1) to enable each suspension to contort so that the rover could be stowed within limited space in a tetrahedral lander prior to deployment and (2) that the suspension be able to absorb appreciable impact loads, with limited deflection, during egress from the lander and traversal of terrain. For stowability, six joints (three on the right, three on the left) were added to the basic rocker-bogie mechanism. One of the joints on each side was a yoke-and-clevis joint at the suspension/differential interface, one was a motorized twist joint in the forward portion of the rocker, and one was a linear joint created by modifying a fixed-length bogie member into a telescoping member. For absorption of impact, the structural members were in the form of box beams made by electron-beam welding of machined, thin-walled, C-channel, titanium components. The box beams were very lightweight and could withstand high bending and torsional loads.

  8. Optical mass gauge sensor having an energy per unit area of illumination detection

    NASA Technical Reports Server (NTRS)

    Justak, John F. (Inventor)

    2000-01-01

    An optical mass gauge sensor is disclosed comprising a vessel having an interior surface which reflects radiant energy at a wavelength at least partially absorbed by a fluid contained within the vessel, an illuminating device for introducing radiant energy at such wavelength into the vessel interior, and, a detector for measuring the energy per unit area of illumination within the vessel created by the radiant energy which is not absorbed by the fluid.

  9. ABSORBANCE, ABSORPTION COEFFICIENT, AND APPARENT QUANTUM YIELD: A COMMENT ON AMBIGUITY IN THE USE OF THESE OPTICAL CONCEPTS

    EPA Science Inventory

    Several important optical terms such as "absorbance" and "absorption coefficient" are frequently used ambiguously in the current peer-reviewed literature. Since they are important terms that are required to derive other quantities such as the "apparent quantum yield" of photoprod...

  10. Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint

    SciTech Connect

    Li, Y.; Yu, Y. H.

    2012-05-01

    During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.

  11. Development of a carbonaceous selective absorber for solar thermal energy collection and process for its formation

    NASA Astrophysics Data System (ADS)

    Garrison, John D.

    1989-02-01

    The main goal of the US Department of Energy supported part of this project is to develop information about controlling the complicated chemical processes involved in the formation of a carbonaceous selective absorber and learn what equipment will allow production of this absorber commercially. The work necessary to accomplish this goal is not yet complete. Formation of the carbonaceous selective absorber in the conveyor oven tried so far has been unsatisfactory, because the proper conditions for applying the carbonaceous coating in each conveyor oven fabricated, either have been difficult to obtain, or have been difficult to maintain over an extended period of time. A new conveyor oven is nearing completion which is expected to allow formation of the carbonaceous selective absorber on absorber tubes in a continuous operation over many days without the necessity of cleaning the conveyor oven or changing the thickness of the electroplated nickel catalyst to compensate for changes in the coating environment in the oven. Work under this project concerned with forming and sealing glass panels to test ideas on evacuated glass solar collector designs and production have been generally quite satisfactory. Delays in completion of the selective absorber work, has caused postponement of the fabrication of a small prototype evacuated glass solar collector panel. Preliminary cost estimates of the selective absorber and solar collector panel indicate that this collector system should be lower in cost than evacuated solar collectors now on the market.

  12. Thermally-Resilient, Broadband Optical Absorber from UV-to-IR Derived from Carbon Nanostructures and Method of Making the Same

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B. (Inventor); Coles, James B. (Inventor)

    2015-01-01

    A monolithic optical absorber and methods of making same. The monolithic optical absorber uses an array of mutually aligned carbon nanotubes that are grown using a PECVD growth process and a structure that includes a conductive substrate, a refractory template layer and a nucleation layer. Monolithic optical absorbers made according to the described structure and method exhibit high absorptivity, high site densities (greater than 10.sup.9 nanotubes/cm.sup.2), very low reflectivity (below 1%), and high thermal stability in air (up to at least 400.degree. C.). The PECVD process allows the application of such absorbers in a wide variety of end uses.

  13. A comprehensive simulation model of the performance of photochromic films in absorbance-modulation-optical-lithography

    NASA Astrophysics Data System (ADS)

    Majumder, Apratim; Helms, Phillip L.; Andrew, Trisha L.; Menon, Rajesh

    2016-03-01

    Optical lithography is the most prevalent method of fabricating micro-and nano-scale structures in the semiconductor industry due to the fact that patterning using photons is fast, accurate and provides high throughput. However, the resolution of this technique is inherently limited by the physical phenomenon of diffraction. Absorbance-Modulation-Optical Lithography (AMOL), a recently developed technique has been successfully demonstrated to be able to circumvent this diffraction limit. AMOL employs a dual-wavelength exposure system in conjunction with spectrally selective reversible photo-transitions in thin films of photochromic molecules to achieve patterning of features with sizes beyond the far-field diffraction limit. We have developed a finite-element-method based full-electromagnetic-wave solution model that simulates the photo-chemical processes that occur within the thin film of the photochromic molecules under illumination by the exposure and confining wavelengths in AMOL. This model allows us to understand how the material characteristics influence the confinement to sub-diffraction dimensions, of the transmitted point spread function (PSF) of the exposure wavelength inside the recording medium. The model reported here provides the most comprehensive analysis of the AMOL process to-date, and the results show that the most important factors that govern the process, are the polarization of the two beams, the ratio of the intensities of the two wavelengths, the relative absorption coefficients and the concentration of the photochromic species, the thickness of the photochromic layer and the quantum yields of the photoreactions at the two wavelengths. The aim of this work is to elucidate the requirements of AMOL in successfully circumventing the far-field diffraction limit.

  14. Force reconstruction for impact tests of an energy-absorbing nose

    SciTech Connect

    Bateman, V.I.; Garne, T.G.; McCall, D.M.

    1990-01-01

    Delivery of a bomb into hard targets at speeds of up to 120 fps required the design of an energy-absorbing nose. The purpose of the nose is to decelerate the projectile and, by absorbing the kinetic energy with deformation, protect the projectile's internal components from high-level (shock) decelerations. A structural simulation of the projectile was designed to test the dynamic deformation characteristics of the energy-absorbing nose. The simulated projectile was instrumented with eight accelerometers mounted with a shock isolation technique. The dynamic force as a function of nose deformation was the desired result from the impact tests because it provides the designer with a performance criterion for the nose design. The dynamic force was obtained by combining the accelerations using the Sum of Weighted Accelerations Technique (SWAT). Results from two field tests are presented. 12 refs., 8 figs.

  15. Stationary, harmonic, and pulsed operations of an optically bistable laser with saturable absorber. I

    SciTech Connect

    Mandel, P.; Erneux, T.

    1984-10-01

    We study the semiclassical equations for a laser with a saturable absorber in the mean-field limit, assuming homogeneously broadened two-level atoms, for a set of parameters where the system displays optical bistability and time-periodic solutions. In the first part the bifurcation diagram for stationary and periodic solutions is obtained by numerical integration. Two different classes of stable periodic solutions arise: small-amplitude solutions and passive Q switching. We observe hysteresis domains involving up to three solutions (stationary and/or periodic). We also discuss the validity of some standard approximations and show that even in the absence of detuning the phases play an important role. We also discuss the influence of the initial conditions whose symmetry properties induce important modifications of the bifurcation diagram. In the second part we introduce an alternative adiabatic elimination scheme which allows us to construct the small-amplitude periodic solutions over nearly their whole range of existence. We then study these solutions near the Hopf bifurcation from which they emerge and derive analytic conditions for their stability. When they are stable, we also give the conditions under which a secondary Hopf bifurcation will occur, leading to quasiperiodic solutions.

  16. Multi-Level Experimental and Analytical Evaluation of Two Composite Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Littell, Justin D.; Fasanella, Edwin L.; Annett, Martin S.; Seal, Michael D., II

    2015-01-01

    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45 deg/-45 deg/-45 deg/+45 deg] with respect to the vertical, or crush, direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soil, which is characterized as a sand/clay mixture. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.

  17. Note on Salter's energy absorber in random waves

    SciTech Connect

    Serman, D.D.; Mei, C.C.

    1980-01-01

    Salter's wave theory energy device has been the object of extensive theoretical and experimental studies during recent years. This paper describes the performance of the device in random waves by means of a numerical study. Different situations are considered. First, the cam is allowed to have one degree of freedom (the cam rolls about a rigid and fixed shaft) and is in a shallow sea where the waves are modeled by the JONSWAP spectrum. Power extraction, efficiency and dynamic response are presented in terms of wind characteristics for a cam radius of 3 m. In the open sea where typical waves are longer and higher, waves are represented by the P-M spectrum and the cam radius is taken to be 7 m. Finally, it is shown for a particular set of design parameters how the efficiency decays and the power extraction decreases with lack of rigidity in the support system.

  18. Underwater radiant energy absorbed by phytoplankton, detritus, dissolved organic matter, and pure water

    SciTech Connect

    Kishino, M.; Booth, C.R.; Okami, N.

    1984-03-01

    The spectral irradiance distribution at five stations on lakes and at sea was measured with a portable underwater spectral irradiance meter. Chlorophyll a concentration and the absorption coefficient of the water were concurrently measured. From measured spectral irradiance distributions, radiant energy absorbed per unit volume was computed. At these stations, the effect of upward irradiance on total quanta absorbed by the water was negligibly small for all layers. The relative contributions of phytoplankton, detritus, dissolved organic matter, and pure water to the total absorbed quanta were also computed by taking into consideration the spectral dependency of each component: the contribution of quanta absorbed by the water was negligibly small for all layers. The relative contributions of phytoplankton, detritus, dissolved organic matter, and pure water to the total absorbed quanta were also computed by taking into consideration the spectral dependency of each component: the contribution of quanta absorbed by phytoplankton was about 3-10% in clear water and about 30-40% in the plankton-rich water.

  19. Optimization of peak power of doubly Q-switched lasers with both an acousto-optic modulator and a Cr4+-doped saturable absorber

    SciTech Connect

    Li Dechun; Zhao Shengzhi; Li Guiqiu; Yang Kejian

    2006-08-01

    A doubly Q-switched laser can obtain a shorter pulse with a stable repetition rate and high pulse peak power, which has been experimentally proved. By taking into account the Gaussian spatial distributions of the intracavity photon density and the initial population-inversion density as well as the influence of the acousto-optic (AO) Q switch, we introduce the coupled rate equations for a doubly Q-switched laser with both an AO modulator and a Cr4+-doped saturable absorber. These coupled rate equations are solved numerically. The key parameters of an optimally coupled doubly Q-switched laser are determined based on maximizing the peak power, which include the optimal normalized coupling parameter, the optimal normalized saturable absorber parameters, and the normalized parameters of the AO Q switch. The optimal normalized peak power, the corresponding normalized energy, and the normalized pulse width are also given, and a group of general curves are generated for the first time to our knowledge. The curves can give us a good understanding of the dependence of the optimal key parameters on the parameters of the gain medium, the saturable absorber, the AO Q switch, the resonator, and the spatial distributions of the intracavity photon density. The optimal calculations for a diode-pumped Nd3+:YVO4 laser with both an AO modulator and a Cr4+:YAG saturable absorber are presented to demonstrate the use of the curves and the related formulas.

  20. Comparative analysis of absorbance calculations for integrated optical waveguide configurations by use of the ray optics model and the electromagnetic wave theory.

    PubMed

    Mendes, S B; Saavedra, S S

    2000-02-01

    Focusing on the use of planar waveguides as platforms for highly sensitive attenuated total reflection spectroscopy of organic thin films, we extend the ray optics model to provide absorbance expressions for the case of dichroic layers immobilized on the waveguide surface. Straightforward expressions are derived for the limiting case of weakly absorbing, anisotropically oriented molecules in the waveguide-cladding region. The second major focus is on the accuracy of the ray optics model. This model assumes that the introduction of absorbing species, either in the bulk cladding or as an adlayer on the waveguide surface, only causes a small perturbation to the original waveguide-mode profile. We investigate the accuracy of this assumption and the conditions under which it is valid. A comparison to an exact calculation by use of the electromagnetic wave theory is implemented, and the discrepancy of the ray optics model is determined for various waveguide configurations. We find that in typical situations in which waveguide-absorbance measurements are used to study organic thin films (k(l)/n(l) optics and the exact calculations is only a few percent (2-3%).

  1. Structure, optical properties and thermal stability of Al2O3-WC nanocomposite ceramic spectrally selective solar absorbers

    NASA Astrophysics Data System (ADS)

    Gao, Xiang-Hu; Wang, Cheng-Bing; Guo, Zhi-Ming; Geng, Qing-Fen; Theiss, Wolfgang; Liu, Gang

    2016-08-01

    Traditional metal-dielectric composite coating has found important application in spectrally selective solar absorbers. However, fine metal particles can easily diffuse, congregate, or be oxidized at high temperature, which causes deterioration in the optical properties. In this work, we report a new spectrally selective solar absorber coating, composed of low Al2O3 ceramic volume fraction (Al2O3(L)-WC) layer, high Al2O3 ceramic volume fraction (Al2O3(H)-WC layer) and Al2O3 antireflection layer. The features of our work are: 1) compared with the metal-dielectric composites concept, Al2O3-WC nanocomposite ceramic successfully achieves the all-ceramic concept, which exhibits a high solar absorptance of 0.94 and a low thermal emittance of 0.08, 2) Al2O3 and WC act as filler material and host material, respectively, which are different from traditional concept, 3) Al2O3-WC nanocomposite ceramic solar absorber coating exhibits good thermal stability at 600 °C. In addition, the solar absorber coating is successfully modelled by a commercial optical simulation programme, the result of which agrees with the experimental results.

  2. Effects of Consecutive Wideband Tympanometry Trials on Energy Absorbance Measures of the Middle Ear

    ERIC Educational Resources Information Center

    Burdiek, Laina M.; Sun, Xiao-Ming

    2014-01-01

    Purpose: Wideband acoustic immittance (WAI) is a new technique for assessing middle ear transfer function. It includes energy absorbance (EA) measures and can be acquired with the ear canal pressure varied, known as "wideband tympanometry" (WBTymp). The authors of this study aimed to investigate effects of consecutive WBTymp testing on…

  3. Impact Testing and Simulation of a Sinusoid Foam Sandwich Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L; Littell, Justin D.

    2015-01-01

    A sinusoidal-shaped foam sandwich energy absorber was developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research project. The energy absorber, designated the "sinusoid," consisted of hybrid carbon- Kevlar® plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical or crush direction, and a closed-cell ELFOAM(TradeMark) P200 polyisocyanurate (2.0-lb/ft3) foam core. The design goal for the energy absorber was to achieve an average floor-level acceleration of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in the design were assessed through quasi-static and dynamic crush testing of component specimens. Once the design was finalized, a 5-ft-long subfloor beam was fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorber prior to retrofit into TRACT 2. Finite element models were developed of all test articles and simulations were performed using LSDYNA ®, a commercial nonlinear explicit transient dynamic finite element code. Test analysis results are presented for the sinusoid foam sandwich energy absorber as comparisons of load-displacement and acceleration-time-history responses, as well as predicted and experimental structural deformations and progressive damage for each evaluation level (component testing through barrel section drop testing).

  4. A Preliminary Study of Energy Recovery in Vehicles by Using Regenerative Magnetic Shock Absorbers

    SciTech Connect

    R. B. Goldner; P. Zerigian; J. R. Hull

    2001-05-14

    Road vehicles can expend a significant amount of energy in undesirable vertical motions that are induced by road bumps, and much of that is dissipated in conventional shock absorbers as they dampen the vertical motions. Presented in this paper are some of the results of a study aimed at determining the effectiveness of efficiently transforming that energy into electrical power by using optimally designed regenerative electromagnetic shock absorbers. In turn, the electrical power can be used to recharge batteries or other efficient energy storage devices (e.g., flywheels) rather than be dissipated. The results of the study are encouraging - they suggest that a significant amount of the vertical motion energy can be recovered and stored.

  5. Optical pulling of airborne absorbing particles and smut spores over a meter-scale distance with negative photophoretic force

    SciTech Connect

    Lin, Jinda; Hart, Adam G.; Li, Yong-qing

    2015-04-27

    We demonstrate optical pulling of single light-absorbing particles and smut spores in air over a meter-scale distance using a single collimated laser beam based on negative photophoretic force. The micron-sized particles are pulled towards the light source at a constant speed of 1–10 cm/s in the optical pulling pipeline while undergoing transverse rotation at 0.2–10 kHz. The pulled particles can be manipulated and precisely positioned on the entrance window with an accuracy of ∼20 μm, and their chemical compositions can be characterized with micro-Raman spectroscopy.

  6. Optical activity and ultraviolet absorbance detection of dansyl L-amino acids separated by gradient liquid chromatography

    SciTech Connect

    Not Available

    1987-04-01

    Many scientific investigations (e.g., geochronology, pharmaceuticals) have the need to determine enantiometric ratios of amino acids and other compounds. It has been reported that OA/UV or OA/RI (refractive index) are ideal methods for the determination of enantiomeric ratios without the need for chiral columns, chiral eluents, or diasteromer preparation. Unfortunately, only three amino acids are naturally UV absorbing (254 nm), and RI sensitivity for amino acids is low. Derivatization by several methods (o-phthalaldehyde, dansyl, phenylisothiocyanate, fluorescamine, 2,4-dinitrofluorobenzene, and phenylthiohydantoin) renders all amino acids UV absorbing and makes UV or fluorescence viable techniques for amino acids determinations. A previously neglected aspect of derivatization is the effect on optical activity. These highly polar groups influence the chiral center of amino acids drastically (electronic and steric effects). The shifting of the absorption band to the proximity of the wavelength used for OA measurements further enhances the importance of the substituent. The authors report here the determination of 17 dansyl amino acids in a mixture by UV absorbance and optical activity. This involves gradient elution. Previously, the optical activity detector (OAD) has been used only with isocratic HPLC.

  7. Foam-based optical absorber for high-power laser radiometry

    SciTech Connect

    Ramadurai, Krishna; Cromer, Christopher L.; Li, Xiaoyu; Mahajan, Roop L.; Lehman, John H

    2007-12-01

    We report damage threshold measurements of novel absorbers comprised of either liquid-cooled silicon carbide or vitreous carbon foams. The measurements demonstrate damage thresholds up to 1.6x104 W/cm2 at an incident circular spot size of 2 mm with an absorbance of 96% at 1.064 {mu}m. We present a summary of the damage threshold as a function of the water flow velocity and the absorbance measurements. We also present a qualitative description of a damage mechanism based on a two-phase heat transfer between the foam and the flowing water.

  8. Cyanine dyes with high-absorbance cross section as donor chromophores in energy transfer labels

    DOEpatents

    Glazer, A.N.; Mathies, R.A.; Hung, S.C.; Ju, J.

    1998-12-29

    Cyanine dyes are used as the donor fluorophore in energy transfer labels in which light energy is absorbed by a donor fluorophore and transferred to an acceptor fluorophore which responds to the transfer by emitting fluorescent light for detection. The cyanine dyes impart an unusually high sensitivity to the labels thereby improving their usefulness in a wide variety of biochemical procedures, particularly nucleic acid sequencing, nucleic acid fragment sizing, and related procedures. 22 figs.

  9. Cyanine dyes with high-absorbance cross section as donor chromophores in energy transfer labels

    DOEpatents

    Glazer, Alexander N.; Mathies, Richard A.; Hung, Su-Chun; Ju, Jingyue

    1998-01-01

    Cyanine dyes are used as the donor fluorophore in energy transfer labels in which light energy is absorbed by a donor fluorophore and transferred to an acceptor fluorophore which responds to the transfer by emitting fluorescent light for detection. The cyanine dyes impart an unusually high sensitivity to the labels thereby improving their usefulness in a wide variety of biochemical procedures, particularly nucleic acid sequencing, nucleic acid fragment sizing, and related procedures.

  10. Performance evaluation and parameter sensitivity of energy-harvesting shock absorbers on different vehicles

    NASA Astrophysics Data System (ADS)

    Guo, Sijing; Liu, Yilun; Xu, Lin; Guo, Xuexun; Zuo, Lei

    2016-07-01

    Traditional shock absorbers provide favourable ride comfort and road handling by dissipating the suspension vibration energy into heat waste. In order to harvest this dissipated energy and improve the vehicle fuel efficiency, many energy-harvesting shock absorbers (EHSAs) have been proposed in recent years. Among them, two types of EHSAs have attracted much attention. One is a traditional EHSA which converts the oscillatory vibration into bidirectional rotation using rack-pinion, ball-screw or other mechanisms. The other EHSA is equipped with a mechanical motion rectifier (MMR) that transforms the bidirectional vibration into unidirectional rotation. Hereinafter, they are referred to as NonMMR-EHSA and MMR-EHSA, respectively. This paper compares their performances with the corresponding traditional shock absorber by using closed-form analysis and numerical simulations on various types of vehicles, including passenger cars, buses and trucks. Results suggest that MMR-EHSA provides better ride performances than NonMMR-EHSA, and that MMR-EHSA is able to improve both the ride comfort and road handling simultaneously over the traditional shock absorber when installed on light-damped, heavy-duty vehicles. Additionally, the optimal parameters of MMR-EHSA are obtained for ride comfort. The optimal solutions ('Pareto-optimal solutions') are also obtained by considering the trade-off between ride comfort and road handling.

  11. Design, Fabrication and Testing of a Crushable Energy Absorber for a Passive Earth Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Corliss, James M. (Technical Monitor)

    2002-01-01

    A conceptual study was performed to investigate the impact response of a crushable energy absorber for a passive Earth entry vehicle. The spherical energy-absorbing concept consisted of a foam-filled composite cellular structure capable of omni-directional impact-load attenuation as well as penetration resistance. Five composite cellular samples of hemispherical geometry were fabricated and tested dynamically with impact speeds varying from 30 to 42 meters per second. Theoretical crush load predictions were obtained with the aid of a generalized theory which accounts for the energy dissipated during the folding deformation of the cell-walls. Excellent correlation was obtained between theoretical predictions and experimental tests on characteristic cell-web intersections. Good correlation of theory with experiment was also found to exist for the more complex spherical cellular structures. All preliminary design requirements were met by the cellular structure concept, which exhibited a near-ideal sustained crush-load and approximately 90% crush stroke.

  12. The influence of the energy absorbed from microwave pretreatment on biogas production from secondary wastewater sludge.

    PubMed

    Sólyom, Katalin; Mato, Rafael B; Pérez-Elvira, Sara Isabel; Cocero, María José

    2011-12-01

    In this study, microwave treatment is analyzed as a way to accelerate the hydrolysis in anaerobic digestion of municipal wastewater sludge. The influence of the absorbed energy, power and athermal microwave effect on organic matter solubilization and biogas production has been studied. In addition, a novel method that considers the absorbed energy in the microwave system is proposed, in order to obtain comparable experimental results. The absorbed energy is calculated from an energy balance. The highest solubilization was achieved using 0.54 kJ/ml at 1000 W, where an increment of 7.1% was observed in methane production, compared to the untreated sample. Using a higher energy value (0.83 kJ/ml), methane production further increased (to 15.4%), but solubilization decreased. No power influence was found when 0.54 kJ/ml was applied at 1000, 600 and 440 W. Microwave heating was compared to conventional heating in two different experimental setups, providing similar methane yields in all cases.

  13. Two-photon or higher-order absorbing optical materials and methods of use

    NASA Technical Reports Server (NTRS)

    Marder, Seth (Inventor); Perry, Joseph (Inventor)

    2012-01-01

    Compositions capable of simultaneous two-photon absorption and higher order absorptivities are provided. Compounds having a donor-pi-donor or acceptor-pi-acceptor structure are of particular interest, where the donor is an electron donating group, acceptor is an electron accepting group, and pi is a pi bridge linking the donor and/or acceptor groups. The pi bridge may additionally be substituted with electron donating or withdrawing groups to alter the absorptive wavelength of the structure. Also disclosed are methods of generating an excited state of such compounds through optical stimulation with light using simultaneous absorption of photons of energies individually insufficient to achieve an excited state of the compound, but capable of doing so upon simultaneous absorption of two or more such photons. Applications employing such methods are also provided, including controlled polymerization achieved through focusing of the light source(s) used.

  14. The Effects of an Absorbing Smoke Layer on MODIS Marine Boundary Layer Cloud Optical Property Retrievals and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Meyer, Kerry; Platnick, Steven

    2012-01-01

    Clouds, aerosols, and their interactions are widely considered to be key uncertainty components in our current understanding of the Earth's atmosphere and radiation budget. The work presented here is focused on the quasi-permanent marine boundary layer . (MBL) clouds off the southern Atlantic coast of Africa and the effects on MODIS cloud optical property retrievals (MOD06) of an overlying absorbing smoke layer. During much of August and September, a persistent smoke layer resides over this region, produced from extensive biomass burning throughout the southern African savanna. The resulting absorption, which increases with decreasing wavelength, potentially introduces biases into the MODIS cloud optical property retrievals of the underlying MBL clouds. This effect is more pronounced in the cloud optical thickness retrievals, which over ocean are derived from the wavelength channel centered near 0.86 micron (effective particle size retrievals are derived from the longer-wavelength near-IR channels at 1.6, 2.1, and 3.7 microns). Here, the spatial distributions of the scalar statistics of both the cloud and aerosol layers are first determined from the CALIOP 5 km layer products. Next, the MOD06 look-up tables (LUTs) are adjusted by inserting an absorbing smoke layer of varying optical thickness over the cloud. Retrievals are subsequently performed for a subset of MODIS pixels collocated with the CALIOP ground track, using smoke optical thickness from the CALIOP 5km aerosol layer product to select the appropriate LUT. The resulting differences in cloud optical property retrievals due to the inclusion of the smoke layer in the LUTs will be examined. In addition, the direct radiative forcing of this smoke layer will be investigated from the perspective of the cloud optical property retrieval differences.

  15. Optical Energy Transfer and Conversion System

    NASA Technical Reports Server (NTRS)

    Stone, William C. (Inventor); Hogan, Bartholomew P. (Inventor)

    2015-01-01

    An optical power transfer system comprising a fiber spooler, a fiber optic rotary joint mechanically connected to the fiber spooler, and an electrical power extraction subsystem connected to the fiber optic rotary joint with an optical waveguide. Optical energy is generated at and transferred from a base station through fiber wrapped around the spooler, through the rotary joint, and ultimately to the power extraction system at a remote mobility platform for conversion to another form of energy.

  16. Effect of reference spectra in spectral fitting to discriminate enzyme-activatable photoacoustic probe from intrinsic optical absorbers

    NASA Astrophysics Data System (ADS)

    Hirasawa, Takeshi; Okawa, Shinpei; Iwatate, Ryu J.; Kamiya, Mako; Urano, Yasuteru; Ishihara, Miya

    2016-03-01

    Multispectral photoacoustic (MS-PA) imaging has been researched to image molecular probes in the presence of strong background signals produced from intrinsic optical absorbers. Spectral fitting method (SFM) discriminates probe signals from background signals by fitting the PA spectra that are calculated from MS-PA images to reference spectra of the probe and background, respectively. Because hemoglobin is a dominant optical absorber in visible to near-infrared wavelength range, absorption spectra of hemoglobin have been widely used as reference background spectra. However, the spectra of background signals produced from heterogeneous biological tissue differ from the reference background spectra due to presence of other intrinsic optical absorbers and effect of optical scattering. Due to the difference, the background signals partly remain in the probe images. To image the probe injected in subcutaneous tumors of mice clearly, we added the melanosome absorption spectrum to the reference background spectra because skin contains nonnegligible concentration of melanosome and the spectrum is very similar to the scattering spectrum of biological tissue. The probe injected in the subcutaneous tumor of mice was an enzyme-activatable probe which show their original colors only in the presence of γ-glutamyltranspeptidase, an enzyme associated with cancer. The probes have been successfully used for rapid fluorescence imaging of cancer. As a result of MS-PA imaging, by considering the melanosome absorption spectrum, the background signals were successfully suppressed and then clearer probe image was obtained. Our MS-PA imaging method afforded successful imaging of tumors in mice injected with activatable PA probes.

  17. Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber

    PubMed Central

    Zhang, M.; Hu, Guohua; Hu, Guoqing; Howe, R. C. T.; Chen, L.; Zheng, Z.; Hasan, T.

    2015-01-01

    We demonstrate a ytterbium (Yb) and an erbium (Er)-doped fiber laser Q-switched by a solution processed, optically uniform, few-layer tungsten disulfide saturable absorber (WS2-SA). Nonlinear optical absorption of the WS2-SA in the sub-bandgap region, attributed to the edge-induced states, is characterized by 3.1% and 4.9% modulation depths with 1.38 and 3.83 MW/cm2 saturation intensities at 1030 and 1558 nm, respectively. By integrating the optically uniform WS2-SA in the Yb- and Er-doped laser cavities, we obtain self-starting Q-switched pulses with microsecond duration and kilohertz repetition rates at 1030 and 1558 nm. Our work demonstrates broadband sub-bandgap saturable absorption of a single, solution processed WS2-SA, providing new potential efficacy for WS2 in ultrafast photonic applications. PMID:26657601

  18. Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber.

    PubMed

    Zhang, M; Hu, Guohua; Hu, Guoqing; Howe, R C T; Chen, L; Zheng, Z; Hasan, T

    2015-01-01

    We demonstrate a ytterbium (Yb) and an erbium (Er)-doped fiber laser Q-switched by a solution processed, optically uniform, few-layer tungsten disulfide saturable absorber (WS2-SA). Nonlinear optical absorption of the WS2-SA in the sub-bandgap region, attributed to the edge-induced states, is characterized by 3.1% and 4.9% modulation depths with 1.38 and 3.83 MW/cm(2) saturation intensities at 1030 and 1558 nm, respectively. By integrating the optically uniform WS2-SA in the Yb- and Er-doped laser cavities, we obtain self-starting Q-switched pulses with microsecond duration and kilohertz repetition rates at 1030 and 1558 nm. Our work demonstrates broadband sub-bandgap saturable absorption of a single, solution processed WS2-SA, providing new potential efficacy for WS2 in ultrafast photonic applications. PMID:26657601

  19. Calculation of the weighting functions for the reconstruction of absorbing inhomogeneities in tissue by time-resolved optical projections

    SciTech Connect

    Konovalov, A B; Vlasov, V V

    2014-08-31

    We report a new method for determining the weighting functions to reconstruct absorbing inhomogeneities in tissue by perturbation time-domain diffuse optical tomography using the transmission geometry of a flat layer. The method is based on an analytical approach to the calculation of the weighting functions for a semi-infinite scattering medium and on the use of the original method of an equivalent inverse source in order to obtain weight distributions for the flat layer geometry. The correctness of the proposed method of the weighting function calculation is evaluated by a numerical experiment on the reconstruction of absorbing inhomogeneities. It is shown that the perturbation reconstruction model based on the proposed weighting function calculation method allows the inhomogeneities smaller than 0.3 cm and ∼0.4 cm, located respectively in the transverse and longitudinal directions to the probe light direction, to be resolved in the centre of an 8-cm-thick object. (laser biophotonics)

  20. Improving impact resistance of ceramic materials by energy absorbing surface layers

    NASA Technical Reports Server (NTRS)

    Kirchner, H. P.; Seretsky, J.

    1974-01-01

    Energy absorbing surface layers were used to improve the impact resistance of silicon nitride and silicon carbide ceramics. Low elastic modulus materials were used. In some cases, the low elastic modulus was achieved using materials that form localized microcracks as a result of thermal expansion anisotropy, thermal expansion differences between phases, or phase transformations. In other cases, semi-vitreous or vitreous materials were used. Substantial improvements in impact resistance were observed at room and elevated temperatures.

  1. Methacrylic resin having a high solar radiant energy absorbing property and process for producing the same

    SciTech Connect

    Abe, K.; Kamada, K.; Nakai, Y.

    1981-10-20

    A methacrylic resin having a high solar radiant energy absorbing property wherein an organic compound (A) containing cupric ion and a compound (B) having at least one p-o-h bond in a molecule are contained into the methacrylic resin selected from poly(Methyl methacrylate) or methacrylic polymers containing at least 50% by weight of a methyl methacrylate unit. A process for producing said methacrylic resin is also disclosed.

  2. Design, Fabrication, and Testing of Composite Energy-Absorbing Keel Beams for General Aviation Type Aircraft

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Knight, Norman F., Jr.

    2002-01-01

    A lightweight energy-absorbing keel-beam concept was developed and retrofitted in a general aviation type aircraft to improve crashworthiness performance. The energy-absorbing beam consisted of a foam-filled cellular structure with glass fiber and hybrid glass/kevlar cell walls. Design, analysis, fabrication and testing of the keel beams prior to installation and subsequent full-scale crash testing of the aircraft are described. Factors such as material and fabrication constraints, damage tolerance, crush stress/strain response, seat-rail loading, and post crush integrity, which influenced the course of the design process are also presented. A theory similar to the one often used for ductile metal box structures was employed with appropriate modifications to estimate the sustained crush loads for the beams. This, analytical tool, coupled with dynamic finite element simulation using MSC.Dytran were the prime design and analysis tools. The validity of the theory as a reliable design tool was examined against test data from static crush tests of beam sections while the overall performance of the energy-absorbing subfloor was assessed through dynamic testing of 24 in long subfloor assemblies.

  3. Study of thermal effects and optical properties of an innovative absorber in integrated collector storage solar water heater

    NASA Astrophysics Data System (ADS)

    Taheri, Yaser; Alimardani, Kazem; Ziapour, Behrooz M.

    2015-10-01

    Solar passive water heaters are potential candidates for enhanced heat transfer. Solar water heaters with an integrated water tank and with the low temperature energy resource are used as the simplest and cheapest recipient devices of the solar energy for heating and supplying hot water in the buildings. The solar thermal performances of one primitive absorber were determined by using both the experimental and the simulation model of it. All materials applied for absorber such as the cover glass, the black colored sands and the V shaped galvanized plate were submerged into the water. The water storage tank was manufactured from galvanized sheet of 0.0015 m in thickness and the effective area of the collector was 0.67 m2. The absorber was installed on a compact solar water heater. The constructed flat-plate collectors were tested outdoors. However the simulation results showed that the absorbers operated near to the gray materials and all experimental results showed that the thermal efficiencies of the collector are over than 70 %.

  4. Evaluating a novel application of optical fibre evanescent field absorbance: rapid measurement of red colour in winegrape homogenates

    NASA Astrophysics Data System (ADS)

    Lye, Peter G.; Bradbury, Ronald; Lamb, David W.

    Silica optical fibres were used to measure colour (mg anthocyanin/g fresh berry weight) in samples of red wine grape homogenates via optical Fibre Evanescent Field Absorbance (FEFA). Colour measurements from 126 samples of grape homogenate were compared against the standard industry spectrophotometric reference method that involves chemical extraction and subsequent optical absorption measurements of clarified samples at 520 nm. FEFA absorbance on homogenates at 520 nm (FEFA520h) was correlated with the industry reference method measurements of colour (R2 = 0.46, n = 126). Using a simple regression equation colour could be predicted with a standard error of cross-validation (SECV) of 0.21 mg/g, with a range of 0.6 to 2.2 mg anthocyanin/g and a standard deviation of 0.33 mg/g. With a Ratio of Performance Deviation (RPD) of 1.6, the technique when utilizing only a single detection wavelength, is not robust enough to apply in a diagnostic sense, however the results do demonstrate the potential of the FEFA method as a fast and low-cost assay of colour in homogenized samples.

  5. Models for the optical simulations of fractal aggregated soot particles thinly coated with non-absorbing aerosols

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan; Chen, Hao

    2016-10-01

    Light absorption enhancement of aged soot aerosols is highly sensitive to the morphologies and mixing states of soot aggregates and their non-absorbing coatings, such as organic materials. The quantification of these effects on the optical properties of thinly coated soot aerosols is simulated using an effective model with fixed volume fractions. Fractal aggregated soot was simulated using the diffusion limited aggregation (DLA) algorithm and discretized into soot dipoles. The dipoles of non-absorbing aerosols, whose number was fixed by the volume fraction, were further generated from the neighboring random edge dipoles. Their optical properties were calculated using the discrete dipole approximation (DDA) method and were compared with other commonly used models. The optical properties of thinly coated soot calculated using the fixed volume fraction model are close to (less than ~10% difference) the results of the fixed coating thickness model, except their asymmetry parameters (up to ~25% difference). In the optical simulations of thinly coated soot aerosols, this relative difference of asymmetry parameters and phase functions between these realistic models may be notable. The realizations of the fixed volume fraction model may introduce smaller variation of optical results than those of the fixed coating thickness model. Moreover, the core-shell monomers model and homogeneous aggregated spheres model with the Maxwell-Garnett (MG) theory may underestimate (up to ~20%) the cross sections of thinly coated soot aggregates. The single core-shell sphere model may largely overestimate (up to ~150%) the cross sections and single scattering albedo of thinly coated soot aggregates, and it underestimated (up to ~60%) their asymmetry parameters. It is suggested that the widely used single core-shell sphere approximation may not be suitable for the single scattering calculations of thinly coated soot aerosols.

  6. UV absorbing zwitterionic pyridinium-tetrazolate: exceptional transparency/optical nonlinearity trade-off.

    PubMed

    Beverina, Luca; Sanguineti, Alessandro; Battagliarin, Glauco; Ruffo, Riccardo; Roberto, Dominique; Righetto, Stefania; Soave, Raffaella; Lo Presti, Leonardo; Ugo, Renato; Pagani, Giorgio A

    2011-01-01

    We present relevant results dealing with the transparency/optical nonlinearity trade-off in high-frequency electro-optic applications. The very simple, stable and high optical gap chromophore, the zwitterion 1-methyl-4-(tetrazol-5-ate)pyridinium, represents the best transparency/optical nonlinearity trade-off so far described in the literature. We rationalize this remarkable performance in the framework of the Bond Length Alternation theory by means of a multidisciplinary approach including: single crystal X-ray structure, Electric Field Induced Second-Harmonic Generation, solvatochromism, electrochemistry and thermal analyses.

  7. Electro-optical, UV absorbance, and UV photoluminescence analysis of Se95In5 chalcogenide glass microparticle doped ferroelectric liquid crystal

    NASA Astrophysics Data System (ADS)

    Pratap Singh, Dharmendra; Kumar Gupta, Swadesh; Pandey, Shivani; Singh, Kedar; Manohar, Rajiv

    2014-06-01

    The dandelion like Se95In5 chalcogenide glass microparticle (CGMPs) doped ferroelectric liquid crystal (FLC) has been investigated. The electro-optical parameters of the pure and doped FLC were carried out as a function of applied voltage. The experimental response time and polarization curves for the Se95In5 CGMPs doped FLC have also been theoretically fitted. The presence of Se95In5 CGMPs affects the molecular dynamics of the FLC molecules, which was proved by the Fourier transformed infrared spectroscopy. The UV absorbance of the pure FLC material has been enhanced in the presence of CGMPs, which is analogous to the coupling between phonons of CGMPs and radiation field. The photoluminescence (PL) of the pure FLC has also been enhanced and blue shifted with the addition of Se95In5 CGMPs. The enhanced PL is attributed to the constructive interaction between low energy phonons of the CGMPs and incident photons of the monochromatic light in the LC medium. The blue shifting of PL emission is due to the enhanced optical band gap of the Se95In5 CGMPs doped FLC. The enhancement in the optical band gap of the CGMPs doped FLC was explained by the model of density states in the composite. Ultra-violet lasing, UV filtering, and optical band gap engineering are the possible applications of the investigated Se95In5 CGMPs doped FLC material.

  8. The series elastic shock absorber: tendon elasticity modulates energy dissipation by muscle during burst deceleration.

    PubMed

    Konow, Nicolai; Roberts, Thomas J

    2015-04-01

    During downhill running, manoeuvring, negotiation of obstacles and landings from a jump, mechanical energy is dissipated via active lengthening of limb muscles. Tendon compliance provides a 'shock-absorber' mechanism that rapidly absorbs mechanical energy and releases it more slowly as the recoil of the tendon does work to stretch muscle fascicles. By lowering the rate of muscular energy dissipation, tendon compliance likely reduces the risk of muscle injury that can result from rapid and forceful muscle lengthening. Here, we examine how muscle-tendon mechanics are modulated in response to changes in demand for energy dissipation. We measured lateral gastrocnemius (LG) muscle activity, force and fascicle length, as well as leg joint kinematics and ground-reaction force, as turkeys performed drop-landings from three heights (0.5-1.5 m centre-of-mass elevation). Negative work by the LG muscle-tendon unit during landing increased with drop height, mainly owing to greater muscle recruitment and force as drop height increased. Although muscle strain did not increase with landing height, ankle flexion increased owing to increased tendon strain at higher muscle forces. Measurements of the length-tension relationship of the muscle indicated that the muscle reached peak force at shorter and likely safer operating lengths as drop height increased. Our results indicate that tendon compliance is important to the modulation of energy dissipation by active muscle with changes in demand and may provide a mechanism for rapid adjustment of function during deceleration tasks of unpredictable intensity. PMID:25716796

  9. Electrodynamics analysis on coherent perfect absorber and phase-controlled optical switch.

    PubMed

    Chen, Tianjie; Duan, Shaoguang; Chen, Y C

    2012-05-01

    A coherent perfect absorber is essentially a specially designed Fabry-Perot interferometer, which completely extinguishes the incident coherent light. The one- and two-beam coherent perfect absorbers have been analyzed using classical electrodynamics by considering index matching in layered structures to totally suppress reflections. This approach presents a clear and physically intuitive picture for the principle of operation of a perfect absorber. The results show that the incident beam(s) must have correct phases and amplitudes, and the real and imaginary parts of the refractive indices of the media in the interferometer must satisfy a well-defined relation. Our results are in agreement with those obtained using the S-matrix analysis. However, the results were obtained solely based on the superposition of waves from multiple reflections without invoking the concept of time reversal as does the S-matrix approach. Further analysis shows that the two-beam device can be configured to function as a phase-controlled three-state switch.

  10. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    SciTech Connect

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  11. Design and testing of an energy-absorbing crewseat for the F/FB-111 aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Shane, S. J.

    1985-01-01

    A program to determine if the injury potential could be reduced by replacing the existing crewseats with energy absorbing crewseats is explored. An energy-absorbing test seat was designed using much of the existing seat hardware. An extensive dynamic seat test series, designed to duplicate various crew module ground impact conditions, was conducted at a sled test facility. Comparative tests with operational F-111 crewseats were also conducted. After successful dynamic testing of the seat, more testing was conducted with the seats mounted in an F-111 crew module. Both swing tests and vertical drop tests were conducted. The vertical drop tests were used to obtain comparative data between the energy-absorbing and operational seats. Volume 1 describes the energy absorbing test seat and testing conducted, and evaluates the data from both test series.

  12. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    PubMed

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-01-01

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance. PMID:27074452

  13. Sound Absorbers

    NASA Astrophysics Data System (ADS)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  14. Solar sensor equipped with solar energy absorbing member and panel having such sensors

    SciTech Connect

    Villain, J.

    1983-08-09

    The invention relates to a sensor equipped with a member which selectively absorbs solar energy. This member is constituted by two sheets of a rigid material serving as a support for a layer of material which is sensitive to solar radiation, the two sheets being joined together over their entire length and folded in such a way that the member has a lozenge-shaped cross-section, which can be applied in four contact zones against a tubular wall and can remain in intimate and permanent contact with the latter, no matter what the temperature variations undergone by the assembly.

  15. Suppression of nano-absorbing precursors and damage mechanism in optical coatings for 3ω mirrors.

    PubMed

    Wang, Hu; Qi, Hongji; Zhang, Weili; Sun, Jian; Chai, Yingjie; Tu, Feifei; Zhao, Jiaoling; Yu, Zhen; Wang, Bin; Zhu, Meiping; Yi, Kui; Shao, Jianda

    2016-03-15

    Damage precursors in the 3ω (351 nm) mirror for a high-power laser system are investigated as well as the relevant damage mechanisms. The precursors are classified into two ensembles according to the different laser resistance and damage features. The former is nano-absorbing precursors, which are sensitive to the standing wave electric field and vulnerable to the laser irradiation. The latter is submicrometer nodular defects, which have higher laser resistance and are sensitive to the adhesion strength between the fluoride coatings and oxide coatings. The damage due to nano-absorbing precursors is efficiently suppressed with the double stack design that screens the electric field in the oxides. Currently, the nodular seed is major originating from the Al2O3/SiO2 stack. Even for the same defect type and mirror, the final damage features are dependent on the local mechanical properties at the irradiation location. The investigations of the damage mechanisms provide a direction to further improve the laser-induced damage threshold of the 3ω mirror.

  16. Specific absorbed fractions of energy from internal photon sources in brain tumor and cerebrospinal fluid

    SciTech Connect

    Evans, J.F. )); Stubbs, J.B. )

    1995-03-01

    Transferrin, radiolabeled with In-111, can be coinjected into glioblastoma multiforme lesions, and subsequent scintigraphic imaging can demonstrate the biokinetics of the cytotoxic transferrin. The administration of [sup 111]In transferrin into a brain tumor results in distribution of radioactivity in the brain, brain tumor, and the cerebrospinal fluid (CSF). Information about absorbed radiation doses to these regions, as well as other nearby tissues and organs, is important for evaluating radiation-related risks from this procedure. The radiation dose is usually estimated for a mathematical representation of the human body. We have included source/target regions for the eye, lens of the eye, spinal column, spinal CSF, cranial CSF, and a 100-g tumor within the brain of an adult male phantom developed by Cristy and Eckerman. The spinal column, spinal CSF, and the eyes have not been routinely included in photon transport simulations. Specific absorbed fractions (SAFs) as a function of photon energy were calculated using the ALGAMP computer code, which utilizes Monte Carlo techniques for simulating photon transport. The ALGAMP code was run three times, with the source activity distributed uniformly within the tumor, cranial CSF, and the spinal CSF volumes. These SAFs, which were generated for 12 discrete photon energies ranging from 0.01 to 4.0 MeV, were used with decay scheme data to calculate [ital S]-values needed for estimating absorbed doses. [ital S]-values for [sup 111]In are given for three source regions (brain tumor, cranial CSF, and spinal CSF) and all standard target regions/organs, the eye and lens, as well as to tissues within these source regions. [ital S]-values for the skeletal regions containing active marrow are estimated. These results are useful in evaluating the radiation doses from intracranial administration of [sup 111]In transferrin.

  17. Bistable optical devices with laser diodes coupled to absorbers of narrow spectral bandwidth.

    PubMed

    Maeda, Y

    1994-06-20

    An optical signal inverter was demonstrated with a combination of the following two effects: One is the decrease of the transmission of an Er-doped YAG crystal with increasing red shift of a laser diode resulting from an increase in the injection current, and the other is a negative nonlinear absorption in which the transmission decreases inversely with increasing laser intensity. Because a hysteresis characteristic exists in the relationship between the wavelength and the injection current of the laser diode, an optical bistability was observed in this system.

  18. Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate.

    PubMed

    Ohta, Aaron T; Jamshidi, Arash; Valley, Justin K; Hsu, Hsan-Yin; Wu, Ming C

    2007-08-14

    The authors demonstrate an optical manipulation mechanism of gas bubbles for microfluidic applications. Air bubbles in a silicone oil medium are manipulated via thermocapillary forces generated by the absorption of a laser in an amorphous silicon thin film. In contrast to previous demonstrations of optically controlled thermally driven bubble movement, transparent liquids can be used, as the thermal gradient is formed from laser absorption in the amorphous silicon substrate, and not in the liquid. A variety of bubbles with volumes ranging from 19 pl to 23 nl was transported at measured velocities of up to 1.5 mm/s.

  19. Two-Photon or Higher-Order Absorbing Optical Materials for Generation of Reactive Species

    NASA Technical Reports Server (NTRS)

    Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R. (Inventor); Perry, Joseph W. (Inventor)

    2013-01-01

    Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.

  20. Two-photon or higher-order absorbing optical materials for generation of reactive species

    NASA Technical Reports Server (NTRS)

    Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R. (Inventor); Perry, Joseph W. (Inventor)

    2003-01-01

    Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.

  1. Two-photon or higher-order absorbing optical materials for generation of reactive species

    NASA Technical Reports Server (NTRS)

    Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R (Inventor); Perry, Joseph W (Inventor)

    2007-01-01

    Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.

  2. Full-Scale Crash Test of a MD-500 Helicopter with Deployable Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Karen E.; Littell, Justin D.

    2010-01-01

    A new externally deployable energy absorbing system was demonstrated during a full-scale crash test of an MD-500 helicopter. The deployable system is a honeycomb structure and utilizes composite materials in its construction. A set of two Deployable Energy Absorbers (DEAs) were fitted on the MD-500 helicopter for the full-scale crash demonstration. Four anthropomorphic dummy occupants were also used to assess human survivability. A demonstration test was performed at NASA Langley's Landing and Impact Research Facility (LandIR). The test involved impacting the helicopter on a concrete surface with combined forward and vertical velocity components of 40-ft/s and 26-ft/s, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of dynamic finite element simulations. Descriptions of this test as well as other component and full-scale tests leading to the helicopter test are discussed. Acceleration data from the anthropomorphic dummies showed that dynamic loads were successfully attenuated to within non-injurious levels. Moreover, the airframe itself survived the relatively severe impact and was retested to provide baseline data for comparison for cases with and without DEAs.

  3. Impact Test and Simulation of Energy Absorbing Concepts for Earth Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Billings, Marcus D.; Fasanella, Edwin L.; Kellas, Sotiris

    2001-01-01

    Nonlinear dynamic finite element simulations have been performed to aid in the design of an energy absorbing concept for a highly reliable passive Earth Entry Vehicle (EEV) that will directly impact the Earth without a parachute. EEV's are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite- epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the center of the EEV's cellular structure. Comparisons of analytical predictions using MSC,Dytran with test results obtained from impact tests performed at NASA Langley Research Center were made for three impact velocities ranging from 32 to 40 m/s. Acceleration and deformation results compared well with the test results. These finite element models will be useful for parametric studies of off-nominal impact conditions.

  4. Analytical Simulations of Energy-Absorbing Impact Spheres for a Mars Sample Return Earth Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Billings, Marcus Dwight; Fasanella, Edwin L. (Technical Monitor)

    2002-01-01

    Nonlinear dynamic finite element simulations were performed to aid in the design of an energy-absorbing impact sphere for a passive Earth Entry Vehicle (EEV) that is a possible architecture for the Mars Sample Return (MSR) mission. The MSR EEV concept uses an entry capsule and energy-absorbing impact sphere designed to contain and limit the acceleration of collected samples during Earth impact without a parachute. The spherical shaped impact sphere is composed of solid hexagonal and pentagonal foam-filled cells with hybrid composite, graphite-epoxy/Kevlar cell walls. Collected Martian samples will fit inside a smaller spherical sample container at the center of the EEV's cellular structure. Comparisons were made of analytical results obtained using MSC.Dytran with test results obtained from impact tests performed at NASA Langley Research Center for impact velocities from 30 to 40 m/s. Acceleration, velocity, and deformation results compared well with the test results. The correlated finite element model was then used for simulations of various off-nominal impact scenarios. Off-nominal simulations at an impact velocity of 40 m/s included a rotated cellular structure impact onto a flat surface, a cellular structure impact onto an angled surface, and a cellular structure impact onto the corner of a step.

  5. Optical-Fiber-Based, Time-Resolved Photoluminescence Spectrometer for Thin-Film Absorber Characterization and Analysis of TRPL Data for CdS/CdTe Interface: Preprint

    SciTech Connect

    Kuciauskas, D.; Duenow, J. N.; Kanevce, A.; Li, J. V.; Young, M. R.; Dippo, P.; Levi, D. H.

    2012-06-01

    We describe the design of a time resolved photoluminescence (TRPL) spectrometer for rapid semiconductor absorber characterization. Simplicity and flexibility is achieved by using single optical fiber to deliver laser pulses and to collect photoluminescence. We apply TRPL for characterization of CdS/CdTe absorbers after deposition, CdCl2 treatment, Cu doping, and back contact formation. Data suggest this method could be applied in various stages of PV device processing. Finally, we show how to analyze TRPL data for CdS/CdTe absorbers by considering laser light absorption depth and intermixing at CdS/CdTe interface.

  6. Energy efficiency of optical grooming of QAM optical transmission channels.

    PubMed

    Bhopalwala, Mariya; Rastegarfar, Houman; Kilper, Daniel C; Wang, Michael; Bergman, Keren

    2016-02-01

    Analysis of the energy use for optical grooming of quadrature amplitude modulated signals in optical transmission systems is used to determine the potential efficiency benefits. An energy model is developed for both optical and electronic grooming and used to study the relative efficiency for three different network scenarios. The energy efficiency is evaluated considering both coherent and direct detection transceivers including power management strategies. Results indicate efficiency improvements up to an order of magnitude may be possible for 100 GBaud rates and 25-30 GBaud is a critical point at which optical grooming becomes the more efficient approach. These results are further shown to apply for the case of projected efficiency improvements in the underlying device technologies.

  7. Lumbar load attenuation for rotorcraft occupants using a design methodology for the seat impact energy-absorbing system

    NASA Astrophysics Data System (ADS)

    Moradi, Rasoul; Beheshti, Hamid K.; Lankarani, Hamid M.

    2012-12-01

    Aircraft occupant crash-safety considerations require a minimum cushion thickness to limit the relative vertical motion of the seat-pelvis during high vertical impact loadings in crash landings or accidents. In military aircraft and helicopter seat design, due to the potential for high vertical accelerations in crash scenarios, the seat system must be provided with an energy absorber to attenuate the acceleration level sustained by the occupants. Because of the limited stroke available for the seat structure, the design of the energy absorber becomes a trade-off problem between minimizing the stroke and maximizing the energy absorption. The available stroke must be used to prevent bottoming out of the seat as well as to absorb maximum impact energy to protect the occupant. In this study, the energy-absorbing system in a rotorcraft seat design is investigated using a mathematical model of the occupant/seat system. Impact theories between interconnected bodies in multibody mechanical systems are utilized to study the impact between the seat pan and the occupant. Experimental responses of the seat system and the occupant are utilized to validate the results from this study for civil and military helicopters according to FAR 23 and 25 and MIL-S-58095 requirements. A model for the load limiter is proposed to minimize the lumbar load for the occupant by minimizing the relative velocity between the seat pan and the occupant's pelvis. The modified energy absorber/load limiter is then implemented for the seat structure so that it absorbs the energy of impact in an effective manner and below the tolerable limit for the occupant in a minimum stroke. Results show that for a designed stroke, the level of occupant lumbar spine injury would be significantly attenuated using this modified energy-absorber system.

  8. Experimental Investigation of the Power Generation Performance of Floating-Point Absorber Wave Energy Systems: Preprint

    SciTech Connect

    Li, Y.; Yu, Y.; Epler, J.; Previsic, M.

    2012-04-01

    The extraction of energy from ocean waves has gained interest in recent years. The floating-point absorber (FPA) is one of the most promising devices among a wide variety of wave energy conversion technologies. Early theoretical studies mainly focused on understanding the hydrodynamics of the system and on predicting the maximum power that could be extracted by a heaving body. These studies evolve from the investigation of floating-body interactions in offshore engineering and naval architecture disciplines. To our best knowledge, no systematic study has been reported about the investigation of the power generation performance of an FPA with a close-to-commercial design. A series of experimental tests was conducted to investigate the power extraction performance of an FPA system.

  9. An energy absorbing far-field boundary condition for the elastic wave equation

    SciTech Connect

    Petersson, N A; Sjogreen, B

    2008-07-15

    The authors present an energy absorbing non-reflecting boundary condition of Clayton-Engquist type for the elastic wave equation together with a discretization which is stable for any ratio of compressional to shear wave speed. They prove stability for a second order accurate finite-difference discretization of the elastic wave equation in three space dimensions together with a discretization of the proposed non-reflecting boundary condition. The stability proof is based on a discrete energy estimate and is valid for heterogeneous materials. The proof includes all six boundaries of the computational domain where special discretizations are needed at the edges and corners. The stability proof holds also when a free surface boundary condition is imposed on some sides of the computational domain.

  10. Influence of nanoscale temperature rises on photoacoustic generation: Discrimination between optical absorbers based on thermal nonlinearity at high frequency

    PubMed Central

    Simandoux, Olivier; Prost, Amaury; Gateau, Jérôme; Bossy, Emmanuel

    2014-01-01

    In this work, we experimentally investigate thermal-based nonlinear photoacoustic generation as a mean to discriminate between different types of absorbing particles. The photoacoustic generation from solutions of dye molecules and gold nanospheres (same optical densities) was detected using a high frequency ultrasound transducer (20 MHz). Photoacoustic emission was observed with gold nanospheres at low fluence for an equilibrium temperature around 4 °C, where the linear photoacoustic effect in water vanishes, highlighting the nonlinear emission from the solution of nanospheres. The photoacoustic amplitude was also studied as a function of the equilibrium temperature from 2 °C to 20 °C. While the photoacoustic amplitude from the dye molecules vanished around 4 °C, the photoacoustic amplitude from the gold nanospheres remained significant over the whole temperature range. Our preliminary results suggest that in the context of high frequency photoacoustic imaging, nanoparticles may be discriminated from molecular absorbers based on nanoscale temperature rises. PMID:25893167

  11. Influence of nanoscale temperature rises on photoacoustic generation: Discrimination between optical absorbers based on thermal nonlinearity at high frequency.

    PubMed

    Simandoux, Olivier; Prost, Amaury; Gateau, Jérôme; Bossy, Emmanuel

    2015-03-01

    In this work, we experimentally investigate thermal-based nonlinear photoacoustic generation as a mean to discriminate between different types of absorbing particles. The photoacoustic generation from solutions of dye molecules and gold nanospheres (same optical densities) was detected using a high frequency ultrasound transducer (20 MHz). Photoacoustic emission was observed with gold nanospheres at low fluence for an equilibrium temperature around 4 °C, where the linear photoacoustic effect in water vanishes, highlighting the nonlinear emission from the solution of nanospheres. The photoacoustic amplitude was also studied as a function of the equilibrium temperature from 2 °C to 20 °C. While the photoacoustic amplitude from the dye molecules vanished around 4 °C, the photoacoustic amplitude from the gold nanospheres remained significant over the whole temperature range. Our preliminary results suggest that in the context of high frequency photoacoustic imaging, nanoparticles may be discriminated from molecular absorbers based on nanoscale temperature rises.

  12. Picosecond optical limiting in reverse saturable absorbers: a theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Lepkowicz, Richard; Kobyakov, Andrey; Hagan, David J.; van Stryland, Eric W.

    2002-01-01

    We theoretically and experimentally study absorption of picosecond laser pulses in materials described by a four-level system that exhibit reverse saturable absorption (RSA). Using an approximate solution to the rate equations, we derive, analyze, and verify, numerically and experimentally, a single dynamical equation for the spatial evolution of the pulse fluence that includes both the rate equations and the propagation equation. This analytical approach considerably simplifies the study of optical limiting with picosecond pulses and helps to predict the behavior of the nonlinear transmittance, the level of output signal clamping, and a possible turnover from RSA to saturable absorption that restricts the performance of optical limiters based on RSA. The results obtained can also be used to characterize RSA materials by the pump-probe technique.

  13. Experimental and Analytical Evaluation of a Composite Honeycomb Deployable Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Kellas, Sotiris; Horta, Lucas G.; Annett, Martin S.; Polanco, Michael A.; Littell, Justin D.; Fasanella, Edwin L.

    2011-01-01

    In 2006, the NASA Subsonic Rotary Wing Aeronautics Program sponsored the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, which is designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar honeycomb structure to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed flat until needed for deployment. A variety of deployment options such as linear, radial, and/or hybrid methods can be used. Experimental evaluation of the DEA utilized a building block approach that included material characterization testing of its constituent, Kevlar -129 fabric/epoxy, and flexural testing of single hexagonal cells. In addition, the energy attenuation capabilities of the DEA were demonstrated through multi-cell component dynamic crush tests, and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto concrete, water, and soft soil. During each stage of the DEA evaluation process, finite element models of the test articles were developed and simulations were performed using the explicit, nonlinear transient dynamic finite element code, LS-DYNA. This report documents the results of the experimental evaluation that was conducted to assess the energy absorption capabilities of the DEA.

  14. Levelized cost of energy (LCOE) metric to characterize solar absorber coatings for the CSP industry

    SciTech Connect

    Boubault, Antoine; Ho, Clifford K.; Hall, Aaron; Lambert, Timothy N.; Ambrosini, Andrea

    2015-07-08

    The contribution of each component of a power generation plant to the levelized cost of energy (LCOE) can be estimated and used to increase the power output while reducing system operation and maintenance costs. The LCOE is used in order to quantify solar receiver coating influence on the LCOE of solar power towers. Two new parameters are introduced: the absolute levelized cost of coating (LCOC) and the LCOC efficiency. Depending on the material properties, aging, costs, and temperature, the absolute LCOC enables quantifying the cost-effectiveness of absorber coatings, as well as finding optimal operating conditions. The absolute LCOC is investigated for different hypothetic coatings and is demonstrated on Pyromark 2500 paint. Results show that absorber coatings yield lower LCOE values in most cases, even at significant costs. Optimal reapplication intervals range from one to five years. At receiver temperatures greater than 700 °C, non-selective coatings are not always worthwhile while durable selective coatings consistently reduce the LCOE—up to 12% of the value obtained for an uncoated receiver. Moreover the absolute LCOC is a powerful tool to characterize and compare different coatings, not only considering their initial efficiencies but also including their durability.

  15. Levelized cost of energy (LCOE) metric to characterize solar absorber coatings for the CSP industry

    DOE PAGES

    Boubault, Antoine; Ho, Clifford K.; Hall, Aaron; Lambert, Timothy N.; Ambrosini, Andrea

    2015-07-08

    The contribution of each component of a power generation plant to the levelized cost of energy (LCOE) can be estimated and used to increase the power output while reducing system operation and maintenance costs. The LCOE is used in order to quantify solar receiver coating influence on the LCOE of solar power towers. Two new parameters are introduced: the absolute levelized cost of coating (LCOC) and the LCOC efficiency. Depending on the material properties, aging, costs, and temperature, the absolute LCOC enables quantifying the cost-effectiveness of absorber coatings, as well as finding optimal operating conditions. The absolute LCOC is investigatedmore » for different hypothetic coatings and is demonstrated on Pyromark 2500 paint. Results show that absorber coatings yield lower LCOE values in most cases, even at significant costs. Optimal reapplication intervals range from one to five years. At receiver temperatures greater than 700 °C, non-selective coatings are not always worthwhile while durable selective coatings consistently reduce the LCOE—up to 12% of the value obtained for an uncoated receiver. Moreover the absolute LCOC is a powerful tool to characterize and compare different coatings, not only considering their initial efficiencies but also including their durability.« less

  16. High shear rate flow in a linear stroke magnetorheological energy absorber

    NASA Astrophysics Data System (ADS)

    Hu, W.; Wereley, N. M.; Hiemenz, G. J.; Ngatu, G. T.

    2014-05-01

    To provide adaptive stroking load in the crew seats of ground vehicles to protect crew from blast or impact loads, a magnetorheological energy absorber (MREA) or shock absorber was developed. The MREA provides appropriate levels of controllable stroking load for different occupant weights and peak acceleration because the viscous stroking load generated by the MREA force increases with velocity squared, thereby reducing its controllable range at high piston velocity. Therefore, MREA behavior at high piston velocity is analyzed and validated experimentally in order to investigate the effects of velocity and magnetic field on MREA performance. The analysis used to predict the MREA force as a function of piston velocity squared and applied field is presented. A conical fairing is mounted to the piston head of the MREA in order reduce predicted inlet flow loss by 9% at nominal velocity of 8 m/s, which resulted in a viscous force reduction of nominally 4%. The MREA behavior is experimentally measured using a high speed servo-hydraulic testing system for speeds up to 8 m/s. The measured MREA force is used to validate the analysis, which captures the transient force quite accurately, although the peak force is under-predicted at the peak speed of 8 m/s.

  17. Optical Properties of Moderately-Absorbing Organic and Mixed Organic/Inorganic Particles at Very High Humidities

    SciTech Connect

    Bond, Tami C; Rood, Mark J; Brem, Benjamin T; Mena-Gonzalez, Francisco C; Chen, Yanju

    2012-04-16

    Relative humidity (RH) affects the water content of an aerosol, altering its ability to scatter and absorb light, which is important for aerosol effects on climate and visibility. This project involves in situ measurement and modeling of aerosol optical properties including absorption, scattering and extinction at three visible wavelengths (467, 530, 660 nm), for organic carbon (OC) generated by pyrolysis of biomass, ammonium sulfate and sodium chloride, and their mixtures at controlled RH conditions. Novel components of this project include investigation of: (1) Changes in all three of these optical properties at scanned RH conditions; (2) Optical properties at RH values up to 95%, which are usually extrapolated instead of measured; and (3) Examination of aerosols generated by the pyrolysis of wood, which is representative of primary atmospheric organic carbon, and its mixture with inorganic aerosol. Scattering and extinction values were used to determine light absorption by difference and single scattering albedo values. Extensive instrumentation development and benchmarking with independently measured and modeled values were used to obtain and evaluate these new results. The single scattering albedo value for a dry absorbing polystyrene microsphere benchmark agreed within 0.02 (absolute value) with independently published results at 530 nm. Light absorption by a nigrosin (sample light-absorbing) benchmark increased by a factor of 1.24 +/-0.06 at all wavelengths as RH increased from 38 to 95%. Closure modeling with Mie theory was able to reproduce this increase with the linear volume average (LVA) refractive index mixing rule for this water soluble compound. Absorption by biomass OC aerosol increased by a factor of 2.1 +/- 0.7 and 2.3 +/- 1.2 between 32 and 95% RH at 467 nm and 530 nm, but there was no detectable absorption at 660 nm. Additionally, the spectral dependence of absorption by OC that was observed with filter measurements was confirmed qualitatively

  18. Plasmonic Nanomaterials for Optical-to-Electrical Energy Conversion

    NASA Astrophysics Data System (ADS)

    Sheldon, Matthew

    High-quality semiconductor solids have been the dominant photovoltaic materials platform for decades. Although several alternative approaches have been proposed, e.g. dye-sensitized cells or polymeric solids, none compete in terms of cost and conversion efficiency, the crucial benchmarks for industrial scale implementation. However, semiconductors suffer from several fundamental limitations relating to the microscopic mechanism of power conversion that preclude them, even theoretically, from achieving conversion efficiency at the Carnot limit of 95%. Indeed, the fundamentally different tasks of semiconductors in photovoltaic devices, both as optical absorbers, and separately, for electron-hole pair separation and collection, often demand opposing trade-offs in materials optimization. Alternatively, recent advances in subwavelength metal optics, e.g. nanophotonics, metamaterials, and plasmonics, provide several new examples where nanostructured metals perform the separate tasks of absorption and charge separation necessary for photovoltaic power conversion. Nanostructured metals are extremely efficient broadband absorbers of radiation, with tailorable optical properties throughout the visible and infrared spectrum. It is traditionally assumed that the lack of a band gap and consequent fast electronic relaxation (fs) and short mean free path (100 nm) hinders efficient carrier collection. However, new phenomena resulting from the remarkable energy concentration and nanoscale collection geometry afforded by plasmonic systems suggest new strategies may be possible that use all metal structures. In this talk, I will describe two ongoing studies in our laboratory that exemplify opportunities for metal-based optical energy conversion: (1) Excitation with circularly polarized illumination can induce strong, persistent electrical drift currents in resonant metal nanostructures via the inverse faraday effect. (2) Plasmonic absorption in metal nanostructures provides an

  19. Possibility of using Zn as the quantum absorber for a laser-cooled neutral atomic optical frequency standard

    NASA Astrophysics Data System (ADS)

    Wang, Guangfu; Ye, Anpei

    2007-10-01

    In this paper, we present a detailed investigation of the laser cooling and trapping of the Zn atom, and various schemes employing the S10-P30 transition, induced by nuclear magnetic moment or applied fields, as the clock transition. Using numerical simulations, the deceleration of Zn by a Zeeman slower and its capture by a magneto-optical trap (MOT) are analyzed, and the corresponding parameters are determined. The linear loss rate and the coefficient for two-body collisional loss in the MOT are discussed. To prove the feasibility of the intercombination line cooling, one-dimensional semiclassical Monte Carlo simulations are performed. Multiconfiguration Hartree-Fock and multiconfiguration Dirac-Fock approaches are employed to calculate the hyperfine-induced S10-P30 transition. Up to now, various schemes inducing the S10-P30 transition in bosonic isotopes have been proposed for alkaline-earth-metal atoms and Yb. Their applicability for Zn are investigated, and the corresponding parameters of Zn are calculated. Our results show that the Zn atom, either fermionic or bosonic, is a potential candidate for the quantum absorber used in laser-cooled neutral atomic optical frequency standard.

  20. Multi-Terrain Impact Testing and Simulation of a Composite Energy Absorbing Fuselage Section

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Lyle, Karen H.; Sparks, Chad E.; Sareen, Ashish K.

    2004-01-01

    Comparisons of the impact performance of a 5-ft diameter crashworthy composite fuselage section were investigated for hard surface, soft soil, and water impacts. The fuselage concept, which was originally designed for impacts onto a hard surface only, consisted of a stiff upper cabin, load bearing floor, and an energy absorbing subfloor. Vertical drop tests were performed at 25-ft/s onto concrete, soft-soil, and water at NASA Langley Research Center. Comparisons of the peak acceleration values, pulse durations, and onset rates were evaluated for each test at specific locations on the fuselage. In addition to comparisons of the experimental results, dynamic finite element models were developed to simulate each impact condition. Once validated, these models can be used to evaluate the dynamic behavior of subfloor components for improved crash protection for hard surface, soft soil, and water impacts.

  1. Multi-Terrain Impact Testing and Simulation of a Composite Energy Absorbing Fuselage Section

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Sparks, Chad E.; Sareen, Ashish K.

    2007-01-01

    Comparisons of the impact performance of a 5-ft diameter crashworthy composite fuselage section were investigated for hard surface, soft soil, and water impacts. The fuselage concept, which was originally designed for impacts onto a hard surface only, consisted of a stiff upper cabin, load bearing floor, and an energy absorbing subfloor. Vertical drop tests were performed at 25-ft/s onto concrete, soft-soil, and water at NASA Langley Research Center. Comparisons of the peak acceleration values, pulse durations, and onset rates were evaluated for each test at specific locations on the fuselage. In addition to comparisons of the experimental results, dynamic finite element models were developed to simulate each impact condition. Once validated, these models can be used to evaluate the dynamic behavior of subfloor components for improved crash protection for hard surface, soft soil, and water impacts.

  2. A fail-safe magnetorheological energy absorber for shock and vibration isolation

    SciTech Connect

    Bai, Xian-Xu; Wereley, Norman M.

    2014-05-07

    Magnetorheological (MR) energy absorbers (EAs) are an effective adaptive EA technology with which to maximize shock and vibration isolation. However, to realize maximum performance of the semi-active control system, the off-state (i.e., field off) stroking load of the MREA must be minimized at all speeds, and the dynamic range of the MREA must be maximized at high speed. This study presents a fail-safe MREA (MREA-FS) concept that, can produce a greater dynamic range at all piston speeds. A bias damping force is generated in the MREA-FS using permanent magnetic fields, which enables fail-safe behavior in the case of power failure. To investigate the feasibility and capability of the MREA-FS in the context of the semi-active control systems, a single-degree-of-freedom base excited rigid payload is mathematically constructed and simulated with skyhook control.

  3. A fail-safe magnetorheological energy absorber for shock and vibration isolation

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Xu; Wereley, Norman M.

    2014-05-01

    Magnetorheological (MR) energy absorbers (EAs) are an effective adaptive EA technology with which to maximize shock and vibration isolation. However, to realize maximum performance of the semi-active control system, the off-state (i.e., field off) stroking load of the MREA must be minimized at all speeds, and the dynamic range of the MREA must be maximized at high speed. This study presents a fail-safe MREA (MREA-FS) concept that, can produce a greater dynamic range at all piston speeds. A bias damping force is generated in the MREA-FS using permanent magnetic fields, which enables fail-safe behavior in the case of power failure. To investigate the feasibility and capability of the MREA-FS in the context of the semi-active control systems, a single-degree-of-freedom base excited rigid payload is mathematically constructed and simulated with skyhook control.

  4. Broadband and energy-concentrating terahertz coherent perfect absorber based on a self-complementary metasurface

    NASA Astrophysics Data System (ADS)

    Urade, Yoshiro; Nakata, Yosuke; Nakanishi, Toshihiro; Kitano, Masao

    2016-10-01

    We demonstrate that a self-complementary checkerboard-like metasurface works as a broadband coherent perfect absorber (CPA) when symmetrically illuminated by two counter-propagating incident waves. A theoretical analysis based on wave interference and results of numerical simulations of the proposed metasurface are provided. In addition, we experimentally demonstrate the proposed CPA in the terahertz regime by using a time-domain spectroscopy technique. We observe that the metasurface can work as a CPA below its lowest diffraction frequency. The size of the absorptive areas of the proposed CPA can be much smaller than the incident wavelength. Unlike conventional CPAs, the presented one simultaneously achieves the broadband operation and energy concentration of electromagnetic waves at the deep-subwavelength scale.

  5. Mid- and far-infrared spectroscopy of ices: optical constants and integrated absorbances.

    PubMed

    Hudgins, D M; Sandford, S A; Allamandola, L J; Tielens, A G

    1993-06-01

    Laboratory spectra through the mid-infrared (4000 to 500 cm-1 [2.5-20 micrometers]) have been used to calculate the optical constants (n and k) and integrated absorption coefficients (A) for a variety of pure and mixed molecular ices of relevance to astrophysics. The ices studied were H2O, CH3OH, CO2, OCS, CH4, CO2 + CH4, CO2 + OCS, CO + CH4, CO + OCS, O2 + CH4, O2 + OCS, N2 + CH4, N2 + OCS, H2O + CH4, H2O + OCS, and H2O + CH3OH + CO + NH3. In addition, the measurements have been extended through the far-infrared (500 to 50 cm-1 [20-200 micrometers]) for the H2O, CH3OH, and H2O + CH3OH + CO + NH3 ices.

  6. Development of Lead Free Energy Absorber for Space Shuttle Blast Container

    NASA Technical Reports Server (NTRS)

    Balles, Donald; Ingram, Thomas; Novak, Howard; Schricker, Albert

    1999-01-01

    The Space Shuttle is connected to the mobile launch platform (MLP) by four aft skirt hold down studs on each solid rocket booster (SRB). Prior to lift-off, the frangible nuts inside the aft skirt blast containers are severed into two nut halves by two pyrotechnic booster cartridges. This action releases the Space Shuttle and allows the hold down studs to eject through the aft skirt bore and then down into the MLP. USBI has been tasked to upgrade the blast container for two specific reasons: (1) To eliminate lead for environmental concerns, and (2) To reduce the chance of nut recontact with the holddown stud. Nut recontact with the stud has been identified as a likely contributor to stud hang-ups. This upgrade will replace the lead liner with a unique open cell aluminum foam material, that has commercial and military uses. The aluminum foam used as an energy absorber is a proven design in many other aerospace/defense applications. Additional benefits of using the open cell, energy absorbent aluminum foam in place of the solid lead liner are: (1) Lead handling / exposure and possible contamination, along with hazardous waste disposal, will be eliminated; (2) Approximately 200 lbs. weight savings will be contributed to each Space Shuttle flight by using aluminum foam instead of lead; (3) The new aluminum liner is designed to catch all shrapnel from frangible nuts, thus virtually eliminating chance of debris exiting the HDP and causing potential damage to the vehicle; (4) Using the lighter aluminum liner instead of lead, allows for easier assembly and disassembly of blast container elements, which also improves safety, operator handling, and the efficiency of operations.

  7. Development of Lead Free Energy Absorber for Space Shuttle Blast Container

    NASA Technical Reports Server (NTRS)

    Balles, Donald; Ingram, Thomas; Novak, Howard; Schricker, Albert

    1998-01-01

    The Space Shuttle is connected to the mobile launch platform (MLP) by four aft skirt hold down studs on each solid rocket booster (SRB). Prior to lift-off, the frangible nuts inside the aft skirt blast containers are severed into two nut halves by two pyrotechnic booster cartridges. This action releases the Space Shuttle and allows the hold down studs to eject through the aft skirt bore and then down into the MLP. USBI has been tasked to upgrade the blast container for two specific reasons: (1) To eliminate lead for environmental concerns, and (2) To reduce the chance of nut recontact with the holddown stud. Nut recontact with the stud has been identified as a likely contributor to stud hang-ups. This upgrade will replace the lead liner with a unique open cell aluminum foam material, that has commercial and military uses. The aluminum foam used as an energy absorber is a proven design in many other aerospace/defense applications. Additional benefits of using the open cell, energy absorbent aluminum foam in place of the solid lead liner are: (A) Lead handling/exposure and possible contamination, along with hazardous waste disposal, will be eliminated; (B) Approximately 200 lbs. weight savings will be contributed to each Space Shuttle flight by using aluminum foam instead of lead; (C) The new aluminum liner is designed to catch all shrapnel from frangible nuts, thus virtually eliminating chance of debris exiting the HDP and causing potential damage to the vehicle; and (D) Using the lighter aluminum liner instead of lead, allows for easier assembly and disassembly of blast container elements, which also improves safety, operator handling, and the efficiency of operations.

  8. Crash Test of an MD-500 Helicopter with a Deployable Energy Absorber Concept

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Jackson, Karen E.; Kellas, Sotiris

    2010-01-01

    On December 2, 2009, a full scale crash test was successfully conducted of a MD-500 helicopter at the NASA Langley Research Center Landing and Impact Research Facility . The purpose of this test was to evaluate a novel composite honeycomb deployable energy absorbing (DEA) concept for attenuation of structural and crew loads during helicopter crashes under realistic crash conditions. The DEA concept is an alternative to external airbags, and absorbs impact energy through crushing. In the test, the helicopter impacted the concrete surface with 11.83 m/s (38.8 ft/s) horizontal, 7.80 m/s (25.6 ft/s) vertical and 0.15 m/s (0.5 ft/s) lateral velocities; corresponding to a resultant velocity of 14.2 m/s (46.5 ft/s). The airframe and skid gear were instrumented with accelerometers and strain gages to determine structural integrity and load attenuation, while the skin of the airframe was covered with targets for use by photogrammetry to record gross vehicle motion before, during, and after the impact. Along with the collection of airframe data, one Hybrid III 50th percentile anthropomorphic test device (ATD), two Hybrid II 50th percentile ATDs and a specialized human surrogate torso model (HSTM) occupant were seated in the airframe and instrumented for the collection of occupant loads. Resultant occupant data showed that by using the DEA, the loads on the Hybrid II and Hybrid III ATDs were in the Low Risk regime for the injury criteria, while structural data showed the airframe retained its structural integrity post crash. Preliminary results show that the DEA is a viable concept for the attenuation of impact loads.

  9. Using Classical Dispersion Analysis to Extract Peak Parameters, Optical Constants from IR Lab Absorbance Spectra: Olivine

    NASA Astrophysics Data System (ADS)

    Pitman, Karly M.; Dijkstra, C. R.; Hofmeister, A. M.; Speck, A. K.

    2009-05-01

    Laboratory measurements quantifying the effect of Fe substituting for Mg in olivine are needed to distinguish compositional from temperature effects in observational data. Because most olivine samples are too small to acquire reflectivity data used to obtain the optical functions n(λ) and k(λ) needed for radiative transfer models, we apply the principle that classical dispersion theory may be used to determine peak positions, widths, strengths, and n and k estimates from absorption spectra of thin film samples. We study room temperature absorption spectra of a large suite of olivines evenly spaced across Mg and Fe compositions, and isotropic and anisotropic minerals with varying hardness and numbers of spectral bands. For olivine, adding accounting for asymmetric peak shapes does not substantially alter estimates of peak position but increases the error on FWHM and oscillator strengths. Values from classical dispersion fits match published n and k derived from reflectivity (better agreement in k) when the dust proxy is soft and the thickness of the sample is independently constrained. Electronic data and peak parameter trends for the laboratory olivine absorption spectra and the viability of the extracted n and k are discussed with regard to astronomy.

  10. Applications in Energy, Optics and Electronics.

    ERIC Educational Resources Information Center

    Rosenberg, Robert; And Others

    1980-01-01

    Discusses the applications of thin films in energy, optics and electronics. The use of thin-film technologies for heat mirrors, anti-reflection coatings, interference filters, solar cells, and metal contacts is included. (HM)

  11. The series elastic shock absorber: tendon elasticity modulates energy dissipation by muscle during burst deceleration

    PubMed Central

    Konow, Nicolai; Roberts, Thomas J.

    2015-01-01

    During downhill running, manoeuvring, negotiation of obstacles and landings from a jump, mechanical energy is dissipated via active lengthening of limb muscles. Tendon compliance provides a ‘shock-absorber’ mechanism that rapidly absorbs mechanical energy and releases it more slowly as the recoil of the tendon does work to stretch muscle fascicles. By lowering the rate of muscular energy dissipation, tendon compliance likely reduces the risk of muscle injury that can result from rapid and forceful muscle lengthening. Here, we examine how muscle–tendon mechanics are modulated in response to changes in demand for energy dissipation. We measured lateral gastrocnemius (LG) muscle activity, force and fascicle length, as well as leg joint kinematics and ground-reaction force, as turkeys performed drop-landings from three heights (0.5–1.5 m centre-of-mass elevation). Negative work by the LG muscle–tendon unit during landing increased with drop height, mainly owing to greater muscle recruitment and force as drop height increased. Although muscle strain did not increase with landing height, ankle flexion increased owing to increased tendon strain at higher muscle forces. Measurements of the length–tension relationship of the muscle indicated that the muscle reached peak force at shorter and likely safer operating lengths as drop height increased. Our results indicate that tendon compliance is important to the modulation of energy dissipation by active muscle with changes in demand and may provide a mechanism for rapid adjustment of function during deceleration tasks of unpredictable intensity. PMID:25716796

  12. LOW-RESOLUTION SPECTROSCOPY OF GAMMA-RAY BURST OPTICAL AFTERGLOWS: BIASES IN THE SWIFT SAMPLE AND CHARACTERIZATION OF THE ABSORBERS

    SciTech Connect

    Fynbo, J. P. U.; Malesani, D.; Vreeswijk, P. M.; Hjorth, J.; Sollerman, J.; Thoene, C. C.; Jakobsson, P.; Bjoernsson, G.; De Cia, A.; Prochaska, J. X.; Nardini, M.; Chen, H.-W.; Bloom, J. S.; Castro-Tirado, A. J.; Gorosabel, J.; Christensen, L.; Fruchter, A. S.

    2009-12-01

    We present a sample of 77 optical afterglows (OAs) of Swift detected gamma-ray bursts (GRBs) for which spectroscopic follow-up observations have been secured. Our first objective is to measure the redshifts of the bursts. For the majority (90%) of the afterglows, the redshifts have been determined from the spectra. We provide line lists and equivalent widths (EWs) for all detected lines redward of Ly{alpha} covered by the spectra. In addition to the GRB absorption systems, these lists include line strengths for a total of 33 intervening absorption systems. We discuss to what extent the current sample of Swift bursts with OA spectroscopy is a biased subsample of all Swift detected GRBs. For that purpose we define an X-ray-selected statistical sample of Swift bursts with optimal conditions for ground-based follow-up from the period 2005 March to 2008 September; 146 bursts fulfill our sample criteria. We derive the redshift distribution for the statistical (X-ray selected) sample and conclude that less than 18% of Swift bursts can be at z > 7. We compare the high-energy properties (e.g., {gamma}-ray (15-350 keV) fluence and duration, X-ray flux, and excess absorption) for three subsamples of bursts in the statistical sample: (1) bursts with redshifts measured from OA spectroscopy; (2) bursts with detected optical and/or near-IR afterglow, but no afterglow-based redshift; and (3) bursts with no detection of the OA. The bursts in group (1) have slightly higher {gamma}-ray fluences and higher X-ray fluxes and significantly less excess X-ray absorption than bursts in the other two groups. In addition, the fractions of dark bursts, defined as bursts with an optical to X-ray slope {beta}{sub OX} < 0.5, is 14% in group (1), 38% in group (2), and >39% in group (3). For the full sample, the dark burst fraction is constrained to be in the range 25%-42%. From this we conclude that the sample of GRBs with OA spectroscopy is not representative for all Swift bursts, most likely due

  13. High strength semi-active energy absorbers using shear- and mixedmode operation at high shear rates

    NASA Astrophysics Data System (ADS)

    Becnel, Andrew C.

    This body of research expands the design space of semi-active energy absorbers for shock isolation and crash safety by investigating and characterizing magnetorheological fluids (MRFs) at high shear rates ( > 25,000 1/s) under shear and mixed-mode operation. Magnetorheological energy absorbers (MREAs) work well as adaptive isolators due to their ability to quickly and controllably adjust to changes in system mass or impact speed while providing fail-safe operation. However, typical linear stroking MREAs using pressure-driven flows have been shown to exhibit reduced controllability as impact speed (shear rate) increases. The objective of this work is to develop MREAs that improve controllability at high shear rates by using pure shear and mixed shear-squeeze modes of operation, and to present the fundamental theory and models of MR fluids under these conditions. A proof of concept instrument verified that the MR effect persists in shear mode devices at shear rates corresponding to low speed impacts. This instrument, a concentric cylinder Searle cell magnetorheometer, was then used to characterize three commercially available MRFs across a wide range of shear rates, applied magnetic fields, and temperatures. Characterization results are presented both as flow curves according to established practice, and as an alternate nondimensionalized analysis based on Mason number. The Mason number plots show that, with appropriate correction coefficients for operating temperature, the varied flow curve data can be collapsed to a single master curve. This work represents the first shear mode characterization of MRFs at shear rates over 10 times greater than available with commercial rheometers, as well as the first validation of Mason number analysis to high shear rate flows in MRFs. Using the results from the magnetorheometer, a full scale rotary vane MREA was developed as part of the Lightweight Magnetorheological Energy Absorber System (LMEAS) for an SH-60 Seahawk helicopter

  14. Development of Lead Free Energy Absorber for Space Shuttle Blast Container

    NASA Technical Reports Server (NTRS)

    Ingram, T.; Balles, D.; Schricker, A.; Novak, H.

    1998-01-01

    The Space Shuttle vehicle (SSV) is connected to the mobile launch platform (MLP) by four aft skirt hold down studs on each solid rocket booster (SRB). Prior to lift-off, the frangible nuts inside the aft skirt blast containers (BC) are severed into two nut halves by two pyrotechnic booster cartridges. This action releases the SSV and allows the hold down studs to eject through the aft skirt bore and then down into the MLP. USBI has been tasked to upgrade the BC for two specific reasons; 1. to eliminate lead for environmental concerns, and 2. to reduce the chance of nut recontact with the holddown stud. Nut recontact with the stud has been identified as a likely contributor to stud hangups. This upgrade will replace the lead liner with an aluminum foam material. The aluminum foam used as a energy absorber is a proven design in many other aerospace/defense applications. Additional benefits of using the open cell, energy absorbent aluminum foam in place of the solid lead liner are: A. Lead handling/ exposure, and possible contamination, along with hazardous waste disposal will be eliminated; B. Approximately 200 lbs. weight savings will be contributed to each Space Shuttle flight by using aluminum foam over lead; C. The new aluminum liner is designed to catch all shrapnel from frangible nuts thus virtually eliminating chance of foreign object debris (FOD) exiting the HDP, and causing potential damage to the vehicle; D. Potential of using the lighter aluminum liner over lead, allows for easier assembly and disassembly of blast container elements, also allowing for improvements in safety, operator handling, and efficiency of operations. Six BC firing tests will be required to determine if the new liner material will perform in a way to decrease the chance of stud hangups and enhance the ability of the BC to retain blast debris. Testing will be performed at the Kennedy Space Center (KSC) facility known as the Launch Equipment Test Facility (LETF), and will simulate the

  15. Atmospheric particulate matter levels, chemical composition and optical absorbing properties in Camagüey, Cuba.

    PubMed

    Barja, Boris; Mogo, Sandra; Cachorro, Victoria E; Antuña, Juan Carlos; Estevan, Rene; Rodrigues, Ana; de Frutos, Ángel

    2013-02-01

    chemical and optical absorption characterization in Cuba. In addition to the regional interest, the presented values can be directly used by those working with absorption, forcing by aerosols and radiative transfer calculations in general. Also, these data can be used as input in Global Climate Models.

  16. Experimental evaluation of a stationary spherical reflector tracking absorber solar energy collector

    NASA Technical Reports Server (NTRS)

    Steward, W. G.; Kreider, J. F.; Caruso, P. S., Jr.; Kreith, F.

    1976-01-01

    This article presents experimental data for the thermal performance of a stationary, spherical-reflector, tracking-absorber solar energy collector (SRTA). The principle of operation and details of thermal performance of such an SRTA have previously been described. These experimental results were compared with the predictions of a thermal analysis previously published. Experimental results were compared with the prediction of Kreider's computer model. Within the range of the temperature of the experiments, the predicted performance of the unit agreed well with experimental data collected under clear sky conditions. In addition, the extrapolation of the efficiency to higher temperature is shown so that the potential of an SRTA solar collector as a means of providing high temperature steam to operate an electric power facility or for process heat can be evaluated. As a result of the tests conducted by NASA, and an economic analysis not yet publicly available, it appears that the SRTA solar collector concept will be economically viable in competition with any other existing solar system in providing electrical energy.

  17. Vapor shielding models and the energy absorbed by divertor targets during transient events

    NASA Astrophysics Data System (ADS)

    Skovorodin, D. I.; Pshenov, A. A.; Arakcheev, A. S.; Eksaeva, E. A.; Marenkov, E. D.; Krasheninnikov, S. I.

    2016-02-01

    The erosion of divertor targets caused by high heat fluxes during transients is a serious threat to ITER operation, as it is going to be the main factor determining the divertor lifetime. Under the influence of extreme heat fluxes, the surface temperature of plasma facing components can reach some certain threshold, leading to an onset of intense material evaporation. The latter results in formation of cold dense vapor and secondary plasma cloud. This layer effectively absorbs the energy of the incident plasma flow, turning it into its own kinetic and internal energy and radiating it. This so called vapor shielding is a phenomenon that may help mitigating the erosion during transient events. In particular, the vapor shielding results in saturation of energy (per unit surface area) accumulated by the target during single pulse of heat load at some level Emax. Matching this value is one of the possible tests to verify complicated numerical codes, developed to calculate the erosion rate during abnormal events in tokamaks. The paper presents three very different models of vapor shielding, demonstrating that Emax depends strongly on the heat pulse duration, thermodynamic properties, and evaporation energy of the irradiated target material. While its dependence on the other shielding details such as radiation capabilities of material and dynamics of the vapor cloud is logarithmically weak. The reason for this is a strong (exponential) dependence of the target material evaporation rate, and therefore the "strength" of vapor shield on the target surface temperature. As a result, the influence of the vapor shielding phenomena details, such as radiation transport in the vapor cloud and evaporated material dynamics, on the Emax is virtually completely masked by the strong dependence of the evaporation rate on the target surface temperature. However, the very same details define the amount of evaporated particles, needed to provide an effective shielding to the target, and

  18. Determination of optical constants n and k of thin films from absorbance data using Kramers-Kronig relationship.

    PubMed

    Rocha, W R M; Pilling, S

    2014-04-01

    We present a code, called NKABS, to determine optical constants (complex refractive index) of thin films directly from the absorbance data in the infrared. The code is written in the Python language, which is more accurate and faster than previous methods in the literature. For solving the Kramers-Kronig relationship, we used the Maclaurin's methodology. Unlike other codes, which found convergence in 30-40 iterations, the NKABS reach the convergence in just 4 or 5 iterations. Additionally, to evaluate the error, this code calculates the MAPE (Mean Absolute Percentage Error) and the chi-square χ(2). The typical MAPE error obtained using NKABS is less than 1×10(-3)%. To illustrate the functionality of this code, we calculate the optical constants in the infrared spectral region of 28 different samples of astrophysical interest at different temperatures (10-300K), which simulates molecules in space environments, mostly the ones called astrophysical ices. The samples were obtained from the condensation of pure gases (e.g. CO, CO2, NH3, SO2), from the sublimation in vacuum of pure liquids (e.g. water, acetone, acetonitrile, acetic acid, formic acid, ethanol and methanol) and from mixtures of different species (e.g. H2O:CO2, H2O:CO:NH3, H2O:CO2:NH3:CH4). Additionally films of solid biomolecules samples of astrochemistry/astrobiology interest (e.g. glycine, adenine) were probed. The code and the data-base obtained here are available on-line. The NKABS can also be employed to calculate refractive index of processed samples (by heating or radiation). Such data and the refractive index of virgin samples are required as input in several astrophysical models that calculate the radiative transfer in dusty astrophysical environments such as protoplanetary disks and circumstellar environments as well as dense molecular clouds.

  19. A new optical method coupling light polarization and Vis-NIR spectroscopy to improve the measured absorbance signal's quality of soil samples.

    NASA Astrophysics Data System (ADS)

    Gobrecht, Alexia; Bendoula, Ryad; Roger, Jean-Michel; Bellon-Maurel, Véronique

    2014-05-01

    Visible - Near-infrared spectroscopy (Vis-NIRS) is now commonly used to measure different physical and chemical parameters of soils, including carbon content. However, prediction model accuracy is insufficient for Vis-NIRS to replace routine laboratory analysis. One of the biggest issues this technique is facing up to is light scattering due to soil particles. It causes departure in the assumed linear relationship between the Absorbance spectrum and the concentration of the chemicals of interest as stated by Beer-Lambert's Law, which underpins the calibration models. Therefore it becomes essential to improve the metrological quality of the measured signal in order to optimize calibration as light/matter interactions are at the basis of the resulting linear modeling. Optics can help to mitigate scattering effect on the signal. We put forward a new optical setup coupling linearly polarized light with a Vis-NIR spectrometer to free the measured spectra from multi-scattering effect. The corrected measured spectrum was then used to compute an Absorbance spectrum of the sample, using Dahm's Equation in the frame of the Representative Layer Theory. This method has been previously tested and validated on liquid (milk+ dye) and powdered (sand + dye) samples showing scattering (and absorbing) properties. The obtained Absorbance was a very good approximation of the Beer-Lambert's law absorbance. Here, we tested the method on a set of 54 soil samples to predict Soil Organic Carbon content. In order to assess the signal quality improvement by this method, we built and compared calibration models using Partial Least Square (PLS) algorithm. The prediction model built from new Absorbance spectrum outperformed the model built with the classical Absorbance traditionally obtained with Vis-NIR diffuse reflectance. This study is a good illustration of the high influence of signal quality on prediction model's performances.

  20. Capturing the Energy Absorbing Mechanisms of Composite Structures under Crash Loading

    NASA Astrophysics Data System (ADS)

    Wade, Bonnie

    As fiber reinforced composite material systems become increasingly utilized in primary aircraft and automotive structures, the need to understand their contribution to the crashworthiness of the structure is of great interest to meet safety certification requirements. The energy absorbing behavior of a composite structure, however, is not easily predicted due to the great complexity of the failure mechanisms that occur within the material. Challenges arise both in the experimental characterization and in the numerical modeling of the material/structure combination. At present, there is no standardized test method to characterize the energy absorbing capability of composite materials to aide crashworthy structural design. In addition, although many commercial finite element analysis codes exist and offer a means to simulate composite failure initiation and propagation, these models are still under development and refinement. As more metallic structures are replaced by composite structures, the need for both experimental guidelines to characterize the energy absorbing capability of a composite structure, as well as guidelines for using numerical tools to simulate composite materials in crash conditions has become a critical matter. This body of research addresses both the experimental characterization of the energy absorption mechanisms occurring in composite materials during crushing, as well as the numerical simulation of composite materials undergoing crushing. In the experimental investigation, the specific energy absorption (SEA) of a composite material system is measured using a variety of test element geometries, such as corrugated plates and tubes. Results from several crush experiments reveal that SEA is not a constant material property for laminated composites, and varies significantly with the geometry of the test specimen used. The variation of SEA measured for a single material system requires that crush test data must be generated for a range of

  1. A Computational Approach for Model Update of an LS-DYNA Energy Absorbing Cell

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Jackson, Karen E.; Kellas, Sotiris

    2008-01-01

    NASA and its contractors are working on structural concepts for absorbing impact energy of aerospace vehicles. Recently, concepts in the form of multi-cell honeycomb-like structures designed to crush under load have been investigated for both space and aeronautics applications. Efforts to understand these concepts are progressing from tests of individual cells to tests of systems with hundreds of cells. Because of fabrication irregularities, geometry irregularities, and material properties uncertainties, the problem of reconciling analytical models, in particular LS-DYNA models, with experimental data is a challenge. A first look at the correlation results between single cell load/deflection data with LS-DYNA predictions showed problems which prompted additional work in this area. This paper describes a computational approach that uses analysis of variance, deterministic sampling techniques, response surface modeling, and genetic optimization to reconcile test with analysis results. Analysis of variance provides a screening technique for selection of critical parameters used when reconciling test with analysis. In this study, complete ignorance of the parameter distribution is assumed and, therefore, the value of any parameter within the range that is computed using the optimization procedure is considered to be equally likely. Mean values from tests are matched against LS-DYNA solutions by minimizing the square error using a genetic optimization. The paper presents the computational methodology along with results obtained using this approach.

  2. Soft Landing of Spacecraft on Energy-Absorbing Self-Deployable Cushions

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold

    2003-01-01

    A report proposes the use of cold hibernated elastic memory (CHEM) foam structures to cushion impacts of small (1 to 50 kg) exploratory spacecraft on remote planets. Airbags, which are used on larger (800 to 1,000 kg) spacecraft have been found to (1) be too complex for smaller spacecraft; (2) provide insufficient thermal insulation between spacecraft and ground; (3) bounce on impact, thereby making it difficult to land spacecraft in precisely designated positions; and (4) be too unstable to serve as platforms for scientific observations. A CHEM foam pad according to the proposal would have a glass-transition temperature (Tg) well above ambient temperature. It would be compacted, at a temperature above Tg, to about a tenth or less of its original volume, then cooled below Tg, then installed on a spacecraft without compacting restraints. Upon entry of the spacecraft into a planetary atmosphere, the temperature would rise above Tg, causing the pad to expand to its original volume and shape. As the spacecraft decelerated and cooled, the temperature would fall below Tg, rigidifying the foam structure. The structure would absorb kinetic energy during ground impact by inelastic crushing, thus protecting the payload from damaging shocks. Thereafter, this pad would serve as a mechanically stable, thermally insulating platform for the landed spacecraft.

  3. Specific absorbed fractions of energy at various ages from internal photon sources: 6, Newborn

    SciTech Connect

    Cristy, M.; Eckerman, K.F.

    1987-04-01

    Specific absorbed fraction (PHI's) in various organs of the body (target organs) from sources of monoenergetic photons in various other organs (source organs) are tabulated. In this volume PHI-values are tabulated for a newborn or 3.4-kg person. These PHI-values can be used in calculating the photon component of the dose-equivalent rate in a given target from a given radionuclide that is present in a given source organ. The International Commission on Radiological Protection recognizes that the endosteal, or bone surface, cells are the tissue at risk for bone cancer. We have applied the dosimetry methods that Spiers and co-workers developed for beta-emitting radionuclides deposited in bone to follow the transport of secondary electrons that were freed by photon interactions through the microscopic structure of the skeleton. With these methods we can estimate PHI in the endosteal cells and can better estimate PHI in the active marrow; the latter is overestimated with other methods at photon energies below 200 keV. 12 refs., 2 tabs.

  4. Relative Efficiency of TLD-100 to Linear Energy Transfer Radiation: Correction to Astronaut Absorbed Dose

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.; Cash, B. L.; Semones, E. J.; Yasuda, H.; Fujitaka, K.

    1999-01-01

    Response of thermoluminescent detectors (TLD-100) to high linear energy transfer (LET) particles has been studied using helium, carbon, silicon, and iron ions from the Heavy Ion Medical Accelerator at Chiba (Japan), iron ions from the Brookhaven National Laboratory (NY) Alternate Gradient Synchrotron, and 53, 134, 185, and 232 MeV protons from the Loma Linda accelerator. Using the measured relative (to (137)Cs dose efficiency, and measured LET spectra from a tissue equivalent proportional counter (TEPC) on 20 Space Shuttle flights, and 7 Mir flights, the underestimation of absorbed dose by these detectors has been evaluated. The dose underestimation is between 15-20% depending upon the flight inclination and shielding location. This has been confirmed by direct correlation of measured dose by TEPC and TLD-100 at a low shielded location in the Shuttle mid-deck. A comparison of efficiency- LET data with a compilation of similar data from TLD-700, shows that shapes of the two curves are nearly identical, but that the TLD-100 curve is systematically lower by about 13%, and is the major cause of dose underestimation. These results strongly suggest that TLDs used for crew dose estimation be regularly calibrated using heavy ions.

  5. Relative Efficiency of TLD-100 to High Linear Energy Transfer Radiation: Correction to Astronaut Absorbed Dose

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Cash, B. L.; Semones, E. J.; Yasuda, H.; Fujitaka, K.

    1999-01-01

    Response of thermoluminescent detectors (TLD-100) to high linear energy transfer (LET) particles has been studied using helium, carbon, silicon, and iron ions from the Heavy Ion Medical Accelerator at Chiba (Japan), iron ions from the Brookhaven National Laboratory (NY) Alternate Gradient Synchrotron, and 53, 134, 185, and 232 MeV protons from the Loma Linda accelerator. Using the measured relative (to 137Cs) dose efficiency, and measured LET spectra from a tissue equivalent proportional counter (TEPC) on 20 Space Shuttle flights, and 7 Mir flights, the underestimation of absorbed dose by these detectors has been evaluated. The dose underestimation is between 15-20% depending upon the flight inclination and shielding location. This has been confirmed by direct correlation of measured dose by TEPC and TLD-100 at a low shielded location in the Shuttle mid-deck. A comparison of efficiency- LET data with a compilation of similar data from TLD-700, shows that shapes of the two curves are nearly identical, but that the TLD-100 curve is systematically lower by about 13%, and is the major cause of dose underestimation. These results strongly suggest that TLDs used for crew dose estimation be regularly calibrated using heavy ions.

  6. Synthesis and properties of polyamide-Ag2S composite based solar energy absorber surfaces

    NASA Astrophysics Data System (ADS)

    Krylova, Valentina; Baltrusaitis, Jonas

    2013-10-01

    Silver sulfide (Ag2S), an efficient solar light absorber, was synthesized using a modified chemical bath deposition (CBD) method and polyamide 6 (PA) as a host material via solution phase reaction between AgNO3 and Na2S2O3. X-ray diffraction (XRD) data showed a single, α-Ag2S (acanthite), crystalline phase present while surface and bulk chemical analyses, performed using X-ray photoelectron (XPS) and energy dispersive (EDS) spectroscopies, showed 2:1 Ag:S ratio. Direct and indirect bandgaps obtained from Tauc plots were 1.3 and 2.3 eV, respectively. Detailed surface chemical analysis showed the presence of three distinct sulfur species with majority component due to the Ag2S chemical bonds and minority components due to two types of oxygen-sulfur bonds. Conductivity of the resulting composite material was shown to change with the reaction time thus enabling to obtain controlled conductivity composite material. The synthesis method presented is based on the low solubility of Ag2S and is potentially green, no by-product producing, as all Ag2S nucleated outside the host material can be recycled into the process via dissolving it in HNO3.

  7. Experimental validation of a magnetorheological energy absorber design optimized for shock and impact loads

    NASA Astrophysics Data System (ADS)

    Singh, Harinder J.; Hu, Wei; Wereley, Norman M.; Glass, William

    2014-12-01

    A linear stroke adaptive magnetorheological energy absorber (MREA) was designed, fabricated and tested for intense impact conditions with piston velocities up to 8 m s-1. The performance of the MREA was characterized using dynamic range, which is defined as the ratio of maximum on-state MREA force to the off-state MREA force. Design optimization techniques were employed in order to maximize the dynamic range at high impact velocities such that MREA maintained good control authority. Geometrical parameters of the MREA were optimized by evaluating MREA performance on the basis of a Bingham-plastic analysis incorporating minor losses (BPM analysis). Computational fluid dynamics and magnetic FE analysis were conducted to verify the performance of passive and controllable MREA force, respectively. Subsequently, high-speed drop testing (0-4.5 m s-1 at 0 A) was conducted for quantitative comparison with the numerical simulations. Refinements to the nonlinear BPM analysis were carried out to improve prediction of MREA performance.

  8. Simulating the Response of a Composite Honeycomb Energy Absorber. Part 2; Full-Scale Impact Testing

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Annett, Martin S.; Jackson, Karen E.; Polanco, Michael A.

    2012-01-01

    NASA has sponsored research to evaluate an externally deployable composite honeycomb designed to attenuate loads in the event of a helicopter crash. The concept, designated the Deployable Energy Absorber (DEA), is an expandable Kevlar(Registered TradeMark) honeycomb. The DEA has a flexible hinge that allows the honeycomb to be stowed collapsed until needed during an emergency. Evaluation of the DEA began with material characterization of the Kevlar(Registered TradeMark)-129 fabric/epoxy, and ended with a full-scale crash test of a retrofitted MD-500 helicopter. During each evaluation phase, finite element models of the test articles were developed and simulations were performed using the dynamic finite element code, LS-DYNA(Registered TradeMark). The paper will focus on simulations of two full-scale impact tests involving the DEA, a mass-simulator and a full-scale crash of an instrumented MD-500 helicopter. Isotropic (MAT24) and composite (MAT58) material models, which were assigned to DEA shell elements, were compared. Based on simulations results, the MAT58 model showed better agreement with test.

  9. A New HOM Water Cooled Absorber for the PEP-II B-factory Low Energy Ring

    SciTech Connect

    Weathersby, Stephen; Kosovsky, Michael; Kurita, Nadine; Novokhatski, Alexander; Seeman, John; /SLAC

    2006-09-05

    At high currents and small bunch lengths beam line components in the PEP-II B-factory experience RF induced heating from higher order RF modes (HOMs) produced by scattered intense beam fields. A design for a passive HOM water cooled absorber for the PEP-II low energy ring is presented. This device is situated near HOM producing beamline components such as collimators and provide HOM damping for dipole and quadrupole modes without impacting beam impedance. We optimized the impedance characteristics of the device through the evaluation of absorber effectiveness for specific modes using scattering parameter and wakefield analysis. Operational results are presented and agree very well with the predicted effectiveness.

  10. A Bottom-Up Engineered Broadband Optical Nanoabsorber for Radiometry and Energy Harnessing Applications

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Coles, James B.; Megerian, Krikor G.; Eastwood, Michael; Green, Robert O.; Bandaru, Prabhakar R.

    2013-01-01

    Optical absorbers based on vertically aligned multi-walled carbon nanotubes (MWCNTs), synthesized using electric-field assisted growth, are described here that show an ultra-low reflectance, 100X lower compared to Au-black from wavelength lamba approximately 350 nm - 2.5 micron. A bi-metallic Co/Ti layer was shown to catalyze a high site density of MWCNTs on metallic substrates and the optical properties of the absorbers were engineered by controlling the bottom-up synthesis conditions using dc plasma-enhanced chemical vapor deposition (PECVD). Reflectance measurements on the MWCNT absorbers after heating them in air to 400deg showed negligible changes in reflectance which was still low, approximately 0.022 % at lamba approximately 2 micron. In contrast, the percolated structure of the reference Au-black samples collapsed completely after heating, causing the optical response to degrade at temperatures as low as 200deg. The high optical absorption efficiency of the MWCNT absorbers, synthesized on metallic substrates, over a broad spectral range, coupled with their thermal ruggedness, suggests they have promise in solar energy harnessing applications, as well as thermal detectors for radiometry.

  11. Chemistry away from local equilibrium: shocking high-energy and energy absorbing materials

    NASA Astrophysics Data System (ADS)

    Strachan, Alejandro

    2015-06-01

    In this presentation I will describe reactive molecular dynamics and coarse grain simulations of shock induced chemistry. MD simulations of the chemical reactions following the shock-induced collapse of cylindrical pores in the high-energy density material RDX provide the first atomistic picture of the shock to deflagration transition in nanoscale hotspots. We find that energy localization during pore collapse leads to ultra-fast, multi-step chemical reactions that occur under non-equilibrium conditions. The formation of exothermic products during the first few picoseconds of the process prevents the hotspot from quenching, and within 30 ps a deflagration wave develops. Quite surprisingly, an artificial hot-spot matching the shock-induced one in size and thermodynamic conditions quenches; providing strong evidence that the dynamic nature of the loading plays a role in determining the criticality of the hotspot. To achieve time and lengths beyond what is possible in MD we developed a mesoscale model that incorporates chemical reactions at a coarse-grained level. We used this model to explore shock propagation on materials that can undergo volume-reducing, endothermic chemical reactions. The simulations show that such chemical reactions can attenuate the shockwave and characterize how the characteristics of the chemistry affect this behavior. We find that the amount of volume collapse and the activation energy are critical to weaken the shock, whereas the endothermicity of the reactions plays only a minor role. As in the reactive MD simulations, we find that the non-equilibrium state following the shock affects the nucleation of chemistry and, thus, the timescales for equilibration between various degrees of freedom affect the response of the material.

  12. Photoelectrochemical cells - Conversion of intense optical energy

    NASA Technical Reports Server (NTRS)

    Wrighton, M. S.; Ellis, A. B.; Kaiser, S. W.

    1976-01-01

    Conversion of optical energy to chemical energy and/or electrical energy using wet photoelectrochemical cells is described. Emphasis is on (1) the photoelectrolysis of H2O to H2 and O2 using cells having n-type semiconductor photoelectrodes fabricated from TiO2, SnO2, SrTiO3, KTaO3, and KTa(0.77)Nb(0.23)O3, and (2) the conversion of light to electrical energy using CdSe- and CdS-based cells with polysulfide electrolytes.

  13. Physically based parameterizations of the short-wave radiative characteristics of weakly absorbing optically thick media: application to liquid-water clouds.

    PubMed

    Kokhanovsky, A A; Nakajima, T; Zege, E P

    1998-07-20

    We propose the physically based parameterization of the radiative characteristics of liquid-water clouds as functions of the wavelength, effective radius, and refractive index of particles, liquid-water path, ground albedo, and solar and observation angles. The formulas obtained are based on the approximate analytical solutions of the radiative transfer equation for optically thick, weakly absorbing layers and the geometrical optics approximation for local optical characteristics of cloud media. The accuracy of the approximate formulas was studied with an exact radiative transfer code. The relative error of the approximate formula for the reflection function at nadir observations was less then 15% for an optical thickness larger than 10 and a single-scattering albedo larger than 0.95.

  14. Impact Testing and Simulation of a Crashworthy Composite Fuselage Section with Energy-Absorbing Seats and Dummies

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.

    2002-01-01

    A 25-ft/s vertical drop test of a composite fuselage section was conducted with two energy-absorbing seats occupied by anthropomorphic dummies to evaluate the crashworthy features of the fuselage section and to determine its interaction with the seats and dummies. The 5-ft diameter fuselage section consists of a stiff structural floor and an energy-absorbing subfloor constructed of Rohacel foam blocks. The experimental data from this test were analyzed and correlated with predictions from a crash simulation developed using the nonlinear, explicit transient dynamic computer code, MSC.Dytran. The anthropomorphic dummies were simulated using the Articulated Total Body (ATB) code, which is integrated into MSC.Dytran.

  15. Impact Testing and Simulation of a Crashworthy Composite Fuselage Section with Energy-Absorbing Seats and Dummies

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.

    2002-01-01

    A 25-ft/s vertical drop test of a composite fuselage section was conducted with two energy-absorbing seats occupied by anthropomorphic dummies to evaluate the crashworthy features of the fuselage section and to determine its interaction with the seats and dummies. The 5-ft. diameter fuselage section consists of a stiff structural floor and an energy-absorbing subfloor constructed of Rohacel foam blocks. The experimental data from this test were analyzed and correlated with predictions from a crash simulation developed using the nonlinear, explicit transient dynamic computer code, MSC.Dytran. The anthropomorphic dummies were simulated using the Articulated Total Body (ATB) code, which is integrated into MSC.Dytran.

  16. A high-energy cladding-pumped 80 nanosecond Q-switched fiber laser using a tapered fiber saturable absorber

    NASA Astrophysics Data System (ADS)

    Moore, Sean W.; Soh, Daniel B. S.; Bisson, Scott E.; Patterson, Brian D.; Hsu, Wen L.

    2013-02-01

    We report a passively Q-switched all-fiber laser using a large mode area (LMA) Yb3+-doped fiber cladding-pumped at 915 nm and an unpumped single-mode Yb3+-doped fiber as the saturable absorber (SA). The saturable absorber and gain fibers were first coupled with a free-space telescope to better study the composite system, and then fusion spliced with fiber tapers to match the mode field diameters. ASE generated in the LMA gain fiber preferentially bleaches the SA fiber before depleting the gain, thereby causing the SA fiber to act as a passive saturable absorber. Using this scheme we first demonstrate a Q-switched oscillator with 40 μJ 79 ns pulses at 1026 nm using a free-space taper, and show that pulses can be generated from 1020 nm to 1040 nm. We scale the pulse energy to 0.40 mJ using an Yb3+-doped cladding pumped fiber amplifier. Experimental studies in which the saturable absorber length, pump times, and wavelengths are independently varied reveal the impact of these parameters on laser performance. Finally, we demonstrate 60 μJ 81 ns pulses at 1030 nm in an all fiber architecture using tapered mode field adaptors to match the mode filed diameters of the gain and SA fibers.

  17. A comparison of three preparations of cytochrome c oxidase. Optical absorbance spectra, EPR spectra and reaction towards ligands.

    PubMed

    Lodder, A L; van Gelder, B F

    1994-06-28

    Three preparations of cytochrome c oxidase, the preparation as traditionally prepared in our laboratory as described by Van Buuren (1992; PhD Thesis, University of Amsterdam), a preparation according to Volpe and Caughey (Biochem. Biophys. Res. Commun. 61 (1974) 502-509) and a preparation of 'fast' cytochrome c oxidase (Brandt, U., Schägger, H. and Von Jagow, G. (1989) Eur. J. Biochem. 182, 705-711), are compared in their reaction with cyanide and carbon monoxide. The reaction with cyanide is nearly as fast for the Van Buuren preparation as for the 'fast' preparation, but much slower for the Volpe-Caughey preparation. Mixed-valence cytochrome c oxidase (cytochrome a3 and CuB reduced with carbon monoxide bound and cytochrome a and CuA oxidized) is prepared by anaerobic incubation with carbon monoxide. With the Van Buuren preparation complete formation of the species takes 4 h, whereas with the Volpe-Caughey preparation it takes 20 h. Longer incubation under CO results in partial reduction of cytochrome a and CuA. With the 'fast' preparation mixed-valence cytochrome c oxidase is formed after more than one day of incubation with CO, but it is stable for at least 3 days. The presence of oxidized cytochrome c did enhance the reactivity towards cyanide and towards carbon monoxide in cytochrome c oxidase of all three preparations. Furthermore, optical and EPR spectra of the preparations of cytochrome c oxidase are compared. The Volpe-Caughey preparation has an intense g' = 12 EPR-signal, the Van Buuren preparation has hardly any g' = 12 signal and the 'fast' preparation has no g' = 12 signal. In the 'fast' preparation the low-spin heme signal is shifted (from g = 3.00 to g = 2.97). The absorbance spectra of the three preparations in the Soret region are similar with a maximum at 424 nm. Only the 'fast' preparation as isolated was completely oxidized, whereas the other preparations were partially reduced. It was concluded that differences in the reaction of cytochrome c

  18. Low-resolution Spectroscopy of Gamma-ray Burst Optical Afterglows: Biases in the Swift Sample and Characterization of the Absorbers

    NASA Astrophysics Data System (ADS)

    Fynbo, J. P. U.; Jakobsson, P.; Prochaska, J. X.; Malesani, D.; Ledoux, C.; de Ugarte Postigo, A.; Nardini, M.; Vreeswijk, P. M.; Wiersema, K.; Hjorth, J.; Sollerman, J.; Chen, H.-W.; Thöne, C. C.; Björnsson, G.; Bloom, J. S.; Castro-Tirado, A. J.; Christensen, L.; De Cia, A.; Fruchter, A. S.; Gorosabel, J.; Graham, J. F.; Jaunsen, A. O.; Jensen, B. L.; Kann, D. A.; Kouveliotou, C.; Levan, A. J.; Maund, J.; Masetti, N.; Milvang-Jensen, B.; Palazzi, E.; Perley, D. A.; Pian, E.; Rol, E.; Schady, P.; Starling, R. L. C.; Tanvir, N. R.; Watson, D. J.; Xu, D.; Augusteijn, T.; Grundahl, F.; Telting, J.; Quirion, P.-O.

    2009-12-01

    We present a sample of 77 optical afterglows (OAs) of Swift detected gamma-ray bursts (GRBs) for which spectroscopic follow-up observations have been secured. Our first objective is to measure the redshifts of the bursts. For the majority (90%) of the afterglows, the redshifts have been determined from the spectra. We provide line lists and equivalent widths (EWs) for all detected lines redward of Lyα covered by the spectra. In addition to the GRB absorption systems, these lists include line strengths for a total of 33 intervening absorption systems. We discuss to what extent the current sample of Swift bursts with OA spectroscopy is a biased subsample of all Swift detected GRBs. For that purpose we define an X-ray-selected statistical sample of Swift bursts with optimal conditions for ground-based follow-up from the period 2005 March to 2008 September; 146 bursts fulfill our sample criteria. We derive the redshift distribution for the statistical (X-ray selected) sample and conclude that less than 18% of Swift bursts can be at z > 7. We compare the high-energy properties (e.g., γ-ray (15-350 keV) fluence and duration, X-ray flux, and excess absorption) for three subsamples of bursts in the statistical sample: (1) bursts with redshifts measured from OA spectroscopy; (2) bursts with detected optical and/or near-IR afterglow, but no afterglow-based redshift; and (3) bursts with no detection of the OA. The bursts in group (1) have slightly higher γ-ray fluences and higher X-ray fluxes and significantly less excess X-ray absorption than bursts in the other two groups. In addition, the fractions of dark bursts, defined as bursts with an optical to X-ray slope βOX < 0.5, is 14% in group (1), 38% in group (2), and >39% in group (3). For the full sample, the dark burst fraction is constrained to be in the range 25%-42%. From this we conclude that the sample of GRBs with OA spectroscopy is not representative for all Swift bursts, most likely due to a bias against the

  19. Large-Scale Nanophotonic Solar Selective Absorbers for High-Efficiency Solar Thermal Energy Conversion.

    PubMed

    Li, Pengfei; Liu, Baoan; Ni, Yizhou; Liew, Kaiyang Kevin; Sze, Jeff; Chen, Shuo; Shen, Sheng

    2015-08-19

    An omnidirectional nanophotonic solar selective absorber is fabricated on a large scale using a template-stripping method. The nanopyramid nickel structure achieves an average absorptance of 95% at a wavelength range below 1.3 μm and a low emittance less than 10% at wavelength >2.5 μm.

  20. Linear energy transfer dependence of a normoxic polymer gel dosimeter investigated using proton beam absorbed dose measurements

    NASA Astrophysics Data System (ADS)

    Gustavsson, Helen; Bäck, Sven Å. J.; Medin, Joakim; Grusell, Erik; Olsson, Lars E.

    2004-09-01

    Three-dimensional dosimetry with good spatial resolution can be performed using polymer gel dosimetry, which has been investigated for dosimetry of different types of particles. However, there are only sparse data concerning the influence of the linear energy transfer (LET) properties of the radiation on the gel absorbed dose response. The purpose of this study was to investigate possible LET dependence for a polymer gel dosimeter using proton beam absorbed dose measurements. Polymer gel containing the antioxidant tetrakis(hydroxymethyl)phosphonium (THP) was irradiated with 133 MeV monoenergetic protons, and the gel absorbed dose response was evaluated using MRI. The LET distribution for a monoenergetic proton beam was calculated as a function of depth using the Monte Carlo code PETRA. There was a steep increase in the Monte Carlo calculated LET starting at the depth corresponding to the front edge of the Bragg peak. This increase was closely followed by a decrease in the relative detector sensitivity (Srel = Dgel/Ddiode), indicating that the response of the polymer gel detector was dependent on LET. The relative sensitivity was 0.8 at the Bragg peak, and reached its minimum value at the end of the proton range. No significant effects in the detector response were observed for LET < 4.9 keV µm-1, thus indicating that the behaviour of the polymer gel dosimeter would not be altered for the range of LET values expected in the case of photons or electrons in a clinical range of energies.

  1. [Study on optical characteristics of chromophoric dissolved organic matter (CDOM) in rainwater by fluorescence excitation-emission matrix and absorbance spectroscopy].

    PubMed

    Cheng, Yuan-yue; Guo, Wei-dong; Long, Ai-min; Chen, Shao-yong

    2010-09-01

    The optical characteristics of chromophoric dissolved organic matter (CDOM) were determined in rain samples collected in Xiamen Island, during a rainy season in 2007, using fluorescence excitation-emission matrix spectroscopy associated with UV-Vis absorbance spectra. Results showed that the absorbance spectra of CDOM in rain samples decreased exponentially with wavelength. The absorbance coefficient at 300 nm [a(300)] ranged from 0.27 to 3.45 m(-1), which would be used as an index of CDOM abundance, and the mean value was 1.08 m(-1). The content of earlier stage of precipitation events was higher than that of later stage of precipitation events, which implied that anthropogenic sources or atmospheric pollution or air mass types were important contributors to CDOM levels in precipitation. EEMs spectra showed 4 types of fluorescence signals (2 humic-like fluorescence peaks and 2 protein-like fluorescence peaks) in rainwater samples, and there were significant positive correlations of peak A with C and peak B with S, showing their same sources or some relationship of the two humic-like substance and the two protein-like substance. The strong positive correlations of the two humic-like fluorescence peaks with a(300), suggested that the chromophores responsible for absorbance might be the same as fluorophores responsible for fluorescence. Results showed that the presence of highly absorbing and fluorescing CDOM in rainwater is of significant importance in atmospheric chemistry and might play a previously unrecognized role in the wavelength dependent spectral attenuation of solar radiation by atmospheric waters.

  2. Seasonal Evolution and Interannual Variability of the Local Solar Energy Absorbed by the Arctic Sea Ice-Ocean System

    NASA Technical Reports Server (NTRS)

    Perovich, Donald K.; Nghiem, Son V.; Markus, Thorsten; Schwieger, Axel

    2007-01-01

    The melt season of the Arctic sea ice cover is greatly affected by the partitioning of the incident solar radiation between reflection to the atmosphere and absorption in the ice and ocean. This partitioning exhibits a strong seasonal cycle and significant interannual variability. Data in the period 1998, 2000-2004 were analyzed in this study. Observations made during the 1997-1998 SHEBA (Surface HEat Budget of the Arctic Ocean) field experiment showed a strong seasonal dependence of the partitioning, dominated by a five-phase albedo evolution. QuikSCAT scatterometer data from the SHEBA region in 1999-2004 were used to further investigate solar partitioning in summer. The time series of scatterometer data were used to determine the onset of melt and the beginning of freezeup. This information was combined with SSM/I-derived ice concentration, TOVS-based estimates of incident solar irradiance, and SHEBA results to estimate the amount of solar energy absorbed in the ice-ocean system for these years. The average total solar energy absorbed in the ice-ocean system from April through September was 900 MJ m(sup -2). There was considerable interannual variability, with a range of 826 to 1044 MJ m(sup -2). The total amount of solar energy absorbed by the ice and ocean was strongly related to the date of melt onset, but only weakly related to the total duration of the melt season or the onset of freezeup. The timing of melt onset is significant because the incident solar energy is large and a change at this time propagates through the entire melt season, affecting the albedo every day throughout melt and freezeup.

  3. Absorbed doses and energy imparted from radiographic examination of velopharyngeal function during speech

    SciTech Connect

    Isberg, A.; Julin, P.; Kraepelien, T.; Henrikson, C.O. )

    1989-04-01

    Absorbed doses of radiation were measured by thermoluminescent dosimeters (TLDs) using a skull phantom during simulated cinefluorographic and videofluorographic examination of velopharyngeal function in frontal and lateral projections. Dosages to the thyroid gland, the parotid gland, the pituitary gland, and ocular lens were measured. Radiation dosage was found to be approximately 10 times less for videofluoroscopy when compared with that of cinefluoroscopy. In addition, precautionary measures were found to reduce further the exposure of radiation-sensitive tissues. Head fixation and shielding resulted in dose reduction for both video- and cinefluoroscopy. Pulsing exposure for cinefluoroscopy also reduced the dosage.

  4. Experimental evidence of an incomplete thermalization of the energy in an x-ray microcalorimeter with a TaAu absorber.

    PubMed

    Perinati, E; Barbera, M; Varisco, S; Silver, E; Beeman, J; Pigot, C

    2008-05-01

    We have conducted an experimental test at our XACT facility using an x-ray microcalorimeter with TaAu absorber and neutron transmutation doped germanium thermal sensor. The test was aimed at measuring the percentage of energy effectively thermalized after absorption of x-ray photons in superconducting tantalum. Moreover, in general, possible formation of long living quasiparticles implies that by using a superconducting absorber, a fraction of the deposited energy could not be thermalized on the useful time scale of the thermal sensor. To investigate this scenario, we exploited an absorber made of gold, where no energy trapping is expected, with a small piece of superconducting tantalum attached on top. We obtained evidence that the thermalization of photons absorbed in tantalum is delayed by energy trapping from quasiparticles. We compare the experimental results with numerical simulations and derive a value for the intrinsic lifetime of quasiparticles. PMID:18513077

  5. Absorber for terahertz radiation management

    DOEpatents

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  6. The Development of a Conical Composite Energy Absorber for Use in the Attenuation of Crash/Impact Loads

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2014-01-01

    A design for a novel light-weight conical shaped energy absorbing (EA) composite subfloor structure is proposed. This composite EA is fabricated using repeated alternating patterns of a conical geometry to form long beam structures which can be implemented as aircraft subfloor keel beams or frame sections. The geometrical features of this conical design, along with the hybrid composite materials used in the manufacturing process give a strength tailored to achieve a constant 25-40 g sustained crush load, small peak crush loads and long stroke limits. This report will discuss the geometrical design and fabrication methods, along with results from static and dynamic crush testing of 12-in. long subcomponents.

  7. Towards energy aware optical networks and interconnects

    NASA Astrophysics Data System (ADS)

    Glesk, Ivan; Osadola, Tolulope; Idris, Siti

    2013-10-01

    In a today's world, information technology has been identified as one of the major factors driving economic prosperity. Datacenters businesses have been growing significantly in the past few years. The equipments in these datacenters need to be efficiently connected to each other and also to the outside world in order to enable effective exchange of information. This is why there is need for highly scalable, energy savvy and reliable network connectivity infrastructure that is capable of accommodating the large volume of data being exchanged at any time within the datacenter network and the outside network in general. These devices that can ensure such effective connectivity currently require large amount of energy in order to meet up with these increasing demands. In this paper, an overview of works being done towards realizing energy aware optical networks and interconnects for datacenters is presented. Also an OCDMA approach is discussed as potential multiple access technique for future optical network interconnections. We also presented some challenges that might inhibit effective implementation of the OCDMA multiplexing scheme.

  8. Optical quantitation of absorbers in variously shaped turbid media based on the microscopic Beer-Lambert law. A new approach to optical computerized tomography.

    PubMed

    Tsuchiya, Y; Urakami, T

    1998-02-01

    To determine the concentrations of an absorber in variously shaped turbid media such as human tissue, we propose analytical expressions for diffuse re-emission in time and frequency domains, based on the microscopic Beer-Lambert law that holds true when we trace a zigzag photon path in the medium. Our expressions are implicit for the scattering properties, the volume shape, and the source-detector separation. We show that three observables are sufficient to determine the changes in the concentration and the absolute concentrations of an absorber in scattering media as long as the scattering property remains constant. The three observables are: the re-emission, the mean pathlength or group delay, and the extinction coefficient of the absorber. We also show that our equations can be extended to describe photon migration in nonuniform media. The validity of the predictions is confirmed by measuring a tissue-like phantom.

  9. Multitarget tracking with cubic energy optical neural nets.

    PubMed

    Barnard, E; Casasent, D P

    1989-02-15

    A neural net processor and its optical realization are described for a multitarget tracking application. A cubic energy function results and a new optical neural processor is required. Initial simulation data are presented.

  10. Thermally stable J-type phthalocyanine dimers as new non-linear absorbers for low-threshold optical limiters.

    PubMed

    Tolbin, Alexander Yu; Savelyev, Mikhail S; Gerasimenko, Alexander Yu; Tomilova, Larisa G; Zefirov, Nikolay S

    2016-06-21

    The possibility of developing new advanced optical limiters of laser radiation at 532 nm with low limiting thresholds has been demonstrated on thermally stable phthalocyanine J-type dimeric complexes of Mg, Zn, Cu, Ni, and Co. A new "threshold" model based on radiative transfer phenomena in nonlinear optical media was suggested for the exact definition of nonlinear absorption coefficient β and optical limiting threshold Ic. This model allows the determination of the optical characteristics of the limiter in the same active material with layers of different thicknesses, as well as the use of different parameters of laser radiation, such as cross-sectional spatial profiles of the laser beam and shapes of the laser pulse over time. The maximum value of the nonlinear absorption coefficient (β = 360 cm GW(-1)) and the lowest limiting threshold (Ic = 0.03 J cm(-2)) were estimated for a J-type zinc phthalocyanine dimer. PMID:27241278

  11. Degradation and decoloration of textiles wastewater by electron beam irradiation: Effect of energy, current and absorbed dose

    NASA Astrophysics Data System (ADS)

    Bakar, Khomsaton Abu; Ahmad, Pauzi; Zulkafli, Hashim, Siti A'aisah

    2014-09-01

    In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev but at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD5, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.

  12. Degradation and decoloration of textiles wastewater by electron beam irradiation: Effect of energy, current and absorbed dose

    SciTech Connect

    Bakar, Khomsaton Abu; Zulkafli,; Hashim, Siti A'aisah; Ahmad, Pauzi

    2014-09-03

    In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev but at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD{sub 5}, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.

  13. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator

    NASA Astrophysics Data System (ADS)

    Puchalska, Monika; Sihver, Lembit

    2015-06-01

    Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.

  14. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator.

    PubMed

    Puchalska, Monika; Sihver, Lembit

    2015-06-21

    Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.

  15. On the possibility of detecting an absorbing object in a strongly scattering medium using the method of continuous optical sounding

    NASA Astrophysics Data System (ADS)

    Dolin, L. S.

    1997-10-01

    We have studied the possibility of using the method of double-position optical sounding for observation of inhomogeneities in an absorption index of a turbid medium at very large optical depths where the light field becomes isotropic. Formulas for calculating the image inhomogeneity, its contrast, signal-to-noise ratio, sighting distance, and an optimal “radiator-receiver” base have been obtained. We propose a system of double-position sounding with a rotary base, which allows us to improve the probability of detecting an inhomogeneity and finding its location with a higher accuracy. We show that the method of continuous optical sounding can be used for observation of inhomogeneities in living tissues at depths of several tens of transport paths.

  16. Theory of Covalent Adsorbate Frontier Orbital Energies on Functionalized Light-Absorbing Semiconductor Surfaces.

    PubMed

    Yu, Min; Doak, Peter; Tamblyn, Isaac; Neaton, Jeffrey B

    2013-05-16

    Functional hybrid interfaces between organic molecules and semiconductors are central to many emerging information and solar energy conversion technologies. Here we demonstrate a general, empirical parameter-free approach for computing and understanding frontier orbital energies - or redox levels - of a broad class of covalently bonded organic-semiconductor surfaces. We develop this framework in the context of specific density functional theory (DFT) and many-body perturbation theory calculations, within the GW approximation, of an exemplar interface, thiophene-functionalized silicon (111). Through detailed calculations taking into account structural and binding energetics of mixed-monolayers consisting of both covalently attached thiophene and hydrogen, chlorine, methyl, and other passivating groups, we quantify the impact of coverage, nonlocal polarization, and interface dipole effects on the alignment of the thiophene frontier orbital energies with the silicon band edges. For thiophene adsorbate frontier orbital energies, we observe significant corrections to standard DFT (∼1 eV), including large nonlocal electrostatic polarization effects (∼1.6 eV). Importantly, both results can be rationalized from knowledge of the electronic structure of the isolated thiophene molecule and silicon substrate systems. Silicon band edge energies are predicted to vary by more than 2.5 eV, while molecular orbital energies stay similar, with the different functional groups studied, suggesting the prospect of tuning energy alignment over a wide range for photoelectrochemistry and other applications.

  17. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    SciTech Connect

    Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

    2015-01-01

    The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

  18. Estimating absorbing black carbon and organic carbon optical properties from AERONET and MISR data over East Asia

    NASA Astrophysics Data System (ADS)

    Chen, B.; Ramanathan, V.; Huang, J.; Zhang, G. J.; Xu, Y.

    2011-12-01

    The radiative forcing due to carbonaceous aerosols is one of the largest source of uncertainties in global and regional climate change. Black carbon and organic carbon from biomass and fossil fuel are two major types of carbonaceous aerosols. In this study we use available ground based and satellite observations to infer the optical properties of black and organic carbon. NASA's AERONET and MISR data over East Asia provide the observational basis. We use the spectral variations in the observed aerosol extinction optical depth and absorption optical depth to categorize the optical properties including their mixing state with other aerosols such as dust and other inorganic aerosols. We create 8 different categories of aerosol mixtures: Dust, Biomass Burning, Fossil Fuel, Aged Fossil Fuel, Mixed Dust with Biomass Burning, Mixed Dust with Aged Fossil Fuel, Mixed Biomass Burning with Fossil Fuel, and Mixed Dust, Biomass Burning, with Fossil Fuel, over the following 6 regions of East Asia: Nepal, Gobi, North Industrial China, South Industrial China, Southeast Asia, and Korea/Japan. Our results are compared with independent surface observations over China using Aethalometers and Single Particle Soot Photometers.

  19. Photoprotection of reaction centers: thermal dissipation of absorbed light energy vs charge separation in lichens.

    PubMed

    Heber, Ulrich; Soni, Vineet; Strasser, Reto J

    2011-05-01

    During desiccation, fluorescence emission and stable light-dependent charge separation in the reaction centers (RCs) of photosystem II (PSII) declined strongly in three different lichens: in Parmelia sulcata with an alga as the photobiont, in Peltigera neckeri with a cyanobacterium and in the tripartite lichen Lobaria pulmonaria. Most of the decline of fluorescence was caused by a decrease in the quantum efficiency of fluorescence emission. It indicated the activation of photoprotective thermal energy dissipation. Photochemical activity of the RCs was retained even after complete desiccation. It led to light-dependent absorption changes and found expression in reversible increases in fluorescence or in fluorescence quenching. Lowering the temperature changed the direction of fluorescence responses in P. sulcata. The observations are interpreted to show that reversible light-induced increases in fluorescence emission in desiccated lichens indicate the functionality of the RCs of PSII. Photoprotection is achieved by the drainage of light energy to dissipating centers outside the RCs before stable charge separation can take place. Reversible quenching of fluorescence by strong illumination is suggested to indicate the conversion of the RCs from energy conserving to energy dissipating units. This permits them to avoid photoinactivation. On hydration, re-conversion occurs to energy-conserving RCs.

  20. Simple method of fabricating copper oxide selective absorber films for photothermal conversion of solar energy

    SciTech Connect

    Banerjee, H.D.; Viswanathan, R.; Rao, D.R.; Acharya, H.N.

    1988-11-01

    Highly stable selective absorptive coatings of copper oxides were deposited on commercially available galvanized iron substrates by a dip-and-dry technique. The optothermal, structural, and optical properties of these films were investigated. The deposition parameters for an optimum selective absorptive film were determined. A typical such coating gave solar absorptance (AM1) of 0.91 and thermal emittance (100/sup 0/C) of 0.17. Up to 300/sup 0/C, the film was adherent and stable, having a top layer of CuO and an under layer of Cu/sub x/O of varying composition (x=1 to 2). However, increasing the temperature beyond 400/sup 0/C converted the film to CuO only.

  1. Force, torque, and absorbed energy for a body of arbitrary shape and constitution in an electromagnetic radiation field

    NASA Astrophysics Data System (ADS)

    Farsund, Ø.; Felderhof, B. U.

    1996-02-01

    The force and torque exerted on a body of arbitrary shape and constitution by a stationary radiation field are in principle given by integrals of Minkowski's stress tensor over a surface surrounding the body. Similarly the absorbed energy is given by an integral of the Poynting vector. These integrals are notoriously difficult to evaluate, and so far only spherical bodies have been considered. It is shown here that the integrals may be cast into a simpler form by use of Debye potentials. General expressions for the integrals are derived as sums of bilinear expressions in the coefficients of the expansion of the incident and scattered waves in terms of vector spherical waves. The expressions are simplified for small particles, such as atoms, for which the electric dipole approximation may be used. It is shown that the calculation is also relevant for bodies with nonlinear electromagnetic response.

  2. Time-domain reflectance diffuse optical tomography with Mellin-Laplace transform for experimental detection and depth localization of a single absorbing inclusion.

    PubMed

    Puszka, Agathe; Hervé, Lionel; Planat-Chrétien, Anne; Koenig, Anne; Derouard, Jacques; Dinten, Jean-Marc

    2013-04-01

    We show how to apply the Mellin-Laplace transform to process time-resolved reflectance measurements for diffuse optical tomography. We illustrate this method on simulated signals incorporating the main sources of experimental noise and suggest how to fine-tune the method in order to detect the deepest absorbing inclusions and optimize their localization in depth, depending on the dynamic range of the measurement. To finish, we apply this method to measurements acquired with a setup including a femtosecond laser, photomultipliers and a time-correlated single photon counting board. Simulations and experiments are illustrated for a probe featuring the interfiber distance of 1.5 cm and show the potential of time-resolved techniques for imaging absorption contrast in depth with this geometry.

  3. Quantum-Kinetic Approach to Deriving Optical Bloch Equations for Light Emitters in a Weakly Absorbing Dielectric

    NASA Astrophysics Data System (ADS)

    Gladush, M. G.

    2015-09-01

    We obtained the system of Maxwell-Bloch equations (MB) that describe the interaction of cw laser with optically active impurity centers (particles) embedded in a dielectric material. The dielectric material is considered as a continuous medium with sufficient laser detuning from its absorption lines. The model takes into account the effects associated with both the real and the imaginary part of the dielectric constant of the material. MB equations were derived within a many-particle quantum-kinetic formalism, which is based on Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for reduced density matrices and correlation operators of material particles and the quantized radiation field modes. It is shown that this method is beneficial to describe the effects of individual and collective behavior of the light emitters and requires no phenomenological procedures. It automatically takes into account the characteristics associated with the presence of non-resonant and resonant particles filling the space between the optical centers.

  4. Unidirectional perfect absorber

    PubMed Central

    Jin, L.; Wang, P.; Song, Z.

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  5. Unidirectional perfect absorber

    NASA Astrophysics Data System (ADS)

    Jin, L.; Wang, P.; Song, Z.

    2016-09-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  6. Unidirectional perfect absorber.

    PubMed

    Jin, L; Wang, P; Song, Z

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  7. Unidirectional perfect absorber.

    PubMed

    Jin, L; Wang, P; Song, Z

    2016-09-12

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  8. Quantitation of absorbed or deposited materials on a substrate that measures energy deposition

    DOEpatents

    Grant, Patrick G.; Bakajin, Olgica; Vogel, John S.; Bench, Graham

    2005-01-18

    This invention provides a system and method for measuring an energy differential that correlates to quantitative measurement of an amount mass of an applied localized material. Such a system and method remains compatible with other methods of analysis, such as, for example, quantitating the elemental or isotopic content, identifying the material, or using the material in biochemical analysis.

  9. Estimate of the Impact of Absorbing Aerosol Over Cloud on the MODIS Retrievals of Cloud Optical Thickness and Effective Radius Using Two Independent Retrievals of Liquid Water Path

    NASA Technical Reports Server (NTRS)

    Wilcox, Eric M.; Harshvardhan; Platnick, Steven

    2009-01-01

    Two independent satellite retrievals of cloud liquid water path (LWP) from the NASA Aqua satellite are used to diagnose the impact of absorbing biomass burning aerosol overlaying boundary-layer marine water clouds on the Moderate Resolution Imaging Spectrometer (MODIS) retrievals of cloud optical thickness (tau) and cloud droplet effective radius (r(sub e)). In the MODIS retrieval over oceans, cloud reflectance in the 0.86-micrometer and 2.13-micrometer bands is used to simultaneously retrieve tau and r(sub e). A low bias in the MODIS tau retrieval may result from reductions in the 0.86-micrometer reflectance, which is only very weakly absorbed by clouds, owing to absorption by aerosols in cases where biomass burning aerosols occur above water clouds. MODIS LWP, derived from the product of the retrieved tau and r(sub e), is compared with LWP ocean retrievals from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E), determined from cloud microwave emission that is transparent to aerosols. For the coastal Atlantic southern African region investigated in this study, a systematic difference between AMSR-E and MODIS LWP retrievals is found for stratocumulus clouds over three biomass burning months in 2005 and 2006 that is consistent with above-cloud absorbing aerosols. Biomass burning aerosol is detected using the ultraviolet aerosol index from the Ozone Monitoring Instrument (OMI) on the Aura satellite. The LWP difference (AMSR-E minus MODIS) increases both with increasing tau and increasing OMI aerosol index. During the biomass burning season the mean LWP difference is 14 g per square meters, which is within the 15-20 g per square meter range of estimated uncertainties in instantaneous LWP retrievals. For samples with only low amounts of overlaying smoke (OMI AI less than or equal to 1) the difference is 9.4, suggesting that the impact of smoke aerosols on the mean MODIS LWP is 5.6 g per square meter. Only for scenes with OMI aerosol index greater than 2 does the

  10. Design and testing of an energy-absorbing crewseat for the F/FB-111 aircraft. Volume 3: Data from crew module testing

    NASA Technical Reports Server (NTRS)

    Shane, S. J.

    1985-01-01

    Over the past years, several papers and reports have documented the unacceptably high injury rate during the escape sequence (including the ejection and ground impact) of the crew module for F/FB-111 aircraft. This report documents a program to determine if the injury potential could be reduced by replacing the existing crewseats with energy absorbing crewseats. An energy absorbing test seat was designed using much of the existing seat hardware. An extensive dynamic seat test series, designed to duplicate various crew module ground impact conditions, was conducted at a sled test facility. Comparative tests with operational F-111 crewseats were also conducted. After successful dynamic testing of the seat, more testing was conducted with the seats mounted in an F-111 crew module. Both swing tests and vertical drop tests werre conducted. The vertical drop tests were used to obtain comparative data between the energy absorbing and operational seats.

  11. Spider orb webs rely on radial threads to absorb prey kinetic energy.

    PubMed

    Sensenig, Andrew T; Lorentz, Kimberly A; Kelly, Sean P; Blackledge, Todd A

    2012-08-01

    The kinetic energy of flying insect prey is a formidable challenge for orb-weaving spiders. These spiders construct two-dimensional, round webs from a combination of stiff, strong radial silk and highly elastic, glue-coated capture spirals. Orb webs must first stop the flight of insect prey and then retain those insects long enough to be subdued by the spiders. Consequently, spider silks rank among the toughest known biomaterials. The large number of silk threads composing a web suggests that aerodynamic dissipation may also play an important role in stopping prey. Here, we quantify energy dissipation in orb webs spun by diverse species of spiders using data derived from high-speed videos of web deformation under prey impact. By integrating video data with material testing of silks, we compare the relative contributions of radial silk, the capture spiral and aerodynamic dissipation. Radial silk dominated energy absorption in all webs, with the potential to account for approximately 100 per cent of the work of stopping prey in larger webs. The most generous estimates for the roles of capture spirals and aerodynamic dissipation show that they rarely contribute more than 30 per cent and 10 per cent of the total work of stopping prey, respectively, and then only for smaller orb webs. The reliance of spider orb webs upon internal energy absorption by radial threads for prey capture suggests that the material properties of the capture spirals are largely unconstrained by the selective pressures of stopping prey and can instead evolve freely in response to alternative functional constraints such as adhering to prey.

  12. Spider orb webs rely on radial threads to absorb prey kinetic energy

    PubMed Central

    Sensenig, Andrew T.; Lorentz, Kimberly A.; Kelly, Sean P.; Blackledge, Todd A.

    2012-01-01

    The kinetic energy of flying insect prey is a formidable challenge for orb-weaving spiders. These spiders construct two-dimensional, round webs from a combination of stiff, strong radial silk and highly elastic, glue-coated capture spirals. Orb webs must first stop the flight of insect prey and then retain those insects long enough to be subdued by the spiders. Consequently, spider silks rank among the toughest known biomaterials. The large number of silk threads composing a web suggests that aerodynamic dissipation may also play an important role in stopping prey. Here, we quantify energy dissipation in orb webs spun by diverse species of spiders using data derived from high-speed videos of web deformation under prey impact. By integrating video data with material testing of silks, we compare the relative contributions of radial silk, the capture spiral and aerodynamic dissipation. Radial silk dominated energy absorption in all webs, with the potential to account for approximately 100 per cent of the work of stopping prey in larger webs. The most generous estimates for the roles of capture spirals and aerodynamic dissipation show that they rarely contribute more than 30 per cent and 10 per cent of the total work of stopping prey, respectively, and then only for smaller orb webs. The reliance of spider orb webs upon internal energy absorption by radial threads for prey capture suggests that the material properties of the capture spirals are largely unconstrained by the selective pressures of stopping prey and can instead evolve freely in response to alternative functional constraints such as adhering to prey. PMID:22431738

  13. Simulating the Response of a Composite Honeycomb Energy Absorber. Part 1; Dynamic Crushing of Components and Multi-Terrain Impacts

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    This paper describes the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar (Registered Trademark) honeycomb to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed until needed for deployment. Experimental evaluation of the DEA included dynamic crush tests of multi-cell components and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto multi-terrain. Finite element models of the test articles were developed and simulations were performed using the transient dynamic code, LSDYNA (Registered Trademark). In each simulation, the DEA was represented using shell elements assigned two different material properties: Mat 24, an isotropic piecewise linear plasticity model, and Mat 58, a continuum damage mechanics model used to represent laminated composite fabrics. DEA model development and test-analysis comparisons are presented.

  14. The Development of Two Composite Energy Absorbers for Use in a Transport Rotorcraft Airframe Crash Testbed (TRACT 2) Full-Scale Crash Test

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Jackson, Karen E.; Annett, Martin S.; Seal, Michael D.; Fasanella, Edwin L.

    2015-01-01

    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45deg/-45deg/-45deg/+45deg] with respect to the vertical direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction, and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soft soil. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.

  15. Structure property relations and finite element analysis of ram horns: A pathway to energy absorbent bio-inspired designs

    NASA Astrophysics Data System (ADS)

    Trim, Michael Wesley

    2011-12-01

    A recently emerging engineering design approach entails studying the brilliant design solutions found in nature with an aim to develop design strategies that mimic the remarkable efficiency found in biological systems. This novel engineering approach is referred to as bio-inspired design. In this context, the present study quantifies the structure-property relations in bighorn sheep (Ovis canadensis) horn keratin, qualitatively characterizes the effects of a tapered spiral geometry (the same form as in a ram's horn) on pressure wave and impulse mitigation, describes the stress attenuation capabilities and features of a ram's head, and compares the structures and mechanical properties of some energy absorbent natural materials. The results and ideas presented herein can be used in the development of lightweight, energy absorbent, bio-inspired material designs. Among the most notable conclusions garnered from this research include: (1) Horn keratin behaves in an anisotropic manner similar to a long fiber composite. (2) Moisture content dominates the material behavior of horn keratin more than anisotropy, age, and stress-state. This makes moisture content the most influential parameter on the mechanical behavior of horn keratin. (3) Tapered geometries mitigate the impulse generated by a stress wave due to the convergent boundary and a continually decreasing cross sectional area such that greater uniaxial stresses and subsequent axial deformation arises. Furthermore, the tapered geometry introduces small shear stresses that further decrease the impulse. (4) Spiral geometries attenuate the impulse generated by a stress wave by the introduction of shear stresses along the length of the spiral. These shear stresses introduce transverse displacements that function to lessen the impulse. (5) When both a taper and spiral geometry are used in a design, their synergistic effects multiplicatively reduce the impulse (6) Tough natural materials have a high porosity, which makes

  16. Derivation of optical properties of carbonaceous aerosols by monochromated electron energy-loss spectroscopy.

    PubMed

    Zhu, Jiangtao; Crozier, Peter A; Ercius, Peter; Anderson, James R

    2014-06-01

    Monochromated electron energy-loss spectroscopy (EELS) is employed to determine the optical properties of carbonaceous aerosols from the infrared to the ultraviolet region of the spectrum. It is essential to determine their optical properties to understand their accurate contribution to radiative forcing for climate change. The influence of surface and interface plasmon effects on the accuracy of dielectric data determined from EELS is discussed. Our measurements show that the standard thin film formulation of Kramers-Kronig analysis can be employed to make accurate determination of the dielectric function for carbonaceous particles down to about 40 nm in size. The complex refractive indices of graphitic and amorphous carbon spherules found in the atmosphere were determined over the wavelength range 200-1,200 nm. The graphitic carbon was strongly absorbing black carbon, whereas the amorphous carbon shows a more weakly absorbing brown carbon profile. The EELS approach provides an important tool for exploring the variation in optical properties of atmospheric carbon. PMID:24735494

  17. Optical waveguide solar energy system for lunar material processing

    SciTech Connect

    Nakamura, T.; Senior, C.L.; Shoji, J.M.; Waldron, R.D.

    1995-11-01

    This paper summarizes the study on the optical waveguide (OW) solar energy system for lunar material processing. In the OW solar energy system, solar radiation is collected by the concentrator which transfers the concentrated solar radiation to the OW transmission line consisting of low-loss optical fibers and related optical components. The OW line transmits the high intensity solar radiation to the thermal reactor of the lunar materials processing plant. Based on the results discussed in this paper the authors conclude that the OW solar energy system is a viable concept which can effectively utilize solar energy for lunar material processing.

  18. Comparison of the NMIJ and the ARPANSA standards for absorbed dose to water in high-energy photon beams.

    PubMed

    Shimizu, M; Morishita, Y; Kato, M; Tanaka, T; Kurosawa, T; Takata, N; Saito, N; Ramanathan, G; Harty, P D; Oliver, C; Wright, T; Butler, D J

    2015-04-01

    The authors report the results of an indirect comparison of the standards of absorbed dose to water in high-energy photon beams from a clinical linac and (60)Co radiation beam performed between the National Metrology Institute of Japan (NMIJ) and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Three ionisation chambers were calibrated by the NMIJ in April and June 2013 and by the ARPANSA in May 2013. The average ratios of the calibration coefficients for the three ionisation chambers obtained by the NMIJ to those obtained by the ARPANSA were 0.9994, 1.0040 and 1.0045 for 6-, 10- and 15-MV (18 MV at the ARPANSA) high-energy photon beams, respectively. The relative standard uncertainty of the value was 7.2 × 10(-3). The ratio for (60)Co radiation was 0.9986(66), which is consistent with the results published in the key comparison of BIPM.RI(I)-K4.

  19. Determination of absorbed dose in high-energy electron and photon radiation by means of an uncalibrated ionization chamber.

    PubMed

    Klevenhagen, S C

    1991-02-01

    The aim of this study was to develop a dosimetric method based on an ionization chamber which has an uncalibrated sensitive volume but which behaves as a Bragg-Gray cavity in high-energy radiation. The new type of chamber developed in the course of this study has a variable volume and is constructed from water-similar materials. It can be used in a water phantom directly in a beam of a therapy megavoltage machine under clinical conditions. The chamber allows absorbed dose to be determined from first principles, overcoming many of the problems encountered with conventional dosimetry based on calibrated chambers. The study involved an intercomparison of the performance of the new chamber in high-energy electron and photon radiation with the conventional calibrated chambers employed according to the established dosimetry protocols. Good agreement was found between these dosimetric methods and it may therefore be concluded that the method developed in this work can be successfully employed for absolute dosimetry. The new chamber is a promising device for research in various aspects of dosimetry.

  20. High-power, efficient, semiconductor saturable absorber mode-locked Yb:KGW bulk laser.

    PubMed

    Kisel, V E; Rudenkov, A S; Pavlyuk, A A; Kovalyov, A A; Preobrazhenskii, V V; Putyato, M A; Rubtsova, N N; Semyagin, B R; Kuleshov, N V

    2015-06-15

    A high-power, diode-pumped, semiconductor saturable absorber mode-locked Yb(5%):KGW bulk laser was demonstrated with high optical-to-optical efficiency. Average output power as high as 8.8 W with optical-to-optical efficiency of 37.5% was obtained for Nm-polarized laser output with 162 fs pulse duration and 142 nJ pulse energy at a pulse repetition frequency of 62 MHz. For Np polarization, 143 fs pulses with pulse energy of 139 nJ and average output power of up to 8.6 W with optical-to-optical efficiency of 31% were generated. PMID:26076242

  1. Fluorescence resonant energy transfer in the optical near field

    SciTech Connect

    Colas des Francs, Gerard; Girard, Christian; Martin, Olivier J.F.

    2003-05-01

    We develop a versatile theoretical framework for the study of fluorescence resonant energy transfer (FRET, or Foerster transfer) in complex environments, under arbitrary illumination, including optical near fields. By combining the field-susceptibility formalism with the optical Bloch equations method, we derive general equations for the computation of the energy transfer between pairs of donor-acceptor molecules excited by optical near fields and placed in a complex geometry. This approach allows accounting for both the variations of the molecular population rates and the influence of the environment. Several examples illustrate the ability of the technique to analyze recent FRET experiments performed in the optical near field.

  2. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams

    NASA Astrophysics Data System (ADS)

    Pinto, M.; Pimpinella, M.; Quini, M.; D'Arienzo, M.; Astefanoaei, I.; Loreti, S.; Guerra, A. S.

    2016-02-01

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm-2, and at a dose rate of about 0.15 Gy min-1, results of calorimetric measurements of absorbed dose to water, D w, were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D w and D wK were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D w uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D w, it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  3. A patient-specific aperture system with an energy absorber for spot scanning proton beams: Verification for clinical application

    SciTech Connect

    Yasui, Keisuke; Toshito, Toshiyuki; Omachi, Chihiro; Kibe, Yoshiaki; Hayashi, Kensuke; Shibata, Hiroki; Tanaka, Kenichiro; Nikawa, Eiki; Asai, Kumiko; Shimomura, Akira; Kinou, Hideto; Isoyama, Shigeru; Mizoe, Jun-etsu; Fujii, Yusuke; Takayanagi, Taisuke; Hirayama, Shusuke; Nagamine, Yoshihiko; Shibamoto, Yuta; Komori, Masataka

    2015-12-15

    Purpose: In the authors’ proton therapy system, the patient-specific aperture can be attached to the nozzle of spot scanning beams to shape an irradiation field and reduce lateral fall-off. The authors herein verified this system for clinical application. Methods: The authors prepared four types of patient-specific aperture systems equipped with an energy absorber to irradiate shallow regions less than 4 g/cm{sup 2}. The aperture was made of 3-cm-thick brass and the maximum water equivalent penetration to be used with this system was estimated to be 15 g/cm{sup 2}. The authors measured in-air lateral profiles at the isocenter plane and integral depth doses with the energy absorber. All input data were obtained by the Monte Carlo calculation, and its parameters were tuned to reproduce measurements. The fluence of single spots in water was modeled as a triple Gaussian function and the dose distribution was calculated using a fluence dose model. The authors compared in-air and in-water lateral profiles and depth doses between calculations and measurements for various apertures of square, half, and U-shaped fields. The absolute doses and dose distributions with the aperture were then validated by patient-specific quality assurance. Measured data were obtained by various chambers and a 2D ion chamber detector array. Results: The patient-specific aperture reduced the penumbra from 30% to 70%, for example, from 34.0 to 23.6 mm and 18.8 to 5.6 mm. The calculated field width for square-shaped apertures agreed with measurements within 1 mm. Regarding patient-specific aperture plans, calculated and measured doses agreed within −0.06% ± 0.63% (mean ± SD) and 97.1% points passed the 2%-dose/2 mm-distance criteria of the γ-index on average. Conclusions: The patient-specific aperture system improved dose distributions, particularly in shallow-region plans.

  4. First international comparison of primary absorbed dose to water standards in the medium-energy X-ray range

    NASA Astrophysics Data System (ADS)

    Büermann, Ludwig; Guerra, Antonio Stefano; Pimpinella, Maria; Pinto, Massimo; de Pooter, Jacco; de Prez, Leon; Jansen, Bartel; Denoziere, Marc; Rapp, Benjamin

    2016-01-01

    This report presents the results of the first international comparison of primary measurement standards of absorbed dose to water for the medium-energy X-ray range. Three of the participants (VSL, PTB, LNE-LNHB) used their existing water calorimeter based standards and one participant (ENEA) recently developed a new standard based on a water-graphite calorimeter. The participants calibrated three transfer chambers of the same type in terms of absorbed dose to water (NDw) and in addition in terms of air kerma (NK) using the CCRI radiation qualities in the range 100 kV to 250 kV. The additional NK values were intended to be used for a physical analysis of the ratios NDw/NK. All participants had previously participated in the BIPM.RI(I)-K3 key comparison of air kerma standards. Ratios of pairs of NMI's NK results of the current comparison were found to be consistent with the corresponding key comparison results within the expanded uncertainties of 0.6 % - 1 %. The NDw results were analysed in terms of the degrees of equivalence with the comparison reference values which were calculated for each beam quality as the weighted means of all results. The participant's results were consistent with the reference value within the expanded uncertainties. However, these expanded uncertainties varied significantly and ranged between about 1-1.8 % for the water calorimeter based standards and were estimated at 3.7 % for the water-graphite calorimeter. It was shown previously that the ratios NDw/NK for the type of ionization chamber used as transfer chamber in this comparison were very close (within less than 1 %) to the calculated values of (bar muen/ρ)w,ad, the mean values of the water-to-air ratio of the mass-energy-absorption coefficients at the depth d in water. Some of the participant's results deviated significantly from the expected behavior. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of

  5. Calculation of the absorbed dose and dose equivalent induced by medium energy neutrons and protons and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Bishop, B. L.

    1972-01-01

    Monte Carlo calculations have been carried out to determine the absorbed dose and dose equivalent for 592-MeV protons incident on a cylindrical phantom and for neutrons from 580-MeV proton-Be collisions incident on a semi-infinite phantom. For both configurations, the calculated depth dependence of the absorbed dose is in good agreement with experimental data.

  6. Optical materials technology for energy efficiency and solar energy conversion VI; Proceedings of the Meeting, San Diego, CA, Aug. 18, 19, 1987

    NASA Astrophysics Data System (ADS)

    Lampert, Carl M.

    1987-01-01

    Recent advances in optical materials for energy conversion are discussed in reviews and reports. Sections are devoted to transparent IR reflectors and large-area deposition technology; optical switching materials; holographic films and reflector technology; and absorbers, photovoltaics, and solar materials. Topics addressed include bendable Ag-based low-emissivity coating on glass, plasma oxidation of Ag and Zn in low-emissivity stacks, smart window coatings, improved colored-state reflectivity in lithiated WO3 films, photochromic and thermochromic pigments for solar absorbing-reflecting coatings, the design and optimization of holographic solar concentrators, the properties of black cobalt coatings, and interface states and Fermi-level pinning in CdSe thin-film solar cells.

  7. Design and testing of an energy-absorbing crewseat for the F/FB-111 aircraft. Volume 2: Data from seat testing

    NASA Technical Reports Server (NTRS)

    Shane, S. J.

    1985-01-01

    The unacceptably high injury rate during the escape sequence (including the ejection and ground impact) of the crew module for F/FB-111 aircraft is reviewed. A program to determine if the injury potential could be reduced by replacing the existing crewseats with energy absorbing crewseats is presented. An energy absorbing test seat is designed using much of the existing seat hardware. An extensive dynamic seat test series, designed to duplicate various crew module ground impact conditions is conducted at a sled test facility. Comparative tests with operational F-111 crewseats are also conducted. After successful dynamic testing of the seat, more testing is conducted with the seats mounted in an F-111 crew module. Both swing tests and vertical drop tests are conducted. The vertical drop tests are used to obtain comparative data between the energy absorbing and operational seats. Volume 1 describes the energy absorbing test seat and testing conducted, and evaluates the data from both test series. Volume 2 presents the data obtained during the seat test series, while Volume 3 presents the data from the crew module test series.

  8. Mode-specific study of nanoparticle-mediated optical interactions in an absorber/metal thin film system

    NASA Astrophysics Data System (ADS)

    Yu, Binxing; Woo, Joseph; Kong, Michael; O'Carroll, Deirdre M.

    2015-07-01

    We present an experimental and theoretical study of the electromagnetic interaction between a single gold nanoparticle and a thin gold substrate separated by a sub-50 nm-thick optically absorptive polythiophene spacer layer. Single-particle dark-field scattering spectra show distinct resonance features assigned to four different modes: a horizontal image dipole coupling mode, a vertical image dipole coupling mode and horizontal and vertical coupling modes between localized surface plasmon resonances (LSPRs) and surface plasmon polaritons (SPPs). Relatively broadband spectral tuning of the modes can be achieved by modification of the thickness of either the absorptive spacer or the underlying metal film. Dark-field images also reveal the existence of particles for which the signal of the horizontal image dipole coupling mode is suppressed. This is attributed to partial-embedding of gold nanoparticles into the polythiophene spacer and leads to higher scattered light intensities at longer wavelengths. Full-field electromagnetic simulations show good agreement with the experimental results for the various sample conditions. Strong local electric field confinement at longer wavelengths in the polythiophene spacer, due to the vertical image dipole coupling mode and a LSPR-SPP coupling mode, is also observed in simulations and contributes to absorption enhancement in the spacer. Furthermore, we find absorption enhancement in the semiconducting polythiophene spacer increases with decreasing thickness, indicating the increased light trapping ability of the gold nanoparticles for ultra-thin semiconductor layers. The need for ever-thinner semiconductor layers in optoelectronic devices requires effective light trapping at deeply-subwavelength scales. This work demonstrates that light trapping in sub-50 nm-thick semiconductor layers is possible using a ``sphere-on-plane'' system and offers insight into how coupling modes can be manipulated in this system.We present an

  9. Erbium concentration dependent absorbance in tellurite glass

    SciTech Connect

    Sazali, E. S. Rohani, M. S. Sahar, M. R. Arifin, R. Ghoshal, S. K. Hamzah, K.

    2014-09-25

    Enhancing the optical absorption cross-section in topically important rare earth doped tellurite glasses is challenging for photonic devices. Controlled synthesis and detailed characterizations of the optical properties of these glasses are important for the optimization. The influence of varying concentration of Er{sup 3+} ions on the absorbance characteristics of lead tellurite glasses synthesized via melt-quenching technique are investigated. The UV-Vis absorption spectra exhibits six prominent peaks centered at 490, 526, 652, 800, 982 and 1520 nm ascribed to the transitions in erbium ion from the ground state to the excited states {sup 4}F{sub 7/2}, {sup 2}H{sub 11/2}, {sup 4}F{sub 9/2}, {sup 4}I{sub 9/2}, {sup 2}H{sub 11/2} and {sup 4}I{sub 13/2}, respectively. The results are analyzed by means of optical band gap E{sub g} and Urbach energy E{sub u}. The values of the energy band gap are found decreased from 2.82 to 2.51 eV and the Urbach energy increased from 0.15 to 0.24 eV with the increase of the Er{sub 2}O{sub 3} concentration from 0 to 1.5 mol%. The excellent absorbance of the prepared tellurite glasses makes them suitable for fabricating solid state lasers.

  10. System-Integrated Finite Element Analysis of a Full-Scale Helicopter Crash Test with Deployable Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Polanco, Michael A.

    2010-01-01

    A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26-ft/sec and 40-ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test predictions and continuing through post-test validation.

  11. High energy laser optics manufacturing: a preliminary study

    SciTech Connect

    Baird, E.D.

    1980-07-01

    This report presents concepts and methods, major conclusions, and major recommendations concerning the fabrication of high energy laser optics (HELO) that are to be machined by the Large Optics Diamond Turning Machine (LODTM) at the Lawrence Livermore National Laboratory (LLNL). Detailed discussions of concepts and methods proposed for metrological operations, polishing of reflective surfaces, mounting of optical components, construction of mirror substrates, and applications of coatings are included.

  12. Selective optical coatings for solar collectors

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1980-01-01

    For best performance, energy-absorbing surface of solar collector should be characterized by high ratio of solar absorptance to thermal emitance. Report on optical characteristics of several chemical treatments and electrodeposited coatings for metal solar-absorbing surfaces should interest designers and users of solar-energy systems. Moisture resistance of some coatings is also reported.

  13. Rugged Packaging for Damage Resistant Inertial Fusion Energy Optics

    SciTech Connect

    Stelmack, Larry

    2003-11-17

    The development of practical fusion energy plants based on inertial confinement with ultraviolet laser beams requires durable, stable final optics that will withstand the harsh fusion environment. Aluminum-coated reflective surfaces are fragile, and require hard overcoatings resistant to contamination, with low optical losses at 248.4 nanometers for use with high-power KrF excimer lasers. This program addresses the definition of requirements for IFE optics protective coatings, the conceptual design of the required deposition equipment according to accepted contamination control principles, and the deposition and evaluation of diamondlike carbon (DLC) test coatings. DLC coatings deposited by Plasma Immersion Ion Processing were adherent and abrasion-resistant, but their UV optical losses must be further reduced to allow their use as protective coatings for IFE final optics. Deposition equipment for coating high-performance IFE final optics must be designed, constructed, and operated with contamination control as a high priority.

  14. Optical and time-resolved electron paramagnetic resonance studies of the excited states of a UV-B absorber (4-methylbenzylidene)camphor.

    PubMed

    Kikuchi, Azusa; Shibata, Kenji; Kumasaka, Ryo; Yagi, Mikio

    2013-02-21

    The excited states of UV-B absorber (4-methylbenzylidene)camphor (MBC) have been studied through measurements of UV absorption, phosphorescence, triplet-triplet (T-T) absorption, and steady-state and time-resolved electron paramagnetic resonance spectra in ethanol. The energy level and lifetime of the lowest excited triplet (T(1)) state of MBC were determined. The energy level of the T(1) state of MBC is much lower than that of photolabile 4-tert-butyl-4'-methoxydibenzoylmethane. The weak phosphorescence and strong time-resolved EPR signals, and T-T absorption band of MBC were observed. These facts suggest that the significant proportion of the lowest excited singlet (S(1)) molecules undergoes intersystem crossing to the T(1) state and the deactivation process from the T(1) state is predominantly radiationless. The quantum yields of singlet oxygen production by MBC determined by time-resolved near-IR luminescence measurements are 0.05 ± 0.01 and 0.06 ± 0.01 in ethanol and in acetonitrile, respectively. The photostability of MBC arises from the (3)ππ* character in the T(1) state. The zero-field splitting parameters in the T(1) state are D = 0.0901 cm(-1) and E = -0.0498 cm(-1). The sublevel preferentially populated by intersystem crossing is T(y) (y close to in-plane short axis and to the C═O direction). PMID:23320917

  15. Dependence of the absorption of pulsed CO{sub 2}-laser radiation by silane on wavenumber, fluence, pulse duration, temperature, optical path length, and pressure of absorbing and nonabsorbing gases

    SciTech Connect

    Blazejowski, J.; Gruzdiewa, L.; Rulewski, J.; Lampe, F.W.

    1995-05-15

    The absorption of three lines [{ital P}(20), 944.2 cm{sup {minus}1}; {ital P}(14), 949.2 cm{sup {minus}1}; and {ital R}(24), 978.5 cm{sup {minus}1}] of the pulsed CO{sub 2} laser (00{sup 0}1--10{sup 0}0 transition) by SiH{sub 4} was measured at various pulse energy, pulse duration, temperature, optical path length, and pressure of the compound and nonabsorbing foreign gases. In addition, low intensity infrared absorption spectrum of silane was compared with high intensity absorption characteristics for all lines of the pulsed CO{sub 2} laser. The experimental dependencies show deviations from the phenomenological Beer--Lambert law which can be considered as arising from the high intensity of an incident radiation and collisions of absorbing molecules with surroundings. These effects were included into the expression, being an extended form of the Beer--Lambert law, which reasonably approximates all experimental data. The results, except for extending knowledge on the interaction of a high power laser radiation with matter, can help understanding and planning processes leading to preparation of silicon-containing technologically important materials.

  16. Doubly Q-switched Ho:LuAG laser with acoustic-optic modulator and Cr²⁺:ZnS saturable absorber.

    PubMed

    Cui, Z; Duan, X M; Yao, B Q; Yang, H Y; Li, J; Yuan, J H; Dai, T Y; Li, C Y; Pan, Y B

    2015-12-01

    A doubly Q-switched (DQS) Ho:LuAG laser resonantly pumped by a 1.91-μm laser was first presented with an acoustic-optic modulator (AOM) and a Cr2+:ZnS saturable absorber. A comparison among the active Q-switched (AQS), passively Q-switched (PQS), and DQS laser performances was carried out. The maximum continuous wave (CW) output power of 6 W with the central wavelength of 2100.65 nm was obtained at an incident pump power of 35.2 W. Compared with CW laser, the AQS, PQS, and DQS lasers shared the same central wavelength of 2098.34 nm under the same incident pump power. The central wavelength of the AQS and DQS lasers remained constant with the change of AOM repetition frequency (RF). When the incident pump power was 35.2 W and the AOM RF was 15 kHz, the DQS Ho:LuAG laser at a maximum RF of 2.13 kHz achieved the maximum average output power of 4.95 W. At the AOM RF of 10 kHz, the DQS Ho:LuAG laser achieved the shortest pulse width of 40.4 ns with the highest peak power of 61.5 kW. At an incident pump power of 35.2 W, the PQS Ho:LuAG laser obtained the shortest pulse width of 46.1 ns, corresponding to the RF of 2.25 kHz. Experiment results showed that the pulse width could be compressed effectively with a significant increase of peak power for a 2-μm DQS laser. PMID:26836687

  17. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    PubMed

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams. PMID:26841127

  18. Optical limiting materials

    DOEpatents

    McBranch, Duncan W.; Mattes, Benjamin R.; Koskelo, Aaron C.; Heeger, Alan J.; Robinson, Jeanne M.; Smilowitz, Laura B.; Klimov, Victor I.; Cha, Myoungsik; Sariciftci, N. Serdar; Hummelen, Jan C.

    1998-01-01

    Optical limiting materials. Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO.sub.2) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400-1100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes.

  19. Synthesis of novel fluorene-based two-photon absorbing molecules and their applications in optical data storage, microfabrication, and stimulated emission depletion

    NASA Astrophysics Data System (ADS)

    Yanez, Ciceron

    2009-12-01

    Two-photon absorption (2PA) has been used for a number of scientific and technological applications, exploiting the fact that the 2PA probability is directly proportional to the square of the incident light intensity (while one-photon absorption bears a linear relation to the incident light intensity). This intrinsic property of 2PA leads to 3D spatial localization, important in fields such as optical data storage, fluorescence microscopy, and 3D microfabrication. The spatial confinement that 2PA enables has been used to induce photochemical and photophysical events in increasingly smaller volumes and allowed nonlinear, 2PA-based, technologies to reach sub-diffraction limit resolutions. The primary focus of this dissertation is the development of novel, efficient 2PA, fluorene-based molecules to be used either as photoacid generators (PAGs) or fluorophores. A second aim is to develop more effective methods of synthesizing these compounds. As a third and final objective, the new molecules were used to develop a write-once-read many (WORM) optical data storage system, and stimulated emission depletion probes for bioimaging. In Chapter I, the microwave-assisted synthesis of triarylsulfonium salt photoacid generators (PAGs) from their diphenyliodonium counterparts is reported. The microwave-assisted synthesis of these novel sulfonium salts afforded reaction times 90 to 420 times faster than conventional thermal conditions, with photoacid quantum yields of new sulfonium PAGs ranging from 0.01 to 0.4. These PAGs were used to develop a fluorescence readout-based, nonlinear three-dimensional (3D) optical data storage system (Chapter II). In this system, writing was achieved by acid generation upon two-photon absorption (2PA) of a PAG (at 710 or 730 nm). Readout was then performed by interrogating two-photon absorbing dyes, after protonation, at 860 nm. Two-photon recording and readout of voxels was demonstrated in five and eight consecutive, crosstalk-free layers within a

  20. Optical arc sensor using energy harvesting power source

    NASA Astrophysics Data System (ADS)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  1. Separable representation of energy-dependent optical potentials

    NASA Astrophysics Data System (ADS)

    Hlophe, L.; Elster, Ch.

    2016-03-01

    Background: One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect methods, e.g., (d ,p ) reactions, should be used. Those (d ,p ) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy dependent. Potential matrix elements as well as transition matrix elements calculated with them must fulfill the reciprocity theorem. The purpose of this paper is to introduce a separable, energy-dependent representation of complex, energy-dependent optical potentials that fulfill reciprocity exactly. Methods: Momentum space Lippmann-Schwinger integral equations are solved with standard techniques to obtain the form factors for the separable representation. Results: Starting from a separable, energy-independent representation of global optical potentials based on a generalization of the Ernst-Shakin-Thaler (EST) scheme, a further generalization is needed to take into account the energy dependence. Applications to n +48Ca ,n +208Pb , and p +208Pb are investigated for energies from 0 to 50 MeV with special emphasis on fulfilling reciprocity. Conclusions: We find that the energy-dependent separable representation of complex, energy-dependent phenomenological optical potentials fulfills reciprocity exactly. In addition, taking into account the explicit energy dependence slightly improves the description of the S matrix elements.

  2. An all-fiber high-energy cladding-pumped 93 nanosecond Q-switched fiber laser using an Y 3+-doped fiber saturable absorber

    NASA Astrophysics Data System (ADS)

    Moore, Sean W.; Patterson, Brian D.; Soh, Daniel B.; Bisson, Scott E.

    2014-03-01

    We report an all-fiber passively Q-switched laser using a large mode area (LMA) Yb3+ -doped fiber claddingpumped at 915 nm and an unpumped single-mode (SM) Yb3+-doped fiber as the saturable absorber (SA). The saturable absorber SM fiber and LMA gain fiber were coupled with a fiber taper designed to match the fundamental spatial mode of the LMA fiber and the expanded LP01 mode of the single mode fiber. The amplified spontaneous (ASE) intensity propagating in the single mode SA saturates the absorption before the onset of gain depletion in the pumped fiber, switching the fiber cavity to a high Q-state and producing a pulse. Using this scheme we demonstrate a Q-switched all-fiber oscillator with 32 μJ 93 ns pulses at 1030 nm. The associated peak power is nearly two orders of magnitude larger than that reported in previous experimental studies using a single Yb+3 saturable absorber fiber. The pulse energy was amplified to 0.230 mJ using an Yb3+-doped cladding pumped fiber amplifier fusion spliced to the fiber oscillator, increasing the energy by eight fold while preserving the all-fiber architecture.

  3. Measurement of /sup 2/H/sub 2/O by IR absorbance in doubly labeled H/sub 2/O studies of energy expenditure

    SciTech Connect

    Karasov, W.H.; Han, L.R.; Munger, J.C.

    1988-07-01

    The energy expenditure of animals in their natural surroundings can be determined by measuring the turnover in body water of isotopes of oxygen and hydrogen. We evaluated the use of infrared spectrophotometry for measuring /sup 2/H/sub 2/O in small (20-microliters) water samples also labeled with 18O. For /sup 2/H/sub 2/O over the enrichment range of 0.1-1 atom%, there was a linear relationship between infrared absorbance and /sup 2/H/sub 2/O enrichment. /sup 2/H/sub 2/O enrichments could be measured with a precision and accuracy of less than or equal to 1%, using this relationship. The presence of /sup 18/O in water samples in enrichments of up to 1 atom% had no significant effect on measurement of /sup 2/H/sub 2/O by infrared absorbance. We measured the simultaneous turnover rates of /sup 2/H/sub 2/O and /sup 3/H in mice and turtles also labeled with 18O. Our results validated the use of infrared absorbance in doubly labeled water measures of energy expenditure and indicated that the fractionation factors in vivo for /sup 2/H/sub 2/O and /sup 3/H do not differ.

  4. A Proposal for a New HOM Absorber in a Straight Section of the PEP-II Low Energy Ring

    SciTech Connect

    Weathersby, S.; Kosovsky, M.; Kurita, N.; Novokhatski, A.; Seeman, J.af SLAC; /SLAC, SSRL

    2005-06-30

    Attainment of high luminosity in storage ring colliders necessitates increasing stored currents and reducing bunch lengths. Consequently, intense beam fields will scatter more power into higher order modes from beam line sources such as collimators, masks and tapers. This power penetrates into sensitive components such as a bellows, causing undesirable heating and limits machine performance. To overcome this limitation we propose incorporating ceramic absorbers in the vicinity of the bellows to damp beam induced modes while preserving a matched impedance to the beam. This is accomplished with an absorber configuration which damps TE dipole and quadrupole traveling waves while preserving TM monopole propagation. A scattering parameter analysis is presented utilizing properties of commercial grade ceramics and indicates a feasible solution.

  5. Thin-film optical initiator

    DOEpatents

    Erickson, Kenneth L.

    2001-01-01

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  6. Antimony sulphide, an absorber layer for solar cell application

    NASA Astrophysics Data System (ADS)

    Ali, N.; Hussain, Arshad; Ahmed, R.; Shamsuri, W. N. Wan; Shaari, A.; Ahmad, N.; Abbas, S. M.

    2016-01-01

    Replacement of the toxic, expensive and scarce materials with nontoxic, cheap and earth-abundant one, in solar cell absorber layer, is immensely needed to realize the vision of green and sustainable energy. Two-micrometre-thin antimony sulphide film is considered to be adequate as an absorbing layer in solar cell applications. In this paper, we synthesize antimony sulphide thin films on glass substrate by physical vapour deposition technique, and the obtained films were then annealed at different temperatures (150-250 °C). The as-deposited and annealed samples were investigated for structural and optoelectronic properties using different characterization techniques. The X-ray diffraction analysis showed that the annealed samples were polycrystalline with Sb2S3 phase, while the as-deposited sample was amorphous in nature. The optical properties are measured via optical ellipsometric techniques. The measured absorbance of the film is adequately high, and every photon is found to be absorbed in visible and NIR range. The conductivity type of the films measured by hot-point probe technique is determined to be p-type. The optical band gap of the resulted samples was in the range (2.4-1.3 eV) for the as-deposited and annealed films.

  7. Self-Regulating Shock Absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J.

    1995-01-01

    Mechanical shock absorber keeps frictional damping force within tolerable limit. Its damping force does not increase with coefficient of friction between energy-absorbing components; rather, frictional damping force varies only slightly. Relatively insensitive to manufacturing variations and environmental conditions altering friction. Does not exhibit high breakaway friction and consequent sharp increase followed by sharp decrease in damping force at beginning of stroking. Damping force in absorber does not vary appreciably with speed of stroking. In addition, not vulnerable to leakage of hydraulic fluid.

  8. The Calculation Of Absorbing Thin Film Optical Constants And Electronic Structure From Photometric Measures On Domain IR-VIS-UV Using Neural Networks

    SciTech Connect

    Bourouis, Chahrazed; Meddour, Ahcene; Moussaoui, Abdelkrim

    2008-09-23

    In this paper a new method using the combination of Neural Networks and the Newton-Raphson algorithm is developped. The technique consists of the use of the solution obtained by Newton-Raphson algorithm between 0.5 and 2.1eV for pure manganese (Mn) and for the amorphous metallic alloy Al{sub 88}Mn{sub 12}, to construct two parts of datasets; the first one is used for training the neural network and the second one for the validation tests. The validated neural network model is applied to the determination of optical constants of the two materials Mn and Al{sub 88}Mn{sub 12} in the range of 0.5 and 6.2eV (IR-VIS-UV). The results obtained over all the studied energy range are used to trace back to dielectric function, optical absorption and electronic structure of the same material. By using the partial solution obtained by Newton-Raphson as a database of the neural network prediction model, it is shown that the obtained results are in accordance with those of the literature which consolidate the efficiency of the suggested approach.

  9. High-energy devices, optics and photography

    NASA Astrophysics Data System (ADS)

    Borodio, K.

    1986-01-01

    Using a unit for catching high energy particles form space in an experiment called Pamir, scientists have obtained new data on interactions between these particles and nuclei of atoms of matter. According to a hypothesis of physicists, electromagnetic fields operating in space and in supernova stars which flare up from time to time accelerate particles to energies which are hundreds of thousands or even millions of times as high as those which can be obtained on Earth. Something resembling a layer cake with layers of lead and a special x ray film in lightproof and waterproof packages was set up on a level area at an elevation of almost 5,000 meters in the Pamir Mountains. This cake covers an area of almost 1,000 square meters. A single x ray film takes up about a hectare. Particles enter the x ray emulsion chamber and form spots on the film. The particles' energy nd the character of their interaction with nuclei of atoms of matter can be judged on the basis of these spots.

  10. Energy challenges in optical access and aggregation networks.

    PubMed

    Kilper, Daniel C; Rastegarfar, Houman

    2016-03-01

    Scalability is a critical issue for access and aggregation networks as they must support the growth in both the size of data capacity demands and the multiplicity of access points. The number of connected devices, the Internet of Things, is growing to the tens of billions. Prevailing communication paradigms are reaching physical limitations that make continued growth problematic. Challenges are emerging in electronic and optical systems and energy increasingly plays a central role. With the spectral efficiency of optical systems approaching the Shannon limit, increasing parallelism is required to support higher capacities. For electronic systems, as the density and speed increases, the total system energy, thermal density and energy per bit are moving into regimes that become impractical to support-for example requiring single-chip processor powers above the 100 W limit common today. We examine communication network scaling and energy use from the Internet core down to the computer processor core and consider implications for optical networks. Optical switching in data centres is identified as a potential model from which scalable access and aggregation networks for the future Internet, with the application of integrated photonic devices and intelligent hybrid networking, will emerge. PMID:26809581

  11. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    DOEpatents

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  12. Metamaterial slab-based super-absorbers and perfect nanodetectors for single dipole sources.

    PubMed

    Guo, Guang-Yu; Klimov, Vasily; Sun, Shulin; Zheng, Wei-Jin

    2013-05-01

    We propose to use double negative (DNG) metamaterial slabs to build effective super-absorbers and perfect nanodetectors for single divergent sources. We demonstrate by numerical simulations that an absorbing nanoparticle properly placed inside a DNG slab back-covered with a perfect electric conductor or perfect magnetic conductor mirror can absorb up to 100% radiation energy of a single dipole source placed outside the slab. Furthermore, we also show that even the simple DNG slab without any absorbing nanoparticle could be used as a perfect absorber for both plane and divergent beams. The proposed systems may focus the radiation in nanoscale and thus have applications in optical nanodevices for a variety of different purposes. PMID:23669990

  13. Underwater acoustic omnidirectional absorber

    NASA Astrophysics Data System (ADS)

    Naify, Christina J.; Martin, Theodore P.; Layman, Christopher N.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.

    2014-02-01

    Gradient index media, which are designed by varying local element properties in given geometry, have been utilized to manipulate acoustic waves for a variety of devices. This study presents a cylindrical, two-dimensional acoustic "black hole" design that functions as an omnidirectional absorber for underwater applications. The design features a metamaterial shell that focuses acoustic energy into the shell's core. Multiple scattering theory was used to design layers of rubber cylinders with varying filling fractions to produce a linearly graded sound speed profile through the structure. Measured pressure intensity agreed with predicted results over a range of frequencies within the homogenization limit.

  14. Solar radiation absorbing material

    DOEpatents

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  15. Miniature fiber optic sensor based on fluorescence energy transfer

    NASA Astrophysics Data System (ADS)

    Meadows, David L.; Schultz, Jerome S.

    1992-04-01

    Optical fiber biosensors based on fluorescence assays have several distinct advantages when measuring biological analytes such as metabolites, cofactors, toxins, etc. Not only are optical signals immune to electronic interferences, but the polychromatic nature of most fluorochemical assays provides more potentially useful data about the system being studied. One of the most common difficulties normally encountered with optical biosensors is the inability to routinely recalibrate the optical and electronic components of the system throughout the life of the sensor. With this in mind, we present an optical fiber assay system for glucose based on a homogeneous singlet/singlet energy transfer assay along with the electronic instrumentation built to support the sensor system. In the sensor probe, glucose concentrations are indirectly measured from the level of fluorescence quenching caused by the homogeneous competition assay between TRITC labeled concanavalin A (receptor) and FITC labeled Dextran (ligand). The FITC signal is used to indicate glucose concentrations and the TRITC signal is used for internal calibration. Data is also presented on a protein derivatization procedure that was used to prevent aggregation of the receptor protein in solution. Also, a molecular model is described for the singlet/singlet energy transfer interactions that can occur in a model system composed of a monovalent ligand (FITC labeled papain) and a monovalent receptor (TRITC labeled concanavalin A).

  16. Partitioning of absorbed light energy differed between the sun-exposed side and the shaded side of apple fruits under high light conditions.

    PubMed

    Chen, Changsheng; Zhang, Di; Li, Pengmin; Ma, Fengwang

    2012-11-01

    Fractions of absorbed light energy consumed via photochemistry and different thermal dissipation processes was quantified and compared between the sun-exposed peel and the shaded peel of apple fruits at different developmental stages. During fruit development, the fraction of absorbed light consumed via photochemistry was no more than 7% in the sun-exposed peel and no more than 5% in the shaded peel under high light conditions. Under high light, the fraction of absorbed light energy consumed via light dependent thermal dissipation was higher whereas that via constitutive thermal dissipation was lower in the sun-exposed peel. The light dependent thermal dissipation in the sun-exposed peel mainly depended on the xanthophyll cycle, and the xanthophyll cycle pool size was significantly larger in the sun-exposed peel than in the shaded peel. The light dependent thermal dissipation in the shaded peel was dependent on both the xanthophyll cycle and the presence of inactivated reaction centers. Under high light conditions, the densities of both Q(A)-reducing reaction centers and Q(B)-reducing reaction centers decreased faster in the shaded peel than in the sun-exposed peel. The thermal dissipation related to photoinhibition increased and then kept unchanged in the sun-exposed peel but decreased in the shaded peel during fruit development. We conclude that under high light intensities, fruit peel looses the excess energy in order of predominance: first by the xanthophyll cycle, then the thermal dissipation related to photoinhibition, next through inactivated reaction centers, and finally by constitutive thermal dissipation.

  17. Modulation frequency characteristics of the Q-switched envelope in a doubly Q-switched and mode-locked laser with acousto-optic modulator and Cr4+:YAG saturable absorber

    NASA Astrophysics Data System (ADS)

    Qiao, Junpeng; Zhao, Jia; Li, Yufei; Zhao, Shengzhi; Li, Guiqiu; Li, Dechun; Qiao, Wenchao; Chu, Hongwei

    2015-11-01

    The modulation frequency characteristics of the Q-switched envelope in a doubly Q-switched and mode-locked Nd:GGG laser with an acousto-optic modulator (AOM) and Cr4+:YAG saturable absorber are given. At a fixed incident pump power, the repetition rates of the Q-switched envelope and the related laser characteristics versus the modulation frequency of AOM for different small signal transmissions of Cr4+:YAG saturable absorbers have been measured. The experimental results show that the repetition rates of the Q-switched envelope, the average output power, the average peak power, and the pulse widths of the Q-switched envelopes are subharmonics of the modulation frequency at a fixed incident pump power. Furthermore, the mechanism for these behaviors is discussed.

  18. Optical Waveguide Solar Energy System for Lunar Materials Processing

    NASA Technical Reports Server (NTRS)

    Nakamura, T.; Case, J. A.; Senior, C. L.

    1997-01-01

    This paper discusses results of our work on development of the Optical Waveguide (OW) Solar Energy System for Lunar Materials Processing. In the OW system as shown, solar radiation is collected by the concentrator which transfers the concentrated solar radiation to the OW transmission line consisting of low-loss optical fibers. The OW line transmits the solar radiation to the thermal reactor of the lunar materials processing plant. The feature of the OW system are: (1) Highly concentrated solar radiation (up to 104 suns) can be transmitted via flexible OW lines directly into the thermal reactor for materials processing: (2) Solar radiation intensity or spectra can be tailored to specific materials processing steps; (3) Provide solar energy to locations or inside of enclosures that would not otherwise have an access to solar energy; and (4) The system can be modularized and can be easily transported to and deployed at the lunar base.

  19. Laser-assisted manufacturing of micro-optical volume elements for enhancing the amount of light absorbed by solar cells in photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Peharz, Gerhard; Kuna, Ladislav; Leiner, Claude

    2015-03-01

    The laser-generation of micro-optical volume elements is a promising approach to decrease the optical shadowing of front side metal contacts of solar cells. Focusing a femtosecond laser beam into the volume of the encapsulation material causes a local modification its optical constants. Suchlike fabricated micro-optical elements can be used to decrease the optical shadowing of the front side metallization of c-Si solar cells. Test samples comprising of a sandwich structure of a glass sheet with metallic grid-lines, an Ethylene-vinyl acetate (EVA) encapsulant and another glass sheet were manufactured in order to investigate the optical performance of the volume optics. Transmission measurements show that the shadowing of the metalling grid-lines is substantially decreased by the micro-optical volume elements created in the EVA bulk right above the grid-fingers. A detailed investigation of the optical properties of these volume elements was performed: (i) experimentally on the basis of goniometric measurements, as well as (ii) theoretically by applying optical modelling and optimization procedures. This resulted in a better understanding of the effectiveness of the optical volume elements in decreasing the optical shadowing of metal grid lines on the active cell surfaces. Moreover, results of photovoltaic mini-modules with incorporated micro-optical volume elements are presented. Results of optical simulation and Laser Beam Induced Current (LBIC) experiments show that the losses due to the grid fingers can be reduced by about 50%, when using this fs-laser structuring approach for the fabrication of micro-optical volume elements in the EVA material.

  20. Complex absorbing potential based equation-of-motion coupled cluster method for the potential energy curve of CO{sub 2}{sup −} anion

    SciTech Connect

    Ghosh, Aryya; Vaval, Nayana; Pal, Sourav; Bartlett, Rodney J.

    2014-10-28

    The equation-of-motion coupled cluster method employing the complex absorbing potential has been used to investigate the low energy electron scattering by CO{sub 2}. We have studied the potential energy curve for the {sup 2}Π{sub u} resonance states of CO{sub 2}{sup −} upon bending as well as symmetric and asymmetric stretching of the molecule. Specifically, we have stretched the C−O bond length from 1.1 Å to 1.5 Å and the bending angles are changed between 180° and 132°. Upon bending, the low energy {sup 2}Π{sub u} resonance state is split into two components, i.e., {sup 2}A{sub 1}, {sup 2}B{sub 1} due to the Renner-Teller effect, which behave differently as the molecule is bent.

  1. High energy, high resolution X-ray optics

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Joy, Marshall; Kahn, Steven

    1990-01-01

    The scientific goals of X-ray astronomy are considered to evaluate the relative advantages of using classical Wolter-1 optics or using a different approach. The portion of the X-ray band over 10 keV is unexploited in the present X-ray optics technology, and focussing in this portion of the band is crucial because nonfocussed experiments are background limited. The basic design of 'hard' X-ray optics is described theoretically emphasizing the very small angles of incidence in the grazing-incidence optics. Optimization of the signal-to-noise ratio is found to occur at a finite angular resolution. In real applications, the effective area reduced by the efficiency of the two reflections is 80 percent at energies up to 40 keV, and the quality of the reflecting surface can be monitored to minimize scattering. Focussing optics are found to offer improvements in signal-to-noise as well as more effective scientific return because microelectronic focal-plane technology is employed.

  2. Failure of d-psicose absorbed in the small intestine to metabolize into energy and its low large intestinal fermentability in humans.

    PubMed

    Iida, Tetsuo; Hayashi, Noriko; Yamada, Takako; Yoshikawa, Yuko; Miyazato, Shoko; Kishimoto, Yuka; Okuma, Kazuhiro; Tokuda, Masaaki; Izumori, Ken

    2010-02-01

    Experiments with rats have produced data on the metabolism and energy value of d-psicose; however, no such data have been obtained in humans. The authors assessed the availability of d-psicose absorbed in the small intestine by measuring carbohydrate energy expenditure (CEE) by indirect calorimetry. They measured the urinary excretion rate by quantifying d-psicose in urine for 48 hours. To examine d-psicose fermentation in the large intestine, the authors measured breath hydrogen gas and fermentability using 35 strains of intestinal bacteria. Six healthy subjects participated in the CEE test, and 14 participated in breath hydrogen gas and urine tests. d-Psicose fermentation subsequent to an 8-week adaptation period was also assessed by measuring hydrogen gas in 8 subjects. d-Psicose absorbed in the small intestine was not metabolized into energy, unlike glucose, because CEE did not increase within 3 hours of d-psicose ingestion (0.35 g/kg body weight [BW]). The accumulated d-psicose urinary excretion rates were around 70% for 0.34, 0.17, and 0.08 g/kg BW of ingested d-psicose. Low d-psicose fermentability was observed in intestinal bacteria and breath hydrogen gas tests, in which fructooligosaccharide (0.34, 0.17, and 0.08 g/kg BW) was used as a positive control because its available energy is known to be 8.4 kJ/g. Based on the results of the plot of breath hydrogen concentration vs calories ingested, the energy value of d-psicose was expected to be less than 1.6 kJ/g. Incremental d-psicose fermentability subsequent to an adaptation period was not observed.

  3. Improving the efficiency of cadmium sulfide-sensitized titanium dioxide/indium tin oxide glass photoelectrodes using silver sulfide as an energy barrier layer and a light absorber

    PubMed Central

    2014-01-01

    Cadmium sulfide (CdS) and silver sulfide (Ag2S) nanocrystals are deposited on the titanium dioxide (TiO2) nanocrystalline film on indium tin oxide (ITO) substrate to prepare CdS/Ag2S/TiO2/ITO photoelectrodes through a new method known as the molecular precursor decomposition method. The Ag2S is interposed between the TiO2 nanocrystal film and CdS nanocrystals as an energy barrier layer and a light absorber. As a consequence, the energy conversion efficiency of the CdS/Ag2S/TiO2/ITO electrodes is significantly improved. Under AM 1.5 G sunlight irradiation, the maximum efficiency achieved for the CdS(4)/Ag2S/TiO2/ITO electrode is 3.46%, corresponding to an increase of about 150% as compared to the CdS(4)/TiO2/ITO electrode without the Ag2S layer. Our experimental results show that the improved efficiency is mainly due to the formation of Ag2S layer that may increase the light absorbance and reduce the recombination of photogenerated electrons with redox ions from the electrolyte. PMID:25411566

  4. Absorber coatings' degradation

    SciTech Connect

    Moore, S.W.

    1984-01-01

    This report is intended to document some of the Los Alamos efforts that have been carried out under the Department of Energy (DOE) Active Heating and Cooling Materials Reliability, Maintainability, and Exposure Testing program. Funding for these activities is obtained directly from DOE although they represent a variety of projects and coordination with other agencies. Major limitations to the use of solar energy are the uncertain reliability and lifetimes of solar systems. This program is aimed at determining material operating limitations, durabilities, and failure modes such that materials improvements can be made and lifetimes can be extended. Although many active and passive materials and systems are being studied at Los Alamos, this paper will concentrate on absorber coatings and degradation of these coatings.

  5. Intracavity self-induced transparency of a multilevel absorber

    NASA Astrophysics Data System (ADS)

    Müller, M.; Kalosha, V. P.; Herrmann, J.

    1998-08-01

    Intracavity self-induced transparency of a three-level absorber is studied in the scope of solid-state laser generation of an ultrabroadband electromagnetic pulse that drives the population of all absorber levels through complete Rabi flopping. We show that at sufficient pump rates a Ti:sapphire laser forces an intracavity GaAs single quantum-well absorber, which provides an inter-valence-band transition in the THz domain in addition to two direct optical interband transitions, into the self-induced transparency regime and acts as an all-solid-state ultrabroadband pulse emitter. In dependence on the resonator bandwidth, the intracavity pulse energy and the absorber dipole moments we obtain a multilevel self-induced transparency pulse spectrum which extends from the THz domain up to the ultraviolet. The steady-state sub-10-fs pulse consists of only a few optical cycles with the high-frequency components at its leading edge and a single to subcyclic THz component at its trailing edge.

  6. Development of energy-absorbing reaction-sintered Si3N4 surface layers on hot-pressed Si3N4

    NASA Technical Reports Server (NTRS)

    Brennan, J. J.

    1981-01-01

    Energy-absorbing Si3N4 surface layers on dense Si3N4 substrates were formed by in-place nitridation of fine-grained silicon powder. Ballistic impact tests performed on samples with 1-mm thick layers at room temperature and 1370 C showed up to an eightfold increase in the energy necessary to fracture the substrate. For maximum impact resistance, a small amount (about 20 vol %) of residual Si must be present in the reaction-sintered Si3N4 surface layer. Thermal cycling to 1370 C did not affect impact resistance, even though a considerable amount of SiO2 formed within the reaction-sintered Si3N4 layer during cycling. Erosion testing of samples in a Mach 0.8 burner rig at 1370 C resulted in minimal surface recession of the surface layer. Chemically vapor-deposited SiC-coated material similarly tested exhibited no surface recession.

  7. Optical absorbance of P3HT thin films used to estimate simultaneously thin-film thickness and morphology for gas sensing

    NASA Astrophysics Data System (ADS)

    Cavallari, Marco R.; Izquierdo, José E. E.; Rodríguez, Estrella F. G.; Pereira-da-Silva, Marcelo A.; Fonseca, Fernando J.

    2015-08-01

    Regioregular poly(3-hexylthiophene) (rr-P3HT) is suitable for electronic noses and the detection of gaseous biomarkers of human diseases to clinical diagnosis. Nevertheless, thin-film properties such as crystallinity and thickness play a major role in overall device performance. Thin-films were obtained from spin coating of 2-20 mg/mL solutions in chloroform, toluene, chlorobenzene and dichlorobenzene to form a thickness from 20 to 160 nm as measured by atomic force microscopy (AFM). Absorbance spectrum fitted by the sum of three Gaussian curves defined the following parameters, which correlate with the film's electronic structure/morphology: (i) the abscissa at the center of the Gaussian from the highest wavelength, which responds for the P3HT band gap, and (ii) the ratio between the area under the Gaussian centered at the lowest wavelength over the one at the highest wavelength, which corresponds to the amount of amorphous and crystalline phase, respectively. Isosbestic point was determined by thermal annealing temperature variation, while keeping the thickness constant. It was observed that absorbance spectrum shape and, consequently, thin-film morphology depend not only on the concentration of the solution, but also on solvent. Finally, the isosbestic point determined at (470 +/- 3) nm provides a linear relationship between absorbance and thickness with y-axis intercept approaching zero. The absorbance spectrum and isosbestic point of P3HT provides a non-destructive, faster and reliable way to estimate thin-film properties as thickness and crystallinity without recurring to AFM and X-ray diffraction (XRD) measurements.

  8. Velocity measurements comparison of water and pentane travelling in capillary optical fibers coated respectively with a xerogel and a poly(dimethylsiloxane) absorbing layer

    NASA Astrophysics Data System (ADS)

    Caron, Serge; Paré, Claude; Proulx, Antoine; Grenier, Paul; Matejec, Vlastimil

    2009-06-01

    An analysis of the optical signal transmitted by a polarimetric sensor developed for the measurement of velocities of fluids in a capillary optical fiber is presented. It allows one to determine whether a fluid is moving in the vapor or the liquid phase.

  9. Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies

    PubMed Central

    Cao, Tun; Wei, Chen-wei; Simpson, Robert E.; Zhang, Lei; Cryan, Martin J.

    2014-01-01

    We report a broadband polarization-independent perfect absorber with wide-angle near unity absorbance in the visible regime. Our structure is composed of an array of thin Au squares separated from a continuous Au film by a phase change material (Ge2Sb2Te5) layer. It shows that the near perfect absorbance is flat and broad over a wide-angle incidence up to 80° for either transverse electric or magnetic polarization due to a high imaginary part of the dielectric permittivity of Ge2Sb2Te5. The electric field, magnetic field and current distributions in the absorber are investigated to explain the physical origin of the absorbance. Moreover, we carried out numerical simulations to investigate the temporal variation of temperature in the Ge2Sb2Te5 layer and to show that the temperature of amorphous Ge2Sb2Te5 can be raised from room temperature to > 433 K (amorphous-to-crystalline phase transition temperature) in just 0.37 ns with a low light intensity of 95 nW/μm2, owing to the enhanced broadband light absorbance through strong plasmonic resonances in the absorber. The proposed phase-change metamaterial provides a simple way to realize a broadband perfect absorber in the visible and near-infrared (NIR) regions and is important for a number of applications including thermally controlled photonic devices, solar energy conversion and optical data storage. PMID:24492415

  10. The effect of differences in data base on the determination of absorbed dose in high-energy photon beams using the American Association of Physicists in Medicine protocol.

    PubMed

    Mijnheer, B J; Chin, L M

    1989-01-01

    Exposure rates were adjusted at the National Institute of Standards and Technology (NIST) on January 1, 1986 to take into account more recent values for some physical parameters, mainly in electron stopping power ratios. Exposure calibration factors for 60Co gamma rays Nx will therefore be lowered by 1.1%. Consequently, absorbed dose determinations in high-energy photon beams will be reduced by the same amount if the values for these physical parameters remain unchanged in the American Association of Physicists in Medicine (AAPM) protocol. If the same data base as used at NIST is applied in the AAPM protocol, then Ngas/Nx values, water-air stopping power ratios, and Pwall values will be different. The overall change in absorbed dose determinations using a consistent set of data will be a reduction of 0.8% for 60Co gamma rays and 1.5% for a 20-MV x-ray beam compared to the values before January 1, 1986. Since the net effect is small when different sets of data are applied, the new NIST exposure calibration factors may be used in combination with the AAPM protocol without significant error.

  11. Efficient optical extraction of hot-carrier energy

    NASA Astrophysics Data System (ADS)

    Saeed, S.; de Jong, E. M. L. D.; Dohnalova, K.; Gregorkiewicz, T.

    2014-08-01

    Light-induced generation of free charge carriers in semiconductors constitutes the physical basis of photodetection and photovoltaics. To maximize its efficiency, the energy of the photons must be entirely used for this purpose. This is highly challenging owing to the ultrafast thermalization of ‘hot’ carriers, which are created by absorption of high-energy photons. Thermalization leads to heat generation, and hence efficiency loss. To circumvent this, dedicated schemes such as photovoltaic hot-carrier cells are being explored. Here we consider optical extraction of the excess energy of hot carriers by emission of infrared photons, using erbium ions in combination with silicon nanocrystals. We determine the external quantum yield of the infrared photon generation by the erbium ions, and demonstrate that cooling of the hot carriers induces a steep, step-like, increase in erbium-related external quantum yield by up to a factor of 15 towards higher excitation energies. Finally, we comment on the potential of our findings for future photovoltaics in the form of an optical ultraviolet-to-infrared spectral converter.

  12. Efficient optical extraction of hot-carrier energy.

    PubMed

    Saeed, S; de Jong, E M L D; Dohnalova, K; Gregorkiewicz, T

    2014-08-13

    Light-induced generation of free charge carriers in semiconductors constitutes the physical basis of photodetection and photovoltaics. To maximize its efficiency, the energy of the photons must be entirely used for this purpose. This is highly challenging owing to the ultrafast thermalization of 'hot' carriers, which are created by absorption of high-energy photons. Thermalization leads to heat generation, and hence efficiency loss. To circumvent this, dedicated schemes such as photovoltaic hot-carrier cells are being explored. Here we consider optical extraction of the excess energy of hot carriers by emission of infrared photons, using erbium ions in combination with silicon nanocrystals. We determine the external quantum yield of the infrared photon generation by the erbium ions, and demonstrate that cooling of the hot carriers induces a steep, step-like, increase in erbium-related external quantum yield by up to a factor of 15 towards higher excitation energies. Finally, we comment on the potential of our findings for future photovoltaics in the form of an optical ultraviolet-to-infrared spectral converter.

  13. How the optic nerve allocates space, energy capacity, and information.

    PubMed

    Perge, János A; Koch, Kristin; Miller, Robert; Sterling, Peter; Balasubramanian, Vijay

    2009-06-17

    Fiber tracts should use space and energy efficiently, because both resources constrain neural computation. We found for a myelinated tract (optic nerve) that astrocytes use nearly 30% of the space and >70% of the mitochondria, establishing the significance of astrocytes for the brain's space and energy budgets. Axons are mostly thin with a skewed distribution peaking at 0.7 microm, near the lower limit set by channel noise. This distribution is matched closely by the distribution of mean firing rates measured under naturalistic conditions, suggesting that firing rate increases proportionally with axon diameter. In axons thicker than 0.7 microm, mitochondria occupy a constant fraction of axonal volume--thus, mitochondrial volumes rise as the diameter squared. These results imply a law of diminishing returns: twice the information rate requires more than twice the space and energy capacity. We conclude that the optic nerve conserves space and energy by sending most information at low rates over fine axons with small terminal arbors and sending some information at higher rates over thicker axons with larger terminal arbors but only where more bits per second are needed for a specific purpose. Thicker axons seem to be needed, not for their greater conduction velocity (nor other intrinsic electrophysiological purpose), but instead to support larger terminal arbors and more active zones that transfer information synaptically at higher rates. PMID:19535603

  14. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    NASA Astrophysics Data System (ADS)

    Hader, J.; Yang, H.-J.; Scheller, M.; Moloney, J. V.; Koch, S. W.

    2016-02-01

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  15. Noninvasive emittance and energy spread monitor using optical synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Fiorito, R.; Shkvarunets, A.; Castronovo, D.; Cornacchia, M.; Di Mitri, S.; Kishek, R.; Tschalaer, C.; Veronese, M.

    2014-12-01

    We propose a design for a minimally perturbing diagnostic minichicane, which utilizes optical synchrotron radiation (OSR) generated from magnetic bends in the chicane, to measure the rms horizontal and vertical beam sizes, divergences, emittances, Twiss parameters and energy spread of a relativistic electron beam. The beam is externally focused to a waist at the first bend and the OSR generated there can be used to measure the rms beam size. Subsequent pairs of bends produce far field OSR interferences (OSRI) whose visibility depends on the beam energy spread and the angular divergence. Under proper conditions, one of these two effects will dominate the OSRI visibility from a particular pair of bends and can be used to diagnose the dominant effect. The properties of different configuration of bends in the chicane have been analyzed to provide an optimum diagnostic design for a given set of beam parameters to: (1) provide a sufficient number of OSR interferences to allow a measurement of the fringe visibility; (2) minimize the effect of coherent synchrotron radiation and space charge forces on the particles motion; and (3) minimize the effect of compression on the bunch length as the beam passes through the chicane. A design for the chicane has been produced for application to the FERMI free electron laser facility and by extension to similar high brightness linear accelerators. Such a diagnostic promises to greatly improve control of the electron beam optics with a noninvasive measurement of beam parameters and allow on-line optics matching and feedback.

  16. Optical HMI with biomechanical energy harvesters integrated in textile supports

    NASA Astrophysics Data System (ADS)

    De Pasquale, G.; Kim, SG; De Pasquale, D.

    2015-12-01

    This paper reports the design, prototyping and experimental validation of a human-machine interface (HMI), named GoldFinger, integrated into a glove with energy harvesting from fingers motion. The device is addressed to medical applications, design tools, virtual reality field and to industrial applications where the interaction with machines is restricted by safety procedures. The HMI prototype includes four piezoelectric transducers applied to the fingers backside at PIP (proximal inter-phalangeal) joints, electric wires embedded in the fabric connecting the transducers, aluminum case for the electronics, wearable switch made with conductive fabrics to turn the communication channel on and off, and a LED. The electronic circuit used to manage the power and to control the light emitter includes a diodes bridge, leveling capacitors, storage battery and switch made by conductive fabric. The communication with the machine is managed by dedicated software, which includes the user interface, the optical tracking, and the continuous updating of the machine microcontroller. The energetic benefit of energy harvester on the battery lifetime is inversely proportional to the activation time of the optical emitter. In most applications, the optical port is active for 1 to 5% of the time, corresponding to battery lifetime increasing between about 14% and 70%.

  17. A Computational Investigation on Bending Deformation Behavior at Various Deflection Rates for Enhancement of Absorbable Energy in TRIP Steel

    NASA Astrophysics Data System (ADS)

    Pham, Hang Thi; Iwamoto, Takeshi

    2016-08-01

    Transformation-induced plasticity (TRIP) steel might have a high energy-absorption characteristic because it could possibly consume impact energy by not only plastic deformation but also strain-induced martensitic transformation (SIMT) during deformation. Therefore, TRIP steel is considered to be suitable for automotive structures from the viewpoint of safety. Bending deformation due to buckling is one of the major collapse modes of automotive structures. Thus, an investigation on the bending deformation behavior and energy-absorption characteristic in TRIP steel at high deformation rate is indispensable to clarify the mechanism of better performance. Some past studies have focused on the improvement of mechanical properties by means of SIMT; however, the mechanism through which the energy-absorption characteristic in steel can be improved is still unclear. In this study, the three-point bending deformation behavior of a beam specimen made of type-304 austenitic stainless steel, a kind of TRIP steel, is investigated at various deflection rates by experiments and finite-element simulations based on a constitutive model proposed by one of the authors. After confirming the validity of the computation, the rate-sensitivity of energy absorption from the viewpoint of hardening behavior is examined and the improvement of the energy-absorption characteristic in TRIP steel including its mechanism is discussed.

  18. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  19. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  20. Waveform-Dependent Absorbing Metasurfaces

    NASA Astrophysics Data System (ADS)

    Wakatsuchi, Hiroki; Kim, Sanghoon; Rushton, Jeremiah J.; Sievenpiper, Daniel F.

    2013-12-01

    We present the first use of a waveform-dependent absorbing metasurface for high-power pulsed surface currents. The new type of nonlinear metasurface, composed of circuit elements including diodes, is capable of storing high-power pulse energy to dissipate it between pulses, while allowing propagation of small signals. Interestingly, the absorbing performance varies for high-power pulses but not for high-power continuous waves (CW’s), since the capacitors used are fully charged up. Thus, the waveform dependence enables us to distinguish various signal types (i.e., CW or pulse) even at the same frequency, which potentially creates new kinds of microwave technologies and applications.

  1. Design of a reusable kinetic energy absorber for an astronaut safety tether to be used during extravehicular activities on the Space Station

    NASA Technical Reports Server (NTRS)

    Borthwick, Dawn E.; Cronch, Daniel F.; Nixon, Glen R.

    1991-01-01

    The goal of this project is to design a reusable safety device for a waist tether which will absorb the kinetic energy of an astronaut drifting away from the Space Station. The safety device must limit the tension of the tether line in order to prevent damage to the astronaut's space suit or to the structure of the spacecraft. The tether currently used on shuttle missions must be replaced after the safety feature has been developed. A reusable tether for the Space Station would eliminate the need for replacement tethers, conserving space and mass. This report presents background information, scope and limitations, methods of research and development, alternative designs, a final design solution and its evaluation, and recommendations for further work.

  2. Dynamics and energy exchanges between a linear oscillator and a nonlinear absorber with local and global potentials

    NASA Astrophysics Data System (ADS)

    Charlemagne, S.; Lamarque, C.-H.; Ture Savadkoohi, A.

    2016-08-01

    The dynamical behavior of a two degree-of-freedom system made up of a linear oscillator and a coupled nonlinear energy sink with nonlinear global and local potentials is studied. The nonlinear global potential of the energy sink performs direct interactions with the linear oscillator, while its local potential depends only on its own behavior during vibratory energy exchanges between two oscillators. A time multiple scale method around 1:1:1 resonance is used to detect slow invariant manifold of the system, its equilibrium and singular points. Detected equilibrium points permit us to predict periodic regime(s) while singular points can lead the system to strongly modulated responses characterized by persistent bifurcations. Several possible scenarios occurring during these strongly modulated regimes are highlighted. All analytical predictions are compared with those which are obtained by direct numerical integration of system equations.

  3. Electro-optical equivalent calibration technology for high-energy laser energy meters.

    PubMed

    Wei, Ji Feng; Chang, Yan; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei

    2016-04-01

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%). PMID:27131714

  4. Electro-optical equivalent calibration technology for high-energy laser energy meters

    NASA Astrophysics Data System (ADS)

    Wei, Ji Feng; Chang, Yan; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei

    2016-04-01

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).

  5. Electro-optical equivalent calibration technology for high-energy laser energy meters.

    PubMed

    Wei, Ji Feng; Chang, Yan; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei

    2016-04-01

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).

  6. Deep absorbing porphyrin small molecule for high-performance organic solar cells with very low energy losses.

    PubMed

    Gao, Ke; Li, Lisheng; Lai, Tianqi; Xiao, Liangang; Huang, Yuan; Huang, Fei; Peng, Junbiao; Cao, Yong; Liu, Feng; Russell, Thomas P; Janssen, René A J; Peng, Xiaobin

    2015-06-17

    We designed and synthesized the DPPEZnP-TEH molecule, with a porphyrin ring linked to two diketopyrrolopyrrole units by ethynylene bridges. The resulting material exhibits a very low energy band gap of 1.37 eV and a broad light absorption to 907 nm. An open-circuit voltage of 0.78 V was obtained in bulk heterojunction (BHJ) organic solar cells, showing a low energy loss of only 0.59 eV, which is the first report that small molecule solar cells show energy losses <0.6 eV. The optimized solar cells show remarkable external quantum efficiency, short circuit current, and power conversion efficiency up to 65%, 16.76 mA/cm(2), and 8.08%, respectively, which are the best values for BHJ solar cells with very low energy losses. Additionally, the morphology of DPPEZnP-TEH neat and blend films with PC61BM was studied thoroughly by grazing incidence X-ray diffraction, resonant soft X-ray scattering, and transmission electron microscopy under different fabrication conditions.

  7. Carbon Absorber Retrofit Equipment (CARE)

    SciTech Connect

    Klein, Eric

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  8. Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons.

    PubMed

    Hadid, L; Desbrée, A; Schlattl, H; Franck, D; Blanchardon, E; Zankl, M

    2010-07-01

    The emission of radiation from a contaminated body region is connected with the dose received by radiosensitive tissue through the specific absorbed fractions (SAFs) of emitted energy, which is therefore an essential quantity for internal dose assessment. A set of SAFs were calculated using the new adult reference computational phantoms, released by the International Commission on Radiological Protection (ICRP) together with the International Commission on Radiation Units and Measurements (ICRU). Part of these results has been recently published in ICRP Publication 110 (2009 Adult reference computational phantoms (Oxford: Elsevier)). In this paper, we mainly discuss the results and also present them in numeric form. The emission of monoenergetic photons and electrons with energies ranging from 10 keV to 10 MeV was simulated for three source organs: lungs, thyroid and liver. SAFs were calculated for four target regions in the body: lungs, colon wall, breasts and stomach wall. For quality assurance purposes, the simulations were performed simultaneously at the Helmholtz Zentrum München (HMGU, Germany) and at the Institute for Radiological Protection and Nuclear Safety (IRSN, France), using the Monte Carlo transport codes EGSnrc and MCNPX, respectively. The comparison of results shows overall agreement for photons and high-energy electrons with differences lower than 8%. Nevertheless, significant differences were found for electrons at lower energy for distant source/target organ pairs. Finally, the results for photons were compared to the SAF values derived using mathematical phantoms. Significant variations that can amount to 200% were found. The main reason for these differences is the change of geometry in the more realistic voxel body models. For electrons, no SAFs have been computed with the mathematical phantoms; instead, approximate formulae have been used by both the Medical Internal Radiation Dose committee (MIRD) and the ICRP due to the limitations imposed

  9. Optical and laser spectroscopic diagnostics for energy applications

    NASA Astrophysics Data System (ADS)

    Tripathi, Markandey Mani

    The continuing need for greater energy security and energy independence has motivated researchers to develop new energy technologies for better energy resource management and efficient energy usage. The focus of this dissertation is the development of optical (spectroscopic) sensing methodologies for various fuels, and energy applications. A fiber-optic NIR sensing methodology was developed for predicting water content in bio-oil. The feasibility of using the designed near infrared (NIR) system for estimating water content in bio-oil was tested by applying multivariate analysis to NIR spectral data. The calibration results demonstrated that the spectral information can successfully predict the bio-oil water content (from 16% to 36%). The effect of ultraviolet (UV) light on the chemical stability of bio-oil was studied by employing laser-induced fluorescence (LIF) spectroscopy. To simulate the UV light exposure, a laser in the UV region (325 nm) was employed for bio-oil excitation. The LIF, as a signature of chemical change, was recorded from bio-oil. From this study, it was concluded that phenols present in the bio-oil show chemical instability, when exposed to UV light. A laser-induced breakdown spectroscopy (LIBS)-based optical sensor was designed, developed, and tested for detection of four important trace impurities in rocket fuel (hydrogen). The sensor can simultaneously measure the concentrations of nitrogen, argon, oxygen, and helium in hydrogen from storage tanks and supply lines. The sensor had estimated lower detection limits of 80 ppm for nitrogen, 97 ppm for argon, 10 ppm for oxygen, and 25 ppm for helium. A chemiluminescence-based spectroscopic diagnostics were performed to measure equivalence ratios in methane-air premixed flames. A partial least-squares regression (PLS-R)-based multivariate sensing methodology was investigated. It was found that the equivalence ratios predicted with the PLS-R-based multivariate calibration model matched with the

  10. Refractory plasmonics with titanium nitride: broadband metamaterial absorber.

    PubMed

    Li, Wei; Guler, Urcan; Kinsey, Nathaniel; Naik, Gururaj V; Boltasseva, Alexandra; Guan, Jianguo; Shalaev, Vladimir M; Kildishev, Alexander V

    2014-12-17

    A high-temperature stable broadband plasmonic absorber is designed, fabricated, and optically characterized. A broadband absorber with an average high absorption of 95% and a total thickness of 240 nm is fabricated, using a refractory plasmonic material, titanium nitride. This absorber integrates both the plasmonic resonances and the dielectric-like loss. It opens a path for the interesting applications such as solar thermophotovoltaics and optical circuits.

  11. Nanomorphology of P3HT:PCBM-based absorber layers of organic solar cells after different processing conditions analyzed by low-energy scanning transmission electron microscopy.

    PubMed

    Pfaff, Marina; Klein, Michael F G; Müller, Erich; Müller, Philipp; Colsmann, Alexander; Lemmer, Uli; Gerthsen, Dagmar

    2012-12-01

    In this study the nanomorphology of P3HT:PC61BM absorber layers of organic solar cells was studied as a function of the processing parameters and for P3HT with different molecular weight. For this purpose we apply scanning transmission electron microscopy (STEM) at low electron energies in a scanning electron microscope. This method exhibits sensitive material contrast in the high-angle annular dark-field (HAADF) mode, which is well suited to distinguish materials with similar densities and mean atomic numbers. The images taken with low-energy HAADF STEM are compared with conventional transmission electron microscopy and atomic force microscopy images to illustrate the capabilities of the different techniques. For the interpretation of the low-energy HAADF STEM images, a semiempirical equation is used to calculate the image intensities. The experiments show that the nanomorphology of the P3HT:PC61BM blends depends strongly on the molecular weight of the P3HT. Low-molecular-weight P3HT forms rod-like domains during annealing. In contrast, only small globular features are visible in samples containing high-molecular-weight P3HT, which do not change significantly after annealing at 150°C up to 30 min.

  12. Energy-efficient extensions in passive optical networks

    NASA Astrophysics Data System (ADS)

    Radziwilowicz, Robert; Benitez, Jose Gama; Hall, Trevor J.

    2011-08-01

    The rapidly growing popularity of internet-based services has increased the number of end users that are connected to access networks every year. Internet Service Providers (ISPs) have to deal with an increasing density of access networks in urban areas and extended reach of the network in remote locations. Existing public network infrastructure requires new energy efficient and cost effective extension technologies to accommodate new subscribers and to provide the required bandwidth for new services such as High Definition TV or Video on Demand. This paper presents a study of the low power Optical Semiconductor Amplifier (SOA). The most important characteristics of the SOA are presented and compared with other technologies such as Erbium Doped Fiber Amplifier (EDFA). Aspects of the energy consumption are discussed and potential problems related to the SOA implementation are presented.

  13. Optical and electronic properties of some semiconductors from energy gaps

    NASA Astrophysics Data System (ADS)

    Tripathy, Sunil K.; Pattanaik, Anup

    2016-03-01

    II-VI and III-V tetrahedral semiconductors have significant potential for novel optoelectronic applications. In the present work, some of the optical and electronic properties of these groups of semiconductors have been studied using a recently proposed empirical relationship for refractive index from energy gap. The calculated values of these properties are also compared with those calculated from some well known relationships. From an analysis of the calculated electronic polarisability of these tetrahedral binary semiconductors from different formulations, we have proposed an empirical relation for its calculation. The predicted values of electronic polarisability of these semiconductors agree fairly well with the known values over a wide range of energy gap. The proposed empirical relation has also been used to calculate the electronic polarisability of some ternary compounds.

  14. Modelling Absorbent Phenomena of Absorbent Structure

    NASA Astrophysics Data System (ADS)

    Sayeb, S.; Ladhari, N.; Ben Hassen, M.; Sakli, F.

    Absorption, retention and strike through time, as evaluating criteria of absorbent structures quality were studied. Determination of influent parameters on these criteria were realized by using the design method of experimental sets. In this study, the studied parameters are: Super absorbent polymer (SAP)/fluff ratio, compression and the porosity of the non woven used as a cover stock. Absorption capacity and retention are mostly influenced by SAP/fluff ratio. However, strike through time is affected by compression. Thus, a modelling of these characteristics in function of the important parameter was established.

  15. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  16. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  17. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    SciTech Connect

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  18. Energy Calibration of the Scintillating Optical Fiber Calorimeter Chamber (SOFCAL)

    NASA Technical Reports Server (NTRS)

    Christl, M. C.; Fountain, W. F.; Parnell, T.; Roberts, F. E.; Gregory, J. C.; Johnson, J.; Takahashi, Y.

    1997-01-01

    The Scintillating Optical Fiber Calorimeter (SOFCAL) detector is designed to make direct measures of the primary cosmic ray spectrum from -200 GeV/amu - 20 TeV/amu. The primary particles are resolved into groups according to their charge (p, He, CNO, Medium Z, Heavy Z) using both active and passive components integrated into the detector. The principal part of SOFCAL is a thin ionization calorimeter that measures the electromagnetic cascades that result from these energetic particles interacting in the detector. The calorimeter is divided into two sections: a thin passive emulsion/x-ray film calorimeter, and a fiber calorimeter that uses crossing layers of small scintillating optical fibers to sample the energy deposition of the cascades. The energy determination is made by fitting the fiber data to transition curves generated by Monte Carlo simulations. The fiber data must first be calibrated using the electron counts from the emulsion plates in the calorimeter for a small number of events. The technique and results of this calibration will be presented together with samples of the data from a balloon flight.

  19. Depth dependence of absorbed dose, dose equivalent and linear energy transfer spectra of galactic and trapped particles in polyethylene and comparison with calculations of models

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Cucinotta, F. A.; Wilson, J. W. (Principal Investigator)

    1998-01-01

    A matched set of five tissue-equivalent proportional counters (TEPCs), embedded at the centers of 0 (bare), 3, 5, 8 and 12-inch-diameter polyethylene spheres, were flown on the Shuttle flight STS-81 (inclination 51.65 degrees, altitude approximately 400 km). The data obtained were separated into contributions from trapped protons and galactic cosmic radiation (GCR). From the measured linear energy transfer (LET) spectra, the absorbed dose and dose-equivalent rates were calculated. The results were compared to calculations made with the radiation transport model HZETRN/NUCFRG2, using the GCR free-space spectra, orbit-averaged geomagnetic transmission function and Shuttle shielding distributions. The comparison shows that the model fits the dose rates to a root mean square (rms) error of 5%, and dose-equivalent rates to an rms error of 10%. Fairly good agreement between the LET spectra was found; however, differences are seen at both low and high LET. These differences can be understood as due to the combined effects of chord-length variation and detector response function. These results rule out a number of radiation transport/nuclear fragmentation models. Similar comparisons of trapped-proton dose rates were made between calculations made with the proton transport model BRYNTRN using the AP-8 MIN trapped-proton model and Shuttle shielding distributions. The predictions of absorbed dose and dose-equivalent rates are fairly good. However, the prediction of the LET spectra below approximately 30 keV/microm shows the need to improve the AP-8 model. These results have strong implications for shielding requirements for an interplanetary manned mission.

  20. Energy-Efficient Next-Generation Passive Optical Networks Based on Sleep Mode and Heuristic Optimization

    NASA Astrophysics Data System (ADS)

    Zulai, Luis G. T.; Durand, Fábio R.; Abrão, Taufik

    2015-05-01

    In this article, an energy-efficiency mechanism for next-generation passive optical networks is investigated through heuristic particle swarm optimization. Ten-gigabit Ethernet-wavelength division multiplexing optical code division multiplexing-passive optical network next-generation passive optical networks are based on the use of a legacy 10-gigabit Ethernet-passive optical network with the advantage of using only an en/decoder pair of optical code division multiplexing technology, thus eliminating the en/decoder at each optical network unit. The proposed joint mechanism is based on the sleep-mode power-saving scheme for a 10-gigabit Ethernet-passive optical network, combined with a power control procedure aiming to adjust the transmitted power of the active optical network units while maximizing the overall energy-efficiency network. The particle swarm optimization based power control algorithm establishes the optimal transmitted power in each optical network unit according to the network pre-defined quality of service requirements. The objective is controlling the power consumption of the optical network unit according to the traffic demand by adjusting its transmitter power in an attempt to maximize the number of transmitted bits with minimum energy consumption, achieving maximal system energy efficiency. Numerical results have revealed that it is possible to save 75% of energy consumption with the proposed particle swarm optimization based sleep-mode energy-efficiency mechanism compared to 55% energy savings when just a sleeping-mode-based mechanism is deployed.

  1. The energy dependence and dose response of a commercial optically stimulated luminescent detector for kilovoltage photon, megavoltage photon, and electron, proton, and carbon beams

    SciTech Connect

    Reft, Chester S.

    2009-05-15

    Optically stimulated luminescent detectors, which are widely used in radiation protection, offer a number of potential advantages for application in radiation therapy dosimetry. Their introduction into this field has been somewhat hampered by the lack of information on their radiation response in megavoltage beams. Here the response of a commercially available optically stimulated luminescent detector (OSLD) is determined as a function of energy, absorbed dose to water, and linear energy transfer (LET). The detector response was measured as a function of energy for absorbed doses from 0.5 to 4.0 Gy over the following ranges: 125 kVp to18 MV for photons, 6-20 MeV for electrons, 50-250 MeV for protons, and 290 MeV/u for the carbon ions. For the low LET beams, the response of the detector was linear up to 2 Gy with supralinearity occurring at higher absorbed doses. For the kilovoltage photons, the detector response relative to 6 MV increased with decreasing energy due to the higher atomic number of aluminum oxide (11.2) relative to water (7.4). For the megavoltage photons and electrons, the response was independent of energy. The response for protons was also independent of energy, but it was about 6% higher than its response to 6 MV photons. For the carbon ions, the dose response was linear for a given LET from 0.5 to 4.0 Gy, and no supralinearity was observed. However, it did exhibit LET dependence on the response relative to 6 MV photons decreasing from 1.02 at 1.3 keV/{mu}m to 0.41 at 78 keV/{mu}m. These results provide additional information on the dosimetric properties for this particular OSL detector and also demonstrate the potential for their use in photon, electron, and proton radiotherapy dosimetry with a more limited use in high LET radiotherapy dosimetry.

  2. Wide band cryogenic ultra-high vacuum microwave absorber

    SciTech Connect

    Campisi, Isidoro E.

    1992-01-01

    An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

  3. Wide band cryogenic ultra-high vacuum microwave absorber

    SciTech Connect

    Campisi, I.E.

    1992-05-12

    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

  4. The High Energy Replicated Optics to Explore the Sun (HEROES)

    NASA Astrophysics Data System (ADS)

    Christe, S.; Shih, A. Y.; Rodriguez, M.; Cramer, A.; Garcia, I.; Gaskin, J.; Chavis, K.; Smith, L.

    2012-12-01

    Set to fly in the Fall of 2013 from Ft. Sumner, NM, the High Energy Replicated Optics to Explore the Sun (HEROES) mission is a collaboration between NASA Marshall Space Flight Center and Goddard Space Flight Center to upgrade an existing payload to make unique scientific measurements of the Sun (during the day) and astrophysical targets (at night) during a single flight. HEROES will use grazing-incidence x-ray focusing optics combined with position-sensitive detectors to make new high energy (>20 keV) observations of the Sun in order to understand particle acceleration in solar flares. The HEROES science payload consists of 8 mirror modules, housing 110 grazing incidence replicated optics, mounted on a carbon-fiber-Aluminum optical bench 6 m from a matching array of focal-plane detectors (high pressure xenon gas scintillation proportional counters). The solar science objectives for HEROES are to (1) investigate electron acceleration in the non-flaring solar corona by searching for the hard X-ray signature of energetic electrons and to (2) investigate the acceleration and transport of energetic electrons in solar flares. HEROES will image the Sun with an angular resolution of 20 arcsec (FWHM) and will have a sensitivity up to ~100 times better than RHESSI at 20 keV. During 6 hours of solar observations (a minimum requirement for a typical balloon flight), HEROES has a ~75% chance of observing at least one flare with a GOES class above C1, and a ~20% chance of at least one flare above M1. HEROES is expected to observe the faint HXR emission from electrons streaming down the legs of magnetic loops or escaping along open magnetic field lines. Information from this flight will be used to design of a new balloon payload (SuperHERO) capable of capable of observing the Sun for 2-4 weeks using a Long Duration Balloon. This mission is funded by the NASA HOPE (Hands On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering

  5. The High Energy Replicated Optics to Explore the Sun (HEROES)

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Shih, A. Y.; Rodriguez, M.; Cramer, A.; Gregory, K.; Gaskin, J.; Chavis, K.; Smith, L.; HOPE/HEROES Team

    2013-07-01

    Set to fly in the Fall of 2013 from Ft. Sumner, NM, the High Energy Replicated Optics to Explore the Sun (HEROES) mission is a collaboration between NASA Marshall Space Flight Center and Goddard Space Flight Center to upgrade an existing payload to make unique scientific measurements of the Sun (during the day) and astrophysical targets (at night) during a single flight. HEROES will use grazing-incidence x-ray focusing optics combined with position-sensitive detectors to make new high energy 20 keV to 75 keV) observations of the Sun in order to understand particle acceleration in solar flares. The HEROES science payload consists of 8 mirror modules, housing 109 grazing incidence replicated optics, mounted on a carbon-fiber-Aluminum optical bench 6 m from a matching array of focal-plane detectors (high pressure xenon gas scintillation proportional counters). HEROES will investigate electron acceleration and transport in the solar corona both in the solar flares and in the non-flaring quiet Sun. HEROES will image the Sun with an angular resolution of 20 arcsec (FWHM) and will have a sensitivity up to ~50 times better than RHESSI at 20 keV. During 6 hours of solar observations (a minimum requirement for a typical balloon flight), HEROES has a ~75% chance of observing at least one flare with a GOES class above C1, and a ~20% chance of at least one flare above M1. HEROES is expected to observe the faint HXR emission from electrons streaming down the legs of magnetic loops or escaping along open magnetic field lines. Experience on this flight will be used to design of new balloon payload (Super HERO) capable of capable of observing the Sun for 2-4 weeks using a Long Duration Balloon (LDB). This mission is funded by the NASA HOPE (Hands On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer, and Office of the Chief

  6. Predicting the Dynamic Crushing Response of a Composite Honeycomb Energy Absorber Using Solid-Element-Based Models in LS-DYNA

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.

    2010-01-01

    This paper describes an analytical study that was performed as part of the development of an externally deployable energy absorber (DEA) concept. The concept consists of a composite honeycomb structure that can be stowed until needed to provide energy attenuation during a crash event, much like an external airbag system. One goal of the DEA development project was to generate a robust and reliable Finite Element Model (FEM) of the DEA that could be used to accurately predict its crush response under dynamic loading. The results of dynamic crush tests of 50-, 104-, and 68-cell DEA components are presented, and compared with simulation results from a solid-element FEM. Simulations of the FEM were performed in LS-DYNA(Registered TradeMark) to compare the capabilities of three different material models: MAT 63 (crushable foam), MAT 26 (honeycomb), and MAT 126 (modified honeycomb). These material models are evaluated to determine if they can be used to accurately predict both the uniform crushing and final compaction phases of the DEA for normal and off-axis loading conditions

  7. All-fiber mode-locked laser oscillator with pulse energy of 34 nJ using a single-walled carbon nanotube saturable absorber.

    PubMed

    Jeong, Hwanseong; Choi, Sun Young; Rotermund, Fabian; Cha, Yong-Ho; Jeong, Do-Young; Yeom, Dong-Il

    2014-09-22

    We demonstrate a dissipative soliton fiber laser with high pulse energy (>30 nJ) based on a single-walled carbon nanotube saturable absorber (SWCNT-SA). In-line SA that evanescently interacts with the high quality SWCNT/polymer composite film was fabricated under optimized conditions, increasing the damage threshold of the saturation fluence of the SA to 97 mJ/cm(2). An Er-doped mode-locked all-fiber laser operating at net normal intra-cavity dispersion was built including the fabricated in-line SA. The laser stably delivers linearly chirped pulses with a pulse duration of 12.7 ps, and exhibits a spectral bandwidth of 12.1 nm at the central wavelength of 1563 nm. Average power of the laser output is measured as 335 mW at an applied pump power of 1.27 W. The corresponding pulse energy is estimated to be 34 nJ at the fundamental repetition rate of 9.80 MHz; this is the highest value, to our knowledge, reported in all-fiber Er-doped mode-locked laser using an SWCNT-SA.

  8. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    SciTech Connect

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  9. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  10. Absorbing Outflows in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, Smita

    2002-01-01

    The goal of this program was a comprehensive multiwavelength study of absorption phenomena in active galactic nuclei (AGN). These include a variety of associated absorption systems: X-ray warm absorbers, X-ray cold absorbers. UV absorbers with high ionization lines, MgII absorbers, red quasars and BALQSOs. The aim is to determine the physical conditions in the absorbing outflows, study their inter-relations and their role in AGN. We designed several observing programs to achieve this goal: X-ray spectroscopy, UV spectroscopy, FLAY spectroscopy and X-ray imaging. We were very successful towards achieving the goal over the five year period as shown through following observing programs and papers. Copies of a few papers are attached with this report.

  11. Optical Properties of Mixed Nanofluids Containing Carbon Nanohorns and Silver Nanoparticles for Solar Energy Applications.

    PubMed

    Sani, E; Di Ninni, P; Colla, L; Barison, S; Agresti, F

    2015-05-01

    Different kinds of nanofluids show peculiar characteristics. In this work, a mixed nanofluid consisting of single-wall carbon nanohorns and silver nanoparticles aqueous suspensions is prepared and optically characterized, in the perspective to merge the favorable optical characteristics of carbon nanohorn-based nanofluids to the good thermal properties of silver-nanofluids. For the samples, both the spectral extinction and the scattering albedo at discrete wavelengths have been investigated. The silver nanoparticle plasmonic peak in the visible range further improves the overall nanofluid sunlight absorption properties, opening interesting perspectives for using such mixed nanofluids as solar absorber and heat transfer media in solar thermal collectors.

  12. Optical Properties of Mixed Nanofluids Containing Carbon Nanohorns and Silver Nanoparticles for Solar Energy Applications.

    PubMed

    Sani, E; Di Ninni, P; Colla, L; Barison, S; Agresti, F

    2015-05-01

    Different kinds of nanofluids show peculiar characteristics. In this work, a mixed nanofluid consisting of single-wall carbon nanohorns and silver nanoparticles aqueous suspensions is prepared and optically characterized, in the perspective to merge the favorable optical characteristics of carbon nanohorn-based nanofluids to the good thermal properties of silver-nanofluids. For the samples, both the spectral extinction and the scattering albedo at discrete wavelengths have been investigated. The silver nanoparticle plasmonic peak in the visible range further improves the overall nanofluid sunlight absorption properties, opening interesting perspectives for using such mixed nanofluids as solar absorber and heat transfer media in solar thermal collectors. PMID:26504978

  13. Internal absorber solar collector

    DOEpatents

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  14. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  15. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Milbourne, M.

    2005-01-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. The objective of this task is to quantify lifetimes through measurement of the optical and mechanical stability of candidate polymeric glazing and absorber materials. Polycarbonate sheet glazings, as proposed by two industry partners, have been tested for resistance to UV radiation with three complementary methods. Incorporation of a specific 2-mil thick UV-absorbing screening layer results in glazing lifetimes of at least 15 years; improved screens promise even longer lifetimes. Proposed absorber materials were tested for creep and embrittlement under high temperature, and appear adequate for planned ICS absorbers.

  16. Enhanced luminescence excitation via efficient optical energy transfer (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Aad, Roy; Nomenyo, Komla D.; Bercu, Bogdan; Couteau, Christophe; Sallet, Vincent; Rogers, David J.; Molinari, Michael; Lérondel, Gilles

    2015-10-01

    Luminescent nanoscale materials (LNMs) have received widespread interest in sensing and lighting applications due to their enhanced emissive properties. For sensing applications, LNMs offer improved sensitivity and fast response time which allow for lower limits of detection. Meanwhile, for lighting applications, LNMs, such as quantum dots, offer an improved internal quantum efficiency and controlled color rendering which allow for better lighting performances. Nevertheless, due to their nanometric dimensions, nanoscale materials suffer from extremely weak luminescence excitation (i.e. optical absorption) limiting their luminescence intensity, which in turn results in a downgrade in the limits of detection and external quantum efficiencies. Therefore, enhancing the luminescence excitation is a major issue for sensing and lighting applications. In this work, we report on a novel photonic approach to increase the luminescence excitation of nanoscale materials. Efficient luminescence excitation increase is achieved via a gain-assisted waveguided energy transfer (G-WET). The G-WET concept consists on placing nanoscale materials atop of a waveguiding active (i.e. luminescent) layer with optical gain. Efficient energy transfer is thus achieved by exciting the nanoscale material via the tail of the waveguided mode of the active layer emission. The G-WET concept is demonstrated on both a nanothin layer of fluorescent sensitive polymer and on CdSe/ZnS quantum dots coated on ZnO thin film, experimentally proving up to an 8-fold increase in the fluorescence of the polymer and a 3-fold increase in the luminescence of the CdSe/ZnS depending of the active layer emission regime (stimulated vs spontaneous emission). Furthermore, we will discuss on the extended G-WET concept which consists on coating nanoscale materials on a nanostructured active layer. The nanostructured active layer offers the necessary photonic modulation and a high specific surface which can presumably lead to

  17. Precise dispersion equations of absorbing filter glasses

    NASA Astrophysics Data System (ADS)

    Reichel, S.; Biertümpfel, Ralf

    2014-05-01

    The refractive indices versus wavelength of optical transparent glasses are measured at a few wavelengths only. In order to calculate the refractive index at any wavelength, a so-called Sellmeier series is used as an approximation of the wavelength dependent refractive index. Such a Sellmeier representation assumes an absorbing free (= loss less) material. In optical transparent glasses this assumption is valid since the absorption of such transparent glasses is very low. However, optical filter glasses have often a rather high absorbance in certain regions of the spectrum. The exact description of the wavelength dependent function of the refractive index is essential for an optimized design for sophisticated optical applications. Digital cameras use an IR cut filter to ensure good color rendition and image quality. In order to reduce ghost images by reflections and to be nearly angle independent absorbing filter glass is used, e.g. blue glass BG60 from SCHOTT. Nowadays digital cameras improve their performance and so the IR cut filter needs to be improved and thus the accurate knowledge of the refractive index (dispersion) of the used glasses must be known. But absorbing filter glass is not loss less as needed for a Sellmeier representation. In addition it is very difficult to measure it in the absorption region of the filter glass. We have focused a lot of effort on measuring the refractive index at specific wavelength for absorbing filter glass - even in the absorption region. It will be described how to do such a measurement. In addition we estimate the use of a Sellmeier representation for filter glasses. It turns out that in most cases a Sellmeier representation can be used even for absorbing filter glasses. Finally Sellmeier coefficients for the approximation of the refractive index will be given for different filter glasses.

  18. Module greenhouse with high efficiency of transformation of solar energy, utilizing active and passive glass optical rasters

    SciTech Connect

    Korecko, J.; Jirka, V.; Sourek, B.; Cerveny, J.

    2010-10-15

    Since the eighties of the 20th century, various types of linear glass rasters for architectural usage have been developed in the Czech Republic made by the continuous melting technology. The development was focused on two main groups of rasters - active rasters with linear Fresnel lenses in fixed installation and with movable photo-thermal and/or photo-thermal/photo-voltaic absorbers. The second group are passive rasters based on total reflection of rays on an optical prism. During the last years we have been working on their standardization, exact measuring of their optical and thermal-technical characteristics and on creation of a final product that could be applied in solar architecture. With the project supported by the Ministry of Environment of the Czech Republic we were able to build an experimental greenhouse using these active and passive optical glass rasters. The project followed the growing number of technical objectives. The concept of the greenhouse consisted of interdependence construction - structural design of the greenhouse with its technological equipment securing the required temperature and humidity conditions in the interior of the greenhouse. This article aims to show the merits of the proposed scheme and presents the results of the mathematical model in the TRNSYS environment through which we could predict the future energy balance carried out similar works, thus optimizing the investment and operating costs. In this article description of various technology applications for passive and active utilization of solar radiation is presented, as well as some results of short-term and long-term experiments, including evaluation of 1-year operation of the greenhouse from the energy and interior temperature viewpoints. A comparison of the calculated energy flows in the greenhouse to real measured values, for verification of the installed model is also involved. (author)

  19. Quantitative analysis of electron energy loss spectra and modelling of optical properties of multilayer systems for extreme ultraviolet radiation regime

    SciTech Connect

    Gusenleitner, S.; Hauschild, D.; Reinert, F.; Handick, E.

    2014-03-28

    Ruthenium capped multilayer coatings for use in the extreme ultraviolet (EUV) radiation regime have manifold applications in science and industry. Although the Ru cap shall protect the reflecting multilayers, the surface of the heterostructures suffers from contamination issues and surface degradation. In order to get a better understanding of the effects of these impurities on the optical parameters, reflection electron energy loss spectroscopy (REELS) measurements of contaminated and H cleaned Ru multilayer coatings were taken at various primary electron beam energies. Experiments conducted at low primary beam energies between 100 eV and 1000 eV are very surface sensitive due to the short inelastic mean free path of the electrons in this energy range. Therefore, influences of the surface condition on the above mentioned characteristics can be appraised. In this paper, it can be shown that carbon and oxide impurities on the mirror surface decrease the transmission of the Ru cap by about 0.75% and the overall reflectance of the device is impaired as the main share of the non-transmitted EUV light is absorbed in the contamination layer.

  20. Molecular Structure – Optical Property Relationships for a Series of Non-Centrosymmetric Two-photon Absorbing Push-Pull Triarylamine Molecules

    PubMed Central

    Vivas, Marcelo G.; Silva, Daniel L.; Malinge, Jérémy; Boujtita, Mohammed; Zaleśny, Robert; Bartkowiak, Wojciech; Ågren, Hans; Canuto, Sylvio; De Boni, Leonardo; Ishow, Eléna; Mendonca, Cleber R.

    2014-01-01

    This article reports on a comprehensive study of the two-photon absorption (2PA) properties of six novel push-pull octupolar triarylamine compounds as a function of the nature of the electron-withdrawing groups. These compounds present an octupolar structure consisting of a triarylamine core bearing two 3,3′-bis(trifluoromethyl)phenyl arms and a third group with varying electron-withdrawing strength (H < CN < CHO < NO2 < Cyet < Vin). The 2PA cross-sections, measured by using the femtosecond open-aperture Z-scan technique, showed significant enhancement from 45 up to 125 GM for the lowest energy band and from 95 up to 270 GM for the highest energy band. The results were elucidated based on the large changes in the transition and permanent dipole moments and in terms of (i) EWG strength, (ii) degree of donor-acceptor charge transfer and (iii) electronic coupling between the arms. The 2PA results were eventually supported and confronted with theoretical DFT calculations of the two-photon transition oscillator strengths. PMID:24658327

  1. High-energy passively Q-switched operation of Yb:GdCa(4)O(BO(3))(3) laser with a GaAs semiconductor saturable absorber.

    PubMed

    Chen, Xiaowen; Wang, Lisha; Han, Wenjuan; Guo, Yunfeng; Xu, Honghao; Yu, Haohai; Zhang, Huaijin; Liu, Junhai

    2015-11-16

    High-energy passively Q-switched operation of a Yb:GdCa(4)O(BO(3))(3) laser is demonstrated, with a GaAs crystal plate acting as saturable absorber. An average output power of 1.31 W at 1027 nm is produced at a pulse repetition rate of 1.92 kHz, the resulting pulse energy, duration, and peak power being respectively 0.68 mJ, 9.0 ns, and 75.6 kW. The shortest pulse duration obtained is 4.9 ns; whereas the maximum pulse energy achievable amounts to 0.83 mJ, which proves to be nearly one order of magnitude higher than ever generated from Yb or Nd lasers passively Q-switched by a GaAs saturable absorber.

  2. High-energy passively Q-switched operation of Yb:GdCa(4)O(BO(3))(3) laser with a GaAs semiconductor saturable absorber.

    PubMed

    Chen, Xiaowen; Wang, Lisha; Han, Wenjuan; Guo, Yunfeng; Xu, Honghao; Yu, Haohai; Zhang, Huaijin; Liu, Junhai

    2015-11-16

    High-energy passively Q-switched operation of a Yb:GdCa(4)O(BO(3))(3) laser is demonstrated, with a GaAs crystal plate acting as saturable absorber. An average output power of 1.31 W at 1027 nm is produced at a pulse repetition rate of 1.92 kHz, the resulting pulse energy, duration, and peak power being respectively 0.68 mJ, 9.0 ns, and 75.6 kW. The shortest pulse duration obtained is 4.9 ns; whereas the maximum pulse energy achievable amounts to 0.83 mJ, which proves to be nearly one order of magnitude higher than ever generated from Yb or Nd lasers passively Q-switched by a GaAs saturable absorber. PMID:26698515

  3. Large aperture, high-speed calorimeter for high-energy optical pulses

    SciTech Connect

    Niimura, M.; Dooling, J.; Zich, R.L.; Brock, R.N.; York, T.M.

    1985-12-01

    A radiometric calorimeter is described in which the energy absorber works at the same time as a temperature sensor so that thermal equilibrium for the entire volume of absorber is not required before measuring an incident energy. The achievable frequency response is therefore quite high, and this is not offset by the size and/or damage threshold of energy receiver. The device, formerly called Rat's Nest Calorimeter (RNC), has been found quite useful for measuring the total energy of modern pulsed lasers with a large beam cross section. The aperture (presently 6 cm) can be increased arbitrarily without degrading the rise time. Excellent stability and high damage threshold (>>439 MW/cm/sup 2/) result when a thick wire bolometer and amplifier combination is used. Response time (approx.9 ..mu..s) and spectral flatness are much better than previously reported. Potentials of the RNC for measuring any energy which it absorbs up to 2 kJ at the rise time 60 ns (approx.10 MHz) are discussed. The maximum sensitivity of the model 3.5 mJ/cm/sup 2/ is sufficient to detect the radiative energy emitting from today's fusion test plasmas.

  4. Light Absorbing Aerosols in Mexico City

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Kelley, K. L.; Kilaparty, P. S.; Gaffney, J. S.

    2008-12-01

    The direct effects of aerosol radiative forcing has been identified by the IPCC as a major uncertainty in climate modeling. The DOE Megacity Aerosol Experiment-Mexico City (MAX-Mex), as part of the MILAGRO study in March of 2006, was undertaken to reduce these uncertainties by characterization of the optical, chemical, and physical properties of atmospheric aerosols emitted from this megacity environment. Aerosol samples collected during this study using quartz filters were characterized in the uv-visible-infrared by using surface spectroscopic techniques. These included the use of an integrating sphere approach combined with the use of Kubelka-Munk theory to obtain aerosol absorption spectra. In past work black carbon has been assumed to be the only major absorbing species in atmospheric aerosols with an broad band spectral profile that follows a simple inverse wavelength dependence. Recent work has also identified a number of other absorbing species that can also add to the overall aerosol absorption. These include primary organics from biomass and trash burning and secondary organic aerosols including nitrated PAHs and humic-like substances, or HULIS. By using surface diffuse reflection spectroscopy we have also obtained spectra in the infrared that indicate significant IR absorption in the atmospheric window-region. These data will be presented and compared to spectra of model compounds that allow for evaluation of the potential importance of these species in adding strength to the direct radiative forcing of atmospheric aerosols. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64327 as part of the Atmospheric Science Program.

  5. Energy transfer at optical frequencies to silicon-on-insulator structures.

    PubMed

    Soller, B J; Stuart, H R; Hall, D G

    2001-09-15

    The refractive-index distribution that is intrinsic to the silicon-on-insulator (SOI) material system makes it possible for optical-frequency guided waves to be confined by the SOI silicon layer. The same refractive-index distribution is unusual among nonmetals in that it is possible for those SOI guided waves to interact strongly with nearby optical-frequency radiators, absorbers, and scatterers (e.g., atoms, molecules, and nanoparticles). We calculate the guided-mode excitation efficiency for an exterior particle near the SOI surface and show that it can attain values greater than 80% under appropriate conditions, thus showing that the SOI waveguide system is an attractive platform for the study of optical-frequency surface interactions.

  6. Emittance and Energy Measurements of Low-Energy Electron Beam Using Optical Transition Radiation Techniques

    NASA Astrophysics Data System (ADS)

    Sakamoto, Fumito; Iijima, Hokuto; Dobashi, Katsuhiro; Imai, Takayuki; Ueda, Toru; Watanabe, Takahiro; Uesaka, Mitsuru

    2005-03-01

    Emittance and energy of an electron beam in the range of 8 to 22 MeV were measured via optical transition radiation (OTR) techniques. The beam divergence effect on observations of the far-field OTR image at low energies was studied by means of numerical analysis. The numerical analysis indicates that if the beam divergence is under 1.5 mrad, a simultaneous single-shot measurement of emittance and energy is possible. The results of the single-shot experiment agree with independent measurements conducted using the quadrupole scan method and an electron spectrometer. The experiments were performed with an S-band linac at the Nuclear Engineering Research Laboratory, The University of Tokyo (UTNL).

  7. Energy normalization of TV viewed optical correlation (automated correlation plane analyzer for an optical processor)

    NASA Technical Reports Server (NTRS)

    Grumet, A.

    1981-01-01

    An automatic correlation plane processor that can rapidly acquire, identify, and locate the autocorrelation outputs of a bank of multiple optical matched filters is described. The read-only memory (ROM) stored digital silhouette of each image associated with each matched filter allows TV video to be used to collect image energy to provide accurate normalization of autocorrelations. The resulting normalized autocorrelations are independent of the illumination of the matched input. Deviation from unity of a normalized correlation can be used as a confidence measure of correct image identification. Analog preprocessing circuits permit digital conversion and random access memory (RAM) storage of those video signals with the correct amplitude, pulse width, rising slope, and falling slope. TV synchronized addressing of 3 RAMs permits on-line storage of: (1) the maximum unnormalized amplitude, (2) the image x location, and (3) the image y location of the output of each of up to 99 matched filters. A fourth RAM stores all normalized correlations. A normalization approach, normalization for cross correlations, a system's description with block diagrams, and system's applications are discussed.

  8. Engineering optical properties of semiconductor metafilm superabsorbers

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2016-04-01

    Light absorption in ultrathin layer of semiconductor has been considerable interests for many years due to its potential applications in various optical devices. In particular, there have been great efforts to engineer the optical properties of the film for the control of absorption spectrums. Whereas the isotropic thin films have intrinsic optical properties that are fixed by materials' properties, metafilm that are composed by deep subwavelength nano-building blocks provides significant flexibilities in controlling the optical properties of the designed effective layers. Here, we present the ultrathin semiconductor metafilm absorbers by arranging germanium (Ge) nanobeams in deep subwavelength scale. Resonant properties of high index semiconductor nanobeams play a key role in designing effective optical properties of the film. We demonstrate this in theory and experimental measurements to build a designing rule of efficient, controllable metafilm absorbers. The proposed strategy of engineering optical properties could open up wide range of applications from ultrathin photodetection and solar energy harvesting to the diverse flexible optoelectronics.

  9. TOPICAL REVIEW: Advances in the determination of absorbed dose to water in clinical high-energy photon and electron beams using ionization chambers

    NASA Astrophysics Data System (ADS)

    Saiful Huq, M.; Andreo, Pedro

    2004-02-01

    During the last two decades, absorbed dose to water in clinical photon and electron beams was determined using dosimetry protocols and codes of practice based on radiation metrology standards of air kerma. It is now recommended that clinical reference dosimetry be based on standards of absorbed dose to water. Newer protocols for the dosimetry of radiotherapy beams, based on the use of an ionization chamber calibrated in terms of absorbed dose to water, ND,w, in a standards laboratory's reference quality beam, have been published by several national or regional scientific societies and international organizations. Since the publication of these protocols multiple theoretical and experimental dosimetry comparisons between the various ND,w based recommendations, and between the ND,w and the former air kerma (NK) based protocols, have been published. This paper provides a comprehensive review of the dosimetry protocols based on these standards and of the intercomparisons of the different protocols published in the literature, discussing the reasons for the observed discrepancies between them. A summary of the various types of standards of absorbed dose to water, together with an analysis of the uncertainties along the various steps of the dosimetry chain for the two types of formalism, is also included. It is emphasized that the NK-ND,air and ND,w formalisms have very similar uncertainty when the same criteria are used for both procedures. Arguments are provided in support of the recommendation for a change in reference dosimetry based on standards of absorbed dose to water.

  10. Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy

    SciTech Connect

    Stabin, M.G.; Watson, E.E.; Cristy, M.; Ryman, J.C.; Eckerman, K.F.; Davis, J.L.; Marshall, D.; Gehlen, M.K.

    1995-05-08

    Mathematical phantoms representing the adult female at three, six, and nine months of gestation are described. They are modifications of the 15-year-old male/adult female phantom (15-AF phantom) of Cristy and Eckerman (1987). The model of uterine contents includes the fetus, fetal skeleton, and placenta. The model is suitable for dose calculations for the fetus as a whole; individual organs within the fetus (other than the skeleton) are not modeled. A new model for the nonpregnant adult female is also described, comprising (1) the 15-AF phantom; (2) an adjustment to specific absorbed fractions for organ self-dose from photons to better match Reference Woman masses; and (3) computation of specific absorbed fractions with Reference Woman masses from ICRP Publication 23 for both penetrating and nonpenetrating radiations. Specific absorbed fractions for photons emitted from various source regions are tabulated for the new non;pregnant adult female model and the three pregnancy models.

  11. Thin film absorber for a solar collector

    DOEpatents

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  12. Acousto-optically generated potential energy landscapes: potential mapping using colloids under flow.

    PubMed

    Juniper, Michael P N; Besseling, Rut; Aarts, Dirk G A L; Dullens, Roel P A

    2012-12-17

    Optical potential energy landscapes created using acousto-optical deflectors are characterized via solvent-driven colloidal particles. The full potential energy of both single optical traps and complex landscapes composed of multiple overlapping traps are determined using a simple force balance argument. The potential of a single trap is shown to be well described by a Gaussian trap with stiffness found to be consistent with those obtained by a thermal equilibrium method. We also obtain directly the depth of the well, which (as with stiffness) varies with laser power. Finally, various complex systems ranging from double-well potentials to random landscapes are generated from individually controlled optical traps. Predictions of these landscapes as a sum of single Gaussian wells are shown to be a good description of experimental results, offering the potential for fully controlled design of optical landscapes, constructed from single optical traps.

  13. A Large Aperture, High Energy Laser System for Optics and Optical Component Testing

    SciTech Connect

    Nostrand, M C; Weiland, T L; Luthi, R L; Vickers, J L; Sell, W D; Stanley, J A; Honig, J; Auerbach, J; Hackel, R P; Wegner, P J

    2003-11-01

    A large aperture, kJ-class, multi-wavelength Nd-glass laser system has been constructed at Lawrence Livermore National Lab which has unique capabilities for studying a wide variety of optical phenomena. The master-oscillator, power-amplifier (MOPA) configuration of this ''Optical Sciences Laser'' (OSL) produces 1053 nm radiation with shaped pulse lengths which are variable from 0.1-100 ns. The output can be frequency doubled or tripled with high conversion efficiency with a resultant 100 cm{sup 2} high quality output beam. This facility can accommodate prototype hardware for large-scale inertial confinement fusion lasers allowing for investigation of integrated system issues such as optical lifetime at high fluence, optics contamination, compatibility of non-optical materials, and laser diagnostics.

  14. Neutron Absorbing Alloys

    DOEpatents

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  15. Study on the energy-efficient scheme based on the interconnection of optical-network-units for next generation optical access network

    NASA Astrophysics Data System (ADS)

    Lv, Yunxin; Jiang, Ning; Qiu, Kun; Xue, Chenpeng

    2014-12-01

    An energy-efficient scheme based on the interconnection of optical network unit (ONU) is introduced, which can significantly reduce the energy consumption of the low-traffic operation. The energy consumption model for the ONU-interconnected optical access network (OAN) based on the electronic switch (ES) technology is established, and the energy efficiency of the proposed scheme is analyzed and compared with that of the OAN using optical switch (OS). The simulation results demonstrate that the ONU-interconnected scheme can efficiently reduce the energy consumption of OAN, and it shows a good energy consumption performance under daily traffic model.

  16. Attenuation of external Bremsstrahlung in metallic absorbers

    SciTech Connect

    Dhaliwal, A.S.; Powar, M.S.; Singh, M. )

    1990-12-01

    In this paper attenuation of bremsstrahlung from {sup 147}Pm and {sup 170}Tm beta emitters has been studied in aluminum, copper, tin, and lead metallic absorbers. Bremsstrahlung spectra and mass attenuation coefficients for monoenergetic gamma rays are used to calculate theoretical attenuation curves. Magnetic deflection and beta stopping techniques are used to measure the integral bremsstrahlung intensities above 30 keV in different target thicknesses. Comparison of measured and calculated attenuation curves shows a good agreement for various absorbers, thus providing a test of this technique, which may be useful in understanding bremsstrahlung intensity buildup and in the design of optimum shielding for bremsstrahlung sources. It is found that the absorption of bremsstrahlung in metallic absorbers does not obey an exponential law and that absorbers act as energy filters.

  17. Optical power and energy radiated by natural lightning

    NASA Astrophysics Data System (ADS)

    Quick, Mason G.; Krider, E. Philip

    2013-02-01

    Calibrated measurements of the visible and near-infrared radiation produced by both negative and positive cloud-to-ground (CG) lightning strokes have been made at distances of 5 to 32 km in southern Arizona (AZ) and the central Great Plains using a photodiode sensor with a flat spectral response between 0.4 and 1.0 µm. Time-correlated video images (60 fps) of the channel development provided information about the types of strokes that were detected and reports from the U.S. National Lightning Detection Network indicated their locations, polarities, and estimates of their peak current. In our sample of negative strokes that were suitable for analysis, there were 23 first (or only) strokes (FS), 19 subsequent strokes that created new ground contacts (NGC), and 101 subsequent strokes that re-illuminated a preexisting channel (PEC). We also analyzed 10 positive strokes (in nine flashes), and 73 of the larger impulses that were radiated by intracloud discharges (CPs). Assuming that these events can be approximated as isotropic sources and that the effects of atmospheric extinction are negligible, the peak optical power (Po), total optical energy (Eo), and characteristic widths of the sources (tcw = Eo/Po) have been computed. Median values of Po for negative FS, NGC, and PEC strokes were 1.8 × 1010 W, 1.1 × 1010 W, and 4.4 × 109 W, respectively. Median values of Eo were 3.6 × 106 J, 3.5 × 106 J, and 1.2 × 106 J, respectively. The median characteristic widths of negative FS, NGC, and PEC strokes were 229 µs, 244 µs, and 283 µs, respectively. Positive CG strokes produced a median Po, Eo, and tcw of 1.9 × 1010 W, 9.3 × 106 J, and 497 µs, respectively. Estimates of the space-and-time-average power per unit length (ℓo) in the lower portion of negative FS, NGC, and PEC channels had medians of 2.8 × 106 W/m, 3.2 × 106 W/m, and 1.4 × 106 W/m, respectively, and the median ℓo for four positive strokes was 8.8 × 106 W/m. Median values for the estimated peak

  18. Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces.

    PubMed

    Petoukhoff, Christopher E; O'Carroll, Deirdre M

    2015-01-01

    Interactions between absorbers and plasmonic metasurfaces can give rise to unique optical properties not present for either of the individual materials and can influence the performance of a host of optical sensing and thin-film optoelectronic applications. Here we identify three distinct mode types of absorber-coated plasmonic metasurfaces: localized and propagating surface plasmons and a previously unidentified optical mode type called absorption-induced scattering. The extinction of the latter mode type can be tuned by controlling the morphology of the absorber coating and the spectral overlap of the absorber with the plasmonic modes. Furthermore, we show that surface plasmons are backscattered when the crystallinity of the absorber is low but are absorbed for more crystalline absorber coatings. This work furthers our understanding of light-matter interactions between absorbers and surface plasmons to enable practical optoelectronic applications of metasurfaces.

  19. Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces

    PubMed Central

    Petoukhoff, Christopher E.; O'Carroll, Deirdre M.

    2015-01-01

    Interactions between absorbers and plasmonic metasurfaces can give rise to unique optical properties not present for either of the individual materials and can influence the performance of a host of optical sensing and thin-film optoelectronic applications. Here we identify three distinct mode types of absorber-coated plasmonic metasurfaces: localized and propagating surface plasmons and a previously unidentified optical mode type called absorption-induced scattering. The extinction of the latter mode type can be tuned by controlling the morphology of the absorber coating and the spectral overlap of the absorber with the plasmonic modes. Furthermore, we show that surface plasmons are backscattered when the crystallinity of the absorber is low but are absorbed for more crystalline absorber coatings. This work furthers our understanding of light–matter interactions between absorbers and surface plasmons to enable practical optoelectronic applications of metasurfaces. PMID:26271900

  20. Optical Coatings For Energy Efficiency And Solar Applications: Some Recent Developments

    NASA Astrophysics Data System (ADS)

    Granqvist, C. G.

    1983-11-01

    A brief survey is given of some recent trends and developments in the field of optical coatings for energy efficiency and solar applications. The discussion is focused on spectrally selective coatings and embraces transparent heat-mirrors, surfaces for selective absorption of solar energy, coatings for passive cooling by selective infraredemission, and optical switching coatings. A number of examples of coatings for different purposes are treated; most of these are taken from recent work performed at Chalmers University of Technology.

  1. Optical fiber cable for transmission of high power laser energy over great distances

    DOEpatents

    Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Moxley, Joel F.; Koblick, Yeshaya

    2016-05-24

    There is provided a system and apparatus for the transmission of high power laser energy over great distances without substantial power loss and without the presence of stimulated Raman scattering. There is further provided systems and optical fiber cable configurations and optical fiber structures for the delivering high power laser energy over great distances to a tool or surface to perform an operation or work with the tool or upon the surface.

  2. Optical fiber configurations for transmission of laser energy over great distances

    SciTech Connect

    Rinzler, Charles C; Zediker, Mark S

    2014-11-04

    There are provided optical fiber configurations that provide for the delivery of laser energy, and in particular, the transmission and delivery of high power laser energy over great distances. These configurations further are hardened to protect the optical fibers from the stresses and conditions of an intended application. The configurations provide means for determining the additional fiber length (AFL) need to obtain the benefits of such additional fiber, while avoiding bending losses.

  3. Optical fiber configurations for transmission of laser energy over great distances

    DOEpatents

    Rinzler, Charles C; Zediker, Mark S

    2013-10-29

    There are provided optical fiber configurations that provide for the delivery of laser energy, and in particular, the transmission and delivery of high power laser energy over great distances. These configurations further are hardened to protect the optical fibers from the stresses and conditions of an intended application. The configurations provide means for determining the additional fiber length (AFL) need to obtain the benefits of such additional fiber, while avoiding bending losses.

  4. Metasurface Broadband Solar Absorber

    PubMed Central

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  5. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  6. Metasurface Broadband Solar Absorber

    DOE PAGES

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributionsmore » to elucidate how the absorption occurs within the metasurface structure.« less

  7. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  8. Absorbed dose water calorimeter

    SciTech Connect

    Domen, S.R.

    1982-01-26

    An absorbed dose water calorimeter that takes advantage of the low thermal diffusivity of water and the water-imperviousness of polyethylene film. An ultra-small bead thermistor is sandwiched between two thin polyethylene films stretched between insulative supports in a water bath. The polyethylene films insulate the thermistor and its leads, the leads being run out from between the films in insulated sleeving and then to junctions to form a wheatstone bridge circuit. Convection barriers may be provided to reduce the effects of convection from the point of measurement. Controlled heating of different levels in the water bath is accomplished by electrical heater circuits provided for controlling temperature drift and providing adiabatic operation of the calorimeter. The absorbed dose is determined from the known specific heat of water and the measured temperature change.

  9. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  10. On the definition of absorbed dose

    NASA Astrophysics Data System (ADS)

    Grusell, Erik

    2015-02-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before.

  11. Solar absorber material reflectivity measurements at temperature

    SciTech Connect

    Bonometti, J.A.; Hawk, C.W.

    1999-07-01

    Assessment of absorber shell material properties at high operating temperatures is essential to the full understanding of the solar energy absorption process in a solar thermal rocket. A review of these properties, their application and a new experimental methodology to measure them at high temperatures is presented. The direct application for the research is absorber cavity development for a Solar Thermal Upper Stage (STUS). High temperature measurements, greater than 1,000 Kelvin, are difficult to obtain for incident radiation upon a solid surface that forms an absorber cavity in a solar thermal engine. The basic material properties determine the amount of solar energy that is absorbed, transmitted or reflected and are dependent upon the material's temperature. This investigation developed a new approach to evaluate the material properties (i.e., reflectivity, absorptive) of the absorber wall and experimentally determined them for rhenium and niobium sample coupons. The secular reflectivity was measured both at room temperature and at temperatures near 1,000 Kelvin over a range of angles from 0 to 90 degrees. The same experimental measurements were used to calculate the total reflectivity of the sample by integrating the recorded intensities over a hemisphere. The test methodology used the incident solar energy as the heating source while directly measuring the reflected light (an integrated value over all visible wavelengths). Temperature dependence on total reflectivity was found to follow an inverse power function of the material's temperature.

  12. Broadband energy-efficient optical modulation by hybrid integration of silicon nanophotonics and organic electro-optic polymer

    NASA Astrophysics Data System (ADS)

    Zhang, Xingyu; Hosseini, Amir; Subbaraman, Harish; Luo, Jingdong; Jen, Alex K.-Y.; Chung, Chi-jui; Yan, Hai; Pan, Zeyu; Nelson, Robert L.; Chen, Ray T.

    2015-03-01

    Silicon-organic hybrid integrated devices have emerging applications ranging from high-speed optical interconnects to photonic electromagnetic-field sensors. Silicon slot photonic crystal waveguides (PCWs) filled with electro-optic (EO) polymers combine the slow-light effect in PCWs with the high polarizability of EO polymers, which promises the realization of high-performance optical modulators. In this paper, a broadband, power-efficient, low-dispersion, and compact optical modulator based on an EO polymer filled silicon slot PCW is presented. A small voltage-length product of Vπ×L=0.282V×mm is achieved, corresponding to an unprecedented record-high effective in-device EO coefficient (r33) of 1230pm/V. Assisted by a backside gate voltage, the modulation response up to 50GHz is observed, with a 3-dB bandwidth of 15GHz, and the estimated energy consumption is 94.4fJ/bit at 10Gbit/s. Furthermore, lattice-shifted PCWs are utilized to enhance the optical bandwidth by a factor of ~10X over other modulators based on non-band-engineered PCWs and ring-resonators.

  13. Analysis and Design of MEBT Beam Absorber for Project-X

    SciTech Connect

    Awida, Mohamed H.; Lebedev, Valeri; Yakovlev, Vyacheslav P.; /Fermilab

    2012-05-01

    A beam absorber is needed for a new high power accelerator to be built in Fermilab. It is called Project-X and should replace the existing linac and the 8 GeV Booster synchrotron. The beam absorber is part of the bunch-by-bunch chopper assigned to create an arbitrary bunch sequence required by experimental program. It will be located in the middle of the medium energy beam transport (MEBT) and has to remove the unnecessary bunches from the initially uniform bunch structure supplied by 2.1 MeV CW RFQ. At nominal RFQ beam current of 5 mA, the maximum power delivered to the beam absorber is about 10 kW. Beam optics requirements result in that the length allocated to the beam absorber is short ({approx}400 mm) and the beam size is small ({sigma}{approx}2mm). That yields high power density of the beam arriving to the absorber. The paper presents the thermal and mechanical analysis of one of proposed designs.

  14. Mechanical and electronic energy eigenstates of neutral Rb atoms in deep optical lattices

    NASA Astrophysics Data System (ADS)

    Neuzner, Andreas; Koerber, Matthias; Morin, Olivier; Ritter, Stephan; Rempe, Gerhard

    2015-05-01

    Optical lattices allow for tight three-dimensional confinement of neutral atoms in quasi-harmonic potentials and have become a standard tool in experimental quantum optics. Applications range from fundamental topics like metrology to applications in quantum communication and quantum information processing. Here we present an experimental characterization of the motional and internal energy eigenstates of optically trapped 87Rb atoms. We implement different spectroscopy techniques based on non-destructive hyperfine state detection using an optical cavity. Applying these techniques, we observe and explain a series of effects like the decoupling of the hyperfine spin due to a tensor lightshift and mechanical effects associated with a small non-orthogonality of the lattice axes. Furthermore, we succeed to exploit the latter for optical cooling of a single atom into the two-dimensional mechanical groundstate in an environment with restricted optical access.

  15. A high-energy fibre-to-fibre connection for direct optical initiation systems

    NASA Astrophysics Data System (ADS)

    Bowden, M. D.; Knowles, S. L.

    2012-11-01

    Direct Optical Initiation (DOI), uses a moderate energy laser to shock initiate secondary explosives, via either a flyer plate or exploding metal foil. DOI offers significant performance and safety advantages over conventional electrical initiation. Optical fibres are used to transport the optical energy from the laser to the explosive device. A DOI system comprises of a laser, one or more optical fibres, and one or more laser detonators. Realisation of a DOI system is greatly eased by the use of fibre-to-fibre connections, allowing for easy integration into bulkheads or other interfaces, such as firing tanks and environmental test chambers. Fibres to fibre connectors capable of transmitting the required energy densities are not commercially available. Energy densities in the region of 35 J cm-2 are required for initiation, above the damage threshold of typical optical fibres. Laser-induced damage is typically caused by laser absorption at the input face due to imperfections in the surface polishing. To successfully transmit energy densities for DOI, a high quality fibre end face finish is required. A fibre-to-fibre connection utilizing micro-lens array injection into a large-core, tapered optical fibre, a hermetic fibre bulkhead feedthrough, and a disposable test fibre has been developed. This permits easy connection of test detonators or components, with the complex free-space to fibre injection simplified to a single operation. The damage threshold and transmission losses of the fibre-to-fibre connection have been established for each interface.

  16. Ferrite HOM Absorber for the RHIC ERL

    SciTech Connect

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  17. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  18. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  19. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    DOEpatents

    Tonkovich, Anna Lee Y.; Litt, Robert D.; Dongming, Qiu; Silva, Laura J.; Lamont, Micheal Jay; Fanelli, Maddalena; Simmons, Wayne W.; Perry, Steven

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  20. Non-contact fiber-optical trapping of motile bacteria: dynamics observation and energy estimation

    PubMed Central

    Xin, Hongbao; Liu, Qingyuan; Li, Baojun

    2014-01-01

    The dynamics and energy conversion of bacteria are strongly associated with bacterial activities, such as survival, spreading of bacterial diseases and their pathogenesis. Although different discoveries have been reported on trapped bacteria (i.e. immobilized bacteria), the investigation on the dynamics and energy conversion of motile bacteria in the process of trapping is highly desirable. Here, we report a non-contact optical trapping of motile bacteria using a modified tapered optical fiber. Using Escherichia coli as an example, both single and multiple motile bacteria have been trapped and manipulated in a non-contact manner. Bacterial dynamics has been observed and bacterial energy has been estimated in the trapping process. This non-contact optical trapping provides a new opportunity for better understanding the bacterial dynamics and energy conversion at the single cell level. PMID:25300713

  1. Analysis of optical near-field energy transfer by stochastic model unifying architectural dependencies

    SciTech Connect

    Naruse, Makoto; Akahane, Kouichi; Yamamoto, Naokatsu; Holmström, Petter; Thylén, Lars; Huant, Serge; Ohtsu, Motoichi

    2014-04-21

    We theoretically and experimentally demonstrate energy transfer mediated by optical near-field interactions in a multi-layer InAs quantum dot (QD) structure composed of a single layer of larger dots and N layers of smaller ones. We construct a stochastic model in which optical near-field interactions that follow a Yukawa potential, QD size fluctuations, and temperature-dependent energy level broadening are unified, enabling us to examine device-architecture-dependent energy transfer efficiencies. The model results are consistent with the experiments. This study provides an insight into optical energy transfer involving inherent disorders in materials and paves the way to systematic design principles of nanophotonic devices that will allow optimized performance and the realization of designated functions.

  2. Solar energy collector

    DOEpatents

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  3. Parabolic Trouogh Optical Characterization at the National Renewable Energy Laboratory

    SciTech Connect

    Wendelin, T. J.

    2005-01-01

    Solar parabolic trough power plant projects are soon to be implemented in the United States and internationally. In addition to these new projects, parabolic trough power plants totaling approximately 350 MW already exist within the United States and have operated for close to 20 years. As such, the status of the technology exists within several different phases. Theses phases include R&D, manufacturing and installation, and operations and maintenance. One aspect of successful deployment of this technology is achieving and maintaining optical performance. Different optical tools are needed to assist in improving initial designs, provide quality control during manufacture and assembly, and help maintain performance during operation. This paper discusses several such tools developed at SunLab (a joint project of the National Renewable Laboratory and Sandia National Laboratories) for these purposes. Preliminary testing results are presented. Finally, plans for further tool development are discussed.

  4. RadTracker: Optical Imaging of High Energy Radiation Tracks

    SciTech Connect

    Vernon, S P; Lowry, M E; Comaskey, B J; Heebner, J E; Kallman, J S; Richards, J B

    2007-03-02

    This project examined the possibility of extending the recently demonstrated radoptic detection approach to gamma imaging. Model simulations of the light scattering process predicted that expected signal levels were small and likely below the detection limit of large area, room-temperature detectors. A series of experiments using pulsed x-ray excitation, modulated gamma excitation and optical pump-probe methods confirmed those theoretical predictions. At present the technique does not appear to provide a viable approach to volumetric radiation detection; however, in principal, orders of magnitude improvement in the SNR can result by using designer materials to concentrate and localize the radiation-absorption induced charge, simultaneously confining the optical mode to increase 'fill' factor and overlap of the probe beam with the affected regions, and employing high speed gated imaging detectors to measure the scattered signal.

  5. Investigations on laser transmission welding of absorber-free thermoplastics

    NASA Astrophysics Data System (ADS)

    Mamuschkin, Viktor; Olowinsky, Alexander; Britten, Simon W.; Engelmann, Christoph

    2014-03-01

    Within the plastic industry laser transmission welding ranks among the most important joining techniques and opens up new application areas continuously. So far, a big disadvantage of the process was the fact that the joining partners need different optical properties. Since thermoplastics are transparent for the radiation of conventional beam sources (800- 1100 nm) the absorbance of one of the joining partners has to be enhanced by adding an infrared absorber (IR-absorber). Until recently, welding of absorber-free parts has not been possible. New diode lasers provide a broad variety of wavelengths which allows exploiting intrinsic absorption bands of thermoplastics. The use of a proper wavelength in combination with special optics enables laser welding of two optically identical polymer parts without absorbers which can be utilized in a large number of applications primarily in the medical and food industry, where the use of absorbers usually entails costly and time-consuming authorization processes. In this paper some aspects of the process are considered as the influence of the focal position, which is crucial when both joining partners have equal optical properties. After a theoretical consideration, an evaluation is carried out based on welding trials with polycarbonate (PC). Further aspects such as gap bridging capability and the influence of thickness of the upper joining partner are investigated as well.

  6. An EPIC view of absorbed HMXBs in the Scutum Arm

    NASA Astrophysics Data System (ADS)

    Bodaghee, Arash

    2009-10-01

    Observations are proposed for 5 new unclassified gamma-ray sources in the Scutum Arm. Each source will be targeted by EPIC PN and MOS cameras for 25 ks providing us with: a refined position that will facilitate optical/IR identification; spectral characteristics including the slope of the power law in X-rays and the photoelectric absorption; and timing characteristics in the case of Galactic XRBs. The targets lie within 5degs of the plane of the Milky Way, towards the tangent to the Scutum Arm, and are expected to be Galactic in origin. The main objective is to elucidate the nature of these sources. An additional benefit is that we will have a more complete sample of high-energy emitters in the Scutum Arm to compare with absorbed HMXBs in the Norma Arm.

  7. Optical Sensors for Planetary Radiant Energy (OSPREy): Calibration and Validation of Current and Next-Generation NASA Missions

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B.; Bernhard, Germar; Morrow, John H.; Booth, Charles R.; Comer, Thomas; Lind, Randall N.; Quang, Vi

    2012-01-01

    A principal objective of the Optical Sensors for Planetary Radiance Energy (OSPREy) activity is to establish an above-water radiometer system as a lower-cost alternative to existing in-water systems for the collection of ground-truth observations. The goal is to be able to make high-quality measurements satisfying the accuracy requirements for the vicarious calibration and algorithm validation of next-generation satellites that make ocean color and atmospheric measurements. This means the measurements will have a documented uncertainty satisfying the established performance metrics for producing climate-quality data records. The OSPREy approach is based on enhancing commercial-off-the-shelf fixed-wavelength and hyperspectral sensors to create hybridspectral instruments with an improved accuracy and spectral resolution, as well as a dynamic range permitting sea, Sun, sky, and Moon observations. Greater spectral diversity in the ultraviolet (UV) will be exploited to separate the living and nonliving components of marine ecosystems; UV bands will also be used to flag and improve atmospheric correction algorithms in the presence of absorbing aerosols. The short-wave infrared (SWIR) is expected to improve atmospheric correction, because the ocean is radiometrically blacker at these wavelengths. This report describes the development of the sensors, including unique capabilities like three-axis polarimetry; the documented uncertainty will be presented in a subsequent report.

  8. No Photon Left Behind: Advanced Optics at ARPA-E for Buildings and Solar Energy

    NASA Astrophysics Data System (ADS)

    Branz, Howard M.

    2015-04-01

    Key technology challenges in building efficiency and solar energy utilization require transformational optics, plasmonics and photonics technologies. We describe advanced optical technologies funded by the Advanced Research Projects Agency - Energy. Buildings technologies include a passive daytime photonic cooler, infra-red computer vision mapping for energy audit, and dual-band electrochromic windows based on plasmonic absorption. Solar technologies include novel hybrid energy converters that combine high-efficiency photovoltaics with concentrating solar thermal collection and storage. Because the marginal cost of thermal energy storage is low, these systems enable generation of inexpensive and dispatchable solar energy that can be deployed when the sun doesn't shine. The solar technologies under development include nanoparticle plasmonic spectrum splitting, Rugate filter interference structures and photovoltaic cells that can operate efficiently at over 400° C.

  9. White-Light-Induced Collective Heating of Gold Nanocomposite/Bombyx mori Silk Thin Films with Ultrahigh Broadband Absorbance.

    PubMed

    Tsao, Shao Hsuan; Wan, Dehui; Lai, Yu-Sheng; Chang, Ho-Ming; Yu, Chen-Chieh; Lin, Keng-Te; Chen, Hsuen-Li

    2015-12-22

    This paper describes a systematic investigation of the phenomenon of white-light-induced heating in silk fibroin films embedded with gold nanoparticles (Au NPs). The Au NPs functioned to develop an ultrahigh broadband absorber, allowing white light to be used as a source for photothermal generation. With an increase of the Au content in the composite films, the absorbance was enhanced significantly around the localized surface plasmon resonance (LSPR) wavelength, while non-LSPR wavelengths were also increased dramatically. The greater amount of absorbed light increased the rate of photoheating. The optimized composite film exhibited ultrahigh absorbances of approximately 95% over the spectral range from 350 to 750 nm, with moderate absorbances (>60%) at longer wavelengths (750-1000 nm). As a result, the composite film absorbed almost all of the incident light and, accordingly, converted this optical energy to local heat. Therefore, significant temperature increases (ca. 100 °C) were readily obtained when we irradiated the composite film under a light-emitting diode or halogen lamp. Moreover, such composite films displayed linear light-to-heat responses with respect to the light intensity, as well as great photothermal stability. A broadband absorptive film coated on a simple Al/Si Schottky diode displayed a linear, significant, stable photo-thermo-electronic effect in response to varying the light intensity.

  10. Liquid Cryogen Absorber for MICE

    SciTech Connect

    Baynham, D.E.; Bish, P.; Bradshaw, T.W.; Cummings, M.A.; Green,M.A.; Ishimoto, S.; Ivaniouchenkov, I.; Lau, W.; Yang, S.Q.; Zisman, M.S.

    2005-08-20

    The Muon Ionization Cooling Experiment (MICE) will test ionization cooling of muons. In order to have effective ionization cooling, one must use an absorber that is made from a low-z material. The most effective low z materials for ionization cooling are hydrogen, helium, lithium hydride, lithium and beryllium, in that order. In order to measure the effect of material on cooling, several absorber materials must be used. This report describes a liquid-hydrogen absorber that is within a pair of superconducting focusing solenoids. The absorber must also be suitable for use with liquid helium. The following absorber components are discussed in this report; the absorber body, its heat exchanger, the hydrogen system, and the hydrogen safety. Absorber cooling and the thin windows are not discussed here.

  11. Absorbed fractions for electrons in ellipsoidal volumes.

    PubMed

    Amato, E; Lizio, D; Baldari, S

    2011-01-21

    We applied a Monte Carlo simulation in Geant4 in order to calculate the absorbed fractions for monoenergetic electrons in the energy interval between 10 keV and 2 MeV, uniformly distributed in ellipsoids made from soft tissue. For each volume, we simulated a spherical shape, four oblate and four prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a 'generalized radius' was found, and the dependence of the fit parameters from electron energy is discussed and fitted by proper parametric functions. With the proposed formulation, the absorbed fraction for electrons in the 10-2000 keV energy range can be calculated for all volumes and for every ellipsoidal shape of practical interest. This method can be directly applied to evaluation of the absorbed fraction from the radionuclide emission of monoenergetic electrons, such as Auger or conversion electrons. The average deposited energy per disintegration in the case of extended beta spectra can be evaluated through integration. Two examples of application to a pure beta emitter such as (90)Y and to (131)I, whose emission include monoenergetic and beta electrons plus gamma photons, are presented. This approach represent a generalization of our previous studies, allowing a comprehensive treatment of absorbed fractions from electron and photon sources uniformly distributed in ellipsoidal volumes of any ellipticity and volume, in the whole range of practical interest for internal dosimetry in nuclear medicine applications, as well as in radiological protection estimations of doses from an internal contamination.

  12. Absorbed fractions for electrons in ellipsoidal volumes

    NASA Astrophysics Data System (ADS)

    Amato, E.; Lizio, D.; Baldari, S.

    2011-01-01

    We applied a Monte Carlo simulation in Geant4 in order to calculate the absorbed fractions for monoenergetic electrons in the energy interval between 10 keV and 2 MeV, uniformly distributed in ellipsoids made from soft tissue. For each volume, we simulated a spherical shape, four oblate and four prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a 'generalized radius' was found, and the dependence of the fit parameters from electron energy is discussed and fitted by proper parametric functions. With the proposed formulation, the absorbed fraction for electrons in the 10-2000 keV energy range can be calculated for all volumes and for every ellipsoidal shape of practical interest. This method can be directly applied to evaluation of the absorbed fraction from the radionuclide emission of monoenergetic electrons, such as Auger or conversion electrons. The average deposited energy per disintegration in the case of extended beta spectra can be evaluated through integration. Two examples of application to a pure beta emitter such as 90Y and to 131I, whose emission include monoenergetic and beta electrons plus gamma photons, are presented. This approach represent a generalization of our previous studies, allowing a comprehensive treatment of absorbed fractions from electron and photon sources uniformly distributed in ellipsoidal volumes of any ellipticity and volume, in the whole range of practical interest for internal dosimetry in nuclear medicine applications, as well as in radiological protection estimations of doses from an internal contamination.

  13. Electron optics of spheroid charged particle energy analyzers

    NASA Astrophysics Data System (ADS)

    Cubric, D.; Kholine, N.; Konishi, I.

    2011-07-01

    A new class of charged particle energy analyzers, spheroid energy analyzers (SEA) that are characterized with very high energy resolution and transmission, is presented. A prototype analyzer was built that has achieved a relative energy resolution of 0.05% at a transmission of 21% out of a 2π steradian. A very high order of focusing of these analyzers is presented via simulation that indicates the existence of 13th order focusing in one of our models. This promises further improvements in energy resolution in future practical analyzer embodiments. A novel geometrical framework is presented, which describes SEA analyzers in general terms within which well known types of analyzers CMA and CHA appear to be only particular examples.

  14. Multimodal optical imaging system for in vivo investigation of cerebral oxygen delivery and energy metabolism.

    PubMed

    Yaseen, Mohammad A; Srinivasan, Vivek J; Gorczynska, Iwona; Fujimoto, James G; Boas, David A; Sakadžić, Sava

    2015-12-01

    Improving our understanding of brain function requires novel tools to observe multiple physiological parameters with high resolution in vivo. We have developed a multimodal imaging system for investigating multiple facets of cerebral blood flow and metabolism in small animals. The system was custom designed and features multiple optical imaging capabilities, including 2-photon and confocal lifetime microscopy, optical coherence tomography, laser speckle imaging, and optical intrinsic signal imaging. Here, we provide details of the system's design and present in vivo observations of multiple metrics of cerebral oxygen delivery and energy metabolism, including oxygen partial pressure, microvascular blood flow, and NADH autofluorescence.

  15. Multimodal optical imaging system for in vivo investigation of cerebral oxygen delivery and energy metabolism

    PubMed Central

    Yaseen, Mohammad A.; Srinivasan, Vivek J.; Gorczynska, Iwona; Fujimoto, James G.; Boas, David A.; Sakadžić, Sava

    2015-01-01

    Improving our understanding of brain function requires novel tools to observe multiple physiological parameters with high resolution in vivo. We have developed a multimodal imaging system for investigating multiple facets of cerebral blood flow and metabolism in small animals. The system was custom designed and features multiple optical imaging capabilities, including 2-photon and confocal lifetime microscopy, optical coherence tomography, laser speckle imaging, and optical intrinsic signal imaging. Here, we provide details of the system’s design and present in vivo observations of multiple metrics of cerebral oxygen delivery and energy metabolism, including oxygen partial pressure, microvascular blood flow, and NADH autofluorescence. PMID:26713212

  16. High-speed Light Peak optical link for high energy applications

    NASA Astrophysics Data System (ADS)

    Chang, F. X.; Chiang, F.; Deng, B.; Hou, J.; Hou, S.; Liu, C.; Liu, T.; Teng, P. K.; Wang, C. H.; Xu, T.; Ye, J.

    2014-11-01

    Optical links provide high speed data transmission with low mass fibers favorable for applications in high energy experiments. We report investigation of a compact Light Peak optical engine designed for data transmission at 4.8 Gbps. The module is assembled with bare die VCSEL, PIN diodes and a control IC aligned within a prism receptacle for light coupling to fiber ferrule. Radiation damage in the receptacle was examined with 60Co gamma ray. Radiation induced single event effects in the optical engine were studied with protons, neutrons and X-ray tests.

  17. Warm Absorber Diagnostics of AGN Dynamics

    NASA Astrophysics Data System (ADS)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  18. Maximally concentrating optics for photovoltaic solar energy conversion

    SciTech Connect

    Winston, R.; O'Gallagher, J.; Ning, X.

    1986-02-27

    The use of a two-stage concentrator with a fresnel lens primary and a non-imaging dielectric totally internally reflecting secondary, has unique advantages for photovoltaic concentration. This new design has a much larger acceptance angle than the conventional lens-cell concentrating system. In the continuation of this research, an optimally designed prototype which employs a 13.6-cm diameter flat fresnel tons as the primary focusing device, a dielectric compound hyperbolic concentrator (DCHC) as secondary and a 1-cm diameter high-concentration cell for electricity conversion has been built, tested and analyzed. Measurements under sunlight show that it has an angular acceptance of [plus minus]3.6 degrees, which is dramatically better than the [plus minus]0.5 degree achievable without a secondary concentrator. This performance agrees well with theoretical ray-tracing predictions. The secondary shows an optical efficiency of (91[plus minus]2)% at normal incidence. Combining with the primary fresnel tens which has an optical efficiency of (82[plus minus]2)%, tho two-stage system yields a total optical efficiency of (7l[plus minus]2)%. The measurement of the system electrical performance yielded a net electrical efficiency of 11.9%. No problems associated with non-uniform cell illumination were found, as evidenced by the excellent fill factor of (79[plus minus]2)% measured under concentration. The secondary geometrical properties and the optimal two-stage design procedures for various primary- cell combinations were systematical studied. A general design principle has been developed.

  19. Efficient Optical Energy Harvesting in Self-Accelerating Beams

    PubMed Central

    Bongiovanni, Domenico; Hu, Yi; Wetzel, Benjamin; Robles, Raul A.; Mendoza González, Gregorio; Marti-Panameño, Erwin A.; Chen, Zhigang; Morandotti, Roberto

    2015-01-01

    We report the experimental observation of energetically confined self-accelerating optical beams propagating along various convex trajectories. We show that, under an appropriate transverse compression of their spatial spectra, these self-accelerating beams can exhibit a dramatic enhancement of their peak intensity and a significant decrease of their transverse expansion, yet retaining both the expected acceleration profile and the intrinsic self-healing properties. We found our experimental results to be in excellent agreement with the numerical simulations. We expect further applications in such contexts where power budget and optimal spatial confinement can be important limiting factors. PMID:26299360

  20. Dual broadband metamaterial absorber.

    PubMed

    Kim, Young Ju; Yoo, Young Joon; Kim, Ki Won; Rhee, Joo Yull; Kim, Yong Hwan; Lee, YoungPak

    2015-02-23

    We propose polarization-independent and dual-broadband metamaterial absorbers at microwave frequencies. This is a periodic meta-atom array consisting of metal-dielectric-multilayer truncated cones. We demonstrate not only one broadband absorption from the fundamental magnetic resonances but additional broadband absorption in high-frequency range using the third-harmonic resonance, by both simulation and experiment. In simulation, the absorption was over 90% in 3.93-6.05 GHz, and 11.64-14.55 GHz. The corresponding experimental absorption bands over 90% were 3.88-6.08 GHz, 9.95-10.46 GHz and 11.86-13.84 GHz, respectively. The origin of absorption bands was elucidated. Furthermore, it is independent of polarization angle owing to the multilayered circular structures. The design is scalable to smaller size for the infrared and the visible ranges.

  1. Angular solar absorptance of absorbers used in solar thermal collectors.

    PubMed

    Tesfamichael, T; Wäckelgård, E

    1999-07-01

    The optical characterization of solar absorbers for thermal solar collectors is usually performed by measurement of the spectral reflectance at near-normal angle of incidence and calculation of the solar absorptance from the measured reflectance. The solar absorptance is, however, a function of the angle of incidence of the light impinging on the absorber. The total reflectance of two types of commercial solar-selective absorbers, nickel-pigmented anodized aluminum, and sputtered nickel nickel oxide coated aluminum are measured at angles of incidence from 5 to 80 in the wavelength range 300-2500 nm by use of an integrating sphere. From these measurements the angular integrated solar absorptance is determined. Experimental data are compared with theoretical calculations, and it is found that optical thin-film interference effects can explain the significant difference in solar absorptance at higher angles for the two types of absorbers.

  2. Refractive optical elements and optical system for high energy x-ray microscopy

    SciTech Connect

    Simon, M.; Altapova, V.; Baumbach, T.; Kluge, M.; Last, A.; Marschall, F.; Mohr, J.; Nazmov, V.; Vogt, H.

    2012-05-17

    In material science, X-ray radiation with photon energies above 25 keV is used because of its penetration into high density materials. Research of the inner structure of novel materials, such as electrodes in high power batteries for engines, require X-ray microscopes operating in the hard X-ray energy range. A flexible X-ray microscope for hard X-rays with photon energies higher than 25 keV will be realized at the synchrotron source ANKA in Karlsruhe, Germany. The device will use refractive X-ray lenses as condenser as well as objective lenses.

  3. Photonic color filters integrated with organic solar cells for energy harvesting.

    PubMed

    Park, Hui Joon; Xu, Ting; Lee, Jae Yong; Ledbetter, Abram; Guo, L Jay

    2011-09-27

    Color filters are indispensable in most color display applications. In most cases, they are chemical pigment-based filters, which produce a particular color by absorbing its complementary color, and the absorbed energy is totally wasted. If the absorbed and wasted energy can be utilized, e.g., to generate electricity, innovative energy-efficient electronic media could be envisioned. Here we show photonic nanostructures incorporated with photovoltaics capable of producing desirable colors in the visible band and utilize the absorbed light to simultaneously generate electrical powers. In contrast to the traditional colorant-based filters, these devices offer great advantages for electro-optic applications.

  4. Passive optical interconnects at top of the rack: offering high energy efficiency for datacenters.

    PubMed

    Gong, Yu; Hong, Xuezhi; Lu, Yang; He, Sailing; Chen, Jiajia

    2015-03-23

    This paper introduces a new concept, namely passive optical interconnect at top of the rack in the datacenter networks, and investigates several architectures, which use only passive optical components to interconnect different servers. In such a manner, the proposed schemes are able to offer higher bandwidth and significantly improve energy efficiency compared to their electronic counterpart that is based on commodity switches. The proposed passive optical interconnect schemes are experimentally demonstrated in order to validate the transmission performance. Besides, an assessment in terms of energy consumption and cost has also been carried out, which shows our proposed concept can significantly outperform the conventional commodity switches on energy efficiency while keeping the cost in the similar level.

  5. An extremely wideband and lightweight metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Shen, Yang; Pei, Zhibin; Pang, Yongqiang; Wang, Jiafu; Zhang, Anxue; Qu, Shaobo

    2015-06-01

    This paper presents a three-dimensional microwave metamaterial absorber based on the stand-up resistive film patch array. The absorber has wideband absorption, lightweight, and polarization-independent properties. Our design comes from the array of unidirectional stand-up resistive film patches backed by a metallic plane, which can excite multiple standing wave modes. By rolling the resistive film patches as a square enclosure, we obtain the polarization-independent property. Due to the multiple standing wave modes, the most incident energy is dissipated by the resistive film patches, and thus, the ultra-wideband absorption can be achieved by overlapping all the absorption modes at different frequencies. Both the simulated and experimental results show that the absorber possesses a fractional bandwidth of 148.2% with the absorption above 90% in the frequency range from 3.9 to 26.2 GHz. Moreover, the proposed absorber is extremely lightweight. The areal density of the fabricated sample is about 0.062 g/cm2, which is approximately equivalent to that of eight stacked standard A4 office papers. It is expected that our proposed absorber may find potential applications such as electromagnetic interference and stealth technologies.

  6. The Ringo2 Optical Polarisation Catalogue of 13 High-Energy Blazars

    NASA Astrophysics Data System (ADS)

    Barres de Almeida, Ulisses; Jermak, Helen; Mundell, Carole; Lindfors, Elina; Nilsson, Kari; Steele, Iain

    2015-08-01

    We present the findings of the Ringo2 3-year survey of 13 blazars (3 FSRQs and 10 BL Lacs) with regular coverage and reasonably fast cadence of one to three observations a week. Ringo2 was installed on the Liverpool Robotic Telescope (LT) on the Canary Island of La Palma between 2009 and 2012 and monitored thirteen high-energy-emitting blazars in the northern sky. The objects selected as well as the observational strategy were tuned to maximise the synergies with high-energy X- to gamma-ray observations. Therefore this sample stands out as a well-sampled, long-term view of high-energy AGN jets in polarised optical light. Over half of the sources exhibited an increase in optical flux during this period and almost a quarter were observed in outburst. We compare the optical data to gamma (Fermi/LAT) and X-ray data during these periods of outburst. In this talk we present the data obtained for all sources over the lifetime of Ringo2 with additional optical data from the KVA telescope and the SkyCamZ wide-field camera (on the LT), we explore the relationship between the change in polarisation angle as a function of time (dEVPA/dMJD), flux and polarisation degree along with cross correlation comparisons of optical and high-energy flux.

  7. Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer

    PubMed Central

    Naruse, Makoto; Kim, Song-Ju; Aono, Masashi; Hori, Hirokazu; Ohtsu, Motoichi

    2014-01-01

    By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs. PMID:25113239

  8. All-optical design for inherently energy-conserving reversible gates and circuits

    NASA Astrophysics Data System (ADS)

    Cohen, Eyal; Dolev, Shlomi; Rosenblit, Michael

    2016-04-01

    As energy efficiency becomes a paramount issue in this day and age, reversible computing may serve as a critical step towards energy conservation in information technology. The inputs of reversible computing elements define the outputs and vice versa. Some reversible gates such as the Fredkin gate are also universal; that is, they may be used to produce any logic operation. It is possible to find physical representations for the information, so that when processed with reversible logic, the energy of the output is equal to the energy of the input. It is suggested that there may be devices that will do that without applying any additional power. Here, we present a formalism that may be used to produce any reversible logic gate. We implement this method over an optical design of the Fredkin gate, which utilizes only optical elements that inherently conserve energy.

  9. All-optical design for inherently energy-conserving reversible gates and circuits

    PubMed Central

    Cohen, Eyal; Dolev, Shlomi; Rosenblit, Michael

    2016-01-01

    As energy efficiency becomes a paramount issue in this day and age, reversible computing may serve as a critical step towards energy conservation in information technology. The inputs of reversible computing elements define the outputs and vice versa. Some reversible gates such as the Fredkin gate are also universal; that is, they may be used to produce any logic operation. It is possible to find physical representations for the information, so that when processed with reversible logic, the energy of the output is equal to the energy of the input. It is suggested that there may be devices that will do that without applying any additional power. Here, we present a formalism that may be used to produce any reversible logic gate. We implement this method over an optical design of the Fredkin gate, which utilizes only optical elements that inherently conserve energy. PMID:27113510

  10. Fluctuations of energy density of short-pulse optical radiation in the turbulent atmosphere.

    PubMed

    Banakh, V A; Smalikho, I N

    2014-09-22

    Fluctuations of energy density of short-pulse optical radiation in the turbulent atmosphere have been studied based on numerical solution of the parabolic wave equation for the complex spectral amplitude of the wave field by the split-step method. It has been shown that under conditions of strong optical turbulence, the relative variance of energy density fluctuations of pulsed radiation of femtosecond duration becomes much less than the relative variance of intensity fluctuations of continuous-wave radiation. The spatial structure of fluctuations of the energy density with a decrease of the pulse duration becomes more large-scale and homogeneous. For shorter pulses the maximal value of the probability density distribution of energy density fluctuations tends to the mean value of the energy density.

  11. Performance evaluation of CFRP-rubber shock absorbers

    SciTech Connect

    Lamanna, Giuseppe Sepe, Raffaele

    2014-05-15

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers’ safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  12. Performance evaluation of CFRP-rubber shock absorbers

    NASA Astrophysics Data System (ADS)

    Lamanna, Giuseppe; Sepe, Raffaele

    2014-05-01

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers' safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  13. Controlling of optical energy gap of Co-ferrite quantum dots in poly (methyl methacrylate) matrix

    NASA Astrophysics Data System (ADS)

    El-Sayed, H. M.; Agami, W. R.

    2015-07-01

    Different crystallite sizes of Co-ferrite nanoparticles were prepared and dispersed in the matrix of poly (methyl methacrylate) (PMMA) polymer. The effect of crystallite size on the structure and optical energy gap of Co-nanoferrite/PMMA composite has been studied. The optical energy gap of Co-ferrite was greatly affected by the crystallite size. This result was discussed in terms of the formation of electron-hole exciton using particle in a box model. The effective mass and the Bohr radius of the formed exciton have been calculated from the spectroscopic measurements.

  14. Glory on Venus cloud tops and the unknown UV absorber

    NASA Astrophysics Data System (ADS)

    Markiewicz, W. J.; Petrova, E.; Shalygina, O.; Almeida, M.; Titov, D. V.; Limaye, S. S.; Ignatiev, N.; Roatsch, T.; Matz, K. D.

    2014-05-01

    We report on the implications of the observations of the glory phenomenon made recently by Venus Express orbiter. Glory is an optical phenomenon that poses stringent constraints on the cloud properties. These observations thus enable us to constrain two properties of the particles at the cloud tops (about 70 km altitude) which are responsible for a large fraction of the solar energy absorbed by Venus. Firstly we obtain a very accurate estimate of the cloud particles size to be 1.2 μm with a very narrow size distribution. We also find that for the two observations presented here the clouds are homogenous, as far as cloud particles sizes are concerned, on scale of at least 1200 km. This is in contrast to previous estimates that were either local, from entry probes data, or averaged over space and time from polarization data. Secondly we find that the refractive index for the data discussed here is higher than that of sulfuric acid previously proposed for the clouds composition (Hansen, J.E., Hovenier, J.W. [1974]. J. Atmos. Sci. 31, 1137-1160; Ragent, B. et al. [1985]. Adv. Space Res. 5, 85-115). Assuming that the species contributing to the increase of the refractive index is the same as the unknown UV absorber, we are able to constrain the list of candidates. We investigated several possibilities and argue that either small ferric chloride (FeCl3) cores inside sulfuric acid particles or elemental sulfur coating their surface are good explanations of the observation. Both ferric chloride and elemental sulfur have been suggested in the past as candidates for the as yet unknown UV absorber (Krasnopolsky, V.A. [2006]. Planet. Space Sci. 54, 1352-1359; Mills, F.P. et al. [2007]. In: Esposito, L.W., Stofan, E.R., Cravens, T.E. (Eds.), Exploring Venus as a Terrestrial Planet, vol. 176. AGU Monogr. Ser., Washington, DC, pp. 73-100).

  15. Optical and Electrical Measurement of Energy Transfer between Nanocrystalline Quantum Dots and Photosystem I

    SciTech Connect

    Jung, Hyeson; Gulis, G.; Gupta, S.; Redding, K.; Gosztola, D. J.; Wiederrecht, Gary P; Stroscio, M. A.; Dutta, M.

    2010-08-31

    In the natural photosynthesis process, light harvesting complexes (LHCs) absorb light and pass excitation energy to photosystem I (PSI) and photosystem II (PSII). In this study, we have used nanocrystalline quantum dots (NQDs) as an artificial LHC by integrating them with PSI to extend their spectral range. We have performed photoluminescence (PL) and ultrafast time-resolved absorption measurements to investigate this process. Our PL experiments showed that emission from the NQDs is quenched, and the fluorescence from PSI is enhanced. Transient absorption and bleaching results can be explained by fluorescence resonance energy transfer (FRET) from the NQDs to the PSI. This nonradiative energy transfer occurs in ~6 ps. Current-voltage (I-V) measurements on the composite NQD-PSI samples demonstrate a clear photoresponse.

  16. Optical and electrical measurement of energy transfer between nanocrystalline quantum dots and photosystem I.

    PubMed

    Jung, Hyeson; Gulis, Galina; Gupta, Subhadra; Redding, Kevin; Gosztola, David J; Wiederrecht, Gary P; Stroscio, Michael A; Dutta, Mitra

    2010-11-18

    In the natural photosynthesis process, light harvesting complexes (LHCs) absorb light and pass excitation energy to photosystem I (PSI) and photosystem II (PSII). In this study, we have used nanocrystalline quantum dots (NQDs) as an artificial LHC by integrating them with PSI to extend their spectral range. We have performed photoluminescence (PL) and ultrafast time-resolved absorption measurements to investigate this process. Our PL experiments showed that emission from the NQDs is quenched, and the fluorescence from PSI is enhanced. Transient absorption and bleaching results can be explained by fluorescence resonance energy transfer (FRET) from the NQDs to the PSI. This nonradiative energy transfer occurs in ∼6 ps. Current-voltage (I-V) measurements on the composite NQD-PSI samples demonstrate a clear photoresponse.

  17. Broadband patterned magnetic microwave absorber

    SciTech Connect

    Li, Wei; Wu, Tianlong; Wang, Wei; Guan, Jianguo; Zhai, Pengcheng

    2014-07-28

    It is a tough task to greatly improve the working bandwidth for the traditional flat microwave absorbers because of the restriction of available material parameters. In this work, a simple patterning method is proposed to drastically broaden the absorption bandwidth of a conventional magnetic absorber. As a demonstration, an ultra-broadband microwave absorber with more than 90% absorption in the frequency range of 4–40 GHz is designed and experimentally realized, which has a thin thickness of 3.7 mm and a light weight equivalent to a 2-mm-thick flat absorber. In such a patterned absorber, the broadband strong absorption is mainly originated from the simultaneous incorporation of multiple λ/4 resonances and edge diffraction effects. This work provides a facile route to greatly extend the microwave absorption bandwidth for the currently available absorbing materials.

  18. Liquid Hydrogen Absorber for MICE

    SciTech Connect

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  19. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  20. Photoassisted electrolysis of water - Conversion of optical to chemical energy

    NASA Technical Reports Server (NTRS)

    Wrighton, M. S.; Bolts, J. M.; Kaiser, S. W.; Ellis, A. B.

    1976-01-01

    A description is given of devices, termed photoelectrochemical cells, which can, in principle, be used to directly convert light to fuels and/or electricity. The fundamental principles on which the photoelectrochemical cell is based are related to the observation that irradiation of a semiconductor electrode in an electrochemical cell can result in the flow of an electric current in the external circuit. Attention is given to the basic mechanisms involved, the energy conversion efficiency, the advantages of photoelectrochemical cells, and the results of investigations related to the study of energy conversion via photoelectrochemical cells.

  1. Shock wave absorber having apertured plate

    DOEpatents

    Shin, Y.W.; Wiedermann, A.H.; Ockert, C.E.

    1983-08-26

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  2. Shock wave absorber having apertured plate

    DOEpatents

    Shin, Yong W.; Wiedermann, Arne H.; Ockert, Carl E.

    1985-01-01

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  3. Characterizing energy dependence and count rate performance of a dual scintillator fiber-optic detector for computed tomography

    SciTech Connect

    Hoerner, Matthew R. Stepusin, Elliott J.; Hyer, Daniel E.; Hintenlang, David E.

    2015-03-15

    Purpose: Kilovoltage (kV) x-rays pose a significant challenge for radiation dosimetry. In the kV energy range, even small differences in material composition can result in significant variations in the absorbed energy between soft tissue and the detector. In addition, the use of electronic systems in light detection has demonstrated measurement losses at high photon fluence rates incident to the detector. This study investigated the feasibility of using a novel dual scintillator detector and whether its response to changes in beam energy from scatter and hardening is readily quantified. The detector incorporates a tissue-equivalent plastic scintillator and a gadolinium oxysulfide scintillator, which has a higher sensitivity to scatter x-rays. Methods: The detector was constructed by coupling two scintillators: (1) small cylindrical plastic scintillator, 500 μm in diameter and 2 mm in length, and (2) 100 micron sheet of gadolinium oxysulfide 500 μm in diameter, each to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photomultiplier tube. Count rate linearity data were obtained from a wide range of exposure rates delivered from a radiological x-ray tube by adjusting the tube current. The data were fitted to a nonparalyzable dead time model to characterize the time response. The true counting rate was related to the reference free air dose air rate measured with a 0.6 cm{sup 3} Radcal{sup ®} thimble chamber as described in AAPM Report No. 111. Secondary electron and photon spectra were evaluated using Monte Carlo techniques to analyze ionization quenching and photon energy-absorption characteristics from free-in-air and in phantom measurements. The depth/energy dependence of the detector was characterized using a computed tomography dose index QA phantom consisting of nested adult head and body segments. The phantom provided up to 32 cm of acrylic with a compatible 0.6 cm{sup 3} calibrated

  4. Asymmetric energy transfer and optical diffraction in novel molecular glass with carbazole moiety

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Naoto; Eguchi, Junya; Sakai, Wataru

    2006-12-01

    Asymmetric energy transfer and optical diffraction under optically interfered beams was presented in composites with novel star-shaped molecular glass end-caped by carbazole moiety, α,α',α″-tris-(4-(carbazoryl)- n-hexyloxyphenyl)-1,3,5-triisopropylbenzene (Tris). Composite consisted of Tris as host matrix, 2,4,7-trinitro-9-fluorenone (TNF) as a sensitizer, ( S)-(-)-1-(4-nitrophenyl)-2-pyrrolidine-methanol (NPP) as a nonlinear optical dye and either tricresyl phosphate (TCP), n-butyl benzyl phthalate (BBP), diphenyl phthalate (DPP), or dicyclohexyl phthalate (DCP) as a plasticizer. Asymmetric two beam coupling (asymmetric energy transfer) and beam diffraction were achieved with no external field. Glass transition temperature of the composites plays an important role for these phenomena of asymmetric energy transfer and optical diffraction with no external field. Highest net gain coefficient of 59.7 cm -1 with optical gain of 151.3 cm -1 and absorption coefficient of 91.6 cm -1 was obtained for Tris/NPP/DPP/TNF (35/20/40/5) composite. TNF anion produced by laser illumination plays a key role of beam diffraction and asymmetric two beam coupling in the composites.

  5. Physics of reflective optics for the soft gamma-ray photon energy range

    DOE PAGES

    Fernandez-Perea, Monica; Descalle, Marie -Anne; Soufli, Regina; Ziock, Klaus P.; Alameda, Jennifer; Baker, Sherry L.; McCarville, Tom J.; Honkimaki, Veijo; Ziegler, Eric; Jakobsen, Anders C.; et al

    2013-07-12

    Traditional multilayer reflective optics that have been used in the past for imaging at x-ray photon energies as high as 200 keV are governed by classical wave phenomena. However, their behavior at higher energies is unknown, because of the increasing effect of incoherent scattering and the disagreement between experimental and theoretical optical properties of materials in the hard x-ray and gamma-ray regimes. Here, we demonstrate that multilayer reflective optics can operate efficiently and according to classical wave physics up to photon energies of at least 384 keV. We also use particle transport simulations to quantitatively determine that incoherent scattering takesmore » place in the mirrors but it does not affect the performance at the Bragg angles of operation. Furthermore, our results open up new possibilities of reflective optical designs in a spectral range where only diffractive optics (crystals and lenses) and crystal monochromators have been available until now.« less

  6. Generation of hyper-entanglement in polarization/energy-time and discrete-frequency/energy-time in optical fibers

    NASA Astrophysics Data System (ADS)

    Dong, Shuai; Yu, Lingjie; Zhang, Wei; Wu, Junjie; Zhang, Weijun; You, Lixing; Huang, Yidong

    2015-03-01

    In this paper, a generation scheme for telecom band hyper-entanglement is proposed and demonstrated based on the vector spontaneous four wave mixing (SFWM) processes in optical fibers. Two kinds of two-photon states are generated, one is hyper-entangled in the degree of freedoms (DOFs) of energy-time and polarization, the other is hyper-entangled in DOFs of energy-time and discrete-frequency. Experiments of Franson-type interference, two-photon interference under non-orthogonal polarization bases and spatial quantum beating are realized to demonstrate the entanglement in energy-time, polarization and frequency, respectively. This scheme provides a simple way to realize telecom band hyper-entanglement, which has potential for large geographic-scale applications of quantum communication and quantum information over optical fibers.

  7. Generation of hyper-entanglement in polarization/energy-time and discrete-frequency/energy-time in optical fibers

    PubMed Central

    Dong, Shuai; Yu, Lingjie; Zhang, Wei; Wu, Junjie; Zhang, Weijun; You, Lixing; Huang, Yidong

    2015-01-01

    In this paper, a generation scheme for telecom band hyper-entanglement is proposed and demonstrated based on the vector spontaneous four wave mixing (SFWM) processes in optical fibers. Two kinds of two-photon states are generated, one is hyper-entangled in the degree of freedoms (DOFs) of energy-time and polarization, the other is hyper-entangled in DOFs of energy-time and discrete-frequency. Experiments of Franson-type interference, two-photon interference under non-orthogonal polarization bases and spatial quantum beating are realized to demonstrate the entanglement in energy-time, polarization and frequency, respectively. This scheme provides a simple way to realize telecom band hyper-entanglement, which has potential for large geographic-scale applications of quantum communication and quantum information over optical fibers. PMID:25779686

  8. Ultra-low energy photoreceivers for optical interconnects

    NASA Astrophysics Data System (ADS)

    Going, Ryan Wayne

    Optical interconnects are increasingly important for our communication and data center systems, and are forecasted to be an essential component of future computers. In order to meet these future demands, optical interconnects must be improved to consume less power than they do today. To do this, both more efficient transmitters and more sensitive receivers must be developed. This work addresses the latter, focusing on device level improvements to tightly couple a low capacitance photodiode with the first stage transistor of the receiver as a single phototransistor device. First I motivate the need for a coupled phototransistor using a simple circuit model which shows how receiver sensitivity is determined by photodiode capacitance and the length of wire connecting it to the first transistor in a receiver amplifier. Then I describe our use of the unique rapid melt growth technique, which is used to integrate crystalline germanium on silicon photonics substrates without an epitaxial reactor. The resulting material quality is demonstrated with high quality (0.95 A/W, 40+ GHz) germanium photodiodes on silicon waveguides. Next I describe two germanium phototransistors I have developed. One is a germanium- gated MOSFET on silicon photonics which has up to 18 A/W gate-controlled responsivity at 1550 nm. Simulations show how MOSFET scaling rules can be easily applied to increase both speed and sensitivity. The second is a floating base germanium bipolar phototransistor on silicon photonics with a 15 GHz gain x bandwidth product. The photoBJT also has a clear scaling path, and it is proposed to create a separate gain and absorption region photoBJT to realize the maximum benefit of scaling the BJT without negatively affecting its absorption and photocarrier collection. Following this design a 120 GHz gain x bandwidth photoBJT is simulated. Finally I present a metal-cavity, which can have over 50% quantum efficiency absorption in sub-100 aF germanium photodiodes, which

  9. FEL and Optical Klystron Gain for an Electron Beam with Oscillatory Energy Distribution

    SciTech Connect

    Stupakov, G.; Ding, Y.; Huang, Z.; /SLAC

    2009-12-09

    If the energy spread of a beam is larger then the Pierce parameter, the FEL gain length increases dramatically and the FEL output gets suppressed. We show that if the energy distribution of such a beam is made oscillatory on a small scale, the gain length can be considerably decreased. Such an oscillatory energy distribution is generated by first modulating the beam energy with a laser via the mechanism of inverse FEL, and then sending it through a strong chicane. We show that this approach also works for the optical klystron enhancement scheme. Our analytical results are corroborated by numerical simulations.

  10. Device for absorbing mechanical shock

    DOEpatents

    Newlon, Charles E.

    1980-01-01

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  11. Device for absorbing mechanical shock

    DOEpatents

    Newlon, C.E.

    1979-08-29

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  12. Plants absorb heavy metals

    SciTech Connect

    Parry, J.

    1995-02-01

    Decontamination of heavy metals-polluted soils remains one of the most intractable problems of cleanup technology. Currently available techniques include extraction of the metals by physical and chemical means, such as acid leaching and electroosmosis, or immobilization by vitrification. There are presently no techniques for cleanup which are low cost and retain soil fertility after metals removal. But a solution to the problem could be on the horizon. A small but growing number of plants native to metalliferous soils are known to be capable of accumulating extremely high concentrations of metals in their aboveground portions. These hyperaccumulators, as they are called, contain up to 1,000 times larger metal concentrations in their aboveground parts than normal species. Their distribution is global, including many different families of flowering plants of varying growth forms, from herbaceous plants to trees. Hyperaccumulators absorb metals they do not need for their own nutrition. The metals are accumulated in the leaf and stem vacuoles, and to a lesser extent in the roots.

  13. High-throughput synthesis and screening of photon absorbers and photocatalysts for solar fuel cells

    NASA Astrophysics Data System (ADS)

    Mitrovic, Slobodan; Marcin, Martin; Lin, Sean; Jin, Jian

    2012-02-01

    Joint Center for Artificial Photosynthesis is a D.O.E. Energy Innovation Hub conceived to develop solar fuel cell technologies by bringing together the critical mass of scientist and engineers nationwide. The High-Throughput Experimentation group at JCAP is developing pipelines for accelerated discovery of new materials - photon absorbers, photoelectrochemical and electrochemical catalysts - using combinatorial approaches (ink-jet, sol-gel, physical vapor deposition). Thin films of semiconducting metal-oxides, sulfides, nitrides and phosphides are synthesized and screened in high-throughput according to their optical and photoelectrochemical properties, as well as structure and phase. Vast libraries of materials and data are generated and made available to inside and outside research groups. Here we present data on binary, ternary and quaternary metal-oxide systems prepared by the ink-jet technology. The systems include tungsten-based photo-absorbers and nickel-iron-based catalysts for water splitting.

  14. Imaging spectroscopy with Ta/Al DROIDs: Performance for different absorber lengths

    NASA Astrophysics Data System (ADS)

    Hijmering, R. A.; Verhoeve, P.; Martin, D. D. E.; Peacock, A.; Kozorezov, A. G.; Venn, R.

    2006-04-01

    To overcome the limited field of view that can be achieved with single Superconducting Tunneling Junctions (STJ) arrays, Distributed Read Out Imaging Devices (DROIDs) are being developed. DROIDs consist of a superconducting absorber strip with proximized STJs on either end. The ratio of the two signals from the STJs provides information on the absorption position and the sum signal is a measure for the energy of the absorbed photon. To produce a large field of view with the least number of connection wires possible, the size of the DROID is an important parameter. A set of devices with different lengths, ranging from 200 to 700 μm, has been tested at optical wavelengths. The widths of the DROIDs are 30 μm with 30×30 μm 2 STJs Ta/Al STJs on either side. With 30 nm layer thickness of Al the trapping of quasiparticles in the STJ is not optimal, but the devices can comfortably be operated at 300 mK. All devices have been processed on a single wafer and are located on the same chip. Thus the STJs are all identical and any variation in response can be attributed to a difference in geometry. The position resolution is found to be degraded for shorter absorbers due to cross-talk between the two STJs. The charge output of the different devices decreases with length due to reduced tunnel probability and losses in the absorber.

  15. Exploring Light’s Interactions with Bubbles and Light Absorbers in Photoelectrochemical Devices using Ray Tracing

    SciTech Connect

    Stevens, John Colby

    2012-12-01

    Ray tracing was used to perform optical optimization of arrays of photovoltaic microrods and explore the interaction between light and bubbles of oxygen gas on the surface of the microrods. The incident angle of light was varied over a wide range. The percent of incident light absorbed by the microrods and reflected by the bubbles was computed over this range. It was found that, for the 10 μm diameter, 100 μm tall SrTiO3 microrods simulated in the model, the optimal center-­to-­center spacing was 14 μm for a square grid. This geometry produced 75% average and 90% maximum absorbance. For a triangular grid using the same microrods, the optimal center-­to-­center spacing was 14 μm. This geometry produced 67% average and 85% maximum absorbance. For a randomly laid out grid of 5 μm diameter, 100 μm tall SrTiO3 microrods with an average center-­to-­center spacing of 20 μm, the average absorption was 23% and the maximum absorption was 43%. For a 50% areal coverage fraction of bubbles on the absorber surface, between 2%-­20% of the incident light energy was reflected away from the rods by the bubbles, depending upon incident angle and bubble morphology.

  16. Hobby-Eberly Telescope Dark Energy Experiment Fiber Optic Testing System

    NASA Astrophysics Data System (ADS)

    Fuller, Lindsay

    2011-01-01

    The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) is a spectroscopic survey that will collect data from nearly one million Lyman-α emitting galaxies at a redshift of 1.8 < z < 3.8 in order to characterize dark energy. To accomplish this, over 33,000 optical fibers will feed light from these galaxies into 150 Visible Integral-Field Replicable Unit Spectrographs (VIRUS), an order of magnitude greater than has been done before. A fiber optic test bench has been constructed at the University of Texas at Austin in order to test the transmission and focal ratio degradation (FRD) of individual fibers at several wavelengths ranging from 350-600nm. Furthermore, the fiber optic bundles are undergoing extensive lifetime tests at the Center for Electromechanics on the university’s research campus which will simulate 10 years of motion on the Hobby-Eberly Telescope.

  17. Energy shift and state mixing of Rydberg atoms in ponderomotive optical traps

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Robicheaux, F.

    2016-08-01

    We present a degenerate perturbation analysis in the spin–orbit coupled basis for Rydberg atoms in an optical trap. The perturbation matrix is found to be nearly the same for two states with the same total angular momentum j, and orbital angular momentum number l differing by 1, The same perturbation matrices result in the same state-mixing and energy shift. We also study the dependence of state mixing and energy shift on the periodicity and symmetry of the ponderomotive potentials induced by different optical traps. State mixing in a one-dimensional lattice formed with two counterpropagating Gaussian beams is studied and yields a state-dependent trap depth. We also calculate the state-mixing in an optical trap formed by four parallel, separated and highly focused Gaussian beams.

  18. Optical pressure deduced from energy relations within relativistic formulations of electrodynamics

    NASA Astrophysics Data System (ADS)

    Sheppard, Cheyenne J.; Kemp, Brandon A.

    2014-01-01

    The analysis of plane waves normally incident upon moving media yields a velocity-dependent net flow of electromagnetic energy within the system such that optical pressures are deduced. Two common formulations (Chu and Minkowski) are employed to model the phenomena with respect to the Abraham-Minkowski debate. Within the framework of relativistic electrodynamics, two perfect reflectors submerged in a dielectric are used to compare the calculated optical work and pressure exerted to the system for both formulations via momentum and energy conservation. The perfect reflectors are represented by having zero electric field and zero magnetic field at the surface of the perfect electrical conductor and the perfect magnetic conductor, respectively. Comparison of these results gives valuable insight into the differences between Abraham and Minkowski momenta and provides theoretical evidence as to observable effects in actual optical moment transfer to media.

  19. Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus

    NASA Astrophysics Data System (ADS)

    Tran, Vy; Fei, Ruixiang; Yang, Li

    2015-12-01

    We report first-principles GW-Bethe-Salpeter-equation (BSE) studies of excited-state properties of few-layer black phosphorus (BP) (phosphorene). With improved GW computational methods, we obtained converged quasiparticle band gaps and optical absorption spectra by the single-shot (G0W0) procedure. Moreover, we reveal fine structures of anisotropic excitons, including the series of one-dimensional like wave functions, spin singlet-triplet splitting, and electron-hole binding energy spectra by solving BSE. An effective-mass model is employed to describe these electron-hole pairs, shedding light on estimating the exciton binding energy of anisotropic two-dimensional semiconductors without expensive ab initio simulations. Finally, the anisotropic optical response of BP is explained by using optical selection rules based on the projected single-particle density of states at band edges.

  20. Tradeoff between energy and error in the discrimination of quantum-optical devices

    SciTech Connect

    Bisio, Alessandro; Dall'Arno, Michele; D'Ariano, Giacomo Mauro

    2011-07-15

    We address the problem of energy-error tradeoff in the discrimination between two linear passive quantum optical devices with a single use. We provide an analytical derivation of the optimal strategy for beamsplitters and an iterative algorithm converging to the optimum in the general case. We then compare the optimal strategy with a simpler strategy using coherent input states and homodyne detection. It turns out that the former requires much less energy in order to achieve the same performances.

  1. Innovative Anti Crash Absorber for a Crashworthy Landing Gear

    NASA Astrophysics Data System (ADS)

    Guida, Michele; Marulo, Francesco; Montesarchio, Bruno; Bruno, Massimiliano

    2014-06-01

    This paper defines an innovative concept to anti-crash absorber in composite material to be integrated on the landing gear as an energy-absorbing device in crash conditions to absorb the impact energy. A composite cylinder tube in carbon fiber material is installed coaxially to the shock absorber cylinder and, in an emergency landing gear condition, collapses in order to enhance the energy absorption performance of the landing system. This mechanism has been developed as an alternative solution to a high-pressure chamber installed on the Agusta A129 CBT helicopter, which can be considered dangerous when the helicopter operates in hard and/or crash landing. The characteristics of the anti-crash device are presented and the structural layout of a crashworthy landing gear adopting the developed additional energy absorbing stage is outlined. Experimental and numerical results relevant to the material characterization and the force peaks evaluation of the system development are reported. The anti-crash prototype was designed, analysed, optimized, made and finally the potential performances of a landing gear with the additional anti-crash absorber system are tested by drop test and then correlated with a similar test without the anti-crash system, showing that appreciable energy absorbing capabilities and efficiencies can be obtained in crash conditions.

  2. Laser-induced damage of absorbing and diffusing glass surfaces under IR and UV irradiation

    NASA Astrophysics Data System (ADS)

    Whitman, Pamela K.; Bletzer, K.; Hendrix, James L.; Genin, Francois Y.; Hester, M.; Yoshiyama, J. M.

    1999-04-01

    In high peak power lasers used for inertial confinement fusion experiments, scattered and reflected light can carry sufficient energy to ablate metal structures or even damage other optics. Absorbing and diffuse scattering materials are required to manage the 'ghosts', stimulated Raman scattering (SRS) and unconverted light in the laser chain and target chamber. Absorbing and diffuse scattering glasses were investigated for use in the NIF target chamber to safely dissipate up 60-80 J/cm2 1053-nm light while also withstanding up to 2 J/cm2 of soft x-ray. In addition these glasses were evaluated for use at 1053-nm and 351-nm to dissipate stray light and to absorb stimulated Raman scattering from the conversion crystals. Glass samples with surfaces ranging from specular to highly scattering were evaluated. The morphologies of laser damage at 1064 nm and 355 nm were characterized by Nomarski optical microscopy. Laser damage was quantified by measuring mass loss. Surface treatment and bulk absorption coefficient were the two material properties most strongly correlated to laser damage. Etched and sandblasted surfaces always had lower damage threshold than their specular counterparts. Reducing rear surface fluence either by bulk absorption or scattering at the input surface delayed the onset of catastrophic failure under extreme conditions.

  3. Improving energy efficiency in optical cloud networks by exploiting anycast routing

    NASA Astrophysics Data System (ADS)

    Buysse, Jens; Cavdar, Cicek; De Leenheer, Marc; Dhoedt, Bart; Develder, Chris

    2011-12-01

    Exploiting anycast routing significantly reduces optical network and server energy usage. In this work we present a case study showing that intelligently selecting destinations and routes thereto, while switching off unused (network) elements, cuts power consumption by around 20% and saves network resources by 29%.

  4. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    PubMed

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  5. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    PubMed

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy. PMID:26512524

  6. Energy-saving framework for passive optical networks with ONU sleep/doze mode.

    PubMed

    Van, Dung Pham; Valcarenghi, Luca; Dias, Maluge Pubuduni Imali; Kondepu, Koteswararao; Castoldi, Piero; Wong, Elaine

    2015-02-01

    This paper proposes an energy-saving passive optical network framework (ESPON) that aims to incorporate optical network unit (ONU) sleep/doze mode into dynamic bandwidth allocation (DBA) algorithms to reduce ONU energy consumption. In the ESPON, the optical line terminal (OLT) schedules both downstream (DS) and upstream (US) transmissions in the same slot in an online and dynamic fashion whereas the ONU enters sleep mode outside the slot. The ONU sleep time is maximized based on both DS and US traffic. Moreover, during the slot, the ONU might enter doze mode when only its transmitter is idle to further improve energy efficiency. The scheduling order of data transmission, control message exchange, sleep period, and doze period defines an energy-efficient scheme under the ESPON. Three schemes are designed and evaluated in an extensive FPGA-based evaluation. Results show that whilst all the schemes significantly save ONU energy for different evaluation scenarios, the scheduling order has great impact on their performance. In addition, the ESPON allows for a scheduling order that saves ONU energy independently of the network reach.

  7. High Power Q-Switched Thulium Doped Fibre Laser using Carbon Nanotube Polymer Composite Saturable Absorber.

    PubMed

    Chernysheva, Maria; Mou, Chengbo; Arif, Raz; AlAraimi, Mohammed; Rümmeli, Mark; Turitsyn, Sergei; Rozhin, Aleksey

    2016-01-01

    We have proposed and demonstrated a Q-switched Thulium doped fibre laser (TDFL) with a 'Yin-Yang' all-fibre cavity scheme based on a combination of nonlinear optical loop mirror (NOLM) and nonlinear amplified loop mirror (NALM). Unidirectional lasing operation has been achieved without any intracavity isolator. By using a carbon nanotube polymer composite based saturable absorber (SA), we demonstrated the laser output power of ~197 mW and pulse energy of 1.7 μJ. To the best of our knowledge, this is the highest output power from a nanotube polymer composite SA based Q-switched Thulium doped fibre laser. PMID:27063511

  8. High Power Q-Switched Thulium Doped Fibre Laser using Carbon Nanotube Polymer Composite Saturable Absorber

    PubMed Central

    Chernysheva, Maria; Mou, Chengbo; Arif, Raz; AlAraimi, Mohammed; Rümmeli, Mark; Turitsyn, Sergei; Rozhin, Aleksey

    2016-01-01

    We have proposed and demonstrated a Q-switched Thulium doped fibre laser (TDFL) with a ‘Yin-Yang’ all-fibre cavity scheme based on a combination of nonlinear optical loop mirror (NOLM) and nonlinear amplified loop mirror (NALM). Unidirectional lasing operation has been achieved without any intracavity isolator. By using a carbon nanotube polymer composite based saturable absorber (SA), we demonstrated the laser output power of ~197 mW and pulse energy of 1.7 μJ. To the best of our knowledge, this is the highest output power from a nanotube polymer composite SA based Q-switched Thulium doped fibre laser. PMID:27063511

  9. High Power Q-Switched Thulium Doped Fibre Laser using Carbon Nanotube Polymer Composite Saturable Absorber.

    PubMed

    Chernysheva, Maria; Mou, Chengbo; Arif, Raz; AlAraimi, Mohammed; Rümmeli, Mark; Turitsyn, Sergei; Rozhin, Aleksey

    2016-01-01

    We have proposed and demonstrated a Q-switched Thulium doped fibre laser (TDFL) with a 'Yin-Yang' all-fibre cavity scheme based on a combination of nonlinear optical loop mirror (NOLM) and nonlinear amplified loop mirror (NALM). Unidirectional lasing operation has been achieved without any intracavity isolator. By using a carbon nanotube polymer composite based saturable absorber (SA), we demonstrated the laser output power of ~197 mW and pulse energy of 1.7 μJ. To the best of our knowledge, this is the highest output power from a nanotube polymer composite SA based Q-switched Thulium doped fibre laser.

  10. High Power Q-Switched Thulium Doped Fibre Laser using Carbon Nanotube Polymer Composite Saturable Absorber

    NASA Astrophysics Data System (ADS)

    Chernysheva, Maria; Mou, Chengbo; Arif, Raz; Alaraimi, Mohammed; Rümmeli, Mark; Turitsyn, Sergei; Rozhin, Aleksey

    2016-04-01

    We have proposed and demonstrated a Q-switched Thulium doped fibre laser (TDFL) with a ‘Yin-Yang’ all-fibre cavity scheme based on a combination of nonlinear optical loop mirror (NOLM) and nonlinear amplified loop mirror (NALM). Unidirectional lasing operation has been achieved without any intracavity isolator. By using a carbon nanotube polymer composite based saturable absorber (SA), we demonstrated the laser output power of ~197 mW and pulse energy of 1.7 μJ. To the best of our knowledge, this is the highest output power from a nanotube polymer composite SA based Q-switched Thulium doped fibre laser.

  11. Leaf absorbance and photosynthesis

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  12. Hydraulic shock absorber

    SciTech Connect

    Tanaka, T.

    1987-03-03

    This patent describes a hydraulic shock absorber including a piston reciprocating in a cylinder, a piston upper chamber and a piston lower chamber which are oil-tightly separated by the piston, piston ports formed through the piston in a circle for communicating the piston upper chamber with the piston lower chamber, and return ports formed outside of the piston ports in a circle for communicating the piston upper chamber with the piston lower chamber. It also includes a sheet ring-like non-return valve provided above the piston and fitted to a piston rod, valve holes formed through the non-return valve in opposed relation with the piston ports. A ring-like non-return valve stopper fixed to the piston rod on an upper side of the non-return valve with a small spaced defined between the non-return valve and the non-return valve stopper, and a spring is interposed between the non-return valve and the non-return valve stopper for normally urging the non-return valve to an upper surface of the piston. Movement of the piston to the piston upper chamber allows oil to flow from the piston upper chamber through the piston ports to the piston lower chamber, while the return ports are closed by the non-return valve to generate a vibration damping force by resistance upon pass of the oil through the piston parts. The improvement described here comprises a groove formed in an upper surface of the piston facing the non-return valve and aligned with the valve holes, the groove being in the circle where the piston ports lie and being in communication with the piston ports.

  13. The broadband dynamic vibration absorber

    NASA Astrophysics Data System (ADS)

    Hunt, J. B.; Nissen, J.-C.

    1982-08-01

    The limited effectiveness of the linear passive dynamic vibration absorber is described. This is followed by an analysis producing the response of a primary system when a non-linear softening Belleville spring is used in the absorber. It is shown that the suppression bandwidth can be doubled by this means.

  14. Photovoltaic concentrator optical system design: Solar energy engineering from physics to field

    NASA Astrophysics Data System (ADS)

    Coughenour, Blake Michael

    This dissertation describes the design, development, and field validation of a concentrator photovoltaic (CPV) solar energy system. The challenges of creating a highly efficient yet low-cost system architecture come from many sources. The solid-state physics of photovoltaic devices present fundamental limits to photoelectron conversion efficiency, while the electrical and thermal characteristics of widely available materials limit the design arena. Furthermore, the need for high solar spectral throughput, evenly concentrated sunlight, and tolerance to off-axis pointing places strict illumination requirements on the optical design. To be commercially viable, the cost associated with all components must be minimized so that when taken together, the absolute installed cost of the system in kWh is lower than any other solar energy method, and competitive with fossil fuel power generation. The work detailed herein focuses specifically on unique optical design and illumination concepts discovered when developing a viable commercial CPV system. By designing from the ground up with the fundamental physics of photovoltaic devices and the required system tolerances in mind, a select range of optical designs are determined and modeled. Component cost analysis, assembly effort, and development time frame further influence design choices to arrive at a final optical system design. When coupled with the collecting mirror, the final optical hardware unit placed at the focus generates more than 800W, yet is small and lightweight enough to hold in your hand. After fabrication and installation, the completed system's illumination, spectral, and thermal performance is validated with on-sun operational testing.

  15. A Lightweight, Precision-Deployable, Optical Bench for High Energy Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    Danner, Rolf; Dailey, D.; Lillie, C.

    2011-09-01

    The small angle of total reflection for X-rays, forcing grazing incidence optics with large collecting areas to long focal lengths, has been a fundamental barrier to the advancement of high-energy astrophysics. Design teams around the world have long recognized that a significant increase in effective area beyond Chandra and XMM-Newton requires either a deployable optical bench or separate X-ray optics and instrument module on formation flying spacecraft. Here, we show that we have in hand the components for a lightweight, precision-deployable optical bench that, through its inherent design features, is the affordable path to the next generation of imaging high-energy astrophysics missions. We present our plans for a full-scale engineering model of a deployable optical bench for Explorer-class missions. We intend to use this test article to raise the technology readiness level (TRL) of the tensegrity truss for a lightweight, precision-deployable optical bench for high-energy astrophysics missions from TRL 3 to TRL 5 through a set of four well-defined technology milestones. The milestones cover the architecture's ability to deploy and control the focal point, characterize the deployed dynamics, determine long-term stability, and verify the stowed load capability. Our plan is based on detailed design and analysis work and the construction of a first prototype by our team. Building on our prior analysis and the high TRL of the architecture components we are ready to move on to the next step. The key elements to do this affordably are two existing, fully characterized, flight-quality, deployable booms. After integrating them into the test article, we will demonstrate that our architecture meets the deployment accuracy, adjustability, and stability requirements. The same test article can be used to further raise the TRL in the future.

  16. Estimating the radiation absorbed by a human

    NASA Astrophysics Data System (ADS)

    Kenny, Natasha A.; Warland, Jon S.; Brown, Robert D.; Gillespie, Terry G.

    2008-07-01

    The complexities of the interactions between long- and short-wave radiation fluxes and the human body make it inherently difficult to estimate precisely the total radiation absorbed ( R) by a human in an outdoor environment. The purpose of this project was to assess and compare three methods to estimate the radiation absorbed by a human in an outdoor environment, and to compare the impact of applying various skin and clothing albedos ( α h ) on R. Field tests were conducted under both clear and overcast skies to evaluate the performance of applying a cylindrical radiation thermometer (CRT), net radiometer, and a theoretical estimation model to predict R. Three albedos were evaluated: light ( α h = 0.57), medium ( α h = 0.37), and dark ( α h = 0.21). During the sampling periods, the range of error between the methods used to estimate the radiation absorbed by a cylindrical body under clear and overcast skies ranged from 3 to 8%. Clothing and skin albedo had a substantial impact on R, with the mean change in R between the darkest and lightest albedos ranging from 115 to 157 W m - 2 over the sampling period. Radiation is one of the most important variables to consider in outdoor thermal comfort research, as R is often the largest contributor to the human energy balance equation. The methods outlined and assessed in this study can be conveniently applied to provide reliable estimates of the radiation absorbed by a human in an outdoor environment.

  17. Optical theorem for electromagnetic field scattering by dielectric structures and energy emission from the evanescent wave.

    PubMed

    Gulyaev, Yu V; Barabanenkov, Yu N; Barabanenkov, M Yu; Nikitov, S A

    2005-08-01

    We present an optical theorem for evanescent (near field) electromagnetic wave scattering by a dielectric structure. The derivation is based on the formalism of angular spectrum wave amplitudes and block scattering matrix. The optical theorem shows that an energy flux is emitted in the direction of the evanescent wave decay upon scattering. The energy emission effect from an evanescent wave is illustrated in two examples of evanescent wave scattering, first, by the electrical dipole and, second, one-dimensional grating with line-like rulings. Within the latter example, we show that an emitted energy flux upon evanescent wave scattering can travel through a dielectric structure even if the structure has a forbidden gap in the transmission spectrum of incident propagating waves.

  18. Microscopic modeling of nitride intersubband absorbance

    NASA Astrophysics Data System (ADS)

    Montano, Ines; Allerman, A. A.; Wierer, J. J.; Moseley, M.; Skogen, E. J.; Tauke-Pedretti, A.; Vawter, G. A.

    III-nitride intersubband structures have recently attracted much interest because of their potential for a wide variety of applications ranging from electro-optical modulators to terahertz quantum cascade lasers. To overcome present simulation limitations we have developed a microscopic absorbance simulator for nitride intersubband devices. Our simulator calculates the band structure of nitride intersubband systems using a fully coupled 8x8 k.p Hamiltonian and determines the material response of a single period in a density-matrix-formalism by solving the Heisenberg equation including many-body and dephasing contributions. After calculating the polarization due to intersubband transitions in a single period, the resulting absorbance of a superlattice structure including radiative coupling between the different periods is determined using a non-local Green's-function formalism. As a result our simulator allows us to predict intersubband absorbance of superlattice structures with microscopically determined lineshapes and linewidths accounting for both many-body and correlation contributions. This work is funded by Sandia National Laboratories Laboratory Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin.

  19. Monitoring the energy efficiency of buildings with Raman DTS and embedded optical fiber cables

    NASA Astrophysics Data System (ADS)

    Ferdinand, P.; Giuseffi, M.; Roussel, N.; Rougeault, S.; Fléchon, O.; Barentin, V.

    2014-05-01

    To reduce greenhouse gas emissions and to promote energy savings in the building sector, a project named Batimetre has been set-up, to measure parameters affecting building energy consumption. For the first time, optical fibers have been deployed on internal and external faces of two experimental houses, designed for low energy consumption. With a DTS Raman system, these cables provide a distributed measurement of walls temperature every meter and every two minutes. Such instrumentation is able to deliver a very large number of data at a reduced operating cost. It allows to isolate thermal phenomena in dynamic thermal simulation tools, and to compare several intermediate predicted and measured parameters.

  20. Complete energy transfer due to rare-earth phase segregation in optical fiber preform glasses

    NASA Astrophysics Data System (ADS)

    Lahoz, F.; Pérez-Rodríguez, C.; Halder, A.; Das, S.; Paul, M. C.; Pal, M.; Bhadra, S. K.; Vasconcelos, H. C.

    2011-10-01

    An Yb3+ to Tm3+ energy-transfer quantum yield close to one has been found in phase-separated yttrium-alumina silicate optical fiber preform glasses. Optical absorption, luminescence, lifetime measurements, and rare-earth concentration dependence have been performed to investigate the feasibility of efficient blue upconversion fiber lasers through convenient Yb3+ sensitation. Luminescence decay measurements have demonstrated the co-existence of two phases. One of the phases is characterized by an yttrium-rich composition. Most of the RE ions partition into the yttrium-rich phase and produce the intense upconversion emission.

  1. X-Ray Absorbed, Broad-Lined, Red AGN and the Cosmic X-ray Background

    NASA Technical Reports Server (NTRS)

    Schmidt, Gary D.

    2005-01-01

    This award represents the second phase of an X-ray study of QSOs that are heavily obscured in the optical/near-IR. An earlier survey revealed that these active galactic nuclei (AGN) are also typically strongly absorbed at high photon energies, but the enhanced sensitivity of XMM-Newton provided for the first time the opportunity to measure the spectral indices of individual sources and to test the possibility that obscured AGN are responsible for a substantial portion of the cosmic X-ray background (CXRB). The new observations confirm and greatly extend the earlier results. Substantial intervening absorbing material is detected for 3 of the sources, and 2 additional targets show hard power-law continua. In addition, soft X-ray excesses are detected in 3 of sources, indicating the presence of extended regions of ionized gas. This component is-particularly well-defined in the Type 1 source 2MASS2344+1221, allowing analysis and modeling at a level of detail unusual for such distant sources. An important finding that parallels conclusions from optical polarimetry is the lack of dependence of absorption on optical spectral class (Type 1 or 2). The combination of strong polarization and X-ray absorption in sources that show strong, broad emission lines indicates either a very small (nuclear) absorber or a favored viewing angle which allows the X-ray source to be covered but the surrounding broad emission-line region to be largely exposed. The observed spectral also indicate that obscured AGN of both Type 1 and 2 contribute significantly to the CXRB at higher X-ray energies.

  2. Absorbent product to absorb fluids. [for collection of human wastes

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multi-layer absorbent product for use in contact with the skin to absorb fluids is discussed. The product utilizes a water pervious facing layer for contacting the skin, overlayed by a first fibrous wicking layer, the wicking layer preferably being of the one-way variety in which fluid or liquid is moved away from the facing layer. The product further includes a first container section defined by inner and outer layer of a water pervious wicking material between which is disposed a first absorbent mass. A second container section defined by inner and outer layers between which is disposed a second absorbent mass and a liquid impermeable/gas permeable layer. Spacesuit applications are discussed.

  3. Physical limits of semiconductor laser operation: A time-resolved analysis of catastrophic optical damage

    SciTech Connect

    Ziegler, Mathias; Hempel, Martin; Tomm, Jens W.; Elsaesser, Thomas; Larsen, Henning E.; Andersen, Peter E.; Clausen, Soennik; Elliott, Stella N.

    2010-07-12

    The early stages of catastrophic optical damage (COD) in 808 nm emitting diode lasers are mapped by simultaneously monitoring the optical emission with a 1 ns time resolution and deriving the device temperature from thermal images. COD occurs in highly localized damage regions on a 30 to 400 ns time scale which is determined by the accumulation of excess energy absorbed from the optical output. We identify regimes in which COD is avoided by the proper choice of operation parameters.

  4. Simulation, fabrication and characterization of THz metamaterial absorbers.

    PubMed

    Grant, James P; McCrindle, Iain J H; Cumming, David R S

    2012-12-27

    Metamaterials (MM), artificial materials engineered to have properties that may not be found in nature, have been widely explored since the first theoretical(1) and experimental demonstration(2) of their unique properties. MMs can provide a highly controllable electromagnetic response, and to date have been demonstrated in every technologically relevant spectral range including the optical(3), near IR(4), mid IR(5) , THz(6) , mm-wave(7) , microwave(8) and radio(9) bands. Applications include perfect lenses(10), sensors(11), telecommunications(12), invisibility cloaks(13) and filters(14,15). We have recently developed single band(16), dual band(17) and broadband(18) THz metamaterial absorber devices capable of greater than 80% absorption at the resonance peak. The concept of a MM absorber is especially important at THz frequencies where it is difficult to find strong frequency selective THz absorbers(19). In our MM absorber the THz radiation is absorbed in a thickness of ~ λ/20, overcoming the thickness limitation of traditional quarter wavelength absorbers. MM absorbers naturally lend themselves to THz detection applications, such as thermal sensors, and if integrated with suitable THz sources (e.g. QCLs), could lead to compact, highly sensitive, low cost, real time THz imaging systems.

  5. Simulation, Fabrication and Characterization of THz Metamaterial Absorbers

    PubMed Central

    Grant, James P.; McCrindle, Iain J.H.; Cumming, David R.S.

    2012-01-01

    Metamaterials (MM), artificial materials engineered to have properties that may not be found in nature, have been widely explored since the first theoretical1 and experimental demonstration2 of their unique properties. MMs can provide a highly controllable electromagnetic response, and to date have been demonstrated in every technologically relevant spectral range including the optical3, near IR4, mid IR5 , THz6 , mm-wave7 , microwave8 and radio9 bands. Applications include perfect lenses10, sensors11, telecommunications12, invisibility cloaks13 and filters14,15. We have recently developed single band16, dual band17 and broadband18 THz metamaterial absorber devices capable of greater than 80% absorption at the resonance peak. The concept of a MM absorber is especially important at THz frequencies where it is difficult to find strong frequency selective THz absorbers19. In our MM absorber the THz radiation is absorbed in a thickness of ~ λ/20, overcoming the thickness limitation of traditional quarter wavelength absorbers. MM absorbers naturally lend themselves to THz detection applications, such as thermal sensors, and if integrated with suitable THz sources (e.g. QCLs), could lead to compact, highly sensitive, low cost, real time THz imaging systems. PMID:23299442

  6. Simulation, fabrication and characterization of THz metamaterial absorbers.

    PubMed

    Grant, James P; McCrindle, Iain J H; Cumming, David R S

    2012-01-01

    Metamaterials (MM), artificial materials engineered to have properties that may not be found in nature, have been widely explored since the first theoretical(1) and experimental demonstration(2) of their unique properties. MMs can provide a highly controllable electromagnetic response, and to date have been demonstrated in every technologically relevant spectral range including the optical(3), near IR(4), mid IR(5) , THz(6) , mm-wave(7) , microwave(8) and radio(9) bands. Applications include perfect lenses(10), sensors(11), telecommunications(12), invisibility cloaks(13) and filters(14,15). We have recently developed single band(16), dual band(17) and broadband(18) THz metamaterial absorber devices capable of greater than 80% absorption at the resonance peak. The concept of a MM absorber is especially important at THz frequencies where it is difficult to find strong frequency selective THz absorbers(19). In our MM absorber the THz radiation is absorbed in a thickness of ~ λ/20, overcoming the thickness limitation of traditional quarter wavelength absorbers. MM absorbers naturally lend themselves to THz detection applications, such as thermal sensors, and if integrated with suitable THz sources (e.g. QCLs), could lead to compact, highly sensitive, low cost, real time THz imaging systems. PMID:23299442

  7. Energy and average power scalable optical parametric chirped-pulse amplification in yttrium calcium oxyborate

    NASA Astrophysics Data System (ADS)

    Liao, Zhi M.; Jovanovic, Igor; Ebbers, Chris A.; Fei, Yiting; Chai, Bruce

    2006-05-01

    Optical parametric chirped-pulse amplification (OPCPA) in nonlinear crystals has the potential to produce extremes of peak and average power but is limited either in energy by crystal growth issues or in average power by crystal thermo-optic characteristics. Recently, large (7.5 cm diameter × 25 cm length) crystals of yttrium calcium oxyborate (YCOB) have been grown and utilized for high-average-power second-harmonic generation. Further, YCOB has the necessary thermo-optic properties required for scaling OPCPA systems to high peak and average power operation for wavelengths near 1 μm. We report what is believed to be the first use of YCOB for OPCPA. Scalability to higher peak and average power is addressed.

  8. Physical origin of the high energy optical response of three dimensional photonic crystals.

    PubMed

    Dorado, Luis A; Depine, Ricardo A; Lozano, Gabriel; Míguez, Hernán

    2007-12-24

    The physical origin of the optical response observed in three-dimensional photonic crystals when the photon wavelength is equal or lower than the lattice parameter still remains unsatisfactorily explained and is the subject of an intense and interesting debate. Herein we demonstrate for the first time that all optical spectra features in this high energy region of photonic crystals arise from electromagnetic resonances within the ordered array, modified by the interplay between these resonances with the opening of diffraction channels, the presence of imperfections and finite size effects. All these four phenomena are taken into account in our theoretical approach to the problem, which allows us to provide a full description of the observed optical response based on fundamental phenomena as well as to attain fair fittings of experimental results.

  9. Energy and average power scalable optical parametric chirped-pulse amplification in yttrium calcium oxyborate.

    PubMed

    Liao, Zhi M; Jovanovic, Igor; Ebbers, Chris A; Fei, Yiting; Chai, Bruce

    2006-05-01

    Optical parametric chirped-pulse amplification (OPCPA) in nonlinear crystals has the potential to produce extremes of peak and average power but is limited either in energy by crystal growth issues or in average power by crystal thermo-optic characteristics. Recently, large (7.5 cm diameter x 25 cm length) crystals of yttrium calcium oxyborate (YCOB) have been grown and utilized for high-average-power second-harmonic generation. Further, YCOB has the necessary thermo-optic properties required for scaling OPCPA systems to high peak and average power operation for wavelengths near 1 microm. We report what is believed to be the first use of YCOB for OPCPA. Scalability to higher peak and average power is addressed.

  10. Metamaterial perfect absorber based hot electron photodetection.

    PubMed

    Li, Wei; Valentine, Jason

    2014-06-11

    While the nonradiative decay of surface plasmons was once thought to be only a parasitic process that limits the performance of plasmonic devices, it has recently been shown that it can be harnessed in the form of hot electrons for use in photocatalysis, photovoltaics, and photodetectors. Unfortunately, the quantum efficiency of hot electron devices remains low due to poor electron injection and in some cases low optical absorption. Here, we demonstrate how metamaterial perfect absorbers can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. By integrating the metamaterial with a silicon substrate, we experimentally demonstrate a broadband and omnidirectional hot electron photodetector with a photoresponsivity that is among the highest yet reported. We also show how the spectral bandwidth and polarization-sensitivity can be manipulated through engineering the geometry of the metamaterial unit cell. These perfect absorber photodetectors could open a pathway for enhancing hot electron based photovoltaic, sensing, and photocatalysis systems. PMID:24837991

  11. An energy balance from absorbed photons to new biomass for Chlamydomonas reinhardtii and Chlamydomonas acidophila under neutral and extremely acidic growth conditions.

    PubMed

    Langner, Uwe; Jakob, Torsten; Stehfest, Katja; Wilhelm, Christian

    2009-03-01

    Chlamydomonas is one of the most well-studied photosynthetic organisms that had important biotechnological potential for future bioproductions of biofuels. However, an energy balance from incident photons to the energy stored in the new biomass is still lacking. In this study, we applied a recently developed system to measure the energy balance for steady state growth of Chlamydomonas reinhardtii grown at pH 6.5, and C. acidophila that was grown at pH 6.5 and 2.6. Energy use efficiency was quantified on the basis of light absorption, photosynthetic quantum yield, photosynthetic and respiratory quotient, and electron partitioning into proteins, carbohydrates and lipids. The results showed that lower growth rates of C. acidophila under both pH conditions were not caused by the differences in the photosynthetic quantum yield or in alternative electron cycling, but rather by differences in the efficiency of light absorption and increased dark respiration. Analysis of the macromolecular composition of the cells during the light phase showed that C. acidophila uses biosynthetic electrons preferentially for carbohydrate synthesis but not for synthesis of lipids. This led to a strong diurnal cycle of the C/N ratio and could explain the higher dark respiration of C. acidophila compared with C. reinhardtii. PMID:19054351

  12. Optical properties of ITO nanocoatings for photovoltaic and energy building applications

    NASA Astrophysics Data System (ADS)

    Kaplani, E.; Kaplanis, S.; Panagiotaras, D.; Stathatos, E.

    2014-10-01

    Targeting energy savings in buildings, photovoltaics and other sectors, significant research activity is nowadays focused on the production of spectral selective nanocoatings. In the present study an ITO coating on glass substrate is prepared from ITO powder, characterized and analysed. The spectral transmittance and reflectance of the ITO coated glass and of two other commercially developed ITO coatings on glass substrate were measured and compared. Furthermore, a simulation algorithm was developed to determine the optical properties of the ITO coatings in the visible, solar and near infrared regions in order to assess the impact of the ITO coatings in the energy performance of buildings, and particularly the application in smart windows. In addition, the current density produced by a PV assuming each of the ITO coated glass served as a cover was computed, in order to assess their effect in PV performance. The preliminary ITO coating prepared and the two other coatings exhibit different optical properties and, thus, have different impact on energy performance. The analysis assists in a better understanding of the desired optical properties of nanocoatings for improved energy performance in PV and buildings.

  13. Energy efficiency in WDM fiber-optical links considering OADM/OXC nodes

    NASA Astrophysics Data System (ADS)

    Udalcovs, Aleksejs; Bobrovs, Vjaceslavs

    2016-01-01

    In this paper, authors discuss the energy consumption for 1 bit transmission as a function of spectral efficiency (SE, bps/Hz), aggregated traffic amount (C, bps), and overall transmission distance (LP2P, km) in wavelength division multiplexing (WDM) systems with optical add-drop multiplexer/ optical cross-connect (OADM/OXC) nodes. The choice of bitrate and modulation formats was limited to three options: 10G non-return-to-zero on-off keying (NRZ-OOK), 40G NRZ differential phase-shift keying (NRZ-DPSK) and 100 dual polarization quadrature phase-shift keying (DP-QPSK). The reasons for that is the legacy in transmission networks and high energy efficiency of 3R (re-amplification, re-timing, re-shaping) regenerators and transponders, respectively. In addition, these formats are commonly used for 10-40-100G mixed-line rate solutions in core networks. It is found out that 100G DP-QPSK is the best solutions among two other considered in terms of both energy consumption per bit and spectral efficiency. Finally and foremost, it is estimated that for the WDM channels added at the OADM/OXC node, energy consumption per 1 transmitted bit could growth more than two times as compared to wavelengths transmitted over point-to-point fiber-optical links and then dropped at the receiving node.

  14. Nonlinear optical protection against frequency agile lasers

    SciTech Connect

    McDowell, V.P.

    1988-08-04

    An eye-protection or equipment-filter device for protection from laser energy is disclosed. The device may be in the form of a telescope, binoculars, goggles, constructed as part of equipment such as image intensifiers or range designators. Optical elements focus the waist of the beam within a nonlinear frequency-doubling crystal or nonlinear optical element or fiber. The nonlinear elements produce a harmonic outside the visible spectrum in the case of crystals, or absorb the laser energy in the case of nonlinear fibers. Embodiments include protectors for the human eye as well as filters for sensitive machinery such as TV cameras, FLIR systems or other imaging equipment.

  15. Debuncher Microwave Absorber Tests of January 1992

    SciTech Connect

    Fullett, Ken

    1992-01-01

    This paper describes the tests performed on the microwave absorbers placed in the Debuncher to replace the existing microwave cutoffs. The purpose of the microwave cutoffs is to reduce the transmission of microwave energy through the beam pipe. The old microwave cutoffs consisted of a stainless steel beam pipe of approximately 2.8 inches inside diameter into which a glass tube with an inside diameter of 1.835 inches was placed. The glass tube was coated with a thin coat of microwave absorbing material on its outside. Three of these cutoffs were installed in the Debuncher at locations D6Q5, D1Q7, and D4Q10 (see Figure 1). However, the glass tube was removed from the cutoff at D4Q10 leaving only the metal beam pipe. Please note that there was not an old style microwave cutoff installed at location D2Q09. It was felt that the glass tube cutoff was an aperture restriction in the Debuncher with its small (1.8 inch) inside diameter. It was decided that new cutoffs would be needed that would increase the aperture. The new microwave absorbers consist of a four inch stainless steel beam pipe into which eleven dielectric cores are inserted separated by aluminum spacers. The spacing allows adjustment of the frequency response of the absorber assembly. The inside diameter is 3 inches thus providing an increase of 1.2 inches over the old cutoffs. The new absorbers will be installed at four locations as shown in Figure 1.

  16. Optics and materials research for controlled radiant energy transfer in energy efficient buildings

    SciTech Connect

    Goldner, R.B.; Haas, T.E.

    1990-01-01

    During the past year important progress has been made in regard to uncovering and solving several key problems with respect to developing a lithium-based, monolithic, completely inorganic, reflectivity-modulating, robust electronic window to the point where its technology transfer can be smoothly accomplished. The major problems remaining to be solved are: (a) develop a counterelectrode layer which, as part of the multilayer window structure, is optically and electrochemically satisfactory; (b) develop an optically transparent lithium ion/water vapor blocking layer to prevent the irreversible loss of lithium; (c) develop an optically transparent capping layer; and (d) develop a recipe(s) necessary to obtain robust prototype electrochromic windows by a production-worthy process, such as reactive magnetron sputtering. 1 tab.

  17. High Energy Replicated Optics to Explore the Sun: Hard X-Ray Balloon-Borne Telescope

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Apple, Jeff; StevensonChavis, Katherine; Dietz, Kurt; Holt, Marlon; Koehler, Heather; Lis, Tomasz; O'Connor, Brian; RodriquezOtero, Miguel; Pryor, Jonathan; Ramsey, Brian; Rinehart-Dawson, Maegan; Smith, Leigh; Sobey, Alexander; Wilson-Hodge, Colleen; Christe, Steven; Cramer, Alexander; Edgerton, Melissa; Rodriquez, Marcello; Shih, Albert; Gregory, Don; Jasper, John; Bohon, Steven

    2013-01-01

    Set to fly in the Fall of 2013 from Ft. Sumner, NM, the High Energy Replicated Optics to Explore the Sun (HEROES) mission is a collaborative effort between the NASA Marshall Space Flight Center and the Goddard Space Flight Center to upgrade an existing payload, the High Energy Replicated Optics (HERO) balloon-borne telescope, to make unique scientific measurements of the Sun and astrophysical targets during the same flight. The HEROES science payload consists of 8 mirror modules, housing a total of 109 grazing-incidence optics. These modules are mounted on a carbon-fiber - and Aluminum optical bench 6 m from a matching array of high pressure xenon gas scintillation proportional counters, which serve as the focal-plane detectors. The HERO gondola utilizes a differential GPS system (backed by a magnetometer) for coarse pointing in the azimuth and a shaft angle encoder plus inclinometer provides the coarse elevation. The HEROES payload will incorporate a new solar aspect system to supplement the existing star camera, for fine pointing during both the day and night. A mechanical shutter will be added to the star camera to protect it during solar observations. HEROES will also implement two novel alignment monitoring system that will measure the alignment between the optical bench and the star camera and between the optics and detectors for improved pointing and post-flight data reconstruction. The overall payload will also be discussed. This mission is funded by the NASA HOPE (Hands On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer and Office of the Chief Technologist

  18. High Energy Replicated Optics to Explore the Sun: Hard X-ray balloon-borne telescope

    NASA Astrophysics Data System (ADS)

    Gaskin, J.; Apple, J.; Chavis, K. S.; Dietz, K.; Holt, M.; Koehler, H.; Lis, T.; O'Connor, B.; Otero, M. R.; Pryor, J.; Ramsey, B.; Rinehart-Dawson, M.; Smith, L.; Sobey, A.; Wilson-Hodge, C.; Christe, S.; Cramer, A.; Edgerton, M.; Rodriguez, M.; Shih, A.; Gregory, D.; Jasper, J.; Bohon, S.

    Set to fly in the Fall of 2013 from Ft. Sumner, NM, the High Energy Replicated Optics to Explore the Sun (HEROES) mission is a collaborative effort between the NASA Marshall Space Flight Center and the Goddard Space Flight Center to upgrade an existing payload, the High Energy Replicated Optics (HERO) balloon-borne telescope, to make unique scientific measurements of the Sun and astrophysical targets during the same flight. The HEROES science payload consists of 8 mirror modules, housing a total of 109 grazing-incidence optics. These modules are mounted on a carbon-fiber - and Aluminum optical bench 6 m from a matching array of high pressure xenon gas scintillation proportional counters, which serve as the focal-plane detectors. The HERO gondola utilizes a differential GPS system (backed by a magnetometer) for coarse pointing in the azimuth and a shaft angle encoder plus inclinometer provides the coarse elevation. The HEROES payload will incorporate a new solar aspect system to supplement the existing star camera, for fine pointing during both the day and night. A mechanical shutter will be added to the star camera to protect it during solar observations. HEROES will also implement two novel alignment monitoring system that will measure the alignment between the optical bench and the star camera and between the optics and detectors for improved pointing and post-flight data reconstruction. The overall payload will also be discussed. This mission is funded by the NASA HOPE (Hands On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer and Office of the Chief Technologist.

  19. Photoexcited broadband blueshift tunable perfect terahertz metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Xu, Zong-Cheng; Gao, Run-Mei; Ding, Chun-Feng; Wu, Liang; Zhang, Ya-Ting; Yao, Jian-Quan

    2015-04-01

    We present an demonstration of optically tunable metamaterial absorber at terahertz frequencies. The metamaterials are based on two split ring resonators (SSRs) that can be tuned by integrating photoconductive silicon into the metamaterial unit cell. Filing the gap between the resonator arm with a semiconductor (silicon), leads to easy modification of its optical response through a pump beam which changes conductivity of Si. The conductivity of silicon is a function of incident pump power. Therefore, the conductivity of silicon is tuned effectively by applying an external pump power. We demonstrate that a blueshift of the resonance frequency under illumination can be accomplished and a broadband switch of absorption frequencies varying from 0.68 to 1.41 THz, with a tuning range of 51.8%. The realization of broadband blueshift tunable metamaterial absorber offers opportunities for achieving switchable metamaterial absorber and could be implemented in terahertz devices to achieve additional functionalities.

  20. Measurements of the UV and VUV transmission of optical materials during high energy electron irradiation

    NASA Technical Reports Server (NTRS)

    Palma, G. E.

    1972-01-01

    An experimental program was conducted in which the optical transmission of several transparent materials was measured during high energy electron irradiation. These experiments were conducted using the Dynamitron electron accelerator as a continuous source of 1.5 MeV electrons and the LINAC electron accelerator as a pulsed source of 5-7 MeV electrons. The experimental program consisted of three major portions. The first portion, the optical transmission of fused silica, BeO, MgF2, and LiF was measured at vacuum ultraviolet wavelengths in the range 1550-2000 A during ambient temperature, 1.5 MeV electron irradiation at ionizing dose rates to 0.5 Mrad/sec. In the second portion of the program, the optical transmission of fused silica and BeO was measured in the range 2000-3000 A during high dose rate, elevated temperature 1.5 MeV electron irradiation. In particular, accurate measurements of the optical transmission were made at ionizing dose rates as high as 10 Mrad/sec. In the final portion of the program, the optical transmission of fused silica and BeO was measured in the wavelength range 2000-3000 A during pulsed 5 and 7 MeV electron irradiation from the LINAC accelerator. The maximum time averaged ionizing dose rate was limited to 0.75 Mrad/sec due to accelerator limitations.