Science.gov

Sample records for absorbent hydrogels based

  1. Molecular dynamic simulations of the water absorbency of hydrogels.

    PubMed

    Ou, Xiang; Han, Qiang; Dai, Hui-Hui; Wang, Jiong

    2015-09-01

    A polymer gel can imbibe solvent molecules through surface tension effect. When the solvent happens to be water, the gel can swell to a large extent and forms an aggregate called hydrogel. The large deformation caused by such swelling makes it difficult to study the behaviors of hydrogels. Currently, few molecular dynamic simulation works have been reported on the water absorbing mechanism of hydrogels. In this paper, we first use molecular dynamic simulation to study the water absorbing mechanism of hydrogels and propose a hydrogel-water interface model to study the water absorbency of the hydrogel surface. Also, the saturated water content and volume expansion rate of the hydrogel are investigated by building a hydrogel model with different cross-linking degree and by comparing the water absorption curves under different temperatures. The sample hydrogel model used consists of Polyethylene glycol diglycidyl ether (PEGDGE) as epoxy and the Jeffamine, poly-oxy-alkylene-amines, as curing agent. The conclusions obtained are useful for further investigation on PEGDGE/Jeffamine hydrogel. Moreover, the simulation methods, including hydrogel-water interface modeling, we first propose are also suitable to study the water absorbing mechanism of other hydrogels.

  2. Responsive DNA-based hydrogels and their applications

    PubMed Central

    Xiong, Xiangling; Zhou, Cuisong; Wu, Cuichen; Zhu, Guizhi; Chen, Zhuo; Tan, Weihong

    2015-01-01

    The term hydrogel describes a type of soft and wet material formed by crosslinked hydrophilic polymers. The distinct feature of hydrogels is their ability to absorb a large amount of water and swell. The properties of a hydrogel are usually determined by the type of polymer and crosslinker, the degree of crosslinking, and the water content. However, a group of hydrogels, called “smart hydrogels”, changes properties in response to environmental changes or external stimuli. Recently, DNA or DNA-inspired responsive hydrogels have attracted considerable attention in construction of smart hydrogels because of the intrinsic advantages of DNA. As a biological polymer, DNA is hydrophilic, biocompatible, and highly programmable by Watson-Crick base pairing. DNA can form a hydrogel by itself under certain conditions, and it can also be incorporated into synthetic polymers to form DNA-hybrid hydrogels. Functional DNAs, such as aptamers and DNAzymes, provide additional molecular recognition capabilities and versatility. In this review, we discuss DNA-based hydrogels in terms of their stimulus response, as well as their applications. PMID:23857726

  3. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications.

    PubMed

    Li, Juan; Mo, Liuting; Lu, Chun-Hua; Fu, Ting; Yang, Huang-Hao; Tan, Weihong

    2016-03-07

    Hydrogels are crosslinked hydrophilic polymers that can absorb a large amount of water. By their hydrophilic, biocompatible and highly tunable nature, hydrogels can be tailored for applications in bioanalysis and biomedicine. Of particular interest are DNA-based hydrogels owing to the unique features of nucleic acids. Since the discovery of the DNA double helical structure, interest in DNA has expanded beyond its genetic role to applications in nanotechnology and materials science. In particular, DNA-based hydrogels present such remarkable features as stability, flexibility, precise programmability, stimuli-responsive DNA conformations, facile synthesis and modification. Moreover, functional nucleic acids (FNAs) have allowed the construction of hydrogels based on aptamers, DNAzymes, i-motif nanostructures, siRNAs and CpG oligodeoxynucleotides to provide additional molecular recognition, catalytic activities and therapeutic potential, making them key players in biological analysis and biomedical applications. To date, a variety of applications have been demonstrated with FNA-based hydrogels, including biosensing, environmental analysis, controlled drug release, cell adhesion and targeted cancer therapy. In this review, we focus on advances in the development of FNA-based hydrogels, which have fully incorporated both the unique features of FNAs and DNA-based hydrogels. We first introduce different strategies for constructing DNA-based hydrogels. Subsequently, various types of FNAs and the most recent developments of FNA-based hydrogels for bioanalytical and biomedical applications are described with some selected examples. Finally, the review provides an insight into the remaining challenges and future perspectives of FNA-based hydrogels.

  4. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications

    PubMed Central

    Mo, Liuting; Lu, Chun-Hua; Fu, Ting

    2016-01-01

    Hydrogels are crosslinked hydrophilic polymers that can absorb a large amount of water. By their hydrophilic, biocompatible and highly tunable nature, hydrogels can be tailored for applications in bioanalysis and biomedicine. Of particular interest are DNA-based hydrogels owing to the unique features of nucleic acids. Since the discovery of DNA double helical structure, interest in DNA has expanded beyond its genetic role to applications in nanotechnology and materials science. In particular, DNA-based hydrogels present such remarkable features as stability, flexibility, precise programmability, stimuli-responsive DNA conformations, facile synthesis and modification. Moreover, functional nucleic acids (FNAs) have allowed the construction of hydrogels based on aptamers, DNAzymes, i-motif nanostructures, siRNAs and CpG oligodeoxynucleotides to provide additional molecular recognition, catalytic activities and therapeutic potential, making them key players in biological analysis and biomedical applications. To date, a variety of applications have been demonstrated with FNA-based hydrogels, including biosensing, environmental analysis, controlled drug release, cell adhesion and targeted cancer therapy. In this review, we focus on advances in the development of FNA-based hydrogels, which have fully incorporated both the unique features of FNAs and DNA-based hydrogels. We first introduce different strategies for constructing DNA-based hydrogels. Subsequently, various types of FNAs and the most recent developments of FNA-based hydrogels for bioanalytical and biomedical applications are described with some selected examples. Finally, the review provides an insight into the remaining challenges and future perspectives of FNA-based hydrogels. PMID:26758955

  5. Ferroelectrics based absorbing layers

    NASA Astrophysics Data System (ADS)

    Hao, Jianping; Sadaune, Véronique; Burgnies, Ludovic; Lippens, Didier

    2014-07-01

    We show that ferroelectrics-based periodic structure made of BaSrTiO3 (BST) cubes, arrayed onto a metal plate with a thin dielectric spacer film exhibit a dramatic enhancement of absorbance with value close to unity. The enhancement is found around the Mie magnetic resonance of the Ferroelectrics cubes with the backside metal layer stopping any transmitted waves. It also involves quasi-perfect impedance matching resulting in reflection suppression via simultaneous magnetic and electrical activities. In addition, it was shown numerically the existence of a periodicity optimum, which is explained from surface waves analysis along with trade-off between the resonance damping and the intrinsic loss of ferroelectrics cubes. An experimental verification in a hollow waveguide configuration with a good comparison with full-wave numerical modelling is at last reported by measuring the scattering parameters of single and dual BST cubes schemes pointing out coupling effects for densely packed structures.

  6. Chitosan based hydrogels: characteristics and pharmaceutical applications

    PubMed Central

    Ahmadi, F.; Oveisi, Z.; Samani, S. Mohammadi; Amoozgar, Z.

    2015-01-01

    Hydrogel scaffolds serve as semi synthetic or synthetic extra cellular matrix to provide an amenable environment for cellular adherence and cellular remodeling in three dimensional structures mimicking that of natural cellular environment. Additionally, hydrogels have the capacity to carry small molecule drugs and/or proteins, growth factors and other necessary components for cell growth and differentiation. In the context of drug delivery, hydrogels can be utilized to localize drugs, increase drugs concentration at the site of action and consequently reduce off-targeted side effects. The current review aims to describe and classify hydrogels and their methods of production. The main highlight is chitosan-based hydrogels as biocompatible and medically relevant hydrogels for drug delivery. PMID:26430453

  7. Soy-based Hydrogels for Biomedical Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy based hydrogels were prepared by ring-opening polymerization of epoxidized soybean oil, following hydrolysis of formed polymers. The hydrogels were evaluated loading and releasing water-soluble anticancer drug doxorubin (Dox). The results suggest that this new system offers a great potential t...

  8. Soy-Based Hydrogels for Biomedical Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy based hydrogels were prepared by ring-opening polymerization of epoxidized soybean oil, flowing hydrolysis of formed polymer. The hydrogels were evaluated loading and release water-soluble anticancer drug doxorubin (Dox). The results suggested that this new system may offer great potential to ...

  9. Water absorbency studies of γ-radiation crosslinked poly(acrylamide-co-2,3-dihydroxybutanedioic acid) hydrogels

    NASA Astrophysics Data System (ADS)

    Karadaǧ, Erdener; Saraydin, Dursun; Güven, Olgun

    2004-10-01

    Water absorbency behavior of acrylamide (AAm)/2,3-dihydroxybutanedioic acid (DBA) hydrogels synthesized by γ-radiation crosslinking of AAm and DBA in an aqueous solution was investigated. Different amounts of DBA containing AAm/DBA hydrogels were obtained in the form of rods via a radiation technique. Swelling experiments were performed in water at 25 °C, gravimetrically. The influence of absorbed dose and DBA content of the hydrogels on swelling properties were examined. The hydrogels showed enormous swelling in an aqueous medium and displayed swelling characteristics which were highly dependent on the chemical composition of the hydrogels and irradiation dose. Diffusion behavior and some swelling kinetic parameters were investigated. The values of the weight swelling ratio of AAm/DBA hydrogels were between 8.34 and 15.16, while the values of the weight swelling ratio of pure AAm hydrogels were between 7.58 and 8.28. Water diffusion into hydrogels was found to be non-Fickian in character. Equilibrium water contents of the hydrogel systems were changed between 0.8681 and 0.9340.

  10. Biologically-Based Self-Assembling Hydrogels

    DTIC Science & Technology

    2002-04-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014396 TITLE: Biologically-Based Self-Assembling Hydrogels DISTRIBUTION...Based Self-Assembling Hydrogels Brandon L. Seal and Alyssa Panitch Department of Bioengineering, Arizona State University Tempe, AZ 85287-9709, U.S.A...Factor Xllla substrate were synthesized and conjugated to methacroylated dextran or acrylated poly(ethylene glycol). Peptide-conjugated dextran was added

  11. Application of carboxymethylcellulose hydrogel based silver nanocomposites on cotton fabrics for antibacterial property.

    PubMed

    Bozaci, Ebru; Akar, Emine; Ozdogan, Esen; Demir, Asli; Altinisik, Aylin; Seki, Yoldas

    2015-12-10

    In this study, fumaric acid (FA) crosslinked carboxymethylcellulose (CMC) hydrogel (CMCF) based silver nanocomposites were coated on cotton fabric for antibacterial property for the first time. The performance of the nanocomposite treated cotton fabric was tested for different mixing times of hydrogel solution, padding times and concentrations of silver. The cotton fabrics treated with CMC hydrogel based silver nanocomposites demonstrated 99.9% reduction for both Staphylococcus aureus (Sa) and Klebsiella pneumonia (Kp). After one cycle washing processes of treated cotton fabric, there is no significant variation observed in antibacterial activity. From SEM and AFM analyses, silver particles in nano-size, homogenously distributed, were observed. The treated samples were also evaluated by tensile strength, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) analysis, fluid absorbency properties, and whiteness index. The treatment of cotton fabric with CMCF hydrogel did not affect the whiteness considerably, but increased the absorbency values of cotton.

  12. Bonding of synthetic hydrogels with fibrin as the glue to engineer hydrogel-based biodevices.

    PubMed

    Nagamine, Kuniaki; Okamoto, Kohei; Kaji, Hirokazu; Nishizawa, Matsuhiko

    2014-07-01

    We show the fibrous protein fibrin can serve as biocompatible glue with which to bind synthetic cationic or anionic hydrogels together. Both the bonding to and detachment from the hydrogels by fibrin (gelation and degradation, respectively) proceeded enzymatically under physiological conditions. We built a hydrogel-based actuator to demonstrate the method.

  13. Enhanced mechanical performance of biocompatible hemicelluloses-based hydrogel via chain extension

    PubMed Central

    Qi, Xian-Ming; Chen, Ge-Gu; Gong, Xiao-Dong; Fu, Gen-Que; Niu, Ya-Shuai; Bian, Jing; Peng, Feng; Sun, Run-Cang

    2016-01-01

    Hemicelluloses are widely used to prepare gel materials because of their renewability, biodegradability, and biocompatibility. Here, molecular chain extension of hemicelluloses was obtained in a two-step process. Composite hydrogels were prepared via free radical graft copolymerization of crosslinked quaternized hemicelluloses (CQH) and acrylic acid (AA) in the presence of crosslinking agent N,N’-methylenebisacrylamide (MBA). This chain extension strategy significantly improved the mechanical performance of the resulting hydrogels. The crosslinking density, compression modulus, and swelling capacities of hydrogels were tuned by changing the AA/CQH and MBA/CQH contents. Moreover, the biocompatibility test suggests that the hemicelluloses-based hydrogels exhibited no toxicity to cells and allowed cell growth. Taken together, these properties demonstrated that the composite hydrogels have potential applications in the fields of water absorbents, cell culture, and other functional biomaterials. PMID:27634095

  14. Polysaccharide Based Hydrogels for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Leone, Gemma; Barbucci, Rolando

    Polysaccharide based hydrogels for their physico-chemical and biological properties can be used as scaffolds for soft tissue regneration and as vehicles for drug controlled release. For both these applications, Hyaluronan shows optimal characteristics even though its quick enzymatic degradability makes this natural polysaccharide unsuitable for applications which require prolonged presence in the human organism.

  15. Hydrogel-based piezoresistive biochemical microsensors

    NASA Astrophysics Data System (ADS)

    Guenther, Margarita; Schulz, Volker; Gerlach, Gerald; Wallmersperger, Thomas; Solzbacher, Florian; Magda, Jules J.; Tathireddy, Prashant; Lin, Genyao; Orthner, Michael P.

    2010-04-01

    This work is motivated by a demand for inexpensive, robust and reliable biochemical sensors with high signal reproducibility and long-term-stable sensitivity, especially for medical applications. Micro-fabricated sensors can provide continuous monitoring and on-line control of analyte concentrations in ambient aqueous solutions. The piezoresistive biochemical sensor containing a special biocompatible polymer (hydrogel) with a sharp volume phase transition in the neutral physiological pH range near 7.4 can detect a specific analyte, for example glucose. Thereby the hydrogel-based biochemical sensors are useful for the diagnosis and monitoring of diabetes. The response of the glucosesensitive hydrogel was studied at different regimes of the glucose concentration change and of the solution supply. Sensor response time and accuracy with which a sensor can track gradual changes in glucose was estimated. Additionally, the influence of various recommended sterilization methods on the gel swelling properties and on the mechano-electrical transducer of the pH-sensors has been evaluated in order to choose the most optimal sterilization method for the implantable sensors. It has been shown that there is no negative effect of gamma irradiation with a dose of 25.7 kGy on the hydrogel sensitivity. In order to achieve an optimum between sensor signal amplitude and sensor response time, corresponding calibration and measurement procedures have been proposed and evaluated for the chemical sensors.

  16. Investigation of citric acid-glycerol based pH-sensitive biopolymeric hydrogels for dye removal applications: A green approach.

    PubMed

    Franklin, D S; Guhanathan, S

    2015-11-01

    Hydrogels are three dimensional polymeric structure with segments of hydrophilic groups. The special structure of hydrogels facilitates the diffusion of solutes into the interior network and possess numerous ionic and non-ionic functional groups, which can absorb or trap ionic dyes from waste water. The present investigation was devoted to the synthesis of a series of citric acid and glycerol based pH sensitive biopolymeric hydrogels using a solventless green approach via condensation polymerization in the presence of acidic medium. The formations of hydrogels were confirmed using various spectral investigations viz., FT-IR, (1)H and (13)C NMR. The thermal properties of various hydrogels have been studied using TGA, DTA and DSC analysis. The rationalized relationship was noticed with increasing of pH from 4.0 to 10.0. The surface morphologies of hydrogels were analyzed using SEM technique which was well supported from the results of swelling studies. Methylene blue has been selected as a cationic dye for its removal from various environmental sources using pH-sensitive biopolymeric hydrogels. The results of dye removal revealed that glycerol based biopolymeric hydrogels have shown an excellent dye removal capacity. Hence, the synthesized pH sensitive biopolymeric hydrogels have an adaptability with pH tuned properties might have greater potential opening in various environmental applications viz., metal ion removal, agrochemical release, purification of water, dye removal etc.

  17. DEVD-Based Hydrogelator Minimizes Cellular Apoptosis Induction

    PubMed Central

    Tang, An-Ming; Wang, Wei-Juan; Mei, Bin; Hu, Wang-Lai; Wu, Mian; Liang, Gao-Lin

    2013-01-01

    Herein, we report the rational design of a DEVD-based heptapeptide hydrogelator 1 which is susceptible to caspase-3 (CASP3), and its isomeric control hydrogelator 2 with a DEDV-based heptapeptide sequence. Self-assembly of 1 in water results in flexuous, long nanofibers to form supramolecular hydrogel I with higher mechanical strength than that of hydrogel II which is composed of rigid, short nanofibers of 2. In vitro enzymatic analysis indicated that 1 is susceptive to CASP3 while 2 is not. 3-(4,5-dimethylthiazol-2-yl) 2,5 diphenyl tetrazolium bromide (MTT) and Western blot analyses indicated that DEDV-based hydrogelator 2 induces cell death via apoptotic pathway while the DEVD-based hydrogelator 1 minimizes cellular apoptosis induction. PMID:23673405

  18. Tissue responses against tissue-engineered cartilage consisting of chondrocytes encapsulated within non-absorbable hydrogel.

    PubMed

    Kanazawa, Sanshiro; Fujihara, Yuko; Sakamoto, Tomoaki; Asawa, Yukiyo; Komura, Makoto; Nagata, Satoru; Takato, Tsuyoshi; Hoshi, Kazuto

    2013-01-01

    To disclose the influence of foreign body responses raised against a non-absorbable hydrogel consisting of tissue-engineered cartilage, we embedded human/canine chondrocytes within agarose and transplanted them into subcutaneous pockets in nude mice and donor beagles. One month after transplantation, cartilage formation was observed in the experiments using human chondrocytes in nude mice. No significant invasion of blood cells was noted in the areas where the cartilage was newly formed. Around the tissue-engineered cartilage, agarose fragments, a dense fibrous connective tissue and many macrophages were observed. On the other hand, no cartilage tissue was detected in the autologous transplantation of canine chondrocytes. Few surviving chondrocytes were observed in the agarose and no accumulation of blood cells was observed in the inner parts of the transplants. Localizations of IgG and complements were noted in areas of agarose, and also in the devitalized cells embedded within the agarose. Even if we had inhibited the proximity of the blood cells to the transplanted cells, the survival of the cells could not be secured. We suggest that these cytotoxic mechanisms seem to be associated not only with macrophages but also with soluble factors, including antibodies and complements.

  19. Glycerin-Based Hydrogel for Infection Control

    PubMed Central

    Stout, Edward I.; McKessor, Angie

    2012-01-01

    to the wound bed or periwound area upon dressing removal. Because of the thickness, the product provides excellent cushion and padding support. It has been also proven to be bacteriostatic/fungistatic. (Bacteriostatic is the ability to restrain the development or reproduction of bacteria.3) Product Technology Glycerin is a huamectant by definition and has been recognized by the U.S. Food and Drug Administration (FDA). Humectants attract, bind, and hold moisture to the site of application. The actual concentration of glycerin in a wound dressing is indicative of the ability to absorb excess moisture. Exudate management is an important function of topical treatment. The ability to absorb drainage and prevent pooling of exudate in the wound or on the surrounding skin are attributes specific to high glycerin content. Perhaps, the most significant advantage of the glycerin-based hydrogel sheet is its impact on wound bioburden and pathogenic organisms.4 Glycerin is a simple three-carbon tri-alcohol and is a natural humectant. It is used as a carrier in many medicines and as plasticizer in gelatin gel capsules. Glycerin is a component of cosmetics, conditioners, soaps, foods, and other common products. It is a component of mono-, di-, and triglycerides naturally occurring in the body. These glycerides and glycerin are constantly reacted with each other by the natural enzymes and reversed with the natural metabolic processes already present in the body. Any glycerin that may be absorbed into the body fluid is rapidly diluted in these fluids and is no longer toxic but is metabolized as another component of the food chain. It is well known that glycerin in high concentration will exhibit dehydrating effect on many systems including living cells by the commonly known process of osmosis. (Osmosis: the flow or diffusion that takes place through a semipermable membrane, as of living cell, typically separating a solvent such as water, thus bringing about equilibrium conditions.5

  20. Biodegradable HEMA-based hydrogels with enhanced mechanical properties.

    PubMed

    Moghadam, Mohamadreza Nassajian; Pioletti, Dominique P

    2016-08-01

    Hydrogels are widely used in the biomedical field. Their main purposes are either to deliver biological active agents or to temporarily fill a defect until they degrade and are followed by new host tissue formation. However, for this latter application, biodegradable hydrogels are usually not capable to sustain any significant load. The development of biodegradable hydrogels presenting load-bearing capabilities would open new possibilities to utilize this class of material in the biomedical field. In this work, an original formulation of biodegradable photo-crosslinked hydrogels based on hydroxyethyl methacrylate (HEMA) is presented. The hydrogels consist of short-length poly(2-hydroxyethyl methacrylate) (PHEMA) chains in a star shape structure, obtained by introducing a tetra-functional chain transfer agent in the backbone of the hydrogels. They are cross-linked with a biodegradable N,O-dimethacryloyl hydroxylamine (DMHA) molecule sensitive to hydrolytic cleavage. We characterized the degradation properties of these hydrogels submitted to mechanical loadings. We showed that the developed hydrogels undergo long-term degradation and specially meet the two essential requirements of a biodegradable hydrogel suitable for load bearing applications: enhanced mechanical properties and low molecular weight degradation products. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1161-1169, 2016.

  1. Functionalized graphene hydrogel-based high-performance supercapacitors.

    PubMed

    Xu, Yuxi; Lin, Zhaoyang; Huang, Xiaoqing; Wang, Yang; Huang, Yu; Duan, Xiangfeng

    2013-10-25

    Functionalized graphene hydrogels are prepared by a one-step low-temperature reduction process and exhibit ultrahigh specific capacitances and excellent cycling stability in the aqueous electrolyte. Flexible solid-state supercapacitors based on functionalized graphene hydrogels are demonstrated with superior capacitive performances and extraordinary mechanical flexibility.

  2. Bioinspired Smart Actuator Based on Graphene Oxide-Polymer Hybrid Hydrogels.

    PubMed

    Wang, Tao; Huang, Jiahe; Yang, Yiqing; Zhang, Enzhong; Sun, Weixiang; Tong, Zhen

    2015-10-28

    Rapid response and strong mechanical properties are desired for smart materials used in soft actuators. A bioinspired hybrid hydrogel actuator was designed and prepared by series combination of three trunks of tough polymer-clay hydrogels to accomplish the comprehensive actuation of "extension-grasp-retraction" like a fishing rod. The hydrogels with thermo-creep and thermo-shrinking features were successively irradiated by near-infrared (NIR) to execute extension and retraction, respectively. The GO in the hydrogels absorbed the NIR energy and transformed it into thermo-energy rapidly and effectively. The hydrogel with adhesion or magnetic force was adopted as the "hook" of the hybrid hydrogel actuator for grasping object. The hook of the hybrid hydrogel actuator was replaceable according to applications, even with functional materials other than hydrogels. This study provides an innovative concept to explore new soft actuators through combining response hydrogels and programming the same stimulus.

  3. Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity.

    PubMed

    Peng, Na; Wang, Yanfeng; Ye, Qifa; Liang, Lei; An, Yuxing; Li, Qiwei; Chang, Chunyu

    2016-02-10

    Current superabsorbent hydrogels commercially applied in the disposable diapers have disadvantages such as weak mechanical strength, poor biocompatibility, and lack of antimicrobial activity, which may induce skin allergy of body. To overcome these hassles, we have developed novel cellulose based hydrogels via simple chemical cross-linking of quaternized cellulose (QC) and native cellulose in NaOH/urea aqueous solution. The prepared hydrogel showed superabsorbent property, high mechanical strength, good biocompatibility, and excellent antimicrobial efficacy against Saccharomyces cerevisiae. The presence of QC in the hydrogel networks not only improved their swelling ratio via electrostatic repulsion of quaternary ammonium groups, but also endowed their antimicrobial activity by attraction of sections of anionic microbial membrane into internal pores of poly cationic hydrogel leading to the disruption of microbial membrane. Moreover, the swelling properties, mechanical strength, and antibacterial activity of hydrogels strongly depended on the contents of quaternary ammonium groups in hydrogel networks. The obtained data encouraged the use of these hydrogels for hygienic application such as disposable diapers.

  4. Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications.

    PubMed

    Zhou, Hui Yun; Jiang, Ling Juan; Cao, Pei Pei; Li, Jun Bo; Chen, Xi Guang

    2015-03-06

    Chitosan is non-toxic, biocompatible and biodegradable polysaccharide composed of glucosamine and derived by deacetylation of chitin. Chitosan thermosensitive hydrogel has been developed to form a gel in situ, precluding the need for surgical implantation. In this review, the recent advances in chitosan thermosensitive hydrogels based on different glycerophosphate are summarized. The hydrogel is prepared with chitosan and β-glycerophosphate or αβ-glycerophosphate which is liquid at room temperature and transits into gel as temperature increases. The gelation mechanism may involve multiple interactions between chitosan, glycerophosphate, and water. The solution behavior, rheological and physicochemical properties, and gelation process of the hydrogel are affected not only by the molecule weight, deacetylation degree, and concentration of chitosan, but also by the kind and concentration of glycerophosphate. The properties and the three-dimensional networks of the hydrogel offer them wide applications in biomedical field including local drug delivery and tissue engineering.

  5. A new amphoteric superabsorbent hydrogel based on sodium starch sulfate.

    PubMed

    Peng, Gui; Xu, Shimei; Peng, Yang; Wang, Jide; Zheng, Liuchun

    2008-01-01

    A new amphoteric superabsorbent hydrogels were synthesized by graft copolymerization blending based on acrylamide (AM), diallydimethylammonium chloride (DMDAAC) and sodium starch sulfate (SSS). The effect of polymerization conditions on swelling capacity was investigated. The results showed that the swelling capacity was affected by various factors, such as polymerization temperature, concentration of initiator and crosslinker, and dose of AM. Additionally, the results testified that salt bond was a potential crosslinking factor in the amphoteric hydrogel. The maximum swelling capacity in distilled water and saline solution reached 1493.1 and 91.0 g/g, respectively. These results were compared with those obtained from original starch-based hydrogel.

  6. Flexible hydrogel-based functional composite materials

    DOEpatents

    Song, Jie; Saiz, Eduardo; Bertozzi, Carolyn R; Tomasia, Antoni P

    2013-10-08

    A composite having a flexible hydrogel polymer formed by mixing an organic phase with an inorganic composition, the organic phase selected from the group consisting of a hydrogel monomer, a crosslinker, a radical initiator, and/or a solvent. A polymerization mixture is formed and polymerized into a desired shape and size.

  7. Hydrogels for osteochondral repair based on photocrosslinkable carbamate dendrimers.

    PubMed

    Degoricija, Lovorka; Bansal, Prashant N; Söntjens, Serge H M; Joshi, Neel S; Takahashi, Masaya; Snyder, Brian; Grinstaff, Mark W

    2008-10-01

    First generation, photocrosslinkable dendrimers consisting of natural metabolites (i.e., succinic acid, glycerol, and beta-alanine) and nonimmunogenic poly(ethylene glycol) (PEG) were synthesized divergently in high yields using ester and carbamate forming reactions. Aqueous solutions of these dendrimers were photocrosslinked with an eosin-based photoinitiator to afford hydrogels. The hydrogels displayed a range of mechanical properties based on their structure, generation size, and concentration in solution. All of the hydrogels showed minimal swelling characteristics. The dendrimer solutions were then photocrosslinked in situ in an ex vivo rabbit osteochondral defect (3 mm diameter and 10 mm depth), and the resulting hydrogels were subjected to physiologically relevant dynamic loads. Magnetic resonance imaging (MRI) showed the hydrogels to be fixated in the defect site after the repetitive loading regimen. The ([G1]-PGLBA-MA) 2-PEG hydrogel was chosen for the 6 month pilot in vivo rabbit study because this hydrogel scaffold could be prepared at low polymer weight (10 wt %) and possessed the largest compressive modulus of the 10% formulations, a low swelling ratio, and contained carbamate linkages, which are more hydrolytically stable than the ester linkages. The hydrogel-treated osteochondral defects showed good attachment in the defect site and histological analysis showed the presence of collagen II and glycosaminoglycans (GAGs) in the treated defects. By contrast, the contralateral unfilled defects showed poor healing and negligible GAG or collagen II production. Good mechanical properties, low swelling, good attachment to the defect site, and positive in vivo results illustrate the potential of these dendrimer-based hydrogels as scaffolds for osteochondral defect repair.

  8. Perfect terahertz absorber using fishnet based metafilm

    SciTech Connect

    Azad, Abul Kalam; Shchegolkov, Dmitry Yu; Chen, Houtong; Taylor, Antoinette; Smirnova, E I; O' Hara, John F

    2009-01-01

    We present a perfect terahertz (THz) absorber working for a broad-angle of incidence. The two fold symmetry of rectangular fishnet structure allows either complete absorption or mirror like reflection depending on the polarization of incident the THz beam. Metamaterials enable the ability to control the electromagnetic wave in a unique fashion by designing the permittivity or permeability of composite materials with desired values. Although the initial idea of metamaterials was to obtain a negative index medium, however, the evolution of metamaterials (MMs) offers a variety of practically applicable devices for controlling electromagnetic wave such as tunable filters, modulators, phase shifters, compact antenna, absorbers, etc. Terahertz regime, a crucial domain of the electromagnetic wave, is suffering from the scarcity of the efficient devices and might take the advantage of metamaterials. Here, we demonstrate design, fabrication, and characterization of a terahertz absorber based on a simple fishnet metallic film separated from a ground mirror plane by a dielectric spacer. Such absorbers are in particular important for bolometric terahertz detectors, high sensitivity imaging, and terahertz anechoic chambers. Recently, split-ring-resonators (SRR) have been employed for metamaterial-based absorbers at microwave and THz frequencies. The experimental demonstration reveals that such absorbers have absorptivity close to unity at resonance frequencies. However, the downside of these designs is that they all employ resonators of rather complicated shape with many fine parts and so they are not easy to fabricate and are sensitive to distortions.

  9. Synthesis and characterization of chitosan-based hydrogels.

    PubMed

    Li, Qianzhu; Yang, Dongzhi; Ma, Guiping; Xu, Qiang; Chen, Xiangmei; Lu, Fengmin; Nie, Jun

    2009-03-01

    Biocompatible hydrogels based on water-soluble chitosan-ethylene glycol acrylate methacrylate (CS-EGAMA) and polyethylene glycol diamethacrylate (PEGDMA) were synthesized by photopolymerization. Characterization of morphology, weight loss, water state of hydrogel, pH-sensitivity and cytotoxicity were investigated by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), swelling test and methylthiazolydiphenyl-tetrazolium bromide (MTT) assay. The results indicated that the hydrogels were sensitive to pH of the medium, no cytotoxicity for L929 and SW1353, satisfactory for the composite to be used in bioapplications.

  10. Mussel-mimetic protein-based adhesive hydrogel.

    PubMed

    Kim, Bum Jin; Oh, Dongyeop X; Kim, Sangsik; Seo, Jeong Hyun; Hwang, Dong Soo; Masic, Admir; Han, Dong Keun; Cha, Hyung Joon

    2014-05-12

    Hydrogel systems based on cross-linked polymeric materials which could provide both adhesion and cohesion in wet environment have been considered as a promising formulation of tissue adhesives. Inspired by marine mussel adhesion, many researchers have tried to exploit the 3,4-dihydroxyphenylalanine (DOPA) molecule as a cross-linking mediator of synthetic polymer-based hydrogels which is known to be able to achieve cohesive hardening as well as adhesive bonding with diverse surfaces. Beside DOPA residue, composition of other amino acid residues and structure of mussel adhesive proteins (MAPs) have also been considered important elements for mussel adhesion. Herein, we represent a novel protein-based hydrogel system using DOPA-containing recombinant MAP. Gelation can be achieved using both oxdiation-induced DOPA quinone-mediated covalent and Fe(3+)-mediated coordinative noncovalent cross-linking. Fe(3+)-mediated hydrogels show deformable and self-healing viscoelastic behavior in rheological analysis, which is also well-reflected in bulk adhesion strength measurement. Quinone-mediated hydrogel has higher cohesive strength and can provide sufficient gelation time for easier handling. Collectively, our newly developed MAP hydrogel can potentially be used as tissue adhesive and sealant for future applications.

  11. Viscoelastic Properties and Morphology of Mumio-based Medicated Hydrogels

    NASA Astrophysics Data System (ADS)

    Zandraa, Oyunchimeg; Jelínková, Lenka; Roy, Niladri; Sáha, Tomáš; Kitano, Takeshi; Saha, Nabanita

    2011-07-01

    Novel medicated hydrogels were prepared (by moist heat treatment) with PVA, agar, mumio, mare's milk (MM), seabuckthorn oil (SB oil) and salicylic acid (SA) for wound dressing/healing application. Scanning electron micrographs (SEM) show highly porous structure of these hydrogels. The swelling behaviour of the hydrogels in physiological solution displays remarkable liquid absorption property. The knowledge obtained from rheological investigations of these-systems may be highly useful for the characterization of the newly developed topical formulations. In the present study, an oscillation frequency sweep test was used for the evaluation of storage modulus (G'), loss modulus (G″), and complex viscosity (η*) of five different formulations, over an angular frequency range from 0.1 to 100 rad.s-1. The influence of healing agents and swelling effect on the rheological properties of mumio-based medicated hydrogels was investigated to judge its application on uneven surface of body.

  12. Superabsorbent, High Porosity, PAMPS-Based Hydrogels through Emulsion Templating.

    PubMed

    Kovačič, Sebastijan; Silverstein, Michael S

    2016-09-26

    Swell! Superabsorbent, mechanically robust, high-porosity hydrogels based on poly(2-acrylamido-2-methyl-1-propanesulfonic acid) have been successfully synthesized by templating within high internal phase emulsions (HIPEs). These hydrogel polyHIPEs (HG-PHs) exhibit unusually high uptakes of water and of artificial urine through structure- and crosslinking-dependent hydrogel-swelling-driven void expansion. An HG-PH with 3.1 mmol g(-1) of highly accessible sulfonic acid groups exhibits a 7 meq NaOH ion exchange capacity per gram polymer and rapid dye absorption. The highly swollen HG-PHs do not fail at compressive strains of up to 60%, they retain water and recover their shapes upon the removal of stress. Unusually, the dry hydrogels have relatively high compressive moduli and achieve relatively high stresses at 70% strain.

  13. Multi-responsive hydrogel based on lotus root starch.

    PubMed

    Zhu, Baodong; Ma, Dongzhuo; Wang, Jian; Zhang, Jianwei; Zhang, Shuang

    2016-08-01

    The lotus root starch-based hydrogel was synthesized by free radical copolymerization. Fourier Transform Infrared Spectroscopy (FTIR) demonstrated that the formation of target product. X-ray diffraction (XRD) analysis showed the change of the starch's crystallization. The morphology and pore structure of the hydrogel were evaluated by Field Emission Scanning Electron Microscope (FESEM) and Biomicroscope. Thermogravimetric analysis revealed the better thermal stability of hydrogel. Furthermore, the swelling in CaCl2 and AlCl3 solutions/temperature (25°C-65°C) displayed the "overshooting effect" swelling-deswelling phenomenon with prolonging the swelling time. The hydrogel can rapidly response to various pH value as well.

  14. Metamaterial Absorber Based Multifunctional Sensor Application

    NASA Astrophysics Data System (ADS)

    Ozer, Z.; Mamedov, A. M.; Ozbay, E.

    2017-02-01

    In this study metamaterial based (MA) absorber sensor, integrated with an X-band waveguide, is numerically and experimentally suggested for important application including pressure, density sensing and marble type detecting applications based on rectangular split ring resonator, sensor layer and absorber layer that measures of changing in the dielectric constant and/or the thickness of a sensor layer. Changing of physical, chemical or biological parameters in the sensor layer can be detected by measuring the resonant frequency shifting of metamaterial absorber based sensor. Suggested MA based absorber sensor can be used for medical, biological, agricultural and chemical detecting applications in microwave frequency band. We compare the simulation and experimentally obtained results from the fabricated sample which are good agreement. Simulation results show that the proposed structure can detect the changing of the refractive indexes of different materials via special resonance frequencies, thus it could be said that the MA-based sensors have high sensitivity. Additionally due to the simple and tiny structures it could be adapted to other electronic devices in different sizes.

  15. Transient dynamic mechanical properties of resilin-based elastomeric hydrogels

    PubMed Central

    Li, Linqing; Kiick, Kristi L.

    2014-01-01

    The outstanding high-frequency properties of emerging resilin-like polypeptides (RLPs) have motivated their development for vocal fold tissue regeneration and other applications. Recombinant RLP hydrogels show efficient gelation, tunable mechanical properties, and display excellent extensibility, but little has been reported about their transient mechanical properties. In this manuscript, we describe the transient mechanical behavior of new RLP hydrogels investigated via both sinusoidal oscillatory shear deformation and uniaxial tensile testing. Oscillatory stress relaxation and creep experiments confirm that RLP-based hydrogels display significantly reduced stress relaxation and improved strain recovery compared to PEG-based control hydrogels. Uniaxial tensile testing confirms the negligible hysteresis, reversible elasticity and superior resilience (up to 98%) of hydrated RLP hydrogels, with Young's modulus values that compare favorably with those previously reported for resilin and that mimic the tensile properties of the vocal fold ligament at low strain (<15%). These studies expand our understanding of the properties of these RLP materials under a variety of conditions, and confirm the unique applicability, for mechanically demanding tissue engineering applications, of a range of RLP hydrogels. PMID:24809044

  16. Hyaluronic Acid Based Hydrogels for Regenerative Medicine Applications

    PubMed Central

    Borzacchiello, Assunta; Russo, Luisa; Malle, Birgitte M.; Schwach-Abdellaoui, Khadija; Ambrosio, Luigi

    2015-01-01

    Hyaluronic acid (HA) hydrogels, obtained by cross-linking HA molecules with divinyl sulfone (DVS) based on a simple, reproducible, and safe process that does not employ any organic solvents, were developed. Owing to an innovative preparation method the resulting homogeneous hydrogels do not contain any detectable residual cross-linking agent and are easier to inject through a fine needle. HA hydrogels were characterized in terms of degradation and biological properties, viscoelasticity, injectability, and network structural parameters. They exhibit a rheological behaviour typical of strong gels and show improved viscoelastic properties by increasing HA concentration and decreasing HA/DVS weight ratio. Furthermore, it was demonstrated that processes such as sterilization and extrusion through clinical needles do not imply significant alteration of viscoelastic properties. Both SANS and rheological tests indicated that the cross-links appear to compact the network, resulting in a reduction of the mesh size by increasing the cross-linker amount. In vitro degradation tests of the HA hydrogels demonstrated that these new hydrogels show a good stability against enzymatic degradation, which increases by increasing HA concentration and decreasing HA/DVS weight ratio. Finally, the hydrogels show a good biocompatibility confirmed by in vitro tests. PMID:26090451

  17. Waveguiding Actuators Based on Photothermally Responsive Hydrogels

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Hauser, Adam; Bende, Nakul; Kuzyk, Mark; Hayward, Ryan

    A simple means to achieve rapid and highly reversible photo-responsiveness in a hydrogel is to combine a thermally-responsive gel such as poly(N-isopropyl acrylamide) (PNIPAM), with the photothermal effect of gold nanoparticles. Relying on such composite gels, we fabricate micro-scale bilayer photoactuators by photolithographic patterning, and demonstrate their controlled bending/unbending behavior in response to visible light. In addition to actuation by flood exposure, 532 nm laser light can be waveguided through a plastic optical fiber to direct it into the photoactuator, providing the possibility for remotely controllable actuators that do not require line-of-sight access. The actuators show large magnitude responses within time-scales of ~1 s, consistent with the small dimensions of the actuators, but also exhibit smaller-scale responses over much longer times, suggesting the possibility of slow internal relaxations within the network. Based on our study on this bilayer system, we further explore fabrication methods for cylindrical actuators that are able to bend in arbitrary directions.

  18. Biocompatible nanomaterials based on dendrimers, hydrogels and hydrogel nanocomposites for use in biomedicine

    NASA Astrophysics Data System (ADS)

    Khoa Nguyen, Cuu; Quyen Tran, Ngoc; Phuong Nguyen, Thi; Hai Nguyen, Dai

    2017-03-01

    Over the past decades, biopolymer-based nanomaterials have been developed to overcome the limitations of other macro- and micro- synthetic materials as well as the ever increasing demand for the new materials in nanotechnology, biotechnology, biomedicine and others. Owning to their high stability, biodegradability, low toxicity, and biocompatibility, biopolymer-based nanomaterials hold great promise for various biomedical applications. The pursuit of this review is to briefly describe our recent studies regarding biocompatible biopolymer-based nanomaterials, particularly in the form of dendrimers, hydrogels, and hydrogel composites along with the synthetic and modification approaches for the utilization in drug delivery, tissue engineering, and biomedical implants. Moreover, in vitro and in vivo studies for the toxicity evaluation are also discussed.

  19. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel.

    PubMed

    Rakhshaei, Rasul; Namazi, Hassan

    2017-04-01

    Lack of antibacterial activity, deficient water vapor and oxygen permeability, and insufficient mechanical properties are disadvantages of existing wound dressings. Hydrogels could absorb wound exudates due to their strong swelling ratio and give a cooling sensation and a wet environment. To overcome these shortcomings, flexible nanocomposite hydrogel films was prepared through combination of zinc oxide impregnated mesoporous silica (ZnO-MCM-41) as a nano drug carrier with carboxymethyl cellulose (CMC) hydrogel. Citric acid was used as cross linker to avoid the cytotoxicity of conventional cross linkers. The prepared nanocomposite hydrogel was characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential and UV-vis spectroscopy. Results of swelling and erosion tests showed CMC/ZnO nanocomposite hydrogel disintegrated during the first hours of the test. Using MCM-41 as a substrate for ZnO nanoparticles solved this problem and the CMC/ZnO-MCM-41 showed a great improvement in tensile strength (12%), swelling (100%), erosion (53%) and gas permeability (500%) properties. Drug delivery and antibacterial properties of the nanocomposite hydrogel films studied using tetracycline (TC) as a broad spectrum antibiotic and showed a sustained TC release. This could efficiently decrease bandage exchange. Cytocompatibility of the nanocomposite hydrogel films has been analyzed in adipose tissue-derived stem cells (ADSCs) and results showed cytocompatibility of CMC/ZnO-MCM-41. Based on these results the prepared CMC nanocomposite hydrogel containing ZnO impregnated MCM-41, could serve as a kind of promising wound dressing with sustained drug delivery properties.

  20. Gelatin- and starch-based hydrogels. Part B: In vitro mesenchymal stem cell behavior on the hydrogels.

    PubMed

    Van Nieuwenhove, Ine; Salamon, Achim; Adam, Stefanie; Dubruel, Peter; Van Vlierberghe, Sandra; Peters, Kirsten

    2017-04-01

    Tissue regeneration often occurs only to a limited extent. By providing a three-dimensional matrix serving as a surrogate extracellular matrix that promotes adult stem cell adhesion, proliferation and differentiation, scaffold-guided tissue regeneration aims at overcoming this limitation. In this study, we applied hydrogels made from crosslinkable gelatin, the hydrolyzed form of collagen, and functionalized starch which were characterized in depth and optimized as described in Van Nieuwenhove et al., 2016. "Gelatin- and Starch-Based Hydrogels. Part A: Hydrogel Development, Characterization and Coating", Carbohydrate Polymers 152:129-39. Collagen is the main structural protein in animal connective tissue and the most abundant protein in mammals. Starch is a carbohydrate consisting of a mixture of amylose and amylopectin. Hydrogels were developed with varying chemical composition (ratio of starch to gelatin applied) and different degrees of methacrylation of the applied gelatin phase. The hydrogels used exhibited no adverse effect on viability of the stem cells cultured on them. Moreover, initial cell adhesion did not differ significantly between them, while the strongest proliferation was observed on the hydrogel with the highest degree of cross-linking. On the least crosslinked and thus most flexible hydrogels, the highest degree of adipogenic differentiation was found, while osteogenic differentiation was the strongest on the most rigid, starch-blended hydrogels. Hydrogel coating with extracellular matrix compounds aggrecan or fibronectin prior to cell seeding exhibited no significant effects. Thus, gelatin-based hydrogels can be optimized regarding maximum promotion of either adipogenic or osteogenic stem cell differentiation in vitro, which makes them promising candidates for in vivo evaluation in clinical studies aiming at either soft or hard tissue regeneration.

  1. Molecular Dynamics of a Water-Absorbent Nanoscale Material Based on Chitosan.

    PubMed

    Borca, Carlos H; Arango, Carlos A

    2016-04-21

    Although hydrogels have been widely investigated for their use in materials science, nanotechnology, and novel pharmaceuticals, mechanistic details explaining their water-absorbent features are not well understood. We performed an all-atom molecular dynamics study of the structural transformation of chitosan nanohydrogels due to water absorption. We analyzed the conformation of dry, nanoscaled chitosan, the structural modifications that emerge during the process of water inclusion, and the dynamics of this biopolymer in the presence of nature's solvent. Two sets of nanoscaled, single-chained chitosan models were simulated: one to study the swelling dependence upon the degree of self-cross-linking and other to observe the response with respect to the degree of protonation. We verified that nanohydrogels keep their ability to absorb water and grow, regardless of their degree of cross-linking. Noteworthy, we found that the swelling behavior of nanoscaled chitosan is pH-dependent, and it is considerably more limited than that of larger scale hydrogels. Thus, our study suggests that properties of nanohydrogels are significantly different from those of larger hydrogels. These findings might be important in the design of novel controlled-release and targeted drug-delivery systems based on chitosan.

  2. Starch nanocrystals based hydrogel: Construction, characterizations and transdermal application.

    PubMed

    Bakrudeen, Haja Bava; Sudarvizhi, C; Reddy, B S R

    2016-11-01

    Bio-based nanocomposites were prepared using starch nanocrystals obtained by acid hydrolysis of native starches using different acid sources. In recent times, focuses on starch nanocrystals (SNCs) have been increasing in number of research works dedicated to the development of bio-nanocomposites by blending with different biopolymeric matrices. The work mainly deals with the preparation of starch nanocrystals using different native starches by acid hydrolysis using hydrochloric acid and trifluroacetic acid. The as-prepared starch nanocrystals are having high crystallinity and more platelet morphologies, and used as a drug carrying filler material in the hydrogel formulations with the care of different polymer matrices. The condensed work also concentrates on the dispersion of antiviral drug in the hydrogels, which are applied onto biocompatible bio-membrane to be formulating a complete transdermal patch. The acid hydrolysed starch nanocrystals were thoroughly characterized using TEM, SEM, particle size analysis and zeta potential. Their thermal stability and the crystalline properties were also characterized using TG-DSC and XRD respectively. The physiochemical interaction and compatibility between the drug and the SNCs filler in the polymeric hydrogels were evaluated using FT-IR analysis. The formulated hydrogels were subjected to evaluation of in vitro permeation studies using Franz diffusion studies. The in vitro study was indicated substantial guarantee for the fabrication of drug dispersed in polymeric hydrogels using SNCs as filler matrices for a successful transdermal drug delivery.

  3. Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord injury repair.

    PubMed

    Hejcl, A; Lesný, P; Prádný, M; Sedý, J; Zámecník, J; Jendelová, P; Michálek, J; Syková, E

    2009-07-01

    Macroporous hydrogels are artificial biomaterials commonly used in tissue engineering, including central nervous system (CNS) repair. Their physical properties may be modified to improve their adhesion properties and promote tissue regeneration. We implanted four types of hydrogels based on 2-hydroxyethyl methacrylate (HEMA) with different surface charges inside a spinal cord hemisection cavity at the Th8 level in rats. The spinal cords were processed 1 and 6 months after implantation and histologically evaluated. Connective tissue deposition was most abundant in the hydrogels with positively-charged functional groups. Axonal regeneration was promoted in hydrogels carrying charged functional groups; hydrogels with positively charged functional groups showed increased axonal ingrowth into the central parts of the implant. Few astrocytes grew into the hydrogels. Our study shows that HEMA-based hydrogels carrying charged functional groups improve axonal ingrowth inside the implants compared to implants without any charge. Further, positively charged functional groups promote connective tissue infiltration and extended axonal regeneration inside a hydrogel bridge.

  4. Temperature, pH and redox responsive cellulose based hydrogels for protein delivery.

    PubMed

    Dutta, Sujan; Samanta, Pousali; Dhara, Dibakar

    2016-06-01

    Cellulose based hydrogels are important due to their biocompatibility, non-toxicity and natural origin. In this work, a new set of pH, temperature and redox responsive hydrogels were prepared from carboxymethylcellulose (CMC) and poly(N-isopropylacrylamide). Copolymeric (CP) hydrogels were synthesized by copolymerizing N-isopropylacrylamide (NIPA) and methacrylated carboxymethylcellulose, semi-interpenetrating network (SIPN) hydrogels were prepared by polymerizing NIPA in presence of CMC. Two types of cross-linkers were used viz. N,N'-methylenebisacrylamide (BIS) and N,N'-bis(acryloyl)cystamine (CBA), a redox sensitive cross-linker. The structures of the hydrogels were characterized by FTIR and SEM studies. The CP hydrogels were found to be more porous than corresponding SIPNs which resulted in higher swelling for the CP hydrogels. Swelling for both the hydrogels were found to increase with CMC content. While the swelling of SIPN hydrogels showed discontinuous temperature dependency, CP hydrogels showed gradual decrease in water retention values with increase in temperature. CBA cross-linked hydrogels showed higher swelling in comparison to BIS cross-linked hydrogels. Additionally, lysozyme was loaded in the hydrogels and its in vitro release was studied in various pH, temperature and in presence of a reducing agent, glutathione (GSH). The release rate was found to be maximum at lower temperature, lower pH and in presence of GSH.

  5. Experimental study of porous media flow using hydro-gel beads and LED based PIV

    NASA Astrophysics Data System (ADS)

    Harshani, H. M. D.; Galindo-Torres, S. A.; Scheuermann, A.; Muhlhaus, H. B.

    2017-01-01

    A novel experimental approach for measuring porous flow characteristics using spherical hydro-gel beads and particle image velocimetry (PIV) technique is presented. A transparent porous medium consisting of hydro-gel beads that are made of a super-absorbent polymer, allows using water as the fluid phase while simultaneously having the same refractive index. As a result, a more adaptable and cost effective refractive index matched (RIM) medium is created. The transparent nature of the porous medium allows optical systems to visualize the flow field by using poly-amide seeding particles (PSP). Low risk light emitting diode (LED) based light was used to illuminate the plane in order to track the seeding particles’ path for the characterization of the flow inside the porous medium. The system was calibrated using a manually measured flow by a flow meter. Velocity profiles were obtained and analysed qualitatively and quantitatively in order to characterise the flow. Results show that this adaptable, low risk experimental set-up can be used for flow measurements in porous medium under low Reynolds numbers. The limitations of using hydro-gel beads are also discussed.

  6. Development of Hydrogel-Based Keratoprostheses: A Materials Perspective

    PubMed Central

    Myung, David; Duhamel, Pierre-Emile; Cochran, Jennifer; Noolandi, Jaan; Ta, Christopher; Frank, Curtis

    2009-01-01

    Research and development of artificial corneas (keratoprostheses) in recent years have evolved from the use of rigid hydrophobic materials such as plastics and rubbers to hydrophilic, water-swollen hydrogels engineered to support not only peripheral tissue integration, but also glucose diffusion and surface epithelialization. The advent of the AlphaCor core-and-skirt hydrogel keratoprosthesis has paved the way for a host of new approaches based on hydrogels and other soft materials that encompass a variety of materials preparation strategies, from synthetic homopolymers and copolymers, to collagen-based bio-copolymers, and finally, interpenetrating polymer networks. Each approach represents a unique strategy toward the same goal: to develop a new hydrogel that mimics the important properties of natural donor corneas. We provide a critical review of these approaches from a materials perspective and discuss recent experimental results. While formidable technical hurdles still need to be overcome, the rapid progress that has been made by investigators with these approaches is indicative that a synthetic donor cornea capable of surface epithelialization is now closer to becoming a clinical reality. PMID:18422366

  7. Designing the mechanical properties of peptide-based supramolecular hydrogels for biomedical applications

    NASA Astrophysics Data System (ADS)

    Li, Ying; Qin, Meng; Cao, Yi; Wang, Wei

    2014-05-01

    Hydrogels are a class of special materials that contain a large amount of water and behave like rubber. These materials have found broad applications in tissue engineering, cell culturing, regenerative medicine etc. Recently, the exploration of peptide-based supramolecular hydrogels has greatly expanded the repertoire of hydrogels suitable for biomedical applications. However, the mechanical properties of peptide-based hydrogels are intrinsically weak. Therefore, it is crucial to develop methods that can improve the mechanical stability of such peptide-based hydrogels. In this review, we explore the factors that determine or influence the mechanical stability of peptide-based hydrogels and summarize several key elements that may guide scientists to achieve mechanically improved hydrogels. In addition, we exemplified several methods that have been successfully developed to prepare hydrogels with enhanced mechanical stability. These mechanically strong peptide-based hydrogels may find broad applications as novel biomaterials. It is still challenging to engineer hydrogels in order to mimic the mechanical properties of biological tissues. More hydrogel materials with optimal mechanical properties suitable for various types of biological applications will be available in the near future.

  8. Wave based optimization of distributed vibration absorbers

    NASA Astrophysics Data System (ADS)

    Johnson, Marty; Batton, Brad

    2005-09-01

    The concept of distributed vibration absorbers or DVAs has been investigated in recent years as a method of vibration control and sound radiation control for large flexible structures. These devices are comprised of a distributed compliant layer with a distributed mass layer. When such a device is placed onto a structure it forms a sandwich panel configuration with a very soft core. With this configuration the main effect of the DVA is to create forces normal to the surface of the structure and can be used at low frequencies to either add damping, where constrain layer damper treatments are not very effective, or to pin the structure over a narrow frequency bandwidth (i.e., large input impedance/vibration absorber approach). This paper analyses the behavior of these devices using a wave based approach and finds an optimal damping level for the control of broadband disturbances in panels. The optimal design is calculated by solving the differential equations for waves propagating in coupled plates. It is shown that the optimal damping calculated using the infinite case acts as a good ``rule of thumb'' for designing DVAs to control the vibration of finite panels. This is bourn out in both numerical simulations and experiments.

  9. Novel Crosslinked Graft Copolymer of Methacrylic Acid and Collagen as a Protein-Based Superabsorbent Hydrogel with Salt and Ph-Responsiveness Properties

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mohammad; Hamzeh, Alireza

    2008-08-01

    In this paper, a novel protein-based superabsorbent hydrogel was synthesized through crosslinking graft copolymerization of methacrylic acid (MAA) onto collagen, using ammonium persulfate (APS) as a free radical initiator in the presence of methylenebisacrylamide (MBA) as a crosslinker. The hydrogel structure was confirmed using FTIR spectroscopy. We were systematically optimized the certain variables of the graft copolymerization (i.e. the monomer, the initiator, and the crosslinker concentration) to achieve a hydrogel with maximum swelling capacity. Under the optimized conditions concluded, maximum capacity of swelling in distilled water was found to be 415 g/g. The swelling kinetics of the synthesized hydrogels with various particle sizes was preliminarily investigated. Absorbency in aqueous chloride salt solutions indicated that the swelling capacity decreased with an increase in the ionic strength of the swelling medium. The swelling of superabsorbing hydrogels was also measured in solutions with pH ranged from 1 to 13. The synthesized hydrogel exhibited a pH-responsiveness character so that a swelling-collapsing pulsatile behavior was recorded at pHs 2 and 7. This behavior makes the synthesized hydrogels as an excellent candidate for controlled delivery of bioactive agents.

  10. Hydrogel coated fiber Bragg grating based chromium sensor

    NASA Astrophysics Data System (ADS)

    Kishore, P. V. N.; Madhuvarasu, Sai Shankar; Putha, Kishore; Moru, Satyanarayana; Gobi, K. Vengatajalabathy

    2016-04-01

    The present article reports a hydrogel coated Fiber Bragg Grating (FBG) based sensor for chromium metal ion detection. The presence of chromium metal ion in environmental water causes many toxic effects both on humans and animals. The inability of sensing traces of chromium ions is still remains a challenging problem for decades, as the Chromium exists in the environment in different oxidation states. This Paper discusses a chemo-mechanical-optical sensing approach for sensing harmful Chromium ions in environmental water. Fiber Bragg Grating is functionalized with a stimulus responsive hydrogel which swells or deswells depending on ambient chromium ion concentrations. This volume change of the hydrogels causes a bragg shift of the FBG peak. Different peak shifting's, corresponding to different concentrations of the Cr ion concentrations, can be considered as a measure for quantifying traces of chromium ions. Hydrogel network cross-linked with (3-Acrylamidopropyl)-trimethylammonium chloride (ATAC) was synthesized and coated on FBG by dip coating method. Chromium ion concentrations up to ppm (parts per million) can be sensed by this technique.

  11. Injectable biopolymer based hydrogels for drug delivery applications.

    PubMed

    Atta, Sadia; Khaliq, Shaista; Islam, Atif; Javeria, Irtaza; Jamil, Tahir; Athar, Muhammad Makshoof; Shafiq, Muhammad Imtiaz; Ghaffar, Abdul

    2015-09-01

    Biopolymer based pH-sensitive hydrogels were prepared using chitosan (CS) with polyethylene glycol (PEG) of different molecular weights in the presence of silane crosslinker. The incorporated components remain undissolved in different swelling media as they are connected by siloxane linkage which was confirmed by Fourier transform infrared spectroscopy. The swelling in water was enhanced by the addition of higher molecular weight PEG. The swelling behaviour of the hydrogels against pH showed high swelling in acidic and basic pH, whereas, low swelling was examined at pH 6 and 7. This characteristic pH responsive behaviour at neutral pH made them suitable for injectable controlled drug delivery. The controlled release analysis of Cefixime (CFX) (model drug) loaded CS/PEG hydrogel exhibited that the entire drug was released in 30 min in simulated gastric fluid (SGF) while in simulated intestinal fluid (SIF), 85% of drug was released in controlled manner within 80 min. This inferred that the developed hydrogels can be an attractive biomaterial for injectable drug delivery with physiological pH and other biomedical applications.

  12. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach.

    PubMed

    Andryieuski, Andrei; Lavrinenko, Andrei V

    2013-04-08

    In this paper we present the efficient design of functional thin-film metamaterial devices with the effective surface conductivity approach. As an example, we demonstrate a graphene based perfect absorber. After formulating the requirements to the perfect absorber in terms of surface conductivity we investigate the properties of graphene wire medium and graphene fishnet metamaterials and demonstrate both narrowband and broadband tunable absorbers.

  13. Linking the foreign body response and protein adsorption to PEG-based hydrogels using proteomics.

    PubMed

    Swartzlander, Mark D; Barnes, Christopher A; Blakney, Anna K; Kaar, Joel L; Kyriakides, Themis R; Bryant, Stephanie J

    2015-02-01

    Poly(ethylene glycol) (PEG) hydrogels with their highly tunable properties are promising implantable materials, but as with all non-biological materials, they elicit a foreign body response (FBR). Recent studies, however, have shown that incorporating the oligopeptide RGD into PEG hydrogels reduces the FBR. To better understand the mechanisms involved and the role of RGD in mediating the FBR, PEG, PEG-RGD and PEG-RDG hydrogels were investigated. After a 28-day subcutaneous implantation in mice, a thinner and less dense fibrous capsule formed around PEG-RGD hydrogels, while PEG and PEG-RDG hydrogels exhibited stronger, but similar FBRs. Protein adsorption to the hydrogels, which is considered the first step in the FBR, was also characterized. In vitro experiments confirmed that serum proteins adsorbed to PEG-based hydrogels and were necessary to promote macrophage adhesion to PEG and PEG-RDG, but not PEG-RGD hydrogels. Proteins adsorbed to the hydrogels in vivo were identified using liquid chromatography-tandem mass spectrometry. The majority (245) of the total proteins (≥300) that were identified was present on all hydrogels with many proteins being associated with wounding and acute inflammation. These findings suggest that the FBR to PEG hydrogels may be mediated by the presence of inflammatory-related proteins adsorbed to the surface, but that macrophages appear to sense the underlying chemistry, which for RGD improves the FBR.

  14. Effect of discarded keratin-based biocomposite hydrogels on the wound healing process in vivo.

    PubMed

    Park, Mira; Shin, Hye Kyoung; Kim, Byoung-Suhk; Kim, Myung Jin; Kim, In-Shik; Park, Byung-Yong; Kim, Hak-Yong

    2015-10-01

    Biocompatible keratin-based hydrogels prepared by electron beam irradiation (EBI) were examined in wound healing. As the EBI dose increased to 60 kGy, the tensile strength of the hydrogels increased, while the percentage of elongation of the hydrogels decreased. After 7 days, the dehydrated wool-based hydrogels show the highest mechanical properties (the % elongation of 1341 and the tensile strength of 6030 g/cm(2) at an EBI dose of 30 kGy). Excision wound models were used to evaluate the effects of human hair-based hydrogels and wool-based hydrogels on various phases of healing. On post-wounding days 7 and 14, wounds treated with either human hair-based or wool-based hydrogels were greatly reduced in size compared to wounds that received other treatments, although the hydrocolloid wound dressing-treated wound also showed a pronounced reduction in size compared to an open wound as measured by a histological assay. On the 14th postoperative day, the cellular appearances were similar in the hydrocolloid wound dressing and wool-based hydrogel-treated wounds, and collagen fibers were substituted with fibroblasts and mixed with fibroblasts in the dermis. Furthermore, the wound treated with a human hair-based hydrogel showed almost complete epithelial regeneration, with the maturation of immature connective tissue and hair follicles and formation of a sebaceous gland.

  15. Demonstration of an intelligent hydrogel based diffraction grating

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Bowyer, A.; Eisenthal, R.; Hubble, J.

    2005-05-01

    We report the fabrication of a diffraction grating cast into a responsive hydrogel using a silicone rubber intermediate cast from an engraved glass master grating. The aim to investigate if changes in the swelling of this gel in response to changes in the concentration of a specific analyte led to changes in the line spacing, and hence diffraction pattern, of the grating. The protocol for casting gratings was initially developed using a composite carboxymethyl dextran/bovine serum albumin gel produced using carbodiimide chemistry to assess the optimum gel properties required. Examination under a light microscope showed that, formed under appropriate synthesis conditions, CM-dextran-BSA hydrogels retained the grating structure and appeared to have similar optical properties to the silicon rubber sub-master used for casting. For a facile initial evaluation of the detection principle a number of similar gels were produced using cross-linked alginic acid. In this case excess carboxylic groups remaining after cross-linking were able to form additional ionic cross-links in the presence of divalent cations (Ca2+). Test experiments with these gels showed that both the size and position of the reflected and refracted spots obtained from illumination with a Helium-Neon laser changed as gel swelling changed with calcium ion concentration i.e. the size of both diffraction and reflection spots increased as the alginate hydrogel shrank in response to changes in environmental Ca2+. The utility of the alginate based gels for the detection of cations, together with evidence that dextran protein gels can retain grating structures, suggest that this assay procedure should applicable to any hydrogel where the response is based on protein-ligand interactions. The key requirement is that the cross-linking interactions constraining gel swelling can be quantitatively displaced by the analyte acting as a specific competitor.

  16. Photothermal tumor ablation in mice with repeated therapy sessions using NIR-absorbing micellar hydrogels formed in situ.

    PubMed

    Hsiao, Chun-Wen; Chuang, Er-Yuan; Chen, Hsin-Lung; Wan, Dehui; Korupalli, Chiranjeevi; Liao, Zi-Xian; Chiu, Ya-Ling; Chia, Wei-Tso; Lin, Kun-Ju; Sung, Hsing-Wen

    2015-07-01

    Repeated cancer treatments are common, owing to the aggressive and resistant nature of tumors. This work presents a chitosan (CS) derivative that contains self-doped polyaniline (PANI) side chains, capable of self-assembling to form micelles and then transforming into hydrogels driven by a local change in pH. Analysis results of small-angle X-ray scattering indicate that the sol-gel transition of this CS derivative may provide the mechanical integrity to maintain its spatial stability in the microenvironment of solid tumors. The micelles formed in the CS hydrogel function as nanoscaled heating sources upon exposure to near-infrared light, thereby enabling the selective killing of cancer cells in a light-treated area. Additionally, photothermal efficacy of the micellar hydrogel is evaluated using a tumor-bearing mouse model; hollow gold nanospheres (HGNs) are used for comparison. Given the ability of the micellar hydrogel to provide spatial stability within a solid tumor, which prevents its leakage from the injection site, the therapeutic efficacy of this hydrogel, as a photothermal therapeutic agent for repeated treatments, exceeds that of nanosized HGNs. Results of this study demonstrate that this in situ-formed micellar hydrogel is a highly promising modality for repeated cancer treatments, providing a clinically viable, minimally invasive phototherapeutic option for therapeutic treatment.

  17. Swelling equilibria for cationic 2-hydroxyethyl methacrylate (HEMA)-based hydrogels

    SciTech Connect

    Baker, J.P.; Blanch, H.W.; Prausnitz, J.M.

    1993-08-01

    Cationic HEMA-based hydrogels were synthesized by copolymerizing HEMA with [(methacrylamido)propyl]trimethylammonium chloride (MAPTAC). Swelling equilibria were measured in pure water an in aqueous sodium chloride solutions. Hydrogel swelling is an increasing function of the MAPTAC content. A Flory-type swelling model using a concentration-dependent Flory {Chi} parameter semi-qualitatively describes poly(HEMA co-MAPTAC) hydrogel swelling in aqueous sodium chloride.

  18. Effect of initial total monomer concentration on the swelling behavior of cationic acrylamide-based hydrogels

    SciTech Connect

    Baker, J.P.; Hong, L.H.; Blanch, H.W.; Prausnitz, J.M. . Dept. of Chemical Engineering Lawrence Berkeley Lab., CA . Chemical Sciences Div.)

    1994-03-14

    The aqueous equilibrium swelling properties of a series of lightly-cross-linked cationic hydrogels based on acrylamide and [(methacrylamido) propyl] trimethylammonium chloride (MAPTAC) were measured as a function of initial total monomer concentration % T (w/v) and ionic strength. Swelling is a strong decreasing function of rising % T; the 10 % T hydrogel obtained a 17-fold larger swelling ratio (g of swollen hydrogel/g of dry hydrogel) in pure water compared to the 40 % T hydrogel. Good agreement is obtained between measured swelling equilibria in aqueous sodium chloride and that calculated from a Flory-type swelling model including ideal Donnan equilibria provided that an adjustable parameter is introduced into the swelling model for hydrogels in pure water. The experimental results presented here indicate that network-chain interpenetration increases with rising % T.

  19. Control of β-carotene bioaccessibility using starch-based filled hydrogels.

    PubMed

    Mun, Saehun; Kim, Yong-Ro; McClements, David Julian

    2015-04-15

    β-Carotene was incorporated into three types of delivery system: (i) "emulsions": protein-coated fat droplets dispersed in water; (ii) "hydrogels": rice starch gels; and (iii) "filled hydrogels": protein-coated fat droplets dispersed in rice starch gels. Fat droplets in filled hydrogels were stable in simulated mouth and stomach conditions, but aggregated under small intestinal conditions. Fat droplets in emulsions aggregated under oral, gastric, and intestinal conditions. β-Carotene bioaccessibility was higher when encapsulated in filled hydrogels than in emulsions or hydrogels, which was attributed to increased aggregation stability of the fat droplets leading to a larger exposed lipid surface area. β-Carotene bioaccessibility in starch hydrogels containing no fat was very low (≈1%) due to its crystalline nature and lack of mixed micelles to solubilise it. The information presented may be useful for the design of rice-starch based gel products fortified with lipophilic nutraceuticals.

  20. Dextran-based hydrogel formed by thiol-Michael addition reaction for 3D cell encapsulation.

    PubMed

    Liu, Zhen Qi; Wei, Zhao; Zhu, Xv Long; Huang, Guo You; Xu, Feng; Yang, Jian Hai; Osada, Yoshihito; Zrínyi, Miklós; Li, Jian Hui; Chen, Yong Mei

    2015-04-01

    Cell encapsulation in three-dimensional (3D) hydrogels can mimic native cell microenvironment and plays a major role in cell-based transplantation therapies. In this contribution, a novel in situ-forming hydrogel, Dex-l-DTT hydrogel ("l" means "linked-by"), by cross-linking glycidyl methacrylate derivatized dextran (Dex-GMA) and dithiothreitol (DTT) under physiological conditions, has been developed using thiol-Michael addition reaction. The mechanical properties, gelation process and degree of swelling of the hydrogel can be easily adjusted by changing the pH of phosphate buffer saline. The 3D cell encapsulation ability is demonstrated by encapsulating rat bone marrow mesenchymal stem cells (BMSCs) and NIH/3T3 fibroblasts into the in situ-forming hydrogel with maintained high viability. The BMSCs also maintain their differentiation potential after encapsulation. These results demonstrate that the Dex-l-DTT hydrogel holds great potential for biomedical field.

  1. Preparation of Graphene Oxide-Based Hydrogels as Efficient Dye Adsorbents for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Guo, Haiying; Jiao, Tifeng; Zhang, Qingrui; Guo, Wenfeng; Peng, Qiuming; Yan, Xuehai

    2015-06-01

    Graphene oxide (GO) sheets exhibit superior adsorption capacity for removing organic dye pollutants from an aqueous environment. In this paper, the facile preparation of GO/polyethylenimine (PEI) hydrogels as efficient dye adsorbents has been reported. The GO/PEI hydrogels were achieved through both hydrogen bonding and electrostatic interactions between amine-rich PEI and GO sheets. For both methylene blue (MB) and rhodamine B (RhB), the as-prepared hydrogels exhibit removal rates within about 4 h in accordance with the pseudo-second-order model. The dye adsorption capacity of the hydrogel is mainly attributed to the GO sheets, whereas the PEI was incorporated to facilitate the gelation process of GO sheets. More importantly, the dye-adsorbed hydrogels can be conveniently separated from an aqueous environment, suggesting potential large-scale applications of the GO-based hydrogels for organic dye removal and wastewater treatment.

  2. Preparation of Graphene Oxide-Based Hydrogels as Efficient Dye Adsorbents for Wastewater Treatment.

    PubMed

    Guo, Haiying; Jiao, Tifeng; Zhang, Qingrui; Guo, Wenfeng; Peng, Qiuming; Yan, Xuehai

    2015-12-01

    Graphene oxide (GO) sheets exhibit superior adsorption capacity for removing organic dye pollutants from an aqueous environment. In this paper, the facile preparation of GO/polyethylenimine (PEI) hydrogels as efficient dye adsorbents has been reported. The GO/PEI hydrogels were achieved through both hydrogen bonding and electrostatic interactions between amine-rich PEI and GO sheets. For both methylene blue (MB) and rhodamine B (RhB), the as-prepared hydrogels exhibit removal rates within about 4 h in accordance with the pseudo-second-order model. The dye adsorption capacity of the hydrogel is mainly attributed to the GO sheets, whereas the PEI was incorporated to facilitate the gelation process of GO sheets. More importantly, the dye-adsorbed hydrogels can be conveniently separated from an aqueous environment, suggesting potential large-scale applications of the GO-based hydrogels for organic dye removal and wastewater treatment.

  3. Influence of polyelectrolyte on the thermosensitive property of PNIPAAm-based copolymer hydrogels.

    PubMed

    Zhang, Xian-Zheng; Chu, Chih-Chang

    2007-09-01

    A new family of poly(NIPAAm-co-2-acrylamido-2-methyl-1-propanesulfonic acid) [P(NIPAAm-co-AMPSA)] hydrogels was synthesized by incorporating negative charged AMPSA to the backbone of the PNIPAAm-based hydrogel. The effect of polyelectrolyte (i.e., PAMPSA) on the thermosensitive property of PNIPAAm hydrogels was investigated. It was found that P(NIPAAm-co-AMPSA) hydrogels exhibited unique honey-comb-like 3D porous structure having rigid cell wall as well as enhanced mechanical property. The incorporation of AMPSA into PNIPAAm backbones also led to a significant increase in swelling capability at room temperature when comparing to pure PNIPAAm hydrogels. In addition, the shrinking rate upon heating was significantly improved if the AMPSA content in P(NIPAAm-co-AMPSA) hydrogels was less than 10 wt%.

  4. The rational design of a peptide-based hydrogel responsive to H2S.

    PubMed

    Peltier, Raoul; Chen, Ganchao; Lei, Haipeng; Zhang, Mei; Gao, Liqian; Lee, Su Seong; Wang, Zuankai; Sun, Hongyan

    2015-12-18

    The development of hydrogels that are responsive to external stimuli in a well-controlled manner is important for numerous biomedical applications. Herein we reported the first example of a hydrogel responsive to hydrogen sulphide (H2S). H2S is an important gasotransmitter whose deregulation has been associated with a number of pathological conditions. Our hydrogel design is based on the functionalization of an ultrashort hydrogelating peptide sequence with an azidobenzyl moiety, which was reported to react with H2S selectively under physiological conditions. The resulting peptide was able to produce hydrogels at a concentration as low as 0.1 wt%. It could then be fully degraded in the presence of excess H2S. We envision that the novel hydrogel developed in this study may provide useful tools for biomedical research.

  5. Crosslinked hydrogels based on biological macromolecules with potential use in skin tissue engineering.

    PubMed

    Vulpe, Raluca; Popa, Marcel; Picton, Luc; Balan, Vera; Dulong, Virginie; Butnaru, Maria; Verestiuc, Liliana

    2016-03-01

    Zero-length crosslinked hydrogels have been synthesized by covalent linking of three natural polymers (collagen, hyaluronic acid and sericin), in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide. The hydrogels have been investigated by FT-IR spectroscopy, microcalorimetry, in vitro swelling, enzymatic degradation, and in vitro cell viability studies. The obtained crosslinked hydrogels showed a macroporous structure, high swelling degree and in vitro enzymatic resistance compared to uncrosslinked collagen. The in vitro cell viability studies performed on normal human dermal fibroblasts assessed the sericin proliferation properties indicating a potential use of the hydrogels based on collagen, hyaluronic acid and sericin in skin tissue engineering.

  6. Injectable in situ forming xylitol-PEG-based hydrogels for cell encapsulation and delivery.

    PubMed

    Selvam, Shivaram; Pithapuram, Madhav V; Victor, Sunita P; Muthu, Jayabalan

    2015-02-01

    Injectable in situ crosslinking hydrogels offer unique advantages over conventional prefabricated hydrogel methodologies. Herein, we synthesize poly(xylitol-co-maleate-co-PEG) (pXMP) macromers and evaluate their performance as injectable cell carriers for tissue engineering applications. The designed pXMP elastomers were non-toxic and water-soluble with viscosity values permissible for subcutaneous injectable systems. pXMP-based hydrogels prepared via free radical polymerization with acrylic acid as crosslinker possessed high crosslink density and exhibited a broad range of compressive moduli that could match the natural mechanical environment of various native tissues. The hydrogels displayed controlled degradability and exhibited gradual increase in matrix porosity upon degradation. The hydrophobic hydrogel surfaces preferentially adsorbed albumin and promoted cell adhesion and growth in vitro. Actin staining on cells cultured on thin hydrogel films revealed subconfluent cell monolayers composed of strong, adherent cells. Furthermore, fabricated 3D pXMP cell-hydrogel constructs promoted cell survival and proliferation in vitro. Cumulatively, our results demonstrate that injectable xylitol-PEG-based hydrogels possess excellent physical characteristics and exhibit exceptional cytocompatibility in vitro. Consequently, they show great promise as injectable hydrogel systems for in situ tissue repair and regeneration.

  7. Physical Cross-Linking Starch-Based Zwitterionic Hydrogel Exhibiting Excellent Biocompatibility, Protein Resistance, and Biodegradability.

    PubMed

    Ye, Lei; Zhang, Yabin; Wang, Qiangsong; Zhou, Xin; Yang, Boguang; Ji, Feng; Dong, Dianyu; Gao, Lina; Cui, Yuanlu; Yao, Fanglian

    2016-06-22

    In this work, a novel starch-based zwitterionic copolymer, starch-graft-poly(sulfobetaine methacrylate) (ST-g-PSBMA), was synthesized via Atom Transfer Radical Polymerization. Starch, which formed the main chain, can be degraded completely in vivo, and the pendent segments of PSBMA endowed the copolymer with excellent protein resistance properties. This ST-g-PSBMA copolymer could self-assemble into a physical hydrogel in normal saline, and studies of the formation mechanism indicated that the generation of the physical hydrogel was driven by electrostatic interactions between PSBMA segments. The obtained hydrogels were subjected to detailed analysis by scanning electron microscopy, swelling ratio, protein resistance, and rheology tests. Toxicity and hemolysis analysis demonstrated that the ST-g-PSBMA hydrogels possess excellent biocompatibility and hemocompatibility. Moreover, the cytokine secretion assays (IL-6, TNF-α, and NO) confirmed that ST-g-PSBMA hydrogels had low potential to trigger the activation of macrophages and were suitable for in vivo biomedical applications. On the basis of these in vitro results, the ST-g-PSBMA hydrogels were implanted in SD rats. The tissue responses to hydrogel implantation and the hydrogel degradation in vivo were determined by histological analysis (Hematoxylin and eosin, Van Gieson, and Masson's Trichrome stains). The results presented in this study demonstrate that the physical cross-linking, starch-based zwitterionic hydrogels possess excellent protein resistance, low macrophage-activation properties, and good biocompatibility, and they are a promising candidate for an in vivo biomedical application platform.

  8. Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels

    PubMed Central

    Jeon, Oju; Powell, Caitlin; Solorio, Loran D.; Krebs, Melissa D.; Alsberg, Eben

    2013-01-01

    Photocrosslinkable biomaterials are promising for tissue engineering applications due to their capacity to be injected and form hydrogels in situ in a minimally invasive manner. Our group recently reported on the development of photocrosslinked alginate hydrogels with controlled biodegradation rates, mechanical properties, and cell adhesive properties. In this study, we present an affinity-based growth factor delivery system by incorporating heparin into photocrosslinkable alginate hydrogels (HP-ALG), which allows for controlled, prolonged release of therapeutic proteins. Heparin modification had minimal effect on the biodegradation profiles, swelling ratios, and elastic moduli of the hydrogels in media. The release profiles of growth factors from this affinity-based platform were sustained for 3 weeks with no initial burst release, and the released growth factors retained their biological activity. Implantation of bone morphogenetic protein-2 (BMP-2)-loaded photocrosslinked alginate hydrogels induced moderate bone formation around the implant periphery. Importantly, BMP-2-loaded photocrosslinked HP-ALG hydrogels induced significantly more osteogenesis than BMP-2-loaded photocrosslinked unmodified alginate hydrogels, with 1.9-fold greater peripheral bone formation and 1.3-fold greater calcium content in the BMP-2-loaded photocrosslinked HP-ALG hydrogels compared to the BMP-2-loaded photocrosslinked unmodified alginate hydrogels after 8 weeks implantation. This sustained and controllable growth factor delivery system, with independently controllable physical and cell adhesive properties, may provide a powerful modality for a variety of therapeutic applications. PMID:21745508

  9. A control strategy for adaptive absorber based on variable mass

    NASA Astrophysics Data System (ADS)

    Gao, Qiang; Han, Ning; Zhao, Yanqing; Duan, Chendong; Wang, Wanqin

    2015-07-01

    The tuned vibration absorber (TVA) has been an effective tool for vibration control. However, the application of TVA can cause resonance of the primary system and increase its vibration when the absorber is mistuned. In this paper, a novel control strategy based on adaptive tuned vibration absorber (ATVA) of variable mass is proposed to reduce the resonance of the primary system. Unlike most ATVAs suggested by other researchers which adjust the absorber natural frequency by changing the stiffness, the variable mass ATVA varies its natural frequency by changing absorber mass to match the excitation frequency. Some simulations and experiments were conducted to test the performance of the control strategy. The results show that the proposed control plan can widen the frequency bandwidth of the absorber, as well as suppress the resonance of the primary system significantly. This implies that the work is useful for practical applications of ATVA.

  10. Dual band metamaterial perfect absorber based on artificial dielectric "molecules".

    PubMed

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-07-13

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence.

  11. Superabsorbent polysaccharide hydrogels based on pullulan derivate as antibacterial release wound dressing.

    PubMed

    Li, Huanan; Yang, Jing; Hu, Xiaona; Liang, Jie; Fan, Yujiang; Zhang, Xingdong

    2011-07-01

    To accomplish ideal wound dressing, hydrogels based on a natural polysaccharide, pullulan were synthesized by chemical cross-linking. The tensile strengths of the hydrogel films (1 mm thick) were determined to range from 0.663 to 1.097 MPa in proportion to cross-linking degrees and water contents. The swelling study of the hydrogels in water showed remarkable water absorption property with swelling ratio up to 4000%, which provided the hydrogel with quick hemostatic ability and prevent the wound bed from accumulation of exudates. The water vapor transmission rate and water retention of the hydrogels were found to be in the range of 2213-3498 g/m²/day and 34.74-45.81% (after 6 days), indicating that the hydrogel can maintain a moist environment over wound bed, which could prevent the dehydration of the wound bed and prevent the scab formation. Biocompatibility test revealed that the hydrogels were not cytotoxic. The hydrogel could load antimicrobial agents and effectively suppress bacterial proliferation to protect the wound from bacterial invasion. These results suggest that the pullulan hydrogels prepared in this study may have high potential as new ideal wound-dressing materials.

  12. Iota-Carrageenan-based biodegradable Ag0 nanocomposite hydrogels for the inactivation of bacteria.

    PubMed

    Jayaramudu, Tippabattini; Raghavendra, Gownolla Malegowd; Varaprasad, Kokkarachedu; Sadiku, Rotimi; Ramam, Koduri; Raju, Konduru Mohana

    2013-06-05

    In this paper, we report the synthesis and characterization of Iota-Carrageenan based on a novel biodegradable silver nanocomposite hydrogels. The aim of study was to investigate whether these hydrogels have the potential to be used in bacterial inactivation applications. Biodegradable silver nanocomposite hydrogels were prepared by a green process using acrylamide (AM) with I-Carrageenan (IC). The silver nanoparticles were prepared as silver colloid by reducing AgNO3 with leaf extracts of Azadirachta indica (neem leaf) that (Ag(0)) formed the hydrogel network. The formation of biodegradable silver nanoparticles in the hydrogels was characterized using UV-vis spectroscopy, thermo gravimetrical analysis, X-ray diffractometry studies, scanning electron microscopy and transmission electron microscopy studies. In addition, swelling behavior and degradation properties were systematically investigated. Furthermore, the biodegradable silver nanoparticle composite hydrogels developed were tested for antibacterial activities. The antibacterial activity of the biodegradable silver nanocomposite hydrogels was studied by inhibition zone method against Bacillus and Escherichia coli, which suggested that the silver nanocomposite hydrogels developed were effective as potential candidates for antimicrobial applications. Therefore, the inorganic biodegradable hydrogels developed can be used effectively for biomedical application.

  13. In Situ "Clickable" Zwitterionic Starch-Based Hydrogel for 3D Cell Encapsulation.

    PubMed

    Dong, Dianyu; Li, Junjie; Cui, Man; Wang, Jinmei; Zhou, Yuhang; Luo, Liu; Wei, Yufei; Ye, Lei; Sun, Hong; Yao, Fanglian

    2016-02-01

    Three-dimensional (3D) cell encapsulation in hydrogel provides superb methods to investigate the biochemical cues in directing cellular fate and behaviors outside the organism, the primary step of which is to establish suitable "blank platform" to mimic and simplify native ECM microenvironment. In this study, zwitterionic starch-based "clickable" hydrogels were fabricated via a "copper- and light- free" Michael-type "thiol-ene" addition reaction between acylated-modified sulfobetaine-derived starch (SB-ST-A) and dithiol-functionalized poly(ethylene glycol) (PEG-SH). By incorporating antifouling SB-ST and PEG, the hydrogel system would be excellently protected from nontarget protein adsorption to act as a "blank platform". The hydrogels could rapidly gel under physiological conditions in less than 7 min. Dynamic rheology experiments suggested the stiffness of the hydrogel was close to the native tissues, and the mechanical properties as well as the gelation times and swelling behaviors could be easily tuned by varying the precursor proportions. The protein and cell adhesion assays demonstrated that the hydrogel surface could effectively resist nonspecific protein and cell adhesion. The degradation study in vitro confirmed that the hydrogel was biodegradable. A549 cells encapsulated in the hydrogel maintained high viability (up to 93%) and started to proliferate in number and extend in morphology after 2 days' culture. These results indicated the hydrogel presented here could be a potential candidate as "blank platform" for 3D cell encapsulation and biochemical cues induced cellular behavior investigation in vitro.

  14. An enzyme-sensitive PEG hydrogel based on aggrecan catabolism for cartilage tissue engineering.

    PubMed

    Skaalure, Stacey C; Chu, Stanley; Bryant, Stephanie J

    2015-02-18

    A new cartilage-specific degradable hydrogel based on photoclickable thiol-ene poly(ethylene glycol) (PEG) hydrogels is presented. The hydrogel crosslinks are composed of the peptide, CRDTEGE-ARGSVIDRC, derived from the aggrecanase-cleavable site in aggrecan. This new hydrogel is evaluated for use in cartilage tissue engineering by encapsulating bovine chondrocytes from different cell sources (skeletally immature (juvenile) and mature (adult) donors and adult cells stimulated with proinflammatory lipopolysaccharide (LPS)) and culturing for 12 weeks. Regardless of cell source, a twofold decrease in compressive modulus is observed by 12 weeks, but without significant hydrogel swelling indicating limited bulk degradation. For juvenile cells, a connected matrix rich in aggrecan and collagen II, but minimal collagens I and X is observed. For adult cells, less matrix, but similar quality, is deposited. Aggrecanase activity is elevated, although without accelerating bulk hydrogel degradation. LPS further decreases matrix production, but does not affect aggrecanase activity. In contrast, matrix deposition in the nondegradable hydrogels consists of aggrecan and collagens I, II, and X, indicative of hypertrophic cartilage. Lastly, no inflammatory response in chondrocytes is observed by the aggrecanase-sensitive hydrogels. Overall, it is demonstrated that this new aggrecanase-sensitive hydrogel, which is degradable by chondrocytes and promotes a hyaline-like engineered cartilage, is promising for cartilage regeneration.

  15. A new water absorbable mechanical Epidermal skin equivalent: the combination of hydrophobic PDMS and hydrophilic PVA hydrogel.

    PubMed

    Morales-Hurtado, M; Zeng, X; Gonzalez-Rodriguez, P; Ten Elshof, J E; van der Heide, E

    2015-06-01

    Research on human skin interactions with healthcare and lifestyle products is a topic continuously attracting scientific studies over the past years. It is possible to evaluate skin mechanical properties based on human or animal experimentation, yet in addition to possible ethical issues, these samples are hard to obtain, expensive and give rise to highly variable results. Therefore, the design of a skin equivalent is essential. This paper describes the design and characterization of a new Epidermal Skin Equivalent (ESE). The material resembles the properties of epidermis and is a first approach to mimic the mechanical properties of the human skin structure, variable with the length scale. The ESE is based on a mixture of Polydimethyl Siloxane (PDMS) and Polyvinyl Alcohol (PVA) hydrogel cross-linked with Glutaraldehyde (GA). It was chemically characterized by XPS and FTIR measurements and its cross section was observed by macroscopy and cryoSEM. Confocal Microscope analysis on the surface of the ESE showed an arithmetic roughness (Ra) between 14-16 μm and contact angle (CA) values between 50-60°, both of which are close to the values of in vivo human skins reported in the literature. The Equilibrium Water Content (ECW) was around 33.8% and Thermo Gravimetric Analysis (TGA) confirmed the composition of the ESE samples. Moreover, the mechanical performance was determined by indentation tests and Dynamo Thermo Mechanical Analysis (DTMA) shear measurements. The indentation results were in good agreement with that of the target epidermis reported in the literature with an elastic modulus between 0.1-1.5 MPa and it showed dependency on the water content. According to the DTMA measurements, the ESE exhibits a viscoelastic behavior, with a shear modulus between 1-2.5MPa variable with temperature, frequency and the hydration of the samples.

  16. Characterization of Network Structure of Polyacrylamide Based Hydrogels Prepared By Radiation Induced Polymerization

    SciTech Connect

    Mahmudi, Naim; Sen, Murat; Gueven, Olgun; Rendevski, Stojan

    2007-04-23

    In this study network structure of polyacrylamide based hydrogels prepared by radiation induced polymerization has been investigated. Polyacrylamide based hydrogels in the rod form were prepared by copolymerization of acrylamide(AAm) with hydroxyl ethyl methacrylate(HEMA) and methyl acrylamide(MAAm) in the presence of cross-linking agent and water by gamma rays at ambient temperature. Molecular weight between cross-links and effective cross-link density of hydrogels were calculated from swelling as well as shear modulus data obtained from compression tests. The results have shown that simple compression analyses can be used for the determination of effective cross-link density of hydrogels without any need to some polymer-solvent based parameters as in the case of swelling based determinations. Diffusion of water into hydrogels was examined by analyzing water absorption kinetics and the effect of network, structure on the diffusion type and coefficient was discussed.

  17. Hydrogel-based reinforcement of 3D bioprinted constructs

    PubMed Central

    Levato, R; Peiffer, Q C; de Ruijter, M; Hennink, W E; Vermonden, T; Malda, J

    2016-01-01

    Progress within the field of biofabrication is hindered by a lack of suitable hydrogel formulations. Here, we present a novel approach based on a hybrid printing technique to create cellularized 3D printed constructs. The hybrid bioprinting strategy combines a reinforcing gel for mechanical support with a bioink to provide a cytocompatible environment. In comparison with thermoplastics such as є-polycaprolactone, the hydrogel-based reinforcing gel platform enables printing at cell-friendly temperatures, targets the bioprinting of softer tissues and allows for improved control over degradation kinetics. We prepared amphiphilic macromonomers based on poloxamer that form hydrolysable, covalently cross-linked polymer networks. Dissolved at a concentration of 28.6%w/w in water, it functions as reinforcing gel, while a 5%w/w gelatin-methacryloyl based gel is utilized as bioink. This strategy allows for the creation of complex structures, where the bioink provides a cytocompatible environment for encapsulated cells. Cell viability of equine chondrocytes encapsulated within printed constructs remained largely unaffected by the printing process. The versatility of the system is further demonstrated by the ability to tune the stiffness of printed constructs between 138 and 263 kPa, as well as to tailor the degradation kinetics of the reinforcing gel from several weeks up to more than a year. PMID:27431861

  18. Electrically tunable absorber based on nonstructured graphene

    NASA Astrophysics Data System (ADS)

    Ye, Caiyan; Zhu, Zhihong; Xu, Wei; Yuan, Xiaodong; Qin, Shiqiao

    2015-12-01

    We demonstrate numerically that a tunable absorber with absorption of 99.94% in the far infrared range can be obtained using a nonstructured graphene. The mechanism originates from a nonstructured graphene film supported on a periodical dielectric array that can show Fermi level modulation periodically and produce plasmonic resonances in the far infrared range. The nonstructured graphene can avoid the unexpected edge effects and does not influence the unique properties of graphene, which will be helpful in practice to achieve the unity absorption and facilitate the development of many related applications.

  19. Bacterial cellulose based hydrogel (BC-g-AA) and preliminary result of swelling behavior

    SciTech Connect

    Hakam, Adil; Lazim, Azwan Mat; Abdul Rahman, I. Irman

    2013-11-27

    In this study, hydrogel based on Bacterial cellulose (BC) or local known as Nata de Coco, which grafted with monomer: Acrylic acid (AA) is synthesis by using gamma radiation technique. These hydrogel (BC-g-AA) has unique characteristic whereby responsive to pH buffer solution.

  20. Gelatin- and starch-based hydrogels. Part A: Hydrogel development, characterization and coating.

    PubMed

    Van Nieuwenhove, Ine; Salamon, Achim; Peters, Kirsten; Graulus, Geert-Jan; Martins, José C; Frankel, Daniel; Kersemans, Ken; De Vos, Filip; Van Vlierberghe, Sandra; Dubruel, Peter

    2016-11-05

    The present work aims at constructing the ideal scaffold matrix of which the physico-chemical properties can be altered according to the targeted tissue regeneration application. Ideally, this scaffold should resemble the natural extracellular matrix (ECM) as close as possible both in terms of chemical composition and mechanical properties. Therefore, hydrogel films were developed consisting of methacrylamide-modified gelatin and starch-pentenoate building blocks because the ECM can be considered as a crosslinked hydrogel network consisting of both polysaccharides and structural, signaling and cell-adhesive proteins. For the gelatin hydrogels, three different substitution degrees were evaluated including 31%, 72% and 95%. A substitution degree of 32% was applied for the starch-pentenoate building block. Pure gelatin hydrogels films as well as interpenetrating networks with gelatin and starch were developed. Subsequently, these films were characterized using gel fraction and swelling experiments, high resolution-magic angle spinning (1)H NMR spectroscopy, rheology, infrared mapping and atomic force microscopy. The results indicate that both the mechanical properties and the swelling extent of the developed hydrogel films can be controlled by varying the chemical composition and the degree of substitution of the methacrylamide-modified gelatin applied. The storage moduli of the developed materials ranged between 14 and 63kPa. Phase separation was observed for the IPNs for which separated starch domains could be distinguished located in the surrounding gelatin matrix. Furthermore, we evaluated the affinity of aggrecan for gelatin by atomic force microscopy and radiolabeling experiments. We found that aggrecan can be applied as a bioactive coating for gelatin hydrogels by a straightforward physisorption procedure. Thus, we achieved distinct fine-tuning of the physico-chemical properties of these hydrogels which render them promising candidates for tissue engineering

  1. Injectable and Self-Healing Carbohydrate-Based Hydrogel for Cell Encapsulation.

    PubMed

    Lü, Shaoyu; Gao, Chunmei; Xu, Xiubin; Bai, Xiao; Duan, Haogang; Gao, Nannan; Feng, Chen; Xiong, Yun; Liu, Mingzhu

    2015-06-17

    With the fast development of cell therapy, there has been a shift toward the development of injectable hydrogels as cell carriers that can overcome current limitations in cell therapy. However, the hydrogels are prone to damage during use, inducing cell apoptosis. Therefore, this study was carried out to develop an injectable and self-healing hydrogel based on chondroitin sulfate multiple aldehyde (CSMA) and N-succinyl-chitosan (SC). By varying the CSMA to SC ratio, the hydrogel stiffness, water content, and kinetics of gelation could be controlled. Gelation readily occurred at physiological conditions, predominantly due to a Schiff base reaction between the aldehyde groups on CSMA and amino groups on SC. Meanwhile, because of the dynamic equilibrium of Schiff base linkage, the hydrogel was found to be self-healing. Cells encapsulated in the hydrogel remained viable and metabolically active. In addition, the hydrogel produced minimal inflammatory response when injected subcutaneously in a rat model and showed biodegradability in vivo. This work establishes an injectable and self-healing hydrogel derived from carbohydrates with potential applications as a cell carrier and in tissue engineering.

  2. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo

    NASA Astrophysics Data System (ADS)

    Choi, Myunghwan; Choi, Jin Woo; Kim, Seonghoon; Nizamoglu, Sedat; Hahn, Sei Kwang; Yun, Seok Hyun

    2013-12-01

    Polymer hydrogels are widely used as cell scaffolds for biomedical applications. Although the biochemical and biophysical properties of hydrogels have been investigated extensively, little attention has been paid to their potential photonic functionalities. Here, we report cell-integrated polyethylene glycol-based hydrogels for in vivo optical-sensing and therapy applications. Hydrogel patches containing cells were implanted in awake, freely moving mice for several days and shown to offer long-term transparency, biocompatibility, cell viability and light-guiding properties (loss of <1 dB cm-1). Using optogenetic, glucagon-like peptide-1 secreting cells, we conducted light-controlled therapy using the hydrogel in a mouse model with diabetes and obtained improved glucose homeostasis. Furthermore, real-time optical readout of encapsulated heat-shock-protein-coupled fluorescent reporter cells made it possible to measure the nanotoxicity of cadmium-based bare and shelled quantum dots (CdTe; CdSe/ZnS) in vivo.

  3. Synthesis, physiochemical characterization, and biocompatibility of a chitosan/dextran-based hydrogel for postsurgical adhesion prevention.

    PubMed

    Cabral, Jaydee D; Roxburgh, Marina; Shi, Zheng; Liu, Liqi; McConnell, Michelle; Williams, Gail; Evans, Natasha; Hanton, Lyall R; Simpson, Jim; Moratti, Stephen C; Robinson, Brian H; Wormald, Peter J; Robinson, Simon

    2014-12-01

    An amine-functionalized succinyl chitosan and an oxidized dextran were synthesized and mixed in aqueous solution to form an in situ chitosan/dextran injectable, surgical hydrogel for adhesion prevention. Rheological characterization showed that the rate of gelation and moduli were tunable based on amine and aldehyde levels, as well as polymer concentrations. The CD hydrogels have been shown to be effective post-operative aids in prevention of adhesions in ear, nose, and throat surgeries and abdominal surgeries in vivo. In vitro biocompatibility testing was performed on CD hydrogels containing one of two oxidized dextrans, an 80 % oxidized (CD-100) or 25 % (CD-25) oxidized dextran. However, the CD-100 hydrogel showed moderate cytotoxicity in vitro to Vero cells. SC component of the CD hydrogel, however, showed no cytotoxic effect. In order to increase the biocompatibility of the hydrogel, a lower aldehyde level hydrogel was developed. CD-25 was found to be non-cytotoxic to L929 fibroblasts. The in vivo pro-inflammatory response of the CD-25 hydrogel, after intraperitoneal injection in BALB/c mice, was also determined by measuring serum TNF-α levels and by histological analysis of tissues. TNF-α levels were similar in mice injected with CD-25 hydrogel as compared to the negative saline injected control; and were significantly different (P < 0.05) as compared to the positive, lipopolysaccharide, injected control. Histological examination revealed no inflammation seen in CD hydrogel injected mice. The results of these in vitro and in vivo studies demonstrate the biocompatibility of the CD hydrogel as a post-operative aid for adhesion prevention.

  4. Ultrathin microwave absorber based on metamaterial

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Yoo, Y. J.; Hwang, J. S.; Lee, Y. P.

    2016-11-01

    We suggest that ultrathin broadband metamaterial is a perfect absorber in the microwave regime by utilizing the properties of a resistive sheet and metamaterial. Meta-atoms are composed of four-leaf clover-shape metallic patterns and a metal plane separated by three intermediate resistive sheet layers between four dielectric layers. We interpret the absorption mechanism of the broadband by using the distribution of surface currents at specific frequencies. The simulated absorption was over 99% in 1.8-4.2 GHz. The corresponding experimental absorption was also over 99% in 2.62-4.2 GHz; however, the absorption was slightly lower than 99% in 1.8-2.62 GHz because of the sheet resistance and the changed values for the dielectric constant. Furthermore, it is independent of incident angle. The results of this research indicate the possibility of applications, due to the suppression of noxious exposure, in cell phones, computers and microwave equipments.

  5. Tunable THz perfect absorber using graphene-based metamaterials

    NASA Astrophysics Data System (ADS)

    Faraji, Mahboobeh; Moravvej-Farshi, Mohammad Kazem; Yousefi, Leila

    2015-11-01

    A tunable THz absorber, with absorbance more than 90% is proposed, and numerically characterized. The absorber structure is based on metamaterials with unit cells consisting of two patterned graphene layers separated by a 5-nm thick layer of Al2O3. Numerical results show that when the chemical potential of the top graphene microribbons are tuned by an external variable bias and that of the lower graphene fishnet is kept at μC=0, frequency of the absorption peaks can be tuned as desired, therefore we can have a tunable or switchable absorber. The proposed absorber can have applications in designing tunable reflective THz filters or tunable THz switches and modulators. It can also be used for cloaking objects in THz range.

  6. Impact of RGD amount in dextran-based hydrogels for cell delivery.

    PubMed

    Riahi, Nesrine; Liberelle, Benoît; Henry, Olivier; De Crescenzo, Gregory

    2017-04-01

    Dextran is one of the hydrophilic polymers that is used for hydrogel preparation. As any polysaccharide, it presents a high density of hydroxyl groups, which make possible several types of derivatization and crosslinking reactions. Furthermore, dextran is an excellent candidate for hydrogel fabrication with controlled cell/scaffold interactions as it is resistant to protein adsorption and cell adhesion. RGD peptide can be grafted to the dextran in order to promote selected cell adhesion and proliferation. Altogether, we have developed a novel strategy to graft the RGD peptide sequence to dextran-based hydrogel using divinyl sulfone as a linker. The resulting RGD functionalized dextran-based hydrogels were transparent, presented a smooth surface and were easy to handle. The impact of varying RGD peptide amounts, hydrogel porosity and topology upon human umbilical vein endothelial cell (HUVEC) adhesion, proliferation and infiltration was investigated. Our results demonstrated that 0.1% of RGD-modified dextran within the gel was sufficient to support HUVEC cells adhesion to the hydrogel surface. Sodium chloride was added (i) to the original hydrogel mix in order to form a macroporous structure presenting interconnected pores and (ii) to the hydrogel surface to create small orifices essential for cells migration inside the matrix.

  7. Stimuli-responsive hydrogels in drug delivery and tissue engineering.

    PubMed

    Sood, Nikhil; Bhardwaj, Ankur; Mehta, Shuchi; Mehta, Abhinav

    2016-01-01

    Hydrogels are the three-dimensional network structures obtained from a class of synthetic or natural polymers which can absorb and retain a significant amount of water. Hydrogels are one of the most studied classes of polymer-based controlled drug release. These have attracted considerable attention in biochemical and biomedical fields because of their characteristics, such as swelling in aqueous medium, biocompatibility, pH and temperature sensitivity or sensitivity towards other stimuli, which can be utilized for their controlled zero-order release. The hydrogels are expected to explore new generation of self-regulated delivery system having a wide array of desirable properties. This review highlights the exciting opportunities and challenges in the area of hydrogels. Here, we review different literatures on stimuli-sensitive hydrogels, such as role of temperature, electric potential, pH and ionic strength to control the release of drug from hydrogels.

  8. Lamellar biogels: Fluid-membrane-based hydrogels containing polymer lipids

    SciTech Connect

    Warriner, H.E.; Idziak, S.H.J.; Slack, N.L.

    1996-02-16

    A class of lamellar biological hydrogels comprised of fluid membranes of lipids and surfactants with small amounts of low molecular weight poly(ethylene glycol)-derived polymer pipids (PEG-lipids) were studied by x-ray diffraction, polarized light microscopy, and rheometry. In contrast to isotropic hydrogels of polymer networks, these membrane-based birefringent liquid crystalline biogels, labeled L{sub {alpha},g,} form the gel phase when water is added to the liquid-like lamellar L{sub {alpha}} phase, which reenters a liquid-like mixed phase upon further dilution. Furthermore, gels with larger water content require less PEG-lipid to remain stable. Although concentrated ({approx}50 weight percent) mixtures of free PEG (molecular weight, 5000) and water do not gel, gelatin does occur in mixtures containing as little as 0.5 weight percent PEG lipid. A defining signature of the L{sub {alpha}, g} regime as it sets in from the fluid lamellar L{sub {alpha}} phase is the proliferation of layer-dislocation-type defects, which are stabilized by the segregation of PEG-lipids to the defect regions of high membrane curvature that connect the membranes. 32 refs., 5 figs.

  9. Gene Therapy Vectors with Enhanced Transfection Based on Hydrogels Modified with Affinity Peptides

    PubMed Central

    Shepard, Jaclyn A.; Wesson, Paul J.; Wang, Christine E.; Stevans, Alyson C.; Holland, Samantha J.; Shikanov, Ariella; Grzybowski, Bartosz A.; Shea, Lonnie D.

    2011-01-01

    Regenerative strategies for damaged tissue aim to present biochemical cues that recruit and direct progenitor cell migration and differentiation. Hydrogels capable of localized gene delivery are being developed to provide a support for tissue growth, and as a versatile method to induce the expression of inductive proteins; however, the duration, level, and localization of expression isoften insufficient for regeneration. We thus investigated the modification of hydrogels with affinity peptides to enhance vector retention and increase transfection within the matrix. PEG hydrogels were modified with lysine-based repeats (K4, K8), which retained approximately 25% more vector than control peptides. Transfection increased 5- to 15-fold with K8 and K4 respectively, over the RDG control peptide. K8- and K4-modified hydrogels bound similar quantities of vector, yet the vector dissociation rate was reduced for K8, suggesting excessive binding that limited transfection. These hydrogels were subsequently applied to an in vitro co-culture model to induce NGF expression and promote neurite outgrowth. K4-modified hydrogels promoted maximal neurite outgrowth, likely due to retention of both the vector and the NGF. Thus, hydrogels modified with affinity peptides enhanced vector retention and increased gene delivery, and these hydrogels may provide a versatile scaffold for numerous regenerative medicine applications. PMID:21514659

  10. Self-Healing Supramolecular Self-Assembled Hydrogels Based on Poly(L-glutamic acid).

    PubMed

    Li, Guifei; Wu, Jie; Wang, Bo; Yan, Shifeng; Zhang, Kunxi; Ding, Jianxun; Yin, Jingbo

    2015-11-09

    Self-healing polymeric hydrogels have the capability to recover their structures and functionalities upon injury, which are extremely attractive in emerging biomedical applications. This research reports a new kind of self-healing polypeptide hydrogels based on self-assembly between cholesterol (Chol)-modified triblock poly(L-glutamic acid)-block-poly(ethylene glycol)-block-poly(L-glutamic acid) ((PLGA-b-PEG-b-PLGA)-g-Chol) and β-cyclodextrin (β-CD)-modified poly(L-glutamic acid) (PLGA-g-β-CD). The hydrogel formation relied on the host and guest linkage between β-CD and Chol. This study demonstrates the influences of polymer concentration and β-CD/Chol molar ratio on viscoelastic behavior of the hydrogels. The results showed that storage modulus was highest at polymer concentration of 15% w/v and β-CD/Chol molar ratio of 1:1. The effect of the PLGA molecular weight in (PLGA-b-PEG-b-PLGA)-g-Chol on viscoelastic behavior, mechanical properties and in vitro degradation of the supramolecular hydrogels was also studied. The hydrogels showed outstanding self-healing capability and good cytocompatibility. The multilayer structure was constructed using hydrogels with self-healing ability. The developed hydrogels provide a fascinating glimpse for the applications in tissue engineering.

  11. Simultaneous interpenetrating silicone hydrogel based on radical/addition polymerization for extended release of ocular therapeutics.

    PubMed

    Xu, Jinku; Zhang, Leilei; Zhang, Yongchun; Li, Tianduo; Huo, Guanghua

    2014-01-01

    Hydrogels with interpenetrating network (IPN) can overcome thermodynamic incompatibility and obtain transparent materials with limited phase separation. In this report, hydroxyl-grafting polysiloxane (HPSO) was synthesized and transparent silicone hydrogels with interpenetrating network were simultaneously prepared based on radical polymerization of methacrylic monomer of 3-methacryloxypropyl tris(trimethylsiloxy)silane/N,N-dimethylacrylamide and addition polymerization of HPSO/isophorone diisocyanate. The silicone hydrogels were characterized by dehydration kinetics, tensile tester, light transmittance, ion permeability, oxygen permeability, and lysozyme deposition. The results show that increasing the proportion of hydrophobic network of HPSO in the IPN silicone hydrogel decreases equilibrium swelling ratio, ion permeability, Young's modulus, and lysozyme deposition; on the contrary, increased tensile strength, elongation at break and oxygen permeability. Puerarin and ketoconazole were used as models to evaluate the drug loading and in vitro release behavior of the silicone hydrogels. It is revealed that the amount of loaded drugs in the hydrogel decreases with the increase of HPSO network in the hydrogels. All the silicone hydrogels exhibit extended release behavior, especially for ketoconazole, the in vitro release is divided into two phases corresponding to the rapid release at initial 24 h and relatively slow release from 125 to 360 h.

  12. Self-healing polysaccharide-based hydrogels as injectable carriers for neural stem cells

    PubMed Central

    Wei, Zhao; Zhao, Jingyi; Chen, Yong Mei; Zhang, Pengbo; Zhang, Qiqing

    2016-01-01

    Self-healing injectable hydrogels can be formulated as three-dimensional carriers for the treatment of neurological diseases with desirable advantages, such as avoiding the potential risks of cell loss during injection, protecting cells from the shearing force of injection. However, the demands for biocompatible self-healing injectable hydrogels to meet above requirements and to promote the differentiation of neural stem cells (NSCs) into neurons remain a challenge. Herein, we developed a biocompatible self-healing polysaccharide-based hydrogel system as a novel injectable carrier for the delivery of NSCs. N-carboxyethyl chitosan (CEC) and oxidized sodium alginate (OSA) are the main backbones of the hydrogel networks, denoted as CEC-l-OSA hydrogel (“l” means “linked-by”). Owing to the dynamic imine cross-links formed by a Schiff reaction between amino groups on CEC and aldehyde groups on OSA, the hydrogel possesses the ability to self-heal into a integrity after being injected from needles under physiological conditions. The CEC-l-OSA hydrogel in which the stiffness mimicking nature brain tissues (100~1000 Pa) can be finely tuned to support the proliferation and neuronal differentiation of NSCs. The multi-functional, injectable, and self-healing CEC-l-OSA hydrogels hold great promises for NSC transplantation and further treatment of neurological diseases. PMID:27897217

  13. Self-healing polysaccharide-based hydrogels as injectable carriers for neural stem cells

    NASA Astrophysics Data System (ADS)

    Wei, Zhao; Zhao, Jingyi; Chen, Yong Mei; Zhang, Pengbo; Zhang, Qiqing

    2016-11-01

    Self-healing injectable hydrogels can be formulated as three-dimensional carriers for the treatment of neurological diseases with desirable advantages, such as avoiding the potential risks of cell loss during injection, protecting cells from the shearing force of injection. However, the demands for biocompatible self-healing injectable hydrogels to meet above requirements and to promote the differentiation of neural stem cells (NSCs) into neurons remain a challenge. Herein, we developed a biocompatible self-healing polysaccharide-based hydrogel system as a novel injectable carrier for the delivery of NSCs. N-carboxyethyl chitosan (CEC) and oxidized sodium alginate (OSA) are the main backbones of the hydrogel networks, denoted as CEC-l-OSA hydrogel (“l” means “linked-by”). Owing to the dynamic imine cross-links formed by a Schiff reaction between amino groups on CEC and aldehyde groups on OSA, the hydrogel possesses the ability to self-heal into a integrity after being injected from needles under physiological conditions. The CEC-l-OSA hydrogel in which the stiffness mimicking nature brain tissues (100~1000 Pa) can be finely tuned to support the proliferation and neuronal differentiation of NSCs. The multi-functional, injectable, and self-healing CEC-l-OSA hydrogels hold great promises for NSC transplantation and further treatment of neurological diseases.

  14. Synthesis and Characterization of Cellulose-Based Hydrogels to Be Used as Gel Electrolytes

    PubMed Central

    Navarra, Maria Assunta; Dal Bosco, Chiara; Serra Moreno, Judith; Vitucci, Francesco Maria; Paolone, Annalisa; Panero, Stefania

    2015-01-01

    Cellulose-based hydrogels, obtained by tuned, low-cost synthetic routes, are proposed as convenient gel electrolyte membranes. Hydrogels have been prepared from different types of cellulose by optimized solubilization and crosslinking steps. The obtained gel membranes have been characterized by infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and mechanical tests in order to investigate the crosslinking occurrence and modifications of cellulose resulting from the synthetic process, morphology of the hydrogels, their thermal stability, and viscoelastic-extensional properties, respectively. Hydrogels liquid uptake capability and ionic conductivity, derived from absorption of aqueous electrolytic solutions, have been evaluated, to assess the successful applicability of the proposed membranes as gel electrolytes for electrochemical devices. To this purpose, the redox behavior of electroactive species entrapped into the hydrogels has been investigated by cyclic voltammetry tests, revealing very high reversibility and ion diffusivity. PMID:26633528

  15. Controlled release of 5-aminosalicylicacid from chitosan based pH and temperature sensitive hydrogels.

    PubMed

    Bostan, Muge Sennaroglu; Senol, Murat; Cig, Tugce; Peker, Ismail; Goren, Ahmet C; Ozturk, Turan; Eroglu, Mehmet S

    2013-01-01

    A series of temperature and pH responsive hydrogels based on chitosan and poly(N-isopropyl acrylamide) (PNIPA) was prepared by redox polymerization. Effect of the composition on swelling behavior of the hydrogels and the release of 5-aminosaylcilic acid (5-ASA) at different temperatures and pHs have been investigated. Ammonium persulphate and TEMED were used as a redox pair at room temperature. As a cross linker, methacrylated chitosan was synthesized through the reaction of chitosan with glycidyl methacrylate (GMA). Introduction of the cross-linker provided the hydrogels with pH and temperature sensitivities. The phase transition temperatures of the hydrogels were determined by derivative differential scanning calorimeter (DDSC). Their phase transition temperatures were increased by chitosan content. Swelling behaviors and the release of 5-ASA varied significantly with pH, temperature and the gel composition. The release of 5-ASA from the hydrogels was followed by UV-Vis and fluorescence spectroscopy.

  16. Synthesis of Borohydride and Catalytic Dehydrogenation by Hydrogel Based Catalyst

    NASA Astrophysics Data System (ADS)

    Boynuegri, Tugba Akkas; Karabulut, Ahmet F.; Guru, Metin

    2016-08-01

    This paper deals with the synthesis of calcium borohydride (Ca(BH4)2) as hydrogen storage material. Calcium chloride salt (CaCl2), magnesium hydride (MgH2), and boron oxide (B2O3) were used as reactants in the mechanochemical synthesis of Ca(BH4)2. The mechanochemical reaction was carried out by means of Spex type ball milling without applying high pressure and temperature. Parametric studies have been established at different reaction times and for different amounts of reactants at a constant ball to powder ratio (BPR) 4:1. The best combination was determined by Fourier Transform Infrared (FT-IR) analysis. According to the FT-IR analysis, reaction time, the first reaction parameter, was found as 1600 min. After the reaction time was fixed at 1600 min, the difference of the B-H peak areas was dependent on the amount of reactant MgH2 that was investigated. The amount of the reactant (MgH2), the second reaction parameter, was measured to be 2.85 times more than the stoichiometric amount of MgH2. According to our previous studies, BPR was selected as 4:1 for all experiments. Samples were prepared in a glove box under argon atmosphere but the time that elapsed for FT-IR analysis highly affected B-H bonds. B-H peak areas clearly decreased with time because of negative effect of ambient atmosphere. A catalyst was prepared by absorbing cobalt fluoride (CoF2) in poly (acrylamide-co-acrylic acid) hydrogel matrices type and its catalytic dehydrogenation performance that has been characterized by the catalytic reaction of sodium borohydride's known hydrogen capacity in an alkaline medium. The metal amount of hydrogel catalyst was determined as 135.82 mg Co by Atomic Absorption Spectroscopy (AAS). The specific dehydrogenation capacity of the Co active compound in the catalyst thanks to catalytic dehydrogenation of commercial sodium borohydride was measured as 1.66 mL H2/mg Co.

  17. Metamaterial perfect absorber based on artificial dielectric "atoms".

    PubMed

    Liu, Xiaoming; Bi, Ke; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-09-05

    In this work, we numerically designed and then experimentally verified a metamaterial perfect absorber based on artificial dielectric "atoms". This metamaterial absorber is composed of dielectric ceramic material (SrTiO3) "atoms" embedded in a background matrix on a metal plate. The dielectric "atoms" couple strongly to the incident electric and magnetic fields at the Mie resonance mode, leading to the narrow perfect absorption band with simulated and experimental absorptivities of 99% and 98.5% at 8.96 GHz, respectively. The designed metamaterial perfect absorber is polarization insensitive and can operate in wide angle incidence.

  18. Infrared perfect absorber based on nanowire metamaterial cavities.

    PubMed

    He, Yingran; Deng, Huixu; Jiao, Xiangyang; He, Sailing; Gao, Jie; Yang, Xiaodong

    2013-04-01

    An infrared perfect absorber based on a gold nanowire metamaterial cavities array on a gold ground plane is designed. The metamaterial made of gold nanowires embedded in an alumina host exhibits an effective permittivity with strong anisotropy, which supports cavity resonant modes of both electric dipole and magnetic dipole. The impedance of the cavity modes matches the incident plane wave in free space, leading to nearly perfect light absorption. The incident optical energy is efficiently converted into heat so that the local temperature of the absorber will increase. Results show that the designed absorber is polarization-insensitive and nearly omnidirectional for the incident angle.

  19. Formulation and Characterization of Poloxamine-based Hydrogels as Tissue Sealants

    PubMed Central

    Cho, Eunhee; Lee, Jeoung Soo; Webb, Ken

    2012-01-01

    In-situ crosslinkable polyethylene glycol (PEG)-based polymers play an increasing role in surgical practice as sealants that provide a barrier to fluid/gas leakage and adhesion formation. This study investigated the gelation behavior and physical properties of hydrogels formed from homogeneous and blended solutions of two acrylated poloxamines (Tetronics® T1107 and T904) of varying molecular weight and hydrophilic/lipophilic balance relative to a PEG control. Hydrogels were formed by reverse thermal gelation at physiological temperature (T1107-containing formulations) and covalent crosslinking by Michael-type addition with dithiothreitol. All poloxamine-based hydrogels exhibited thermosensitive behavior and achieved significantly reduced swelling, increased tensile properties, and increased tissue bond strength relative to the PEG hydrogel at physiological temperature. Swelling and tensile properties of all poloxamine-based hydrogels were significantly greater at 37 °C relative to 4 °C, suggesting that their improved physical properties derive from cooperative crosslinking by both noncovalent and covalent mechanisms. Poloxamine-based hydrogels were cytocompatible and underwent hydrolytic degradation over 2 to 5 weeks depending on their T1107/T904 composition. In conclusion, select poloxamine-based hydrogels possess a number of properties potentially beneficial to tissue sealant applications including substantial increase in viscosity between room/physiological temperatures, resistance to cell adhesion, and maintenance of stable volume during equilibration. PMID:22406506

  20. Comparison of surface and hydrogel-based protein microchips.

    PubMed

    Zubtsov, D A; Savvateeva, E N; Rubina, A Yu; Pan'kov, S V; Konovalova, E V; Moiseeva, O V; Chechetkin, V R; Zasedatelev, A S

    2007-09-15

    Protein microchips are designed for high-throughput evaluation of the concentrations and activities of various proteins. The rapid advance in microchip technology and a wide variety of existing techniques pose the problem of unified approach to the assessment and comparison of different platforms. Here we compare the characteristics of protein microchips developed for quantitative immunoassay with those of antibodies immobilized on glass surfaces and in hemispherical gel pads. Spotting concentrations of antibodies used for manufacturing of microchips of both types and concentrations of antigen in analyte solution were identical. We compared the efficiency of antibody immobilization, the intensity of fluorescence signals for both direct and sandwich-type immunoassays, and the reaction-diffusion kinetics of the formation of antibody-antigen complexes for surface and gel-based microchips. Our results demonstrate higher capacity and sensitivity for the hydrogel-based protein microchips, while fluorescence saturation kinetics for the two types of microarrays was comparable.

  1. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.

    PubMed

    Juriga, Dávid; Nagy, Krisztina; Jedlovszky-Hajdú, Angéla; Perczel-Kovách, Katalin; Chen, Yong Mei; Varga, Gábor; Zrínyi, Miklós

    2016-09-14

    Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine). Disulfide bridges were cleaved to thiol groups and the polymer backbone was further modified with RGD sequence. Biodegradability of the hydrogels was evaluated by experiments on the base of enzymes and cell culture medium. Poly(aspartic acid) hydrogels possessing only disulfide bridges as cross-links proved to be degradable by collagenase I. The MG-63 cells showed healthy, fibroblast-like morphology on the double cross-linked and RGD modified hydrogels. Thiolated poly(aspartic acid) based hydrogels provide ideal conditions for adhesion, survival, proliferation, and migration of osteoblast-like cells. The highest viability was found on the thiolated PASP gels while the RGD motif had influence on compacted cluster formation of the cells. These biodegradable and biocompatible poly(aspartic acid)-based hydrogels are promising scaffolds for cell cultivation.

  2. Design of integration-ready metasurface-based infrared absorbers

    SciTech Connect

    Ogando, Karim Pastoriza, Hernán

    2015-07-28

    We introduce an integration ready design of metamaterial infrared absorber, highly compatible with many kinds of fabrication processes. We present the results of an exhaustive experimental characterization, including an analysis of the effects of single meta-atom geometrical parameters and collective arrangement. We confront the results with the theoretical interpretations proposed in the literature. Based on the results, we develop a set of practical design rules for metamaterial absorbers in the infrared region.

  3. Swelling of poly(N-isopropylacrylamide) P(NIPA)-based hydrogels with bacterial-synthesized prodigiosin for localized cancer drug delivery.

    PubMed

    Danyuo, Y; Dozie-Nwachukwu, S; Obayemi, J D; Ani, C J; Odusanya, O S; Oni, Y; Anuku, N; Malatesta, K; Soboyejo, W O

    2016-02-01

    We present the results of swelling experiments on poly(N-isopropylacrylamide) P(NIPA)-based hydrogels. The swelling characteristics of P(NIPA)-based homo-polymer and P(NIPA)-based co-polymers with Acrylamide (AM) and Butyl Methacrylate (BMA), were studied using weight gain experiments. The swelling due to the uptake of biosynthesized cancer drug, prodigiosin (PG), was compared to swelling in controlled environments (distilled water (DW), paclitaxel™ (PT) and bromophenol blue (BB)). PG was synthesized with Serratia marcescens (SM) subsp. marcescens bacteria. The mechanisms of drug diffusion and swelling of P(NIPA)-based hydrogels are also elucidated along with characterizing the heterogeneous porous structure of the P(NIPA)-based hydrogels. High Performance Liquefied Chromatography (HPLC) analysis revealed the purity of the biosynthesized prodigiosin to be 92.8%. PG was then absorbed by P(NIPA)-based hydrogels at temperatures between 28-48°C. This is a temperature range that might be encountered during the implantation of biomedical devices for localized cancer treatment via drug delivery and hyperthermia. The results obtained are shown to provide insights for the design of implantable biomedical devices for the localized treatment of breast cancer.

  4. Functional groups affect physical and biological properties of dextran-based hydrogels.

    PubMed

    Sun, Guoming; Shen, Yu-I; Ho, Chia Chi; Kusuma, Sravanti; Gerecht, Sharon

    2010-06-01

    Modification of dextran backbone allows the development of a hydrogel with specific characteristics. To enhance their functionality for tissue-engineered scaffolds, a series of dextran-based macromers was synthesized by incorporating various functional groups, including allyl isocyanate (Dex-AI), ethylamine (Dex-AE), chloroacetic acid (Dex-AC), or maleic-anhydride (Dex-AM) into dextrans. The dextran-based biodegradable hybrid hydrogels are developed by integrating polyethylene glycol diacrylate (PEGDA). To explore the effect of different derivatives on hydrogel properties, three different ratios of Dex/PEGDA are examined: low (20/80), medium (40/60), and high (60/40). Differences in physical and biological properties of the hydrogels are found, including swelling, degradation rate, mechanics, crosslinking density, biocompatibility (in vitro and in vivo), and vascular endothelial growth factor release. The results also indicate that the incorporation of amine groups into dextran gives rise to hydrogels with better biocompatible and release properties. We, therefore, conclude that the incorporation of different functional groups affects the fundamental properties of a dextran-based hydrogel network, and that amine groups are preferred to generate hydrogels for biomedical use.

  5. Synthesis and characterization of a chitosan based nanocomposite injectable hydrogel.

    PubMed

    Wang, Qianqian; Chen, Dajun

    2016-01-20

    The aim of the current study was to enhance the mechanical property of chitosan/β-glycerophosphate disodium salt (CS/GP) injectable hydrogels. A novel nanocomposite injectable hydrogel was prepared by introducing attapulgite (ATP) nano particles into the CS/GP hydrogels. The mechanical properties of the composite hydrogels with two different water contents were characterized by tensile test, the results shown that the tensile strength and elongation at break of composite hydrogels both increased obviously with increasing of ATP content. And, in our testing range, the maximum values of tensile strength and elongation at break were both more than 5 times larger than that of neat CS/GP hydrogel. We discussed this enhancement effect in detail by Scanning electron microscope observations (SEM) and Fourier transform infrared spectroscopy testing (FT-IR). The SEM images of composite hydrogels shown quite different from the neat CS/GP hydrogel, where the pores were more tightly and with some uniform and smaller holes dispersed on the wall. FT-IR test results revealed that the introduction of ATP increased the cross-link density because of the hydrogen bonds formation between ATP nanoparticles and CS molecules. Also, we studied the impact of ATP introduction on gelation speed through tracking the dynamic process of the sol-gel transition by means of rheological measurement, and the results shown that the reaction rate increased significantly with the increase of ATP concentration.

  6. Gel Point Determination of Biopolymer Based Semi-IPN Hydrogels

    NASA Astrophysics Data System (ADS)

    Choudhary, Soumitra; Bhatia, Surita R.

    2008-07-01

    Water-based semi-IPNs (Interpenetrating Polymer Networks) were prepared by mixing two biopolymers, alginate and hydrophobically modified ethylhydroxy ethyl cellulose (HMEHEC), followed by crosslinking the alginate by in-situ release of calcium ions. By altering two different parameters, molecular weight of HMEHEC and calcium crosslinker concentration, we were able to fine tune the rheological properties of the semi-IPNs. Rheological studies in the linear viscoelastic region indicate storage moduli comparable to soft tissue for hydrogels having 90 wt% water. The system is found to be stable over a prolonged period of time, i.e. no phase separation is observed. Uniformity of the structure is confirmed by monotonic behavior of the intensity-q slope in SAXS and SANS over the entire length scale.

  7. Hydrogel Based Biosensors for In Vitro Diagnostics of Biochemicals, Proteins, and Genes.

    PubMed

    Jung, Il Young; Kim, Ji Su; Choi, Bo Ram; Lee, Kyuri; Lee, Hyukjin

    2017-03-31

    Hydrogel-based biosensors have drawn considerable attention due to their various advantages over conventional detection systems. Recent studies have shown that hydrogel biosensors can be excellent alternative systems to detect a wide range of biomolecules, including small biochemicals, pathogenic proteins, and disease specific genes. Due to the excellent physical properties of hydrogels such as the high water content and stimuli-responsive behavior of cross-linked network structures, this system can offer substantial improvement for the design of novel detection systems for various diagnostic applications. The other main advantage of hydrogels is the role of biomimetic three-dimensional (3D) matrix immobilizing enzymes and aptamers within the detection systems, which enhances their stability. This provides ideal reaction conditions for enzymes and aptamers to interact with substrates within the aqueous environment of the hydrogel. In this review, we have highlighted various novel detection approaches utilizing the outstanding properties of the hydrogel. This review summarizes the recent progress of hydrogel-based biosensors and discusses their future perspectives and clinical limitations to overcome.

  8. Mimicking of Chondrocyte Microenvironment Using In Situ Forming Dendritic Polyglycerol Sulfate-Based Synthetic Polyanionic Hydrogels.

    PubMed

    Dey, Pradip; Schneider, Tobias; Chiappisi, Leonardo; Gradzielski, Michael; Schulze-Tanzil, Gundula; Haag, Rainer

    2016-04-01

    A stable polymeric network that mimics the highly polyanionic extracellular cartilage matrix still remains a great challenge. The main aim of this study is to present the synthesis of dendritic polyglycerol sulfate (dPGS)-based in situ forming hydrogels using strain promoted azide-alkyne cycloaddition reactions. A real time rheological study has been used to characterize the hydrogel properties. The viability of encapsulated human chondrocytes in the different hydrogels are monitored using live-dead staining. Furthermore, type I and II collagen gene have been analyzed. Hydrogels with elastic moduli ranging from 1 to 5 kPa have been prepared by varying the dPGS amount. The chondrocyte viability in dPGS hydrogels is found to be higher than in pure PEG and alginate-based hydrogels after 21 d. The higher cell viability in the dPGS engineered hydrogels can be explained by the fact that dPGS can interact with different proteins responsible for cell growth and proliferation.

  9. Alginate based hybrid copolymer hydrogels--influence of pore morphology on cell-material interaction.

    PubMed

    Gnanaprakasam Thankam, Finosh; Muthu, Jayabalan

    2014-11-04

    Alginate based hybrid copolymer hydrogels with unidirectional pore morphology were prepared to achieve synergistic biological performance for cardiac tissue engineering applications. Alginate based hybrid copolymer (ALGP) were prepared using alginate and poly(propylene fumarate) (HT-PPF) units. Different hybrid bimodal hydrogels were prepared by covalent crosslinking using poly(ethylene glycol diacrylate) and vinyl monomer viz acrylic acid, methyl methacrylate, butyl methacrylate and N-N'-methylene-bis-acrylamide and ionic crosslinking with calcium. The morphologically modified hydrogels (MM-hydrogels) with unidirectional elongated pores and high aspect ratio were prepared. MM-hydrogels favour better mechanical properties; it also enhances cell viability and infiltration due to unidirectional pores. However, the crosslinkers influence the fibroblast infiltration of these hydrogels. Synthesis of collagen and fibroblast infiltration was greater for alginate copolymer crosslinked with poly(ethylene glycol diacrylate-acrylic acid (ALGP-PA) even after one month (288%). This hybrid MM-hydrogel promoted cardiomyoblast growth on to their interstices signifying its potent applications in cardiac tissue engineering.

  10. Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zhao, Linlin; Gwon, Hui-Jeong; Lim, Youn-Mook; Nho, Young-Chang; Kim, So Yeon

    2015-01-01

    Hyaluronic acid (HA)/chondroitin sulfate (CS)/poly(acrylic acid) (PAAc) hydrogel systems were synthesized by gamma-ray irradiation without the use of additional initiators or crosslinking agents to achieve a biocompatible hydrogel system for skin tissue engineering. HA and CS derivatives with polymerizable residues were synthesized. Then, the hydrogels composed of glycosaminoglycans, HA, CS, and a synthetic ionic polymer, PAAc, were prepared using gamma-ray irradiation through simultaneous free radical copolymerization and crosslinking. The physicochemical properties of the HA/CS/PAAc hydrogels having various compositions were investigated to evaluate their feasibility as artificial skin substitutes. The gel fractions of the HA/CS/PAAc hydrogels increased in absorbed doses up to 15 kGy, and they exhibited 91-93% gel fractions under 15 kGy radiation. All of the HA/CS/PAAc hydrogels exhibited relatively high water contents of over 90% and reached an equilibrium swelling state within 24 h. The enzymatic degradation kinetics of the HA/CS/PAAc hydrogels depended on both the concentration of the hyaluronidase solution and the ratio of HA/CS/PAAc. The in vitro drug release profiles of the HA/CS/PAAc hydrogels were significantly influenced by the interaction between the ionic groups in the hydrogels and the ionic drug molecules as well as the swelling of the hydrogels. From the cytotoxicity results of human keratinocyte (HaCaT) cells cultured with extracts of the HA/CS/PAAc hydrogels, all of the HA/CS/PAAc hydrogel samples tested showed relatively high cell viabilities of more than 82%, and did not induce any significant adverse effects on cell viability.

  11. Acoustic metamaterial structures based on multi-frequency vibration absorbers

    NASA Astrophysics Data System (ADS)

    Pai, P. Frank; Peng, Hao

    2014-03-01

    This paper presents a new metamaterial beam based on multi-frequency vibration absorbers for broadband vibration absorption. The proposed metamaterial beam consists of a uniform isotropic beam and small two-mass spring-mass- damper subsystems at many locations along the beam to act as multi-frequency vibration absorbers. For an infinite metamaterial beam, governing equations of a unit cell are derived using the extended Hamilton principle. The existence of two stopbands is demonstrated using a model based on averaging material properties over a cell length and a model based on finite element modeling and the Bloch-Floquet theory for periodic structures. For a finite metamaterial beam, because these two idealized models cannot be used for finite beams and/or elastic waves having short wavelengths, a finite-element method is used for detailed modeling and analysis. The concepts of negative effective mass and effective stiffness and how the spring-mass-damper subsystem creates two stopbands are explained in detail. Numerical simulations reveal that the actual working mechanism of the proposed metamaterial beam is based on the concept of conventional mechanical vibration absorbers. For an incoming wave with a frequency in one of the two stopbands, the absorbers are excited to vibrate in their optical modes to create shear forces to straighten the beam and stop the wave propagation. For an incoming wave with a frequency outside of but between the two stopbands, it can be efficiently damped out by the damper with the second mass of each absorber. Hence, the two stopbands are connected into a wide stopband. Numerical examples validate the concept and show that the structure's boundary conditions do not have significant influence on the absorption of high-frequency waves. However, for absorption of low-frequency waves, the structure's boundary conditions and resonance frequencies and the location and spatial distribution of absorbers need to be considered in design, and it

  12. The design of dextran-based hypoxia-inducible hydrogels via in situ oxygen consuming reaction

    PubMed Central

    Park, Kyung Min; Blatchley, Michael R.; Gerecht, Sharon

    2014-01-01

    Hypoxia plays a critical role in development and the wound healing process, as well as a number of pathological conditions. Here, we report dextran–based hypoxia–inducible (Dex–HI) hydrogels formed with in situ oxygen consumption via laccase–medicated reaction. Oxygen levels and gradients were accurately predicted by mathematical simulation. We demonstrate that Dex–HI hydrogels provide prolonged hypoxic conditions up to 12 h. The Dex–HI hydrogel offers an innovative approach to delineate not only the mechanism by which hypoxia regulates cellular responses, but may facilitate the discovery of new pathways involved in the generation of hypoxic and oxygen gradient environments. PMID:25303104

  13. Irradiation mediated synthesis of a superabsorbent hydrogel network based on polyacrylamide grafted onto salep

    NASA Astrophysics Data System (ADS)

    Bardajee, Ghasem Rezanejade; Pourjavadi, Ali; Soleyman, Rouhollah; Sheikh, Nasrin

    2008-09-01

    The synthesis and swelling behavior of a new superabsorbent hydrogel based on natural salep grafted with polyacrylamide is described. The new biopolymer was synthesized via simultaneous crosslinking and graft copolymerization of acrylamide monomer onto a salep backbone using radiochemical methods. Various parameters such as relative contents of salep and acrylamide, as well as total dose of γ-rays were examined. The best synthesis condition is reported and a mechanism for superabsorbent hydrogel formation suggested. Factors affecting the swelling behavior of hydrogel were also studied.

  14. A Hydrogel-Based Epirubicin Delivery System for Intravesical Chemotherapy.

    PubMed

    Liu, Ching-Wen; Wu, Yu-Tse; Lin, Kai-Jen; Yu, Tsan-Jung; Kuo, Yu-Liang; Chang, Li-Ching

    2016-06-01

    This study aimed to examine the efficacy of epirubicin-loaded gelatin hydrogel (EPI-H) in the treatment of superficial urothelium carcinoma. Hydrogel was prepared by Schiff base-crosslinking of gelatin with glutaraldehyde. EPI-H exhibited high entrapment efficiency (59.87% ± 0.51%). EPI-H also increased epirubicin accumulation in AY-27 cells when compared with the effect of aqueous solutions of epirubicin (EPI-AQ); respective epirubicin-positive cell counts were 69.0% ± 7.6% and 38.3% ± 5.8%. EPI-H also exhibited greater cytotoxicity against AY-27 cells than that of EPI-AQ; IC50 values were 13.1 ± 1.1 and 7.5 ± 0.3 μg/mL, respectively. Cystometrograms showed that EPI-H reduced peak micturition, threshold pressures, and micturition duration, and that it increased bladder compliance more so than EPI-AQ. EPI-H enhanced epirubicin penetration into basal cells of urothelium in vivo, whereas EPI-AQ did so only to the umbrella cells. EPI-H inhibited tumor growth upon intravesical instillation to tumor-bearing bladder of F344 rats, inducing higher levels of caspase-3 expression than that observed with EPI-AQ treatment; the number of caspase-3 positive cells in treated urothelium carcinoma was 13.9% ± 4.0% (EPI-AQ) and 34.1% ± 1.0%, (EPI-H). EPI-H has value as an improved means to administer epirubicin in intravesical instillation treatments for bladder cancer.

  15. Effects of Chitin Whiskers on Physical Properties and Osteoblast Culture of Alginate Based Nanocomposite Hydrogels.

    PubMed

    Huang, Yao; Yao, Mengyu; Zheng, Xing; Liang, Xichao; Su, Xiaojuan; Zhang, Yu; Lu, Ang; Zhang, Lina

    2015-11-09

    Novel nanocomposite hydrogels composed of polyelectrolytes alginate and chitin whiskers with biocompatibility were successfully fabricated based on the pH-induced charge shifting behavior of chitin whiskers. The chitin whiskers with mean length and width of 300 and 20 nm were uniformly dispersed in negatively charged sodium alginate aqueous solution, leading to the formation of the homogeneous nanocomposite hydrogels. The experimental results indicated that their mechanical properties were significantly improved compared to alginate hydrogel and the swelling trends were inhibited as a result of the strong electrostatic interactions between the chitin whiskers and alginate. The nanocomposite hydrogels exhibited certain crystallinity and hierarchical structure with nanoscale chitin whiskers, similar to the structure of the native extracellular matrix. Moreover, the nanocomposite hydrogels were successfully applied as bone scaffolds for MC3T3-E1 osteoblast cells, showing their excellent biocompatibility and low cytotoxicity. The results of fluorescent micrographs and scanning electronic microscope (SEM) images revealed that the addition of chitin whiskers into the nanocomposite hydrogels markedly promoted the cell adhesion and proliferation of the osteoblast cells. The biocompatible nanocomposite hydrogels have potential application in bone tissue engineering.

  16. Mechanically strong triple network hydrogels based on hyaluronan and poly(N,N-dimethylacrylamide).

    PubMed

    Tavsanli, Burak; Can, Volkan; Okay, Oguz

    2015-11-21

    Hyaluronan (HA) is a natural polyelectrolyte with distinctive biological functions. Cross-linking of HA to generate less degradable hydrogels for use in biomedical applications has attracted interest over many years. One limitation of HA hydrogels is that they are very brittle and/or easily dissolve in physiological environments, which limit their use in load-bearing applications. Herein, we describe the preparation of triple-network (TN) hydrogels based on HA and poly(N,N-dimethylacrylamide) (PDMA) of high mechanical strength by sequential gelation reactions. TN hydrogels containing 81-91% water sustain compressive stresses above 20 MPa and exhibit Young's moduli of up to 1 MPa. HA of various degrees of methacrylation was used as a multifunctional macromer for the synthesis of the brittle first-network component, while loosely cross-linked PDMA was used as the ductile, second and third network components of TN hydrogels. By tuning the methacrylation degree of HA, double-network hydrogels with a fracture stress above 10 MPa and a fracture strain of 96% were obtained. Increasing the ratio of ductile-to-brittle components via the TN approach further increases the fracture stress above 20 MPa. Cyclic mechanical tests show that, although TN hydrogels internally fracture even under small strain, the ductile components hinder macroscopic crack propagation by keeping the macroscopic gel samples together.

  17. Hydroxyethyl starch-based polymers for the controlled release of biomacromolecules from hydrogel microspheres.

    PubMed

    Wöhl-Bruhn, Stefanie; Bertz, Andreas; Harling, Steffen; Menzel, Henning; Bunjes, Heike

    2012-08-01

    Hydrogels are promising delivery systems for the controlled release of biomacromolecules. Based on previous studies, hydrogels were prepared from crosslinkable hydroxyethyl starch with new linker groups to improve mechanical and release properties of the resulting hydrogels. Polyethylene glycol methacrylate with two different spacer lengths was used to obtain polymers (HES-P(EG)(n)MA) with increased hydrophilicity and degradability, whereas a polymer with methacrylate linker directly at the starch backbone (HES-MA) resulted in a less degradable polymer. Hydrogel disks were obtained by UV crosslinking and characterized by swelling and rheological measurements. The hydrogel strength was strongly influenced by the polymer concentration. Using a water-in-water emulsion process, hydrogel microspheres were prepared. The influence of the type of the linker, the degree of substitution and the phase ratio in the production process on the properties of the microspheres was investigated. Depending on the preparation parameters, particles with narrow particle size distribution and encapsulation efficiencies of up to more than 80% for FITC-dextran 70 kDa (FD70) were obtained. Incorporated FITC-labeled IgG showed a faster release from hydrogel microspheres than FD70. The release rate of incorporated FD70 could be adjusted by using different polymers (HES-P(EG)(10)MA>HES-P(EG)(6)MA>HES-MA).

  18. Development and characterization of novel alginate-based hydrogels as vehicles for bone substitutes.

    PubMed

    Morais, D S; Rodrigues, M A; Silva, T I; Lopes, M A; Santos, M; Santos, J D; Botelho, C M

    2013-06-05

    In this work three different hydrogels were developed to associate, as vehicles, with the synthetic bone substitute GR-HAP. One based on an alginate matrix (Alg); a second on a mixture of alginate and chitosan (Alg/Ch); and a third on alginate and hyaluronate (Alg/HA), using Ca(2+) ions as cross-linking agents. The hydrogels, as well as the respective injectable bone substitutes (IBSs), were fully characterized from the physical-chemical point of view. Weight change studies proved that all hydrogels were able to swell and degrade within 72 h at pH 7.4 and 4.0, being Alg/HA the hydrogel with the highest degradation rate (80%). Rheology studies demonstrated that all hydrogels are non-Newtonian viscoelastic fluids, and injectability tests showed that IBSs presented low maximum extrusion forces, as well as quite stable average forces. In conclusion, the studied hydrogels present the necessary features to be successfully used as vehicles of GR-HAP, particularly the hydrogel Alg/HA.

  19. A Genetically Modified Protein-Based Hydrogel for 3D Culture of AD293 Cells

    PubMed Central

    Du, Xiao; Wang, Jingyu; Diao, Wentao; Wang, Ling; Long, Jiafu; Zhou, Hao

    2014-01-01

    Hydrogels have strong application prospects for drug delivery, tissue engineering and cell therapy because of their excellent biocompatibility and abundant availability as scaffolds for drugs and cells. In this study, we created hybrid hydrogels based on a genetically modified tax interactive protein-1 (TIP1) by introducing two or four cysteine residues in the primary structure of TIP1. The introduced cysteine residues were crosslinked with a four-armed poly (ethylene glycol) having their arm ends capped with maleimide residues (4-armed-PEG-Mal) to form hydrogels. In one form of the genetically modification, we incorporated a peptide sequence ‘GRGDSP’ to introduce bioactivity to the protein, and the resultant hydrogel could provide an excellent environment for a three dimensional cell culture of AD293 cells. The AD293 cells continued to divide and displayed a polyhedron or spindle-shape during the 3-day culture period. Besides, AD293 cells could be easily separated from the cell-gel constructs for future large-scale culture after being cultured for 3 days and treating hydrogel with trypsinase. This work significantly expands the toolbox of recombinant proteins for hydrogel formation, and we believe that our hydrogel will be of considerable interest to those working in cell therapy and controlled drug delivery. PMID:25233088

  20. The design of conductimetric biosensors based on environmentally responsive hydrogels

    NASA Astrophysics Data System (ADS)

    Lesho, Matthew Jerome

    Responsive hydrogels are hydrophilic, crosslinked polymers that undergo large changes in hydration in response to environmental stimuli such as changing temperature, pH, electric field, and ionic strength. Accompanying this change in hydration are changes in material properties of the hydrogel, which has led to their application in controlled drug delivery, separations, and as superabsorbants. The present study investigated the hydration-dependent electrical conductivity of a pH-responsive hydrogel and its application as a transduction layer for microfabricated, conductimetric pH and glucose sensors. The investigation was divided into four parts. First, the material properties of a copolymer of 2-hydroxyethyl methacrylate (HEMA) and N,N-dimethylaminoethyl methacrylate (DMA), crosslinked with tetraethylene glycol diacrylate (TEGDA), were examined with respect to its ability to detect changes in pH. It was determined that the electrical conductivity of the hydrogel was a sensitive measure of hydration and was a function of pH, hydrogel composition, buffer concentration, buffer identity, and ionic strength. Second, a method was developed for reproducibly depositing thin (1-25 mum), adherent hydrogel layers by photolithographic patterning techniques. Third, sensors were developed that utilized planar interdigitated electrode arrays to probe the change in electrical conductivity of hydrogel membranes. The sensitivity, response time, operating range and lifetime of pH sensors were functions of pH, hydrogel composition, buffer concentration, buffer identity, and ionic strength. Glucose sensors were developed by incorporating glucose oxidase into the pH-responsive hydrogel and measuring the decrease in pH that accompanies the enzymatic generation of protons. Finally, a model was formulated to relate the measured sensor responses to the measured material properties. Information from model simulations was incorporated into the design of next-generation sensors.

  1. An Injectable Self-Healing Hydrogel Based on Chain-Extended PEO-PPO-PEO Multiblock Copolymer.

    PubMed

    Yu, Hansen; Liu, Yunfei; Yang, Haiyang; Peng, Kang; Zhang, Xingyuan

    2016-11-01

    Injectable hydrogels have been commonly used as drug-delivery vehicles and tried in tissue engineering. Injectable self-healing hydrogels have great advantage over traditional injectable hydrogels because they can be injected as a liquid and then rapidly form bulk gels in situ at the target site under physiological conditions. This study develops an injectable thermosensitive self-healing hydrogel based on chain-extended F127 (PEO90 -PPO65 -PEO90 ) multi-block copolymer (m-F127). The rapid sol-gel transition ability under body temperature allows it to be used as injectable hydrogel and the self-healing property allows it to withstand repeated deformation and quickly recover its mechanical properties and structure through the dynamic covalent bonds. It is hoped that the novel strategy and the fascinating properties of the hydrogel as presented here will provide new opportunities with regard to the design and practical application of injectable self-healing hydrogels.

  2. An in situ forming biodegradable hydrogel-based embolic agent for interventional therapies.

    PubMed

    Weng, Lihui; Rostambeigi, Nassir; Zantek, Nicole D; Rostamzadeh, Parinaz; Bravo, Mike; Carey, John; Golzarian, Jafar

    2013-09-01

    We present here the characteristics of an in situ forming hydrogel prepared from carboxymethyl chitosan and oxidized carboxymethyl cellulose for interventional therapies. Gelation, owing to the formation of Schiff bases, occurred both with and without the presence of a radiographic contrast agent. The hydrogel exhibited a highly porous internal structure (pore diameter 17±4 μm), no cytotoxicity to human umbilical vein endothelial cells, hemocompatibility with human blood, and degradability in lysozyme solutions. Drug release from hydrogels loaded with a sclerosant, tetracycline, was measured at pH 7.4, 6 and 2 at 37°C. The results showed that tetracycline was more stable under acidic conditions, with a lower release rate observed at pH 6. An anticancer drug, doxorubicin, was loaded into the hydrogel and a cumulative release of 30% was observed over 78 h in phosphate-buffered saline at 37°C. Injection of the hydrogel precursor through a 5-F catheter into a fusiform aneurysm model was feasible, leading to complete filling of the aneurysmal sac, which was visualized by fluoroscopy. The levels of occlusion by hydrogel precursors (1.8% and 2.1%) and calibrated microspheres (100-300 μm) in a rabbit renal model were compared. Embolization with hydrogel precursors was performed without clogging and the hydrogel achieved effective occlusion in more distal arteries than calibrated microspheres. In conclusion, this hydrogel possesses promising characteristics potentially beneficial for a wide range of vascular intervention procedures that involve embolization and drug delivery.

  3. Elastin Based Cell-laden Injectable Hydrogels with Tunable Gelation, Mechanical and Biodegradation Properties

    PubMed Central

    Fathi, Ali; Mithieux, Suzanne M.; Wei, Hua; Chrzanowski, Wojciech; Valtchev, Peter; Weiss, Anthony S.; Dehghani, Fariba

    2015-01-01

    Injectable hydrogels made from extracellular matrix proteins such as elastin show great promise for various biomedical applications. Use of cytotoxic reagents, fixed gelling behavior, and lack of mechanical strength in these hydrogels are the main associated drawbacks. The aim of this study was to develop highly cytocompatible and injectable elastin-based hydrogels with alterable gelation characteristics, favorable mechanical properties and structural stability for load bearing applications. A thermoresponsive copolymer, poly(N-isopropylacrylamide-co-polylactide-2-hydroxyethyl methacrylate-co-oligo(ethylene glycol)monomethyl ether methacrylate, was functionalized with succinimide ester groups by incorporating N-acryloxysuccinimide monomer. These ester groups were exploited to covalently bond this polymer, denoted as PNPHO, to different proteins with primary amine groups such as α-elastin in aqueous media. The incorporation of elastin through covalent bond formation with PNPHO promotes the structural stability, mechanical properties and live cell proliferation within the structure of hydrogels. Our results demonstrated that elastin-co-PNPHO solutions were injectable through fine gauge needles and converted to hydrogels in situ at 37 °C in the absence of any crosslinking reagent. By altering PNPHO content, the gelling time of these hydrogels can be finely tuned within the range of 2 to 15 min to ensure compatibility with surgical requirements. In addition, these hydrogels exhibited compression moduli in the range of 40 to 145 kPa, which are substantially higher than those of previously developed elastin-based hydrogels. These hydrogels were highly stable in the physiological environment with the evidence of 10 wt% mass loss in 30 days of incubation in a simulated environment. This class of hydrogels is in vivo bioabsorbable due to the gradual increase of the lower critical solution temperature of the copolymer to above 37 °C due to the cleavage of polylactide from

  4. Improving the stability of chitosan-gelatin-based hydrogels for cell delivery using transglutaminase and controlled release of doxycycline.

    PubMed

    Tormos, Christian J; Abraham, Carol; Madihally, Sundararajan V

    2015-12-01

    Although local cell delivery is an option to repair tissues, particularly using chitosan-based hydrogels, significant attrition of injected cells prior to engraftment has been a problem. To address this problem, we explored the possibility of stabilizing the chitosan-gelatin (CG) injectable hydrogels using (1) controlled release of doxycycline (DOX) to prevent premature degradation due to increased gelatinase activity (MMP-2 and MMP-9), and (2) transglutaminase (TG) to in situ cross-link gelatin to improve the mechanical stability. We prepared DOX-loaded PLGA nanoparticles, loaded into the CG hydrogels, measured DOX release for 5 days, and modeled using a single-compartmental assumption. Next, we assessed the influence of TG and DOX on hydrogel compression properties by incubating hydrogels for 7 days in PBS. We evaluated the effect of these changes on retention of fibroblasts and alterations in MMP-2/MMP-9 activity by seeding 500,000 fibroblasts for 5 days. These results showed that 90 % of DOX released from cross-linked CG hydrogels after 4 days, unlike CG hydrogels where 90 % of DOX was released within the first day. Addition of TG enhanced the CG hydrogel stability significantly. More than 60 % of seeded fibroblasts were recovered from the CG-TG hydrogels at day 5, unlike 40 % recovered from CG-hydrogels. Inhibition of MMP-2/MMP-9 were observed. In summary, controlled release of DOX from CG hydrogels cross-linked with TG shows a significant potential as a carrier for cell delivery.

  5. A versatile fluorescent biosensor based on target-responsive graphene oxide hydrogel for antibiotic detection.

    PubMed

    Tan, Bing; Zhao, Huimin; Du, Lei; Gan, Xiaorong; Quan, Xie

    2016-09-15

    A fluorescent sensing platform based on graphene oxide (GO) hydrogel was developed through a fast and facile gelation, immersion and fluorescence determination process, in which the adenosine and aptamer worked as the co-crosslinkers to connect the GO sheets and then form the three-dimensional (3D) macrostructures. The as-prepared hydrogel showed high mechanical strength and thermal stability. The optimal hydrogel had a linear response for oxytetracycline (OTC) of 25-1000μg/L and a limit of quantitation (LOQ) of 25μg/L. Moreover, together with the high affinity of the aptamer for its target, this assay exhibited excellent sensitivity and selectivity. According to its design principle, the as-designed hydrogel was also tested to possess the generic detection function for other molecules by simply replacing its recognition element, which is expected to lay a foundation to realize the assembly of functionalized hierarchical graphene-based materials for practical applications in analytical field.

  6. Optically- and Thermally-Responsive Programmable Materials Based on Carbon Nanotube-Hydrogel Polymer Composites

    DTIC Science & Technology

    2011-07-07

    hydrogels19,20 with promise to yield significant im- provements and new functionalities . In this study, we demon- strate single-walled carbon nanotube (SWNT...Reprint Optically- and Thermally-Responsive Programmable Materials Based on Carbon Nanotube -Hydrogel Polymer Composites W911NF-11-1-0089 0620BK Arash...actuators utilizing composites of poly(N-isopropylacrylamide) (pNIPAM) loaded with single-walled carbon nanotubes . With nanotube loading at concentrations

  7. Acoustic metamaterial panels based on multi frequency vibration absorbers

    NASA Astrophysics Data System (ADS)

    Shi, Chao; Sun, Hongwei; Hu, Xiaolei; Gu, Jinliang

    2016-04-01

    Presented here is a new metamaterial panel based on multi-frequency vibration absorbers for broadband vibration absorption. The proposed metamaterial panel consists of a uniform isotropic panel and small two-mass spring-mass-damper subsystem many locations along the panel to act as multi-frequency vibration absorbers. The existence of two stopbands is demonstrated using a model based on averaging material properties over a cell length and a model based on finite element modeling and the Bloch-Floquet theory for periodic structures. For a finite metamaterial panel, because these two idealized models can not be used for finite panels and/or elastic waves having short wavelengths, a finite-element method is used for detailed modeling and analysis. The concepts of negative effective stiffness is explained in detail. For an incoming wave with a frequency in one of the two stopbands, the absorbers are excited to vibrate in their optical modes to create shear forces to straighten the panel and stop the wave propagation. For an incoming wave with a frequency outside of but between the two stopbands, it can be efficiently damped out by the damper with these mass of each absorber. Hence, the two stopbands are connected in to a wide stopband. Numerical examples validate the concept and show that the structures boundary conditions do not have significant influence on the absorption of high-frequency waves. However, for absorption of low-frequency waves, the structures boundary conditions and resonance frequencies and the location and spatial distribution of absorbers need to be considered in design, and it is better to use heavier masses for absorbers.

  8. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering.

    PubMed

    Liu, Yunxiao; Chan-Park, Mary B

    2009-01-01

    Hydrogel networks are highly desirable as three-dimensional (3-D) tissue engineering scaffolds for cell encapsulation due to the high water content and ability to mimick the native extracellular matrix. However, their application is limited by their nanometer-scale mesh size, which restricts the spreading and proliferation of encapsulated cells, and their poor mechanical properties. This study seeks to address both limitations through application of a novel cell-encapsulating hydrogel family based on the interpenetrating polymer network (IPN) of gelatin and dextran bifunctionalized with methacrylate (MA) and aldehyde (AD) (Dex-MA-AD). The chemical structure of the synthesized Dex-MA-AD was verified by (1)H-NMR and the degrees of substitution of MA and AD were found to be 14 and 13.9+/-1.3 respectively. The water contents in all these hydrogels were approximately 80%. Addition of 40 mg/ml to 60 mg/ml gelatin to neat Dex-MA-AD increased the compressive modulus from 15.4+/-3.0 kPa to around 51.9+/-0.1 kPa (about 3.4-fold). Further, our IPN hydrogels have higher dynamic storage moduli (i.e. on the order of 10(4)Pa) than polyethylene glycol-based hydrogels (around 10(2)-10(3)Pa) commonly used for smooth muscle cells (SMCs) encapsulation. Our dextran-based IPN hydrogels not only supported endothelial cells (ECs) adhesion and spreading on the surface, but also allowed encapsulated SMCs to proliferate and spread in the bulk interior of the hydrogel. These IPN hydrogels appear promising as 3-D scaffolds for vascular tissue engineering.

  9. Dynamics in poly vinyl alcohol (PVA) based hydrogel: Neutron scattering study

    SciTech Connect

    Prabhudesai, S. A. Mitra, S.; Mukhopadhyay, R.; Lawrence, Mathias B.; Desa, J. A. E.

    2015-06-24

    Results of quasielastic neutron scattering measurements carried out on Poly Vinyl Alcohol (PVA) based hydrogels are reported here. PVA hydrogels are formed using Borax as a cross-linking agent in D{sub 2}O solvent. This synthetic polymer can be used for obtaining the hydrogels with potential use in the field of biomaterials. The aim of this paper is to study the dynamics of polymer chain in the hydrogel since it is known that polymer mobility influences the kinetics of loading and release of drugs. It is found that the dynamics of hydrogen atoms in the polymer chain could be described by a model where the diffusion of hydrogen atoms is limited within a spherical volume of radius 3.3 Å. Average diffusivity estimated from the behavior of quasielastic width is found to be 1.2 × 10{sup −5} cm{sup 2}/sec.

  10. Dynamics in poly vinyl alcohol (PVA) based hydrogel: Neutron scattering study

    NASA Astrophysics Data System (ADS)

    Prabhudesai, S. A.; Lawrence, Mathias B.; Mitra, S.; Desa, J. A. E.; Mukhopadhyay, R.

    2015-06-01

    Results of quasielastic neutron scattering measurements carried out on Poly Vinyl Alcohol (PVA) based hydrogels are reported here. PVA hydrogels are formed using Borax as a cross-linking agent in D2O solvent. This synthetic polymer can be used for obtaining the hydrogels with potential use in the field of biomaterials. The aim of this paper is to study the dynamics of polymer chain in the hydrogel since it is known that polymer mobility influences the kinetics of loading and release of drugs. It is found that the dynamics of hydrogen atoms in the polymer chain could be described by a model where the diffusion of hydrogen atoms is limited within a spherical volume of radius 3.3 Å. Average diffusivity estimated from the behavior of quasielastic width is found to be 1.2 × 10-5 cm2/sec.

  11. Photopolymerized water-soluble chitosan-based hydrogel as potential use in tissue engineering.

    PubMed

    Zhou, Yingshan; Ma, Guiping; Shi, Suqing; Yang, Dongzhi; Nie, Jun

    2011-04-01

    Novel biodegradable hydrogels by photocrosslinking macromers based on chitosan derivative are reported. Photocrosslinkable macromers, a water-soluble (methacryloyloxy) ethyl carboxyethyl chitosan were prepared by Michael-addition reaction between chitosan and ethylene glycol acrylate methacrylate. The macromers were characterized by Fourier transform infrared spectroscopy, (1)H NMR and (13)C NMR. Hydrogels were fabricated by exposing aqueous solutions of macromers with 0.1% (w/v) photoinitiator to UV light irradiation, and their swelling kinetics as well as degradation behaviors was evaluated. The results demonstrated that the degradation rates were affected strongly by crosslinking density. The hydrogel was compatible to Vero cells, not exhibiting significant cytotoxicity. Cell culture assay also demonstrated that the hydrogels were good in promoting the cell attachment and proliferation, showing their potential as tissue engineering scaffolds.

  12. Sulfathiazole-based novel UV-cured hydrogel sorbents for mercury removal from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Yetimoğlu, Ece Kök; Kahraman, Memet Vezir; Bayramoğlu, Gülay; Ercan, Özgen; Apohan, Nilhan Kayaman

    2009-02-01

    Sulfathiazole-based novel hydrogel sorbents P(Sulti/hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc)) were prepared by UV irradiation and used for the removal of mercury(II) ion from aqueous media. Hydrogels have been characterized by SEM and thermogravimetric analysis (TGA) techniques. The influence of the uptake conditions was investigated; maximum Hg(II) ion adsorption capacity obtained was 13.46±1.15 mg g -1 at pH 5.0. The hydrogels were tested several times without loss of adsorption capacity. The selectivity of the hydrogel towards to Hg(II), Cd(II) and Zn(II) ions tested was Hg>Cd>Zn.

  13. Frequency-tunable terahertz absorbers based on graphene metasurface

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Sun, Wei; Cai, Jianjin; Chang, Linzi; Xiao, Xiaofei

    2017-01-01

    We present efficient designs of graphene-based thin absorbers, which are capable of near-unity absorption of the incident electromagnetic waves in the terahertz regime. Primarily, a single-frequency absorber is proposed. Subsequently, by simply stacking the double layer graphene metasurface with various geometric dimensions, the dual-frequency absorption and broadband absorption are realized respectively. Results demonstrate that the absorptivity of the single-frequency absorber reaches 99.51% at 2.71 THz when the Fermi energy is fixed at 0.9 eV. The dual-frequency absorber can simultaneously work at two frequencies with its absorptivity being 98.94% for 1.99 THz and 99.1% for 2.69 THz. The bandwidth of absorption rate above 90% expands three times when compared with the former single-frequency absorber. Additionally, it possesses the polarization-insensitive and large angle tolerance properties. More importantly, the absorption frequency can be dynamically controlled by adjusting Fermi energy levels without varying the nanostructure, which exhibits tremendous application values in many fields.

  14. Glow discharge electrolysis plasma initiated preparation of temperature/pH dual sensitivity reed hemicellulose-based hydrogels.

    PubMed

    Zhang, Wenming; Zhu, Sha; Bai, Yunping; Xi, Ning; Wang, Shaoyang; Bian, Yang; Li, Xiaowei; Zhang, Yucang

    2015-05-20

    The temperature/pH dual sensitivity reed hemicellulose-based hydrogels have been prepared through glow discharge electrolysis plasma (GDEP). The effect of different discharge voltages on the temperature and pH response performance of reed hemicellulose-based hydrogels was inspected, and the formation mechanism, deswelling behaviors of reed hemicellulose-based hydrogels were also discussed. At the same time, infrared spectroscopy (FT-IR), scanning differential thermal analysis (DSC) and scanning electron microscope (SEM) were adopted to characterize the structure, phase transformation behaviors and microstructure of hydrogels. It turned out to be that all reed hemicellulose-based hydrogels had a double sensitivity to temperature and pH, and their phase transition temperatures were all approximately 33 °C, as well as the deswelling dynamics met the first model. In addition, the hydrogel (TPRH-3), under discharge voltage 600 V, was more sensitive to temperature and pH and had higher deswelling ratio.

  15. Dual band metamaterial perfect absorber based on Mie resonances

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Lan, Chuwen; Bi, Ke; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-08-01

    We numerically and experimentally demonstrated a polarization insensitive dual-band metamaterial perfect absorber working in wide incident angles based on the two magnetic Mie resonances of a single dielectric "atom" with simple structure. Two absorption bands with simulated absorptivity of 99% and 96%, experimental absorptivity of 97% and 94% at 8.45 and 11.97 GHz were achieved due to the simultaneous magnetic and electric resonances in dielectric "atom" and copper plate. Mie resonances of dielectric "atom" provide a simple way to design metamaterial perfect absorbers with high symmetry.

  16. Ophthalmic Uses of a Thiol-Modified Hyaluronan-Based Hydrogel

    PubMed Central

    Wirostko, Barbara; Mann, Brenda K.; Williams, David L.; Prestwich, Glenn D.

    2014-01-01

    Significance: Hyaluronic acid (HA, or hyaluronan) is a ubiquitous naturally occurring polysaccharide that plays a role in virtually all tissues in vertebrate organisms. HA-based hydrogels have wound-healing properties, support cell delivery, and can deliver drugs locally. Recent Advances: A few HA hydrogels can be customized for composition, physical form, and biomechanical properties. No clinically approved HA hydrogel allows for in vivo crosslinking on administration, has a tunable gelation time to meet wound-healing needs, or enables drug delivery. Recently, a thiolated carboxymethyl HA (CMHA-S) was developed to produce crosslinked hydrogels, sponges, and thin films. CMHA-S can be crosslinked with a thiol-reactive crosslinker or by oxidative disulfide bond formation to form hydrogels. By controlled crosslinking, the shape and form of this material can be manipulated. These hydrogels can be subsequently lyophilized to form sponges or air-dried to form thin films. CMHA-S films, liquids, and gels have been shown to be effective in vivo for treating various injuries and wounds in the eye in veterinary use, and are in clinical development for human use. Critical Issues: Better clinical therapies are needed to treat ophthalmic injuries. Corneal wounds can be treated using this HA-based crosslinked hydrogel. CMHA-S biomaterials can help heal ocular surface defects, can be formed into a film to deliver drugs for local ocular drug delivery, and could deliver autologous limbal stem cells to treat extreme ocular surface damage associated with limbal stem cell deficiencies. Future Directions: This CMHA-S hydrogel increases the options that could be available for improved ocular wound care, healing, and regenerative medicine. PMID:25371853

  17. pH-sensitive Itaconic acid based polymeric hydrogels for dye removal applications.

    PubMed

    Sakthivel, M; Franklin, D S; Guhanathan, S

    2016-12-01

    A series of Itaconic Acid (IA) based pH-sensitive polymeric hydrogels were synthesized by condensation polymerization of Itaconic Acid (IA) with Ethylene Glycol (EG) in the presence of an acid medium resulted into pre-polymer. Further, pre-polymer were co-polymerized with Acrylic Acid (AA) through free radical polymerization using Potassium persulphate (KPS). The structural and surface morphological characterizations of the synthesized hydrogels were studied using FT-IR spectroscopy and Scanning Electron Microscope (SEM) respectively. The swelling and swelling equilibrium were performed at varies pH (4.0-10.0). Further, the effects of IA, EG and AA on swelling properties have also been investigated. Thermal stability of synthesized hydrogels have been investigated by TGA, DTA and DSC. The synthesized hydrogels have shown good ability to uptake a Cationic dye. The Methylene blue has been chosen as a model cationic dye. The results of dye removal using IA hydrogels found to have excellent dye removal capacity. Such kind of IA based hydrogels may be recommended for eco-friendly environmental application. viz., removal of dyes and metal ions and sewage water treatment, purification of water etc.

  18. Responsive small molecular hydrogels based on adamantane-peptides for cell culture.

    PubMed

    Yang, Cuihong; Li, Dongxia; Liu, Zheng; Hong, Ge; Zhang, Jun; Kong, Deling; Yang, Zhimou

    2012-01-12

    The development of responsive small molecular hydrogels that can be applied for recovery of cells postculture attract extensive interests for researchers in fields of cell biology, stem cell differentiation, and tissue engineering. We report in this study several responsive small molecular hydrogels based on adamantane-peptides whose gel to clear solution phase transition can be achieved by addition of β-cyclodextrin (β-CD) derivatives. The small molecular hydrogels are formed by our recently developed method of disulfide bond cleavage by glutathione (GSH). Mouse fibroblast 3T3 cells attach and grow well at the surface of hydrogels. Furthermore, 3T3 cells postculture can be recovered from the gels by the addition of a β-CD derivative due to formation of clear solutions by the adamantane-β-CD interaction. The culture on hydrogels and recovery process do not cause obvious effects on behaviors of 3T3 cells. The results shown in this study indicate that small molecular hydrogels based on adamantane-peptides have great potentials in research fields where further analysis of cells is needed.

  19. Formulation and evaluation of microemulsion-based hydrogel for topical delivery

    PubMed Central

    Sabale, Vidya; Vora, Sejal

    2012-01-01

    Background: The purpose of this study was to develop microemulsion-based hydrogel formulation for topical delivery of bifonazole with an objective to increase the solubility and skin permeability of the drug. Materials and Methods: Oleic acid was screened as the oil phase of microemulsions, due to a good solubilizing capacity of the microemulison systems. The pseudo-ternary phase diagrams for microemulsion regions were constructed using oleic acid as the oil, Tween 80 as the surfactant and isopropyl alcohol (IPA) as the cosurfactant. Various microemulsion formulations were prepared and optimized by 32 factorial design on the basis of percentage (%) transmittance, globule size, zeta potential, drug release, and skin permeability. The abilities of various microemulsions to deliver bifonazole through the skin were evaluated ex vivo using Franz diffusion cells fitted with rat skins. The Hydroxy Propyl Methyl Cellulose (HPMC) K100 M as a gel matrix was used to construct the microemulsion-based hydrogel for improving the viscosity of microemulsion for topical administration. The optimized microemulsion-based hydrogel was evaluated for viscosity, spreadability, skin irritancy, skin permeability, stability, and antifungal activity by comparing it with marketed bifonazole cream. Results: The mechanism of drug release from microemulsion-based hydrogel was observed to follow zero order kinetics. The studied optimized microemulsion-based hydrogel showed a good stability over the period of 3 months. Average globule size of optimized microemulsion (F5) was found to be 18.98 nm, zeta potential was found to be -5.56 mv, and permeability of drug from microemulsion within 8 h was observed 84%. The antifungal activity of microemulsion-based hydrogel was found to be comparable with marketed cream. Conclusion: The results indicate that the studied microemulsion-based hydrogel (F5) has a potential for sustained action of drug release and it may act as promising vehicle for topical

  20. Cell-adhesive and mechanically tunable glucose-based biodegradable hydrogels.

    PubMed

    Shin, Hyeongho; Nichol, Jason W; Khademhosseini, Ali

    2011-01-01

    The development of materials with biomimetic mechanical and biological properties is of great interest for regenerative medicine applications. In particular, hydrogels are a promising class of biomaterials due to their high water content, which mimics that of natural tissues. We have synthesized a hydrophilic biodegradable polymer, designated poly(glucose malate)methacrylate (PGMma), which is composed of glucose and malic acid, commonly found in the human metabolic system. This polymer is made photocrosslinkable by the incorporation of methacrylate groups. The resulting properties of the hydrogels can be tuned by altering the reacting ratio of the starting materials, the degree of methacrylation, and the polymer concentration of the resultant hydrogel. Hydrogels exhibited compressive moduli ranging from 1.8 ± 0.4 kPa to 172.7 ± 36 kPa with compressive strain at failure from 37.5 ± 0.9% to 61.2 ± 1.1%, and hydration by mass ranging from 18.7 ± 0.5% to 114.1 ± 1.3%. PGMma hydrogels also showed a broad range of degradation rates and were cell-adhesive, enabling the spreading of adherent cells. Overall, this work introduces a class of cell-adhesive, mechanically tunable and biodegradable glucose-based hydrogels that may be useful for various tissue engineering and cell culture applications.

  1. Ionic starch-based hydrogels for the prevention of nonspecific protein adsorption.

    PubMed

    Wang, Jinmei; Sun, Hong; Li, Junjie; Dong, Dianyu; Zhang, Yabin; Yao, Fanglian

    2015-03-06

    Non-fouling materials bind water molecules via either hydrogen bonding or ionic solvation to form a hydration layer which is responsible for their resistance to protein adsorption. Three ionic starch-based polymers, namely a cationic starch (C-Starch), an anionic starch (A-Starch) and a zwitterionic starch (Z-Starch), were synthesized via etherification reactions to incorporate both hydrogen bonding and ionic solvation hydration groups into one molecule. Further, C-, A- and Z-Starch hydrogels were prepared via chemical crosslinking. The non-fouling properties of these hydrogels were tested with different proteins in solutions with different ionic strengths. The C-Starch hydrogel had low protein resistance at all ionic strengths; the A-Starch hydrogel resisted protein adsorption at ionic strengths of more than 10mM; and the Z-Starch hydrogel resisted protein adsorption at all ionic strengths. In addition, the A- and Z-Starch hydrogels both resisted cell adhesion. This work provides a new path for developing non-fouling materials using the integration of polysaccharides with anionic or zwitterionic moieties to regulate the protein resistance of materials.

  2. Hyaluronic Acid-Based Hydrogels: from a Natural Polysaccharide to Complex Networks

    PubMed Central

    Xu, Xian; Jha, Amit K.; Harrington, Daniel A.; Farach-Carson, Mary C.; Jia, Xinqiao

    2012-01-01

    Hyaluronic acid (HA) is one of nature's most versatile and fascinating macromolecules. Being an essential component of the natural extracellular matrix (ECM), HA plays an important role in a variety of biological processes. Inherently biocompatible, biodegradable and non-immunogenic, HA is an attractive starting material for the construction of hydrogels with desired morphology, stiffness and bioactivity. While the interconnected network extends to the macroscopic level in HA bulk gels, HA hydrogel particles (HGPs, microgels or nanogels) confine the network to microscopic dimensions. Taking advantage of various scaffold fabrication techniques, HA hydrogels with complex architecture, unique anisotropy, tunable viscoelasticity and desired biologic outcomes have been synthesized and characterized. Physical entrapment and covalent integration of hydrogel particles in a secondary HA network give rise to hybrid networks that are hierarchically structured and mechanically robust, capable of mediating cellular activities through the spatial and temporal presentation of biological cues. This review highlights recent efforts in converting a naturally occurring polysaccharide to drug releasing hydrogel particles, and finally, complex and instructive macroscopic networks. HA-based hydrogels are promising materials for tissue repair and regeneration. PMID:22419946

  3. Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel.

    PubMed

    Ahn, Yumi; Lee, Hyungjin; Lee, Donghwa; Lee, Youngu

    2014-01-01

    We successfully fabricated silver nanowire (AgNW)-based microelectrodes on various substrates such as a glass and polydimethylsiloxane by using a photolithographic process for the first time. The AgNW-based microelectrodes exhibited excellent electrical conductivity and mechanical flexibility. We also demonstrated the direct transfer process of AgNW-based microelectrodes from a glass to a biocompatible polyacrylamide-based hydrogel. The AgNW-based microelectrodes on the biocompatible hydrogel showed excellent electrical performance. Furthermore, they showed great mechanical flexibility as well as superior stability under wet conditions. We anticipate that the AgNW-based microelectrodes on biocompatible hydrogel substrates can be a promising platform for realization of practical bioelectronics devices.

  4. Design of Responsive Peptide-based Hydrogels as Therapeutics

    NASA Astrophysics Data System (ADS)

    Schneider, Joel

    2008-03-01

    Hydrogels composed of self-assembled peptides have been designed to allow minimally invasive delivery of cells in-vivo. These peptides undergo sol-gel phase transitions in response to biological media enabling the three-dimensional encapsulation of cells. Peptides are designed such that when dissolved in aqueous solution, exist in an ensemble of random coil conformations rendering them fully soluble. The addition of an exogenous stimulus results in peptide folding into beta-hairpin conformation. This folded structure undergoes rapid self-assembly into a highly crosslinked hydrogel network whose nanostructure is defined and controllable. This mechanism, which links intramolecular peptide folding to self-assembly, allows temporally resolved material formation. In general, peptides can be designed to fold and assemble affording hydrogel in response to changes in pH or ionic strength, the addition of heat or even light. In addition to these stimuli, DMEM cell culture media is able to initiate folding and consequent self-assembly. DMEM-induced gels are cytocompatible towards NIH 3T3 murine fibroblasts, mesenchymal stem cells, hepatocytes, osteoblasts and chondrocytes. As an added bonus, many of these hydrogels possess broad spectrum antibacterial activity suggesting that adventitious bacterial infections that may occur during surgical manipulations and after implantation can be greatly reduced. Lastly, when hydrogelation is triggered in the presence of cells, gels become impregnated and can serve as a delivery vehicle. A unique characteristic of these gels is that when an appropriate shear stress is applied, the gel will shear-thin, becoming an injectable low viscosity gel. However, after the application of shear has stopped, the material quickly self-heals producing a gel with mechanical rigidity nearly identical to the original hydrogel. This attribute allows cell-impregnated gels to be delivered to target tissues via syringe where they quickly recover complementing

  5. Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer.

    PubMed

    Dong, Yixiao; Hassan, Waqar U; Kennedy, Robert; Greiser, Udo; Pandit, Abhay; Garcia, Yolanda; Wang, Wenxin

    2014-05-01

    Hydrogel dressings have been widely used for wound management due to their ability to maintain a hydrated wound environment, restore the skin's physical barrier and facilitate regular dressing replacement. However, the therapeutic functions of standard hydrogel dressings are restricted. In this study, an injectable hybrid hydrogel dressing system was prepared from a polyethylene glycol (PEG)-based thermoresponsive hyperbranched multiacrylate functional copolymer and thiol-modified hyaluronic acid in combination with adipose-derived stem cells (ADSCs). The cell viability, proliferation and metabolic activity of the encapsulated ADSCs were studied in vitro, and a rat dorsal full-thickness wound model was used to evaluate this bioactive hydrogel dressing in vivo. It was found that long-term cell viability could be achieved for both in vitro (21days) and in vivo (14days) studies. With ADSCs, this hydrogel system prevented wound contraction and enhanced angiogenesis, showing the potential of this system as a bioactive hydrogel dressing for wound healing.

  6. A composite hydrogels-based photonic crystal multi-sensor

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Zhu, Zhigang; Zhu, Xiangrong; Yu, Wei; Liu, Mingju; Ge, Qiaoqiao; Shih, Wei-Heng

    2015-04-01

    A facile route to prepare stimuli-sensitive poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) gelated crystalline colloidal array photonic crystal material was developed. PVA was physically gelated by utilizing an ethanol-assisted method, the resulting hydrogel/crystal composite film was then functionalized with PAA to form an interpenetrating hydrogel film. This sensor film is able to efficiently diffract the visible light and rapidly respond to various environmental stimuli such as solvent, pH and strain, and the accompanying structural color shift can be repeatedly changed and easily distinguished by naked eye.

  7. Chitosan-based hydrogel for dye removal from aqueous solutions: Optimization of the preparation procedure

    NASA Astrophysics Data System (ADS)

    Gioiella, Lucia; Altobelli, Rosaria; de Luna, Martina Salzano; Filippone, Giovanni

    2016-05-01

    The efficacy of chitosan-based hydrogels in the removal of dyes from aqueous solutions has been investigated as a function of different parameters. Hydrogels were obtained by gelation of chitosan with a non-toxic gelling agent based on an aqueous basic solution. The preparation procedure has been optimized in terms of chitosan concentration in the starting solution, gelling agent concentration and chitosan-to-gelling agent ratio. The goal is to properly select the material- and process-related parameters in order to optimize the performances of the chitosan-based dye adsorbent. First, the influence of such factors on the gelling process has been studied from a kinetic point of view. Then, the effects on the adsorption capacity and kinetics of the chitosan hydrogels obtained in different conditions have been investigated. A common food dye (Indigo Carmine) has been used for this purpose. Noticeably, although the disk-shaped hydrogels are in the bulk form, their adsorption capacity is comparable to that reported in the literature for films and beads. In addition, the bulk samples can be easily separated from the liquid phase after the adsorption process, which is highly attractive from a practical point of view. Compression tests reveal that the samples do not breakup even after relatively large compressive strains. The obtained results suggest that the fine tuning of the process parameters allows the production of mechanical resistant and highly adsorbing chitosan-based hydrogels.

  8. Hydrogels Constructed from Engineered Proteins.

    PubMed

    Li, Hongbin; Kong, Na; Laver, Bryce; Liu, Junqiu

    2016-02-24

    Due to their various potential biomedical applications, hydrogels based on engineered proteins have attracted considerable interest. Benefitting from significant progress in recombinant DNA technology and protein engineering/design techniques, the field of protein hydrogels has made amazing progress. The latest progress of hydrogels constructed from engineered recombinant proteins are presented, mainly focused on biorecognition-driven physical hydrogels as well as chemically crosslinked hydrogels. The various bio-recognition based physical crosslinking strategies are discussed, as well as chemical crosslinking chemistries used to engineer protein hydrogels, and protein hydrogels' various biomedical applications. The future perspectives of this fast evolving field of biomaterials are also discussed.

  9. Impedance spectroscopy for monosaccharides detection using responsive hydrogel modified paper-based electrodes.

    PubMed

    Daikuzono, C M; Delaney, C; Tesfay, H; Florea, L; Oliveira, O N; Morrin, A; Diamond, D

    2017-03-27

    Herein we present a novel sensor for the detection of monosaccharides (e.g. glucose, fructose) in solution, using electrical impedance spectroscopy. The sensor is based on carbon interdigitated electrodes, printed on paper using screen printing. The surface of the electrodes was modified with a thin layer of hydrogel containing acrylamide copolymerised with 20 mol% 3-(Acrylamido)phenylboronic acid (PBA). It was observed that the hydrogel layers containing 20 mol% PBA swell considerably in the presence of glucose and fructose. This in turn changes the measured impedance across the electrodes, making it a suitable sensor for the quantitative detection of saccharides. We investigated the impedance and capacitance variations with different concentrations of glucose and fructose (0-5 mM) in aqueous phosphate buffer solutions. Variations in impedance were attributed to changes in the dielectric properties of the hydrogel under an applied electric field, due to swelling of the hydrogel layer induced by uptake and binding of sugar molecules to the boronate species within the gel. Impedance measurements at 1 kHz demonstrated that hydrogel swelling leads to an increased mobility of ions within the swollen hydrogel layer. The impedance decreased with increasing sugar concentration and the relative capacitance curves are markedly different for fructose and glucose, as the hydrogel exhibits greater swelling in the presence of fructose than glucose over the same concentration range. As the proposed sensor was shown to be suitable for the detection of glucose at concentration levels found in human sweat, future work will focus on the incorporation of these modified paper-based electrodes into wearable skin patches for non-invasive sugar monitoring in sweat.

  10. Modular Degradable Hydrogels Based on Thiol-Reactive Oxanorbornadiene Linkers

    PubMed Central

    2016-01-01

    Oxanorbornadiene dicarboxylate (OND) reagents are potent Michael acceptors, the adducts of which undergo fragmentation by retro-Diels–Alder reaction at rates that vary with the substitution pattern on the OND moiety. Rapid conjugate addition between thiol-terminated tetravalent PEG and multivalent ONDs yielded self-supporting hydrogels within 1 min at physiological temperature and pH. Erosion of representative hydrogel formulations occurred with predictable and pH-independent rates on the order of minutes to weeks. These materials could be made non-degradable by epoxidation of the OND linkers without slowing gelation. Hydrogels prepared with OND linkers of equal valence had comparable physical properties, as determined by equilibrium swelling behavior, indicating similar internal network structure. Diffusion and release of entrained cargo varied with both the rate of degradation of PEG-OND hydrogels and the hydrodynamic radius of the entrained species. These results highlight the utility of OND linkers in the preparation of degradable network materials with potential applications in sustained release. PMID:25871459

  11. Hyaluronic acid-based hydrogel enhances neuronal survival in spinal cord slice cultures from postnatal mice.

    PubMed

    Schizas, Nikos; Rojas, Ramiro; Kootala, Sujit; Andersson, Brittmarie; Pettersson, Jennie; Hilborn, Jons; Hailer, Nils P

    2014-02-01

    Numerous biomaterials based on extracellular matrix-components have been developed. It was our aim to investigate whether a hyaluronic acid-based hydrogel improves neuronal survival and tissue preservation in organotypic spinal cord slice cultures. Organotypic spinal cord slice cultures were cultured for 4 days in vitro (div), either on hyaluronic acid-based hydrogel (hyaluronic acid-gel group), collagen gel (collagen group), directly on polyethylene terephthalate membrane inserts (control group), or in the presence of soluble hyaluronic acid (soluble hyaluronic acid group). Cultures were immunohistochemically stained against neuronal antigen NeuN and analyzed by confocal laser scanning microscopy. Histochemistry for choline acetyltransferance, glial fibrillary acidic protein, and Griffonia simplicifolia isolectin B4 followed by quantitative analysis was performed to assess motorneurons and different glial populations. Confocal microscopic analysis showed a 4-fold increase in the number of NeuN-positive neurons in the hyaluronic acid-gel group compared to both collagen (p < 0.001) and control groups (p < 0.001). Compared to controls, organotypic spinal cord slice cultures maintained on hyaluronic acid-based hydrogel showed 5.9-fold increased survival of choline acetyltransferance-positive motorneurons (p = 0.008), 2-fold more numerous resting microglial cells in the white matter (p = 0.031), and a 61.4% reduction in the number of activated microglial cells within the grey matter (p = 0.05). Hyaluronic acid-based hydrogel had a shear modulus (G') of ≈1200 Pascals (Pa), which was considerably higher than the ≈25 Pa measured for collagen gel. Soluble hyaluronic acid failed to improve tissue preservation. In conclusion, hyaluronic acid-based hydrogel improves neuronal and - most notably - motorneuron survival in organotypic spinal cord slice cultures and microglial activation is limited. The positive effects of hyaluronic acid-based hydrogel

  12. Antimicrobial properties of a chitosan dextran-based hydrogel for surgical use.

    PubMed

    Aziz, Manal A; Cabral, Jaydee D; Brooks, Heather J L; Moratti, Stephen C; Hanton, Lyall R

    2012-01-01

    A chitosan dextran-based (CD) hydrogel, developed for use in endoscopic sinus surgery, was tested for antimicrobial activity in vitro against a range of pathogenic microorganisms. The microdilution technique was used to determine minimum inhibitory, minimum bactericidal, and minimum fungicidal concentrations. In addition, the time-kill efficacy of CD hydrogel was determined for two bacterial species. Scanning and transmission electron microscopy were carried out to elucidate the antimicrobial mechanism of this compound. CD hydrogel was found to be effective against Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, and Clostridium perfringens at its surgical concentration of 50,000 mg/liter. Minimum bactericidal concentrations ranged from 2,000 to 50,000 mg/liter. Dextran aldehyde (DA) was found to be the antimicrobial component of the CD hydrogel with MBC ranging from 2,000 to 32,000 mg/liter. S. aureus appeared to be killed at a slightly faster rate than E. coli. Candida albicans and Pseudomonas aeruginosa were more resistant to CD hydrogel and DA. Scanning and transmission electron microscopy of E. coli and S. aureus incubated with CD hydrogel and DA alone revealed morphological damage, disrupted cell walls, and loss of cytosolic contents, compatible with the proposed mode of action involving binding to cell wall proteins and disruption of peptide bonds. Motility and chemotaxis tests showed E. coli to be inhibited when incubated with DA. The antibacterial activity of CD hydrogel may make it a useful postsurgical aid at other body sites, especially where there is a risk of Gram-positive infections.

  13. A smart membrane based on an antigen-responsive hydrogel.

    PubMed

    Zhang, Rongsheng; Bowyer, Adrian; Eisenthal, Robert; Hubble, John

    2007-07-01

    Hydrogel membranes have been fabricated that incorporate antibody/antigen moieties. The permeability of large solutes through these membranes is dependent on the presence of soluble antigen that can compete with the internal interactions between antibody and antigen leading to an increase in gel mesh size. Specifically, the membrane's structure is based on a dextran backbone grafted with a fluorescein isothiocyanate (FITC) antigen and a sheep anti-FITC IgG antibody. The backbone is covalently cross-linked by conjugated divinyl sulfone (DVS) groups. The gel structure is additionally stabilized by affinity crosslinks formed by biospecific interactions between the bound IgG and FITC. FTIR spectra of the gel are consistent with formation of covalent bonds between cysteine groups in the IgG and DVS groups in the dextran. Results obtained using isothermal titration calorimetry (ITC) confirmed the competitive interaction binding between IgG-FITC-dextran and free sodium fluorescein at pH 5.0. Scanning electron microscopy (SEM) of samples prepared using cryofixation and cryofracturing techniques showed that observed changes in permeability correlate with free fluorescein-dependent structural changes in the gel. Three-dimensional images obtained from confocal laser scanning microscopy show that these changes occur throughout the gel and indicate that SEM results are not artifacts of sample preparation. The permeability of these gels, as shown by blue-dextran (12 kDa) diffusion, increases in response to the presence of free fluorescein of the external medium, which causes competitive displacement of the affinity cross-links. Sequential addition and removal of sodium fluorescein showed that these permeability changes are reversible.

  14. Wideband long wave infrared metamaterial absorbers based on silicon nitride

    NASA Astrophysics Data System (ADS)

    Üstün, Kadir; Turhan-Sayan, Gönül

    2016-11-01

    In this paper, we present silicon nitride metamaterial absorber designs that accomplish large bandwidth and high absorption in the long wave infrared (LWIR) region. These designs are based on the metal-insulator-metal topology, insulator (silicon nitride), and the top metal (aluminum) layers are optimized to obtain high absorptance values in large bandwidths, for three different silicon nitride based absorber structures. The absorption spectrum of the final design reaches absorptance values above 90% in the wavelength interval between 8.07 μm and 11.97 μm, and above 80% in the wavelength interval between 7.9 μm and 14 μm, in the case of normal incidence. The difficulty in the design process of such absorbers stems from the highly dispersive behavior of silicon nitride in the LWIR region. On the other hand, silicon nitride is a widely used material in microbolometers, and accomplishing wide band absorption in silicon nitride is crucial in this regard. Therefore, this study will pave the way for more efficient infrared imaging devices, which are crucial for defense and security systems. Additionally, such designs may also find applications in thermal emitters.

  15. Poly(amido-amine)-based hydrogels with tailored mechanical properties and degradation rates for tissue engineering.

    PubMed

    Martello, Federico; Tocchio, Alessandro; Tamplenizza, Margherita; Gerges, Irini; Pistis, Valentina; Recenti, Rossella; Bortolin, Monica; Del Fabbro, Massimo; Argentiere, Simona; Milani, Paolo; Lenardi, Cristina

    2014-03-01

    Poly(amido-amine) (PAA) hydrogels containing the 2,2-bisacrylamidoacetic acid-4-amminobutyl guanidine monomeric unit have a known ability to enhance cellular adhesion by interacting with the arginin-glycin-aspartic acid (RGD)-binding αVβ3 integrin, expressed by a wide number of cell types. Scientific interest in this class of materials has traditionally been hampered by their poor mechanical properties and restricted range of degradation rate. Here we present the design of novel biocompatible, RGD-mimic PAA-based hydrogels with wide and tunable degradation rates as well as improved mechanical and biological properties for biomedical applications. This is achieved by radical polymerization of acrylamide-terminated PAA oligomers in both the presence and absence of 2-hydroxyethylmethacrylate. The degradation rate is found to be precisely tunable by adjusting the PAA oligomer molecular weight and acrylic co-monomer concentration in the starting reaction mixture. Cell adhesion and proliferation tests on Madin-Darby canine kidney epithelial cells show that PAA-based hydrogels have the capacity to promote cell adhesion up to 200% compared to the control. Mechanical tests show higher compressive strength of acrylic chain containing hydrogels compared to traditional PAA hydrogels.

  16. Gelatin-based hydrogel for vascular endothelial growth factor release in peripheral nerve tissue engineering.

    PubMed

    Gnavi, S; di Blasio, L; Tonda-Turo, C; Mancardi, A; Primo, L; Ciardelli, G; Gambarotta, G; Geuna, S; Perroteau, I

    2017-02-01

    Hydrogels are promising materials in regenerative medicine applications, due to their hydrophilicity, biocompatibility and capacity to release drugs and growth factors in a controlled manner. In this study, biocompatible and biodegradable hydrogels based on blends of natural polymers were used in in vitro and ex vivo experiments as a tool for VEGF-controlled release to accelerate the nerve regeneration process. Among different candidates, the angiogenic factor VEGF was selected, since angiogenesis has been long recognized as an important and necessary step during tissue repair. Recent studies have pointed out that VEGF has a beneficial effect on motor neuron survival and Schwann cell vitality and proliferation. Moreover, VEGF administration can sustain and enhance the growth of regenerating peripheral nerve fibres. The hydrogel preparation process was optimized to allow functional incorporation of VEGF, while preventing its degradation and denaturation. VEGF release was quantified through ELISA assay, whereas released VEGF bioactivity was validated in human umbilical vein endothelial cells (HUVECs) and in a Schwann cell line (RT4-D6P2T) by assessing VEGFR-2 and downstream effectors Akt and Erk1/2 phosphorylation. Moreover, dorsal root ganglia explants cultured on VEGF-releasing hydrogels displayed increased neurite outgrowth, providing confirmation that released VEGF maintained its effect, as also confirmed in a tubulogenesis assay. In conclusion, a gelatin-based hydrogel system for bioactive VEGF delivery was developed and characterized for its applicability in neural tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Development and characterization of a new hydrogel based on galactomannan and κ-carrageenan.

    PubMed

    Soares, Paulo A G; de Seixas, José R P C; Albuquerque, Priscilla B S; Santos, Gustavo R C; Mourão, Paulo A S; Barros, Wilson; Correia, Maria T S; Carneiro-da-Cunha, Maria G

    2015-12-10

    A new hydrogel based on two natural polysaccharides was prepared in aqueous medium with 1.7% (w/v) galactomannan (from Cassia grandis seeds) and different concentrations of κ-carrageenan (0.3, 0.4 and 0.5%w/v), CaCl2 (0.0, 0.1 and 0.2M) and pH (5.0, 5.5 and 6.0), using a full factorial design based on rheological parameters. The best formulation was obtained with 1.7% (w/v) galactomannan and 0.5% (w/v) κ-carrageenan, containing 0.2M CaCl2 at pH 5.0. Nuclear magnetic resonance and scanning electron microscopy where used in order to characterize the hydrogel formulation. A shelf life study was carried out with this formulation along 90 days-period of storage at 4 °C, evaluating pH, color, microbial contamination and rheology. This hydrogel showed no significant changes in pH, no microbial contamination and became more translucent along the aging. Analyses by nuclear magnetic resonance and rheology showed a larger organization of the polysaccharides in the hydrogel matrix. The results demonstrated that this hydrogel was stable with possible applications in medical and cosmetic fields.

  18. In vitro biocompatibility and cellular interactions of a chitosan/dextran-based hydrogel for postsurgical adhesion prevention.

    PubMed

    Aziz, Manal A; Cabral, Jaydee D; Brooks, Heather J L; McConnell, Michelle A; Fitzpatrick, Clare; Hanton, Lyall R; Moratti, Stephen C

    2015-02-01

    In this paper, we report the in vitro biocompatibility and cellular interactions of a chitosan/dextran-based (CD) hydrogel and its components as determined by mutagenicity, cytotoxicity, cytokine/chemokine response, and wound healing assays. The CD hydrogel, developed for postsurgical adhesion prevention in ear, nose, and throat surgeries, was shown by previously published experiments in animal and human trials to be effective. The hydrogel was synthesized from the reaction between succinyl chitosan (SC) and oxidized dextran (DA). Cytotoxicity was assessed in an xCELLigence system and cytokine/chemokine responses were measured by ELISA in human macrophage, nasopharyngeal epithelial, and dermal fibroblast cells. A wound healing model utilized nasopharyngeal epithelial cells. CD hydrogel and DA were nonmutagenic in the Ames test. CD hydrogel showed moderate cytotoxicity for the cell lines, DA being the cytotoxic component. Some inhibition of wound healing occurred due to the cytotoxic nature of DA. Cells cultured with CD hydrogel showed no increase in TNF-α, IL-10, and IL-8 levels. It is hypothesized that the cytotoxicity of DA is moderated when reacted with SC and that CD hydrogel inhibits unwanted fibroblastic invasion preventing scarring and adhesions. Together with the previously published human and animal trial data, the results indicate CD hydrogel is biocompatible in the setting of endoscopic sinus surgery. This work represents the first study of CD hydrogel with human cell lines and provides essential information for its future application in biomedicine.

  19. In Vivo Imaging of the Stability and Sustained Cargo Release of an Injectable Amphipathic Peptide-Based Hydrogel.

    PubMed

    Oyen, Edith; Martin, Charlotte; Caveliers, Vicky; Madder, Annemieke; Van Mele, Bruno; Hoogenboom, Richard; Hernot, Sophie; Ballet, Steven

    2017-02-20

    Hydrogels are promising materials for biomedical applications such as tissue engineering and controlled drug release. In the past two decades, the peptide hydrogel subclass has attracted an increasing level of interest from the scientific community because of its numerous advantages, such as biocompatibility, biodegradability, and, most importantly, injectability. Here, we report on a hydrogel consisting of the amphipathic hexapeptide H-FEFQFK-NH2, which has previously shown promising in vivo properties in terms of releasing morphine. In this study, the release of a small molecule, a peptide, and a protein cargo as representatives of the three major drug classes is directly visualized by in vivo fluorescence and nuclear imaging. In addition, the in vivo stability of the peptide hydrogel system is investigated through the use of a radiolabeled hydrogelator sequence. Although it is shown that the hydrogel remains present for several days, the largest decrease in volume takes place within the first 12 h of subcutaneous injection, which is also the time frame wherein the cargos are released. Compared to the situation in which the cargos are injected in solution, a prolonged release profile is observed up to 12 h, showing the potential of our hydrogel system as a scaffold for controlled drug delivery. Importantly, this study elucidates the release mechanism of the peptide hydrogel system that seems to be based on erosion of the hydrogel providing a generally applicable controlled release platform for small molecule, peptide, and protein drugs.

  20. Synthesis and characterization of enzymatically biodegradable PEG and peptide-based hydrogels prepared by click chemistry.

    PubMed

    van Dijk, Maarten; van Nostrum, Cornelus F; Hennink, Wim E; Rijkers, Dirk T S; Liskamp, Rob M J

    2010-06-14

    Herein we describe the synthesis and rheological characterization of a series of enzymatically sensitive PEG and peptide-based hydrogels by the Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction. The hydrogels were synthesized by a combination of alkyne-functionalized star-shaped PEG molecules (two 4-armed PEGs with M(w) 10 and 20 kDa, respectively, and one 8-armed PEG of 20 kDa) and the protease-sensitive bis-azido peptide, N(alpha)-(azido)-D-alanyl-phenylalanyl-lysyl-(2-azidoethyl)-amide (6) in the presence of CuSO(4) and sodium ascorbate in aqueous solution. The swelling ratio and the storage modulus (G') of the hydrogels could be tailored by several parameters, for example, the initial solid content of the hydrogel, the molecular weight of the PEG derivative, and by the architecture of the PEG molecule (4- versus 8-armed PEG derivative). The peptide sequence, D-Ala-Phe-Lys, was sensitive toward the proteases plasmin and trypsin to render the hydrogels biodegradable.

  1. Mechanical measurements of heterogeneity and length scale effects in PEG-based hydrogels

    PubMed Central

    Bush, Brian G.; Shapiro, Jenna M.; DelRio, Frank W.; Cook, Robert F.; Oyen, Michelle L.

    2015-01-01

    Colloidal-probe spherical indentation load-relaxation experiments with a probe radius of 3 μm are conducted on poly(ethylene glycol) (PEG) hydrogel materials to quantify their steady-state mechanical properties and time-dependent transport properties via a single experiment. PEG-based hydrogels are shown to be heterogeneous in both morphology and mechanical stiffness at this scale; a linear-harmonic interpolation of hyperelastic Mooney-Rivlin and Boussinesq flat-punch indentation models was used to describe the steady-state response of the hydrogels and determine upper and lower bounds for indentation moduli. Analysis of the transient load-relaxation response during displacement-controlled hold periods provides a means of extracting two time constants τ1 and τ2, where τ1 and τ2 are assigned to the viscoelastic and poroelastic properties, respectively. Large τ2 values at small indentation depths provide evidence of a non-equilibrium state characterized by a phenomenon that restricts poroelastic fluid flow through the material; for larger indentations, the variability in τ2 values decreases and pore sizes estimated from τ2 via indentation approach those measured via macroscopic swelling experiments. The contact probe methodology developed here provides a means of assessing hydrogel heterogeneity, including time-dependent mechanical and transport properties, and has potential implications in hydrogel biomedical and engineering applications. PMID:26255839

  2. Novel systems for tailored neurotrophic factor release based on hydrogel and resorbable glass hollow fibers.

    PubMed

    Novajra, G; Tonda-Turo, C; Vitale-Brovarone, C; Ciardelli, G; Geuna, S; Raimondo, S

    2014-03-01

    A novel system for the release of neurotrophic factor into a nerve guidance channel (NGC) based on resorbable phosphate glass hollow fibers (50P2O5-30CaO-9Na2O-3SiO2-3MgO-2.5K2O-2.5TiO2 mol%) in combination with a genipin-crosslinked agar/gelatin hydrogel (A/G_GP) is proposed. No negative effect on the growth of neonatal olfactory bulb ensheathing cell line (NOBEC) as well as on the expression of pro- and anti-apoptotic proteins was measured in vitro in the presence of fiber dissolution products in the culture medium. For the release studies, fluorescein isothiocyanate-dextran (FD-20), taken as growth factor model molecule, was solubilized in different media and introduced into the fiber lumen exploiting the capillary action. The fibers were filled with i) FD-20/phosphate buffered saline (PBS) solution, ii) FD-20/hydrogel solution before gelation and iii) hydrogel before gelation, subsequently lyophilized and then filled with the FD-20/PBS solution. The different strategies used for the loading of the FD-20 into the fibers resulted in different release kinetics. A slower release was observed with the use of A/G_GP hydrogel. At last, poly(ε-caprolactone) (PCL) nerve guides containing the hollow fibers and the hydrogel have been fabricated.

  3. Mechanical measurements of heterogeneity and length scale effects in PEG-based hydrogels.

    PubMed

    Bush, Brian G; Shapiro, Jenna M; DelRio, Frank W; Cook, Robert F; Oyen, Michelle L

    2015-09-28

    Colloidal-probe spherical indentation load-relaxation experiments with a probe radius of 3 μm are conducted on poly(ethylene glycol) (PEG) hydrogel materials to quantify their steady-state mechanical properties and time-dependent transport properties via a single experiment. PEG-based hydrogels are shown to be heterogeneous in both morphology and mechanical stiffness at this scale; a linear-harmonic interpolation of hyperelastic Mooney-Rivlin and Boussinesq flat-punch indentation models was used to describe the steady-state response of the hydrogels and determine upper and lower bounds for indentation moduli. Analysis of the transient load-relaxation response during displacement-controlled hold periods provides a means of extracting two time constants τ1 and τ2, where τ1 and τ2 are assigned to the viscoelastic and poroelastic properties, respectively. Large τ2 values at small indentation depths provide evidence of a non-equilibrium state characterized by a phenomenon that restricts poroelastic fluid flow through the material; for larger indentations, the variability in τ2 values decreases and pore sizes estimated from τ2via indentation approach those measured via macroscopic swelling experiments. The contact probe methodology developed here provides a means of assessing hydrogel heterogeneity, including time-dependent mechanical and transport properties, and has potential implications in hydrogel biomedical and engineering applications.

  4. Novel Injectable Pentablock Copolymer Based Thermoresponsive Hydrogels for Sustained Release Vaccines.

    PubMed

    Bobbala, Sharan; Tamboli, Viral; McDowell, Arlene; Mitra, Ashim K; Hook, Sarah

    2016-01-01

    The need for multiple vaccinations to enhance the immunogenicity of subunit vaccines may be reduced by delivering the vaccine over an extended period of time. Here, we report two novel injectable pentablock copolymer based thermoresponsive hydrogels made of polyethyleneglycol-polycaprolactone-polylactide-polycaprolactone-polyethyleneglycol (PEG-PCL-PLA-PCL-PEG) with varying ratios of polycaprolactone (PCL) and polylactide (PLA), as single shot sustained release vaccines. Pentablock copolymer hydrogels were loaded with vaccine-encapsulated poly lactic-co-glycolic acid nanoparticles (PLGA-NP) or with the soluble vaccine components. Incorporation of PLGA-NP into the thermoresponsive hydrogels increased the complex viscosity of the gels, lowered the gelation temperature, and minimized the burst release of antigen and adjuvants. The two pentablock hydrogels stimulated both cellular and humoral responses. The addition of PLGA-NP to the hydrogels sustained immune responses for up to 49 days. The polymer with a higher ratio of PCL to PLA formed a more rigid gel, induced stronger immune responses, and stimulated effective anti-tumor responses in a prophylactic melanoma tumor model.

  5. Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Senna, Magdy M.; Mostafa, Abo El-Khair B.; Mahdy, Sanna R.; El-Naggar, Abdel Wahab M.

    2016-11-01

    Blend hydrogels based on aqueous solutions of plasticized starch and different ratios of cellulose acetate (CA) and carboxymethyl cellulose (CMC) were prepared by electron beam irradiation (EB). The blends before and after EB irradiation were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The physico-chemical properties of blend hydrogels prepared by electron beam irradiation were improved compared to unirradiated blends.

  6. A Hydrogel-Based Tumor Model for the Evaluation of Nanoparticle-Based Cancer Therapeutics

    PubMed Central

    Xu, Xian; Sabanayagam, Chandran R.; Harrington, Daniel A.; Farach-Carson, Mary C.; Jia, Xinqiao

    2014-01-01

    Three-dimensional (3D) tissue-engineered tumor models have the potential to bridge the gap between monolayer cultures and patient-derived xenografts for the testing of nanoparticle (NP)-based cancer therapeutics. In this study, a hydrogel-derived prostate cancer (PCa) model was developed for the in vitro evaluation of doxorubicin (Dox)-loaded polymer NPs (Dox-NPs). The hydrogels were synthesized using chemically modified hyaluronic acid (HA) carrying acrylate groups (HA-AC) or reactive thiols (HA-SH). The crosslinked hydrogel networks exhibited an estimated pore size of 70-100 nm, similar to the spacing of the extracellular matrices (ECM) surrounding tumor tissues. LNCaP PCa cells entrapped in the HA matrices formed distinct tumor-like multicellular aggregates with an average diameter of 50 μm after 7 days of culture. Compared to cells grown on two-dimensional (2D) tissue culture plates, cells from the engineered tumoroids expressed significantly higher levels of multidrug resistance (MDR) proteins, including multidrug resistance protein 1 (MRP1) and lung resistance-related protein (LRP), both at the mRNA and the protein levels. Separately, Dox-NPs with an average diameter of 54 ± 1 nm were prepared from amphiphilic block copolymers based on poly(ethylene glycol) (PEG) and poly(ε-caprolactone) (PCL) bearing pendant cyclic ketals. Dox-NPs were able to diffuse through the hydrogel matrices, penetrate into the tumoroid and be internalized by LNCaP PCa cells through caveolae-mediated endocytosis and macropinocytosis pathways. Compared to 2D cultures, LNCaP PCa cells cultured as multicellular aggregates in HA hydrogel were more resistant to Dox and Dox-NPs treatments. Moreover, the NP-based Dox formulation could bypass the drug efflux function of MRP1, thereby partially reversing the resistance to free Dox in 3D cultures. Overall, the engineered tumor model has the potential to provide predictable results on the efficacy of NP-based cancer therapeutics. PMID:24447463

  7. Hydrogel-Based Controlled Delivery Systems for Articular Cartilage Repair

    PubMed Central

    Madry, Henning

    2016-01-01

    Delivery of bioactive factors is a very valuable strategy for articular cartilage repair. Nevertheless, the direct supply of such biomolecules is limited by several factors including rapid degradation, the need for supraphysiological doses, the occurrence of immune and inflammatory responses, and the possibility of dissemination to nontarget sites that may impair their therapeutic action and raise undesired effects. The use of controlled delivery systems has the potential of overcoming these hurdles by promoting the temporal and spatial presentation of such factors in a defined target. Hydrogels are promising materials to develop delivery systems for cartilage repair as they can be easily loaded with bioactive molecules controlling their release only where required. This review exposes the most recent technologies on the design of hydrogels as controlled delivery platforms of bioactive molecules for cartilage repair. PMID:27642587

  8. Synthesis of tunable hydrogels based on O-acetyl-galactoglucomannans from spruce.

    PubMed

    Markstedt, Kajsa; Xu, Wenyang; Liu, Jun; Xu, Chunlin; Gatenholm, Paul

    2017-02-10

    Hydrogels with tunable mechanical properties based on O-acetyl-galactoglucomannans (GGMs) from spruce functionalized with tyramine, a molecule containing crosslinkable phenolic groups, were prepared. Gel formation was induced by enzymatic crosslinking at the addition of horse radish peroxidase and hydrogen peroxide to the modified GGMs. The degree of substitution determined the hydrogels final properties, and was varied by TEMPO oxidation of GGM to a degree of oxidation from 10 to 60%. GGM and its derivatives were characterized by gas chromatography and high pressure size exclusion chromatography to analyze sugar composition and molar mass, respectively. Tyramine-conjugated GGM was evaluated by nuclear magnetic resonance, fourier transform infrared spectroscopy and elemental analysis. Measurements of moduli over time showed crosslinking within 20s and maximum stress of the prepared gels were compared by compression testing. Overall this system presents a cell friendly hydrogel from a renewable, low cost resource which could be applied in cell delivery, wound dressings, and biofabrication.

  9. Study on swelling behaviour of hydrogel based on acrylic acid and pectin from dragon fruit

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohd Fadzlanor; Lazim, Azwani Mat

    2014-09-01

    Biocompatible hydrogel based on acrylic acid (AA) and pectin was synthesized using gamma irradiation technique. AA was grafted onto pectin backbone that was extracted from dragon fruit under pH 3.5 and extracts and ethanol ratios (ER) 1:0.5. The optimum hydrogel system with high swelling capacity was obtained by varying the dose of radiation and ratio of pectin:AA. FTIR-ATR spectroscopy was used to verify the interaction while thermal properties were analyzed by TGA and DSC. Swelling studies was carried out in aqueous solutions with different pH values as to determine the pH sensitivity. The results show that the hydrogel with a ratio of 2:3 (pectin:AA) and 30 kGy radiation dose has the highest swelling properties at pH of 10.

  10. Electroconductive Hydrogel Based on Functional Poly(Ethylenedioxy Thiophene)

    PubMed Central

    2016-01-01

    Poly(ethylene dioxythiophene) with functional pendant groups bearing double bonds is synthesized and employed for the fabrication of electroactive hydrogels with advantageous characteristics: covalently cross-linked porous 3D scaffolds with notable swelling ratio, appropriate mechanical properties, electroactivity in physiological conditions, and suitability for proliferation and differentiation of C2C12 cells. This is a new approach for the fabrication of conductive engineered constructs. PMID:27656042

  11. Preparation and properties of photo-crosslinkable hydrogel based on photopolymerizable chitosan derivative.

    PubMed

    Qi, Zaiqian; Xu, Juan; Wang, Zhiliang; Nie, Jun; Ma, Guiping

    2013-02-01

    Photopolymerizable chitosan derivative was synthesized by chitosan and methyl acroloyl glycine (MAG). The chemical structures and physical properties were characterized by FT-IR, (1)H NMR, XRD and TGA. The thermal stability of chitosan derivative was lower than chitosan. The chitosan derivative was amorphous compared with the high degree crystallization of chitosan. The hydrogels were prepared based on chitosan derivative via photopolymerization with different concentrations of photoinitiator 2959. The surface of hydrogel showed porous network and the pore size distribution tended to become homogeneous with the increase of the concentration of 2959, while the swelling property decreased due to more crosslinking.

  12. Acrylamide-sepiolite based composite hydrogels for immobilization of invertase.

    PubMed

    Oztop, H Nursevin; Hepokur, Ceylan; Saraydin, Dursun

    2009-09-01

    Novel composite hydrogels, poly(acrylamide)-sepiolite (PAS), poly(acrylamide/acrylic acid)-sepiolite (PAAS), and poly(acrylamide/itaconic acid)-sepiolite (PAIS) were prepared and used for the immobilization of invertase. The parameters of equilibrium swelling, diffusional exponent, and diffusion coefficient of these hydrogels were calculated from swelling experiments. Invertase was immobilized onto PAS, PAAS, and PAIS and immobilized invertases (PASI, PAASI, and PAISI) were prepared. Optimum pH values for free invertase, PASI, PAASI, and PAISI are found to be 5, 5.5, 4.5, and 6, respectively, and the optimum temperatures were 30, 50, 50, and 35 degrees C for free invertase PASI, PAASI, and PAISI. It was found that K(m) values of free invertase, PASI, PAASI, and PAISI were 11.3, 41.0, 94.5, and 56.0 mM, respectively. V(max) values were 2 mumol/min for free invertase, 8.10 mumol/min for PASI, 1.30 mumol/min for PAASI, and 0.42 mumol/min for PAISI, respectively. The invertase immobilized hydrogels showed excellent, temperature, storage, and operational stability.

  13. Characterization of a Functional Hydrogel Layer on a Silicon-Based Grating Waveguide for a Biochemical Sensor

    PubMed Central

    Hong, Yoo-Seung; Kim, Jongseong; Sung, Hyuk-Kee

    2016-01-01

    We numerically demonstrated the characteristics of a functional hydrogel layer on a silicon-based grating waveguide for a simple, cost-effective refractive index (RI) biochemical sensor. The RI of the functional hydrogel layer changes when a specific biochemical interaction occurs between the hydrogel-linked receptors and injected ligand molecules. The transmission spectral profile of the grating waveguide shifts depends on the amount of RI change caused by the functional layer. Our characterization includes the effective RI change caused by the thickness, functional volume ratio, and functional strength of the hydrogel layer. The results confirm the feasibility of, and set design rules for, hydrogel-assisted silicon-based grating waveguides. PMID:27322286

  14. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture.

    PubMed

    Liu, Yunxiao; Chan-Park, Mary B

    2010-02-01

    Many synthetic hydrogels for cell encapsulation have hitherto been based on polyethylene glycol which is non-natural, non-biodegradable and only terminal-functionalizable, all of which are drawbacks for tissue engineering or cell delivery. The polysaccharide dextran is also highly hydrophilic but biodegradable and pendant-functionalizable and more closely resembles glycosaminoglycans to mimic the natural extracellular matrix. This study reports synthesis of a methacrylate and lysine functionalized dextran and development of hydrogel composite systems based on this material and methacrylamide modified gelatin. The mechanical stiffness and degree of swelling of the hydrogels were varied by manipulation of the degree of functionalization of dextran and gelatin and concentration/composition of precursor solution. Human umbilical artery smooth muscle cells (SMCs) were encapsulated inside hydrogels during gel hardening with photopolymerization. Rapid cell spreading, extensive cellular network formation and high SMC proliferation occurred within softer hydrogels (with shear storage moduli ranging from 898 to 3124Pa). The encapsulated SMCs appear to be relatively contractile in the initial culture than on tissue culture polystyrene dish due to physical constraint imposed by the hydrogels but they become more synthetic with time possibly due to the inability of cells to reach confluence inside these cell-mediated degradable hydrogels. From the impressive cell proliferation and network formation, these new hydrogels combining polysaccharide and protein derivatives appear to be excellent candidates for further development as bioactive scaffolds for use in vascular tissue engineering and regeneration.

  15. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhong, Qiwen

    The conservation and transformation of energy is essential to the survival of mankind, and thus concerns every modern society. Solar energy, as an everlasting source of energy, holds one of the key solutions to some of the most urgent problems the world now faces, such as global warming and the oil crisis. Advances in technologies utilizing clean, abundant solar energy, could be the steering wheel of our societies. Solar cells, one of the major advances in converting solar energy into electricity, are now capturing people's interest all over the globe. While solar cells have been commercially available for many years, the manufacturing of solar cells is quite expensive, limiting their broad based implementation. The cost of solar cell based electricity is 15-50 cents per kilowatt hour (¢/kwh), depending on the type of solar cell, compared to 0.7 ¢/kwh for fossil fuel based electricity. Clearly, decreasing the cost of electricity from solar cells is critical for their wide spread deployment. This will require a decrease in the cost of light absorbing materials and material processing used in fabricating the cells. Organic photovoltaics (OPVs) utilize organic materials such as polymers and small molecules. These devices have the advantage of being flexible and lower cost than conventional solar cells built from inorganic semiconductors (e.g. silicon). The low cost of OPVs is tied to lower materials and fabrication costs of organic cells. However, the current power conversion efficiencies of OPVs are still below 15%, while convention crystalline Si cells have efficiencies of 20-25%. A key limitation in OPVs today is their inability to utilize the near infrared (NIR) portion of the solar spectrum. This part of the spectrum comprises nearly half of the energy in sunlight that could be used to make electricity. The first and foremost step in conversion solar energy conversion is the absorption of light, which nature has provided us optimal model of, which is

  16. Artificial phototropism based on a photo-thermo-responsive hydrogel

    NASA Astrophysics Data System (ADS)

    Gopalakrishna, Hamsini

    Solar energy is leading in renewable energy sources and the aspects surrounding the efforts to harvest light are gaining importance. One such aspect is increasing the light absorption, where heliotropism comes into play. Heliotropism, the ability to track the sun across the sky, can be integrated with solar cells for more efficient photon collection and other optoelectronic systems. Inspired by plants, which optimize incident sunlight in nature, several researchers have made artificial heliotropic and phototropic systems. This project aims to design, synthesize and characterize a material system and evaluate its application in a phototropic system. A gold nanoparticle (Au NP) incorporated poly(N-isopropylacrylamide) (PNIPAAm) hydrogel was synthesized as a photo-thermo-responsive material in our phototropic system. The Au NPs generate heat from the incident via plasmonic resonance to induce a volume phase change of the thermo-responsive hydrogel PNIPAAm. PNIPAAm shrinks or swells at temperature above or below 32°C. Upon irradiation, the Au NP-PNIPAAm micropillar actuates, specifically bending toward the incident light and precisely following the varying incident angle. Swelling ratio tests, bending angle tests with a static incident light and bending tests with varying angles were carried out on hydrogel samples with varying Au NP concentrations. Swelling ratios ranging from 1.45 to 2.9 were recorded for pure hydrogel samples and samples with very low Au NP concentrations. Swelling ratios of 2.41 and 3.37 were calculated for samples with low and high concentrations of Au NPs, respectively. A bending of up to 88° was observed in Au NP-hydrogel pillars with a low Au NP concentration with a 90° incident angle. The light tracking performance was assessed by the slope of the pillar Bending angle (response angle) vs. Incident light angle plot. A slope of 1 indicates ideal tracking with top of the pillar being normal to the incident light, maximizing the photon

  17. Use of NMR Imaging to Determine the Diffusion Coefficient of Water in Bio-based Hydrogels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diffusion of liquid in a hydrogel material is a fundamental property which must be controlled in order to create effective delivery systems for the agricultural and pharmaceutical industries. NMR spectroscopy has been used to determine the diffusion of water and deuterium oxide in a bio-based h...

  18. Chitosan-based thermosensitive hydrogel as a promising ocular drug delivery system: preparation, characterization, and in vivo evaluation.

    PubMed

    Chen, Xingwei; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Zhang, Yanhui; Fan, Yating; Huang, Yanqing; Liu, Yan

    2012-11-01

    The purpose of this study was to evaluate the feasibility of in situ thermosensitive hydrogel based on chitosan in combination with disodium α-d-Glucose 1-phosphate (DGP) for ocular drug delivery system. Aqueous solution of chitosan/DGP underwent sol-gel transition as temperature increased which was flowing sol at room temperature and then turned into non-flowing hydrogel at physiological temperature. The properties of gels were characterized regarding gelation time, gelation temperature, and morphology. The sol-to-gel phase transition behaviors were affected by the concentrations of chitosan, DGP and the model drug levocetirizine dihydrochloride (LD). The developed hydrogel presented a characteristic of a rapid release at the initial period followed by a sustained release and remarkably enhanced the cornea penetration of LD. The results of ocular irritation demonstrated the excellent ocular tolerance of the hydrogel. The ocular residence time for the hydrogel was significantly prolonged compared with eye drops. The drug-loaded hydrogel produced more effective anti-allergic conjunctivitis effects compared with LD aqueous solution. These results showed that the chitosan/DGP thermosensitive hydrogel could be used as an ideal ocular drug delivery system in terms of the suitable sol-gel transition temperature, mild pH environment in the hydrogel as well as the organic solvent free.

  19. Evaluation of gentamicin and lidocaine release profile from gum acacia-crosslinked-poly(2-hydroxyethylmethacrylate)-carbopol based hydrogels.

    PubMed

    Singh, Baljit; Dhiman, Abhishek

    2017-01-27

    In this manuscript an attempt has been made to incorporate both, antibiotic agent 'gentamicin' and pain relieving agent 'lidocaine' into the gum acacia-poly(2-hydroxyethylmethacrylate)-carbopol based hydrogel for wound dressing application. Drug release, gel strength, network parameter, antimicrobial activity and biodegradation properties of hydrogel have been evaluated. Porous microstructure of the hydrogel was observed in cryo-SEM images. The hydrogel showed mesh size 37.29 nm, cross-link density 2.19× 10-5 mol/cm3, molecular weight between two cross-links 60.25× 10-3 g/mol and gel strength 0.625±0.112 N in simulated wound fluid. The hydrogels were evaluated as a drug carrier for model drugs gentamicin and lidocaine. The release of these drugs occurred through Fickian diffusion mechanism and release profile of the drugs was best fitted in first order kinetic model.

  20. Dextran-based self-healing hydrogels formed by reversible diels-alder reaction under physiological conditions.

    PubMed

    Wei, Zhao; Yang, Jian Hai; Du, Xiao Jing; Xu, Feng; Zrinyi, Miklos; Osada, Yoshihito; Li, Fei; Chen, Yong Mei

    2013-09-01

    A dextran-based self-healing hydrogel is prepared by reversible Diels-Alder reaction under physiological conditions. Cytocompatible fulvene-modified dextran as main polymer chains and dichloromaleic-acid-modified poly(ethylene glycol) as cross-linkers are used. Both macro- and microscopic observation as well as the rheological recovery test confirm the self-healing property of the dextran-l-poly(ethylene glycol) hydrogels ("l" means "linked-by"). In addition, scanning electrochemical microscopy is used to qualitatively and quantitatively in situ track the self-healing process of the hydrogel for the first time. It is found that the longitudinal depth of scratch on hydrogel surface almost completely healed at 37 °C after 7 h. This work represents a facile approach for fabrication of polysaccharide self-healing hydrogel, which can be potentially used in several biomedical fields.

  1. Self-assembling DNA hydrogel-based delivery of immunoinhibitory nucleic acids to immune cells.

    PubMed

    Nishida, Yu; Ohtsuki, Shozo; Araie, Yuki; Umeki, Yuka; Endo, Masayuki; Emura, Tomoko; Hidaka, Kumi; Sugiyama, Hiroshi; Takahashi, Yuki; Takakura, Yoshinobu; Nishikawa, Makiya

    2016-01-01

    Immunoinhibitory oligodeoxynucleotides (INH-ODNs) are promising inhibitors of Toll-like receptor 9 (TLR9) activation. To efficiently deliver INH-ODNs to TLR9-positive cells, we designed a Takumi-shaped DNA (Takumi) consisting of two partially complementary ODNs as the main component of a DNA hydrogel. Polyacrylamide gel electrophoresis showed that Takumi-containing INH-ODNs (iTakumi) and iTakumi-based DNA hydrogel (iTakumiGel) were successfully generated. Their activity was examined in murine macrophage-like RAW264.7 cells and DC2.4 dendritic cells by measuring tumor necrosis factor-α and interleukin-6 release after the addition of a TLR9 ligand (CpG ODN). Cytokine release was efficiently inhibited by the iTakumiGel. Flow cytometry analysis and confocal microscopy showed that cellular uptake of INH-ODN was greatly increased by the iTakumiGel. These results indicate that a Takumi-based DNA hydrogel is useful for the delivery of INH-ODNs to immune cells to inhibit TLR9-mediated hyperinduction of proinflammatory cytokines. From the Clinical Editor: Toll-like receptor 9 activation has been reported to be associated with many autoimmune diseases. DNA inhibition using oligodeoxynucleotides is one of the potential treatments. In this article, the authors described hydrogel-based platform for the delivery of the inhibitory oligodeoxynucleotides for enhanced efficacy. The positive findings could indicate a way for the future.

  2. Transition metal dichalcogenides based saturable absorbers for pulsed laser technology

    NASA Astrophysics Data System (ADS)

    Mohanraj, J.; Velmurugan, V.; Sivabalan, S.

    2016-10-01

    Ultrashort pulsed laser is an indispensable tool for the evolution of photonic technology in the present and future. This laser has been progressing tremendously with new pulse regimes and incorporating novel devices inside its cavity. Recently, a nanomaterial based saturable absorber (SA) was used in ultrafast laser that has improved the lasing performance and caused a reduction in the physical dimension when compared to conventional SAs. To date, the nanomaterials that are exploited for the development of SA devices are carbon nanotubes, graphene, topological insulators, transition metal dichalcogenides (TMDs) and black phosphorous. These materials have unique advantages such as high nonlinear optical response, fiber compatibility and ease of fabrication. In these, TMDs are prominent and an emerging two-dimensional nanomaterial for photonics and optoelectronics applications. Therefore, we review the reports of Q-switched and mode-locked pulsed lasers using TMDs (specifically MoS2, MoSe2, WS2 and WSe2) based SAs.

  3. Ultra-broadband microwave metamaterial absorber based on resistive sheets

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Yoo, Y. J.; Hwang, J. S.; Lee, Y. P.

    2017-01-01

    We investigate a broadband perfect absorber for microwave frequencies, with a wide incident angle, using resistive sheets, based on both simulation and experiment. The absorber uses periodically-arranged meta-atoms, consisting of snake-shape metallic patterns and metal planes separated by three resistive sheet layers between four dielectric layers. We demonstrate the mechanism of the broadband by impedance matching with free space, and the distribution of surface currents at specific frequencies. In simulation, the absorption was over 96% in 1.4-6.0 GHz. The corresponding experimental absorption band over 96% was 1.4-4.0 GHz, however, the absorption was lower than 96% in the 4.0-6.0 GHz range because of the rather irregular thickness of the resistive sheets. Furthermore, it works for wide incident angles and is relatively independent of polarization. The design is scalable to smaller sizes in the THz range. The results of this study show potential for real applications in prevention of microwave frequency exposure, with devices such as cell phones, monitors, and microwave equipment.

  4. Hydrogel-laden paper scaffold system for origami-based tissue engineering

    PubMed Central

    Kim, Su-Hwan; Lee, Hak Rae; Yu, Seung Jung; Han, Min-Eui; Lee, Doh Young; Kim, Soo Yeon; Ahn, Hee-Jin; Han, Mi-Jung; Lee, Tae-Ik; Kim, Taek-Soo; Kwon, Seong Keun; Im, Sung Gap; Hwang, Nathaniel S.

    2015-01-01

    In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca2+. This procedure ensures the formation of alginate hydrogel on the paper due to Ca2+ diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs. PMID:26621717

  5. Cyclodextrin/dextran based hydrogels prepared by cross-linking with sodium trimetaphosphate.

    PubMed

    Wintgens, Véronique; Lorthioir, Cédric; Dubot, Pierre; Sébille, Bernard; Amiel, Catherine

    2015-11-05

    Novel βCD-based hydrogels have been synthesized using sodium trimetaphosphate (STMP) as non-toxic reagent. Straightforward mixing of βCD with dextran and STMP in basic aqueous media led to hydrogels incorporating dextran chains, phosphate groups and βCD units. The hydrogels have been characterized by swelling measurements, XPS and (31)P NMR. The swelling ratio was correlated to the content in phosphated groups, which give a polyelectrolyte character to these hydrogels. The significant rise of the swelling ratio with the βCD content increase has been attributed to a decrease of the number of phosphate-based crosslinks, the βCD units playing the role of dangling ends in the tridimensional network. Their loading capacity and their release properties have been investigated for methylene blue and benzophenone in order to demonstrate their potentiality for drug delivery. Through different interaction mechanisms, electrostatic and inclusion complex interactions, these compounds are loaded with different efficiencies. The release involves deswelling, diffusion mechanisms and partition equilibrium.

  6. Nanofibrillar hydrogel scaffolds from recombinant protein-based polymers with integrin- and proteoglycan-binding domains.

    PubMed

    Włodarczyk-Biegun, Małgorzata K; Werten, Marc W T; Posadowska, Urszula; Storm, Ingeborg M; de Wolf, Frits A; van den Beucken, Jeroen J J P; Leeuwenburgh, Sander C G; Cohen Stuart, Martien A; Kamperman, Marleen

    2016-12-01

    This study describes the design, production, and testing of functionalized variants of a recombinant protein-based polymer that forms nanofibrillar hydrogels with self-healing properties. With a view to bone tissue engineering applications, we equipped these variants with N-terminal extensions containing either (1) integrin-binding (RGD) or (2) less commonly studied proteoglycan-binding (KRSR) cell-adhesive motifs. The polymers were efficiently produced as secreted proteins using the yeast Pichia pastoris and were essentially monodisperse. The pH-responsive protein-based polymers are soluble at low pH and self-assemble into supramolecular fibrils and hydrogels at physiological pH. By mixing functionalized and nonfunctionalized proteins in different ratios, and adjusting pH, hydrogel scaffolds with the same protein concentration but varying content of the two types of cell-adhesive motifs were readily obtained. The scaffolds were used for the two-dimensional culture of MG-63 osteoblastic cells. RGD domains had a slightly stronger effect than KRSR domains on adhesion, activity, and spreading. However, scaffolds featuring both functional domains revealed a clear synergistic effect on cell metabolic activity and spreading, and provided the highest final degree of cell confluency. The mixed functionalized hydrogels presented here thus allowed to tailor the osteoblastic cell response, offering prospects for their further development as scaffolds for bone regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3082-3092, 2016.

  7. Biosensor platform based on surface plasmon-enhanced fluorescence spectroscopy and responsive hydrogel binding matrix

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Jen; Jonas, Ulrich; Dostálek, Jakub; Knoll, Wolfgang

    2009-05-01

    We report a novel biosensor platform based on surface plasmon-enhanced fluorescence spectroscopy (SPFS) and a responsive N-isopropylacrylamide (NIPAAm) hydrogel binding matrix. This binding matrix highly swells in aqueous environment and it can be modified with receptor biomolecules by using active ester coupling chemistry. After the binding of target analyte molecules contained in a sample by receptor biomolecules immobilized in the hydrogel matrix, the captured analyte molecules can be compacted on the surface through the collapse of the gel triggered by an external stimulus. A thin hydrogel NIPAAm-based film was attached to a gold sensor surface and modified with mouse IgG receptor molecules. The affinity binding of antibodies against mouse IgG that were labeled with Alexa Fluor chromophores was observed by surface plasmon-enhanced fluorescence spectroscopy. We demonstrate that the collapse of the hydrogel matrix results in the enhancement of measured fluorescence intensity owing to the increase in the concentration of captured molecules within the evanescent field of surface plasmons.

  8. Hydrogel-laden paper scaffold system for origami-based tissue engineering.

    PubMed

    Kim, Su-Hwan; Lee, Hak Rae; Yu, Seung Jung; Han, Min-Eui; Lee, Doh Young; Kim, Soo Yeon; Ahn, Hee-Jin; Han, Mi-Jung; Lee, Tae-Ik; Kim, Taek-Soo; Kwon, Seong Keun; Im, Sung Gap; Hwang, Nathaniel S

    2015-12-15

    In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca(2+). This procedure ensures the formation of alginate hydrogel on the paper due to Ca(2+) diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs.

  9. Nanofibrillar hydrogel scaffolds from recombinant protein‐based polymers with integrin‐ and proteoglycan‐binding domains

    PubMed Central

    Włodarczyk‐Biegun, Małgorzata K.; Posadowska, Urszula; Storm, Ingeborg M.; de Wolf, Frits A.; van den Beucken, Jeroen J. J. P.; Leeuwenburgh, Sander C. G.; Cohen Stuart, Martien A.; Kamperman, Marleen

    2016-01-01

    Abstract This study describes the design, production, and testing of functionalized variants of a recombinant protein‐based polymer that forms nanofibrillar hydrogels with self‐healing properties. With a view to bone tissue engineering applications, we equipped these variants with N‐terminal extensions containing either (1) integrin‐binding (RGD) or (2) less commonly studied proteoglycan‐binding (KRSR) cell‐adhesive motifs. The polymers were efficiently produced as secreted proteins using the yeast Pichia pastoris and were essentially monodisperse. The pH‐responsive protein‐based polymers are soluble at low pH and self‐assemble into supramolecular fibrils and hydrogels at physiological pH. By mixing functionalized and nonfunctionalized proteins in different ratios, and adjusting pH, hydrogel scaffolds with the same protein concentration but varying content of the two types of cell‐adhesive motifs were readily obtained. The scaffolds were used for the two‐dimensional culture of MG‐63 osteoblastic cells. RGD domains had a slightly stronger effect than KRSR domains on adhesion, activity, and spreading. However, scaffolds featuring both functional domains revealed a clear synergistic effect on cell metabolic activity and spreading, and provided the highest final degree of cell confluency. The mixed functionalized hydrogels presented here thus allowed to tailor the osteoblastic cell response, offering prospects for their further development as scaffolds for bone regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3082–3092, 2016. PMID:27449385

  10. Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue.

    PubMed

    Thakur, Sourbh; Pandey, Sadanand; Arotiba, Omotayo A

    2016-11-20

    Batch adsorption experiments were carried out for the removal of methylene blue (MB) cationic dye from aqueous solution using organic/inorganic hydrogel nanocomposite of titania incorporated sodium alginate crosslinked polyacrylic acid (SA-cl-poly(AA)-TiO2). The hydrogel was prepared by graft copolymerization of acrylic acid (AA) onto sodium alginate (SA) biopolymer in the presence of a crosslinking agent, a free radical initiator and TiO2 nanoparticles. The hydrogel exhibited a high swelling capacity of 412.98g/g. The factors influencing adsorption capacity of the absorbents such as pH of the dye solutions, initial concentration of the dye, amount of absorbents, and temperature were investigated and used to propose a possible mechanism of adsorption. The adsorption process concurs with a pseudo-second-order kinetics and with Langmuir isotherm equation. A very high adsorption capacity (Qmax=2257.36 (mg/g)) and a correlation coefficient of 0.998 calculated from isotherm equations show the high efficiency of the absorbent and thus expected to be a good candidate as an absorbent for water treatment.

  11. Genotoxicity and molecular response of silver nanoparticle (NP)-based hydrogel

    PubMed Central

    2012-01-01

    Background Since silver-nanoparticles (NPs) possess an antibacterial activity, they were commonly used in medical products and devices, food storage materials, cosmetics, various health care products, and industrial products. Various silver-NP based medical devices are available for clinical uses, such as silver-NP based dressing and silver-NP based hydrogel (silver-NP-hydrogel) for medical applications. Although the previous data have suggested silver-NPs induced toxicity in vivo and in vitro, there is lack information about the mechanisms of biological response and potential toxicity of silver-NP-hydrogel. Methods In this study, the genotoxicity of silver-NP-hydrogel was assayed using cytokinesis-block micronucleus (CBMN). The molecular response was studied using DNA microarray and GO pathway analysis. Results and discussion The results of global gene expression analysis in HeLa cells showed that thousands of genes were up- or down-regulated at 48 h of silver-NP-hydrogel exposure. Further GO pathway analysis suggested that fourteen theoretical activating signaling pathways were attributed to up-regulated genes; and three signal pathways were attributed to down-regulated genes. It was discussed that the cells protect themselves against silver NP-mediated toxicity through up-regulating metallothionein genes and anti-oxidative stress genes. The changes in DNA damage, apoptosis and mitosis pathway were closely related to silver-NP-induced cytotoxicity and chromosome damage. The down-regulation of CDC14A via mitosis pathway might play a role in potential genotoxicity induced by silver-NPs. Conclusions The silver-NP-hydrogel induced micronuclei formation in cellular level and broad spectrum molecular responses in gene expression level. The results of signal pathway analysis suggested that the balances between anti-ROS response and DNA damage, chromosome instability, mitosis inhibition might play important roles in silver-NP induced toxicity. The inflammatory factors

  12. Polarization independent broadband metamaterial absorber based on tapered helical structure

    NASA Astrophysics Data System (ADS)

    Agarwal, Sajal; Prajapati, Y. K.; Singh, V.; Saini, J. P.

    2015-12-01

    This communication presents a tapered helical structure as absorber, made of unconventional material i.e. metamaterial. Modeling, analytical study and the optimization of the absorber have been done. Quad helical optimized structure gives almost unity absorption at 499 nm wavelength and gives the absorption more than 75% from 300 nm to 1650 nm which is a very wide operating region with, average absorbance of 91.32%. Whereas, triple helical structure gives 85% average absorbance with the operating range from 300 nm to 1350 nm. Also, it is analyzed that the presented structures are polarization independent and broadband. Comparison of the proposed quad helical absorber with the existing metamaterial absorbers is done and found it is most eligible.

  13. Influence of polysaccharide composition on the biocompatibility of pullulan/dextran-based hydrogels.

    PubMed

    Abed, Aicha; Assoul, Nabila; Ba, Maguette; Derkaoui, Sidi Mohamed; Portes, Patrick; Louedec, Liliane; Flaud, Patrice; Bataille, Isabelle; Letourneur, Didier; Meddahi-Pellé, Anne

    2011-03-01

    The implantation of a biomaterial for tissue engineering requires the presence of a suitable scaffold on which the tissue repair and regeneration will take place. Polymers have been frequently used for that purpose because they show similar properties to that of the natural extracellular matrix. Scaffold properties and biocompatibility are modulated by the composition of the polymers used. In this work four polysaccharide-based hydrogels (PSH) made of dextran and pullulan were synthesized. Their in vitro properties were determined and then tested in vivo in a rat model. As pullulan concentration increased in dextran hydrogels, the glass transition temperature and the maximum modulus decreased. In vitro degradation studies for 30 days demonstrated no significant degradation of PSH except for 100% pullulan hydrogel. In vivo tissue response evaluated 30 days after PSH subcutaneous implantation in rats indicated that all PSH were surrounded by a fibrous capsule. Adding pullulan to dextran induced an increased inflammatory reaction compared to PSH-D(100% dextran) or PSH-D(75)P(25)(75% dextran). This in vitro and in vivo data can be used in the design of hydrogels appropriate for tissue engineering applications.

  14. Release behavior and bioefficacy of imazethapyr formulations based on biopolymeric hydrogels.

    PubMed

    Kumar, Vikas; Singh, Anupama; Das, T K; Sarkar, Dhruba Jyoti; Singh, Shashi Bala; Dhaka, Rashmi; Kumar, Anil

    2017-03-08

    Controlled release formulations of imazethapyr herbicide have been developed employing guar gum-g-cl-polyacrylate/bentonite clay hydrogel composite (GG-HG) and guar gum-g-cl-PNIPAm nano hydrogel (GG-NHG) as carriers, to assess the suitability of biopolymeric hydrogels as controlled herbicide release devices. The kinetics of imazethapyr release from the developed formulations was studied in water and it revealed that the developed formulations of imazethapyr behaved as slow release formulations as compared to commercial formulation. The calculated diffusion exponent (n) values showed that Fickian diffusion was the predominant mechanism of imazethapyr release from the developed formulations. Time for release of half of the loaded imazethapyr (t1/2) ranged between 0.06 and 4.8 days in case of GG-NHG and 4.4 and 12.6 days for the GG-HG formulations. Weed control index (WCI) of GG-HG and GG-NHG formulations was similar to that of the commercial formulation and the herbicidal effect was observed for relatively longer period. Guar gum-based biopolymeric hydrogels in both macro and nano particle size range can serve as potential carriers in developing slow release herbicide formulations.

  15. Supramolecular Hydrogels Based on Minimalist Amphiphilic Squaramide-Squaramates for Controlled Release of Zwitterionic Biomolecules.

    PubMed

    Costa, Antonio; López, Carlos; Ximenis, Marta; Orvay, Francisca; Rotger, Carmen

    2017-04-04

    Supramolecular hydrogels with tunable properties have innovative applications in biomedicine, catalysis and materials chemistry. Herein, we have designed minimalist low molecular weight hydrogelators based on squaramide and squaramic acid motifs. Our approach benefits from the high acidity of squaramic acids and the aromaticity of squaramides. Moreover, the substituents on the aryl ring tune the π density of the aryl-squaramide motif. Thus, we successfully prepared materials featuring distinct thermal and mechanical properties. The hydrogel (G' ≈ 400 Pa, G'' ≈ 57 Pa; at 1.0 % w/v; 1 Hz) obtained from the 4-nitrophenylsquaramide motif 1 is thermoreversible (T = 57 °C at 0.2 % w/v), thixotropic, self-healable and undergoes irreversible shrinking in response to saline stress. Furthermore, the hydrogel is injectable and can be loaded with substantial amounts (5:1 excess molar ratio) of zwitterionic biomolecules such as L-carnitine, GABA or DL-Ala-DL-Ala, without any loss of structural integrity. Then, the release of these molecules can be modulated by saline solutions.

  16. A multiband perfect absorber based on hyperbolic metamaterials

    PubMed Central

    Sreekanth, Kandammathe Valiyaveedu; ElKabbash, Mohamed; Alapan, Yunus; Rashed, Alireza R.; Gurkan, Umut A.; Strangi, Giuseppe

    2016-01-01

    In recent years, considerable research efforts have been focused on near-perfect and perfect light absorption using metamaterials spanning frequency ranges from microwaves to visible frequencies. This relatively young field is currently facing many challenges that hampers its possible practical applications. In this paper, we present grating coupled-hyperbolic metamaterials (GC-HMM) as multiband perfect absorber that can offer extremely high flexibility in engineering the properties of electromagnetic absorption. The fabricated GC-HMMs exhibit several highly desirable features for technological applications such as polarization independence, wide angle range, broad- and narrow- band modes, multiband perfect and near perfect absorption in the visible to near-IR and mid-IR spectral range. In addition, we report a direct application of the presented system as an absorption based plasmonic sensor with a record figure of merit for this class of sensors. PMID:27188789

  17. Injectable Graphene Oxide/Hydrogel-Based Angiogenic Gene Delivery System for Vasculogenesis and Cardiac Repair

    PubMed Central

    2015-01-01

    The objective of this study was to develop an injectable and biocompatible hydrogel which can efficiently deliver a nanocomplex of graphene oxide (GO) and vascular endothelial growth factor-165 (VEGF) pro-angiogenic gene for myocardial therapy. For the study, an efficient nonviral gene delivery system using polyethylenimine (PEI) functionalized GO nanosheets (fGO) complexed with DNAVEGF was formulated and incorporated in the low-modulus methacrylated gelatin (GelMA) hydrogel to promote controlled and localized gene therapy. It was hypothesized that the fGOVEGF/GelMA nanocomposite hydrogels can efficiently transfect myocardial tissues and induce favorable therapeutic effects without invoking cytotoxic effects. To evaluate this hypothesis, a rat model with acute myocardial infarction was used, and the therapeutic hydrogels were injected intramyocardially in the peri-infarct regions. The secreted VEGF from in vitro transfected cardiomyocytes demonstrated profound mitotic activities on endothelial cells. A significant increase in myocardial capillary density at the injected peri-infarct region and reduction in scar area were noted in the infarcted hearts with fGOVEGF/GelMA treatment compared to infarcted hearts treated with untreated sham, GelMA and DNAVEGF/GelMA groups. Furthermore, the fGOVEGF/GelMA group showed significantly higher (p < 0.05, n = 7) cardiac performance in echocardiography compared to other groups, 14 days postinjection. In addition, no significant differences were noticed between GO/GelMA and non-GO groups in the serum cytokine levels and quantitative PCR based inflammatory microRNA (miRNA) marker expressions at the injected sites. Collectively, the current findings suggest the feasibility of a combined hydrogel-based gene therapy system for ischemic heart diseases using nonviral hybrid complex of fGO and DNA. PMID:24988275

  18. Fabrication and characterization of a self-crosslinking chitosan hydrogel under mild conditions without the use of strong bases.

    PubMed

    Xu, Yongxiang; Han, Jianmin; Lin, Hong

    2017-01-20

    Self-crosslinking chitosan hydrogels are a highly suitable material for biomedical applications owing to their biodegradability and biocompatibility. However, strong bases, such as sodium hydroxide, which are often used in the preparation of such hydrogels, are known to affect biocompatibility and even destroy the bioactive factors or drug payload of the hydrogel. In the present study, strong bases were replaced by sodium chloride (NaCl) and phosphate buffer saline (PBS, pH=7.4), which were used as gelling solutions for hydrogel fabrication via the freeze-melting-neutralization method. Non-cytotoxicity was showed in MTT assay for hydrogel. Our findings suggest that hydrogel microstructure and physical properties may be adjusted by modifying parameters, such as concentration, temperature, and pH, during the gelling process. Furthermore, the present hydrogel was found to exhibit pH-and ionic strength-responsive properties and may be utilized as a stimulus-responsive material for biomedical applications such as controlled drug release.

  19. Photothermal-modulated drug delivery and magnetic relaxation based on collagen/poly(γ-glutamic acid) hydrogel

    PubMed Central

    Cho, Sun-Hee; Kim, Ahreum; Shin, Woojung; Heo, Min Beom; Noh, Hyun Jong; Hong, Kwan Soo; Cho, Jee-Hyun; Lim, Yong Taik

    2017-01-01

    Injectable and stimuli-responsive hydrogels have attracted attention in molecular imaging and drug delivery because encapsulated diagnostic or therapeutic components in the hydrogel can be used to image or change the microenvironment of the injection site by controlling various stimuli such as enzymes, temperature, pH, and photonic energy. In this study, we developed a novel injectable and photoresponsive composite hydrogel composed of anticancer drugs, imaging contrast agents, bio-derived collagen, and multifaceted anionic polypeptide, poly (γ-glutamic acid) (γ-PGA). By the introduction of γ-PGA, the intrinsic temperature-dependent phase transition behavior of collagen was modified to a low viscous sol state at room temperature and nonflowing gel state around body temperature. The modified temperature-dependent phase transition behavior of collagen/γ-PGA hydrogels was also evaluated after loading of near-infrared (NIR) fluorophore, indocyanine green (ICG), which could transform absorbed NIR photonic energy into thermal energy. By taking advantage of the abundant carboxylate groups in γ-PGA, cationic-charged doxorubicin (Dox) and hydrophobic MnFe2O4 magnetic nanoparticles were also incorporated successfully into the collagen/γ-PGA hydrogels. By illumination of NIR light on the collagen/γ-PGA/Dox/ICG/MnFe2O4 hydrogels, the release kinetics of Dox and magnetic relaxation of MnFe2O4 nanoparticles could be modulated. The experimental results suggest that the novel injectable and NIR-responsive collagen/γ-PGA hydrogels developed in this study can be used as a theranostic platform after loading of various molecular imaging probes and therapeutic components.

  20. Protein-based hydrogels self-assembled from genetically engineered triblock polypeptides containing coiled-coil domains

    NASA Astrophysics Data System (ADS)

    Xu, Chunyu

    Protein-based biomaterials have great potential in biomedical applications due to their similar composition with biological organisms. Environment-sensitive hydrogels based on proteins can undergo sol-gel transition due to the conformational change of the proteins in response to external stimuli. The physical properties of these hydrogels can be tailored by modification of the protein structures. Two major hypotheses were made in this dissertation. One was that coiled-coil folding motifs could be a good candidate for physical crosslinking in protein-based hydrogels, and the other was that the conformational change of coiled-coils in response to external stimuli could mediate the sol-gel transition of the protein-based hydrogels. The first part established synthesis strategies of the coiled-coil containing proteins using a genetic engineering technique. An important observation was made that the fusion sequence on the proteins could influence the thermal stability of the proteins. In the second part of the research, the self-assembly of hydrogels from a series of triblock polypeptides containing coiled-coils was evaluated. It was found that the hydrogels had a porous interconnected network microstructure. The hydrogels responded to temperature and pH, which correlated to the temperature- and pH-triggered structural transition of the coiled-coil domains. In addition, the formation of hydrogels was reversible in the present or absence of guanidine hydrochloride (GdnHCl). The last part of the research attempted to explore the relationship between the structure of the protein polymers and the physical property of the hydrogels, and to investigate the parameters influencing the hydrogel formation and physical properties. Triblock and diblock polypeptides were designed to contain different lengths of coiled-coil domains. Tyrosine residues were incorporated at selected solvent-exposed positions in order to increase the hydrophobicity of the coiled-coil domains. The

  1. Microribbon-based hydrogels accelerate stem cell-based bone regeneration in a mouse critical-size cranial defect model

    PubMed Central

    Han, Li-Hsin; Conrad, Bogdan; Chung, Michael T.; Deveza, Lorenzo; Jiang, Xinyi; Wang, Andrew; Butte, Manish J.; Longaker, Michael T.; Wan, Derrick; Yang, Fan

    2016-01-01

    Stem cell-based therapies hold great promise for enhancing tissue regeneration. However, the majority of cells die shortly after transplantation, which greatly diminishes the efficacy of stem cell-based therapies. Poor cell engraftment and survival remain a major bottleneck to fully exploiting the power of stem cells for regenerative medicine. Biomaterials such as hydrogels can serve as artificial matrices to protect cells during delivery and guide desirable cell fates. However, conventional hydrogels often lack macroporosity, which restricts cell proliferation and delays matrix deposition. Here we report the use of injectable, macroporous microribbon (µRB) hydrogels as stem cell carriers for bone repair, which supports direct cell encapsulation into a macroporous scaffold with rapid spreading. When transplanted in a criticalsized, mouse cranial defect model, µRB-based hydrogels significantly enhanced the survival of transplanted adipose-derived stromal cells (ADSCs) (81%) and enabled up to three-fold cell proliferation after 7 days. In contrast, conventional hydrogels only led to 27% cell survival, which continued to decrease over time. MicroCT imaging showed µRBs enhanced and accelerated mineralized bone repair compared to hydrogels (61% vs. 34% by week 6), and stem cells were required for bone repair to occur. These results suggest that paracrine signaling of transplanted stem cells are responsible for the observed bone repair, and enhancing cell survival and proliferation using µRBs further promoted the paracrine-signaling effects of ADSCs for stimulating endogenous bone repair. We envision µRB-based scaffolds can be broadly useful as a novel scaffold for enhancing stem cell survival and regeneration of other tissue types. PMID:26991141

  2. The design of dextran-based hypoxia-inducible hydrogels via in situ oxygen-consuming reaction.

    PubMed

    Park, Kyung Min; Blatchley, Michael R; Gerecht, Sharon

    2014-11-01

    Hypoxia plays a critical role in the development and wound healing process, as well as a number of pathological conditions. Here, dextran-based hypoxia-inducible (Dex-HI) hydrogels formed with in situ oxygen consumption via a laccase-medicated reaction are reported. Oxygen levels and gradients were accurately predicted by mathematical simulation. It is demonstrated that Dex-HI hydrogels provide prolonged hypoxic conditions up to 12 h. The Dex-HI hydrogel offers an innovative approach to delineate not only the mechanism by which hypoxia regulates cellular responses, but may facilitate the discovery of new pathways involved in the generation of hypoxic and oxygen gradient environments.

  3. [The study of quality characteristics of the hydrogel ointments and films based on copolymers divinyl esters of diethylene glycol].

    PubMed

    Bakirova, R E; Tazhbaeva, E M; Muravleva, L E; Fazylov, S D; Akhmetova, S B

    2014-12-01

    The possibility of using a hydrogel based on divinyl ether co- and terpolymer of diethylene glycol as the backbone polymer for incorporating water-soluble medicinal substances was examined. The character of the influence of emulsifiers, plasticizers, high-boiling liquids and bioactive substances is defined within the changes of physical-chemical properties of obtained hydrogels. The obtained polyelectrolyte hydrogels by their homogeneity, dehydration and rheological characteristics may be of concern in function of matrices to create external prolonged-action dosage forms.

  4. Developing robust, hydrogel-based, nanofiber-enabled encapsulation devices (NEEDs) for cell therapies.

    PubMed

    An, Duo; Ji, Yewei; Chiu, Alan; Lu, Yen-Chun; Song, Wei; Zhai, Lei; Qi, Ling; Luo, Dan; Ma, Minglin

    2015-01-01

    Cell encapsulation holds enormous potential to treat a number of hormone deficient diseases and endocrine disorders. We report a simple and universal approach to fabricate robust, hydrogel-based, nanofiber-enabled encapsulation devices (NEEDs) with macroscopic dimensions. In this design, we take advantage of the well-known capillary action that holds wetting liquid in porous media. By impregnating the highly porous electrospun nanofiber membranes of pre-made tubular or planar devices with hydrogel precursor solutions and subsequent crosslinking, we obtained various nanofiber-enabled hydrogel devices. This approach is broadly applicable and does not alter the water content or the intrinsic chemistry of the hydrogels. The devices retained the properties of both the hydrogel (e.g. the biocompatibility) and the nanofibers (e.g. the mechanical robustness). The facile mass transfer was confirmed by encapsulation and culture of different types of cells. Additional compartmentalization of the devices enabled paracrine cell co-cultures in single implantable devices. Lastly, we provided a proof-of-concept study on potential therapeutic applications of the devices by encapsulating and delivering rat pancreatic islets into chemically-induced diabetic mice. The diabetes was corrected for the duration of the experiment (8 weeks) before the implants were retrieved. The retrieved devices showed minimal fibrosis and as expected, live and functional islets were observed within the devices. This study suggests that the design concept of NEEDs may potentially help to overcome some of the challenges in the cell encapsulation field and therefore contribute to the development of cell therapies in future.

  5. Hydrogel based injectable scaffolds for cardiac tissue regeneration.

    PubMed

    Radhakrishnan, Janani; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2014-01-01

    Tissue engineering promises to be an effective strategy that can overcome the lacuna existing in the current pharmacological and interventional therapies and heart transplantation. Heart failure continues to be a major contributor to the morbidity and mortality across the globe. This may be attributed to the limited regeneration capacity after the adult cardiomyocytes are terminally differentiated or injured. Various strategies involving acellular scaffolds, stem cells, and combinations of stem cells, scaffolds and growth factors have been investigated for effective cardiac tissue regeneration. Recently, injectable hydrogels have emerged as a potential candidate among various categories of biomaterials for cardiac tissue regeneration due to improved patient compliance and facile administration via minimal invasive mode that treats complex infarction. This review discusses in detail on the advances made in the field of injectable materials for cardiac tissue engineering highlighting their merits over their preformed counterparts.

  6. Resilin-Based Hybrid Hydrogels for Cardiovascular Tissue Engineering

    PubMed Central

    McGann, Christopher L.; Levenson, Eric A.

    2013-01-01

    The outstanding elastomeric properties of natural resilin, an insect protein, have motivated the engineering of resilin-like polypeptides (RLPs) as a potential material for cardiovascular tissue engineering. The RLPs, which incorporate biofunctional domains for cell-matrix interactions, are cross-linked into RLP–PEG hybrid hydrogels via a Michael-type addition of cysteine residues on the RLP with vinyl sulfones of an end-functionalized multi-arm star PEG. Oscillatory rheology indicated the useful mechanical properties of these materials. Assessments of cell viability via con-focal microscopy clearly show the successful encapsulation of human aortic adventitial fibroblasts in the three-dimensional matrices and the adoption of a spread morphology following 7 days of culture. PMID:23956463

  7. Peptide-Based Molecular Hydrogels as Supramolecular Protein Mimics.

    PubMed

    Singh, Nishant; Kumar, Mohit; Miravet, Juan F; Ulijn, Rein V; Escuder, Beatriu

    2017-01-23

    This Minireview concerns recent advances in the design, synthesis, and application of low molecular-weight peptidic hydrogelators. The sequence-specific combinations of amino acid side chain functionalities combined with hydrogen bonding of amide backbones and hydrophobic (aromatic) capping groups give these peptidic molecules the intrinsic tendency to self-assemble. The most prevalent designs include N-capped amino acid residues, bolamphiphilic peptides, and amphipathic peptides. Factors such as hydrophobic effects, the Hofmeister effect, and tunable ionization influence their aggregation properties. The self-assembly of simple bio-inspired building blocks into higher organized structures allows comparisons to be drawn with proteins and their complex functionalities, providing preliminary insights into complex biological functions and also enabling their application in a wide range of fields including catalysis, biomedical applications, and mimicry of natural dissipative systems. The Minireview is concluded by a short summary and outlook, highlighting the advances and steps required to bridge the gaps in the understanding of such systems.

  8. Effect of Cell Origin and Timing of Delivery for Stem Cell-Based Bone Tissue Engineering Using Biologically Functionalized Hydrogels

    PubMed Central

    Dosier, Christopher R.; Uhrig, Brent A.; Willett, Nick J.; Krishnan, Laxminarayanan; Li, Mon-Tzu Alice; Stevens, Hazel Y.; Schwartz, Zvi; Boyan, Barbara D.

    2015-01-01

    Despite progress in bone tissue engineering, the healing of critically sized diaphyseal defects remains a clinical challenge. A stem cell-based approach is an attractive alternative to current treatment techniques. The objective of this study was to examine the ability of adult stem cells to enhance bone formation when co-delivered with the osteoinductive factor bone morphogenetic protein-2 (BMP-2) in a biologically functionalized hydrogel. First, adipose and bone marrow-derived mesenchymal stem cells (ADSCs and BMMSCs) were screened for their potential to form bone when delivered in an RGD functionalized alginate hydrogel using a subcutaneous implant model. BMMSCs co-delivered with BMP-2 produced significantly more mineralized tissue compared with either ADSCs co-delivered with BMP-2 or acellular hydrogels containing BMP-2. Next, the ability of BMMSCs to heal a critically sized diaphyseal defect with a nonhealing dose of BMP-2 was tested using the alginate hydrogel as an injectable cell carrier. The effect of timing of therapeutic delivery on bone regeneration was also tested in the diaphyseal model. A 7 day delayed injection of the hydrogel into the defect site resulted in less mineralized tissue formation than immediate delivery of the hydrogel. By 12 weeks, BMMSC-loaded hydrogels produced significantly more bone than acellular constructs regardless of immediate or delayed treatment. For immediate delivery, bridging of defects treated with BMMSC-loaded hydrogels occurred at a rate of 75% compared with a 33% bridging rate for acellular-treated defects. No bridging was observed in any of the delayed delivery samples for any of the groups. Therefore, for this cell-based bone tissue engineering approach, immediate delivery of constructs leads to an overall enhanced healing response compared with delayed delivery techniques. Further, these studies demonstrate that co-delivery of adult stem cells, specifically BMMSCs, with BMP-2 enhances bone regeneration in a

  9. Small-angle neutron scattering from polymer hydrogels with memory effect for medicine immobilization

    SciTech Connect

    Kulvelis, Yu. V. Lebedev, V. T.; Trunov, V. A.; Pavlyuchenko, V. N.; Ivanchev, S. S.; Primachenko, O. N.; Khaikin, S. Ya.

    2011-12-15

    Hydrogels synthesized based on cross-linked copolymers of 2-hydroxyethyl methacrylate and functional monomers (acrylic acid or dimethylaminoethyl methacrylate), having a memory effect with respect to target medicine (cefazolin), have been investigated by small-angle neutron scattering. The hydrogels are found to have a two-level structural organization: large (up to 100 nm) aggregates filled with network cells (4-7 nm in size). The structural differences in the anionic, cationic, and amphiphilic hydrogels and the relationship between their structure and the ability of hydrogels to absorb moisture are shown. A relationship between the memory effect during cefazolin immobilization and the internal structure of hydrogels, depending on their composition and type of functional groups, is established.

  10. Effects of permeability and living space on cell fate and neo-tissue development in hydrogel-based scaffolds: a study with cartilaginous model.

    PubMed

    Fan, Changjiang; Wang, Dong-An

    2015-04-01

    One bottleneck in tissue regeneration with hydrogel scaffolds is the limited understanding of the crucial factors for controlling hydrogel's physical microenvironments to regulate cell fate. Here, the effects of permeability and living space of hydrogels on encapsulated cells' behavior were evaluated, respectively. Three model hydrogel-based constructs are fabricated by using photo-crosslinkable hyaluronic acid as precursor and chondrocytes as model cell type. The better permeable hydrogels facilitate better cell viability and rapid proliferation, which lead to increased production of extracellular matrix (ECM), e.g. collagen, glycosaminoglycan. By prolonged culture, nano-sized hydrogel networks inhibit neo-tissue development, and the presence of macro-porous living spaces significantly enhance ECM deposition via forming larger cell clusters and eventually induce formation of scaffold-free neo-tissue islets. The results of this work demonstrate that the manipulation and optimization of hydrogel microenvironments, namely permeability and living space, are crucial to direct cell fate and neo-tissue formation.

  11. Poly(ethylene glycol) (PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment.

    PubMed

    Sundara Rajan, Sujata; Turovskiy, Yevgeniy; Singh, Yashveer; Chikindas, Michael L; Sinko, Patrick J

    2014-11-28

    Women with bacterial vaginosis (BV) display reduced vaginal acidity, which make them susceptible to associated infections such as HIV. In the current study, poly(ethylene glycol) (PEG) nanocarrier-based degradable hydrogels were developed for the controlled release of lactic acid in the vagina of BV-infected women. PEG-lactic acid (PEG-LA) nanocarriers were prepared by covalently attaching lactic acid to 8-arm PEG-SH via cleavable thioester bonds. PEG-LA nanocarriers with 4 copies of lactic acid per molecule provided controlled release of lactic acid with a maximum release of 23% and 47% bound lactic acid in phosphate buffered saline (PBS, pH7.4) and acetate buffer (AB, pH4.3), respectively. The PEG nanocarrier-based hydrogels were formed by cross-linking the PEG-LA nanocarriers with 4-arm PEG-NHS via degradable thioester bonds. The nanocarrier-based hydrogels formed within 20 min under ambient conditions and exhibited an elastic modulus that was 100-fold higher than the viscous modulus. The nanocarrier-based degradable hydrogels provided controlled release of lactic acid for several hours; however, a maximum release of only 10%-14% bound lactic acid was observed possibly due to steric hindrance of the polymer chains in the cross-linked hydrogel. In contrast, hydrogels with passively entrapped lactic acid showed burst release with complete release within 30 min. Lactic acid showed antimicrobial activity against the primary BV pathogen Gardnerella vaginalis with a minimum inhibitory concentration (MIC) of 3.6 mg/ml. In addition, the hydrogels with passively entrapped lactic acid showed retained antimicrobial activity with complete inhibition G. vaginalis growth within 48 h. The results of the current study collectively demonstrate the potential of PEG nanocarrier-based hydrogels for vaginal administration of lactic acid for preventing and treating BV.

  12. Rediscovering Hydrogel-Based Double-Diffusion Systems for Studying Biomineralization

    PubMed Central

    Dorvee, Jason R.; Boskey, Adele L.; Estroff, Lara A.

    2012-01-01

    For those seeking to model biomineralization in vitro, hydrogels can serve as excellent models of the extracellular matrix (ECM) microenvironment. A major challenge posed in implementing such systems is the logistics involved, from fundamental engineering to experimental design. For the study of calcium phosphate (e.g., hydroxyapatite) formation, many researchers use hydrogel-based double-diffusion systems (DDSs). The various designs of these DDSs are seemingly as unique as their applications. In this Highlight, we present a survey of four distinct types of double-diffusion systems and evaluate them in the context of fundamental diffusion theory. Based upon this analysis, we present the design and evaluation of an optimized system. The techniques and framework for the evaluation and construction of a DDS presented here can be applied to any DDS that a researcher may want to implement for their particular studies of biomineralization. PMID:22962542

  13. A thermosensitive chitosan-based hydrogel for controlled release of insulin

    NASA Astrophysics Data System (ADS)

    Gao, Ting-Ting; Kong, Ming; Cheng, Xiao-Jie; Xia, Gui-Xue; Gao, Yuan-Yuan; Chen, Xi-Guang; Cha, Dong Su; Park, Hyun Jin

    2014-06-01

    Present study aims at synthesizing a thermosensitive hydrogel for controlled release of insulin. According to a modified method, hydroxybutyl chitosan (HBC) hydrogel possessed thermal sensitivity is prepared which can form hydrogel at over 25°C. The HBC hydrogel is non-cytotoxic to mice fibroblasts cells (L929). Insulin is 100% entrapped in the hydrogel, 38% of which is released in vitro from the concentration of 5% hydrogel after 48 h, whereas by enzymolysis with lysozyme, 80% of the total insulin is released after 48 h. This study suggests that HBC hydrogel could be utilized for controlled release of insulin in a non-invasive manner.

  14. Design of self-assembling beta-hairpin pepide-based hydrogels for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Butterick, Lisa Ann

    The field of tissue engineering aims to repair damaged tissues and organs with diminished function. One approach used in tissue engineering is to introduce cells and/or growth factors to the damaged tissue in either one of two ways. The first method is an invasive procedure where cells are introduced to a preformed scaffold and cultured in vitro. The scaffold is then inserted into the host by making an incision at the site of interest, which must be as large as the preformed scaffold. The second method is a minimally invasive procedure where cells are suspended in a polymeric solution and injected via syringe. After leaving the syringe, the material undergoes a phase transition to form a hydrogel at the site of introduction. Regardless of the delivery mechanism employed, development of an appropriate scaffold conducive to cellular proliferation and extracellular matrix production is critical to the success of the implanted material in persuading the body to repair itself. In working toward this goal, we have developed a family of beta-hairpin peptides, based on the design MAX1, that undergoes intramolecular folding and self-assembly to form rigid hydrogels in response to changes in pH, ionic strength, and temperature. From a molecular design standpoint of view, site specific N-methylation of MAX1 was performed to determine the importance of forming hydrogen bonds during the self-assembly event and its effect on hydrogelation. The remainder of this thesis is dedicated to the development of materials and minimally methodologies to deliver gel/cell constructs via syringe to target sites to aid in tissue repair. A peptide, MAX7CNB was designed that undergoes folding and assembly in response to ultraviolet light to form hydrogel material. In addition, MAX8 was rationally designed to display the appropriate hydrogelation kinetics to achieve homogenous cellular encapsulation throughout the gel matrix. MAX8 gel/cell scaffolds can be easily delivered via syringe to

  15. Impedimetric quantification of cells encapsulated in hydrogel cultured in a paper-based microchamber.

    PubMed

    Lei, Kin Fong; Huang, Chia-Hao; Tsang, Ngan-Ming

    2016-01-15

    Recently, 3D cell culture technique was proposed to provide a more physiologically-meaningful environment for cell-based assays. With the development of microfluidics technology, cellular response can be quantified by impedance measurement technique in a real-time and non-invasive manner. However, handling of these microfluidic systems requires a trained engineering personnel and the operation is not compatible to traditional biological research laboratories. In this work, we incorporated the impedance measurement technique to paper-based 3D cell culture model and demonstrated non-invasive quantification of cells encapsulated in hydrogel during the culture course. A cellulose filter paper was patterned with an array of circular microchambers. Cells were encapsulated in hydrogel and loaded to the microchambers for culturing cells in 3D environment. At the preset schedule during the culture course, the paper was placed on a glass substrate with measurement electrodes for the impedance measurement. Cells in each microchamber was represented by impedance magnitude and cell proliferation could be studied over time. Also, conventional bio-assay was performed to further confirm the feasibility of the impedimetric quantification of cells encapsulated in hydrogel cultured in the paper-based microchamber. This technique provides a convenient, fast, and non-invasive approach to monitor cells cultured in 3D environment. It has potential to be developed for routine 3D cell culture protocol in biological research laboratories.

  16. Fabrication of dual-sensitive keratin-based polymer hydrogels and their controllable release behaviors.

    PubMed

    Sun, Kangqi; Guo, Juhua; He, Yufeng; Song, Pengfei; Xiong, Yubing; Wang, Rong-Min

    2016-10-03

    Using feather keratin (FK) as a biocompatible and inexpensive biopolymer, a kind of dual-sensitive keratin-based polymer hydrogel (FK/PNiPA/PIAc-Gel) with interpenetrating network structure was prepared by two-step polymerization of N-isopropyl acrylamide (NiPA) and itaconic acid (IAc) in presence of crosslinker. After being characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy, its swelling behaviors and environmental sensitivity were investigated. The obtained biopolymer based hydrogel has good swelling and deswelling performance, and it is sensitive to pH value, temperature and salts of environment. Using anticancer drug, doxorubicin hydrochloride (Dox·HCl),  and Bovine serum albumin (BSA) as different drug molecules, its release behaviors in different environment were investigated. It was found that the release behaviors of FK/PNiPA/PIAc-Gel were controllable via adjusting pH value or temperature of environment. The cumulative release of the anticancer drug (Dox·HCl) reached 93.3% within 16 h, and the cumulative release rate of macromolecular drug (BSA) got to 75.9% in 24 h. In summary, the keratin-based biopolymer hydrogel with interpenetrating network structure, pH-sensitivity and temperature sensitivity are potentially applied to sustain drug carrier and humid medicinal material in the biomedical field or clinical nursing field.

  17. In vitro drug release and percutaneous behavior of poloxamer-based hydrogel formulation containing traditional Chinese medicine.

    PubMed

    Wang, Wenyi; Hui, Patrick C L; Wat, Elaine; Ng, Frency S F; Kan, Chi-Wai; Wang, Xiaowen; Wong, Eric C W; Hu, Huawen; Chan, Ben; Lau, Clara B S; Leung, Ping-Chung

    2016-12-01

    For the treatment of atopic dermatitis (AD), we have developed a transdermal functionalized textile therapy based on thermosensitive poloxamer 407 (P407) hydrogel containing a traditional Chinese herbal medicine. This study aims to investigate the effects of various formulation variables of P407/carboxymethyl cellulose sodium (P407/CMCs) composite hydrogel on the release of Cortex Moutan (CM) extract. Concentrations of P407 and CMCs showed significant influence on the release due to alteration of bulk viscosity of the system. An increase in pH values of release medium was found to appreciably impede the release of polar drug (CM) due to ionization. Elevated temperatures were also shown to facilitate the drug release. Moreover, the diffusional release behavior of CM from P407/CMCs composite hydrogel was found to follow the first-order kinetic model. Additionally, transdermal studies showed that permeability of the drug through the skin can be enhanced with addition of CMCs in the hydrogel formulation.

  18. Dynamic wettability of pHEMA-based hydrogel contact lenses.

    PubMed

    Maldonado-Codina, Carole; Efron, Nathan

    2006-07-01

    Standard methods of contact angle analysis include sessile drop, captive bubble and Wilhelmy plate techniques; however, these methodologies are not particularly well suited for assessing the wettability of the surfaces of formed hydrogel contact lenses. This paper describes two methodologies that are adaptations of previously described techniques. The maximum adherent force method is an adaptation of the dynamic Wilhelmy plate technique that allows the assessment of whole, finished contact lenses. The dynamic photographic method allows the simultaneous assessment of the front and back surfaces of strip samples for the assessment of advancing and receding contact angles. Lenses investigated were made from polyhydroxyethyl methacrylate, hydroxyethyl methacrylate/methacrylic acid and hydroxyethyl methacrylate/glycerol methacrylate. The lenses were manufactured by lathing, spin-casting or cast-moulding techniques. Overall, both techniques demonstrated few differences between the wettability of different lens materials and no differences between materials of the 'same' lens type but manufactured by different methods. These findings are consistent with the results of clinical studies, which have shown little difference between contact lens surface wettability in vivo, which may be due to the apparent natural surface wettability-enhancing properties of the pre-lens tear film.

  19. Nanocomposite hydrogels for biomedical applications

    PubMed Central

    Gaharwar, Akhilesh K.

    2014-01-01

    Hydrogels mimic native tissue microenvironment due to their porous and hydrated molecular structure. An emerging approach to reinforce polymeric hydrogels and to include multiple functionalities focuses on incorporating nanoparticles within the hydrogel network. A wide range of nanoparticles, such as carbon-based, polymeric, ceramic, and metallic nanomaterials can be integrated within the hydrogel networks to obtain nanocomposites with superior properties and tailored functionality. Nanocomposite hydrogels can be engineered to possess superior physical, chemical, electrical, and biological properties. This review focuses on the most recent developments in the field of nanocomposite hydrogels with emphasis on biomedical and pharmaceutical applications. In particular, we discuss synthesis and fabrication of nanocomposite hydrogels, examine their current limitations and conclude with future directions in designing more advanced nanocomposite hydrogels for biomedical and biotechnological applications. PMID:24264728

  20. Phase transitions of macromolecular microsphere composite hydrogels based on the stochastic Cahn–Hilliard equation

    SciTech Connect

    Li, Xiao Ji, Guanghua Zhang, Hui

    2015-02-15

    We use the stochastic Cahn–Hilliard equation to simulate the phase transitions of the macromolecular microsphere composite (MMC) hydrogels under a random disturbance. Based on the Flory–Huggins lattice model and the Boltzmann entropy theorem, we develop a reticular free energy suit for the network structure of MMC hydrogels. Taking the random factor into account, with the time-dependent Ginzburg-Landau (TDGL) mesoscopic simulation method, we set up a stochastic Cahn–Hilliard equation, designated herein as the MMC-TDGL equation. The stochastic term in the equation is constructed appropriately to satisfy the fluctuation-dissipation theorem and is discretized on a spatial grid for the simulation. A semi-implicit difference scheme is adopted to numerically solve the MMC-TDGL equation. Some numerical experiments are performed with different parameters. The results are consistent with the physical phenomenon, which verifies the good simulation of the stochastic term.

  1. “A novel highly stable and injectable hydrogel based on a conformationally restricted ultrashort peptide”

    PubMed Central

    Thota, Chaitanya Kumar; Yadav, Nitin; Chauhan, Virander Singh

    2016-01-01

    Nanostructures including hydrogels based on peptides containing non protein amino acids are being considered as platform for drug delivery because of their inherent biocompatibility and additional proteolytic stability. Here we describe instantaneous self-assembly of a conformationally restricted dipeptide, LeuΔPhe, containing an α,β-dehydrophenylalanine residue into a highly stable and mechanically strong hydrogel, under mild physiological aqueous conditions. The gel successfully entrapped several hydrophobic and hydrophilic drug molecules and released them in a controlled manner. LeuΔPhe was highly biocompatible and easily injectable. Administration of an antineoplastic drug entrapped in the gel in tumor bearing mice significantly controlled growth of tumors. These characteristics make LeuΔPhe an attractive candidate for further development as a delivery platform for various biomedical applications. PMID:27507432

  2. Biodegradability and swelling capacity of kaolin based chitosan-g-PHEMA nanocomposite hydrogel.

    PubMed

    Pradhan, Arun Kumar; Rana, Pradeep Kumar; Sahoo, Prafulla Kumar

    2015-03-01

    Chitosan, a natural biopolymer, obtained by alkaline deacetylation of chitin, exhibits excellent biological properties such as biodegradability, immunological and antibacterial activity. Recently, there has been a growing interest in the chemical modification of chitosan in order to widen its applications. The chemical modification of chitosan has been achieved via grafting of monomer, 2-hydroxyethyl methacrylate (HEMA) in the presence of the initiator, ammonium persulfate (APS) and kaolin was added to improve the mechanical strength of the newly developed nanocomposites hydrogel. The so prepared grafted nanocomposites hydrogel was characterized by FTIR, XRD, SEM, TEM and TGA. The equilibrium water content (EWC) of the samples were measured at different pH ranges 6.5-8.0 and found optimum at pH 7.5 for biomedical applications. Further, the biodegradability of the samples was studied at different time intervals from 15 days to 1 year but, the kaolin based nanohydrogels exhibited good biodegradability.

  3. Enhancement mechanism of the additional absorbent on the absorption of the absorbing composite using a type-based mixing rule

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Yuan, Liming; Zhang, Deyuan

    2016-04-01

    A silicone rubber composite filled with carbonyl iron particles and four different carbonous materials (carbon black, graphite, carbon fiber or multi-walled carbon nanotubes) was prepared using a two-roller mixture. The complex permittivity and permeability were measured using a vector network analyzer at the frequency of 2-18 GHz. Then a type-based mixing rule based on the dielectric absorbent and magnetic absorbent was proposed to reveal the enhancing mechanism on the permittivity and permeability. The enforcement effect lies in the decreased percolation threshold and the changing pending parameter as the carbonous materials were added. The reflection loss (RL) result showed the added carbonous materials enhanced the absorption in the lower frequency range, the RL decrement value being about 2 dB at 4-5 GHz with a thickness of 1 mm. All the added carbonous materials reinforced the shielding effectiveness (SE) of the composites. The maximum increment value of the SE was about 3.23 dB at 0.5 mm and 4.65 dB at 1 mm, respectively. The added carbonous materials could be effective additives for enforcing the absorption and shielding property of the absorbers.

  4. Fabrication and testing of thermally responsive hydrogel-based actuators using polymer heater elements for flexible microvalves

    NASA Astrophysics Data System (ADS)

    Li, Ang; Khosla, Ajit; Drewbrook, Connie; Gray, Bonnie L.

    2011-02-01

    We present the design, fabrication and characterization of a mechanically flexible diaphragm-based microvalve actuator employing a reservoir of the thermally responsive hydrogel PNIPAAm and a conductive nanocomposite polymer (C-NCP) heater element. The microvalve actuator can be fabricated employing traditional soft lithography processes for fabrication of all components, including the tungsten-based C-NCP heater element, the hydrogel reservoir, and the deflecting polymer membrane. Shrinking of the hydrogel under the application of heat supplied by the flexible heater, or the removal of this thermal energy by turning off the heater, forces the diaphragm to move. The silicone diaphragm actuator is compatible with a normally-closed polymer microvalve design where-by the fluidic channel can be opened and closed via the hydrogel diaphragm actuator, in which the hydrogel is normally swollen and heating opens the valve via membrane deflection. Our prototype hydrogel actuator diaphragms are between 100-200 micrometers in diameter, and experimentally deflect approximately 100 micrometers under heating to 32 degrees ºC or above, which is sufficient to theoretically open a microvalve to allow flow to pass through a 100 micrometer deep channel. We characterize the flexible tungsten C-NCP heaters for voltage versus temperature and show that the flexible heaters can reach the hydrogel transition temperature of 32 degrees °C at approximately 13-15 V. We further characterize the hydrogel response to heat, and diaphragm deflection using both hot plate and flexible C-NCP heater elements. While our results show diaphragm deflection adequate for microvalves at a reasonable voltage, the speed of deflection is currently very slow and would result in slow microvalve response speed (30 seconds to open the valve, and 120 seconds to reclose it).

  5. Polyethylene Glycol-Based Hydrogels for Controlled Release of the Antimicrobial Subtilosin for Prophylaxis of Bacterial Vaginosis

    PubMed Central

    Sundara Rajan, Sujata; Cavera, Veronica L.; Zhang, Xiaoping; Singh, Yashveer; Chikindas, Michael L.

    2014-01-01

    Current treatment options for bacterial vaginosis (BV) have been shown to be inadequate at preventing recurrence and do not provide protection against associated infections, such as that with HIV. This study examines the feasibility of incorporating the antimicrobial peptide subtilosin within covalently cross-linked polyethylene glycol (PEG)-based hydrogels for vaginal administration. The PEG-based hydrogels (4% and 6% [wt/vol]) provided a two-phase release of subtilosin, with an initial rapid release rate of 4.0 μg/h (0 to 12 h) followed by a slow, sustained release rate of 0.26 μg/h (12 to 120 h). The subtilosin-containing hydrogels inhibited the growth of the major BV-associated pathogen Gardnerella vaginalis with a reduction of 8 log10 CFU/ml with hydrogels containing ≥15 μg entrapped subtilosin. In addition, the growth of four common species of vaginal lactobacilli was not significantly inhibited in the presence of the subtilosin-containing hydrogels. The above findings demonstrate the potential application of vaginal subtilosin-containing hydrogels for prophylaxis of BV. PMID:24566190

  6. Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications.

    PubMed

    Ahearne, Mark; Yang, Ying; El Haj, Alicia J; Then, Kong Y; Liu, Kuo-Kang

    2005-12-22

    We present a novel indentation method for characterizing the viscoelastic properties of alginate and agarose hydrogel based constructs, which are often used as a model system of soft biological tissues. A sensitive long working distance microscope was used for measuring the time-dependent deformation of the thin circular hydrogel membranes under a constant load. The deformation of the constructs was measured laterally. The elastic modulus as a function of time can be determined by a large deformation theory based on Mooney-Rivlin elasticity. A viscoelastic theory, Zener model, was applied to correlate the time-dependent deformation of the constructs with various gel concentrations, and the creep parameters can therefore be quantitatively estimated. The value of Young's modulus was shown to increase in proportion with gel concentration. This finding is consistent with other publications. Our results also showed the great capability of using the technique to measure gels with incorporated corneal stromal cells. This study demonstrates a novel and convenient technique to measure mechanical properties of hydrogel in a non-destructive, online and real-time fashion. Thus this novel technique can become a valuable tool for soft tissue engineering.

  7. Broadband terahertz metamaterial absorber based on sectional asymmetric structures

    PubMed Central

    Gong, Cheng; Zhan, Mingzhou; Yang, Jing; Wang, Zhigang; Liu, Haitao; Zhao, Yuejin; Liu, Weiwei

    2016-01-01

    We suggest and demonstrate the concept and design of sectional asymmetric structures which can manipulate the metamaterial absorber’s working bandwidth with maintaining the other inherent advantages. As an example, a broadband terahertz perfect absorber is designed to confirm its effectiveness. The absorber’s each cell integrates four sectional asymmetric rings, and the entire structure composed of Au and Si3N4 is only 1.9 μm thick. The simulation results show the bandwidth with absorptivity being larger than 90% is extended by about 2.8 times comparing with the conventional square ring absorber. The composable small cell, ultra-thin, and broadband absorption with polarization and incident angle insensitivity will make the absorber suitable for the applications of focal plane array terahertz imaging. PMID:27571941

  8. Broadband terahertz metamaterial absorber based on sectional asymmetric structures

    NASA Astrophysics Data System (ADS)

    Gong, Cheng; Zhan, Mingzhou; Yang, Jing; Wang, Zhigang; Liu, Haitao; Zhao, Yuejin; Liu, Weiwei

    2016-08-01

    We suggest and demonstrate the concept and design of sectional asymmetric structures which can manipulate the metamaterial absorber’s working bandwidth with maintaining the other inherent advantages. As an example, a broadband terahertz perfect absorber is designed to confirm its effectiveness. The absorber’s each cell integrates four sectional asymmetric rings, and the entire structure composed of Au and Si3N4 is only 1.9 μm thick. The simulation results show the bandwidth with absorptivity being larger than 90% is extended by about 2.8 times comparing with the conventional square ring absorber. The composable small cell, ultra-thin, and broadband absorption with polarization and incident angle insensitivity will make the absorber suitable for the applications of focal plane array terahertz imaging.

  9. Examination of fabrication conditions of acrylate-based hydrogel formulations for doxorubicin release and efficacy test for hepatocellular carcinoma cell.

    PubMed

    Bayramoglu, Gulay; Gozen, Damla; Ersoy, Gozde; Ozalp, V Cengiz; Akcali, K Can; Arica, M Yakup

    2014-01-01

    The objective of the present study was to develop 2-hydroxypropyl methacrylate-co-polyethylene methacrylate [p(HPMA-co-PEG-MEMA)] hydrogels that are able to efficiently entrap doxorubicin for the application of loco-regional control of the cancer disease. Systemic chemotherapy provides low clinical benefit while localized chemotherapy might provide a therapeutic advantage. In this study, effects of hydrogel properties such as PEG chains length, cross-linking density, biocompatibility, drug loading efficiency, and drug release kinetics were evaluated in vitro for targeted and controlled drug delivery. In addition, the characterization of the hydrogel formulations was conducted with swelling experiments, permeability tests, Fourier transform infrared, SEM, and contact angle studies. In these drug-hydrogel systems, doxorubicin contains amine group that can be expected a strong Lewis acid-base interaction between drug and polar groups of PEG chains, thus the drug was released in a timely fashion with an electrostatic interaction mechanism. It was observed that doxorubicin release from the hydrogel formulations decreased when the density of cross-linking, and drug/polymer ratio were increased while an increase in the PEG chains length of the macro-monomer (i.e. PEG-MEMA) in the hydrogel system was associated with an increase in water content and doxorubicin release. The biocompatibility of the hydrogel formulations has been investigated using two measures: cytotoxicity test (using lactate dehydrogenase assay) and major serum proteins adsorption studies. Antitumor activity of the released doxorubicin was assessed using a human SNU398 human hepatocellular carcinoma cell line. It was observed that doxorubicin released from all of our hydrogel formulations which remained biologically active and had the capability to kill the tested cancer cells.

  10. Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels

    PubMed Central

    Rosales, Adrianne M.; Mabry, Kelly M.; Nehls, Eric Michael; Anseth, Kristi S.

    2015-01-01

    The elastic modulus of the extracellular matrix is a dynamic property that changes during various biological processes, such as disease progression or wound healing. Most cell culture platforms, however, have traditionally exhibited static properties, making it necessary to replate cells to study the effects of different elastic moduli on cell phenotype. Recently, much progress has been made in the development of substrates with mechanisms for either increasing or decreasing stiffness in situ, but there are fewer examples of substrates that can both stiffen and soften, which may be important for simulating the effects of repeated ECM injury and resolution. In the work presented here, poly(ethylene glycol)-based hydrogels reversibly stiffen and soften with multiple light stimuli via photoisomerization of an azobenzene-containing crosslinker. Upon irradiation with cytocompatible doses of 365 nm light (10 mW/cm2, 5 min), isomerization to the azobenzene cis configuration leads to a softening of the hydrogel up to 100-200 Pa (shear storage modulus, G’). This change in gel properties is maintained over a timescale of several hours due to the long half-life of the cis isomer. The initial modulus of the gel can be recovered upon irradiation with similar doses of visible light. With applications in mechanobiology in mind, cytocompatibility with a mechanoresponsive primary cell type is demonstrated. Porcine aortic valvular interstitial cells were encapsulated in the developed hydrogels and shown to exhibit high levels of survival, as well as a spread morphology. The developed hydrogels enable a route to the noninvasive control of substrate modulus independent of changes in the chemical composition or network connectivity, allowing for investigations of the effect of dynamic matrix stiffness on adhered cell behavior. PMID:25629423

  11. In vivo bioengineered ovarian tumors based on collagen, matrigel, alginate and agarose hydrogels: a comparative study.

    PubMed

    Zheng, Li; Hu, Xuefeng; Huang, Yuanjie; Xu, Guojie; Yang, Jinsong; Li, Li

    2015-01-29

    Scaffold-based tumor engineering is rapidly evolving the study of cancer progression. However, the effects of scaffolds and environment on tumor formation have seldom been investigated. In this study, four types of injectable hydrogels, namely, collagen type I, Matrigel, alginate and agarose gels, were loaded with human ovarian cancer SKOV3 cells and then injected into nude mice subcutaneously. The growth of the tumors in vitro was also investigated. After four weeks, the specimens were harvested and analyzed. We found that tumor formation by SKOV3 cells was best supported by collagen, followed by Matrigel, alginate, control (without scaffold) and agarose in vivo. The collagen I group exhibited a larger tumor volume with increased neovascularization and increased necrosis compared with the other materials. Further, increased MMP activity, upregulated expression of laminin and fibronectin and higher levels of HIF-1α and VEGF-A in the collagen group revealed that the engineered tumor is closer to human ovarian carcinoma. In order, collagen, Matrigel, alginate, control (without scaffold) and agarose exhibited decreases in tumor formation. All evidence indicated that the in vivo engineered tumor is scaffold-dependent. Bioactive hydrogels are superior to inert hydrogels at promoting tumor regeneration. In particular, biomimetic hydrogels are advantageous because they provide a microenvironment that mimics the ECM of natural tumors. On the other hand, typical features of cancer cells and the expression of genes related to cancer malignancy were far less similar to the natural tumor in vitro, which indicated the importance of culture environment in vivo. Superior to the in vitro culture, nude mice can be considered satisfactory in vivo 'bioreactors' for the screening of favorable cell vehicles for tumor engineering in vitro.

  12. An Omnidirectional Polarization Detector Based on a Metamaterial Absorber.

    PubMed

    Zhang, Binzhen; Zhang, Yong; Duan, Junping; Zhang, Wendong; Wang, Wanjun

    2016-07-23

    The theory, design, simulation, fabrication, and performance of an omnidirectional polarization detector (PD) with two resonances located in the X and Ka ranges based on a metamaterial absorber (MMA) are presented in this paper. The sandwich structure of PD is composed of 0.1 μm periodic "I" shaped patches on the metasurface, a dielectric of 200 μm FR-4 on the interlayer, and a 0.3 μm copper film on the substrate. PD absorptivity is first used to reflect and describe the polarization of the incident wave. The numerical results, derived from the standard full wave finite integration technology (FIT) of CST 2015, indicates that the designed PD shows polarization sensitivity at all incidence angles. The effects on absorptivity produced by the incidence angles, polarization angles, and materials are investigated. The amplitude of absorptivity change caused by polarization reaches 99.802%. A laser ablation process is adopted to prepare the designed PD on a FR-4 board coated with copper on the double plane with a thickness that was 1/93 and 1/48 of wavelength at a resonance frequency of 16.055 GHz and 30.9 GHz, respectively. The sample test results verify the designed PD excellent detectability on the polarization of the incident waves. The proposed PD, which greatly enriches the applications of metamaterials in bolometers, thermal images, stealth materials, microstructure measurements, and electromagnetic devices, is easy to mass produce and market because of its strong detectability, ultrathin thickness, effective cost, and convenient process.

  13. An Omnidirectional Polarization Detector Based on a Metamaterial Absorber

    PubMed Central

    Zhang, Binzhen; Zhang, Yong; Duan, Junping; Zhang, Wendong; Wang, Wanjun

    2016-01-01

    The theory, design, simulation, fabrication, and performance of an omnidirectional polarization detector (PD) with two resonances located in the X and Ka ranges based on a metamaterial absorber (MMA) are presented in this paper. The sandwich structure of PD is composed of 0.1 μm periodic “I” shaped patches on the metasurface, a dielectric of 200 μm FR-4 on the interlayer, and a 0.3 μm copper film on the substrate. PD absorptivity is first used to reflect and describe the polarization of the incident wave. The numerical results, derived from the standard full wave finite integration technology (FIT) of CST 2015, indicates that the designed PD shows polarization sensitivity at all incidence angles. The effects on absorptivity produced by the incidence angles, polarization angles, and materials are investigated. The amplitude of absorptivity change caused by polarization reaches 99.802%. A laser ablation process is adopted to prepare the designed PD on a FR-4 board coated with copper on the double plane with a thickness that was 1/93 and 1/48 of wavelength at a resonance frequency of 16.055 GHz and 30.9 GHz, respectively. The sample test results verify the designed PD excellent detectability on the polarization of the incident waves. The proposed PD, which greatly enriches the applications of metamaterials in bolometers, thermal images, stealth materials, microstructure measurements, and electromagnetic devices, is easy to mass produce and market because of its strong detectability, ultrathin thickness, effective cost, and convenient process. PMID:27455280

  14. Preparation and properties of a novel thermo-sensitive hydrogel based on chitosan/hydroxypropyl methylcellulose/glycerol.

    PubMed

    Wang, Tao; Chen, Liman; Shen, Tingting; Wu, Dayang

    2016-12-01

    Chitosan-based thermosensitive hydrogels are known as injectable in situ gelling thermosensitive polymer solutions which are suitable for biomaterials. In this study, a novel thermosensitive hydrogel gelling under physiological conditions was prepared using chitosan together with hydroxypropyl methylcellulose and glycerol. Hydroxypropyl methylcellulose is to facilitate the thermogelation through large amounts of hydrophobic interactions. Glycerol in heavy concentration destroys the polymer water sheaths promoting the formation of the hydrophobic regions, and lowering the phase transition temperature. The thermosensitive hydrogels showed a physiological pH ranging from 6.8 to 6.9 and gelation time within 15min at 37°C. The prepared hydrogels were characterized by FT-IR, XRD, SEM, and rheological studies, mechanical studies and contact angle studies. The properties of degradability, cytotoxicity and protein release behaviors of the hydrogels were investigated. The results indicate this thermosensitive hydrogel possess good fluidity, thermosensitivity and biodegradability, as well as low-cytotoxicity and controlled release, showing the potential use in biomedical applications.

  15. Rapidly in situ forming adhesive hydrogel based on a PEG-maleimide modified polypeptide through Michael addition.

    PubMed

    Zhou, Yalin; Nie, Wei; Zhao, Jin; Yuan, Xiaoyan

    2013-10-01

    Polyethylene glycol-maleimide modified ε-polylysine (EPL-PEG-MAL) with a unique comb-shaped structure was designed and used as a novel crosslinker for thiolated chitosan (CSS). Novel polysaccharide/polypeptide bionic hydrogels based on CSS and EPL-PEG-MAL could form rapidly in situ within 1 min via Michael addition under physiological conditions. Rheological studies showed that introduction of PEG can dramatically improve the storage modulus (G') of the hydrogels and the optimal hydrogel system showed superior G' of 1,614 Pa. The maximum adhesion strength reached 148 kPa, six times higher than that of fibrin glue. Cytotoxicity test indicated that the hydrogel is nontoxic toward growth of L929 cells. Gelation time, swelling ratio, storage modulus and adhesion strength of the hydrogels can be modulated by the content of PEG-maleimide, CSS concentration and molar ratio of maleimide group to thiol group. Benefiting from the fast gelation behaviors, desirable mechanical properties, relatively high adhesive performance and no cytotoxicity, these hydrogels have the potential applications as promising biomaterials for tissue adhesion and sealing.

  16. Self-healable, tough, and ultrastretchable nanocomposite hydrogels based on reversible polyacrylamide/montmorillonite adsorption.

    PubMed

    Gao, Guorong; Du, Gaolai; Sun, Yuanna; Fu, Jun

    2015-03-04

    Nanocomposite hydrogels with unprecedented stretchability, toughness, and self-healing have been developed by in situ polymerization of acrylamide with the presence of exfoliated montmorillonite (MMT) layers as noncovalent cross-linkers. The exfoliated MMT clay nanoplatelets with high aspect ratios, as confirmed by transmission electron microscopy (TEM) and X-ray diffraction (XRD) results, are well dispersed in the polyacrylamide matrix. Strong polymer/MMT interaction was confirmed by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The effective cross-link densities of these hydrogels are estimated in the range of 2.2-5.7 mol m(-3). Uniaxial tensile tests showed a very high fracture elongation up to 11 800% and a fracture toughness up to 10.1 MJ m(-3). Cyclic loading-unloading tests showed remarkable hysteresis, which indicates energy dissipation upon deformation. Residual strain after cyclic loadings could be recovered under mild conditions, with the recovery extent depending on clay content. A mechanism based on reversible desorption/adsorption of polymer chains on clay platelets surface is discussed. Finally, these nanocomposite hydrogels are demonstrated to fully heal by dry-reswell treatments.

  17. Synthesis characterization and in vitro drug release from acrylamide and sodium alginate based superporous hydrogel devices

    PubMed Central

    Nagpal, Manju; Singh, Shailendra Kumar; Mishra, Dinanath

    2013-01-01

    Objective: Present investigation was aimed at developing gastroretentive superporous hydrogels (SPHs) having desired mechanical characteristics with sustained release. Materials and Methods: The acrylamide based SPHs of various generations (1st, 2nd and 3rd) were synthesized by gas blowing technique. The prepared SPHs were evaluated for swelling, mechanical strength studies and scanning electron microscopy studies. Verapamil hydrochloride was loaded into selected SPHs by aqueous drug loading method and characterized via Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (X-RD), differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR) and in vitro drug release studies. Results: SPHs of third generation were observed to have desired mechanical strength with sufficient swelling properties. Integrity of the drug was maintained in hydrogel polymeric network as indicated by FTIR, X-RD, and DSC and NMR studies. Initially, fast drug release (up to 60%) was observed in 30 min in formulation batches containing pure drug only (A, C and E), which was further sustained untill 24 h. Discussion: The increase in mechanical strength was due to the chemical cross-linking of secondary polymer in hydrogel network. The initial burst release was due to the presence of free drug at the surface and later sustained drug release was due to diffusion of entrapped drug in polymeric network. Significant decrease in drug release was observed by the addition of hydroxypropyl methyl cellulose. Conclusion: SPH interpenetrating networks with fast swelling and sufficient mechanical strength were prepared, which can be potentially exploited for designing gastroretentive drug delivery devices. PMID:24167785

  18. Synthesis and characterization of macroporous poly(ethylene glycol)-based hydrogels for tissue engineering application.

    PubMed

    Sannino, A; Netti, P A; Madaghiele, M; Coccoli, V; Luciani, A; Maffezzoli, A; Nicolais, L

    2006-11-01

    Peptide activated poly(ethylene glycol) (PEG)-based hydrogels have received wide attention as material for tissue engineering application. However, the close structure of these materials may pose severe barriers to tissue invasion and nutrient transport. The aim of this work was to synthesize highly interconnected macroporous PEG hydrogels, suitable for use as tissue engineering scaffolds, by combining the photocrosslinking reaction with a foaming process. In particular, various porous samples, differing for both the polymer molecular weight and concentration in the starting precursor solution, have been prepared and characterized by means of scanning electron microscopy and mercury porosimetry. Moreover, water swelling properties have been evaluated and compared with those of the conventional nonporous ones, by performing both equilibrium and kinetic swelling measurements in distilled water. Results indicated that foamed hydrogels display a well-interconnected porous network, suitable for tissue invasion and free molecular trafficking within them. Pores dimension as well as swelling rate can be modulated by polymer concentrations and bubbling agent composition in the precursor solution.

  19. Rheological characterization of cataplasm bases composed of cross-linked partially neutralized polyacrylate hydrogel.

    PubMed

    Wang, Jian; Zhang, Hongqin; An, Dianyun; Yu, Jian; Li, Wei; Shen, Teng; Wang, Jianxin

    2014-10-01

    Viscoelasticity is a useful parameter for characterizing the intrinsic properties of the cross-linked polyacrylate hydrogel used in cataplasm bases. The aim of this study was to investigate the effects of various formulation parameters on the rheological characteristics of polyacrylate hydrogel. The hydrogel layers were formed using a partially neutralized polyacrylate (Viscomate(™)), which contained acrylic acid and sodium acrylate in different copolymerization ratios, as the cross-linked gel framework. Dihydroxyaluminum aminoacetate (DAAA), which produces aluminum ions, was used as the cross-linking agent. Rheological analyses were performed using a "stress amplitude sweep" and a "frequency sweep". The results showed that greater amounts of acrylic acid in the structure of Viscomate as well as higher concentrations of DAAA and Viscomate led to an increase in the elastic modulus (G'). However, greater amounts of acrylic acid in the structure of Viscomate and higher concentrations of DAAA had an opposite on the viscous modulus (G″); this might be owing to higher steric hindrance. The results of this study can serve as guidelines for the optimization of formulations for cataplasms.

  20. A study on chitosan-based hydrogels: Towards the development of an artificial muscle

    NASA Astrophysics Data System (ADS)

    Sun, Shan

    The short-term purpose of this research is to prepare and characterize a chitosan-based hydrogel for its potential application as a prosthetic actuator. Such hydrogels in the form of fiber and membrane were prepared and characterized. Under the stimulation of electric fields, their electrochemomechanical (ECM) behaviors and associated mechanisms were systematically investigated in various aqueous environments. The reversibility of the ECM behaviors was also studied in response to cyclic external stimuli. A theoretical model based on the triphasic theory for a fully hydrated polyelectrolyte matrix was applied to simulate the bending behaviors of the chitosan/PEG hydrogel. The parameters necessary to drive the model were assessed experimentally. Experimental results showed that the deformation of the chitosan/PEG hydrogel depended significantly on its composition, geometric size, crosslink density as well as other external factors, such as the applied electric potential, the pH and ionic strength of the bath medium. While maintaining adequate mechanical properties, the rate of deformation could be improved by adjusting the above factors. Within the range of parameters studied, the bending curvature was found to be proportional to the intensity of the applied electric potential. These experimental observations were interpreted in terms of fiber stiffness, fixed charge density and osmotic swelling, which depended on the equilibrium states in different pH and ionic environments. Electrochemical kinetics was involved in the transient processes. Within the ranges of crosslink density, pH and ionic strength examined in this dissertation research, an optimal condition was obtained for reversible bending behavior under an applied alternating electric field. The experimental results suggest that 0.02 M epichlorohydrin (ECH), 0.015 M Na2SO4 and 0.05% HCl may offer an optimal condition for these ECM responses and for the mechanical properties of these chitosan/PEG fibers. The

  1. Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)-poly(ethylene glycol)-oligo(acryloyl carbonate) copolymer for functional cardiac regeneration.

    PubMed

    Xu, Guohui; Wang, Xiaolin; Deng, Chao; Teng, Xiaomei; Suuronen, Erik J; Shen, Zhenya; Zhong, Zhiyuan

    2015-03-01

    Injectable biodegradable hybrid hydrogels were designed and developed based on thiolated collagen (Col-SH) and multiple acrylate containing oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) (OAC-PEG-OAC) copolymers for functional cardiac regeneration. Hydrogels were readily formed under physiological conditions (37°C and pH 7.4) from Col-SH and OAC-PEG-OAC via a Michael-type addition reaction, with gelation times ranging from 0.4 to 8.1 min and storage moduli from 11.4 to 55.6 kPa, depending on the polymer concentrations, solution pH and degrees of substitution of Col-SH. The collagen component in the hybrid hydrogels retained its enzymatic degradability against collagenase, and the degradation time of the hydrogels increased with increasing polymer concentration. In vitro studies showed that bone marrow mesenchymal stem cells (BMSCs) exhibited rapid cell spreading and extensive cellular network formation on these hybrid hydrogels. In a rat infarction model, the infarcted left ventricle was injected with PBS, hybrid hydrogels, BMSCs or BMSC-encapsulating hybrid hydrogels. Echocardiography demonstrated that the hybrid hydrogels and BMSC-encapsulating hydrogels could increase the ejection fraction at 28 days compared to the PBS control group, resulting in improved cardiac function. Histology revealed that the injected hybrid hydrogels significantly reduced the infarct size and increased the wall thickness, and these were further improved with the BMSC-encapsulating hybrid hydrogel treatment, probably related to the enhanced engraftment and persistence of the BMSCs when delivered within the hybrid hydrogel. Thus, these injectable hybrid hydrogels combining intrinsic bioactivity of collagen, controlled mechanical properties and enhanced stability provide a versatile platform for functional cardiac regeneration.

  2. Synthesis and properties of waterborne polyurethane hydrogels for wound healing dressings.

    PubMed

    Yoo, Hye-Jin; Kim, Han-Do

    2008-05-01

    To accomplish ideal wound healing dressing, a series of waterborne polyurethane (WBPU) hydrogels based on polyethylene glycol (PEG) were synthesized by polyaddition reaction in an emulsion system. The stable WBPU hydrogels which have remaining weight of above 85% were obtained. The effect of the soft segment (PEG) content on water absorbability of WBPU hydrogels was investigated. Water absorption % and equilibrium water content (%) of the WBPU hydrogel significantly increased in proportion to PEG content and the time of water-immersion. The maximum water absorption % and equilibrium water content (%) of WBPU hydrogels containing various PEG contents were in the range of 409-810% and 85-96%, respectively. The water vapor transmission rate of the WBPU hydrogels was found to be in the range of 1490-3118 g/m(2)/day. These results suggest that the WBPU hydrogels prepared in this study may have high potential as new wound dressing materials, which provide and maintain the adequate moist environment required to prevent scab formation and dehydration of the wound bed. By the wound healing evaluation using full-thickness rat model experiment, it was found that the wound covered with a typical WBPU hydrogel (HG-78 sample) was completely filled with new epithelium without any significant adverse reactions.

  3. Hydrogel microparticles for biosensing

    PubMed Central

    Le Goff, Gaelle C.; Srinivas, Rathi L.; Hill, W. Adam; Doyle, Patrick S.

    2015-01-01

    Due to their hydrophilic, biocompatible, and highly tunable nature, hydrogel materials have attracted strong interest in the recent years for numerous biotechnological applications. In particular, their solution-like environment and non-fouling nature in complex biological samples render hydrogels as ideal substrates for biosensing applications. Hydrogel coatings, and later, gel dot surface microarrays, were successfully used in sensitive nucleic acid assays and immunoassays. More recently, new microfabrication techniques for synthesizing encoded particles from hydrogel materials have enabled the development of hydrogel-based suspension arrays. Lithography processes and droplet-based microfluidic techniques enable generation of libraries of particles with unique spectral or graphical codes, for multiplexed sensing in biological samples. In this review, we discuss the key questions arising when designing hydrogel particles dedicated to biosensing. How can the hydrogel material be engineered in order to tune its properties and immobilize bioprobes inside? What are the strategies to fabricate and encode gel particles, and how can particles be processed and decoded after the assay? Finally, we review the bioassays reported so far in the literature that have used hydrogel particle arrays and give an outlook of further developments of the field. PMID:26594056

  4. Synthesis and characterization of lactose-based homopolymers, hydrophilic/hydrophobic copolymers, and hydrogels

    NASA Astrophysics Data System (ADS)

    Zhou, Wenjing

    The focus of this dissertation is the synthesis and characterization of lactose-based functional polymers. Currently 60% of lactose, a by-product from the cheese industry, is being utilized and the remaining fraction represents a serious disposal problem because of the high biological oxygen demand. Therefore, further development of utilization of lactose is an important issue both for industry and environment. Herein, the syntheses of lactose-based polymers such glycopolymers, hydrophilic/hydrophobic copolymers, and hydrogels are reported. A brief review of lactose formation, physical properties, and production is presented in Chapter 1. Syntheses and applications of lactose derivatives such as lactitol, lactulose, lactaime, lactosylurea, lactosylamine, lactone, and barbituric derivative are documented. Previous work in lactose-based polymers include: (1) hydrogels from cross linking of LPEP, borate complexation of lactose-containing polymer, and copolymerization of lactose monomer with crosslinkers; (2) lactose-based polyurethane rigid foams and adhesives; and (3) lactose-containing glycopolymers are also included. Chapter 2 documents the synthesis of acrylamidolactamine and the free radical copolymerization of this monomer with N-isopropylacrylamide in the presence of BisA to make hydrogels. Swelling behavior of the hydrogels at different temperatures as well as DSC study of these hydrogels are also carried out to characterize the swelling transition and the organization of water in the copolymer hydrogels. In Chapter 3, novel monomer syntheses of N-lactosyl- N'-(4-vinylbenzyl)urea or N '-lactosyl-N,N-methyl(4-vinylbenzyl)urea are described. Polymerization of these new urea monomers using a redox initiator gave water-soluble homopolymers with molecular weights in the range of 1.9 x 103 to 5.3 x 106. Synthesis and polymerization of lactose-O-(p-vinylbenzyl)hydroxime are documented in Chapter 4. The resulting polymers had high molecular weight (106) and narrow

  5. Reduced Graphene Oxide-Based Silver Nanoparticle-Containing Composite Hydrogel as Highly Efficient Dye Catalysts for Wastewater Treatment

    PubMed Central

    Jiao, Tifeng; Guo, Haiying; Zhang, Qingrui; Peng, Qiuming; Tang, Yongfu; Yan, Xuehai; Li, Bingbing

    2015-01-01

    New reduced graphene oxide-based silver nanoparticle-containing composite hydrogels were successfully prepared in situ through the simultaneous reduction of GO and noble metal precursors within the GO gel matrix. The as-formed hydrogels are composed of a network structure of cross-linked nanosheets. The reported method is based on the in situ co-reduction of GO and silver acetate within the hydrogel matrix to form RGO-based composite gel. The stabilization of silver nanoparticles was also achieved simultaneously within the gel composite system. The as-formed silver nanoparticles were found to be homogeneously and uniformly dispersed on the surface of the RGO nanosheets within the composite gel. More importantly, this RGO-based silver nanoparticle-containing composite hydrogel matrix acts as a potential catalyst for removing organic dye pollutants from an aqueous environment. Interestingly, the as-prepared catalytic composite matrix structure can be conveniently separated from an aqueous environment after the reaction, suggesting the potentially large-scale applications of the reduced graphene oxide-based nanoparticle-containing composite hydrogels for organic dye removal and wastewater treatment. PMID:26183266

  6. Reduced Graphene Oxide-Based Silver Nanoparticle-Containing Composite Hydrogel as Highly Efficient Dye Catalysts for Wastewater Treatment.

    PubMed

    Jiao, Tifeng; Guo, Haiying; Zhang, Qingrui; Peng, Qiuming; Tang, Yongfu; Yan, Xuehai; Li, Bingbing

    2015-07-17

    New reduced graphene oxide-based silver nanoparticle-containing composite hydrogels were successfully prepared in situ through the simultaneous reduction of GO and noble metal precursors within the GO gel matrix. The as-formed hydrogels are composed of a network structure of cross-linked nanosheets. The reported method is based on the in situ co-reduction of GO and silver acetate within the hydrogel matrix to form RGO-based composite gel. The stabilization of silver nanoparticles was also achieved simultaneously within the gel composite system. The as-formed silver nanoparticles were found to be homogeneously and uniformly dispersed on the surface of the RGO nanosheets within the composite gel. More importantly, this RGO-based silver nanoparticle-containing composite hydrogel matrix acts as a potential catalyst for removing organic dye pollutants from an aqueous environment. Interestingly, the as-prepared catalytic composite matrix structure can be conveniently separated from an aqueous environment after the reaction, suggesting the potentially large-scale applications of the reduced graphene oxide-based nanoparticle-containing composite hydrogels for organic dye removal and wastewater treatment.

  7. Reduced Graphene Oxide-Based Silver Nanoparticle-Containing Composite Hydrogel as Highly Efficient Dye Catalysts for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Jiao, Tifeng; Guo, Haiying; Zhang, Qingrui; Peng, Qiuming; Tang, Yongfu; Yan, Xuehai; Li, Bingbing

    2015-07-01

    New reduced graphene oxide-based silver nanoparticle-containing composite hydrogels were successfully prepared in situ through the simultaneous reduction of GO and noble metal precursors within the GO gel matrix. The as-formed hydrogels are composed of a network structure of cross-linked nanosheets. The reported method is based on the in situ co-reduction of GO and silver acetate within the hydrogel matrix to form RGO-based composite gel. The stabilization of silver nanoparticles was also achieved simultaneously within the gel composite system. The as-formed silver nanoparticles were found to be homogeneously and uniformly dispersed on the surface of the RGO nanosheets within the composite gel. More importantly, this RGO-based silver nanoparticle-containing composite hydrogel matrix acts as a potential catalyst for removing organic dye pollutants from an aqueous environment. Interestingly, the as-prepared catalytic composite matrix structure can be conveniently separated from an aqueous environment after the reaction, suggesting the potentially large-scale applications of the reduced graphene oxide-based nanoparticle-containing composite hydrogels for organic dye removal and wastewater treatment.

  8. Tetrakis(hydroxymethyl) phosphonium chloride as a covalent cross-linking agent for cell encapsulation within protein-based hydrogels.

    PubMed

    Chung, Cindy; Lampe, Kyle J; Heilshorn, Sarah C

    2012-12-10

    Native tissues provide cells with complex, three-dimensional (3D) environments comprised of hydrated networks of extracellular matrix proteins and sugars. By mimicking the dimensionality of native tissue while deconstructing the effects of environmental parameters, protein-based hydrogels serve as attractive, in vitro platforms to investigate cell-matrix interactions. For cell encapsulation, the process of hydrogel formation through physical or covalent cross-linking must be mild and cell compatible. While many chemical cross-linkers are commercially available for hydrogel formation, only a subset are cytocompatible; therefore, the identification of new and reliable cytocompatible cross-linkers allows for greater flexibility of hydrogel design for cell encapsulation applications. Here, we introduce tetrakis(hydroxymethyl) phosphonium chloride (THPC) as an inexpensive, amine-reactive, aqueous cross-linker for 3D cell encapsulation in protein-based hydrogels. We characterize the THPC-amine reaction by demonstrating THPC's ability to react with primary and secondary amines of various amino acids. In addition, we demonstrate the utility of THPC to tune hydrogel gelation time (6.7±0.2 to 27±1.2 min) and mechanical properties (storage moduli ∼250 Pa to ∼2200 Pa) with a recombinant elastin-like protein. Lastly, we show cytocompatibility of THPC for cell encapsulation with two cell types, embryonic stem cells and neuronal cells, where cells exhibited the ability to differentiate and grow in elastin-like protein hydrogels. The primary goal of this communication is to report the identification and utility of tetrakis(hydroxymethyl) phosphonium chloride (THPC) as an inexpensive but widely applicable cross-linker for protein-based materials.

  9. Thermosensitive block copolymer hydrogels based on poly(ɛ-caprolactone) and polyethylene glycol for biomedical applications: state of the art and future perspectives.

    PubMed

    Boffito, Monica; Sirianni, Paolo; Di Rienzo, Anna Maria; Chiono, Valeria

    2015-03-01

    This review focuses on the challenges associated with the design and development of injectable hydrogels of synthetic origin based on FDA approved blocks, such as polyethylene glycol (PEG) and poly(ɛ-caprolactone) (PCL). An overview of recent studies on inverse thermosensitive PEG/PCL hydrogels is provided. These systems have been proposed to overcome the limitations of previously introduced degradable thermosensitive hydrogels [e.g., PEG/poly(lactide-co-glycolic acid) hydrogels]. PEG/PCL hydrogels are advantageous due to their higher gel strength, slower degradation rate and availability in powder form. Particularly, triblock PEG/PCL copolymers have been widely investigated, with PCL-PEG-PCL (PCEC) hydrogels showing superior gel strength and slower degradation kinetics than PEG-PCL-PEG (PECE) hydrogels. Compared to triblock PEG/PCL copolymers, concentrated solutions of multiblock PEG/PCL copolymers were stable due to their slower crystallization rate. However, the resulting hydrogel gel strength was low. Inverse thermosensitive triblock PEG/PCL hydrogels have been mainly applied in tissue engineering, to decrease tissue adherence or, in combination with bioactive molecules, to promote tissue regeneration. They have also found application as in situ drug delivery carriers. On the other hand, the wide potentialities of multiblock PEG/PCL hydrogels, associated with the stability of their water-based solutions under storage, their higher degradation time compared to triblock copolymer hydrogels and the possibility to insert bioactive building blocks along the copolymer chains, have not been fully exploited yet. A critical discussion is provided to highlight advantages and limitations of currently developed themosensitive PEG/PCL hydrogels, suggesting future strategies for the realization of PEG/PCL-based copolymers with improved performance in the different application fields.

  10. Measurements of water content in hydroxypropyl-methyl-cellulose based hydrogels via texture analysis.

    PubMed

    Lamberti, Gaetano; Cascone, Sara; Cafaro, Maria Margherita; Titomanlio, Giuseppe; d'Amore, Matteo; Barba, Anna Angela

    2013-01-30

    In this work, a fast and accurate method to evaluate the water content in a cellulose derivative-based matrix subjected to controlled hydration was proposed and tuned. The method is based on the evaluation of the work of penetration required in the needle compression test. The work of penetration was successfully related to the hydrogel water content, assayed by a gravimetric technique. Moreover, a fitting model was proposed to correlate the two variables (the water content and the work of penetration). The availability of a reliable tool is useful both in the quantification of the water uptake phenomena, both in the management of the testing processes of novel pharmaceutical solid dosage forms.

  11. Semiconductor meta-surface based perfect light absorber.

    PubMed

    Liu, Guiqiang; Nie, Yiyou; Fu, Guolan; Liu, Xiaoshan; Liu, Yi; Tang, Li; Liu, Zhengqi

    2017-04-21

    We numerically proposed and demonstrated a semiconductor meta-surface light absorber, which consists of a silicon patches array on a silicon thin-film and an opaque silver substrate. The Mie resonances of the silicon patches and the fundamental cavity mode of the ultra-thin silicon film couple strongly to the incident optical field, leading to a multi-band perfect absorption. The maximal absorption is above 99.5% and the absorption is polarization-independent. Moreover, the absorption behavior is scalable in the frequency region via tuning the structural parameters. These features hold the absorber platform with wide applications in optoelectronics such as hot-electron excitation and photo-detection.

  12. Microwave metamaterial absorber based on multiple square ring structures

    NASA Astrophysics Data System (ADS)

    Zhou, Weicheng; Wang, Pinghe; Wang, Nan; Jiang, Wei; Dong, Xiaochun; Hu, Song

    2015-11-01

    In this paper, we report the design, analysis, and simulation of quintuple-band metamaterial absorber (MMA) in the microwave region. The absorber is constructed of a delicate periodic patterned structures and a metallic background plane, separated by a dielectric substrate. By manipulating the periodic patterned structures, high absorption can be obtained at five specific resonance frequencies. Moreover, the significantly high absorptions of quintuple-peaks are persistent with polarization independence, and the influence of angle of incidence for both TE and TM modes was also elucidated. For explaining the absorption mechanism of proposed structures, the electric and magnetic field distributions and resistance matching principal were given. Importantly, the design idea has the ability to be extended to other frequencies, like terahertz, infrared and optical frequencies.

  13. Biocompatible hydrogel membranes for the protection of RNA aptamer-based electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Schoukroun-Barnes, Lauren R.; Wagan, Samiullah; Liu, Juan; Leach, Jennie B.; White, Ryan J.

    2013-05-01

    Electrochemical-aptamer based (E-AB) sensors represent a universal specific, selective, and sensitive sensing platform for the detection of small molecule targets. Their specific detection abilities are afforded by oligonucleotide (RNA or DNA) aptamers employed as electrode-bound biorecognition elements. Sensor signaling is predicated on bindinginduced changes in conformation and/or flexibility of the aptamer that is readily measurable electrochemically. While sensors fabricated using DNA aptamers can achieve specific and selective detection even in unadulterated sample matrices, such as blood serum, RNA-based sensors fail when challenged in the same sample matrix without significant sample pretreatment. This failure is at least partially a result of enzymatic degradation of the RNA sensing element. This degradation destroys the sensing aptamer inhibiting the quantitative measurement of the target analyte and thus limits the application of E-AB sensors constructed with RNA aptamer. To circumvent this, we demonstrate that a biocompatible hydrogel membrane protects the RNA aptamer sensor surface from enzymatic degradation for at least 3 hours - a remarkable improvement over the rapid (~minutes) degradation of unprotected sensors. To demonstrate this, we characterize the response of sensors fabricated with representative DNA and RNA aptamers directed against the aminoglycoside antibiotic, tobramycin in blood serum both protected and unprotected by a polyacrylamide membrane. Furthermore, we find encapsulation of the sensor surface with the hydrogel does not significantly impede the detection ability of aptamer-based sensors. This hydrogel-aptamer interface will thus likely prove useful for the long-term monitoring of therapeutics in complex biological media.

  14. Microfluidic hydrogels for tissue engineering.

    PubMed

    Huang, Guo You; Zhou, Li Hong; Zhang, Qian Cheng; Chen, Yong Mei; Sun, Wei; Xu, Feng; Lu, Tian Jian

    2011-03-01

    With advanced properties similar to the native extracellular matrix, hydrogels have found widespread applications in tissue engineering. Hydrogel-based cellular constructs have been successfully developed to engineer different tissues such as skin, cartilage and bladder. Whilst significant advances have been made, it is still challenging to fabricate large and complex functional tissues due mainly to the limited diffusion capability of hydrogels. The integration of microfluidic networks and hydrogels can greatly enhance mass transport in hydrogels and spatiotemporally control the chemical microenvironment of cells, mimicking the function of native microvessels. In this review, we present and discuss recent advances in the fabrication of microfluidic hydrogels from the viewpoint of tissue engineering. Further development of new hydrogels and microengineering technologies will have a great impact on tissue engineering.

  15. Thermoresponsive Magnetic Hydrogels as Theranostic Nanoconstructs

    PubMed Central

    2015-01-01

    We report the development of thermoresponsive magnetic hydrogels based on poly(N-isopropylacrylamide) encapsulation of Fe3O4 magnetic nanostructures (MNS). In particular, we examined the effects of hydrogels encapsulated with poly-ethylene glycol (PEG) and polyhedral oligomeric silsesquioxane (POSS) surface modified Fe3O4 MNS on magnetic resonance (MR) T2 (transverse spin relaxation) contrast enhancement and associated delivery efficacy of absorbed therapeutic cargo. The microstructural characterization reveal the regular spherical shape and size (∼200 nm) of the hydrogels with elevated hydrophilic to hydrophobic transition temperature (∼40 °C) characterized by LCST (lower critical solution temperature) due to the presence of encapsulated MNS. The hydrogel-MNS (HGMNS) system encapsulated with PEG functionalized Fe3O4 of 12 nm size (HGMNS-PEG-12) exhibited relaxivity rate (r2) of 173 mM–1s–1 compared to 129 mM–1s–1 obtained for hydrogel-MNS system encapsulated with POSS functionalized Fe3O4 (HGMNS-POSS-12) of the same size. Further studies with HGMNS-PEG-12 with absorbed drug doxorubicin (DOX) reveals approximately two-fold enhance in release during 1 h RF (radio-frequency) field exposure followed by 24 h incubation at 37 °C. Quantitatively, it is 2.1 μg mg–1 (DOX/HGMNS) DOX release with RF exposure while only 0.9 μg mg–1 release without RF exposure for the same period of incubation. Such enhanced release of therapeutic cargo is attributed to micro-environmental heating in the surroundings of MNS as well as magneto-mechanical vibrations under high frequency RF inside hydrogels. Similarly, RF-induced in vitro localized drug delivery studies with HeLa cell lines for HGMNS-PEG-12 resulted in more than 80% cell death with RF field exposures for 1 h. We therefore believe that magnetic hydrogel system has in vivo theranostic potential given high MR contrast enhancement from encapsulated MNS and RF-induced localized therapeutic delivery in one

  16. Reducing the Oxidation Level of Dextran Aldehyde in a Chitosan/Dextran-Based Surgical Hydrogel Increases Biocompatibility and Decreases Antimicrobial Efficacy.

    PubMed

    Chan, Maggie; Brooks, Heather J L; Moratti, Stephen C; Hanton, Lyall R; Cabral, Jaydee D

    2015-06-16

    A highly oxidized form of a chitosan/dextran-based hydrogel (CD-100) containing 80% oxidized dextran aldehyde (DA-100) was developed as a post-operative aid, and found to significantly prevent adhesion formation in endoscopic sinus surgery (ESS). However, the CD-100 hydrogel showed moderate in vitro cytotoxicity to mammalian cell lines, with the DA-100 found to be the cytotoxic component. In order to extend the use of the hydrogel to abdominal surgeries, reformulation using a lower oxidized DA (DA-25) was pursued. The aim of the present study was to compare the antimicrobial efficacy, in vitro biocompatibility and wound healing capacity of the highly oxidized CD-100 hydrogel with the CD-25 hydrogel. Antimicrobial studies were performed against a range of clinically relevant abdominal microorganisms using the micro-broth dilution method. Biocompatibility testing using human dermal fibroblasts was assessed via a tetrazolium reduction assay (MTT) and a wound healing model. In contrast to the original DA-100 formulation, DA-25 was found to be non-cytotoxic, and showed no overall impairment of cell migration, with wound closure occurring at 72 h. However, the lower oxidation level negatively affected the antimicrobial efficacy of the hydrogel (CD-25). Although the CD-25 hydrogel's antimicrobial efficacy and anti-fibroblast activity is decreased when compared to the original CD-100 hydrogel formulation, previous in vivo studies show that the CD-25 hydrogel remains an effective, biocompatible barrier agent in the prevention of postoperative adhesions.

  17. Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic F-127 for sustained NSAID delivery.

    PubMed

    Jung, Young-Seok; Park, Wooram; Park, Hyejin; Lee, Deok-Keun; Na, Kun

    2017-01-20

    The aim of this research is the development of a new type of intra-articularly injectable thermo-sensitive hydrogels for the long-term delivery of Piroxicam (PX). The thermo-sensitive hydrogel was prepared by the simple physical mixing of HA and Pluronic F-127 (HP) in aqueous solution. The addition of high-molecular-weight HA not only enhanced the mechanical strength of the hydrogel but also elicited a sustained drug release. This result could be attributed to the high-molecular-weight HA-assisted inter-micellar packing in the hydrogel inner structure. The critical gelation temperature value of HP hydrogel was considerably lower than native Pluronic F-127. To evaluate the bioavailability, pharmacokinetic parameters were analyzed after articular-cavity injection of the HP hydrogel in beagle dogs. The HP hydrogel exhibits both sustained drug release behavior and superior bioavailability in physiological conditions. Thus, we believe that the NSAID PX-loaded HP hydrogel could be a promising hydrogel-based drug delivery platform for the treatment of arthritis.

  18. Hyaluronic acid based hydrogel system for soft tissue regeneration and drug delivery

    NASA Astrophysics Data System (ADS)

    Jha, Amit Kumar

    We have developed hyaluronic acid (HA)-based, biomimetic hydrogel matrices that are hierarchically structured, mechanically robust and biologically active. Specifically, HA-based hydrogel particles (HGPs) with controlled sizes, defined porosity, and improved stability were synthesized using different inverse emulsion systems and crosslinking chemistries. The resultant particles either contained residual functional groups or were rendered reactive by subsequent chemical modifications. HA-based doubly crosslinked networks (DXNs) were synthesized via covalent crosslinking of HA HGPs with soluble HA macromers carrying mutually reactive functional groups. These hybrid matrices are hierarchical in nature, consisting of densely crosslinked HGPs integrated in a loosely connected secondary matrix. Their mechanical properties and degradation kinetics can be readily tuned by varying the particle size, functional group density, intra- and interparticle crosslinking. To improve the biological functions of HA HGPs, perlecan domain I (PlnDI), a basement membrane proteoglycan that has strong affinity for various heparin binding growth factors (HBGFs), was successfully conjugated to the particles through the core protein via a flexible poly(ethylene glycol) (PEG) linker. The immobilized PlnDI maintains its ability to bind bone morphogenetic proteins (BMP-2) and modulates its in vitro release. A similar, sustained release of BMP-2 was achieved by encapsulating BMP-2-loaded HGPs within a photocrosslinked HA matrix. When encapsulated in HA DXNs, primary bovine chondrocytes were able to maintain their phenotype, proliferate readily and produce abundant glycosaminoglycan. Finally, cell-adhesive HA DXNs were fabricated by encapsulating gelatin-decorated HA HGPs in a secondary HA matrix. Human MSCs were shown to adhere to the composite matrix through the focal adhesion sites clustered on particle surface. The cell-adhesive composite matrices supported hMSC proliferation and migration into

  19. A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres

    NASA Astrophysics Data System (ADS)

    Tai, Yanlong; Mulle, Matthieu; Aguilar Ventura, Isaac; Lubineau, Gilles

    2015-08-01

    Wearable pressure sensing solutions have promising future for practical applications in health monitoring and human/machine interfaces. Here, a highly sensitive, low-cost, wearable pressure sensor based on conductive single-walled carbon nanotube (SWCNT)/alginate hydrogel spheres is reported. Conductive and piezoresistive spheres are embedded between conductive electrodes (indium tin oxide-coated polyethylene terephthalate films) and subjected to environmental pressure. The detection mechanism is based on the piezoresistivity of the SWCNT/alginate conductive spheres and on the sphere-electrode contact. Step-by-step, we optimized the design parameters to maximize the sensitivity of the sensor. The optimized hydrogel sensor exhibited a satisfactory sensitivity (0.176 ΔR/R0/kPa-1) and a low detectable limit (10 Pa). Moreover, a brief response time (a few milliseconds) and successful repeatability were also demonstrated. Finally, the efficiency of this strategy was verified through a series of practical tests such as monitoring human wrist pulse, detecting throat muscle motion or identifying the location and the distribution of an external pressure using an array sensor (4 × 4).Wearable pressure sensing solutions have promising future for practical applications in health monitoring and human/machine interfaces. Here, a highly sensitive, low-cost, wearable pressure sensor based on conductive single-walled carbon nanotube (SWCNT)/alginate hydrogel spheres is reported. Conductive and piezoresistive spheres are embedded between conductive electrodes (indium tin oxide-coated polyethylene terephthalate films) and subjected to environmental pressure. The detection mechanism is based on the piezoresistivity of the SWCNT/alginate conductive spheres and on the sphere-electrode contact. Step-by-step, we optimized the design parameters to maximize the sensitivity of the sensor. The optimized hydrogel sensor exhibited a satisfactory sensitivity (0.176 ΔR/R0/kPa-1) and a low

  20. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    DOEpatents

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  1. Evaluation of a mPEG-polyester-based hydrogel as cell carrier for chondrocytes.

    PubMed

    Peng, Sydney; Yang, Shu-Rui; Ko, Chao-Yin; Peng, Yu-Shiang; Chu, I-Ming

    2013-11-01

    Temperature-sensitive hydrogels are attractive alternatives to porous cell-seeded scaffolds and is minimally invasive through simple injection and in situ gelling. In this study, we compared the performance of two types of temperature-sensitive hydrogels on chondrocytes encapsulation for the use of tissue engineering of cartilage. The two hydrogels are composed of methoxy poly(ethylene glycol)- poly(lactic-co-valerolactone) (mPEG-PVLA), and methoxy poly(ethylene glycol)-poly(lactic- co-glycolide) (mPEG-PLGA). Osmolarity and pH were optimized through the manipulation of polymer concentration and dispersion medium. Chondrocytes proliferation in mPEG-PVLA hydrogels was observed as well as accumulation of GAGs and collagen. On the other hand, chondrocytes encapsulated in mPEG-PLGA hydrogels showed low viability and chondrogenesis. Also, mPEG-PVLA hydrogel, which is more hydrophobic, retained physical integrity after 14 days while mPEG-PLGA hydrogel underwent full degradation due to faster hydrolysis rate and more pronounced acidic self-catalyzed degradation. The mPEG-PVLA hydrogel can be furthered tuned by manipulation of molecular weights to obtain hydrogels with different swelling and degradation characteristics, which may be useful as producing a selection of hydrogels compatible with different cell types. Taken together, these results demonstrate that mPEG-PVLA hydrogels are promising to serve as three-dimensional cell carriers for chondrocytes and potentially applicable in cartilage tissue engineering.

  2. Self-healable mussel-mimetic nanocomposite hydrogel based on catechol-containing polyaspartamide and graphene oxide.

    PubMed

    Wang, Bo; Jeon, Young Sil; Park, Ho Seok; Kim, Ji-Heung

    2016-12-01

    Stimuli-responsive and self-healing materials have a wide range of potential uses, and some significant research has focused on cross-linking of hydrogel materials by means of reversible coordination bonding. The resulting materials, however, tend to have poor mechanical properties with pronounced weakness and brittleness. In this work, we present a novel mussel-inspired graphene oxide(GO)-containing hydrogel based on modified polyaspartamide with γ-amino butyric acid (GABA), 3.4-dihydroxyphenethylamine (DOPA), and ethanolamine (EA), termed PolyAspAm(GABA/DOPA/EA). Here both GO nanosheets and boric acid (H3BO3) act as cross-linkers, interacting with polar functional groups of the PolyAspAm(GABA/DOPA/EA). Compared to PolyAspAm(GABA/DOPA/EA)/B(3+) gel without GO, the same containing 5wt% of GO yielded a 10-fold increase in both the storage and loss moduli, as well as 134% and 104% increases in the tensile and compressive strengths, respectively. In addition, the GO-containing polyaspartamide hydrogel exhibited rapid and autonomous self-healing property. Two types of bonding, boron-catechol coordination and strong hydrogen bonding interactions between PolyAspAm side chains and GO nanosheets, would impart the enhanced mechanical strength and good reversible gelation behavior upon pH stimulation to the hydrogel, making this biocompatible hydrogel a promising soft matter for biomedical applications.

  3. In situ-forming click-crosslinked gelatin based hydrogels for 3D culture of thymic epithelial cells.

    PubMed

    Truong, Vinh X; Hun, Michael L; Li, Fanyi; Chidgey, Ann P; Forsythe, John S

    2016-07-21

    Hydrogels prepared from naturally derived gelatin can provide a suitable environment for cell attachment and growth, making them favourable materials in tissue engineering. However, physically crosslinked gelatin hydrogels are not stable under physiological conditions while chemical crosslinking of gelatin by radical polymerization may be harmful to cells. In this study, we attached the norbornene functional group to gelatin, which was subsequently crosslinked with a polyethylene glycol (PEG) linker via the nitrile oxide-norbornene click reaction. The rapid crosslinking process allows the hydrogel to be formed within minutes of mixing the polymer solutions under physiological conditions, allowing the gels to be used as injectable materials. The hydrogels properties including mechanical strength, swelling and degradation, can be tuned by changing either the ratio of the reacting groups or the total concentration of the polymer precursors. Murine embryonic fibroblastic cells cultured in soft gels (2 wt% of gelatin and 1 wt% of PEG linker) demonstrated high cell viability as well as similar phenotypic profiles (PDGFRα and MTS15) to Matrigel cultures over 5 days. Thymic epithelial cell and fibroblast co-cultures produced epithelial colonies in these gels following 7 days incubation. These studies demonstrate that gelatin based hydrogels, prepared using "click" crosslinking, provide a robust cell culture platform with retained benefits of the gelatin material, and are therefore suitable for use in various tissue engineering applications.

  4. A highly sensitive and stable glucose biosensor using thymine-based polycations into laponite hydrogel films.

    PubMed

    Paz Zanini, Veronica I; Gavilán, Maximiliano; López de Mishima, Beatriz A; Martino, Débora M; Borsarelli, Claudio D

    2016-04-01

    A series of glucose bioelectrodes were prepared by glucose oxidase (GOx) immobilization into laponite hydrogel films containing DNA bioinspired polycations made of vinylbenzyl thymine (VBT) and vinylbenzyl triethylammonium chloride (VBA) with general formulae (VBT)m(VBA)n](n+)≈25 with m=0, 1 and n=2, 4, 8, deposited onto glassy carbon electrode. The bioelectrodes were characterized by chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy. Results indicated that the electrochemical properties of the laponite hydrogel films were largely improved by the incorporation of thymine-based polycations, being proportional to the positive charge density of the polycation molecule. After incorporation of glucose oxidase, the sensitivity of the bioelectrode to glucose increased with the positive charge density of the polycation. Additionally, the presence of the vinylbenzyl thymine moiety played a role in the long-term stability and reproducibility of the bioelectrode signal. As a consequence, the [(VBT)(VBA)8](8+)≈25 was the most appropriate polycation for bioelectrode preparation and glucose sensing, with a specific sensitivity of se=176 mA mmol(-1)Lcm(-2)U(-1), almost two-order of magnitude larger than other laponite immobilized GOx bioelectrodes reported elsewhere. These features were confirmed by testing the bioelectrode for a selective determination of glucose in powder milk and blood serum samples without interference of either ascorbic or uric acids under the experimental conditions. The present study demonstrates the suitability of DNA bioinspired water-soluble polycations [(VBT)m(VBA)n](n+)≈25 for enzyme immobilization like GOx into laponite hydrogels, and the preparation of highly sensitive and stable bioelectrodes on glassy carbon surface.

  5. Smart hydrogel-functionalized textile system with moisture management property for skin application

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowen; Hu, Huawen; Yang, Zongyue; He, Liang; Kong, Yeeyee; Fei, Bin; Xin, John H.

    2014-12-01

    In this study, a functional textile-based material for topical skin application was fabricated by coating a thermoresponsive hydrogel onto one side of absorbent nonwoven fabric. The thermoresponsive hydrogel was synthesized easily through coupling of poly (ethylene glycol) (PEG) and poly (ɛ-caprolactone) (PCL) with hexamethylene diisocyanate (HMDI) as a chemical linker. The chemical structure of the as-prepared triblock copolymer hydrogel was unraveled by FTIR and 1H NMR analysis. The hydrogel showed a temperature-triggered sol-gel transition behavior and high potential for use as drug controlled release. When the surrounding temperature was close to the skin temperature of around 34 °C, it became a moisture management system where the liquids including sweat, blood, and other body fluids can be transported unidirectionally from one fabric side with the hydrophobic hydrogel coating to the untreated opposite side. This thereby showed that the thermoresponsive hydrogel-coated textile materials had a function to keep topical skin area clean, breathable, and comfortable, thus suggesting a great potential and significance for long-term skin treatment application. The structure and surface morphology of the thermoresponsive hydrogel, in vitro drug release behavior, and the mechanism of unidirectional water transport were investigated in detail. Our success in preparation of the functional textile composites will pave the way for development of various polymer- or textile-based functional materials that are applicable in the real world.

  6. Preparation and physico-chemical properties of hydrogels from carboxymethyl cassava starch crosslinked with citric acid

    NASA Astrophysics Data System (ADS)

    Boonkham, Sasikan; Sangseethong, Kunruedee; Chatakanon, Pathama; Niamnuy, Chalida; Nakasaki, Kiyohiko; Sriroth, Klanarong

    2014-06-01

    Recently, environmentally friendly hydrogels prepared from renewable bio-based resources have drawn significant attention from both industrial and academic sectors. In this study, chemically crosslinked hydrogels have been developed from cassava starch which is a bio-based polymer using a non-toxic citric acid as a crosslinking agent. Cassava starch was first modified by carboxymethylation to improve its water absorbency property. The carboxymethyl cassava starch (CMCS) obtained was then crosslinked with citric acid at different concentrations and reaction times. The gel fraction of hydrogels increased progressively with increasing citric acid concentration. Free swelling capacity of hydrogels in de-ionized water, saline solution and buffers at various pHs as well as absorption under load were investigated. The results revealed that swelling behavior and mechanical characteristic of hydrogels depended on the citric acid concentration used in reaction. Increasing citric acid concentration resulted in hydrogels with stronger network but lower swelling and absorption capacity. The cassava starch hydrogels developed were sensitive to ionic strength and pH of surrounding medium, showing much reduced swelling capacity in saline salt solution and acidic buffers.

  7. Microwave radiation absorbers based on corrugated composites with carbon fibers

    NASA Astrophysics Data System (ADS)

    Bychanok, D. S.; Plyushch, A. O.; Gorokhov, G. V.; Bychanok, U. S.; Kuzhir, P. P.; Maksimenko, S. A.

    2016-12-01

    A complex analysis of the dependence of the absorption coefficient of polymer composites with nonmagnetic carbon inclusions on the real and imaginary parts of the complex permittivity, as well as on the material thickness is performed in frequency range 26-37 GHz. The composites containing 0.2 wt % of carbon fibers have been obtained. It has been experimentally found that the corrugation of the composite surface substantially increases the absorbability (from 63 to 92% at a frequency of 30 GHz and a thickness of 4.50 mm) upon a decrease in the sample mass (by 28%). A method has been proposed for calculating the absorptance of corrugated composites in the microwave range.

  8. Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber.

    PubMed

    Huang, Yongjun; Wen, Guangjun; Zhu, Weiren; Li, Jian; Si, Li-Ming; Premaratne, Malin

    2014-06-30

    We synthesize and systematically characterize a novel type of magnetically tunable metamaterial absorber (MA) by integrating ferrite as a substrate or superstrate into a conventional passive MA. The nearly perfect absorption and tunability of this device is studied both numerically and experimentally within X-band (8-12 GHz) in a rectangular waveguide setup. Our measurements clearly show that the resonant frequency of the MA can be shifted across a wide frequency band by continuous adjustment of a magnetic field acting on the ferrite. Moreover, the effects of substrate/superstrate's thickness on the MA's tunability are discussed. The insight gained from the generic analysis enabled us to design an optimized tunable MA with relative frequency tuning range as larger as 11.5% while keeping the absorptivity higher than 98.5%. Our results pave a path towards applications with tunable devices, such as selective thermal emitters, sensors, and bolometers.

  9. Carbon nanohorns-based nanofluids as direct sunlight absorbers.

    PubMed

    Sani, E; Barison, S; Pagura, C; Mercatelli, L; Sansoni, P; Fontani, D; Jafrancesco, D; Francini, F

    2010-03-01

    The optimization of the poor heat transfer characteristics of fluids conventionally employed in solar devices are at present one of the main topics for system efficiency and compactness. In the present work we investigated the optical and thermal properties of nanofluids consisting in aqueous suspensions of single wall carbon nanohorns. The characteristics of these nanofluids were evaluated in view of their use as sunlight absorber fluids in a solar device. The observed nanoparticle-induced differences in optical properties appeared promising, leading to a considerably higher sunlight absorption. We found that the thermal conductivity of the nanofluids was higher than pure water. Both these effects, together with the possible chemical functionalization of carbon nanohorns, make this new kind of nanofluids very interesting for increasing the overall efficiency of the sunlight exploiting device.

  10. Novel hydrogels based on carboxyl pullulan and collagen crosslinking with 1, 4-butanediol diglycidylether for use as a dermal filler: initial in vitro and in vivo investigations.

    PubMed

    Li, Xian; Xue, Wenjiao; Zhu, Chenhui; Fan, Daidi; Liu, Yannan; XiaoxuanMa

    2015-12-01

    Novel hydrogels based on carboxyl pullulan (PC) and human-like collagen (HLC) crosslinking with 1,4-butanediol diglycidyl ether (BDDE) are promising soft fillers for tissue engineering due to their highly tunable properties. Recent studies, however, have shown that incorporating hyaluronic acid and BDDE results in hydrogels with a microporous structure, a large pore size and high porosity, which reduce cell adhesion and enhance degradation in vivo. To improve biocompatibility and prevent biodegradation, the use of PC to replace hyaluronic acid in the fabrication of PC/BDDE (PCB) and PC/BDDE/HLC (PCBH) hydrogels was investigated. Preparation of gels with PC is a promising strategy due to the high reactivity, superb selectivity, and mild reaction conditions of PC. In particular, the Schiff base reaction of HLC and PC produces the novel functional group -RCONHR' in PCBH hydrogels. Twenty-four weeks after subcutaneous injection of either PCB or PCBH hydrogel in mice, the surrounding tissue inflammation, enzymatic response and cell attachment were better compared to hyaluronic acid-based hydrogels. However, the biocompatibility, cytocompatibility and non-biodegradability of PCBH were milder than those of the PCB hydrogels both in vivo and in vitro. These results show that the proposed use of PC and HLC for the fabrication of hydrogels is a promising strategy for generating soft filler for tissue engineering.

  11. Wavelength-dependent polarization absorber based on multi-cladding fiber with gold coating

    NASA Astrophysics Data System (ADS)

    Weng, Sijun; Pei, Li; Liu, Chao; Wang, Jianshuai; Li, Jing; Ning, Tigang

    2016-12-01

    The wavelength-dependent polarization absorber based on multi-cladding fiber (MCF) with surface plasmon resonance (SPR) is proposed and demonstrated. In order to obtain the SPR effect both in the x- and y- polarized direction, the MCF is polished in two sides. The numerical simulations show that the polarization absorber with the wavelengths of 980/1550 nm and 1310/1550 nm can be obtained by adjusting the parameters of dielectric layer. Each wavelength only transmits a single polarization in the wavelength-dependent polarization absorber, and the loss of unwanted polarized mode is more than 95 dB/cm. In addition, when the length of fiber is only 550 μm, the bandwidths of polarization absorber are 29 nm at 980 nm and 413 nm at 1550 nm, respectively; meanwhile, the bandwidth of 1310/1550 nm polarization absorber reaches 102 nm and 302 nm, respectively.

  12. Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation

    NASA Astrophysics Data System (ADS)

    Martelli, Fabrizio; Ninni, Paola Di; Zaccanti, Giovanni; Contini, Davide; Spinelli, Lorenzo; Torricelli, Alessandro; Cubeddu, Rinaldo; Wabnitz, Heidrun; Mazurenka, Mikhail; Macdonald, Rainer; Sassaroli, Angelo; Pifferi, Antonio

    2014-07-01

    We present the experimental implementation and validation of a phantom for diffuse optical imaging based on totally absorbing objects for which, in the previous paper [J. Biomed. Opt. 18(6), 066014, (2013)], we have provided the basic theory. Totally absorbing objects have been manufactured as black polyvinyl chloride (PVC) cylinders and the phantom is a water dilution of intralipid-20% as the diffusive medium and India ink as the absorber, filled into a black scattering cell made of PVC. By means of time-domain measurements and of Monte Carlo simulations, we have shown the reliability, the accuracy, and the robustness of such a phantom in mimicking typical absorbing perturbations of diffuse optical imaging. In particular, we show that such a phantom can be used to generate any absorption perturbation by changing the volume and position of the totally absorbing inclusion.

  13. Poly(N-isopropylacrylamide) hydrogel-based shape-adjustable polyimide films triggered by near-human-body temperature.

    PubMed

    Huanqing Cui; Xuemin Du; Juan Wang; Tianhong Tang; Tianzhun Wu

    2016-08-01

    Hydrogel-based shape-adjustable films were successfully fabricated via grafting poly(N-isopropylacrylamide) (PNIPAM) onto one side of polyimide (PI) films. The prepared PI-g-PNIPAM films exhibited rapid, reversible, and repeatable bending/unbending property by heating to near-human-body temperature (37 °C) or cooling to 25 °C. The excellent property of PI-g-PNIPAM films resulted from a lower critical solution temperature (LCST) of PNIPAM at about 32 °C. Varying the thickness of PNIPAM hydrogel layer regulated the thermo-responsive shape bending degree and response speed of PI-g-PNIPAM films. The thermo-induced shrinkage of hydrogel layers can tune the curvature of PI films, which have potential applications in the field of wearable and implantable devices.

  14. Water-in-Water Emulsion Based Synthesis of Hydrogel Nanospheres with Tunable Release Kinetics

    NASA Astrophysics Data System (ADS)

    Aydın, Derya; Kızılel, Seda

    2016-06-01

    Poly(ethylene glycol) (PEG) micro/nanospheres have several unique advantages as polymer based drug delivery systems (DDS) such as tunable size, large surface area to volume ratio, and colloidal stability. Emulsification is one of the widely used methods for facile synthesis of micro/nanospheres. Two-phase aqueous system based on polymer-polymer immiscibility is a novel approach for preparation of water-in-water (w/w) emulsions. This method is promising for the synthesis of PEG micro/nanospheres for biological systems, since the emulsion is aqueous and do not require organic solvents or surfactants. Here, we report the synthesis of nano-scale PEG hydrogel particles using w/w emulsions using phase separation of dextran and PEG prepolymer. Dynamic light scattering (DLS) and scaning electron microscopy (SEM) results demonstrated that nano-scale hydrogel spheres could be obtained with this approach. We investigated the release kinetics of a model drug, pregabalin (PGB) from PEG nanospheres and demonstrated the influence of polymerization conditions on loading and release of the drug as well as the morphology and size distribution of PEG nanospheres. The experimental drug release data was fitted to a stretched exponential function which suggested high correlation with experimental results to predict half-time and drug release rates from the model equation. The biocompatibility of nanospheres on human dermal fibroblasts using cell-survival assay suggested that PEG nanospheres with altered concentrations are non-toxic, and can be considered for controlled drug/molecule delivery.

  15. Raman-based imaging uncovers the effects of alginate hydrogel implants in spinal cord injury

    NASA Astrophysics Data System (ADS)

    Galli, Roberta; Tamosaityte, Sandra; Koch, Maria; Sitoci-Ficici, Kerim H.; Later, Robert; Uckermann, Ortrud; Beiermeister, Rudolf; Gelinsky, Michael; Schackert, Gabriele; Kirsch, Matthias; Koch, Edmund; Steiner, Gerald

    2015-07-01

    The treatment of spinal cord injury by using implants that provide a permissive environment for axonal growth is in the focus of the research for regenerative therapies. Here, Raman-based label-free techniques were applied for the characterization of morphochemical properties of surgically induced spinal cord injury in the rat that received an implant of soft unfunctionalized alginate hydrogel. Raman microspectroscopy followed by chemometrics allowed mapping the different degenerative areas, while multimodal multiphoton microscopy (e.g. the combination of coherent anti-Stokes Raman scattering (CARS), endogenous two-photon fluorescence and second harmonic generation on the same platform) enabled to address the morphochemistry of the tissue at cellular level. The regions of injury, characterized by demyelination and scarring, were retrieved and the distribution of key tissue components was evaluated by Raman mapping. The alginate hydrogel was detected in the lesion up to six months after implantation and had positive effects on the nervous tissue. For instance, multimodal multiphoton microscopy complemented the results of Raman mapping, providing the micromorphology of lipid-rich tissue structures by CARS and enabling to discern lipid-rich regions that contained myelinated axons from degenerative regions characterized by myelin fragmentation and presence of foam cells. These findings demonstrate that Raman-based imaging methods provide useful information for the evaluation of alginate implant effects and have therefore the potential to contribute to new strategies for monitoring degenerative and regenerative processes induced in SCI, thereby improving the effectiveness of therapies.

  16. A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres.

    PubMed

    Tai, Yanlong; Mulle, Matthieu; Aguilar Ventura, Isaac; Lubineau, Gilles

    2015-09-21

    Wearable pressure sensing solutions have promising future for practical applications in health monitoring and human/machine interfaces. Here, a highly sensitive, low-cost, wearable pressure sensor based on conductive single-walled carbon nanotube (SWCNT)/alginate hydrogel spheres is reported. Conductive and piezoresistive spheres are embedded between conductive electrodes (indium tin oxide-coated polyethylene terephthalate films) and subjected to environmental pressure. The detection mechanism is based on the piezoresistivity of the SWCNT/alginate conductive spheres and on the sphere-electrode contact. Step-by-step, we optimized the design parameters to maximize the sensitivity of the sensor. The optimized hydrogel sensor exhibited a satisfactory sensitivity (0.176 ΔR/R0/kPa(-1)) and a low detectable limit (10 Pa). Moreover, a brief response time (a few milliseconds) and successful repeatability were also demonstrated. Finally, the efficiency of this strategy was verified through a series of practical tests such as monitoring human wrist pulse, detecting throat muscle motion or identifying the location and the distribution of an external pressure using an array sensor (4 × 4).

  17. A methylcellulose and collagen based temperature responsive hydrogel promotes encapsulated stem cell viability and proliferation in vitro.

    PubMed

    Payne, Christina; Dolan, Eimear B; O'Sullivan, Janice; Cryan, Sally-Ann; Kelly, Helena M

    2017-02-01

    With the number of stem cell-based therapies emerging on the increase, the need for novel and efficient delivery technologies to enable therapies to remain in damaged tissue and exert their therapeutic benefit for extended periods, has become a key requirement for their translation. Hydrogels, and in particular, thermoresponsive hydrogels, have the potential to act as such delivery systems. Thermoresponsive hydrogels, which are polymer solutions that transform into a gel upon a temperature increase, have a number of applications in the biomedical field due to their tendency to maintain a liquid state at room temperature, thereby enabling minimally invasive administration and a subsequent ability to form a robust gel upon heating to physiological temperature. However, various hurdles must be overcome to increase the clinical translation of hydrogels as a stem cell delivery system, with barriers including their low tensile strength and their inadequate support of cell viability and attachment. In order to address these issues, a methylcellulose based hydrogel was formulated in combination with collagen and beta glycerophosphate, and key development issues such as injectability and sterilisation processes were examined. The polymer solution underwent thermogelation at ~36 °C as determined by rheological analysis, and when gelled, was sufficiently robust to resist significant disintegration in the presence of phosphate buffered saline (PBS) while concomitantly allowing for diffusion of methylene blue dye solution into the gel. We demonstrate that human mesenchymal stem cells (hMSCs) encapsulated within the gel remained viable and showed raised levels of dsDNA at increasing time points, an indication of cell proliferation. Mechanical testing showed the "injectability", i.e. force required for delivery of the polymer solution through devices such as a syringe, needle or catheter. Sterilisation of the freeze-dried polymer wafer via gamma irradiation showed no adverse

  18. Direct absorbed dose to water determination based on water calorimetry in scanning proton beam delivery

    SciTech Connect

    Sarfehnia, A.; Clasie, B.; Chung, E.; Lu, H. M.; Flanz, J.; Cascio, E.; Engelsman, M.; Paganetti, H.; Seuntjens, J.

    2010-07-15

    Purpose: The aim of this manuscript is to describe the direct measurement of absolute absorbed dose to water in a scanned proton radiotherapy beam using a water calorimeter primary standard. Methods: The McGill water calorimeter, which has been validated in photon and electron beams as well as in HDR {sup 192}Ir brachytherapy, was used to measure the absorbed dose to water in double scattering and scanning proton irradiations. The measurements were made at the Massachusetts General Hospital proton radiotherapy facility. The correction factors in water calorimetry were numerically calculated and various parameters affecting their magnitude and uncertainty were studied. The absorbed dose to water was compared to that obtained using an Exradin T1 Chamber based on the IAEA TRS-398 protocol. Results: The overall 1-sigma uncertainty on absorbed dose to water amounts to 0.4% and 0.6% in scattered and scanned proton water calorimetry, respectively. This compares to an overall uncertainty of 1.9% for currently accepted IAEA TRS-398 reference absorbed dose measurement protocol. The absorbed dose from water calorimetry agrees with the results from TRS-398 well to within 1-sigma uncertainty. Conclusions: This work demonstrates that a primary absorbed dose standard based on water calorimetry is feasible in scattered and scanned proton beams.

  19. Multitarget sensing of glucose and cholesterol based on Janus hydrogel microparticles.

    PubMed

    Sun, Xiao-Ting; Zhang, Ying; Zheng, Dong-Hua; Yue, Shuai; Yang, Chun-Guang; Xu, Zhang-Run

    2017-06-15

    A visualized sensing method for glucose and cholesterol was developed based on the hemispheres of the same Janus hydrogel microparticles. Single-phase and Janus hydrogel microparticles were both generated using a centrifugal microfluidic chip. For glucose sensing, concanavalin A and fluorescein labeled dextran used for competitive binding assay were encapsulated in alginate microparticles, and the fluorescence of the microparticles was positively correlated with glucose concentration. For cholesterol sensing, the microparticles embedded with γ-Fe2O3 nanoparticles were used as catalyst for the oxidation of 3,3',5,5'-Tetramethylbenzidine by H2O2, an enzymatic hydrolysis product of cholesterol. And the color transition was more sensitive in the microparticles than in solutions, indicating the microparticles are more applicable for visualized determination. Furthermore, Janus microparticles were employed for multitarget sensing in the two hemespheres, and glucose and cholesterol were detected within the same microparticles without obvious interference. Besides, the particles could be manipulated by an external magnetic field. The glucose and cholesterol levels were measured in human serum utilizing the microparticles, which confirmed the potential application of the microparticles in real sample detection.

  20. Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications.

    PubMed

    González-Sánchez, M Isabel; Perni, Stefano; Tommasi, Giacomo; Morris, Nathanael Glyn; Hawkins, Karl; López-Cabarcos, Enrique; Prokopovich, Polina

    2015-05-01

    Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the gold standard use of natural bone graft such as limited bone material, pain at the donor site and rejections if donor tissue is used. We have previously described new acrylate base nanocomposite hydrogels as bone graft materials. In the present paper, we describe the integration of silver nanoparticles in the polymeric mineralized biomaterial to provide non-antibiotic antibacterial activity against Staphylococcus epidermidis and Methicillin-resistant Staphylococcus aureus. Two different crosslinking degrees were tested and the silver nanoparticles were integrated into the composite matrix by means of three different methods: entrapment in the polymeric hydrogel before the mineralization; diffusion during the process of calcium phosphate crystallization and adsorption post-mineralization. The latter being generally the most effective method of encapsulation; however, the adsorption of silver nanoparticles inside the pores of the biomaterial led to a decreasing antibacterial activity for adsorption time longer than 2 days.

  1. Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications

    PubMed Central

    González-Sánchez, M. Isabel; Perni, Stefano; Tommasi, Giacomo; Morris, Nathanael Glyn; Hawkins, Karl; López-Cabarcos, Enrique; Prokopovich, Polina

    2015-01-01

    Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the gold standard use of natural bone graft such as limited bone material, pain at the donor site and rejections if donor tissue is used. We have previously described new acrylate base nanocomposite hydrogels as bone graft materials. In the present paper, we describe the integration of silver nanoparticles in the polymeric mineralized biomaterial to provide non-antibiotic antibacterial activity against Staphylococcus epidermidis and Methicillin-resistant Staphylococcus aureus. Two different crosslinking degrees were tested and the silver nanoparticles were integrated into the composite matrix by means of three different methods: entrapment in the polymeric hydrogel before the mineralization; diffusion during the process of calcium phosphate crystallization and adsorption post-mineralization. The latter being generally the most effective method of encapsulation; however, the adsorption of silver nanoparticles inside the pores of the biomaterial led to a decreasing antibacterial activity for adsorption time longer than 2 days. PMID:25746278

  2. Extracellular matrix formation in self-assembled minimalistic bioactive hydrogels based on aromatic peptide amphiphiles

    PubMed Central

    Zhou, Mi; Ulijn, Rein V

    2014-01-01

    The hitherto inconsistency in clinical performance for engineered skin drives the current development of novel cell-scaffolding materials; one challenge is to only extract essential characteristics from the complex native ECM (extracellular matrix) and incorporate them into a scaffold with minimal complexity to support normal cell functions. This study involved small-molecule-based bioactive hydrogels produced by the co-assembly of two aromatic peptide amphiphiles: Fmoc-FF (Fluorenylmethoxycarbonyl-diphenylalanine) and Fmoc-RGD (arginine–glycine–aspartic acid). Three-dimensionally cultured human dermal fibroblasts deposited dense ECM networks including fibronectin and collagen I within the hydrogels in a 14-day culture. The fibroblasts organized the fibrous ECM and contracted the gel without differentiating into myofibroblasts. The stiffness of the cell-gel constructs increased dramatically due to ECM formation and gel contraction. This created an economical biomimetic model-scaffold to further understand skin reconstruction in vitro and supplied a design pathway to create versatile cell-scaffolds with varied bioactivities and simplicity. PMID:24812581

  3. Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model.

    PubMed

    Mohamad, Najwa; Mohd Amin, Mohd Cairul Iqbal; Pandey, Manisha; Ahmad, Naveed; Rajab, Nor Fadilah

    2014-12-19

    Natural polymer-based hydrogels are of interest to health care professionals as wound dressings owing to their ability to absorb exudates and provide hydration for healing. The aims of this study were to develop and characterize bacterial cellulose/acrylic acid (BC/AA) hydrogels synthesized by electron beam irradiation and investigate its wound healing potential in an animal model. The BC/AA hydrogels were characterized by SEM, tensile strength, water absorptivity, and water vapor transmission rate (WVTR). The cytotoxicity of the hydrogels was investigated in L929 cells. Skin irritation and wound healing properties were evaluated in Sprague-Dawley rats. BC/AA hydrogels had a macroporous network structure, high swelling ratio (4000-6000% at 24h), and high WVTR (2175-2280 g/m(2)/day). The hydrogels were non-toxic in the cell viability assay. In vivo experiments indicated that hydrogels promoted faster wound-healing, enhanced epithelialization, and accelerated fibroblast proliferation compared to that in the control group. These results suggest that BC/AA hydrogels are promising materials for burn dressings.

  4. About the effect of eye blinking on drug release from pHEMA-based hydrogels: an in vitro study.

    PubMed

    Galante, R; Paradiso, P; Moutinho, M G; Fernandes, A I; Mata, J L G; Matos, A P A; Colaço, R; Saramago, B; Serro, A P

    2015-01-01

    The development of new ophthalmic drug delivery systems capable of increasing the residence time of drugs in the eye and improve its bioavailability relatively to eyedrops has been object of intense research in recent years. Several studies have shown that drug-loaded therapeutic soft contact lenses (SCLs) constitute a promising approach, with several potential advantages as compared with collyria. The main objective of this work is to study the effect of repetitive load and friction cycles caused by the eye blinking, on the drug release from hydrogels used in SCLs which, as far as we know, was never investigated before. Two poly-2-hydroxyethylmethacrylate-based hydrogels, pHEMA-T and pHEMA-UV, were used as model materials. Levofloxaxin was chosen as model drug. The hydrogels were fully characterized in what concerns structural and physicochemical properties. pHEMA-UV revealed some superficial porosity and a lower short-range order than pHEMA-T. We observe that the load and friction cycles enhanced the drug release from pHEMA-UV hydrogels. The application of a simple mathematical model, which takes into account the drug dilution caused by the tear flow, showed that the enhancement of the drug release caused by blinking on this hydrogel may be relevant in in vivo conditions. Conversely, the more sustained drug release from pHEMA-T is not affected by load and friction cycles. The conclusion is that, depending on the physicochemical and microstructural characteristics of the hydrogels, blinking is a factor that may affect the amount of drug delivered to the eye by SCLs and should thus be considered.

  5. Hierarchically structured, hyaluronic acid-based hydrogel matrices via the covalent integration of microgels into macroscopic networks$

    PubMed Central

    Jha, Amit K.; Malik, Manisha S.; Farach-Carson, Mary C.; Duncan, Randall L.; Jia, Xinqiao

    2010-01-01

    We aimed to develop biomimetic hydrogel matrices that not only exhibit structural hierarchy and mechanical integrity, but also present biological cues in a controlled fashion. To this end, photocrosslinkable, hyaluronic acid (HA)-based hydrogel particles (HGPs) were synthesized via an inverse emulsion crosslinking process followed by chemical modification with glycidyl methacrylate (GMA). HA modified with GMA (HA-GMA) was employed as the soluble macromer. Macroscopic hydrogels containing covalently integrated hydrogel particles (HA-c-HGP) were prepared by radical polymerization of HA-GMA in the presence of crosslinkable HGPs. The covalent linkages between the hydrogel particles and the secondary HA matrix resulted in the formation of a diffuse, fibrilar interface around the particles. Compared to the traditional bulk gels synthesized by photocrosslinking of HA-GMA, these hydrogels exhibited a reduced sol fraction and a lower equilibrium swelling ratio. When tested under uniaxial compression, the HA-c-HGP gels were more pliable than the HA-p-HGP gels and fractured at higher strain than the HA-GMA gels. Primary bovine chondrocytes were photoencapsulated in the HA matrices with minimal cell damage. The 3D microenvironment created by HA-GMA and HA HGPs not only maintained the chondrocyte phenotype but also fostered the production of cartilage specific extracellular matrix. To further improve the biological activities of the HA-c-HGP gels, bone morphogenetic protein 2 (BMP-2) was loaded into the immobilized HGPs. BMP-2 was released from the HA-c-HGP gels in a controlled manner with reduced initial burst over prolonged periods of time. The HA-c-HGP gels are promising candidates for use as bioactive matrices for cartilage tissue engineering. PMID:20936090

  6. Development of novel biodegradable Au nanocomposite hydrogels based on wheat: for inactivation of bacteria.

    PubMed

    Jayaramudu, Tippabattini; Raghavendra, Gownolla Malegowd; Varaprasad, Kokkarachedu; Sadiku, Rotimi; Raju, Konduru Mohana

    2013-02-15

    The design and fabrication of novel biodegradable gold nanocomposites hydrogels were developed as antibacterial agent. Biodegradable gold nanocomposite hydrogels were developed by using acrylamide (AM) and wheat protein isolate (WPI). The gold nanoparticles were prepared as a gold colloid by reducing HAuCl(4)·XH(2)O with leaf extracts of Azadirachta indica (neem leaf) that formed hydrogel network. The characterization of developed biodegradable hydrogels were studied using fourier transforms infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). The biodegradable gold nanoparticle composite hydrogels developed were tested for antibacterial properties. The results indicate that these biodegradable gold nanocomposite hydrogels can be used as potential candidates for antibacterial applications.

  7. Injectable Hydrogel Composite Based Gelatin-PEG and Biphasic Calcium Phosphate Nanoparticles for Bone Regeneration

    NASA Astrophysics Data System (ADS)

    Van, Thuy Duong; Tran, Ngoc Quyen; Nguyen, Dai Hai; Nguyen, Cuu Khoa; Tran, Dai Lam; Nguyen, Phuong Thi

    2016-05-01

    Gelatin hydrogels have recently attracted much attention for tissue regeneration because of their biocompatibility. In this study, we introduce poly-ethylene glycol (PEG)—grafted gelatin containing tyramine moieties which have been utilized for in situ enzyme-mediated hydrogel preparation. The hydrogel can be used to load nanoparticles of biphasic calcium phosphate, a mixture of hydroxyapatite and β-tricalcium phosphate, and forming injectable bio-composites. Proton nuclear magnetic resonance (1H NMR) spectra indicated that tyramine-functionalized polyethylene glycol-nitrophenyl carbonate ester was conjugated to the gelatin. The hydrogel composite was rapidly formed in situ (within a few seconds) in the presence of horseradish peroxidase and hydrogen peroxide. In vitro experiments with bio-mineralization on the hydrogel composite surfaces was well-observed after 2 weeks soaking in simulated body fluid solution. The obtained results indicated that the hydrogel composite could be a potential injectable material for bone regeneration.

  8. Phenylalanine-containing cyclic dipeptides--the lowest molecular weight hydrogelators based on unmodified proteinogenic amino acids.

    PubMed

    Kleinsmann, Alexander J; Nachtsheim, Boris J

    2013-09-14

    Cyclic dipeptides (diketopiperazines - DKPs) that are based on the proteinogenic amino acid phenylalanine in combination with serine, cysteine, glutamate, histidine and lysine are described as simple and remarkable low molecular weight hydrogelators. Blends of selected DKPs show remarkable pH-dependent properties and can be applied as easy to tune materials in drug delivery.

  9. Design of mid-infrared ultra-wideband metallic absorber based on circuit theory

    NASA Astrophysics Data System (ADS)

    Arik, Kamalodin; Abdollahramezani, Sajjad; Farajollahi, Saeed; Khavasi, Amin; Rejaei, Behzad

    2016-12-01

    An ultra-broadband absorber of light is proposed by using periodic array of ultra-thin metallic ribbons on top of a lossless quarter-wavelength dielectric spacer placed on a metallic reflector. We propose a fully analytical circuit model for the structure, and then the absorber is duly designed based on the impedance matching concept. As a result, normalized bandwidth of 99.5% is realized by the proposed absorbing structure in mid-infrared regime. Performing a numerical optimization algorithm, we could also reach to normalized bandwidth of 103%.

  10. Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration

    PubMed Central

    Assunção-Silva, Rita C.; Gomes, Eduardo D.; Silva, Nuno A.; Salgado, António J.

    2015-01-01

    Spinal cord injury (SCI) is a central nervous system- (CNS-) related disorder for which there is yet no successful treatment. Within the past several years, cell-based therapies have been explored for SCI repair, including the use of pluripotent human stem cells, and a number of adult-derived stem and mature cells such as mesenchymal stem cells, olfactory ensheathing cells, and Schwann cells. Although promising, cell transplantation is often overturned by the poor cell survival in the treatment of spinal cord injuries. Alternatively, the therapeutic role of different cells has been used in tissue engineering approaches by engrafting cells with biomaterials. The latter have the advantages of physically mimicking the CNS tissue, while promoting a more permissive environment for cell survival, growth, and differentiation. The roles of both cell- and biomaterial-based therapies as single therapeutic approaches for SCI repair will be discussed in this review. Moreover, as the multifactorial inhibitory environment of a SCI suggests that combinatorial approaches would be more effective, the importance of using biomaterials as cell carriers will be herein highlighted, as well as the recent advances and achievements of these promising tools for neural tissue regeneration. PMID:26124844

  11. Cyclodextrin Inclusion Polymers Forming Hydrogels

    NASA Astrophysics Data System (ADS)

    Li, Jun

    This chapter reviews the advances in the developments of supramolecular hydrogels based on the polypseudorotaxanes and polyrotaxanes formed by inclusion complexes of cyclodextrins threading onto polymer chains. Both physical and chemical supramolecular hydrogels of many different types are discussed with respect to their preparation, structure, property, and gelation mechanism. A large number of physical supramolecular hydrogels were formed induced by self-assembly of densely packed cyclodextrin rings threaded on polymer or copolymer chains acting as physical crosslinking points. The thermo-reversible and thixotropic properties of these physical supramolecular hydrogels have inspired their applications as injectable drug delivery systems. Chemical supramolecular hydrogels synthesized from polypseudorotaxanes and polyrotaxanes were based on the chemical crosslinking of either the cyclodextrin molecules or the included polymer chains. The chemical supramolecular hydrogels were often made biodegradable through incorporation of hydrolyzable threading polymers, end caps, or crosslinkers, for their potential applications as biomaterials.

  12. Characterization of the in vivo host response to a bi-labeled chitosan-dextran based hydrogel for postsurgical adhesion prevention.

    PubMed

    Cabral, Jaydee D; McConnell, Michelle A; Fitzpatrick, Clare; Mros, Sonya; Williams, Gail; Wormald, Peter J; Moratti, Stephen C; Hanton, Lyall R

    2015-08-01

    In developing a chitosan/dextran-based (CD) hydrogel as an adhesion prevention postsurgical aid, the in vivo biodegradation rate, biodistribution, and inflammatory response are important parameters to the biomedical device design. Herein, for the first time, a CD hydrogel was prepared by mixing aqueous solutions of a near infrared (NIR) labeled succinylated chitosan (SC) and tritiated [(3) H] oxidized dextran (DA). The biodegradation and biodistribution of the NIR/[(3) H]-CD hydrogel was tracked noninvasively using NIR fluorescence imaging, and by liquid scintillation counting (LSC) of organs/tissues after subcutaneous injection in BALB/c mice. The inflammatory response was assessed by measuring serum cytokine levels using a Bio-plex assay and by histological examination of injection site tissue. Fluorescence imaging showed the hydrogel to degrade in under a week. LSC revealed the hydrogel to reside mainly at the injection site, and excreted primarily via the urine within the first 48 h. The CD hydrogel showed a mild inflammatory response as cytokine levels were comparable to saline injected controls. Histological examination of injection site tissue confirmed the cytokine results. In summary, the CD hydrogel's in vivo biodegradation rate, biodistribution, and inflammatory response was determined. Our results indicate that the CD hydrogel has an appropriate biocompatibility after s.c. administration.

  13. Characterization and biocompatibility evaluation of bacterial cellulose-based wound dressing hydrogel: effect of electron beam irradiation doses and concentration of acrylic acid.

    PubMed

    Mohamad, Najwa; Buang, Fhataheyah; Mat Lazim, Azwan; Ahmad, Naveed; Martin, Claire; Mohd Amin, Mohd Cairul Iqbal

    2016-09-30

    The use of bacterial cellulose (BC)-based hydrogel has been gaining attention owing to its biocompatibility and biodegradability. This study was designed to investigate the effect of radiation doses and acrylic acid (AA) composition on in vitro and in vivo biocompatibility of BC/AA as wound dressing materials. Physical properties of the hydrogel, that is, thickness, adhesiveness, rate of water vapor transmission, and swelling were measured. Moreover, the effect of these parameters on skin irritation and sensitization, blood compatibility, and cytotoxicity was studied. Increased AA content and irradiation doses increased the thickness, crosslinking density, and improved the mechanical properties of the hydrogel, but reduced its adhesiveness. The swelling capacity of the hydrogel increased significantly with a decrease in the AA composition in simulated wound fluid. The water vapor permeability of polymeric hydrogels was in the range of 2035-2666 [g/(m(-2 ) day(-1) )]. Dermal irritation and sensitization test demonstrated that the hydrogel was nonirritant and nonallergic. The BC/AA hydrogel was found to be nontoxic to primary human dermal fibroblast skin cells with viability >88% and was found to be biocompatible with blood with a low hemolytic index (0.80-1.30%). Collectively, these results indicate that these hydrogels have the potential to be used as wound dressings. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  14. HYDROGEL-BASED NANOCOMPOSITES OF THERAPEUTIC PROTEINS FOR TISSUE REPAIR

    PubMed Central

    Zhu, Suwei; Segura, Tatiana

    2014-01-01

    The ability to design artificial extracellular matrices as cell instructive scaffolds has opened the door to technologies capable of studying cell fates in vitro and to guide tissue repair in vivo. One main component of the design of artificial extracellular matrices is the incorporation of protein-based biochemical cues to guide cell phenotypes and multicellular organizations. However, promoting the long-term bioactivity, controlling the bioavailability and understanding how the physical presentations of these proteins impacts cellular fates are among the challenges of the field. Nanotechnolgy has advanced to meet the challenges of protein therapeutics. For example, the approaches to incorporating proteins into tissue repairing scaffolds have ranged from bulk encapsulations to smart nanodepots that protect proteins from degradations and allow opportunities for controlled release. PMID:24778979

  15. HYDROGEL-BASED NANOCOMPOSITES OF THERAPEUTIC PROTEINS FOR TISSUE REPAIR.

    PubMed

    Zhu, Suwei; Segura, Tatiana

    2014-05-01

    The ability to design artificial extracellular matrices as cell instructive scaffolds has opened the door to technologies capable of studying cell fates in vitro and to guide tissue repair in vivo. One main component of the design of artificial extracellular matrices is the incorporation of protein-based biochemical cues to guide cell phenotypes and multicellular organizations. However, promoting the long-term bioactivity, controlling the bioavailability and understanding how the physical presentations of these proteins impacts cellular fates are among the challenges of the field. Nanotechnolgy has advanced to meet the challenges of protein therapeutics. For example, the approaches to incorporating proteins into tissue repairing scaffolds have ranged from bulk encapsulations to smart nanodepots that protect proteins from degradations and allow opportunities for controlled release.

  16. In vivo assessment of guided neural stem cell differentiation in growth factor immobilized chitosan-based hydrogel scaffolds.

    PubMed

    Li, Hang; Koenig, Andrew M; Sloan, Patricia; Leipzig, Nic D

    2014-11-01

    In this study, we demonstrate that a unique growth factor-biomaterial system can offer spatial control of growth factors with sustained signaling to guide the specific lineage commitment of neural stem/progenitor cells (NSPCs) in vivo. First, recombinant fusion proteins incorporating an N-terminal biotin tag and interferon-γ (IFN-γ), platelet derived growth factor-AA (PDGF-AA), or bone morphogenic protein-2 (BMP-2) were immobilized to a methacrylamide chitosan (MAC) based biopolymer via a streptavidin linker to specify NSPC differentiation into neurons, oligodendrocytes, or astrocytes, respectively. MAC was mixed with growth factors (immobilized or adsorbed), acrylated laminin, NSPCs, and crosslinked within chitosan conduits. This system mimics regenerative aspects of the central nervous system ECM, which is largely composed of a crosslinked polysaccharide matrix with cell-adhesive regions, and adds the new functionality of protein sequestration. We demonstrated that these growth factors are maintained at functionally significant levels for 28 d in vitro. In the main study, immobilized treatments were compared to absorbed and control treatments after 28 d in vivo (rat subcutaneous). Masson's Trichrome staining revealed that small collagen capsules formed around the chitosan conduits with an average acceptable thickness of 153.07 ± 6.02 μm for all groups. ED-1 staining showed mild macrophage clustering around the outside of chitosan conduits in all treatments with no macrophage invasion into hydrogel portions. Importantly, NSPC differentiation staining demonstrated that immobilized growth factors induced the majority of cells to differentiate into the desired cell types as compared with adsorbed growth factor treatments and controls by day 28. Interestingly, immobilized IFN-γ resulted in neural rosette-like arrangements and even structures resembling neural tubes, suggesting this treatment can lead to guided dedifferentiation and subsequent neurulation.

  17. Reversible Polymer Hydrogels

    DTIC Science & Technology

    2008-12-01

    glucosamine hydrochloride was dissolved in 100 mL of de- ionized water and placed in an ice bath at >5oC and purged with N2 gas for 20 minutes; 3.25...Temperature sensitive hydrogels based on N-isopropyl acrylamide (NIPA) and acryloyl glucosamine (AG) were synthesized using ammonium persulfate (APS) as...hydrogels by copolymerization of poly (N-isopropylacrylamide) (NIPA), and acryloyl glucosamine (AG) a derivative of chi- tosan, a biopolymer from

  18. Redox hydrogel based bienzyme electrode for L-glutamate monitoring.

    PubMed

    Belay, A; Collins, A; Ruzgas, T; Kissinger, P T; Gorton, L; Csöregi, E

    1999-02-01

    Amperometric bienzyme electrodes based on coupled L-glutamate oxidase (GlOx) and horseradish peroxidase (HRP) were constructed for the direct monitoring of L-glutamate in a flow injection (FI)-system. The bienzyme electrodes were constructed by coating solid graphite rods with a premixed solution containing GlOx and HRP crosslinked with a redox polymer formed of poly(1-vinylimidazole) complexed with (osmium (4-4'-dimethylbpy)2 Cl)II/III. Poly(ethylene glycol) diglycidyl ether (PEGDGE) was used as the crosslinker and the modified electrodes were inserted as the working electrode in a conventional three electrode flow through amperometric cell operated at -0.05 V versus Ag¿AgCl (0.1 M KCl). The bienzyme electrode was optimized with regard to wire composition, Os-loading of the wires, enzyme ratios, coating procedure, flow rate, effect of poly(ethyleneimine) addition, etc. The optimized electrodes were characterized by a sensitivity of 88.36 +/- 0.14 microA mM(-1) cm(-2), a detection limit of 0.3 microM (calculated as three times the signal-to-noise ratio), a response time of less than 10 s and responded linearly between 0.3 and 250 microM (linear regression coefficient = 0.999) with an operational stability of only 3% sensitivity loss during 8 h of continuous FI operation at a sample throughput of 30 injections h(-1).

  19. Effect of mixing on reaction-diffusion kinetics for protein hydrogel-based microchips.

    PubMed

    Zubtsov, D A; Ivanov, S M; Rubina, A Yu; Dementieva, E I; Chechetkin, V R; Zasedatelev, A S

    2006-03-09

    Protein hydrogel-based microchips are being developed for high-throughput evaluation of the concentrations and activities of various proteins. To shorten the time of analysis, the reaction-diffusion kinetics on gel microchips should be accelerated. Here we present the results of the experimental and theoretical analysis of the reaction-diffusion kinetics enforced by mixing with peristaltic pump. The experiments were carried out on gel-based protein microchips with immobilized antibodies under the conditions utilized for on-chip immunoassay. The dependence of fluorescence signals at saturation and corresponding saturation times on the concentrations of immobilized antibodies and antigen in solution proved to be in good agreement with theoretical predictions. It is shown that the enhancement of transport with peristaltic pump results in more than five-fold acceleration of binding kinetics. Our results suggest useful criteria for the optimal conditions for assays on gel microchips to balance high sensitivity and rapid fluorescence saturation kinetics.

  20. Hydrogel-based encapsulation of biological, functional tissue: fundamentals, technologies and applications

    NASA Astrophysics Data System (ADS)

    Zimmermann, H.; Ehrhart, F.; Zimmermann, D.; Müller, K.; Katsen-Globa, A.; Behringer, M.; Feilen, P. J.; Gessner, P.; Zimmermann, G.; Shirley, S. G.; Weber, M. M.; Metze, J.; Zimmermann, U.

    2007-12-01

    Replacing dysfunctional endocrine cells or tissues (e.g. islets, parathyroid tissue) by functional, foreign material without using immunosuppressives could soon become reality. Immunological reactions are avoided by encapsulating cells/tissues in hydrogel (e.g. alginate) microcapsules, preventing interaction of the enclosed material with the host’s immune system while permitting the unhindered passage of nutrients, oxygen and secreted therapeutic factors. Detailed investigations of the physical, physico-chemical and immunological parameters of alginate-based microcapsules have led recently to the development of a novel class of cell-entrapping microcapsules that meet the demands of biocompatibility, long-term integrity and function. This together with the development of ‘good medical practice’ microfluidic chip technology and of advanced cryopreservation technology for generation and storage of immunoisolated transplants will bring cell-based therapy to clinics and the market.

  1. Gelatin-based Hydrogel Degradation and Tissue Interaction in vivo: Insights from Multimodal Preclinical Imaging in Immunocompetent Nude Mice.

    PubMed

    Tondera, Christoph; Hauser, Sandra; Krüger-Genge, Anne; Jung, Friedrich; Neffe, Axel T; Lendlein, Andreas; Klopfleisch, Robert; Steinbach, Jörg; Neuber, Christin; Pietzsch, Jens

    2016-01-01

    Hydrogels based on gelatin have evolved as promising multifunctional biomaterials. Gelatin is crosslinked with lysine diisocyanate ethyl ester (LDI) and the molar ratio of gelatin and LDI in the starting material mixture determines elastic properties of the resulting hydrogel. In order to investigate the clinical potential of these biopolymers, hydrogels with different ratios of gelatin and diisocyanate (3-fold (G10_LNCO3) and 8-fold (G10_LNCO8) molar excess of isocyanate groups) were subcutaneously implanted in mice (uni- or bilateral implantation). Degradation and biomaterial-tissue-interaction were investigated in vivo (MRI, optical imaging, PET) and ex vivo (autoradiography, histology, serum analysis). Multimodal imaging revealed that the number of covalent net points correlates well with degradation time, which allows for targeted modification of hydrogels based on properties of the tissue to be replaced. Importantly, the degradation time was also dependent on the number of implants per animal. Despite local mechanisms of tissue remodeling no adverse tissue responses could be observed neither locally nor systemically. Finally, this preclinical investigation in immunocompetent mice clearly demonstrated a complete restoration of the original healthy tissue.

  2. Property-based design: optimization and characterization of polyvinyl alcohol (PVA) hydrogel and PVA-matrix composite for artificial cornea.

    PubMed

    Jiang, Hong; Zuo, Yi; Zhang, Li; Li, Jidong; Zhang, Aiming; Li, Yubao; Yang, Xiaochao

    2014-03-01

    Each approach for artificial cornea design is toward the same goal: to develop a material that best mimics the important properties of natural cornea. Accordingly, the selection and optimization of corneal substitute should be based on their physicochemical properties. In this study, three types of polyvinyl alcohol (PVA) hydrogels with different polymerization degree (PVA1799, PVA2499 and PVA2699) were prepared by freeze-thawing techniques. After characterization in terms of transparency, water content, water contact angle, mechanical property, root-mean-square roughness and protein adsorption behavior, the optimized PVA2499 hydrogel with similar properties of natural cornea was selected as a matrix material for artificial cornea. Based on this, a biomimetic artificial cornea was fabricated with core-and-skirt structure: a transparent PVA hydrogel core, surrounding by a ringed PVA-matrix composite skirt that composed of graphite, Fe-doped nano hydroxyapatite (n-Fe-HA) and PVA hydrogel. Different ratio of graphite/n-Fe-HA can tune the skirt color from dark brown to light brown, which well simulates the iris color of Oriental eyes. Moreover, morphologic and mechanical examination showed that an integrated core-and-skirt artificial cornea was formed from an interpenetrating polymer network, no phase separation appeared on the interface between the core and the skirt.

  3. Gelatin-based Hydrogel Degradation and Tissue Interaction in vivo: Insights from Multimodal Preclinical Imaging in Immunocompetent Nude Mice

    PubMed Central

    Tondera, Christoph; Hauser, Sandra; Krüger-Genge, Anne; Jung, Friedrich; Neffe, Axel T.; Lendlein, Andreas; Klopfleisch, Robert; Steinbach, Jörg; Neuber, Christin; Pietzsch, Jens

    2016-01-01

    Hydrogels based on gelatin have evolved as promising multifunctional biomaterials. Gelatin is crosslinked with lysine diisocyanate ethyl ester (LDI) and the molar ratio of gelatin and LDI in the starting material mixture determines elastic properties of the resulting hydrogel. In order to investigate the clinical potential of these biopolymers, hydrogels with different ratios of gelatin and diisocyanate (3-fold (G10_LNCO3) and 8-fold (G10_LNCO8) molar excess of isocyanate groups) were subcutaneously implanted in mice (uni- or bilateral implantation). Degradation and biomaterial-tissue-interaction were investigated in vivo (MRI, optical imaging, PET) and ex vivo (autoradiography, histology, serum analysis). Multimodal imaging revealed that the number of covalent net points correlates well with degradation time, which allows for targeted modification of hydrogels based on properties of the tissue to be replaced. Importantly, the degradation time was also dependent on the number of implants per animal. Despite local mechanisms of tissue remodeling no adverse tissue responses could be observed neither locally nor systemically. Finally, this preclinical investigation in immunocompetent mice clearly demonstrated a complete restoration of the original healthy tissue. PMID:27698944

  4. Numerical wave tank based on a conserved wave-absorbing method

    NASA Astrophysics Data System (ADS)

    Hu, Zhe; Tang, Wen-yong; Xue, Hong-xiang; Zhang, Xiao-ying

    2016-03-01

    Recently the numerical wave tank has become a widely-used tool to study waves as well as wave-structure interactions, and the wave-absorbing method is very important as its effect on the quality of waves generated. The relaxation method and the derived momentum source method are often utilized, however, the damping weight is constant during calculation and repeated trials are required to obtain an acceptable wave-absorbing effect. To address the abovementioned issues, a conserved wave-absorbing method is developed. The damping weight is determined by solving the mass conservation equation of the absorbing region at every time step. Based on this method, a two-dimensional numerical wave tank is established by using the VB language to simulate various waves by which the validation of this method is evaluated.

  5. Terahertz dual-band metamaterial absorber based on graphene/MgF(2) multilayer structures.

    PubMed

    Su, Zhaoxian; Yin, Jianbo; Zhao, Xiaopeng

    2015-01-26

    We design an ultra-thin terahertz metamaterial absorber based on graphene/MgF(2) multilayer stacking unit cells arrayed on an Au film plane and theoretically demonstrate a dual-band total absorption effect. Due to strong anisotropic permittivity, the graphene/MgF(2) multilayer unit cells possess a hyperbolic dispersion. The strong electric and magnetic dipole resonances between unit cells make the impedance of the absorber match to that of the free space, which induces two total absorption peaks in terahertz range. These absorption peaks are insensitive to the polarization and nearly omnidirectional for the incident angle. But the absorption intensity and frequency depend on material and geometric parameters of the multilayer structure. The absorbed electromagnetic waves are finally converted into heat and, as a result, the absorber shows a good nanosecond photothermal effect.

  6. Dual band metamaterial perfect absorber based on artificial dielectric “molecules”

    PubMed Central

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-01-01

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric “molecules” with high symmetry. The artificial dielectric “molecule” consists of four “atoms” of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence. PMID:27406699

  7. Ultra-thin wideband magnetic-type metamaterial absorber based on LC resonator at low frequencies

    NASA Astrophysics Data System (ADS)

    Zhang, Linbo; Zhou, Peiheng; Chen, Haiyan; Lu, Haipeng; Xie, Jianliang; Deng, Longjiang

    2015-10-01

    In this paper, we propose to realize a broad absorption band in the frequency regimes of 2-6 GHz based on multiple resonances. A magnetic-type metamaterial absorber with cross-arrow pattern is further demonstrated numerically and experimentally. Two absorption resonances are generated by LC resonance, leading to bandwidth expansion. The equivalent circuit theory and the surface current distributions of the proposed absorber are discussed to analyze the physical mechanism. Moreover, the broad bandwidth can be maintained as incident angle up to 30° for transverse electric polarization and 45° for transverse magnetic polarization. Finally, experimental results show that the proposed absorber with the total thickness of 2.4 mm exhibits a -10 dB absorption bandwidth by more than 70 %. The low-frequency absorber has potential applications in the area of eliminating microwave energy.

  8. The use of de-differentiated chondrocytes delivered by a heparin-based hydrogel to regenerate cartilage in partial-thickness defects.

    PubMed

    Kim, Mihye; Kim, Se Eun; Kang, Seong Soo; Kim, Young Ha; Tae, Giyoong

    2011-11-01

    Partial-thickness cartilage defects, with no subchondral bone injury, do not repair spontaneously, thus there is no clinically effective treatment for these lesions. Although the autologous chondrocyte transplantation (ACT) is one of the promising approaches for cartilage repair, it requires in vitro cell expansion to get sufficient cells, but chondrocytes lose their chondrogenic phenotype during expansion by monolayer culture, leading to de-differentiation. In this study, a heparin-based hydrogel was evaluated and optimized to induce cartilage regeneration with de-differentiated chondrocytes. First, re-differentiation of de-differentiated chondrocytes encapsulated in heparin-based hydrogels was characterized in vitro with various polymer concentrations (from 3 to 20 wt.%). Even under a normal cell culture condition (no growth factors or chondrogenic components), efficient re-differentiation of cells was observed with the optimum at 10 wt.% hydrogel, showing the complete re-differentiation within a week. Efficient re-differentiation and cartilage formation of de-differentiated cell/hydrogel construct were also confirmed in vivo by subcutaneous implantation on the back of nude mice. Finally, excellent cartilage regeneration and good integration with surrounding, similar to natural cartilage, was also observed by delivering de-differentiated chondrocytes using the heparin-based hydrogel in partial-thickness defects of rabbit knees whereas no healing was observed for the control defects. These results demonstrate that the heparin-based hydrogel is very efficient for re-differentiation of expanded chondrocytes and cartilage regeneration without using any exogenous inducing factors, thus it could serve as an injectable cell-carrier and scaffold for cartilage repair. Excellent chondrogenic nature of the heparin-based hydrogel might be associated with the hydrogel characteristic that can secure endogenous growth factors secreted from chondrocytes, which then can promote

  9. Influence of hydrophobic modification in alginate-based hydrogels for biomedical applications

    NASA Astrophysics Data System (ADS)

    Choudhary, Soumitra

    Alginate has been exploited commercially for decades in foods, textiles, paper, pharmaceutical industries, and also as a detoxifier for removing heavy metals. Alginate is also popular in cell encapsulation because of its relatively mild gelation protocol and simple chemistry with which biological active entities can be immobilized. Surface modification of alginate gels has been explored to induce desired cell interactions with the gel matrix. These modifications alter the bulk properties, which strongly determine on how cells feel and response to the three-dimensional microenvironment. However, there is a need to develop strategies to engineer functionalities into bulk alginate hydrogels that not only preserve their inherent qualities but are also less toxic. In this thesis, our main focus was to optimize the mechanical properties of alginate-based hydrogels, and by doing so control the performance of the biomaterials. In the first scheme, we used alginate and hydrophobically modified ethyl hydroxy ethyl cellulose as components in interpenetrating polymer network (IPN) gels. The second network was used to control gelation time and rheological properties. We believe these experiments also may provide insight into the mechanical and structural properties of more complex biopolymer gels and naturally-occurring IPNs. Next, we worked on incorporating a hydrophobic moiety directly into the alginate chain, resulting in materials for extended release of hydrophobic drugs. We successfully synthesized hydrophobically modified alginate (HMA) by attaching octylamine groups onto the alginate backbone by standard carbodiimide based amide coupling reaction. Solubility of several model hydrophobic drugs in dilute HMA solutions was found to be increased by more than an order of magnitude. HMA hydrogels, prepared by crosslinking the alginate chains with calcium ions, were found to exhibit excellent mechanical properties (modulus ˜100 kPa) with release extended upto 5 days. Ability

  10. Development, characterization, and applications of self-assembling, photocrosslinkable collagen-based hydrogels

    NASA Astrophysics Data System (ADS)

    Gaudet, Ian Daniel

    Development of functional soft-tissue engineered constructs for use in regenerative medicine is currently limited by homogeneity within scaffolds that fails to recapitulate the complex architecture that supports normal function in healthy tissues. Additionally, recent breakthroughs in our understanding the biomechanical cell-matrix interface have provided insight into the role of substrate compliance during development and in the pathophysiological environment. This thesis is the result of investigation into using type-I collagen as a base material for creating dynamic, self-assembling, mechanically and biochemically tunable 3D hydrogel scaffolds into which instructive cellular cues can be imparted anisotropically via the directed application of light. This overarching goal was approached by (1) evaluating extant methods for photonically manipulating type I collagen mechanical properties, which led us to the conclusion that published methods were inadequate for our purposes. Following this realization, we (2) developed a novel process for derivatizing free amines on collagen amino acid residues to reactive methacrylamide moieties, allowing robust spatiotemporal control of mechanical properties through photocrosslinking with long-wave UV light and the water-soluble photoinitiator Irgacure 2959. Thorough characterization of this material, collagen methacrylamide (CMA), provided the basis for multiple applications in the field of soft tissue engineering. Additionally, (3) CMA was used in conjunction with synthetic photopolymers in an effort to create a hybrid natural/synthetic hydrogel material. CMA was also (4) employed as a dynamic hydrogel scaffold which we showed could be used to culture a number of neurogenic stem and progenitor cell types with a focus on using photomodulation to impart instructive heterogeneity to the mechanical and biochemical microenvironment. Finally, (5) we used a computational modeling approach to explain interesting yet poorly understood

  11. Cytocompatibility, antibacterial activity and biodegradability of self-assembling beta-hairpin peptide-based hydrogels for tissue regenerative applications

    NASA Astrophysics Data System (ADS)

    Salick, Daphne Ann

    Every year, millions of people suffer from tissue loss or failure. One approach to repair damaged or diseased tissue is through tissue/organ transplantation. However, one of the major problems which exist with this approach is that there are more people in need of a transplant than there are donors. Over the past several decades, scientists and doctors have come together to find a way to overcome this challenge. This collaboration has led to the development of biomimetic scaffolds, which closely mimic the desired tissue of interest to act as a substitute for the unfunctional tissue, with hopes to improve the quality of life. The Schneider and Pochan labs have developed a biomimetic scaffold using self-assembling beta-hairpin peptides. The self-assembly event can be triggered in response to physiological conditions, which is dictated by the monomer, to form non covalently crosslinked mechanically rigid hydrogels. In vitro studies showed that hydrogels were cytocompatible and may not elicit a pro-inflammatory response from murine macrophages. These material properties show promise for the use of these hydrogels in tissue engineering. When implanting a material into a host, a major concern is the introduction of infection. Infection, if not prevented or halted, results in poor tissue integration and function, ultimately leading to implant removal from the host. Interestingly, the beta-hairpin hydrogels were shown to exhibit antibacterial properties against pathogens commonly found in hospital environments. This inherently antibacterial hydrogel is advantageous because it may help decrease or diminish bacterial contamination when implanted in vivo, which may help to increase the success of implants. Also, a unique and exciting feature of these peptide-based hydrogels is their ability to shear-thin and self-heal. Hydrogels can be directly formed in a syringe and be subsequently delivered to a tissue defect in a minimally invasive manner where they will recover to their

  12. Moisturizing effect of serine-loaded solid lipid nanoparticles and polysaccharide-rich extract of root Phragmites communis incorporated in hydrogel bases.

    PubMed

    Barua, Sonia; Kim, Hyeongmin; Hong, Seong-Chul; Yoo, Seung-Yup; Shin, Dohyun; Lee, Chung-Lyol; Na, Seon-Jeong; Kim, Yeong Hyo; Jo, Kanghee; Yun, Gyiae; Kim, Joong-Hark; Sohn, Uy Dong; Lee, Jaehwi

    2017-02-01

    This study evaluated the moisturizing effect of serine-loaded solid lipid nanoparticles (serine-SLN) and polysaccharide-rich reed (Phragmites communis) root extract (RRE) incorporated in hydrogel bases. The hydrogels with serine-SLN and/or RRE were carefully applied on the volar forearm of human volunteers. Their moisturizing efficacy was evaluated by monitoring conductance values using a skin surface hygrometer. The values of the area under the normalized conductance-time curve (AUCC) were developed and compared as a parameter for the water holding capacity of the skin. Hydrogels with serine-SLN did not significantly moisturize the skin, while hydrogel containing 0.25% RRE produced a significant increase in the moisture content of the skin. However, adding more than 0.25% of RRE into the hydrogel base decreased the moisturizing effect due to the marked reduction of viscosity. Significantly enhanced moisturizing effect was observed with the hydrogel containing 0.25% RRE and 3% serine-SLN, with AUCC increased 2.21 times compared to than blank hydrogel. The results imply that effective delivery of serine into the skin is possible using lipid-based nanocarriers and RRE, which could be a promising strategy to moisturize the skin effectively.

  13. Development of carboxymethyl cellulose-based hydrogel and nanosilver composite as antimicrobial agents for UTI pathogens.

    PubMed

    Alshehri, Saad M; Aldalbahi, Ali; Al-Hajji, Abdullah Baker; Chaudhary, Anis Ahmad; Panhuis, Marc In Het; Alhokbany, Norah; Ahamad, Tansir

    2016-03-15

    Silver nanoparticles (AgNPs) containing hydrogel composite were first synthesized by preparing a new hydrogel from carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), and the cross-linker ethylene glycol diglycidyl ether (EGDE), followed by the incorporation of AgNPs by microwave radiation. The resulting neat hydrogels and AgNPs-hydrogel composites were characterized using spectral, thermal, microscopic analysis and X-ray diffraction (XRD) analyses. The SEM and TEM results demonstrated that the synthesized AgNPs were spherical with diameters ranging from 8 to 14nm. In addition, the XRD analysis confirmed the nanocrystalline phase of silver with face-centered cubic (FCC) crystal structure. Energy dispersive spectroscopy (EDS) analysis of the AgNPs confirmed the presence of an elemental silver signal, and no peaks of any other impurities were detected. Additionally, the antibacterial activities of the neat hydrogel and AgNPs-hydrogel composites were measured by Kirby-Bauer method against urinary tract infection (UTI) pathogens. The rheology measurement revealed that the values of storage modulus (G') were higher than that of loss modulus (G″). The AgNPs-hydrogel composites exhibited higher antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris, Staphylococcus aureus and Proteus mirabilis compared to the corresponding neat hydrogel.

  14. A new soy-based hydrogels: development, viscoelastic properties, and application for controlled drug release

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrogels have been widely studied due to their potential application in drug delivery systems as they are capable of forming aggregates in aqueous solutions. Hydrogels formed from biopolymers or natural sources have special advantages because of their biodegradable and biocompatible properties. I...

  15. Preparation and characterization of oil palm frond based cellulose hydrogel and its swelling properties

    NASA Astrophysics Data System (ADS)

    Selvakumaran, Nesha; Lazim, Mohd Azwani Shah bin Mat

    2016-11-01

    Malaysia is one of the largest producer of palm oil thus the quantity of biomass each year from this industry is very large. The oil palm frond from palm oil industry can be used as a source of cellulose which can be incorporated into hydrogel to be used as adsorbent. This research reported how to disperse 2 % cellulose in a `green-solution' prepared by using urea and sodium hydroxide. Polymerization is carried out between the monomers polyacrylamide and cellulose using microwave to form hydrogel. Hydrogel with 2 % cellulose have a swelling index of 1814 %. Meanwhile, zero hydrogel which is made with only polyacrylamide has swelling index of 15 %. Scanning electron microscope shows that cellulose hydrogel have a rough surface compared with zero hydrogel. This might attribute to the high swelling index for cellulose hydrogel compared with zero hydrogel. Meanwhile, FTIR shows that successful polymerization has occurred between polyacrylamide and cellulose with the characteristic band at 1657.99 cm-1 which is for N-H bond.

  16. Characterization and swelling-deswelling properties of wheat straw cellulose based semi-IPNs hydrogel.

    PubMed

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu

    2014-07-17

    A novel wheat straw cellulose-g-poly(potassium acrylate)/polyvinyl alcohol (WSC-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) hydrogel was prepared by polymerizing wheat straw and an aqueous solution of acrylic acid (AA), and further semi-interpenetrating with PVA occurred during the chemosynthesis. The swelling and deswelling properties of WSC-g-PKA/PVA semi-IPNs hydrogel and WSC-g-PKA hydrogel were studied and compared in various pH solutions, salt solutions, temperatures, particle sizes and ionic strength. The results indicated that both hydrogels had the largest swelling capacity at pH=6, and the effect of ions on the swelling of hydrogels was in the order: Na(+)>K(+)>Mg(2+)>Ca(2+). The Schott's pseudo second order model can be effectively used to evaluate swelling kinetics of hydrogels. Moreover, the semi-IPNs hydrogel had improved swelling-deswelling properties compared with that of WSC-g-PKA hydrogel.

  17. Preparation and properties of novel hydrogel based on chitosan modified by poly(amidoamine) dendrimer.

    PubMed

    He, Guanghua; Zhu, Chao; Ye, Shengyang; Cai, Weiquan; Yin, Yihua; Zheng, Hua; Yi, Ying

    2016-10-01

    Currently, chitosan (CTS) or chitosan derivatives hydrogels are applied in different fields, such as biological materials, medical materials and hygiene materials. In this study, novel chitosan hydrogels were successfully prepared by chitosan and poly(amidoamine) (PAMAM) dendrimer with glutaraldehyde serving as a cross-linking agent. Fourier transform infrared spectroscopy (FTIR), (1)H nuclear magnetic resonance ((1)H NMR) and gel permeation chromatography (GPC) were performed to characterize PAMAM. The structure and morphology of hydrogels were characterized by FTIR, thermo gravimetry analysis (TGA), and scanning electron microscopy (SEM). The swelling properties of the hydrogels were investigated in solutions of pH 1.0 and 7.4. The hydrogels showed good swelling capacities and pH-sensitive swelling properties. Besides, the antibacterial activities of the hydrogels against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) were tested by optical density. Compared with the pure chitosan hydrogel, their antibacterial activities were significantly improved with the increase in the blending ratio of PAMAM. And with the increase in cross-linking agent and concentration of CTS, the antibacterial activities increased firstly and then slightly decreased. The hydrogel was expected to be a novel antibacterial material.

  18. Porous Agarose-Based Semi-IPN Hydrogels: Characterization and Cell Affinity Studies.

    PubMed

    Vardar, E; Vert, Michel; Coudane, Jean; Hasirci, V; Hasirci, N

    2012-01-01

    Hydrogels are frequently considered for medical applications due to the ease of preparation in different forms and high water content that makes them comparable to natural tissues. However, these general properties are not sufficient to make any hydrogel suitable for cell attachment and growth which are necessary for their use in tissue regeneration. Besides, the high water content makes the hydrogels mechanically weak. The formation of semi-interpenetrating networks (semi-IPNs) can be used in attempts to enhance physical, mechanical and thermal properties. In this study, semi-IPNs of agarose were prepared with chitosan and alginate, two polyelectrolytes that are positively and negatively charged under physiological conditions, respectively. Zeta potential was used to confirm the formation of charged hydrogels. All hydrogels had ultimate compression strengths in the range of 91-210 Pa where the value for pure agarose was about 103 Pa. Chitosan increased the compressive strength about two folds whereas the alginate had opposite effects. The amount of strongly bound water present in the hydrogels were estimated from TGA and DSC analysis and the highest value was found for alginate-agarose hydrogels as about 15%. The attachment and the migration of L929 fibroblasts were monitored in vitro using the MTS assay and confocal microscopy. The highest cell proliferation and penetration were observed for positively charged chitosan-agarose semi-IPN hydrogels.

  19. Rapid enrichment of rare-earth metals by carboxymethyl cellulose-based open-cellular hydrogel adsorbent from HIPEs template.

    PubMed

    Zhu, Yongfeng; Wang, Wenbo; Zheng, Yian; Wang, Feng; Wang, Aiqin

    2016-04-20

    A series of monolithic open-cellular hydrogel adsorbents based on carboxymethylcellulose (CMC) were prepared through high internal phase emulsions (HIPEs) and used to enrich the rare-earth metals La(3+) and Ce(3+). The changes of pore structure, and the effects of pH, contact time, initial concentration on the adsorption performance were systematically studied. The results show that the as-prepared monolithic hydrogel adsorbents possess good open-cellular framework structure and have fast adsorption kinetics and high adsorption capacity for La(3+) and Ce(3+). The involved adsorption system can reach equilibrium within 30min and the maximal adsorption capacity is determined to be 384.62mg/g for La(3+) and 333.33mg/g for Ce(3+). Moreover, these porous hydrogel adsorbents show an excellent adsorptive reusability for La(3+) and Ce(3+) through five adsorption-desorption cycles. Such a pore hierarchy structure makes this monolithic open-cellular hydrogel adsorbent be an effective adsorbent for effective enrichment of La(3+) and Ce(3+) from aqueous solution.

  20. Stem Cell-Laden Hyaluronic Acid-Based Spongy-Like Hydrogels for an Integrated Healing of Diabetic Wounds Pathophysiologies.

    PubMed

    da Silva, Lucília Pereira; Santos, Tírcia Carlos; Rodrigues, Daniel Barreira; Pirraco, Rogério Pedro; Cerqueira, Mariana Teixeira; Reis, Rui Luís; Correlo, Vitor Manuel; Marques, Alexandra Pinto

    2017-03-01

    The correlation between the pathophysiologies of diabetic foot ulcerations is yet to be established and improved treatments are still required. We propose a strategy that directs inflammation, neo-vascularization and neo-innervation of diabetic wounds. Aiming to potentiate a relevant secretome for nerve regeneration, stem cells were pre-cultured in hyaluronic acid-based spongy-like hydrogels under neurogenic/standard media prior transplantation into diabetic mice full-thickness wounds. Acellular spongy-like hydrogels and empty wounds were used as controls. Re-epithelialization was attained 4 weeks post-transplantation independently of the test groups, whereas a thicker and matured epidermis was observed for the cellular spongy-like hydrogels. A switch from the inflammatory to the proliferative phase of wound healing was revealed for all the experimental groups 2 weeks post-injury, but a significantly higher M2(CD163(+))/M1(CD86(+)) subtype ratio was observed in the neurogenic pre-conditioned group which also failed to promote neo-innervation. A higher number of intraepidermal nerve fibers was observed for the unconditioned group probably due to a more controlled transition from the inflammatory to the proliferative phase. Overall, stem cell-laden spongy-like hydrogels represent a promising approach to enhance diabetic wound healing by positively impacting re-epithelialization and by modulating the inflammatory response towards its resolution which seems to be determinant for a successful neo-innervation.

  1. Ag@SiO2-entrapped hydrogel microarray: a new platform for a metal-enhanced fluorescence-based protein assay.

    PubMed

    Jang, Eunji; Kim, Minsu; Koh, Won-Gun

    2015-05-21

    We developed a novel protein-based bioassay platform utilizing metal-enhanced fluorescence (MEF), which is a hydrogel microarray entrapping silica-coated silver nanoparticles (Ag@SiO2). As a model system, different concentrations of glucose were detected using a fluorescence method by sequential bienzymatic reaction of hydrogel-entrapped glucose oxidase (GOX) and peroxidase (POD) inside a hydrogel microarray. Microarrays based on poly(ethylene glycol)(PEG) hydrogels were prepared by photopatterning a solution containing PEG diacrylate (PEG-DA), photoinitiator, enzymes, and Ag@SiO2. The resulting hydrogel microarrays were able to entrap both enzymes and Ag@SiO2 without leaching and deactivation problems. The presence of Ag@SiO2 within the hydrogel microarray enhanced the fluorescence signal, and the extent of the enhancement was dependent on the thickness of silica shells and the amount of Ag@SiO2. Optimal MEF effects were achieved when the thickness of the silica shell was 17.5 nm, and 0.5 mg mL(-1) of Ag@SiO2 was incorporated into the assay systems. Compared with the standard hydrogel microarray-based assay performed without Ag@SiO2, more than a 4-fold fluorescence enhancement was observed in a glucose concentration range between 10(-3) mM and 10.0 mM using hydrogel microarray entrapping Ag@SiO2, which led to significant improvements in the sensitivity and the limit of detection (LOD). The hydrogel microarray system presented in this study could be successfully combined with a microfluidic device as an initial step to create an MEF-based micro-total-analysis-system (μ-TAS).

  2. Preparation and swelling behavior of chitosan-based superporous hydrogels for gastric retention application.

    PubMed

    Park, Hyojin; Park, Kinam; Kim, Dukjoon

    2006-01-01

    Chitosan and glycol chitosan hydrogels were prepared, and their swelling behaviors in acidic solution were studied to investigate their application for gastric retention device. The optimum preparation condition of superporous hydrogels was obtained from the gelation and blowing kinetics measured at varying acidic conditions. Both the swelling rate and swelling ratio of glycol chitosan hydrogels were higher than those of chitosan hydrogels. Swelling behaviors were significantly affected by not only foaming/drying methods but also crosslinking density, as the sizes and structures of pores generated were highly dependent on those preparation conditions. The prepared superporous hydrogels were highly sensitive to pH of swelling media, and showed reversible swelling and de-swelling behaviors maintaining their mechanical stability. The degradation kinetics in simulated gastric fluid was also studied.

  3. Light-Switchable Self-Healing Hydrogel Based on Host-Guest Macro-Crosslinking.

    PubMed

    Yang, Qiaofeng; Wang, Ping; Zhao, Chuanzhuang; Wang, Wenqin; Yang, Jingfa; Liu, Qiao

    2017-03-01

    A self-healing hydrogel is prepared by crosslinking acrylamide with a host-guest macro-crosslinker assembled from poly(β-cyclodextrin) nanogel and azobenzeneacrylamide. The photoisomerizable azobenzene moiety can change its binding affinity with β-cyclodextrin, therefore the crosslinking density and rheology property of the hydrogel can be tuned with light stimulus. The hydrogel can repair its wound autonomously through the dynamic host-guest interaction. In addition, the wounded hydrogel will lose its ability of self-healing when exposed to ultraviolet light, and the self-healing behavior can be recovered upon the irradiation of visible light. The utilizing of host-guest macro-crosslinking approach manifests the as-prepared hydrogel reversible and light-switchable self-healing property, which would broaden the potential applications of self-healing polymers.

  4. An organophosphate sensor based on photo-crosslinked hydrogel-entrapped E. coli.

    PubMed

    Fleischauer, Valerie; Heo, Jinseok

    2014-01-01

    This paper describes a whole cell sensor using E. coli entrapped within photocrosslinked hydrogel beads. Hydrogel beads containing organophosphorus hydrolase (OPH)-expressed E. coli were prepared by adding a hydrogel precursor solution containing the E. coli to an oil phase using a precision syringe pump, forming droplets, and photopolymerizing them. The beads showed good monodispersity with an average size of 1.2 mm. We detected organophosphates (OPs) using the beads. The detection relied on a pH-sensitive fluorescence dye that responds to protons produced from the intracellular OPH reaction with the OPs. This sensor could detect up to 80 μM of paraoxon with a detection limit of 3 μM. The enzyme activity of E. coli entrapped within the hydrogel beads showed stable enzyme activity for at least two weeks. This whole cell sensor will be implemented in a microfluidic system by directly photopolymerizing the hydrogel precursor solution within microfluidic channels.

  5. Functional modification of agarose: a facile synthesis of a fluorescent agarose-tryptophan based hydrogel.

    PubMed

    Kondaveeti, Stalin; Prasad, Kamalesh; Siddhanta, A K

    2013-08-14

    Microwave assisted facile synthesis of a fluorescent agarose-l-tryptophan hydrogel material employing carbodiimide chemistry (dicyclohexylcarbodiimide/4-dimethylaminopyridine; DCC/DMAP) has been described. The product formed fluorescent hydrogel at 1-1.5% (w/v), exhibiting fluorescence emission in water (λmax 350 nm; 1x10(-4)M), which was significantly higher (ca. 65%) than that of tryptophan at the same concentration. Subsequently, the agarose ester was cross linked with the natural cross linker genipin to yield a blue hydrogel (G-Ag-TrpEst), confirming thereby the insertion of tryptophan moiety on to agarose backbone. Both the ester and cross linked hydrogels demonstrated gelling characteristics similar to agarose and were stable across a wide range of pH media (pHs 1.2, 7.0 and 12.5) under ambient conditions. These tryptophan containing fluorescent hydrogel materials may find applications in biomedical and pharmaceutical industries as potential radical scavengers and sensors.

  6. Synthesis, characterization and application in biomedicine of a novel chondroitin sulfate based hydrogel and bioadhesive

    NASA Astrophysics Data System (ADS)

    Strehin, Iossif

    Clinically, there exists a need for adhesive biomaterials. There is room to improve upon what is currently on the market as it is either too toxic, lacks the required adhesive strength and/or lacks the desired degradation properties. The general goals of this thesis all focused on designing a biomaterial which would improve upon these shortcomings while at the same time allow for modifications to meet the needs for the specific application of interest. To accomplish this task, it was important to choose the appropriate composition and crosslinking chemistry which will allow the most flexibility. Chondroitin sulfate (CS) was chosen as the principle component of the hydrogel because it is a ubiquitous glycosaminoglycan (GAG) found in almost all tissues in the body. Many variants of CS exist with each one possessing unique biological activity allowing for tight control over these properties of the material. To modulate cell migration through the adhesive, polyethylene glycol (PEG) or blood was used as the second constituent. The former made the scaffold act as a cell barrier while the ladder could be used in varying concentrations to modulate cell adhesion and migration into the biomaterial. Also, the CS and blood components are both biodegradable and degradation can be controlled using various methods. While the constituents were chosen to allow flexibility in the biological activity and cell migration into the scaffold, the crosslinking chemistry was chosen to allow control over the mechanical properties as well as to increase tissue adhesion. By functionalizing the carboxyl groups of the GAG with N-hydroxysuccinimide (NHS), the resulting chondroitin sulfate succinimidyl succinate (CS-NHS) molecule could react with primary amines on polymers to form a hydrogel as well as the primary amines on proteins comprising tissue to anchor the hydrogel to the tissue. The material has been characterized and optimized for several applications. The applications described here

  7. Unconfined compression properties of a porous poly(vinyl alcohol)-chitosan-based hydrogel after hydration.

    PubMed

    Lee, Si-Yuen; Pereira, Barry P; Yusof, N; Selvaratnam, L; Yu, Zou; Abbas, A A; Kamarul, T

    2009-07-01

    A poly(vinyl alcohol) (PVA) hydrogel composite scaffold containing N,O-carboxymethylated chitosan (NOCC) was tested to assess its potential as a scaffold for cartilage tissue engineering in a weight-bearing environment. The mechanical properties under unconfined compression for different hydration periods were investigated. The effect of supplementing PVA with NOCC (20wt.% PVA:5vol.% NOCC) produced a porosity of 43.3% and this was compared against a non-porous PVA hydrogel (20g PVA: 100ml of water, control). Under non-hydrated conditions, the porous PVA-NOCC hydrogel behaved in a similar way to the control non-porous PVA hydrogel, with similar non-linear stress-strain response under unconfined compression (0-30% strain). After 7days' hydration, the porous hydrogel demonstrated a reduced stiffness (0.002kPa, at 25% strain), resulting in a more linear stiffness relationship over a range of 0-30% strain. Poisson's ratio for the hydrated non-porous and porous hydrogels ranged between 0.73 and 1.18, and 0.76 and 1.33, respectively, suggesting a greater fluid flow when loaded. The stress relaxation function for the porous hydrogel was affected by the hydration period (from 0 to 600s); however the percentage stress relaxation regained by about 95%, after 1200s for all hydration periods assessed. No significant differences were found between the different hydration periods between the porous hydrogels and control. The calculated aggregate modulus, H(A), for the porous hydrogel reduced drastically from 10.99kPa in its non-hydrated state to about 0.001kPa after 7days' hydration, with the calculated shear modulus reducing from 30.92 to 0.14kPa, respectively. The porous PVA-NOCC hydrogel conformed to a biphasic, viscoelastic model, which has the desired properties required for any scaffold in cartilage tissue engineering.

  8. Microwave absorption properties of double-layer absorber based on carbonyl iron/barium hexaferrite composites

    NASA Astrophysics Data System (ADS)

    Ren, Xiaohu; Fan, Huiqing; Cheng, Yankui

    2016-05-01

    The microwave absorption properties of BaCo0.4Zn1.6Fe16O27 ferrite and carbonyl iron powder with single-layer and double-layer composite absorbers were investigated based on the electromagnetic transmission line theory in the frequency range from 1 to 14 GHz. XRD was used to characterize the structure of prepared absorbing particles. SEM was used to examine the micromorphology of the particles and composites. The complex permittivity and permeability of composites were measured by using a vector network analyzer. The reflection loss of the single-layer and double-layer absorbers with different thicknesses and orders was investigated. The results show that double-layer absorbers have better microwave absorption properties than single-layer absorbers. The microwave absorption properties of the double-layer structure are influenced by the coupling interactions between the matching and absorption layers. As the pure ferrite used as matching layer and the composite of BF-5CI used as absorption, the minimum RL of absorber can achieve to -55.4 dB and the bandwidth of RL <-10 dB ranged from 5.6 to 10.8 GHz when the thicknesses of matching layer and absorption layer were 0.9 and 1.4 mm, respectively.

  9. Thermal tuning of infrared resonant absorbers based on hybrid gold-VO{sub 2} nanostructures

    SciTech Connect

    Kocer, Hasan; Butun, Serkan; Aydin, Koray; Banar, Berker; Wang, Kevin; Wu, Junqiao; Tongay, Sefaatttin

    2015-04-20

    Resonant absorbers based on plasmonic materials, metamaterials, and thin films enable spectrally selective absorption filters, where absorption is maximized at the resonance wavelength. By controlling the geometrical parameters of nano/microstructures and materials' refractive indices, resonant absorbers are designed to operate at wide range of wavelengths for applications including absorption filters, thermal emitters, thermophotovoltaic devices, and sensors. However, once resonant absorbers are fabricated, it is rather challenging to control and tune the spectral absorption response. Here, we propose and demonstrate thermally tunable infrared resonant absorbers using hybrid gold-vanadium dioxide (VO{sub 2}) nanostructure arrays. Absorption intensity is tuned from 90% to 20% and 96% to 32% using hybrid gold-VO{sub 2} nanowire and nanodisc arrays, respectively, by heating up the absorbers above the phase transition temperature of VO{sub 2} (68 °C). Phase change materials such as VO{sub 2} deliver useful means of altering optical properties as a function of temperature. Absorbers with tunable spectral response can find applications in sensor and detector applications, in which external stimulus such as heat, electrical signal, or light results in a change in the absorption spectrum and intensity.

  10. Absorbable magnesium-based stent: physiological factors to consider for in vitro degradation assessments

    PubMed Central

    Wang, Juan; Smith, Christopher E.; Sankar, Jagannathan; Yun, Yeoheung; Huang, Nan

    2015-01-01

    Absorbable metals have been widely tested in various in vitro settings using cells to evaluate their possible suitability as an implant material. However, there exists a gap between in vivo and in vitro test results for absorbable materials. A lot of traditional in vitro assessments for permanent materials are no longer applicable to absorbable metallic implants. A key step is to identify and test the relevant microenvironment and parameters in test systems, which should be adapted according to the specific application. New test methods are necessary to reduce the difference between in vivo and in vitro test results and provide more accurate information to better understand absorbable metallic implants. In this investigative review, we strive to summarize the latest test methods for characterizing absorbable magnesium-based stent for bioabsorption/biodegradation behavior in the mimicking vascular environments. Also, this article comprehensively discusses the direction of test standardization for absorbable stents to paint a more accurate picture of the in vivo condition around implants to determine the most important parameters and their dynamic interactions. PMID:26816631

  11. Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Kocer, Hasan; Butun, Serkan; Banar, Berker; Wang, Kevin; Tongay, Sefaatttin; Wu, Junqiao; Aydin, Koray

    2015-04-01

    Resonant absorbers based on plasmonic materials, metamaterials, and thin films enable spectrally selective absorption filters, where absorption is maximized at the resonance wavelength. By controlling the geometrical parameters of nano/microstructures and materials' refractive indices, resonant absorbers are designed to operate at wide range of wavelengths for applications including absorption filters, thermal emitters, thermophotovoltaic devices, and sensors. However, once resonant absorbers are fabricated, it is rather challenging to control and tune the spectral absorption response. Here, we propose and demonstrate thermally tunable infrared resonant absorbers using hybrid gold-vanadium dioxide (VO2) nanostructure arrays. Absorption intensity is tuned from 90% to 20% and 96% to 32% using hybrid gold-VO2 nanowire and nanodisc arrays, respectively, by heating up the absorbers above the phase transition temperature of VO2 (68 °C). Phase change materials such as VO2 deliver useful means of altering optical properties as a function of temperature. Absorbers with tunable spectral response can find applications in sensor and detector applications, in which external stimulus such as heat, electrical signal, or light results in a change in the absorption spectrum and intensity.

  12. Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers.

    PubMed

    Mishra, Satyendra K; Gupta, Banshi D

    2013-05-07

    The fabrication and characterization of a surface plasmon resonance based pH sensor using coatings of silver, ITO (In2O3:SnO2), aluminium and smart hydrogel layers over an unclad core of an optical fiber have been reported. The silver, aluminium and ITO layers were coated using a thermal evaporation technique, while the hydrogel layer was prepared using a dip-coating method. The sensor works on the principle of detecting changes in the refractive index of the hydrogel layer due to its swelling and shrinkage caused by changes in the pH of the fluid surrounding the hydrogel layer. The sensor utilizes a wavelength interrogation technique and operates in a particular window of low and high pH values. Increasing the pH value of the fluid causes swelling of the hydrogel layer, which decreases its refractive index and results in a shift of the resonance wavelength towards blue in the transmitted spectra. The thicknesses of the ITO and aluminium layers have been optimized to achieve the best performance of the sensor. The ITO layer increases the sensitivity while the aluminium layer increases the detection accuracy of the sensor. The proposed sensor possesses maximum sensitivity in comparison to the sensors reported in the literature. A negligible effect of ambient temperature in the range 25 °C to 45 °C on the performance of the sensor has been observed. The additional advantages of the sensor are short response time, low cost, probe miniaturization, probe re-usability and the capability of remote sensing.

  13. Graphene-based extremely wide-angle tunable metamaterial absorber.

    PubMed

    Linder, Jacob; Halterman, Klaus

    2016-08-24

    We investigate the absorption properties of graphene-based anisotropic metamaterial structures where the metamaterial layer possesses an electromagnetic response corresponding to a near-zero permittivity. We find that through analytical and numerical studies, near perfect absorption arises over an unusually broad range of beam incidence angles. Due to the presence of graphene, the absorption is tunable via a gate voltage, providing dynamic control of the energy transmission. We show that this strongly enhanced absorption arises due to a coupling between light and a fast wave-mode propagating along the graphene/metamaterial hybrid.

  14. Graphene-based extremely wide-angle tunable metamaterial absorber

    PubMed Central

    Linder, Jacob; Halterman, Klaus

    2016-01-01

    We investigate the absorption properties of graphene-based anisotropic metamaterial structures where the metamaterial layer possesses an electromagnetic response corresponding to a near-zero permittivity. We find that through analytical and numerical studies, near perfect absorption arises over an unusually broad range of beam incidence angles. Due to the presence of graphene, the absorption is tunable via a gate voltage, providing dynamic control of the energy transmission. We show that this strongly enhanced absorption arises due to a coupling between light and a fast wave-mode propagating along the graphene/metamaterial hybrid. PMID:27554137

  15. Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices

    PubMed Central

    O'Toole, Martina; Diamond, Dermot

    2008-01-01

    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements. PMID:27879829

  16. Smart nanocomposite hydrogels based on azo crosslinked graphene oxide for oral colon-specific drug delivery

    NASA Astrophysics Data System (ADS)

    Hou, Lin; Shi, Yuyang; Jiang, Guixiang; Liu, Wei; Han, Huili; Feng, Qianhua; Ren, Junxiao; Yuan, Yujie; Wang, Yongchao; Shi, Jinjin; Zhang, Zhenzhong

    2016-08-01

    A safe and efficient nanocomposite hydrogel for colon cancer drug delivery was synthesized using pH-sensitive and biocompatible graphene oxide (GO) containing azoaromatic crosslinks as well as poly (vinyl alcohol) (PVA) (GO-N=N-GO/PVA composite hydrogels). Curcumin (CUR), an anti-cancer drug, was encapsulated successfully into the hydrogel through a freezing and thawing process. Fourier transform infrared spectroscopy, scanning electron microscopy and Raman spectroscopy were performed to confirm the formation and morphological properties of the nanocomposite hydrogel. The hydrogels exhibited good swelling properties in a pH-sensitive manner. Drug release studies under conditions mimicking stomach to colon transit have shown that the drug was protected from being released completely into the physiological environment of the stomach and small intestine. In vivo imaging analysis, pharmacokinetics and a distribution of the gastrointestinal tract experiment were systematically studied and evaluated as colon-specific drug delivery systems. All the results demonstrated that GO-N=N-GO/PVA composite hydrogels could protect CUR well while passing through the stomach and small intestine to the proximal colon, and enhance the colon-targeting ability and residence time in the colon site. Therefore, CUR loaded GO-N=N-GO/PVA composite hydrogels might potentially provide a theoretical basis for the treatment of colon cancer with high efficiency and low toxicity.

  17. A Peptide-Based Mechano-sensitive, Proteolytically Stable Hydrogel with Remarkable Antibacterial Properties.

    PubMed

    Baral, Abhishek; Roy, Subhasish; Ghosh, Srabanti; Hermida-Merino, Daniel; Hamley, Ian W; Banerjee, Arindam

    2016-02-23

    A long-chain amino acid containing dipeptide has been found to form a hydrogel in phosphate buffer whose pH ranges from 6.0 to 8.8. The hydrogel formed at pH 7.46 has been characterized by small-angle X-ray scattering (SAXS), wide-angle powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM) imaging and rheological analyses. The microscopic imaging studies suggest the formation of a nanofibrillar three-dimensional (3D) network for the hydrogel. As observed visually and confirmed rheologically, the hydrogel at pH 7.46 exhibits thixotropy. This thixotropic property can be exploited to inject the peptide. Furthermore, the hydrogel exhibits remarkable antibacterial activity against Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, which are responsible for many common diseases. The hydrogel has practical applicability due to its biocompatibility with human red blood cells and human fibroblast cells. Interestingly, this hydrogel shows high resistance toward proteolytic enzymes, making it a new potential antimicrobial agent for future applications. It has also been observed that a small change in molecular structure of the gelator peptide not only turns the gelator into a nongelator molecule under similar conditions, but it also has a significant negative impact on its bactericidal character.

  18. Determinants of visual pigment absorbance: identification of the retinylidene Schiff's base counterion in bovine rhodopsin.

    PubMed

    Nathans, J

    1990-10-16

    The role of negatively charged residues in tuning the absorbance spectrum of bovine rhodopsin has been tested by mutating each aspartate and glutamate to asparagine and glutamine, respectively. Previous work demonstrated that aspartate83, glutamate122, and glutamate134 can be replaced by neutral residues with little or no effect on the absorbance spectrum of the resulting pigment [Nathans, J. (1990) Biochemistry 29, 937-942]. With one exception, mutations at the remaining 19 aspartate and glutamate residues result in very nearly wild-type absorbance spectra. The exception is glutamate113: mutation to glutamine causes the pigment to absorb at 380 nm, reflecting deprotonation of the retinylidene Schiff's base. Upon addition of either chloride, bromide, or iodide, the absorbance rapidly shifts to 495, 498, or 504.5 nm, respectively, reflecting protonation of the Schiff's base. The progressive red shift observed upon addition of halides with larger atomic radii strongly suggests that halides are serving as the Schiff's base counterion. Halides have no effect on the absorbance spectrum of wild-type rhodopsin. I infer, therefore, that glutamate113 is the retinylidene Schiff's base counterion in wild-type rhodopsin. Sakmar et al. [(1989) Proc. Natl. Acad. Sci. U.S.A. 86, 8309-8313] and Zhukovsky and Oprian [(1989) Science 246, 928-930] have arrived at the same conclusion based upon a related series of experiments. These data support a model in which spectral tuning in bovine rhodopsin results from interactions between the polyene chain of 11-cis-retinal and uncharged amino acids in the binding pocket.

  19. Impact of immobilizing of low molecular weight hyaluronic acid within gelatin-based hydrogel through enzymatic reaction on behavior of enclosed endothelial cells.

    PubMed

    Khanmohammadi, Mehdi; Sakai, Shinji; Taya, Masahito

    2017-04-01

    The hydrogels having the ability to promote migration and morphogenesis of endothelial cells (ECs) are useful for fabricating vascularized dense tissues in vitro. The present study explores the immobilization of low molecular weight hyaluronic acid (LMWHA) derivative within gelatin-based hydrogel to stimulate migration of ECs. The LMWHA derivative possessing phenolic hydroxyl moieties (LMWHA-Ph) was bound to gelatin-based derivative hydrogel through the horseradish peroxidase-catalyzed reaction. The motility of ECs was analyzed by scratch migration assay and microparticle-based cell migration assay. The incorporated LMWHA-Ph molecules within hydrogel was found to be preserved stably through covalent bonds during incubation. The free and immobilized LMWHA-Ph did not lose an inherent stimulatory effect on human umbilical vein endothelial cells (HUVECs). The immobilized LMWHA-Ph within gelatin-based hydrogel induced the high motility of HUVECs, accompanied by robust cytoskeleton extension, and cell subpopulation expressing CD44 cell receptor. In the presence of immobilized LMWHA-Ph, the migration distance and the number of existing HUVECs were demonstrated to be encouraged in dose-dependent and time-dependent manners. Based on the results obtained in this work, it was concluded that the enzymatic immobilization of LMWHA-Ph within gelatin-based hydrogel represents a promising approach to promote ECs' motility and further exploitation for vascular tissue engineering applications.

  20. 2-hydroxyethyl metahcrylate/gelatin based superporous hydrogels for tissue regeneration

    NASA Astrophysics Data System (ADS)

    Tomić, Simonida Lj.; Babić, Marija M.; Vuković, Jovana S.; Perišić, Marija D.; Filipović, Vuk V.; Davidović, Sladjana Z.; Filipović, Jovanka M.

    2016-05-01

    In this study, superporous hydrogels were synthesized by free radical polymerization of 2-hydroxyethyl methacrylate without and in the presence of gelatin. Highly porous hydrogel structures were obtained by two different techniques: using a gas blowing agent, sodium bicarbonate, and a cryogenic treatment followed by freeze-drying. After the gel synthesis, gelatin molecules were covalently immobilised onto PHEMA via glytaraldehyde activation. All samples were characterized for morphological, mechanical, swelling and antibacterial properties. The results obtained show that samples with gelatin show better properties in comparison with PHEMA samples, which make these materials highly attractive for developing hydrogel scaffolds for tissue regeneration.

  1. Synthesis and characterization of a novel pH-thermo dual responsive hydrogel based on salecan and poly(N,N-diethylacrylamide-co-methacrylic acid).

    PubMed

    Wei, Wei; Qi, Xiaoliang; Liu, Yucheng; Li, Junjian; Hu, Xinyu; Zuo, Gancheng; Zhang, Jianfa; Dong, Wei

    2015-12-01

    Salecan is a water-soluble microbial polysaccharide produced by Agrobacterium sp. ZX09, a salt-tolerant strain isolated from a soil sample in our laboratory. Previous work inspired us salecan is a good candidate to fabricate hydrogels. Poly(N,N-diethylacrylamide) is one type of thermo sensitive polymer which is not investigated extremely as poly(N-isopropylacrylamide). Here, we report a novel pH-thermo dual responsive hydrogel based on salecan and poly(N,N-diethylacrylamide-co-methacrylic acid) semi-interpenetrating polymer networks (semi-IPNs). The physicochemical property of this hydrogel was investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analyses (TGA), rheological test and Scanning Electron Microscopy (SEM). It was interesting that the storage modulus (G') and pore size of the hydrogel could be tuned by adjusting the content of salecan and crosslinker. The pH-thermo dual responsive property was demonstrated by swelling behavior test: the swelling ratio of the hydrogel decreased continuously as the temperature increased from 25 °C to 37 °C, while it was pH-dependent as well. Especially, when exposed to a higher temperature (37 °C) and acidic environment (pH 4.0), drug-loaded hydrogel would have a quick release. Finally, the cytotoxicity of drug-free hydrogels was investigated on A549 and HepG2 cells, results showed that it was non-toxic while the DOX released from hydrogels had comparable cytotoxicity with respect to free DOX. In conclusion, the novel salecan/poly(N,N-diethylacrylamide-co-methacrylic acid) semi-interpenetrating polymer network hydrogels were pH-thermo dual responsive and may be a promising candidate for drug delivery system.

  2. Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser

    NASA Astrophysics Data System (ADS)

    Hribar, Kolin C.; Meggs, Kyle; Liu, Justin; Zhu, Wei; Qu, Xin; Chen, Shaochen

    2015-11-01

    We report a methodology for three-dimensional (3D) cell patterning in a hydrogel in situ. Gold nanorods within a cell-encapsulating collagen hydrogel absorb a focused near-infrared femtosecond laser beam, locally denaturing the collagen and forming channels, into which cells migrate, proliferate, and align in 3D. Importantly, pattern resolution is tunable based on writing speed and laser power, and high cell viability (>90%) is achieved using higher writing speeds and lower laser intensities. Overall, this patterning technique presents a flexible direct-write method that is applicable in tissue engineering systems where 3D alignment is critical (such as vascular, neural, cardiac, and muscle tissue).

  3. Synthesis and swelling behavior of Protein-g-poly Methacrylic acid/kaolin superabsorbent hydrogel composites

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mohammad

    2008-08-01

    A novel superabsorbent hydrogel composite based on Collagen have been prepared via graft copolymerization of Methacrylic acid (MAA) in the presence of kaolin powder using methylenebisacrylamide (MBA) as a crosslinking agent and ammonium persulfate (APS) as an initiator. The composite structure was confirmed using FTIR spectroscopy. A new absorption band at 1728 cm-1 in the composite spectrum confirmed kaolin-organic polymer linkage. The effect of kaolin amount and MBA concentration showed that with increasing of these parameters, the water absorbency of the superabsorbent composite was decreased. The swelling measurements of the hydrogels were conducted in aqueous salt solutions.

  4. Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser

    PubMed Central

    Hribar, Kolin C.; Meggs, Kyle; Liu, Justin; Zhu, Wei; Qu, Xin; Chen, Shaochen

    2015-01-01

    We report a methodology for three-dimensional (3D) cell patterning in a hydrogel in situ. Gold nanorods within a cell-encapsulating collagen hydrogel absorb a focused near-infrared femtosecond laser beam, locally denaturing the collagen and forming channels, into which cells migrate, proliferate, and align in 3D. Importantly, pattern resolution is tunable based on writing speed and laser power, and high cell viability (>90%) is achieved using higher writing speeds and lower laser intensities. Overall, this patterning technique presents a flexible direct-write method that is applicable in tissue engineering systems where 3D alignment is critical (such as vascular, neural, cardiac, and muscle tissue). PMID:26603915

  5. Is there a cause-and-effect relationship between physicochemical properties and cell behavior of alginate-based hydrogel obtained after sterilization?

    PubMed

    Yu, Hao; Cauchois, Ghislaine; Schmitt, Jean-François; Louvet, Nicolas; Six, Jean-Luc; Chen, Yun; Rahouadj, Rachid; Huselstein, Céline

    2017-01-25

    Alginate-based hydrogel scaffolds are widely used in the field of cartilage regeneration and repair. If the effect of autoclaving on the alginate powder is well known, it is not the same for the possible effects of the sterilization UV treatment on the properties of the hydrogel after polymerization. To select an effective sterilization treatment of alginate-based materials, one must find what are inter-relationship between the characteristics (chemical, physical and mechanical) of alginate-based hydrogel during sterilization, and what consequences have affected on cell behavior. In this study, we investigated the influence of UV sterilization treatments (UV-1 and UV-2: 25 and 50min, respectively) and autoclaving to obtain alginate (Alg)/hyaluronic acid (HA) hydrogel, as well as further evaluated the relationship between physicochemical properties and cell behavior of Alg/HA hydrogel after UVs and autoclaving. The physicochemical properties of this mixture at the powder or polymerized states were analyzed using ATR-FTIR, HPLC-SEC, rheological, indentation testing and sterility testing. The cell behaviors of hydrogels were evaluated by cell viability and proliferation, and chondrogenic differentiation. The effects of treatment parameters and their correlation with the others characteristics were determined statistically by Principal Component Analysis (PCA). In this study, we have shown that the cell behavior in alginate-based hydrogels was not only regulated by physicochemical properties (as molar mass or/and viscosity), but also associated with the controlling of sterilization time. It can provide a basis for choosing an effective method of sterilization, which can keep the mechanical or physical-chemical properties of Alg-based hydrogel scaffold and maintain its cytocompatibility and its ability to induce chondrogenesis from mesenchymal stem cells.

  6. A microfluidic-based cell encapsulation platform to achieve high long-term cell viability in photopolymerized PEGNB hydrogel microspheres.

    PubMed

    Jiang, Zhongliang; Xia, Bingzhao; McBride, Ralph; Oakey, John

    2017-01-07

    Cell encapsulation within photopolymerized polyethylene glycol (PEG)-based hydrogel scaffolds has been demonstrated as a robust strategy for cell delivery, tissue engineering, regenerative medicine, and developing in vitro platforms to study cellular behavior and fate. Strategies to achieve spatial and temporal control over PEG hydrogel mechanical properties, chemical functionalization, and cytocompatibility have advanced considerably in recent years. Recent microfluidic technologies have enabled the miniaturization of PEG hydrogels, thus enabling the fabrication of miniaturized cell-laden vehicles. However, rapid oxygen diffusive transport times on the microscale dramatically inhibit chain growth photopolymerization of polyethylene glycol diacrylate (PEGDA), thus decreasing the viability of cells encapsulated within these microstructures. Another promising PEG-based scaffold material, PEG norbornene (PEGNB), is formed by a step-growth photopolymerization and is not inhibited by oxygen. PEGNB has also been shown to be more cytocompatible than PEGDA and allows for orthogonal addition reactions. The step-growth kinetics, however, are slow and therefore challenging to fully polymerize within droplets flowing through microfluidic devices. Here, we describe a microfluidic-based droplet fabrication platform that generates consistently monodisperse cell-laden water-in-oil emulsions. Microfluidically generated PEGNB droplets are collected and photopolymerized under UV exposure in bulk emulsions. In this work, we compare this microfluidic-based cell encapsulation platform with a vortex-based method on the basis of microgel size, uniformity, post-encapsulation cell viability and long-term cell viability. Several factors that influence post-encapsulation cell viability were identified. Finally, long-term cell viability achieved by this platform was compared to a similar cell encapsulation platform using PEGDA. We show that this PEGNB microencapsulation platform is capable of

  7. Nanosecond passively Q-switched Nd:YVO4 laser based on WS2 saturable absorber

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Li, Lu; Wang, Yonggang; Zhang, Ling; Wen, Qiao; Yang, Guowen

    2017-04-01

    We report on a nanosecond pulse generation in a diode end-pumped passively Q-switched Nd:YVO4 laser using a tungsten disulfide (WS2) solution saturable absorber (SA). The WS2 suspension is fabricated by the liquid-phase-exfoliated method and injected into a quartz cell for the use of SA. Compared with solid absorber, such solution absorber has the virtues of good optical transparency, high heat dissipation and long term stability. By inserting the WS2 solution SA in the laser cavity, a stable Q-switched laser operation centered at 1064.45 nm wavelength is obtained with the shortest pulse duration of 788 ns and corresponding repetition rate of 333.5 kHz. The maximum average output power is registered to be 720 mW with the slope efficiency of 7.8%. To the best of our knowledge, it is the highest output power so far among pulsed lasers based on transition metal dichalcogenides (TMDs) SAs. The results demonstrate that WS2 solution absorber is a promising saturable absorber for the generation of high output power pulsed lasers.

  8. Sound-absorbing slabs and structures based on granular materials (bound and unbound). [energy absorbing efficiency of porous material

    NASA Technical Reports Server (NTRS)

    Petre-Lazar, S.; Popeea, G.

    1974-01-01

    Sound absorbing slabs and structures made up of bound or unbound granular materials are considered and how to manufacture these elements at the building site. The raw material is a single grain powder (sand, expanded blast furnace slag, etc.) that imparts to the end products an apparent porosity of 25-45% and an energy dissipation within the structure leading to absorption coefficients that can be compared with those of mineral wool and urethane.

  9. High-performance terahertz wave absorbers made of silicon-based metamaterials

    SciTech Connect

    Yin, Sheng; Zhu, Jianfei; Jiang, Wei; Yuan, Jun; Yin, Ge; Ma, Yungui; Xu, Wendao; Xie, Lijuan; Ying, Yibin

    2015-08-17

    Electromagnetic (EM) wave absorbers with high efficiency in different frequency bands have been extensively investigated for various applications. In this paper, we propose an ultra-broadband and polarization-insensitive terahertz metamaterial absorber based on a patterned lossy silicon substrate. Experimentally, a large absorption efficiency more than 95% in a frequency range of 0.9–2.5 THz was obtained up to a wave incident angle as large as 70°. Much broader absorption bandwidth and excellent oblique incidence absorption performance are numerically demonstrated. The underlying mechanisms due to the combination of a waveguide cavity mode and impedance-matched diffraction are analyzed in terms of the field patterns and the scattering features. The monolithic THz absorber proposed here may find important applications in EM energy harvesting systems such as THz barometer or biosensor.

  10. A polarization insensitive and broadband metamaterial absorber based on three-dimensional structure

    NASA Astrophysics Data System (ADS)

    Tang, Jingyao; Xiao, Zhongyin; Xu, Kaikai; Liu, Dejun

    2016-08-01

    In this paper, we propose a three-dimensional metamaterial absorber based on tailored resistive film patch array. The numerical results show that a broadband abs orption more than 90% can be achieved from 58.6 to 91.4 GHz for either transverse electric or magnetic polarization wave at normal incidence. And the E-field, surface current and power loss density distributions in the absorber are investigated to explain the physical mechanism of high absorption. In addition, the absorption efficiency of oblique incidence is also elucidated. According to the analysis of the E-field and power loss density distributions, we explain the absorption differences between TE and TM mode at oblique incidence. The proposed metamaterial absorber will pave the way for practical applications, such as sensing, imaging and stealth technology. Importantly, the design idea has the ability to be extended to terahertz, infrared and optical region.

  11. STARCH-SOYBEAN OIL BASED ULTRAVIOLET ABSORBING COMPOSITES. PREPARATION, CHEMISTY AND POTENTIAL USES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excess steam jet-cooking aqueous slurries of starch and vegetable oils or other hydrophobic materials can produce stable aqueous starch-oil composites from renewable resources. Herein, ferulate-based ultraviolet absorbing lipids were synthesized by the lipase catalyzed transesterification of soybea...

  12. Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering.

    PubMed

    Wang, Jianqi; Zhang, Fengjie; Tsang, Wing Pui; Wan, Chao; Wu, Chi

    2017-03-01

    Hydrogels prepared from poly(ethylene glycol) (PEG) are widely applied in tissue engineering, especially those derived from a combination of functional multi-arm star PEG and linear crosslinker, with an expectation to form a structurally ideal network. However, the poor mechanical strength still renders their further applications. Here we examined the relationship between the dynamics of the pre-gel solution and the mechanical property of the resultant hydrogel in a system consisting of 4-arm star PEG functionalized with vinyl sulfone and short dithiol crosslinker. A method to prepare mechanically strong hydrogel for cartilage tissue engineering is proposed. It is found that when gelation takes place at the overlap concentration, at which a slow relaxation mode just appears in dynamic light scattering (DLS), the resultant hydrogel has a local maximum compressive strength ∼20 MPa, while still keeps ultralow mass concentration and Young's modulus. Chondrocyte-laden hydrogel constructed under this condition was transplanted into the subcutaneous pocket and an osteochondral defect model in SCID mice. The in vivo results show that chondrocytes can proliferate and maintain their phenotypes in the hydrogel, with the production of abundant extracellular matrix (ECM) components, formation of typical chondrocyte lacunae structure and increase in Young's modulus over 12 weeks, as indicated by histological, immunohistochemistry, gene expression analyses and mechanical test. Moreover, newly formed hyaline cartilage was observed to be integrated with the host articular cartilage tissue in the defects injected with chondrocytes/hydrogel constructs. The results suggest that this hydrogel is a promising candidate scaffold for cartilage tissue engineering.

  13. A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications.

    PubMed

    Abbadessa, A; Blokzijl, M M; Mouser, V H M; Marica, P; Malda, J; Hennink, W E; Vermonden, T

    2016-09-20

    The aim of this study was to design a hydrogel system based on methacrylated chondroitin sulfate (CSMA) and a thermo-sensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate)-polyethylene glycol triblock copolymer (M15P10) as a suitable material for additive manufacturing of scaffolds. CSMA was synthesized by reaction of chondroitin sulfate with glycidyl methacrylate (GMA) in dimethylsulfoxide at 50°C and its degree of methacrylation was tunable up to 48.5%, by changing reaction time and GMA feed. Unlike polymer solutions composed of CSMA alone (20% w/w), mixtures based on 2% w/w of CSMA and 18% of M15P10 showed strain-softening, thermo-sensitive and shear-thinning properties more pronounced than those found for polymer solutions based on M15P10 alone. Additionally, they displayed a yield stress of 19.2±7.0Pa. The 3D printing of this hydrogel resulted in the generation of constructs with tailorable porosity and good handling properties. Finally, embedded chondrogenic cells remained viable and proliferating over a culture period of 6days. The hydrogel described herein represents a promising biomaterial for cartilage 3D printing applications.

  14. Alginate-polyester comacromer based hydrogels as physiochemically and biologically favorable entities for cardiac tissue engineering.

    PubMed

    Thankam, Finosh G; Muthu, Jayabalan

    2015-11-01

    The physiochemical and biological responses of tissue engineering hydrogels are crucial in determining their desired performance. A hybrid comacromer was synthesized by copolymerizing alginate and poly(mannitol fumarate-co-sebacate) (pFMSA). Three bimodal hydrogels pFMSA-AA, pFMSA-MA and pFMSA-NMBA were synthesized by crosslinking with Ca(2+) and vinyl monomers acrylic acid (AA), methacrylic acid (MA) and N,N'-methylene bisacrylamide (NMBA), respectively. Though all the hydrogels were cytocompatible and exhibited a normal cell cycle profile, pFMSA-AA exhibited superior physiochemical properties viz non-freezable water content (58.34%) and water absorption per unit mass (0.97 g water/g gel) and pore length (19.92±3.91 μm) in comparing with other two hydrogels. The increased non-freezable water content and water absorption of pFMSA-AA hydrogels greatly influenced its biological performance, which was evident from long-term viability assay and cell cycle proliferation. The physiochemical and biological favorability of pFMSA-AA hydrogels signifies its suitability for cardiac tissue engineering.

  15. Sustained delivery of latanoprost by thermosensitive chitosan-gelatin-based hydrogel for controlling ocular hypertension.

    PubMed

    Cheng, Yung-Hsin; Hung, Kuo-Hsuan; Tsai, Tung-Hu; Lee, Chia-Jung; Ku, Ruy-Yu; Chiu, Allen Wen-Hsiang; Chiou, Shih-Hwa; Liu, Catherine Jui-Ling

    2014-10-01

    Glaucoma is an irreversible ocular disease that may lead to progressive visual field loss and eventually to blindness with inadequately controlled intraocular pressure (IOP). Latanoprost is one of the most potent ocular hypotensive compounds, the current first-line therapy in glaucoma. However, the daily instillation required for efficacy and undesirable side-effects are major causes of treatment adherence failure and persistence in glaucoma therapy. In the present study, we developed an injectable thermosensitive chitosan/gelatin/glycerol phosphate (C/G/GP) hydrogel as a sustained-release system of latanoprost for glaucoma treatment. The latanoprost-loaded C/G/GP hydrogel can gel within 1min at 37°C. The results show a sustained release of latanoprost from C/G/GP hydrogel in vitro and in vivo. The latanoprost-loaded C/G/GP hydrogel showed a good in vitro and in vivo biocompatibility. A rabbit model of glaucoma was established by intravitreal injection of triamcinolone acetonide. After a single subconjunctival injection of latanoprost-loaded C/G/GP hydrogel, IOP was significantly decreased within 8days and then remained at a normal level. The results of the study suggest that latanoprost-loaded C/G/GP hydrogel may have a potential application in glaucoma therapy.

  16. Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load.

    PubMed

    Kocen, Rok; Gasik, Michael; Gantar, Ana; Novak, Saša

    2017-03-06

    Along with biocompatibility, bioinductivity and appropriate biodegradation, mechanical properties are also of crucial importance for tissue engineering scaffolds. Hydrogels, such as gellan gum (GG), are usually soft materials, which may benefit from the incorporation of inorganic particles, e.g. bioactive glass, not only due to the acquired bioactivity, but also due to improved mechanical properties. They exhibit complex viscoelastic properties, which can be evaluated in various ways. In this work, to reliably evaluate the effect of the bioactive glass (BAG) addition on viscoelastic properties of the composite hydrogel, we employed and compared the three most commonly used techniques, analyzing their advantages and limitations: monotonic uniaxial unconfined compression, small amplitude oscillatory shear (SAOS) rheology and dynamic mechanical analysis (DMA). Creep and small amplitude dynamic strain-controlled tests in DMA are suggested as the best ways for the characterization of mechanical properties of hydrogel composites, whereas the SAOS rheology is more useful for studying the hydrogel's processing kinetics, as it does not induce volumetric changes even at very high strains. Overall, the results confirmed a beneficial effect of BAG (nano)particles on the elastic modulus of the GG-BAG composite hydrogel. The Young's modulus of 6.6 ± 0.8 kPa for the GG hydrogel increased by two orders of magnitude after the addition of 2 wt.% BAG particles (500-800 kPa).

  17. Manipulation the properties of supramolecular hydrogels of α-cyclodextrin/Tyloxapol/carbon-based nanomaterials.

    PubMed

    Shen, Jinglin; Xin, Xia; Liu, Teng; Tong, Lu; Xu, Guiying; Yuan, Shiling

    2016-04-15

    Supermolecular hydrogels were prepared by α-cyclodeatrin (α-CD) and Tyloxapol, which can be considered as an oligomer of the nonionic surfactant polyoxyethylene tert-octylphenyl ether (TX-100) with a polymerization degree below 7. Two carbon materials, graphene oxide (GO) and graphene, were mixed into the α-CD/Tyloxapol hydrogel to adjust the physicochemical properties of hydrogel. In order to get stable graphene dispersion and then mix it with α-CD/Tyloxapol hydrogel, both TX-100 and Tyloxapol were used to disperse graphene for comparison. Interestingly, it can be found that TX-100 could disperse graphene better than Tyloxapol owing to smaller molecular size of TX-100 compared with Tyloxapol. Then, both the α-CD/Tyloxapol/GO and α-CD/Tyloxapol/graphene hydrogels were characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, small angle X-ray scattering (SAXS), X-ray diffraction (XRD) and rheological measurements. The results revealed that the addition of carbon materials into α-CD/Tyloxapol hydrogel can change their microstructures and the rheological properties. Furthermore, it can be confirmed that a little amount of carbon materials could induce fluorescence quenching sharply which could be a promising candidate for optical sensor.

  18. Exploration of the nature of a unique natural polymer-based thermosensitive hydrogel.

    PubMed

    Lu, Shanling; Yang, Yuhong; Yao, Jinrong; Shao, Zhengzhong; Chen, Xin

    2016-01-14

    The chitosan (CS)/β-glycerol phosphate (GP) system is a heat induced gelling system with a promising potential application, such as an injectable biomedical material. Unlike most thermosensitive gelling systems, the CS/GP system is only partially reversible. That is once the hydrogel is fully matured, it only softens but cannot go back to its initial liquid state when cooled down. Here, we perform both the small and large amplitude oscillatory shear (SAOS and LAOS) tests on the fully matured CS/GP hydrogel samples at a variety of temperatures within the cooling process. The purpose of such tests is to investigate the structural change of the hydrogel network and thus to understand the possible gelation mechanism of this unique thermosensitive hydrogel. From the LAOS results and the further analysis with the Chebyshev expansion method, it shows that the CS/GP hydrogel is composed of a colloidal network dominated by hydrophobic interactions at high temperature, and gradually turns into a flexible network dominated by hydrogen bonding when the temperature goes down. Therefore, we may conclude that LOAS is a powerful tool to study the nonlinear behaviour of a polymer system that is closely related to its structure, and as a practical example, we achieve a clearer vision on the gelation mechanism of the unique CS/GP thermosensitive hydrogel on the basis of considerable previous studies and assumptions in this laboratory and other research groups.

  19. Optimization and translation of MSC-based hyaluronic acid hydrogels for cartilage repair

    NASA Astrophysics Data System (ADS)

    Erickson, Isaac E.

    2011-12-01

    Traumatic injury and disease disrupt the ability of cartilage to carry joint stresses and, without an innate regenerative response, often lead to degenerative changes towards the premature development of osteoarthritis. Surgical interventions have yet to restore long-term mechanical function. Towards this end, tissue engineering has been explored for the de novo formation of engineered cartilage as a biologic approach to cartilage repair. Research utilizing autologous chondrocytes has been promising, but clinical limitations in their yield have motivated research into the potential of mesenchymal stem cells (MSCs) as an alternative cell source. MSCs are multipotent cells that can differentiate towards a chondrocyte phenotype in a number of biomaterials, but no combination has successfully recapitulated the native mechanical function of healthy articular cartilage. The broad objective of this thesis was to establish an MSC-based tissue engineering approach worthy of clinical translation. Hydrogels are a common class of biomaterial used for cartilage tissue engineering and our initial work demonstrated the potential of a photo-polymerizable hyaluronic acid (HA) hydrogel to promote MSC chondrogenesis and improved construct maturation by optimizing macromer and MSC seeding density. The beneficial effects of dynamic compressive loading, high MSC density, and continuous mixing (orbital shaker) resulted in equilibrium modulus values over 1 MPa, well in range of native tissue. While compressive properties are crucial, clinical translation also demands that constructs stably integrate within a defect. We utilized a push-out testing modality to assess the in vitro integration of HA constructs within artificial cartilage defects. We established the necessity for in vitro pre-maturation of constructs before repair to achieve greater integration strength and compressive properties in situ. Combining high MSC density and gentle mixing resulted in integration strength over 500 k

  20. Improved and safe transcorneal delivery of flurbiprofen by NLC and NLC-based hydrogels.

    PubMed

    Gonzalez-Mira, Elisabet; Nikolić, Saša; Calpena, Ana C; Egea, M Antonia; Souto, Eliana B; García, M Luisa

    2012-02-01

    Flurbiprofen (FB)-loaded nanostructured lipid carriers (NLCs) based on Compritol®888 ATO (C888; FB-C888NLC) were developed for anti-inflammatory ocular therapy. NLCs prepared by high-pressure homogenization technique following a factorial design had low particle size (<199 nm), high entrapment efficiency (∼90%), and long-term physical stability. Previously optimized NLCs based on stearic acid (SA; FB-SANLC) were prepared for comparison studies. Both formulations were dispersed in freshly prepared carbomer hydrogel (HG) to check the suitability of semisolid-based NLC HGs to enhance the corneal residence time. FB-C888NLC remained in the nanometric range, whereas FB-SANLC suffered an increase in particle size up to 5 µm after incorporation. Consequently, modifications in the crystalline lattice structure were observed for FB-SANLC-enriched HG (HG_FB-SANLC) by X-ray diffractometry. Both HG formulations showed plastic and low or no thixotropic properties, making them suitable for ocular application while maintaining its predominant elastic component as an indicator of good physicochemical stability. Formulations depicted sustained FB release. Ex vivo permeation analysis in isolated rabbit cornea revealed enhanced transcorneal drug permeation from the systems. In vivo ocular tolerance was confirmed by the Draize test. Therefore, NLC are promising and effective systems for ocular delivery of FB.

  1. Development of a novel antimicrobial seaweed extract-based hydrogel wound dressing.

    PubMed

    Tan, Shiau Pin; McLoughlin, Peter; O'Sullivan, Laurie; Prieto, Maria Luz; Gardiner, Gillian E; Lawlor, Peadar G; Hughes, Helen

    2013-11-01

    The objective of this study was to develop a novel antimicrobial seaweed wound dressing. The seaweed extract was active against nine clinically-relevant wound pathogens. A hydrogel formulation was prepared using polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP), followed by addition of 1% seaweed extract. The antimicrobial properties of the novel dressing were tested using agar diffusion assays, with release-profiles examined using gel leaching and gel transfer assays. The dressing was found to be effective against the same microbial strains as the seaweed extract, with similar efficacy to the commonly used silver-based dressing, Acticoat(®). Antimicrobial release-profile assays revealed that the dressing was effective in inhibiting 70-90% of the bacterial population within the first 30 min, followed by a long, sustained released up to 97 h, without leaving a residue following five subsequent transfers of the dressing. Antimicrobial activity was stable for up to 6 months of storage at 4 °C, but activity was reduced slightly after 15 weeks. Following autoclave sterilization, the dressing displayed a slower release profile compared to a non-autoclaved counterpart. Hence, the seaweed dressing may have commercial applications, potentially competing with silver-based dressings at a lower cost per-application. This is the first report of development of a seaweed-based antimicrobial dressing.

  2. About the Sterilization of Chitosan Hydrogel Nanoparticles

    PubMed Central

    Galante, Raquel; Rediguieri, Carolina F.; Kikuchi, Irene Satiko; Vasquez, Pablo A. S.; Colaço, Rogério; Pinto, Terezinha J. A.

    2016-01-01

    In the last years, nanostructured biomaterials have raised a great interest as platforms for delivery of drugs, genes, imaging agents and for tissue engineering applications. In particular, hydrogel nanoparticles (HNP) associate the distinctive features of hydrogels (high water uptake capacity, biocompatibility) with the advantages of being possible to tailor its physicochemical properties at nano-scale to increase solubility, immunocompatibility and cellular uptake. In order to be safe, HNP for biomedical applications, such as injectable or ophthalmic formulations, must be sterile. Literature is very scarce with respect to sterilization effects on nanostructured systems, and even more in what concerns HNP. This work aims to evaluate the effect and effectiveness of different sterilization methods on chitosan (CS) hydrogel nanoparticles. In addition to conventional methods (steam autoclave and gamma irradiation), a recent ozone-based method of sterilization was also tested. A model chitosan-tripolyphosphate (TPP) hydrogel nanoparticles (CS-HNP), with a broad spectrum of possible applications was produced and sterilized in the absence and in the presence of protective sugars (glucose and mannitol). Properties like size, zeta potential, absorbance, morphology, chemical structure and cytotoxicity were evaluated. It was found that the CS-HNP degrade by autoclaving and that sugars have no protective effect. Concerning gamma irradiation, the formation of agglomerates was observed, compromising the suspension stability. However, the nanoparticles resistance increases considerably in the presence of the sugars. Ozone sterilization did not lead to significant physical adverse effects, however, slight toxicity signs were observed, contrarily to gamma irradiation where no detectable changes on cells were found. Ozonation in the presence of sugars avoided cytotoxicity. Nevertheless, some chemical alterations were observed in the nanoparticles. PMID:28002493

  3. Graphene-based 3D composite hydrogel by anchoring Co3O4 nanoparticles with enhanced electrochemical properties.

    PubMed

    Yuan, Jingjing; Zhu, Junwu; Bi, Huiping; Meng, Xiaoqian; Liang, Shiming; Zhang, Lili; Wang, Xin

    2013-08-21

    Three-dimensional (3D) graphene-based composite materials have attracted increasing attention, owing to their specific surface area, high conductivity and electronic interactions. Here, we report a convenient route to fabricate a 3D Co3O4/Graphene Hydrogel (CGH) composite as an electrode material for supercapacitors. Utilizing the gelation of a graphene oxide dispersion enables the anchoring of Co3O4 nanoparticles on the graphene sheet surfaces and formation of the hydrogel simultaneously. Remarkably, the spherical Co3O4 particles can serve as spacers to keep the neighboring graphene sheets separated. The CGH exhibits a high specific capacitance (Cs) of 757.5 F g(-1) at a current density of 0.5 A g(-1), indicating its potential application as an electrode material for supercapacitors.

  4. Michael-type addition reactions for the in situ formation of poly(vinyl alcohol)-based hydrogels.

    PubMed

    Tortora, Mariarosaria; Cavalieri, Francesca; Chiessi, Ester; Paradossi, Gaio

    2007-01-01

    Michael-type addition reactions offer the possibility to obtain in situ formation of polymeric hydrogels in the absence of a radical mechanism for the networking process. We explored such a synthetic route for obtaining a poly(vinyl alcohol) (PVA)-based hydrogel as a potential biomaterial for applications in vitro-retinal replacement surgery. The presence of radicals in the reaction medium can represent a risk for in situ surgical treatment. To circumvent this problem we have applied nucleophilic addition to ad hoc modified PVA macromers. The gel formation has been studied with respect to the timing required in this surgery and in terms of the structural characteristics of the obtained network.

  5. Solid lipid nanoparticles (SLN)--based hydrogels as potential carriers for oral transmucosal delivery of risperidone: preparation and characterization studies.

    PubMed

    Silva, A C; Amaral, M H; González-Mira, E; Santos, D; Ferreira, D

    2012-05-01

    Two different solid lipid nanoparticles (SLN)-based hydrogels (HGs) formulations were developed as potential mucoadhesive systems for risperidone (RISP) oral transmucosal delivery. The suitability of the prepared semi-solid formulations for application on oral mucosa was assessed by means of rheological and textural analysis, during 30 days. Plastic flows with thixotropy and high adhesiveness were obtained for all the tested systems, which predict their success for the oral transmucosal application proposed. The SLN remained within the colloidal range after HGs preparation. However, after 30 days of storage, a particle size increase was detected in one type of the HGs formulations. In vitro drug release studies revealed a more pronounced RISP release after SLN hydrogel entrapment, when compared to the dispersions alone. In addition, a pH-dependent release was observed as well. The predicted in vivo RISP release mechanism was Fickian diffusion alone or combined with erosion.

  6. Integration of target responsive hydrogel with cascaded enzymatic reactions and microfluidic paper-based analytic devices (µPADs) for point-of-care testing (POCT).

    PubMed

    Tian, Tian; Wei, Xiaofeng; Jia, Shasha; Zhang, Ruihua; Li, Jiuxing; Zhu, Zhi; Zhang, Huimin; Ma, Yanli; Lin, Zhenyu; Yang, Chaoyong James

    2016-03-15

    Paper based microfluidics (µPADs) with advantages of portability, low cost, and ease of use have attracted extensive attention. Here we describe a novel method that integrates glucoamylase-trapped aptamer-crosslinked hydrogel for molecular recognition with cascaded enzymatic reactions for signal amplification and a µPAD for portable readout. Upon target introduction, the hydrogel decomposes to release glucoamylase, which catalyzes the hydrolysis of amylose to produce a large amount of glucose. With a simple folding of the µPAD, the sample solution containing glucose product wicks and diffuses in parallel to each test-zone to carry out homogeneous assays, where glucose is used to produce I2 for brown color visualization through multiple enzymatic and chemical cascade reactions. Through color gradient changes based on different concentrations of the target, a semiquantitative assay is achieved by the naked eye, and quantitation can be obtained by handheld devices. Detection of cocaine in buffer and urine was performed to demonstrate the utility of the hydrogel-µPAD system. More importantly, the hydrogel-µPAD system can be extended to the detection of various targets by incorporating the corresponding aptamer into the hydrogel. The hydrogel-µPAD system reported here provides a new platform for portable, disposable and visual detection of a wide range of targets.

  7. Thermosensitive chitosan-based hydrogel as a topical ocular drug delivery system of latanoprost for glaucoma treatment.

    PubMed

    Cheng, Yung-Hsin; Tsai, Tung-Hu; Jhan, Yong-Yu; Chiu, Allen Wen-hsiang; Tsai, Kun-Ling; Chien, Chian-Shiu; Chiou, Shih-Hwa; Liu, Catherine Jui-lin

    2016-06-25

    Ocular hypertension is a major risk factor for the development and progression of glaucoma. Frequent and long-term application of latanoprost often causes undesirable local side effects, which are a major cause of therapeutic failure due to loss of persistence in using this glaucoma medical therapy. In the present study, we developed a thermosensitive chitosan-based hydrogel as a topical eye drop formulation for the sustained release of latanoprost to control ocular hypertension. The developed formulation without preservatives may improve compliance and possibly even efficacy. The results of this study support its biocompatibility and sustained-release profile both in vitro and in vivo. After topical application of latanoprost-loaded hydrogel, triamcinolone acetonide-induced elevated intraocular pressure was significantly decreased within 7 days and remained at a normal level for the following 21 days in rabbit eyes. This newly developed chitosan-based hydrogel may provide a non-invasive alternative to traditional anti-glaucoma eye drops for glaucoma treatment.

  8. Multiscale approach for the construction of equilibrated all-atom models of a poly(ethylene glycol)-based hydrogel.

    PubMed

    Li, Xianfeng; Murthy, N Sanjeeva; Becker, Matthew L; Latour, Robert A

    2016-06-24

    A multiscale modeling approach is presented for the efficient construction of an equilibrated all-atom model of a cross-linked poly(ethylene glycol) (PEG)-based hydrogel using the all-atom polymer consistent force field (PCFF). The final equilibrated all-atom model was built with a systematic simulation toolset consisting of three consecutive parts: (1) building a global cross-linked PEG-chain network at experimentally determined cross-link density using an on-lattice Monte Carlo method based on the bond fluctuation model, (2) recovering the local molecular structure of the network by transitioning from the lattice model to an off-lattice coarse-grained (CG) model parameterized from PCFF, followed by equilibration using high performance molecular dynamics methods, and (3) recovering the atomistic structure of the network by reverse mapping from the equilibrated CG structure, hydrating the structure with explicitly represented water, followed by final equilibration using PCFF parameterization. The developed three-stage modeling approach has application to a wide range of other complex macromolecular hydrogel systems, including the integration of peptide, protein, and/or drug molecules as side-chains within the hydrogel network for the incorporation of bioactivity for tissue engineering, regenerative medicine, and drug delivery applications.

  9. Surface plasmon resonance based fiber optic trichloroacetic acid sensor utilizing layer of silver nanoparticles and chitosan doped hydrogel.

    PubMed

    Semwal, Vivek; Shrivastav, Anand M; Gupta, Banshi D

    2017-02-10

    In this study, we report a silver nanoparticles/chitosan doped hydrogel-based fiber optic sensor for the detection of trichloroacetic acid (TCA). The sensor is based on the combined phenomenon of localized and propagating surface plasmons. The sensing relies on the interaction of TCA with silver nanoparticles (AgNP) which results in the electron transfer between the negative group of TCA and positive amino group of AgNP stabilizer (chitosan). This alters the mechanical properties/refractive index of the AgNP embedded hydrogel matrix as well as the refractive index of the AgNP. The change in refractive index of both in turn changes the effective refractive index of the nanocomposite hydrogel layer which can be determined using the Maxwell-Garnet Theory. Four stage optimization of the probe fabrication parameters is performed to obtain the best performance of the sensing probe. The sensor operates in the TCA concentration range 0-120 μm which is harmful for the humans and environment. The shift in peak extinction wavelength observed for the same TCA concentration range is 42 nm. The sensor has the linearity range for the TCA concentration range of 40-100 μm. The sensor possesses high sensitivity, selectivity and numerous other advantages such as ease of handling, quick response, modest cost and capability of online monitoring and remote sensing.

  10. Surface plasmon resonance based fiber optic trichloroacetic acid sensor utilizing layer of silver nanoparticles and chitosan doped hydrogel

    NASA Astrophysics Data System (ADS)

    Semwal, Vivek; Shrivastav, Anand M.; Gupta, Banshi D.

    2017-02-01

    In this study, we report a silver nanoparticles/chitosan doped hydrogel-based fiber optic sensor for the detection of trichloroacetic acid (TCA). The sensor is based on the combined phenomenon of localized and propagating surface plasmons. The sensing relies on the interaction of TCA with silver nanoparticles (AgNP) which results in the electron transfer between the negative group of TCA and positive amino group of AgNP stabilizer (chitosan). This alters the mechanical properties/refractive index of the AgNP embedded hydrogel matrix as well as the refractive index of the AgNP. The change in refractive index of both in turn changes the effective refractive index of the nanocomposite hydrogel layer which can be determined using the Maxwell-Garnet Theory. Four stage optimization of the probe fabrication parameters is performed to obtain the best performance of the sensing probe. The sensor operates in the TCA concentration range 0-120 μm which is harmful for the humans and environment. The shift in peak extinction wavelength observed for the same TCA concentration range is 42 nm. The sensor has the linearity range for the TCA concentration range of 40-100 μm. The sensor possesses high sensitivity, selectivity and numerous other advantages such as ease of handling, quick response, modest cost and capability of online monitoring and remote sensing.

  11. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction

    SciTech Connect

    Huang, Xianjun; Hu, Zhirun; Liu, Peiguo

    2014-11-15

    This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of the screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications.

  12. Characterization of absorbing aerosol types using ground and satellites based observations over an urban environment

    NASA Astrophysics Data System (ADS)

    Bibi, Samina; Alam, Khan; Chishtie, Farrukh; Bibi, Humera

    2017-02-01

    In this paper, for the first time, an effort has been made to seasonally characterize the absorbing aerosols into different types using ground and satellite based observations. For this purpose, optical properties of aerosol retrieved from AErosol RObotic NETwork (AERONET) and Ozone Monitoring Instrument (OMI) were utilized over Karachi for the period 2012 to 2014. Firstly, OMI AODabs was validated with AERONET AODabs and found to have a high degree of correlation. Then, based on this validation, characterization was conducted by analyzing aerosol Fine Mode Fraction (FMF), Angstrom Exponent (AE), Absorption Angstrom Exponent (AAE), Single Scattering Albedo (SSA) and Aerosol Index (AI) and their mutual correlation, to identify the absorbing aerosol types and also to examine the variability in seasonal distribution. The absorbing aerosols were characterized into Mostly Black Carbon (BC), Mostly Dust and Mixed BC & Dust. The results revealed that Mostly BC aerosols contributed dominantly during winter and postmonsoon whereas, Mostly Dust were dominant during summer and premonsoon. These types of absorbing aerosol were also confirmed with MODerate resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations.

  13. Chondroitin Sulfate Glycosaminoglycan Hydrogels Create Endogenous Niches for Neural Stem Cells.

    PubMed

    Karumbaiah, Lohitash; Enam, Syed Faaiz; Brown, Ashley C; Saxena, Tarun; Betancur, Martha I; Barker, Thomas H; Bellamkonda, Ravi V

    2015-12-16

    Neural stem cells (NSCs) possess great potential for neural tissue repair after traumatic injuries to the central nervous system (CNS). However, poor survival and self-renewal of NSCs after injury severely limits its therapeutic potential. Sulfated chondroitin sulfate glycosaminoglycans (CS-GAGs) linked to CS proteoglycans (CSPGs) in the brain extracellular matrix (ECM) have the ability to bind and potentiate trophic factor efficacy, and promote NSC self-renewal in vivo. In this study, we investigated the potential of CS-GAG hydrogels composed of monosulfated CS-4 (CS-A), CS-6 (CS-C), and disulfated CS-4,6 (CS-E) CS-GAGs as NSC carriers, and their ability to create endogenous niches by enriching specific trophic factors to support NSC self-renewal. We demonstrate that CS-GAG hydrogel scaffolds showed minimal swelling and degradation over a period of 15 days in vitro, absorbing only 6.5 ± 0.019% of their initial weight, and showing no significant loss of mass during this period. Trophic factors FGF-2, BDNF, and IL10 bound with high affinity to CS-GAGs, and were significantly (p < 0.05) enriched in CS-GAG hydrogels when compared to unsulfated hyaluronic acid (HA) hydrogels. Dissociated rat subventricular zone (SVZ) NSCs when encapsulated in CS-GAG hydrogels demonstrated ∼88.5 ± 6.1% cell viability in vitro. Finally, rat neurospheres in CS-GAG hydrogels conditioned with the mitogen FGF-2 demonstrated significantly (p < 0.05) higher self-renewal when compared to neurospheres cultured in unconditioned hydrogels. Taken together, these findings demonstrate the ability of CS-GAG based hydrogels to regulate NSC self-renewal, and facilitate growth factor enrichment locally.

  14. Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering.

    PubMed

    Zhao, Xin; Li, Peng; Guo, Baolin; Ma, Peter X

    2015-10-01

    Biomaterials with injectability, conductivity and antibacterial effect simultaneously have been rarely reported. Herein, we developed a new series of in situ forming antibacterial conductive degradable hydrogels using quaternized chitosan (QCS) grafted polyaniline with oxidized dextran as crosslinker. The chemical structures, morphologies, electrochemical property, conductivity, swelling ratio, rheological property, in vitro biodegradation and gelation time of hydrogels were characterized. Injectability was verified by in vivo subcutaneous injection on a Sprague Dawley rat. The antibacterial activity of the hydrogels was firstly evaluated employing antibacterial assay using Escherichia coli and Staphylococcus aureus in vitro. The hydrogels containing polyaniline showed enhanced antibacterial activity compared to QCS hydrogel, especially for hydrogels with 3 wt% polyaniline showing 95 kill% and 90kill% for E. coli and S. aureus, respectively. Compared with QCS hydrogel, the hydrogels with 3 wt% polyaniline still showed enhanced antibacterial activity for E. coli in vivo. The adipose-derived mesenchymal stem cells (ADMSCs) were used to evaluate the cytotoxicity of the hydrogels and hydrogels with polyaniline showed better cytocompatibility than QCS hydrogel. The electroactive hydrogels could significantly enhance the proliferation of C2C12 myoblasts compared to QCS hydrogel. This work opens the way to fabricate in situ forming antibacterial and electroactive degradable hydrogels as a new class of bioactive scaffolds for tissue regeneration applications.

  15. Interdisciplinary consensus statement on indication and application of a hydrogel spacer for prostate radiotherapy based on experience in more than 250 patients

    PubMed Central

    Mischinger, Johannes; Klotz, Theodor; Gagel, Bernd; Habl, Gregor; Hatiboglu, Gencay; Pinkawa, Michael

    2016-01-01

    Abstract Background The aim of the study was to reach a consensus on indication and application of a hydrogel spacer based on multicentre experience and give new users important information to shorten the learning curve for this innovative technique. Methods The interdisciplinary meeting was attended by radiation oncologists and urologists, each with experience of 23 – 138 hydrogel injections (SpaceOAR®) in prostate cancer patients before dose-escalated radiotherapy. User experience was discussed and questions were defined to comprise practical information relevant for successful hydrogel injection and treatment. Answers to the defined key questions were generated. Hydrogel-associated side effects were collected to estimate the percentage, treatment and prognosis of potential risks. Results The main indication for hydrogel application was dose-escalated radiotherapy for histologically confirmed low or intermediate risk prostate cancer. It was not recommended in locally advanced prostate cancer. The injection or implantation was performed under transrectal ultrasound guidance via the transperineal approach after prior hydrodissection. The rate of injection-related G2-toxicity was 2% (n = 5) in a total of 258 hydrogel applications. The most frequent complication (n = 4) was rectal wall penetration, diagnosed at different intervals after hydrogel injection and treated conservatively. Conclusions A consensus was reached on the application of a hydrogel spacer. Current experience demonstrated feasibility, which could promote initiation of this method in more centres to reduce radiation-related gastrointestinal toxicity of dose-escalated IGRT. However, a very low rate of a potential serious adverse event could not be excluded. Therefore, the application should carefully be discussed with the patient and be balanced against potential benefits. PMID:27679550

  16. Synthesis of a novel supermagnetic iron oxide nanocomposite hydrogel based on graft copolymerization of poly((2-dimethylamino)ethyl methacrylate) onto salep for controlled release of drug.

    PubMed

    Bardajee, Ghasem Rezanejade; Hooshyar, Zari; Asli, Maryam Jahanbakhsh; Shahidi, Fatemeh Emamjome; Dianatnejad, Nastaran

    2014-03-01

    In this research, a novel supermagnetic iron oxide nanocomposite hydrogel was prepared using simultaneous in situ formation of iron oxide nanoparticles (IONs) and three-dimensional cross-linked polymer networks based on graft copolymerization of poly((2-dimethylamino)ethyl methacrylate) (PDMA) onto salep (PDMA-g-salep). The prepared ION-PDMA-g-salep hydrogel was systematically characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDAX), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). In addition, the ION-PDMA-g-salep hydrogel exhibits favorable swelling properties that are sensitive to temperature, pH, and external magnetic field (EMF). The drug release behavior of the prepared hydrogel under EMF, different temperatures and pHs was also studied for the evaluation of the release mechanism and determination of diffusion coefficients. Finally, the antibacterial activity and cytotoxicity studies of the prepared hydrogel were examined. These results suggested that the ION-PDMA-g-salep hydrogel could be a promising candidate for biological dressing applications.

  17. Self-Healing and Thermo-Responsive Dual-Crosslinked Alginate Hydrogels based on Supramolecular Inclusion Complexes

    PubMed Central

    Miao, Tianxin; Fenn, Spencer L.; Charron, Patrick N.; Oldinski, Rachael A.

    2015-01-01

    β-cyclodextrin (β-CD), with a lipophilic inner cavity and hydrophilic outer surface, interacts with a large variety of non-polar guest molecules to form non-covalent inclusion complexes. Conjugation of β-CD onto biomacromolecules can form physically-crosslinked hydrogel networks upon mixing with a guest molecule. Herein describes the development and characterization of self-healing, thermo-responsive hydrogels, based on host-guest inclusion complexes between alginate-graft-β-CD and Pluronic® F108 (poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)). The mechanics, flow characteristics, and thermal response were contingent on the polymer concentrations, and the host-guest molar ratio. Transient and reversible physical crosslinking between host and guest polymers governed self-assembly, allowing flow under shear stress, and facilitating complete recovery of the material properties within a few seconds of unloading. The mechanical properties of the dual-crosslinked, multi-stimuli responsive hydrogels were tuned as high as 30 kPa at body temperature, and are advantageous for biomedical applications such as drug delivery and cell transplantation. PMID:26509214

  18. Hydrogels: a journey from diapers to gene delivery.

    PubMed

    Chawla, Pooja; Srivastava, Alok Ranjan; Pandey, Priyanka; Chawla, Viney

    2014-02-01

    Hydrogels are the biomaterials comprising network of natural or synthetic polymers capable of absorbing large amount of water. Hydrogels are "Smart Gels" or "Intelligent Gels" which can be made to respond to the various environmental conditions like temperature, pH, magnetic/electric field, ionic strength, inflammation, external stress etc. There are numerous potential applications of hydrogels in modern day life ranging from a diaper to gene delivery. This review succinctly describes the classification, properties and preparation methods along with numerous diverse applications of hydrogels like agricultural hydrogels, hydrogel for drug delivery, sensing, dental adhesives, wound healing and tissue regeneration, diet aid and gastric retention and in tissue engineering etc. Hydrogels can be regarded as highly valuable biomaterials for human-beings.

  19. Thin absorber EUV photomask based on mixed Ni and TaN material

    NASA Astrophysics Data System (ADS)

    Hay, Derrick; Bagge, Patrick; Khaw, Ian; Sun, Lei; Wood, Obert; Chen, Yulu; Kim, Ryoung-han; Qi, Zhengqing John; Shi, Zhimin

    2016-05-01

    Lithographic patterning at the 7 and 5 nm nodes will likely require EUV (λ=13.5 nm) lithography for many of the critical levels. All optical elements in an EUV scanner are reflective which requires the EUV photomask to be illuminated at an angle to its normal. Current scanners have an incidence of 6 degree, but future designs will be <6 degrees for high-NA systems. Non-telecentricity has been shown to cause H-V bias due to shadowing, pattern shift through focus, and image contrast lost due to apodization by the reflective mask coating. A thinner EUV absorber can dramatically reduce these issues. Ni offers better EUV absorption than Ta-based materials, which hold promise as a thinner absorber candidate. Unfortunately, the challenge of etching Ni has prevented its adoption into manufacturing. We propose a new absorber material that infuses Ni nanoparticles into the TaN host medium, allowing for the use of established Ta etching chemistry. A thinner is absorber is created due to the enhanced absorption properties of the Ni-Ta nano-composite material. Finite integral method and effective medium theory-based transfer matrix method have been independently developed to analyze the performance of the nano-composite absorption layer. We show that inserting 15% volume fraction Ni nanoparticles into 40-nm of TaN absorber material can reduce the reflection below 2% over the EUV range. Numerical simulations confirm that the reduced reflectivity is due to the increased absorption of Ni, while scattering only contributes to approximately 0.2% of the reduction in reflectivity.

  20. A novel thermo-sensitive hydrogel based on thiolated chitosan/hydroxyapatite/beta-glycerophosphate.

    PubMed

    Liu, Xujie; Chen, Yan; Huang, Qianli; He, Wei; Feng, Qingling; Yu, Bo

    2014-09-22

    In order to get a water-soluble in situ gel-forming system, a thiolated chitosan, chitosan-4-thio-butylamidine (CS-TBA) conjugate was synthesized and used to replace the unmodified chitosan in the application of the in situ gel-forming system. A novel thermo-sensitive hydrogel was prepared based on CS-TBA/hydroxyapatite (HA)/beta-glycerophosphate disodium (β-GP). The gel formation, rheological properties, morphology, degradation, cytotoxicity, as well as protein release process of the novel gel system were investigated in this study. The CS-TBA/HA/β-GP gel showed a higher storage modulus (G') and loss modulus (G″) and a decreased bovine serum albumin (BSA) release rate which was maintained the protein release for a longer time compared with the unmodified chitosan (CS)/HA/β-GP gel, due to the existence of thiol groups and/or disulfide bonds. The CS-TBA/HA/β-GP gel has a porous structure with a uniform distribution of nano-hydroxyapatite, an appropriate degradation rate and low cytotoxicity, showing potential applications in drug delivery and tissue engineering.

  1. Independent polarization and multi-band THz absorber base on Jerusalem cross

    NASA Astrophysics Data System (ADS)

    Arezoomand, Afsaneh Saee; Zarrabi, Ferdows B.; Heydari, Samaneh; Gandji, Navid P.

    2015-10-01

    In this paper, we present the design and simulation of a single and multi-band perfect metamaterial absorber (MA) in the THz region base on Jerusalem cross (JC) and metamaterial load in unit cells. The structures consist of dual metallic layers for allowing near-perfect absorption with absorption peak of more than 99%. In this novel design, four-different shape of Jerusalem cross is presented and by adding L, U and W shape loaded to first structure, we tried to achieve a dual-band absorber. In addition, by good implementation of these loaded, we are able to control the absorption resonance at second resonance at 0.9, 0.7 and 0.85 THz respectively. In the other hand, we achieved a semi stable designing at first resonance between 0.53 and 0.58 THz. The proposed absorber has broadband polarization angle. The surface current modeled and proved the broadband polarization angle at prototype MA. The LC resonance of the metamaterial for Jerusalem cross and modified structures are extracting from equivalent circuit. As a result, proposed MA is useful for THz medical imaging and communication systems and the dual-band absorber has applications in many scientific and technological areas.

  2. Solid analyte and aqueous solutions sensing based on a flexible terahertz dual-band metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Yan, Xin; Liang, Lan-Ju; Ding, Xin; Yao, Jian-Quan

    2017-02-01

    A high-sensitivity sensing technique was demonstrated based on a flexible terahertz dual-band metamaterial absorber. The absorber has two perfect absorption peaks, one with a fundamental resonance (f1) of the structure and another with a high-order resonance (f2) originating from the interactions of adjacent unit cells. The quality factor (Q) and figure of merit of f2 are 6 and 14 times larger than that of f1, respectively. For the solid analyte, the changes in resonance frequency are monitored upon variation of analyte thickness and index; a linear relation between the amplitude absorption with the analyte thickness is achieved for f2. The sensitivity (S) is 31.2% refractive index units (RIU-1) for f2 and 13.7% RIU-1 for f1. For the aqueous solutions, the amplitude of absorption decreases linearly with increasing the dielectric constant for the ethanol-water mixture of f1. These results show that the designed absorber cannot only identify a solid analyte but also characterize aqueous solutions through the frequency shift and amplitude absorption. Therefore, the proposed absorber is promising for future applications in high-sensitivity monitoring biomolecular, chemical, ecological water systems, and aqueous biosystems.

  3. Broadband, polarization-insensitive, and wide-angle microwave absorber based on resistive film

    NASA Astrophysics Data System (ADS)

    Dan-Dan, Bu; Chun-Sheng, Yue; Guang-Qiu, Zhang; Yong-Tao, Hu; Sheng, Dong

    2016-06-01

    A simple design of broadband metamaterial absorber (MA) based on resistive film is numerically presented in this paper. The unit cell of this absorber is composed of crossed rectangular rings-shaped resistive film, dielectric substrate, and continuous metal film. The simulated results indicate that the absorber obtains a 12.82-GHz-wide absorption from about 4.75 GHz to 17.57 GHz with absorptivity over 90% at normal incidence. Distribution of surface power loss density is illustrated to understand the intrinsic absorption mechanism of the structure. The proposed structure can work at wide polarization angles and wide angles of incidence for both transverse electric (TE) and transverse magnetic (TM) waves. Finally, the multi-reflection interference theory is involved to analyze and explain the broadband absorption mechanism at both normal and oblique incidence. Moreover, the polarization-insensitive feature is also investigated by using the interference model. It is seen that the simulated and calculated absorption rates agree fairly well with each other for the absorber.

  4. Integration of an interferometric IR absorber into an epoxy membrane based CO2 detector

    NASA Astrophysics Data System (ADS)

    Ashraf, S.; Mattsson, C. G.; Thungström, G.; Rödjegård, H.

    2014-05-01

    Measurements of carbon dioxide levels in the environment are commonly performed by using non-dispersive infrared technology (NDIR). Thermopile detectors are often used in NDIR systems because of their non-cooling advantages. The infrared absorber has a major influence on the detector responsivity. In this paper, the fabrication of a SU-8 epoxy membrane based Al/Bi thermopile detector and the integration of an interferometric infrared absorber structure of wavelength around 4 μm into the detector is reported. The membrane of thermopile detector has been utilized as a dielectric medium in an interferometric absorption structure. By doing so, a reduction in both thermal conductance and capacitance is achieved. In the fabrication of the thermopile, metal evaporation and lift off process had been used for the deposition of serially interconnected Al/Bi thermocouples. Serial resistance of fabricated thermopile was measured as 220 kΩ. The response of fabricated thermopile detector was measured using a visible to infrared source of radiation flux 3.23 mW mm-2. The radiation incident on the detector was limited using a band pass filter of wavelength 4.26 μm in front of the detector. A responsivity of 27.86 V mm2 W-1 at room temperature was achieved using this setup. The fabricated detector was compared to a reference detector with a broad band absorber. From the comparison it was concluded that the integrated interferometric absorber is functioning correctly.

  5. Gelation kinetics and viscoelastic properties of pluronic and α-cyclodextrin-based pseudopolyrotaxane hydrogels.

    PubMed

    Pradal, Clementine; Jack, Kevin S; Grøndahl, Lisbeth; Cooper-White, Justin J

    2013-10-14

    The results of a systematic investigation into the gelation behavior of α-cyclodextrin (α-CD) and Pluronic (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers) pseudopolyrotaxane (PPR) hydrogels are reported here in terms of the effects of temperature, α-CD concentration, and Pluronic type (Pluronic F68 and Pluronic F127). It was found that α-CD significantly modifies the gelation behavior of Pluronic solutions and that the PPR hydrogels are highly sensitive to changes in the α-CD concentration. In some cases, the addition of α-CD was found to be detrimental to the gelation process, leading to slower gelation kinetics and weaker gels than with Pluronic alone. However, in other cases, the hydrogels formed in the presence of the α-CDs reached higher moduli and showed faster gelation kinetics than with Pluronic alone and in some instances α-CD allowed the formation of hydrogels from Pluronic solutions that would normally not undergo gelation. Depending on composition and ratio of α-CD/Pluronic, these highly viscoelastic hydrogels displayed elastic shear modulus values ranging from 2 kPa to 7 MPa, gelation times ranging from a few seconds to a few hours and self-healing behaviors post failure. Using dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), we probed the resident structure of these systems, and from these insights we have proposed a new molecular mechanism that accounts for the macroscopic properties observed.

  6. Effects of salt on the gelation mechanism of a D-sorbitol-based hydrogelator.

    PubMed

    Li, Jingjing; Fan, Kaiqi; Niu, Libo; Li, Yuanchao; Song, Jian

    2013-05-16

    The effect of salt on the gelatinization of 2,4-(3,4-dichlorobenzylidene)-D-sorbitol (DCBS), a novel low-molecular-weight gelator, was studied. DCBS showed pronounced hydrogelation and the electron micrographs indicated that the hydrogels consists of globular aggregates. Addition of NaCl to the aqueous medium accelerated the gelation process and also caused the gel's morphology to change from globular to long fibers. In addition, the thermal properties of the hydrogels were improved with the addition of NaCl. UV-vis and fluorescence emission spectra showed that extensive aggregation of the phenyl rings was responsible for the gelation. The presence of NaCl induced a red shift in the emission peaks of DCBS and a decrease of the pyrene polarity index I1/I3 in the gels, which indicated that there was more π-π stacking in the hydrogels with NaCl than in the gels without NaCl. Variable-temperature (1)H NMR spectra further demonstrated that the π-π interactions were enhanced by NaCl. FTIR studies showed that hydrogen bonding was also a contributing factor in the gelation process. Wide-angle X-ray diffraction (WXRD) showed that the hydrogels had a layered structure which did not change with the addition of NaCl. Density functional theory (DFT) calculations indicated the possible molecular packing of the gelator in the nanofibers.

  7. In vivo evaluation of in situ polysaccharide based hydrogel for prevention of postoperative adhesion.

    PubMed

    Lou, Weiwei; Zhang, Hualin; Ma, Jianfeng; Zhang, Dafeng; Liu, Chuantong; Wang, Siqian; Deng, Zhennan; Xu, Haihong; Liu, Jinsong

    2012-10-01

    In this paper, the carboxymethyl chitosan/oxidized dextran hydrogel was developed and its potency application in the prevention of postoperative adhesion was investigated. The developed hydrogel showed porous and interconnected interior structure with pore size about 250 μm, which was sensitive to lysozymic solution (1.5 μg/ml) with almost complete degradation after 4 weeks of in vitro incubation. In vivo study suggested that the developed hydrogel showed the great capacity on the prevention of postoperative adhesions in rat model. According to the result of histopathological examination, it clearly showed that the mesothelial cell layer of abdominal wall and cecum were completely recovered after 7 days of surgery in 3% carboxymethyl chitosan/oxidized dextran hydrogel group, while obvious adhesion between abdominal wall and cecum was observed as treatment with saline solution or 3% carboxymethyl chitosan solution after 1 day of surgery. All these results suggested that the developed biodegradable hydrogel might have potential application in the prevention of postoperative adhesion.

  8. In situ supramolecular hydrogel based on hyaluronic acid and dextran derivatives as cell scaffold.

    PubMed

    Chen, Jing-Xiao; Cao, Lu-Juan; Shi, Yu; Wang, Ping; Chen, Jing-Hua

    2016-09-01

    In this study, hyaluronic acid-β-cyclodextrin conjugate (HA-CD) and dextran-2-naphthylacetic acid conjugate (Dex-NAA) were synthesized as two gelators. The degrees of substitution (DS) of these two gelators were determined to be 15.5 and 7.4%, respectively. Taking advantages of the strong and selective host-guest interaction between β-CD and 2-NAA, the mixture of two gelators could form supramolecular hydrogel in situ. Moreover, the pore size, gelation time, swelling ratio as well as modulus of the hydrogel could be adjusted by simply varying the contents of HA-CD and Dex-NAA. NIH/3T3 cells that entrapped in hydrogel grew well as compared with that cultured in plates, indicating a favorable cytocompatibility of the hydrogel. Collectively, the results demonstrated that the HA-Dex hydrogel could potentially be applied in tissue engineering as cell scaffold. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2263-2270, 2016.

  9. Hierarchical hydrogen bonds directed multi-functional carbon nanotube-based supramolecular hydrogels.

    PubMed

    Du, Ran; Wu, Juanxia; Chen, Liang; Huang, Huan; Zhang, Xuetong; Zhang, Jin

    2014-04-09

    Supramolecular hydrogels (SMHs) are three-dimensional networks filled with a large amount of water. The crosslinking force in the 3D network is always constructed by relatively weak and dynamic non-covalent interactions, and thus SMHs usually possess extremely high susceptibility to external environment and can show extraordinary stimuli-responsive, self-healing or other attractive properties. However, the overall crosslinking force in hydrogel networks is difficult to flexibly modulate, and this leads to limited functions of the SMHs. In this regard, hierarchical hydrogen bonds, that is, the mixture of relatively strong and relatively weak hydrogen bonds, are used herein as crosslinking force for the hydrogel preparation. The ratio of strong and weak hydrogen bonds can be finely tuned to tailor the properties of resultant gels. Thus, by delicate manipulation of the overall crosslinking force in the system, a hydrogel with multiple (thermal, pH and NIR light) responsiveness, autonomous self-healing property and interesting temperature dependent, reversible adhesion behavior is obtained. This kind of hierarchical hydrogen bond manipulation is proved to be a general method for multiple-functionality hydrogel preparation, and the resultant material shows potential for a range of applications.

  10. The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation.

    PubMed

    Moreira Teixeira, Liliana S; Leijten, Jeroen C H; Wennink, Jos W H; Chatterjea, Anindita G; Feijen, Jan; van Blitterswijk, Clemens A; Dijkstra, Pieter J; Karperien, Marcel

    2012-05-01

    In situ gelating dextran-tyramine (Dex-TA) injectable hydrogels have previously shown promising features for cartilage repair. Yet, despite suitable mechanical properties, this system lacks intrinsic biological signals. In contrast, platelet lysate-derived hydrogels are rich in growth factors and anti-inflammatory cytokines, but mechanically unstable. We hypothesized that the advantages of these systems may be combined in one hydrogel, which can be easily translated into clinical settings. Platelet lysate was successfully incorporated into Dex-TA polymer solution prior to gelation. After enzymatic crosslinking, rheological and morphological evaluations were performed. Subsequently, the effect of platelet lysate on cell migration, adhesion, proliferation and multi-lineage differentiation was determined. Finally, we evaluated the integration potential of this gel onto osteoarthritis-affected cartilage. The mechanical properties and covalent attachment of Dex-TA to cartilage tissue during in situ gel formation were successfully combined with the advantages of platelet lysate, revealing the potential of this enhanced hydrogel as a cell-free approach. The addition of platelet lysate did not affect the mechanical properties and porosity of Dex-TA hydrogels. Furthermore, platelet lysate derived anabolic growth factors promoted proliferation and triggered chondrogenic differentiation of mesenchymal stromal cells.

  11. Thermoresponsive biodegradable PEG-PCL-PEG based injectable hydrogel for pulsatile insulin delivery.

    PubMed

    Payyappilly, Sanal; Dhara, Santanu; Chattopadhyay, Santanu

    2014-05-01

    An injectable biodegradable hydrogel was prepared for temperature-responsive pulsatile release of insulin. Triblock copolymer of poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) was prepared by ring opening bulk copolymerization and characterized using FT-IR, (1) HNMR, and gel permeation chromatography. Aqueous solution of PECE formed an injectable hydrogel, which was solution at room temperature and transformed into gel at 37°C. The temperature-responsive sol-gel transition and crystallinity of PECE hydrogel was studied and compared with pluronic, a well-studied nonbiodegradable injectable hydrogel. In vitro release study revealed that insulin release profile of PECE was similar to pluronic, and its viscosity was 1/30(th) of pluronic sol at 10,000 s(-1) shear rate. Release behavior of insulin from PECE hydrogels followed Fickian diffusion of first order. Insulin retained its secondary structure after release as confirmed by circular dichroism spectrum. A threefold increase in Fickian diffusion coefficient was evidenced when temperature was increased from 34 to 40°C because of crystalline melting of PCL part of PECE. Pulsatile release of insulin showed a correlation coefficient of 0.90 with the change of temperature.

  12. Poly(ethylene glycol) grafted polylactide based copolymers for the preparation of PLA-based nanocarriers and hybrid hydrogels.

    PubMed

    Riva, Raphaël; Schmeits, Stéphanie; Croisier, Florence; Lecomte, Philippe; Jérôme, Christine

    2015-01-01

    In previous works, poly(D,L-lactide-co-ɛCL-poly(ethylene glycol) (poly(D,L-La-co-αPEGɛCL) amphiphilic graft-copolymers were successfully synthesized according to a copper azide-alkyne cycloaddition (CuAAC) strategy. This paper aims at reporting on the behavior of this amphiphilic copolymer in water, which was not studied in the previous paper. Moreover, the ability of the copolymer to stabilize a PLA nanoparticles aqueous suspension is presented. For this purpose, dynamic light scattering (DLS) and transmission electron microscopy (TEM) are proposed to characterize the nanoparticles in solution. Otherwise, the strategy developed for the synthesis of the amphiphilic copolymers was adapted and extended to the synthesis of PLA-based degradable hydrogel, potentially applicable as drug-loaded degradable polymer implant.

  13. Development of a strategy to functionalize a dextrin-based hydrogel for animal cell cultures using a starch-binding module fused to RGD sequence

    PubMed Central

    Moreira, Susana M; Andrade, Fábia K; Domingues, Lucíla; Gama, Miguel

    2008-01-01

    Background Several approaches can be used to functionalize biomaterials, such as hydrogels, for biomedical applications. One of the molecules often used to improve cells adhesion is the peptide Arg-Gly-Asp (RGD). The RGD sequence, present in several proteins from the extra-cellular matrix (ECM), is a ligand for integrin-mediated cell adhesion; this sequence was recognized as a major functional group responsible for cellular adhesion. In this work a bi-functional recombinant protein, containing a starch binding module (SBM) and RGD sequence was used to functionalize a dextrin-based hydrogel. The SBM, which belongs to an α-amylase from Bacillus sp. TS-23, has starch (and dextrin, depolymerized starch) affinity, acting as a binding molecule to adsorb the RGD sequence to the hydrogel surface. Results The recombinant proteins SBM and RGD-SBM were cloned, expressed, purified and tested in in vitro assays. The evaluation of cell attachment, spreading and proliferation on the dextrin-based hydrogel surface activated with recombinant proteins were performed using mouse embryo fibroblasts 3T3. A polystyrene cell culture plate was used as control. The results showed that the RGD-SBM recombinant protein improved, by more than 30%, the adhesion of fibroblasts to dextrin-based hydrogel. In fact, cell spreading on the hydrogel surface was observed only in the presence of the RGD-SBM. Conclusion The fusion protein RGD-SBM provides an efficient way to functionalize the dextrin-based hydrogel. Many proteins in nature that hold a RGD sequence are not cell adhesive, probably due to the conformation/accessibility of the peptide. We therefore emphasise the successful expression of a bi-functional protein with potential for different applications. PMID:18854017

  14. Hemostatic potential of natural/synthetic polymer based hydrogels crosslinked by gamma radiation

    NASA Astrophysics Data System (ADS)

    Barba, Bin Jeremiah D.; Tranquilan-Aranilla, Charito; Abad, Lucille V.

    2016-01-01

    Various raw materials and hydrogels prepared from their combination were assessed for hemostatic capability using swine whole blood clotting analysis. Initial screening showed efficient coagulative properties from κ-carrageenan and its carboxymethylated form, and α-chitosan, even compared to commercial products like QuikClot Zeolite Powder. Blending natural and synthetic polymers formed into hydrogels using gamma radiation produced materials with improved properties. KC and CMKC hydrogels were found to have the lowest blood clotting index in granulated form and had the higher capacity for platelet adhesion in foamed form compared to GelFoam. Possible mechanisms involved in the evident thrombogenicity of the materials include adsorption of platelets and related proteins that aid in platelet activation (primary hemostasis), absorption of water to concentrate protein factors that control the coagulation cascade, contact activation by its negatively charged surface and the formation of gel-blood clots.

  15. Enhanced skin delivery of aceclofenac via hydrogel-based solid lipid nanoparticles.

    PubMed

    Raj, Rakesh; Mongia, Pooja; Ram, Alpana; Jain, N K

    2016-09-01

    The aim of the present study was to develop solid lipid nanoparticles (SLN) and formulate a hydrogel for enhanced topical delivery of aceclofenac (ACF). The SLN were prepared by the ultrasonic emulsification method and optimized on the basis of stirring speed and lipid content. The optimized formulation was characterized for particle size (189 ± 9.2 nm), polydispersity index (PDI) (0.162 ± 0.02), zeta potential (-32.51 ± 0.12 mV), entrapment efficiency (86.51 ± 2.46%), surface morphology, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). In vivo performance of ACF-loaded SLN hydrogel showed prolonged inhibition of edema, as compared to that observed using plain ACF hydrogel, after 24 h. The results demonstrated that the ACF-SLN formulation for skin targeting could be a promising carrier for topical delivery of ACF.

  16. Semiconductor nanoparticle-based hydrogels prepared via self-initiated polymerization under sunlight, even visible light

    PubMed Central

    Zhang, Da; Yang, Jinhu; Bao, Song; Wu, Qingsheng; Wang, Qigang

    2013-01-01

    Since ancient times, people have used photosynthesized wood, bamboo, and cotton as building and clothing materials. The advantages of photo polymerization include the mild and easy process. However, the direct use of available sunlight for the preparation of materials is still a challenge due to its rather dilute intensity. Here, we show that semiconductor nanoparticles can be used for initiating monomer polymerization under sunlight and for cross-linking to form nanocomposite hydrogels with the aid of clay nanosheets. Hydrogels are an emerging multifunctional platform because they can be easily prepared using solar energy, retain semiconductor nanoparticle properties after immobilization, exhibit excellent mechanical strength (maximum compressive strength of 4.153 MPa and tensile strength 1.535 MPa) and high elasticity (maximum elongation of 2784%), and enable recyclable photodegradation of pollutants. This work suggests that functional nanoparticles can be immobilized in hydrogels for their collective application after combining their mechanical and physiochemical properties. PMID:23466566

  17. Enhanced infarct myocardium repair mediated by thermosensitive copolymer hydrogel-based stem cell transplantation

    PubMed Central

    Xia, Yu; Zhu, Kai; Lai, Hao; Lang, Meidong; Xiao, Yan; Lian, Sheng

    2015-01-01

    Mesenchymal stem cell (MSC) transplantation by intramyocardial injection has been proposed as a promising therapy strategy for cardiac repair after myocardium infarction. However, low retention and survival of grafted MSCs hinder its further application. In this study, copolymer with N-isopropylacrylamide/acrylic acid/2-hydroxylethyl methacrylate-poly(ɛ-caprolactone) ratio of 88:9.6:2.4 was bioconjugated with type I collagen to construct a novel injectable thermosensitive hydrogel. The injectable and biocompatible hydrogel-mediated MSC transplantation could enhance the grafted cell survival in the myocardium, which contributed to the increased neovascularization, decreased interstitial fibrosis, and ultimately improved heart function to a significantly greater degree than regular MSC transplantation. We suggest that this novel hydrogel has the potential for future stem cell transplantation. PMID:25432986

  18. Enhanced infarct myocardium repair mediated by thermosensitive copolymer hydrogel-based stem cell transplantation.

    PubMed

    Xia, Yu; Zhu, Kai; Lai, Hao; Lang, Meidong; Xiao, Yan; Lian, Sheng; Guo, Changfa; Wang, Chunsheng

    2015-05-01

    Mesenchymal stem cell (MSC) transplantation by intramyocardial injection has been proposed as a promising therapy strategy for cardiac repair after myocardium infarction. However, low retention and survival of grafted MSCs hinder its further application. In this study, copolymer with N-isopropylacrylamide/acrylic acid/2-hydroxylethyl methacrylate-poly(ɛ-caprolactone) ratio of 88:9.6:2.4 was bioconjugated with type I collagen to construct a novel injectable thermosensitive hydrogel. The injectable and biocompatible hydrogel-mediated MSC transplantation could enhance the grafted cell survival in the myocardium, which contributed to the increased neovascularization, decreased interstitial fibrosis, and ultimately improved heart function to a significantly greater degree than regular MSC transplantation. We suggest that this novel hydrogel has the potential for future stem cell transplantation.

  19. Fenugreek hydrogel-agarose composite entrapped gold nanoparticles for acetylcholinesterase based biosensor for carbamates detection.

    PubMed

    Kestwal, Rakesh Mohan; Bagal-Kestwal, Dipali; Chiang, Been-Huang

    2015-07-30

    A biosensor was fabricated to detect pesticides in food samples. Acetylcholinesterase was immobilized in a novel fenugreek hydrogel-agarose matrix with gold nanoparticles. Transparent thin films with superior mechanical strength and stability were obtained with 2% fenugreek hydrogel and 2% agarose. Immobilization of acetylcholinesterase on the membrane resulted in high enzyme retention efficiency (92%) and a significantly prolonged shelf life of the enzyme (half-life, 55 days). Transmission electron microscopy revealed that, gold nanoparticles (10-20 nm in diameter) were uniformly dispersed in the fenugreek hydrogel-agarose-acetylcholinesterase membrane. This immobilized enzyme-gold nanoparticle dip-strip system detected various carbamates, including carbofuran, oxamyl, methomyl, and carbaryl, with limits of detection of 2, 21, 113, and 236 nM (S/N = 3), respectively. Furthermore, the fabricated biosensor exhibited good testing capabilities when used to detect carbamates added to various fruit and vegetable samples.

  20. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films

    PubMed Central

    Kocer, Hasan; Butun, Serkan; Palacios, Edgar; Liu, Zizhuo; Tongay, Sefaattin; Fu, Deyi; Wang, Kevin; Wu, Junqiao; Aydin, Koray

    2015-01-01

    Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2) phase transition. Using planar layered thin film structures, where top layer is chosen to be an ultrathin (20 nm) VO2 film, we demonstrate broadband IR light absorption tuning (from ~90% to ~30% in measured absorption) over the entire mid-wavelength infrared spectrum. Our numerical and experimental results indicate that the bandwidth of the absorption bands can be controlled by changing the dielectric spacer layer thickness. Broadband tunable absorbers can find applications in absorption filters, thermal emitters, thermophotovoltaics and sensing. PMID:26294085

  1. Knitted radar absorbing materials (RAM) based on nickel-cobalt magnetic materials

    NASA Astrophysics Data System (ADS)

    Teber, Ahmet; Unver, Ibrahim; Kavas, Huseyin; Aktas, Bekir; Bansal, Rajeev

    2016-05-01

    There has been a long-standing interest in the development of flexible, lightweight, thin, and reconfigurable radar absorbing materials (RAM) for military applications such as camouflaging ground-based hardware against airborne radar observation. The use of polymeric Polyacrylonitrile (PAN) fabrics as a host matrix for magnetic metal nano-particles (either at the yarn-stage or after weaving the fabric) for shielding and absorbing applications has been described in the literature. In our experimental investigation, the relative concentrations of Nickel and Cobalt as well as the coating time are varied with a view to optimizing the microwave absorption characteristics of the resulting PAN-based composite material in the radar-frequency bands (X, Ku, and K). It is found that the PAN samples with the shortest coating time have the best return losses (under -20 dB return loss over a moderate bandwidth).

  2. A surface micromachined thermopile detector array with an interference-based absorber

    NASA Astrophysics Data System (ADS)

    Wu, H.; Emadi, A.; Sarro, P. M.; de Graaf, G.; Wolffenbuttel, R. F.

    2011-07-01

    A thermo-electric (TE) infrared detector array composed of 23 thermopiles, each with 5 thermocouples on a suspended beam of 650 × 36 µm2 dimensions, has been fabricated in a CMOS-compatible MEMS process. The array is used for realization of an IR micro-spectrometer in the 1-5 µm spectral range. Interference filter-based IR absorbers using titanium/aluminum layers with a silicon carbide cavity layer have been designed, fabricated and validated. These thin film stacks are more suitable for the subsequent processes as compared to conventional techniques. The silicon carbide layer is also used for device protection. The TE detector with an interference filter-based absorber features a sensitivity of 294 V W-1 in the 2.15 µm wavelength range and a thermal time constant of 4.85 ms in vacuum.

  3. Adjustable low frequency and broadband metamaterial absorber based on magnetic rubber plate and cross resonator

    NASA Astrophysics Data System (ADS)

    Cheng, Yongzhi; Nie, Yan; Wang, Xian; Gong, Rongzhou

    2014-02-01

    In this paper, the magnetic rubber plate absorber (MRPA) and metamaterial absorber (MA) based on MRP substrate were proposed and studied numerically and experimentally. Based on the characteristic of L-C resonances, experimental results show that the MA composed of cross resonator (CR) embedded single layer MRP could be adjustable easily by changing the wire length and width of CR structure and MRP thickness. Finally, experimental results show that the MA composed of CR-embedded two layers MRP with the total thickness of 2.42 mm exhibit a -10 dB absorption bandwidth from 1.65 GHz to 3.7 GHz, which is 1.86 times wider than the same thickness MRPA.

  4. CMOS-compatible fabrication of metamaterial-based absorbers for the mid-IR spectral range

    NASA Astrophysics Data System (ADS)

    Karimi Shahmarvandi, Ehsan; Ghaderi, Mohammadamir; Wolffenbuttel, Reinoud F.

    2016-10-01

    A CMOS-compatible approach is presented for the fabrication of a wideband mid-IR metamaterial-based absorber on top of a Si3N4 membrane, which contains poly-Si thermopiles. The application is in IR microspectrometers that are intended for implementation in portable microsystem for use in absorption spectroscopy. Although Au is the conventional material of choice, we demonstrate by simulation that near-perfect absorption can be achieved over a wider band when using the more CMOS-compatible Al. The absorber design is based on Al disk resonators and an Al backplane, which are separated by a SiO2 layer. The fabrication process involves the deposition of Al and SiO2 layers on top of a Si3N4 membrane, lithography and a lift-off process for patterning of the top Al layer.

  5. Assembling and Using an LED-Based Detector to Monitor Absorbance Changes during Acid-Base Titrations

    ERIC Educational Resources Information Center

    Santos, Willy G.; Cavalheiro, E´der T. G.

    2015-01-01

    A simple photometric assembly based in an LED as a light source and a photodiode as a detector is proposed in order to follow the absorbance changes as a function of the titrant volume added during the course of acid-base titrations in the presence of a suitable visual indicator. The simplicity and low cost of the electronic device allow the…

  6. Patterns in swelling hydrogels

    NASA Astrophysics Data System (ADS)

    MacMinn, Chris; Bertrand, Thibault; Peixinho, Jorge; Mukhopadhyay, Shomeek

    2016-11-01

    Swelling is a process in which a porous material spontaneously grows by absorbing additional pore fluid. Polymeric hydrogels are highly deformable materials that can experience very large volume changes during swelling. This allows a small amount of dry gel to absorb a large amount of fluid, making gels extremely useful in applications from moisture control to drug delivery. However, a well-known consequence of these extreme volume changes is the emergence of a striking morphological instability. We study the transient mechanics of this instability here by combining a theoretical model with a series of simple experiments, focusing on the extent to which this instability can be controlled by manipulating the rate of swelling.

  7. Saturable absorber based on silver nanoparticles for passively mode-locked lasers

    SciTech Connect

    Glubokov, D A; Sychev, V V; Korolkov, A E; Chubich, D A; Vitukhnovskii, A G; Mikhailov, A S; Shapiro, B I

    2014-04-28

    A saturable absorber based on plane (tabular) stabilised silver nanocrystals, which is promising for picoseconds laser systems operating in the range 650–900 nm, is studied. This material has a plasmon decay time of about 2 ps, while its absorption at a pump intensity of 10 MW cm{sup -2} decreases by 1.6%, which is sufficient for using this crystal for passive mode locking. (control of laser radiation parameters)

  8. Structure and properties of polymer hydrogels based on interpenetration of a hydrophilic and a hydrophobic network

    NASA Astrophysics Data System (ADS)

    Gallego Ferrer, Gloria

    Synthetic polymer hydrogels have been proposed for many biomedical applications because of their good biocompatibility and water permeation properties, and the possibility of synthesizing materials with a broad spectrum of micromorphologies and specific properties. However, the low mechanical strength of hydrogels hinders many of their potential uses. New families of polymers have been developed, seeking to improve the mechanical behaviour of the corresponding hydrogels. For these purpose, in the present work sequential interpenetrating polymer networks (IPNs) with controllable degree of hydrophilicity have been prepared by polymerization of hydroxyethyl acrylate (HEA) monomer with different concentrations in ethanol inside a previously polymerized poly(ethyl acrylate) (PEA) network. These polymer hydrogels have been investigated as regards their morphology and their physical, thermodynamical, equilibrium water sorption, and water transport properties. The properties of these systems are correlated and compared with those measured on systems which share the same hydrophilic component, but differ in the morphology of the hydrophilic phase. The IPNs thus prepared are phase-separated systems in which two types of domains alternate (hydrophobic and hydrophilic). The hydrophilic character of the IPNs is governed by the PHEA component in them, which behaves in the same manner as would the pure polymer. A thermodynamic analysis of the PHEA hydrogel allowed to analyze the states of water in the PHEA hydrogel. The positive values of the specific mixing increment of the residual Gibbs free energy indicates that the affinity of water to mix with PHEA is of combinatorial nature, the interaction between water molecules and polymer chains is a labile interaction. The dependence on the water content of the Flory-Huggins interaction parameter was analyzed. The water content in the hydrogel for water activity equal to one is different when it is equilibrated in a medium of

  9. CMOS-compatible metamaterial-based wideband mid-infrared absorber for microspectrometer applications

    NASA Astrophysics Data System (ADS)

    Karimi Shahmarvandi, Ehsan; Ghaderi, Mohammadamir; Ayerden, N. Pelin; de Graaf, Ger; Wolffenbuttel, Reinoud F.

    2016-04-01

    The design of a metamaterial-based absorber for use in a MEMS-based mid-IR microspectrometer is reported. The microspectrometer consists of a LVOF that is aligned with an array of thermopile detectors, which is fabricated on a SiN membrane and coated with the absorber. Special emphasis is put on the CMOS compatible fabrication, which results in an absorber design based on Al disc resonators and an Al background plane that are separated by an SiO2 layer. Wideband operation over the 3-4 μm spectral range is achieved by staggered tuning of four Al disk resonators in one 1.5 x 1.5 μm2 unit cell, using four different values of the radius of the Al disk between 0.50 μm and 0.63 μm and an SiO2 layer thickness of 150 nm. Simulations reveal an average absorption of about 95% with a +/-4% ripple at normal incidence, which reduces to about 80% absorption at a 20° incidence angle. The influence of material choice and dimensions on a single absorption peak was studied and the magnetic polariton was identified as the underlying mechanism of absorption.

  10. An antibacterial and absorbable silk-based fixation material with impressive mechanical properties and biocompatibility

    PubMed Central

    Shi, Chenglong; Pu, Xiaobing; Zheng, Guan; Feng, Xinglong; Yang, Xuan; Zhang, Baoliang; Zhang, Yu; Yin, Qingshui; Xia, Hong

    2016-01-01

    Implant-associated infections and non-absorbing materials are two important reasons for a second surgical procedure to remove internal fixation devices after an orthopedic internal fixation surgery. The objective of this study was to produce an antibacterial and absorbable fixation screw by adding gentamicin to silk-based materials. The antibacterial activity was assessed against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in vitro by plate cultivation and scanning electron microscopy (SEM). We also investigated the properties, such as the mechanical features, swelling properties, biocompatibility and degradation, of gentamicin-loaded silk-based screws (GSS) in vitro. The GSS showed significant bactericidal effects against S. aureus and E. coli. The antibacterial activity remained high even after 4 weeks of immersion in protease solution. In addition, the GSS maintained the remarkable mechanical properties and excellent biocompatibility of pure silk-based screws (PSS). Interestingly, after gentamicin incorporation, the degradation rate and water-absorbing capacity increased and decreased, respectively. These GSS provide both impressive material properties and antibacterial activity and have great potential for use in orthopedic implants to reduce the incidence of second surgeries. PMID:27869175

  11. An antibacterial and absorbable silk-based fixation material with impressive mechanical properties and biocompatibility

    NASA Astrophysics Data System (ADS)

    Shi, Chenglong; Pu, Xiaobing; Zheng, Guan; Feng, Xinglong; Yang, Xuan; Zhang, Baoliang; Zhang, Yu; Yin, Qingshui; Xia, Hong

    2016-11-01

    Implant-associated infections and non-absorbing materials are two important reasons for a second surgical procedure to remove internal fixation devices after an orthopedic internal fixation surgery. The objective of this study was to produce an antibacterial and absorbable fixation screw by adding gentamicin to silk-based materials. The antibacterial activity was assessed against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in vitro by plate cultivation and scanning electron microscopy (SEM). We also investigated the properties, such as the mechanical features, swelling properties, biocompatibility and degradation, of gentamicin-loaded silk-based screws (GSS) in vitro. The GSS showed significant bactericidal effects against S. aureus and E. coli. The antibacterial activity remained high even after 4 weeks of immersion in protease solution. In addition, the GSS maintained the remarkable mechanical properties and excellent biocompatibility of pure silk-based screws (PSS). Interestingly, after gentamicin incorporation, the degradation rate and water-absorbing capacity increased and decreased, respectively. These GSS provide both impressive material properties and antibacterial activity and have great potential for use in orthopedic implants to reduce the incidence of second surgeries.

  12. Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair.

    PubMed

    Park, Yongdoo; Lutolf, Matthias P; Hubbell, Jeffrey A; Hunziker, Ernst B; Wong, Marcy

    2004-01-01

    A poly(ethylene glycol) (PEG)-based hydrogel was used as a scaffold for chondrocyte culture. Branched PEG-vinylsulfone macromers were end-linked with thiol-bearing matrix metalloproteinase (MMP)-sensitive peptides (GCRDGPQGIWGQDRCG) to form a three-dimensional network in situ under physiologic conditions. Both four- and eight-armed PEG macromer building blocks were examined. Increasing the number of PEG arms increased the elastic modulus of the hydrogels from 4.5 to 13.5 kPa. PEG-dithiol was used to prepare hydrogels that were not sensitive to degradation by cell-derived MMPs. Primary bovine calf chondrocytes were cultured in both MMP-sensitive and MMP-insensitive hydrogels, formed from either four- or eight-armed PEG. Most (>90%) of the cells inside the gels were viable after 1 month of culture and formed cell clusters. Gel matrices with lower elastic modulus and sensitivity to MMP-based matrix remodeling demonstrated larger clusters and more diffuse, less cell surface-constrained cell-derived matrix in the chondron, as determined by light and electron microscopy. Gene expression experiments by real-time RT-PCR showed that the expression of type II collagen and aggrecan was increased in the MMP-sensitive hydrogels, whereas the expression level of MMP-13 was increased in the MMP-insensitive hydrogels. These results indicate that cellular activity can be modulated by the composition of the hydrogel. This study represents one of the first examples of chondrocyte culture in a bioactive synthetic material that can be remodeled by cellular protease activity.

  13. A new injectable biphasic hydrogel based on partially hydrolyzed polyacrylamide and nano hydroxyapatite, crosslinked with chromium acetate, as scaffold for cartilage regeneration

    NASA Astrophysics Data System (ADS)

    Koushki, N.; Tavassoli, H.; Katbab, A. A.; Katbab, P.; Bonakdar, S.

    2015-05-01

    Polymer scaffolds are applied in the field of tissue engineering as three dimensional structures to organize cells and present stimuli to direct generation of a desired damaged tissue. In situ gelling scaffolds have attracted great attentions, as they are structurally similar to the extra cellular matrix (ECM). In the present work, attempts have been made to design and fabricate a new injectable and crosslinkable biphasic hydrogel based on partially hydrolyzed polyacrylamide (HPAM), chromium acetate as crosslink agent and nanocrystalline hydroxyapatite (nHAp) as reinforcing and bioactive agent for repair and regeneration of damaged cartilage. The distinct characteristic of HPAM is the presence of carboxylate anion groups on its backbone which allows to engineer the structure of the hydrogel for the desired bioactivity with appropriate cells differentiation towards both soft and hard (bone) tissues. The synthesized hydrogel exhibited bifunctional behavior which was derived by its biphasic structure in which one phase was loaded with nano hydroxyapatite to provide integration capability by subchondral bones and fix the hydrogel at cartilage defect without a need for suturing. The other phase differentiates the rabbit adipogenic mesenchymal stem cells (MSCs) towards soft tissue. Rheomechanical spectrometry (RMS) was employed to study the kinetic of the gelation including induction time and rate, as well as to measure the ultimate elastic modulus of the optimum crosslinked hydrogel. Surface tension measurement was also performed to tailor the surface characteristics of the gels. In vitro culturing of the cells inside the crosslinked hydrogel revealed high viability and high differentiation of the encapsulated rabbit stem cells, providing that the chromium acetate level was kept below 0.2 wt%. Based on the obtained results, the designed and fabricated biphasic hydrogel exhibited high potential as carrier for the stem cells for cartilage tissue engineering application

  14. Nanocarrier-based hydrogel of betamethasone dipropionate and salicylic acid for treatment of psoriasis

    PubMed Central

    Baboota, Sanjula; Alam, Md Sarfaraz; Sharma, Shrestha; Sahni, Jasjeet K; Kumar, Anil; Ali, Javed

    2011-01-01

    Introduction: Betamethasone dipropionate (BD) has anti-inflammatory, immunomodulatory, and antiproliferative activity. The aim of the current work was to test the hypothesis that the addition of corticosteroid such as BD and a keratolytic agent such as salicylic acid in nanocarrier based microemulsions formulation would result in enhancement and sustaining of corticosteroid delivery rate leading to better anti-psoriatic activity. Clinical use of BD is restricted to some extent due to its poor permeability across the skin. So to increase its permeation across the skin, microemulsion-based gel formulations were prepared and characterised. Materials and Methods: Microemulsions were prepared by aqueous phase titration method, using oleic acid:sefsol (1.5:1), Tween 20, isopropyl alcohol, and distilled water as the oil phase, surfactant, cosurfactant and aqueous phase, respectively. Selected formulations were subjected to physical stability studies and consequently in vitro skin permeation studies. Surface studies of optimized formulation were done by transmission electron microscopy. In vivo anti-inflammatory activity was done by carageenan-induced raw paw edema method. Results: The droplet size of microemulsions ranged from 60 to 190 nm. The optimized formulation exhibited viscosity 28.55 ± 2.03 mP, refractive index 1.409, pH 6.4, and conductivity 10-4 scm-1. The optimized microemulsion was converted into hydrogel using carbopol 934, and salicylic acid was incorporated into it. Drug deposition in skin was found to be 29.73 μg/mg. Assessment of skin permeation was done by histopathology studies which indicated changes in the structure of epidermal membrane of skin. In vivo anti-inflammatory activity indicated 72.11% and 43.96% inhibition of inflammation in case of developed microemulsion gel and marketed gel, respectively. Conclusions: The developed microemulsion gel containing BD and salicylic acid provided sustained and good anti-inflammatory activity for the

  15. A wide-angle broadband absorber in graphene-based hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Ning, Renxia; Liu, Shaobin; Zhang, Haifeng; Bian, Borui; Kong, Xiangkun

    2014-11-01

    A wide-angle broadband absorber which is realized by periodic structures containing graphene-based hyperbolic metamaterials (GHMM) and isotropic medium is theoretically investigated. The GHMM is composed of monolayer graphene and conventional dielectric, which the refractive index can be tuned by the chemical potential, the thickness of dielectric and phenomenological scattering rates, respectively. A periodic structure of GHMM can obtain a broadband absorption which is shown to absorb roughly 70% (relative bandwidth is larger than 45%) of all available electromagnetic wave in absorption bandwidth at normal incident angle. Compared with some previous designs, our proposed structure has a relative bandwidth over a broad frequency range in mid-infrared. This kind periodic structures offer additional opportunities to design novel optoelectronic devices.

  16. Ultrabroadband Microwave Metamaterial Absorber Based on Electric SRR Loaded with Lumped Resistors

    NASA Astrophysics Data System (ADS)

    Zhao, Jingcheng; Cheng, Yongzhi

    2016-10-01

    An ultrabroadband microwave metamaterial absorber (MMA) based on an electric split-ring resonator (ESRR) loaded with lumped resistors is presented. Compared with an ESRR MMA, the composite MMA (CMMA) loaded with lumped resistors offers stronger absorption over an extremely extended bandwidth. The reflectance simulated under different substrate loss conditions indicates that incident electromagnetic (EM) wave energy is mainly consumed by the lumped resistors. The simulated surface current and power loss density distributions further illustrate the mechanism underlying the observed absorption. Further simulation results indicate that the performance of the CMMA can be tuned by adjusting structural parameters of the ESRR and lumped resistor parameters. We fabricated and measured MMA and CMMA samples. The CMMA yielded below -10 dB reflectance from 4.4 GHz to 18 GHz experimentally, with absorption bandwidth and relative bandwidth of 13.6 GHz and 121.4%, respectively. This ultrabroadband microwave absorber has potential applications in the electromagnetic energy harvesting and stealth fields.

  17. [Decision-making while implantation of biodegradable vascular scaffolds ABSORB based on methods of intravascular visualization].

    PubMed

    Buzaev, I V; Plechev, V V; Nikolaeva, I E; Zagitov, I G; Oleĭnik, B A

    A series of studies demonstrated comparability of the incidence rate of major adverse cardiac events (MACE) in the middle-term postoperative period following implantation of last-generation drug-coated stents and biodegradable intravascular scaffolds. It was noted observed that these complications may be associated with malposition and inadequate inappropriate preparation of the lesion. We carried out a total of 16 percutaneous coronary interventions (PCI) with implantation of absorbable vascular scaffolds (Absorb, Abbott Vascular) under the guidance of optical coherent tomography. Besides, a further 16 PCIs were performed without intravascular visualization (control group). As experience was gathered, the algorithm of carrying out optical coherent tomography was subjected to changes, resulting in proposal of an optimal algorithm for choice of intraoperative policy based on the findings obtained in optical coherent tomography.

  18. Kevlar based nanofibrous particles as robust, effective and recyclable absorbents for water purification.

    PubMed

    Nie, Chuanxiong; Peng, Zihang; Yang, Ye; Cheng, Chong; Ma, Lang; Zhao, Changsheng

    2016-11-15

    Developing robust and recyclable absorbents for water purification is of great demand to control water pollution and to provide sustainable water resources. Herein, for the first time, we reported the fabrication of Kevlar nanofiber (KNF) based composite particles for water purification. Both the KNF and KNF-carbon nanotube composite particles can be produced in large-scale by automatic injection of casting solution into ethanol. The resulted nanofibrous particles showed high adsorption capacities towards various pollutants, including metal ions, phenylic compounds and various dyes. Meanwhile, the adsorption process towards dyes was found to fit well with the pseudo-second-order model, while the adsorption speed was controlled by intraparticle diffusion. Furthermore, the adsorption capacities of the nanofibrous particles could be easily recovered by washing with ethanol. In general, the KNF based particles integrate the advantages of easy production, robust and effective adsorption performances, as well as good recyclability, which can be used as robust absorbents to remove toxic molecules and forward the application of absorbents in water purification.

  19. Highly robust hydrogels via a fast, simple and cytocompatible dual crosslinking-based process.

    PubMed

    Costa, Ana M S; Mano, João F

    2015-11-07

    A highly robust hydrogel device made from a single biopolymer formulation is reported. Owing to the presence of covalent and non-covalent crosslinks, these engineered systems were able to (i) sustain a compressive strength of ca. 20 MPa, (ii) quickly recover upon unloading, and (iii) encapsulate cells with high viability rates.

  20. Characterization of Lactate Sensors Based on Lactate Oxidase and Palladium Benzoporphyrin Immobilized in Hydrogels

    PubMed Central

    Andrus, Liam P.; Unruh, Rachel; Wisniewski, Natalie A.; McShane, Michael J.

    2015-01-01

    An optical biosensor for lactate detection is described. By encapsulating enzyme-phosphor sensing molecules within permeable hydrogel materials, lactate-sensitive emission lifetimes were achieved. The relative amount of monomer was varied to compare three homo- and co-polymer materials: poly(2-hydroxyethyl methacrylate) (pHEMA) and two copolymers of pHEMA and poly(acrylamide) (pAam). Diffusion analysis demonstrated the ability to control lactate transport by varying the hydrogel composition, while having a minimal effect on oxygen diffusion. Sensors displayed the desired dose-variable response to lactate challenges, highlighting the tunable, diffusion-controlled nature of the sensing platform. Short-term repeated exposure tests revealed enhanced stability for sensors comprising hydrogels with acrylamide additives; after an initial “break-in” period, signal retention was 100% for 15 repeated cycles. Finally, because this study describes the modification of a previously developed glucose sensor for lactate analysis, it demonstrates the potential for mix-and-match enzyme-phosphor-hydrogel sensing for use in future multi-analyte sensors. PMID:26198251

  1. Fabrication and development of artificial osteochondral constructs based on cancellous bone/hydrogel hybrid scaffold.

    PubMed

    Song, Kedong; Li, Liying; Yan, Xinyu; Zhang, Yu; Li, Ruipeng; Wang, Yiwei; Wang, Ling; Wang, Hong; Liu, Tianqing

    2016-06-01

    Using tissue engineering techniques, an artificial osteochondral construct was successfully fabricated to treat large osteochondral defects. In this study, porcine cancellous bones and chitosan/gelatin hydrogel scaffolds were used as substitutes to mimic bone and cartilage, respectively. The porosity and distribution of pore size in porcine bone was measured and the degradation ratio and swelling ratio for chitosan/gelatin hydrogel scaffolds was also determined in vitro. Surface morphology was analyzed with the scanning electron microscope (SEM). The physicochemical properties and the composition were tested by using an infrared instrument. A double layer composite scaffold was constructed via seeding adipose-derived stem cells (ADSCs) induced to chondrocytes and osteoblasts, followed by inoculation in cancellous bones and hydrogel scaffolds. Cell proliferation was assessed through Dead/Live staining and cellular activity was analyzed with IpWin5 software. Cell growth, adhesion and formation of extracellular matrix in composite scaffolds blank cancellous bones or hydrogel scaffolds were also analyzed. SEM analysis revealed a super porous internal structure of cancellous bone scaffolds and pore size was measured at an average of 410 ± 59 μm while porosity was recorded at 70.6 ± 1.7 %. In the hydrogel scaffold, the average pore size was measured at 117 ± 21 μm and the porosity and swelling rate were recorded at 83.4 ± 0.8 % and 362.0 ± 2.4 %, respectively. Furthermore, the remaining hydrogel weighed 80.76 ± 1.6 % of the original dry weight after hydration in PBS for 6 weeks. In summary, the cancellous bone and hydrogel composite scaffold is a promising biomaterial which shows an essential physical performance and strength with excellent osteochondral tissue interaction in situ. ADSCs are a suitable cell source for osteochondral composite reconstruction. Moreover, the bi-layered scaffold significantly enhanced cell proliferation compared to the cells seeded on

  2. Tissue Engineered, Hydrogel-Based Endothelial Progenitor Cell Therapy Robustly Revascularizes Ischemic Myocardium and Preserves Ventricular Function

    PubMed Central

    Atluri, Pavan; Miller, Jordan S; Emery, Robert J; Hung, George; Trubelja, Alen; Cohen, Jeffrey E; Lloyd, Kelsey; Han, Jason; Gaffey, Ann C; MacArthur, John W; Chen, Christopher S; Woo, Y Joseph

    2014-01-01

    Objective Cell based angiogenic therapy for ischemic heart failure has had limited clinical impact, likely related to very low cell retention (<1%) and dispersion. We developed a novel, tissue engineered, hydrogel based cell delivery strategy to overcome these limitations and provide prolonged regional retention of myocardial endothelial progenitor cells (EPC) at high cell dosage. Methods EPCs were isolated from Wistar Rats and encapsulated in fibrin gels. In vitro viability was quantified using a fluorescent live-dead stain of transgenic eGFP+ EPCs. EPC-laden constructs were implanted onto ischemic rat myocardium in a model of acute myocardial infarction (LAD ligation) for 4 weeks. Intramyocardial cell injection (IC, 2×106 EPCs), empty fibrin, and isolated LAD ligation groups served as controls. Hemodynamics were quantified using echocardiography, Doppler flow analysis, and intraventricular pressure-volume analysis. Vasculogenesis and ventricular geometry were quantified. EPC migration was analyzed by utilizing EPCs from transgenic eGFP+ rodents. Results EPCs demonstrated an overall 88.7% viability for all matrix and cell conditions investigated after 48 hours. Histologic assessment of 1-wk implants demonstrated significant migration of transgenic eGFP+ EPCs from the fibrin matrix to the infarcted myocardium as compared to IC (28±12.3 vs. 2.4±2.1cells/hpf, p=0.0001). We also observed a marked increase in vasculogenesis at the implant site. Significant improvements in ventricular hemodynamics and geometry were present following EPC-hydrogel therapy as compared to control. Conclusion We present a tissue engineered hydrogel-based EPC mediated therapy to enhance cell delivery, cell retention, vasculogenesis, and preservation of myocardial structure and function. PMID:25129603

  3. Development and evaluation of nanostructured lipid carrier-based hydrogel for topical delivery of 5-fluorouracil.

    PubMed

    Rajinikanth, Paruvathanahalli Siddalingam; Chellian, Jestin

    The aim of this study was to develop a nanostructured lipid carrier (NLC)-based hydrogel and study its potential for the topical delivery of 5-fluorouracil (5-FU). Precirol(®) ATO 5 (glyceryl palmitostearate) and Labrasol(®) were selected as the solid and liquid lipid phases, respectively. Poloxamer 188 and Solutol(®) HS15 (polyoxyl-15-hydroxystearate) were selected as surfactants. The developed lipid formulations were dispersed in 1% Carbopol(®) 934 (poly[acrylic acid]) gel medium in order to maintain the topical application consistency. The average size, zeta potential, and polydispersity index for the 5-FU-NLC were found to be 208.32±8.21 nm, -21.82±0.40 mV, and 0.352±0.060, respectively. Transmission electron microscopy study revealed that 5-FU-NLC was <200 nm in size, with a spherical shape. In vitro drug permeation studies showed a release pattern with initial burst followed by sustained release, and the rate of 5-FU permeation was significantly improved for 5-FU-NLC gel (10.27±1.82 μg/cm(2)/h) as compared with plain 5-FU gel (2.85±1.12 μg/cm(2)/h). Further, skin retention studies showed a significant retention of 5-FU from the NLC gel (91.256±4.56 μg/cm(2)) as compared with that from the 5-FU plain gel (12.23±3.86 μg/cm(2)) in the rat skin. Skin irritation was also significantly reduced with 5-FU-NLC gel as compared with 5-FU plain gel. These results show that the prepared 5-FU-loaded NLC has high potential to improve the penetration of 5-FU through the stratum corneum, with enormous retention and with minimal skin irritation, which is the prerequisite for topically applied formulations.

  4. Inherent antibacterial activity of a peptide-based beta-hairpin hydrogel.

    PubMed

    Salick, Daphne A; Kretsinger, Juliana K; Pochan, Darrin J; Schneider, Joel P

    2007-11-28

    Among several important considerations for implantation of a biomaterial, a main concern is the introduction of infection. We have designed a hydrogel scaffold from the self-assembling peptide, MAX1, for tissue regeneration applications whose surface exhibits inherent antibacterial activity. In experiments where MAX1 gels are challenged with bacterial solutions ranging in concentrations from 2 x 10(3) colony forming units (CFUs)/dm2 to 2 x 10(9) CFUs/dm2, gel surfaces exhibit broad-spectrum antibacterial activity. Results show that the hydrogel surface is active against Gram-positive (Staphylococcus epidermidis, Staphylococcus aureus, and Streptococcus pyogenes) and Gram-negative (Klebsiella pneumoniae and Escherichia coli) bacteria, all prevalent in hospital settings. Live-dead assays employing laser scanning confocal microscopy show that bacteria are killed when they engage the surface. In addition, the surface of MAX1 hydrogels was shown to cause inner and outer membrane disruption in experiments that monitor the release of beta-galactosidase from the cytoplasm of lactose permease-deficient E. coli ML-35. These data suggest a mechanism of antibacterial action that involves membrane disruption that leads to cell death upon cellular contact with the gel surface. Although the hydrogel surface exhibits bactericidal activity, co-culture experiments indicate hydrogel surfaces show selective toxicity to bacterial versus mammalian cells. Additionally, gel surfaces are nonhemolytic toward human erythrocytes, which maintain healthy morphologies when in contact with the surface. These material attributes make MAX1 gels attractive candidates for use in tissue regeneration, even in nonsterile environments.

  5. Inherent Antibacterial Activity of a Peptide-Based β-Hairpin Hydrogel

    PubMed Central

    Salick, Daphne A.; Kretsinger, Juliana K.; Pochan, Darrin J.; Schneider, Joel P.

    2009-01-01

    Among several important considerations for implantation of a biomaterial, a main concern is the introduction of infection. We have designed a hydrogel scaffold from the self-assembling peptide, MAX1, for tissue regeneration applications whose surface exhibits inherent antibacterial activity. In experiments where MAX1 gels are challenged with bacterial solutions ranging in concentrations from 2 × 103 colony forming units (CFUs)/dm2 to 2 × 109 CFUs/dm2, gel surfaces exhibit broad-spectrum antibacterial activity. Results show that the hydrogel surface is active against Gram-positive (Staphylococcus epidermidis, Staphylococcus aureus, and Streptococcus pyogenes) and Gram-negative (Klebsiella pneumoniae and Escherichia coli) bacteria, all prevalent in hospital settings. Live–dead assays employing laser scanning confocal microscopy show that bacteria are killed when they engage the surface. In addition, the surface of MAX1 hydrogels was shown to cause inner and outer membrane disruption in experiments that monitor the release of β-galactosidase from the cytoplasm of lactose permease-deficient E. coli ML-35. These data suggest a mechanism of antibacterial action that involves membrane disruption that leads to cell death upon cellular contact with the gel surface. Although the hydrogel surface exhibits bactericidal activity, co-culture experiments indicate hydrogel surfaces show selective toxicity to bacterial versus mammalian cells. Additionally, gel surfaces are nonhemolytic toward human erythrocytes, which maintain healthy morphologies when in contact with the surface. These material attributes make MAX1 gels attractive candidates for use in tissue regeneration, even in nonsterile environments. PMID:17985907

  6. Hydrogel containing silibinin-loaded pomegranate oil based nanocapsules exhibits anti-inflammatory effects on skin damage UVB radiation-induced in mice.

    PubMed

    Marchiori, Marila Crivellaro Lay; Rigon, Cristina; Camponogara, Camila; Oliveira, Sara Marchesan; Cruz, Letícia

    2017-03-23

    The present study shows the development of a topical formulation (hydrogel) containing silibinin-loaded pomegranate oil based nanocapsules suspension and its evaluation as an alternative for the treatment of cutaneous UVB radiation-induced damages. For this, an animal model of skin injury induced by UVB radiation was employed. Gellan gum was used as gel forming agent by its direct addition to nanocapsules suspension. The hydrogels showed adequate pH values (5.6-5.9) and a silibinin content close to the theoretical value (1mg/g). Through vertical Franz diffusion cells it was demonstrated that nanocapsules decreased the silibinin retention in the semisolid formulation. All formulations were effective in reducing mice ear edema and leukocyte infiltration induced by UVB radiation 24h after the treatments. After 48h, only the hydrogels containing nanocapsules or silibinin associated with pomegranate oil demonstrated anti-edematogenic effect, as well as the positive control (hydrogel containing silver sulfadiazine 1%). After 72h, the hydrogel containing unloaded pomegranate oil based nanocapsules still presented a small activity. In conclusion, the results of this investigation demonstrated the feasibility to prepare a semisolid formulation presenting performance comparable to the traditional therapeutic option for skin burns (silver sulfadiazine) and with prolonged in vivo anti-inflammatory activity compared to the non-nanoencapsulated compounds.

  7. Complex absorbing potential based Lorentzian fitting scheme and time dependent quantum transport.

    PubMed

    Xie, Hang; Kwok, Yanho; Jiang, Feng; Zheng, Xiao; Chen, GuanHua

    2014-10-28

    Based on the complex absorbing potential (CAP) method, a Lorentzian expansion scheme is developed to express the self-energy. The CAP-based Lorentzian expansion of self-energy is employed to solve efficiently the Liouville-von Neumann equation of one-electron density matrix. The resulting method is applicable for both tight-binding and first-principles models and is used to simulate the transient currents through graphene nanoribbons and a benzene molecule sandwiched between two carbon-atom chains.

  8. Complex absorbing potential based Lorentzian fitting scheme and time dependent quantum transport

    SciTech Connect

    Xie, Hang Kwok, Yanho; Chen, GuanHua; Jiang, Feng; Zheng, Xiao

    2014-10-28

    Based on the complex absorbing potential (CAP) method, a Lorentzian expansion scheme is developed to express the self-energy. The CAP-based Lorentzian expansion of self-energy is employed to solve efficiently the Liouville-von Neumann equation of one-electron density matrix. The resulting method is applicable for both tight-binding and first-principles models and is used to simulate the transient currents through graphene nanoribbons and a benzene molecule sandwiched between two carbon-atom chains.

  9. Low-frequency and broadband metamaterial absorber based on lumped elements: design, characterization and experiment

    NASA Astrophysics Data System (ADS)

    Yuan, Wenshan; Cheng, Yongzhi

    2014-12-01

    In this paper, we propose and experimentally validate a low-frequency metamaterial absorber (MMA) based on lumped elements with broadband stronger absorptivity in the microwave regime. Compared with the electric resonator structure MMA, the composite MMA (CMMA) loaded with lumped elements has stronger absorptivity and nearly impedance-matched to the free space in a broadband frequency range. The simulated voltage in lumped elements and the absorbance under different substrate loss conditions indicate that incident electromagnetic wave energy is mainly transformed to electric energy in the absorption band with high efficiency and subsequently consumed by lumped resistors. Simulated surface current and power loss density distributions further clarify the mechanism underlying observed absorption. The CMMA also shows a polarization-insensitive and wide-angle strong absorption. Finally, we fabricate and measure the MMA and CMMA samples. The CMMA yields below -10 dB reflectance from 2.85 to 5.31 GHz in the experiment, and the relative bandwidth is about 60.3 %. This low-frequency microwave absorber has potential applications in many martial fields.

  10. Radiation synthesis and characterization of new hydrogels based on acrylamide copolymers cross-linked with 1-allyl-2-thiourea

    NASA Astrophysics Data System (ADS)

    Şahiner, Nurettin; Malcı, Savaş; Çelikbıçak, Ömür; Kantoğlu, Ömer; Salih, Bekir

    2005-10-01

    Poly(acrylamide-1-allyl-2-thiourea) hydrogels, Poly(AA-AT), were synthesized by gamma irradiation using 60Co γ source in different irradiation dose and at different 1-allyl-2-thiourea content in the monomer mixture. For the characterization of the hydrogels, Fourier transform infrared spectrometer (FT-IR), thermogravimetric analyzer (TGA), elemental analyzer and the swellability of the hydrogels were used. It was noted that 1-allyl-2-thiourea in the synthesized hydrogels was increased by the increasing the content of the 1-allyl-2-thiourea in the irradiation monomer mixture and increasing the radiation dose for the hydrogel synthesis.

  11. Design and Development of Expanded Graphite-Based Non-metallic and Flexible Metamaterial Absorber for X-band Applications

    NASA Astrophysics Data System (ADS)

    Borah, Dipangkar; Bhattacharyya, Nidhi S.

    2017-01-01

    The possibility of using expanded graphite instead of a metallic layer as unit cells and ground planes for metamaterial absorbers in X-band is investigated. A metamaterial absorber was fabricated on a flexible linear low-density polyethylene substrate using an expanded graphite-based circular ring as the unit cell structure. The unit cell was simulated and optimized for which the metamaterial absorber exhibited 98.9% absorption at 11.22 GHz. The fabricated expanded graphite-based absorber showed a reflection loss of -24.51 dB at 11.56 GHz with -10 dB bandwidth of 0.39 GHz (3.37%). The performance of the same structure with copper was also measured. The expanded graphite-based metamaterial absorber showed enhanced performance as compared to the copper-based metamaterial absorber. The width of the ring was varied to tune the reflection loss. The proposed expanded graphite-based metamaterial absorber possesses the advantages of being ultra-thin, flexible and non-corrosive.

  12. Tough and multi-responsive hydrogel based on the hemicellulose from the spent liquor of viscose process.

    PubMed

    Du, Jian; Li, Bin; Li, Chao; Zhang, Yuedong; Yu, Guang; Wang, Haisong; Mu, Xindong

    2016-07-01

    The hemicellulose isolated from the spent liquor of a viscose process was successfully utilized to prepare hydrogels by the graft copolymerization of acrylic acid (AA) with hemicellulose. The hemicellulose and prepared hydrogel were characterized by Fourier-transform infrared (FT-IR), scanning electron microscopy (SEM), and solid-state nuclear magnetic resonance ((13)C NMR). Under the optimum preparation conditions, the highest compressive strength and strain at break of the resultant hydrogel were 105.1±12.9kPa and 34.8%, respectively. Furthermore, the maximum equilibrium swelling degree of prepared hydrogel was 192. Also, the hydrogel could rapidly respond to pH, salt and ethanol. Taken together, the prepared hydrogels had great mechanical and multi-responsive properties. Thus, the prepared hydrogels had a great potential application in drug release, water treatment and cell immobilization. In addition, the utilization of alkaline extracted hemicellulose from the viscose fiber factory has huge market potential and economic benefits.

  13. In vivo and in vitro cellular response to PEG-based hydrogels for wound repair

    NASA Astrophysics Data System (ADS)

    Waldeck, Heather

    Biomaterials are continuously being explored as a means to support, improve, or influence wound healing processes. Understanding the determining factors controlling the host response to biomaterials is crucial in developing strategies to employ materials for biomedical uses. In order to evaluate the host response to poly(ethylene glycol) (PEG)-based hydrogels, both in vivo and in vitro studies were performed to determine its efficacy as a dermal wound treatment and to investigate the mechanisms controlling cell-material interaction, respectively. The results of an in vivo study using a full thickness wound in a rat model demonstrated that both soluble and immobilized bioactive factors could be incorporated into a PEG-based semi-interpenetrating network (sIPN) to enhance the rate and the quality of dermal wound healing. To gain a better understanding of the results observed in vivo, in vitro studies were then conducted to examine the dynamics and mechanisms of the cell-material interaction. Degradation of the sIPN was explored as an influential factor in both mediating cellular response and controlling solute transport from the material. As degradation through gelatin dissolution could be influenced by simple alterations to the material formulation, these results provide facile guidelines to control the delivery of high molecular weight compounds. Further investigation of the cellular response to PEG-based biomaterials focused on key factors influencing cell-material interaction. Specifically, the role of the beta1 integrin subunit and several serum proteins (TGF-aalpha, IL-1beta and PDGF-BB) in mediating cellular response was explored. As cell-material interactions are based on commonly occurring interfaces between cells and molecules of the native extracellular environment, these studies provided insight into the mechanisms controlling the observed cellular response. Finally, the inflammatory response of primary monocytes to biomaterials was examined. Monocytes

  14. Reduction of graphene oxide/alginate composite hydrogels for enhanced adsorption of hydrophobic compounds.

    PubMed

    Kim, Semin; Yoo, Youngjae; Kim, Hanbit; Lee, Eunju; Lee, Jae Young

    2015-10-09

    Carbon-based materials, consisting of graphene oxide (GO) or reduced GO (rGO), possess unique abilities to interact with various molecules. In particular, rGO materials hold great promise for adsorption and delivery applications of hydrophobic molecules. However, conventional production and/or usage of rGO in aqueous solution often causes severe aggregation due to its low water solubility and thus difficulties in handling and applications. In our study, to prevent the severe aggregation of GO during reduction and to achieve a high adsorption capacity with hydrophobic compounds, GO/alginate composite hydrogels were first prepared and then reduced in an aqueous ascorbic acid solution at 37 °C. Adsorption studies with a model hydrophobic substance, rhodamine B, revealed that the reduced composite hydrogels are more highly absorbent than the unreduced hydrogels. In addition, the adsorption properties of the composite hydrogels, which are consequences of hydrophobic and ionic interactions, could be modulated by controlling the degree of reduction for the adsorption of different molecules. The composite hydrogels embedding rGO can be very useful in applications related to drug delivery, waste treatment, and biosensing.

  15. In situ formation of adhesive hydrogels based on PL with laterally grafted catechol groups and their bonding efficacy to wet organic substrates.

    PubMed

    Ye, Mingming; Jiang, Rui; Zhao, Jin; Zhang, Juntao; Yuan, Xubo; Yuan, Xiaoyan

    2015-12-01

    Adhesives with catechol moieties have been widely investigated in recent years. However, actually how much catechol groups for these mussel bio-inspired adhesives, especially in their natural form under physiological condition, is appropriate to bond with organic substrates has not been studied intensively. This study blends ε-polylysine (PL), featuring laterally grafted catechols under physiological conditions (pH 7.4), with oxidized dextran to form a hydrogel in situ via the Schiff base without introducing small cytotoxic molecules as crosslinking agents. It finds that the amount of catechol groups imposes an obvious influence on gelation time, swelling behavior, and hydrogel morphology. Both the storage modulus and adhesion strength are found to increase first and decrease afterwards with an increase of pendent catechol content. Furthermore, catechol hydrogen interactions and the decrease in the crosslink density derived from the decrease of amino groups on PL are simultaneously found to affect the storage modulus. Meanwhile, multiple hydrogen-bonding interactions of catechol with amino, hydroxyl, and carboxyl groups, which are in abundance on the surface of tissue, are mainly found to provide an adhesive force. The study finds that with more catechol, there is a greater chance that the cohesive force will weaken, making the entire adhesion strength of the hydrogel decrease. Using a cytotoxicity test, the nontoxicity of the hydrogel towards the growth of L929 cells is proven, indicating that hydrogels have potential applications in soft tissue repair under natural physiological conditions.

  16. Highly Swellable, Dual-Responsive Hydrogels Based on PNIPAM and Redox Active Poly(ferrocenylsilane) Poly(ionic liquid)s: Synthesis, Structure, and Properties.

    PubMed

    Feng, Xueling; Zhang, Kaihuan; Chen, Peng; Sui, Xiaofeng; Hempenius, Mark A; Liedberg, Bo; Vancso, G Julius

    2016-12-01

    Highly swellable, dual-responsive hydrogels, consisting of thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) and redox-responsive poly(ferrocenylsilane) (PFS) based poly(ionic liquid)s (PILs) are formed by photo-polymerization. PFS chains bearing cross-linkable vinylimidazolium (VIm) side groups are copolymerized with NIPAM in aqueous solutions under ultraviolet light (λ = 365 nm) in the presence of a photoinitiator. The PFS-PILs serve as a macro-cross-linker and also provide redox responsiveness. The swelling ratio, morphology, and lower critical solution temperature (LCST) of the hydrogels are studied as a function of the PNIPAM/PFS ratio. The value of the LCST is dependent on the choice of the counterion of the PIL and the PNIPAM/PFS ratio. The hydrogel is employed as a reducing environment for the in situ fabrication of gold nanoparticles (AuNPs), forming AuNP-hydrogel composites. The localized surface plasmon resonance peak of the as-synthesized Au nanoparticles inside the hydrogel could be tuned by altering the temperature.

  17. Hydrogel-based protein and oligonucleotide microchips on metal-coated surfaces: enhancement of fluorescence and optimization of immunoassay.

    PubMed

    Zubtsova, Zh I; Zubtsov, D A; Savvateeva, E N; Stomakhin, A A; Chechetkin, V R; Zasedatelev, A S; Rubina, A Yu

    2009-10-26

    Manufacturing of hydrogel-based microchips on metal-coated substrates significantly enhances fluorescent signals upon binding of labeled target molecules. This observation holds true for both oligonucleotide and protein microchips. When Cy5 is used as fluorophore, this enhancement is 8-10-fold in hemispherical gel elements and 4-5-fold in flattened gel pads, as compared with similar microchips manufactured on uncoated glass slides. The effect also depends on the hydrophobicity of metal-coated substrate and on the presence of a layer of liquid over the gel pads. The extent of enhancement is insensitive to the nature of formed complexes and immobilized probes and remains linear within a wide range of fluorescence intensities. Manufacturing of gel-based protein microarrays on metal-coated substrates improves their sensitivity using the same incubation time for immunoassay. Sandwich immunoassay using these microchips allows shortening the incubation time without loss of sensitivity. Unlike microchips with probes immobilized directly on a surface, for which the plasmon mechanism is considered responsible for metal-enhanced fluorescence, the enhancement effect observed using hydrogel-based microchips on metal-coated substrates might be explained within the framework of geometric optics.

  18. Poly(ethylene glycol)-poly(lactic-co-glycolic acid) based thermosensitive injectable hydrogels for biomedical applications.

    PubMed

    Alexander, Amit; Ajazuddin; Khan, Junaid; Saraf, Swarnlata; Saraf, Shailendra

    2013-12-28

    Stimuli triggered polymers provide a variety of applications related with the biomedical fields. Among various stimuli triggered mechanisms, thermoresponsive mechanisms have been extensively investigated, as they are relatively more convenient and effective stimuli for biomedical applications. In a contemporary approach for achieving the sustained action of proteins, peptides and bioactives, injectable depots and implants have always remained the thrust areas of research. In the same series, Poloxamer based thermogelling copolymers have their own limitations regarding biodegradability. Thus, there is a need to have an alternative biomaterial for the formulation of injectable hydrogel, which must remain biocompatible along with safety and efficacy. In the same context, poly(ethylene glycol) (PEG) based copolymers play a crucial role as a biomedical material for biomedical applications, because of their biocompatibility, biodegradability, thermosensitivity and easy controlled characters. This review stresses on the physicochemical property, stability and composition prospects of smart PEG/poly(lactic-co-glycolic acid) (PLGA) based thermoresponsive injectable hydrogels, recently utilized for biomedical applications. The manuscript also highlights the synthesis scheme and stability characteristics of these copolymers, which will surely help the researchers working in the same area. We have also emphasized the applied use of these smart copolymers along with their formulation problems, which could help in understanding the possible modifications related with these, to overcome their inherent associated limitations.

  19. Sensing and Sensibility: Single-Islet-based Quality Control Assay of Cryopreserved Pancreatic Islets with Functionalized Hydrogel Microcapsules.

    PubMed

    Chen, Wanyu; Shu, Zhiquan; Gao, Dayong; Shen, Amy Q

    2016-01-21

    Despite decades of research and clinical studies of islet transplantations, finding simple yet reliable islet quality assays that correlate accurately with in vivo potency is still a major challenge, especially for real-time and single-islet-based quality assessment. Herein, proof-of-concept studies of a cryopreserved microcapsule-based quality control assays are presented for single islets. Individual rat pancreatic islets and fluorescent oxygen-sensitive dye (FOSD) are encapsulated in alginate hydrogel microcapsules via a microfluidic device. To test the susceptibility of the microcapsules and the FOSD to cryopreservation, the islet microcapsules containing FOSD are cryopreserved and the islet functionalities (adenosine triphosphate, static insulin release measurement, and oxygen consumption rate) are assessed after freezing and thawing steps. The cryopreserved islet capsules with FOSD remain functional after encapsulation and freezing/thawing procedures, validating a simple yet reliable individual-islet-based quality control method for the entire islet processing procedure prior to transplantation. This work also demonstrates that the functionality of cryopreserved islets can be improved by introducing trehalose into the routinely used cryoprotectant dimethyl sulfoxide. The functionalized alginate hydrogel microcapsules with embedded FOSD and optimized cryopreservation protocol presented in this work serve as a versatile islet quality assay and offer tremendous promise for tackling existing challenges in islet transplantation procedures.

  20. Enhanced performance of VOx-based bolometer using patterned gold black absorber

    NASA Astrophysics Data System (ADS)

    Smith, Evan M.; Panjwani, Deep; Ginn, James; Warren, Andrew; Long, Christopher; Figuieredo, Pedro; Smith, Christian; Perlstein, Joshua; Walter, Nick; Hirschmugl, Carol; Peale, Robert E.; Shelton, David J.

    2015-06-01

    Patterned highly absorbing gold black film has been selectively deposited on the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves gold black's near unity absorption. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. Infrared responsivity is substantially improved by the gold black coating without significantly increasing noise. The increase in the time constant caused by the additional mass of gold black is a modest 14%.

  1. Pump dependence of the dynamics of quantum dot based waveguide absorbers

    NASA Astrophysics Data System (ADS)

    Viktorov, Evgeny A.; Erneux, Thomas; Piwonski, Tomasz; Pulka, Jaroslaw; Huyet, Guillaume; Houlihan, John

    2012-06-01

    The nonlinear two stage recovery of quantum dot based reverse-biased waveguide absorbers is investigated experimentally and analytically as a function of the initial ground state occupation probability of the dot. The latter is controlled experimentally by the pump pulse power. The slow stage of the recovery is exponential and its basic timescale is independent of pump power. The fast stage of the recovery is a logistic function which we analyze in detail. The relative strength of slow to fast components is highlighted and the importance of higher order absorption processes at the highest pump level is demonstrated.

  2. Unexpected Performances of Flat Sb2S3-Based Hybrid Extremely Thin Absorber Solar Cells

    NASA Astrophysics Data System (ADS)

    Muto, Takuma; Larramona, Gerardo; Dennler, Gilles

    2013-07-01

    We report unexpected results obtained on hybrid extremely thin absorber (ETA) solar cells based on the structure TiO2/Sb2S3/poly(3-hexylthiophene)/hole conducting layer (HCL). We show that we can maintain a large, state-of-the-art short-circuit current by switching from a three-dimensional to a two-dimensional device, that is, by simplifying drastically the device structure. Moreover, we prove that the HCL plays an important role in the solar cell working mechanism, and influences significantly its open-circuit voltage. We believe that these findings suggest new directions for the optimization of solid-state sensitized solar cells.

  3. Friction Reduction Using Self-Assembled Hydrogels

    NASA Astrophysics Data System (ADS)

    Mackel, Michael J.; Kornfield, Julia A.

    2007-03-01

    Friction of agarose-based hydrogels against bare glass is examined as a function of added linear polyelectrolyte using a stress rheometer to measure the angular velocity of a clean glass plate against the hydrogel surface as a function of applied torque and normal force. Incorporating linear dextran sulfate into 2 weight percent agarose hydrogel reduces friction on the hydrogel surface. The reduction of friction is a nonmonotonic function of dextran sulfate concentration: a 2 percent doping of dextran sulfate shows the minimum friction. Lubricity enhancement on the agarose doped with 2 percent dextran sulfate occurs at all normal forces examined (0.5, 1, 1.5, and 2 N) and is more pronounced at larger angular velocities. Rheological studies of agarose hydrogels doped with dextran sulfate suggest that the dextran sulfate does not interfere with the porous structure of the hydrogel when present in concentrations of 2 weight percent or less.

  4. Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds.

    PubMed

    Applegate, Matthew B; Coburn, Jeannine; Partlow, Benjamin P; Moreau, Jodie E; Mondia, Jessica P; Marelli, Benedetto; Kaplan, David L; Omenetto, Fiorenzo G

    2015-09-29

    Light-induced material phase transitions enable the formation of shapes and patterns from the nano- to the macroscale. From lithographic techniques that enable high-density silicon circuit integration, to laser cutting and welding, light-matter interactions are pervasive in everyday materials fabrication and transformation. These noncontact patterning techniques are ideally suited to reshape soft materials of biological relevance. We present here the use of relatively low-energy (< 2 nJ) ultrafast laser pulses to generate 2D and 3D multiscale patterns in soft silk protein hydrogels without exogenous or chemical cross-linkers. We find that high-resolution features can be generated within bulk hydrogels through nearly 1 cm of material, which is 1.5 orders of magnitude deeper than other biocompatible materials. Examples illustrating the materials, results, and the performance of the machined geometries in vitro and in vivo are presented to demonstrate the versatility of the approach.

  5. Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds

    PubMed Central

    Applegate, Matthew B.; Coburn, Jeannine; Partlow, Benjamin P.; Moreau, Jodie E.; Mondia, Jessica P.; Marelli, Benedetto; Kaplan, David L.; Omenetto, Fiorenzo G.

    2015-01-01

    Light-induced material phase transitions enable the formation of shapes and patterns from the nano- to the macroscale. From lithographic techniques that enable high-density silicon circuit integration, to laser cutting and welding, light–matter interactions are pervasive in everyday materials fabrication and transformation. These noncontact patterning techniques are ideally suited to reshape soft materials of biological relevance. We present here the use of relatively low-energy (< 2 nJ) ultrafast laser pulses to generate 2D and 3D multiscale patterns in soft silk protein hydrogels without exogenous or chemical cross-linkers. We find that high-resolution features can be generated within bulk hydrogels through nearly 1 cm of material, which is 1.5 orders of magnitude deeper than other biocompatible materials. Examples illustrating the materials, results, and the performance of the machined geometries in vitro and in vivo are presented to demonstrate the versatility of the approach. PMID:26374842

  6. Development of novel alginate based hydrogel films for wound healing applications.

    PubMed

    Pereira, Rúben; Carvalho, Anabela; Vaz, Daniela C; Gil, M H; Mendes, Ausenda; Bártolo, Paulo

    2013-01-01

    Alginate and Aloe vera are natural materials widely investigated and used in the biomedical field. In this research work, thin hydrogel films composed by alginate and Aloe vera gel in different proportions (95:5, 85:15 and 75:25, v/v) were prepared and characterized. The films were evaluated regarding the light transmission behavior, contact angle measurements, and chemical, thermal and mechanical properties. These thin hydrogel films, prepared by crosslinking reaction using 5% calcium chloride solution, were also investigated relatively to their water solubility and swelling behavior. Results showed that Aloe vera improved the transparency of the films, as well their thermal stability. The developed films present adequate mechanical properties for skin applications, while the solubility studies demonstrated the insolubility of the films after 24h of immersion in distilled water. The water absorption and swelling behavior of these films were greatly improved by the increase in Aloe vera proportion.

  7. Determination of substitution positions in hyaluronic acid hydrogels using NMR and MS based methods.

    PubMed

    Wende, Frida J; Gohil, Suresh; Mojarradi, Hotan; Gerfaud, Thibaud; Nord, Lars I; Karlsson, Anders; Boiteau, Jean-Guy; Kenne, Anne Helander; Sandström, Corine

    2016-01-20

    In hydrogels of cross-linked polysaccharides, the total amount of cross-linker and the degree of cross-linking influence the properties of the hydrogel. The substitution position of the cross-linker on the polysaccharide is another parameter that can influence hydrogel properties; hence methods for detailed structural analysis of the substitution pattern are required. NMR and LC-MS methods were developed to determine the positions and amounts of substitution of 1,4-butanediol diglycidyl ether (BDDE) on hyaluronic acid (HA), and for the first time it is shown that BDDE can react with any of the four available hydroxyl groups of the HA disaccharide repeating unit. This was achieved by studying di-, tetra-, and hexasaccharides obtained from degradation of BDDE cross-linked HA hydrogel by chondroitinase. Furthermore, amount of linker substitution at each position was shown to be dependent on the size of the oligosaccharides. For the disaccharide, substitutions were predominantly at ΔGlcA-OH2 and GlcNAc-OH6 while in the tetra- and hexasaccharides, it was mainly at the reducing end GlcNAc-OH4. In the disaccharide there was no substitution at this position. Since chondroitinase is able to completely hydrolyse non-substituted HA into unsaturated disaccharides, these results indicate that the enzyme is prevented to cleave on the non-reducing side of an oligosaccharide substituted at the reducing end GlcNAc-OH4. The procedure can be adopted for the determination of substitution positions in other types of polymers.

  8. 3D in vitro bioengineered tumors based on collagen I hydrogels

    PubMed Central

    Szot, Christopher S.; Buchanan, Cara F.; Freeman, Joseph W.; Rylander, Marissa N.

    2011-01-01

    Cells cultured within a three-dimensional (3D) in vitro environment have the ability to acquire phenotypes and respond to stimuli analogous to in vivo biological systems. This approach has been utilized in tissue engineering and can also be applied to the development of a physiologically relevant in vitro tumor model. In this study, collagen I hydrogels cultured with MDA-MB-231 human breast cancer cells were bioengineered as a platform for in vitro solid tumor development. The cell–cell and cell-matrix interactions present during in vivo tissue progression were encouraged within the 3D hydrogel architecture, and the biocompatibility of collagen I supported unconfined cellular proliferation. The development of necrosis beyond a depth of ~150–200 μm and the expression of hypoxia-inducible factor (HIF)-1α were demonstrated in the in vitro bioengineered tumors. Oxygen and nutrient diffusion limitations through the collagen I matrix as well as competition for available nutrients resulted in growing levels of intra-cellular hypoxia, quantified by a statistically significant (p < 0.01) upregulation of HIF-1α gene expression. The bioengineered tumors also demonstrated promising angiogenic potential with a statistically significant (p < 0.001) upregulation of vascular endothelial growth factor (VEGF)-A gene expression. In addition, comparable gene expression analysis demonstrated a statistically significant increase of HIF-1α (p < 0.05) and VEGF-A (p < 0.001) by MDA-MB-231 cells cultured in the 3D collagen I hydrogels compared to cells cultured in a monolayer on two-dimensional tissue culture polystyrene. The results presented in this study demonstrate the capacity of collagen I hydrogels to facilitate the development of 3D in vitro bioengineered tumors that are representative of the pre-vascularized stages of in vivo solid tumor progression. PMID:21782234

  9. Colloidal gas aphron foams: A novel approach to a hydrogel based tissue engineered myocardial patch

    NASA Astrophysics Data System (ADS)

    Johnson, Elizabeth Edna

    Cardiovascular disease currently affects an estimated 58 million Americans and is the leading cause of death in the US. Over 2.3 million Americans are currently living with heart failure a leading cause of which is acute myocardial infarction, during which a part of the heart muscle is damaged beyond repair. There is a great need to develop treatments for damaged heart tissue. One potential therapy involves replacement of nonfunctioning scar tissue with a patch of healthy, functioning tissue. A tissue engineered cardiac patch would be ideal for such an application. Tissue engineering techniques require the use of porous scaffolds, which serve as a 3-D template for initial cell attachment and grow-th leading to tissue formation. The scaffold must also have mechanical properties closely matching those of the tissues at the site of implantation. Our research presents a new approach to meet these design requirements. A unique interaction between poly(vinyl alcohol) and amino acids has been discovered by our lab, resulting in the production of novel gels. These unique synthetic hydrogels along with one natural hydrogel, alginate (derived from brown seaweed), have been coupled with a new approach to tissue scaffold fabrication using solid colloidal gas aphrons (CGAs). CGAs are colloidal foams containing uniform bubbles with diameters on the order of micrometers. Upon solidification the GCAs form a porous, 3-D network suitable for a tissue scaffold. The project encompasses four specific aims: (I) characterize hydrogel formation mechanism, (II) use colloidal gas aphrons to produce hydrogel scaffolds, (III) chemically and physically characterize scaffold materials and (IV) optimize and evaluate scaffold biocompatibility.

  10. Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane.

    PubMed

    Guo, Wei; Cheng, Chi; Wu, Yanzhe; Jiang, Yanan; Gao, Jun; Li, Dan; Jiang, Lei

    2013-11-13

    An electrogenetic layered graphene hydrogel membrane (GHM) possesses ultra-large interlayer spacing of about 10 nm, forming charged 2D nanocapillaries between graphene sheets that selectively permeate counter-ions and exclude co-ions. When an electrolyte flow goes through the GHM, it functions as an integrated 2D nanofluidic generator converting hydraulic motion into electricity. The maximum streaming conductance density approaches 16.8 μA cm(-2) bar(-1) .

  11. A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent.

    PubMed

    Zhou, Guiyin; Luo, Jinming; Liu, Chengbin; Chu, Lin; Ma, Jianhong; Tang, Yanhong; Zeng, Zebing; Luo, Shenglian

    2016-02-01

    High sorption capacity, high sorption rate, and fast separation and regeneration for qualified sorbents used in removing heavy metals from wastewater are urgently needed. In this study, a polyampholyte hydrogel was well designed and prepared via a simple radical polymerization procedure. Due to the remarkable mechanical strength, the three-dimensional polyampholyte hydrogel could be fast separated, easily regenerated and highly reused. The sorption capacities were as high as 216.1 mg/g for Pb(II) and 153.8 mg/g for Cd(II) owing to the existence of the large number of active groups. The adsorption could be conducted in a wide pH range of 3-6 and the equilibrium fast reached in 30 min due to its excellent water penetration for highly accessible to metal ions. The fixed-bed column sorption results indicated that the polyampholyte hydrogel was particularly effective in removing Pb(II) and Cd(II) from actual industrial effluent to meet the regulatory requirements. The treatment volumes of actual smelting effluent using one fixed bed column were as high as 684 bed volumes (BV) (7736 mL) for Pb(II) and 200 BV (2262 mL) for Cd(II). Furthermore, the treatment volumes of actual smelting effluent using tandem three columns reached 924 BV (31,351 mL) for Pb(II) and 250 BV (8483 mL) for Cd(II), producing only 4 BV (136 mL) eluent. Compared with the traditional high density slurry (HDS) process with large amount of sludge, the proposed process would be expected to produce only a small amount of sludge. When the treatment volume was controlled below 209.3 BV (7103 mL), all metal ions in the actual industrial effluent could be effectively removed (<0.01 mg/L). This wok develops a highly practical process based on polyampholyte hydrogel sorbents for the removal of heavy metal ions from practical wastewater.

  12. Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix.

    PubMed

    Wang, Yi; Brunsen, Annette; Jonas, Ulrich; Dostálek, Jakub; Knoll, Wolfgang

    2009-12-01

    A new biosensor based on surface plasmon-enhanced fluorescence spectroscopy (SPFS), which employs long-range surface plasmons (LRSP) and a photo-cross-linkable carboxymethyl dextran (PCDM) hydrogel binding matrix, is reported. LRSPs are surface plasmon modes that propagate along a thin metallic film with orders of magnitude lower damping compared to regular surface plasmons. Therefore, their excitation provides strong enhancement of the intensity of the electromagnetic field and a greatly increased fluorescence signal measured upon binding of fluorophore-labeled molecules on the sensor surface. In addition, these modes exhibit highly extended evanescent fields penetrating up to micrometers in distance from the metallic sensor surface. Therefore, a PCDM hydrogel with approximately micrometer thickness was anchored on the sensor surface to serve as the binding matrix. We show that this approach provides large binding capacity and allows for the ultrasensitive detection. In a model experiment, the developed biosensor platform was applied for the detection of free prostate specific antigen (f-PSA) in buffer and human serum by using a sandwich immunoassay. The limit of detection at the low femtomolar range was achieved, which is approximately 4 orders of magnitude lower than that for direct detection of f-PSA based on the monitoring of binding-induced refractive index changes.

  13. Linear poly(ethylene imine)-based hydrogels for effective binding and release of DNA.

    PubMed

    Englert, Christoph; Tauhardt, Lutz; Hartlieb, Matthias; Kempe, Kristian; Gottschaldt, Michael; Schubert, Ulrich S

    2014-04-14

    A series of copolymers containing both amine groups of linear poly(ethylene imine) (LPEI) and double bonds of poly(2-(3-butenyl)-2-oxazoline) (PButEnOx) was prepared. To this end, a poly(2-ethyl-2-oxazoline) (PEtOx) precursor was hydrolyzed to the respective LPEI and functionalized in an amidation reaction with butenyl groups resulting in the double bond containing poly(2-(3-butenyl-2-oxazoline)-co-ethylene imine) (P(ButEnOx-co-EI)). Hydrogels were obtained by cross-linking with dithiols under UV-irradiation resulting in networks with different properties in dependence of the content of double bonds. The developed method allows the exact control of the amount of ethylene imine units within the copolymer and, thus, within the resulting hydrogels. The gel structures were characterized by solid state NMR and infrared spectroscopy. In addition the water uptake behavior from the liquid and the gas phase was investigated. It was shown by an ethidium bromide assay (EBA) that the copolymers and the respective hydrogels were able to bind and release DNA. Furthermore, the influence of the ethylene imine content on this interaction was investigated.

  14. Nanostructurally Controlled Hydrogel Based on Small‐Diameter Native Chitin Nanofibers: Preparation, Structure, and Properties

    PubMed Central

    Kochumalayil, Joby; Cervin, Nicholas Tchang; Zhou, Qi

    2016-01-01

    Abstract Chitin nanofibers of unique structure and properties can be obtained from crustacean and fishery waste. These chitin nanofibers have roughly 4 nm diameters, aspect ratios between 25–250, a high degree of acetylation and preserved crystallinity, and can be potentially applied in hydrogels. Hydrogels with a chitin nanofiber content of 0.4, 0.6, 0.8, 1.0, 2.0, and 3.0 wt % were successfully prepared. The methodology for preparation is new, environmentally friendly, and simple as gelation is induced by neutralization of the charged colloidal mixture, inducing precipitation and secondary bond interaction between nanofibers. Pore structure and pore size distributions of corresponding aerogels are characterized using auto‐porosimetry, revealing a substantial fraction of nanoscale pores. To the best of our knowledge, the values for storage (13 kPa at 3 wt %) and compression modulus (309 kPa at 2 wt %) are the highest reported for chitin nanofibers hydrogels. PMID:27061912

  15. Injectable thermosensitive chitosan/glycerophosphate-based hydrogels for tissue engineering and drug delivery applications: a review.

    PubMed

    Tahrir, Farzaneh G; Ganji, Fariba; Ahooyi, Taha M

    2015-01-01

    Recently, great attention has been paid to in situ gel-forming chitosan/glycerophosphate (CS/Gp) formulation due to its high biocompatibility with incorporated cells and medical agents, biodegradability and sharp thermosensitive gelation. CS/Gp is in liquid state at room temperature and after minimally invasive administration into the desired tissue, it forms a solid-like gel as a response to temperature increase. The overview of various recently patented strategies on injectable delivery systems indicates the significance of this formulation in biomedical applications. This thermosensitive hydrogel has a great potential as scaffold material in tissue engineering, due to its good biocompatibility, minimal immune reaction, high antibacterial nature, good adhesion to cells and the ability to be molded in various geometries. Moreover, CS/Gp hydrogel has been utilized as a smart drug delivery system to increase patient compliance by maintaining the drug level in the therapeutic window for a long time while avoiding the need for frequent injections of the therapeutic agent. This review paper highlights the recent patents and investigations on different formulations of CS/Gp hydrogels as tissue engineering scaffolds and carriers for therapeutic agents. Additionally, the dominant mechanism of sol-gel transition in those systems as well as their physicochemical properties and biocompatibility are discussed in detail.

  16. Functionalized graphene oxide-based thermosensitive hydrogel for magnetic hyperthermia therapy on tumors

    NASA Astrophysics Data System (ADS)

    Zhu, Xiali; Zhang, Huijuan; Huang, Heqing; Zhang, Yingjie; Hou, Lin; Zhang, Zhenzhong

    2015-09-01

    A novel locally injectable, biodegradable, and thermo-sensitive hydrogel made from chitosan and β-glycerophosphate salt was prepared. It incorporated polyethylenimine (PEI)-modified super-paramagnetic graphene oxide (GO/IONP/PEI) as a form of minimally invasive treatment of cancer lesions by magnetically induced local hyperthermia. Doxorubicin (DOX) was mixed into the hydrogel which was pre-loaded on GO/IONP/PEI to create a drug delivery system DOX-GO/IONP/PEI-gel. In addition to the evaluation of in vitro and in vivo antitumor activities, the physicochemical properties, magnetic properties and DOX release profile of the DOX-GO/IONP/PEI-gel were determined. The aqueous solution of the hydrogel showed a sol-gel transition behavior depending on temperature changes. Magnetization loops indicated the super-paramagnetic properties of GO/IONP/PEI. Compared with free DOX, DOX-GO/IONP/PEI could efficiently pass through cell membranes, leading to more apoptosis and demonstrating higher antitumor efficacy on MCF-7 cells in vitro. Furthermore, DOX-GO/IONP/PEI-gel intratumorally injected (i.t.) showed high antitumor efficacy on tumor-bearing mice in vivo, with no obvious toxicity. The antitumor efficacy was higher when combined with an alternating magnetic field (AMF), showing that DOX-GO/IONP/PEI-gel under AMF has great potential for cancer magnetic hyperthermia therapy.

  17. Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models

    NASA Astrophysics Data System (ADS)

    Chwalek, Karolina; Tsurkan, Mikhail V.; Freudenberg, Uwe; Werner, Carsten

    2014-03-01

    Angiogenesis, the outgrowth of blood vessels, is crucial in development, disease and regeneration. Studying angiogenesis in vitro remains challenging because the capillary morphogenesis of endothelial cells (ECs) is controlled by multiple exogenous signals. Therefore, a set of in situ-forming starPEG-heparin hydrogels was used to identify matrix parameters and cellular interactions that best support EC morphogenesis. We showed that a particular type of soft, matrix metalloproteinase-degradable hydrogel containing covalently bound integrin ligands and reversibly conjugated pro-angiogenic growth factors could boost the development of highly branched, interconnected, and lumenized endothelial capillary networks. Using these effective matrix conditions, 3D heterocellular interactions of ECs with different mural cells were demonstrated that enabled EC network modulation and maintenance of stable vascular capillaries over periods of about one month in vitro. The approach was also shown to permit in vitro tumor vascularization experiments with unprecedented levels of control over both ECs and tumor cells. In total, the introduced 3D hydrogel co-culture system could offer unique options for dissecting and adjusting biochemical, biophysical, and cell-cell triggers in tissue-related vascularization models.

  18. Development and evaluation of nanostructured lipid carrier-based hydrogel for topical delivery of 5-fluorouracil

    PubMed Central

    Rajinikanth, Paruvathanahalli Siddalingam; Chellian, Jestin

    2016-01-01

    The aim of this study was to develop a nanostructured lipid carrier (NLC)-based hydrogel and study its potential for the topical delivery of 5-fluorouracil (5-FU). Precirol® ATO 5 (glyceryl palmitostearate) and Labrasol® were selected as the solid and liquid lipid phases, respectively. Poloxamer 188 and Solutol® HS15 (polyoxyl-15-hydroxystearate) were selected as surfactants. The developed lipid formulations were dispersed in 1% Carbopol® 934 (poly[acrylic acid]) gel medium in order to maintain the topical application consistency. The average size, zeta potential, and polydispersity index for the 5-FU-NLC were found to be 208.32±8.21 nm, −21.82±0.40 mV, and 0.352±0.060, respectively. Transmission electron microscopy study revealed that 5-FU-NLC was <200 nm in size, with a spherical shape. In vitro drug permeation studies showed a release pattern with initial burst followed by sustained release, and the rate of 5-FU permeation was significantly improved for 5-FU-NLC gel (10.27±1.82 μg/cm2/h) as compared with plain 5-FU gel (2.85±1.12 μg/cm2/h). Further, skin retention studies showed a significant retention of 5-FU from the NLC gel (91.256±4.56 μg/cm2) as compared with that from the 5-FU plain gel (12.23±3.86 μg/cm2) in the rat skin. Skin irritation was also significantly reduced with 5-FU-NLC gel as compared with 5-FU plain gel. These results show that the prepared 5-FU-loaded NLC has high potential to improve the penetration of 5-FU through the stratum corneum, with enormous retention and with minimal skin irritation, which is the prerequisite for topically applied formulations. PMID:27785014

  19. Development, Fabrication, and Characterization of Hydrogel Based Piezoresistive Pressure Sensors with Perforated Diaphragms

    PubMed Central

    Orthner, M.P.; Buetefisch, Sebastian; Magda, J.; Rieth, L.W.; Solzbacher, F.

    2010-01-01

    Hydrogels have been demonstrated to swell in response to a number of external stimuli including pH, CO2, glucose, and ionic strength making them useful for detection of metabolic analytes. To measure hydrogel swelling pressure, we have fabricated and tested novel perforated diaphragm piezoresistive pressure sensor arrays that couple the pressure sensing diaphragm with a perforated semi-permeable membrane. The 2×2 arrays measure approximately 3 × 5 mm2 and consist of four square sensing diaphragms with widths of 1.0, 1.25, and 1.5 mm used to measure full scale pressures of 50, 25, and 5 kPa, respectively. An optimized geometry of micro pores was etched in silicon diaphragm to allow analyte diffusion into the sensor cavity where the hydrogel material is located. The 14-step front side wafer process was carried out by a commercial foundry service (MSF, Frankfurt (Oder), Germany) and diaphragm pores were created using combination of potassium hydroxide (KOH) etching and deep reactive ion etching (DRIE). Sensor characterization was performed (without the use of hydrogels) using a custom bulge testing apparatus that simultaneously measured deflection, pressure, and electrical output. Test results are used to quantify the sensor sensitivity and demonstrate proof-of-concept. Simulations showed that the sensitivity was slightly improved for the perforated diaphragm designs while empirical electrical characterization showed that the perforated diaphragm sensors were slightly less sensitive than solid diaphragm sensors. This discrepancy is believed to be due to the influence of compressive stress found within passivation layers and poor etching uniformity. The new perforated diaphragm sensors were fully functional with sensitivities ranging from 23 to 252 μV/V-kPa (FSO= 5 to 80mV), and show a higher nonlinearity at elevated pressures than identical sensors with solid diaphragms. Sensors (1.5×1.5 mm2) with perforated diaphragms (pores=40 μm) have a nonlinearity of

  20. Optimal semi-active vibration absorber for harmonic excitation based on controlled semi-active damper

    NASA Astrophysics Data System (ADS)

    Weber, F.

    2014-09-01

    The semi-active vibration absorber (SVA) based on controlled semi-active damper is formulated to realize the behaviour of the passive undamped vibration absorber tuned to the actual harmonic disturbing frequency. It is shown that the controlled stiffness force, which is emulated by the semi-active damper to realize the precise real-time frequency tuning of the SVA, is unpreventably combined with the generation of undesirable damping in the semi-active damper whereby the SVA does not behave as targeted. The semi-active stiffness force is therefore optimized for minimum primary structure response. The results point out that the optimal semi-active stiffness force reduces the undesirable energy dissipation in the SVA at the expenses of slight imprecise frequency tuning. Based on these findings, a real-time applicable suboptimal SVA is formulated that also takes the relative motion constraint of real mass dampers into account. The results demonstrate that the performance of the suboptimal SVA is closer to that of the active solution than that of the passive mass damper.

  1. High power L-band mode-locked fiber laser based on topological insulator saturable absorber.

    PubMed

    Meng, Yichang; Semaan, Georges; Salhi, Mohamed; Niang, Alioune; Guesmi, Khmaies; Luo, Zhi-Chao; Sanchez, Francois

    2015-09-07

    We demonstrate a passive mode-locked Er:Yb doped double-clad fiber laser using a microfiber-based topological insulator (Bi(2)Se(3)) saturable absorber (TISA). By optimizing the cavity loss and output coupling ratio, the mode-locked fiber laser can operate in L-band with high average output power. With the highest pump power of 5 W, 91st harmonic mode locking of soliton bunches with average output power of 308 mW was obtained. This is the first report that the TISA based erbium-doped fiber laser operating above 1.6 μm and is also the highest output power yet reported in TISA based passive mode-locked fiber laser.

  2. Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser

    SciTech Connect

    Wang, Xu-De; Luo, Zhi-Chao; Liu, Hao; Liu, Meng; Luo, Ai-Ping Xu, Wen-Cheng

    2014-10-20

    We reported on the femtosecond pulse generation from an erbium-doped fiber (EDF) laser by using microfiber-based gold nanorods (GNRs) as saturable absorber (SA). By virtue of the geometric characteristic of microfiber-based GNRs, the optical damage threshold of GNRs-SA could be greatly enhanced. The microfiber-based GNRs-SA shows a modulation depth of 4.9% and a nonsaturable loss of 21.1%. With the proposed GNRs-SA, the fiber laser emitted a mode-locked pulse train with duration of ∼887 fs. The obtained results demonstrated that the GNRs deposited microfiber could indeed serve as a high-performance SA towards the practical applications in the field of ultrafast photonics.

  3. Sorption of zinc by novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid.

    PubMed

    Milosavljević, Nedeljko B; Ristić, Mirjana Đ; Perić-Grujić, Aleksandra A; Filipović, Jovanka M; Strbac, Svetlana B; Rakočević, Zlatko Lj; Kalagasidis Krušić, Melina T

    2011-08-30

    Novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid were applied as adsorbents for the removal of Zn(2+) ions from aqueous solution. In batch tests, the influence of solution pH, contact time, initial metal ion concentration and temperature was examined. The sorption was found pH dependent, pH 5.5 being the optimum value. The adsorption process was well described by the pseudo-second order kinetic. The hydrogels were characterized by spectral (Fourier transform infrared-FTIR) and structural (SEM/EDX and atomic force microscopy-AFM) analyses. The surface topography changes were observed by atomic force microscopy, while the changes in surface composition were detected using phase imaging AFM. The negative values of free energy and enthalpy indicated that the adsorption is spontaneous and exothermic one. The best fitting isotherms were Langmuir and Redlich-Peterson and it was found that both linear and nonlinear methods were appropriate for obtaining the isotherm parameters. However, the increase of temperature leads to higher adsorption capacity, since swelling degree increased with temperature.

  4. Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: development and in vitro/in vivo characterization.

    PubMed

    Morsi, Nadia M; Abdelbary, Ghada A; Ahmed, Mohammed A

    2014-02-01

    The present study is concerned with the development and characterization of a novel nanaoparticulate system; cubosomes, loaded with silver sulfadiazine (SSD), which is the metallic salt of a sulfonamide derivative, and is considered as the drug of choice for topical treatment of infected burns. Cubosome dispersions were formulated by an emulsification technique using different concentrations of a lipid phase monoolein and the nonionic surfactant, Poloxamer 407, with or without polyvinyl alcohol. The prepared cubosomal dispersions were characterized regarding physical morphology, dimensional distribution, particle size, and in vitro drug release. The optimum formulae were incorporated in a chitosan, carbopol 940 or chitosan/carbopol mixture based hydrogels, to form cubosomal hydrogels (cubogels). The cubogels were characterized regarding in vitro release of SSD, rheological properties, pH, and mucoadhesion. For the optimal cubogel formulae, an in vivo histopathological study was conducted on rats to predict the effectiveness of the newly prepared cubogels in comparison with the commercially available cream (Dermazin®). In vivo histopathological study results showed that prepared cubogels were successful in the treatment of deep second degree burn which may result in better patient compliance and excellent healing results with least side effects in comparison with the commercially available product.

  5. Ethyl acetate Salix alba leaves extract-loaded chitosan-based hydrogel film for wound dressing applications.

    PubMed

    Qureshi, Mohammad A; Khatoon, Fehmeeda; Rizvi, Moshahid A; Zafaryab, Md

    2015-01-01

    High toxicity and multidrug resistance associated with various standard antimicrobial drugs have necessitated search for safer alternatives in plant-derived materials. In this study, we performed biological examination of chitosan-based hydrogel film loaded with ethyl acetate Salix alba leaves extract against 11 standard laboratory strains. FTIR showed regeneration of saccharide peak in CP1A at 1047 cm(-1) and increased in height of other peaks. DSC exothermic decomposition peaks at 112 °C, 175 °C and 251 °C reveal the effect of extract on hydrogel film. From FESEM images, three-dimensional cross-linking and extract easily seen in the globular form from the surface. MTT assay on HEK 293 cells showed that CP1A was non-toxic. Minimum inhibitory concentration ranges from 4000 μg/ml to 125 μg/ml. Enterococcus faecium, Candida glabrata and Candida tropicalis were the most resistant, while Salmonella typhi and Candida guilliermondii were the most susceptible micro-organisms.

  6. Encapsulation of lactase (β-galactosidase) into κ-carrageenan-based hydrogel beads: Impact of environmental conditions on enzyme activity.

    PubMed

    Zhang, Zipei; Zhang, Ruojie; Chen, Long; McClements, David Julian

    2016-06-01

    Encapsulation of enzymes in hydrogel beads may improve their utilization and activity in foods. In this study, the potential of carrageenan hydrogel beads for encapsulating β-galactosidase was investigated. Hydrogel beads were fabricated by injecting an aqueous solution, containing β-galactosidase (26 U) and carrageenan (1 wt%), into a hardening solution (5% potassium chloride). Around 63% of the β-galactosidase was initially encapsulated in the hydrogel beads. Encapsulated β-galactosidase had a higher activity than that of the free enzyme over a range of pH and thermal conditions, which was attributed to the stabilization of the enzyme structure by K(+) ions within the carrageenan beads. Release of the enzyme from the beads was observed during storage in aqueous solutions, which was attributed to the relatively large pore size of the hydrogel matrix. Our results suggest that carrageenan hydrogel beads may be useful encapsulation systems, but further work is needed to inhibit enzyme leakage.

  7. Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide.

    PubMed

    Behravesh, Esfandiar; Zygourakis, Kyriacos; Mikos, Antonios G

    2003-05-01

    Marrow-derived osteoblasts were cultured on poly(propylene fumarate-co-ethylene glycol) (P(PF-co-EG)) based hydrogels modified in bulk with a covalently linked RGDS model peptide. A poly(ethylene glycol) spacer arm was utilized to covalently link the peptide to the hydrogel. Three P(PF-co-EG) block copolymers were synthesized with varying poly(ethylene glycol) block lengths relative to poly(ethylene glycol) spacer arm. A poly(ethylene glycol) block length of nominal molecular weight 2000 and spacer arm of nominal molecular weight 3400 were found to reduce nonspecific cell adhesion and show RGDS concentration dependent marrow-derived osteoblast adhesion. A concentration of 100 nmol/mL RGDS was sufficient to promote adhesion of 84 +/- 17% of the initial seeded marrow-derived osteoblasts compared with 9 +/- 1% for the unmodified hydrogel after 12 h. Cell spreading was quantified as a method for evaluating adhesivity of cells to the hydrogel. A megacolony migration assay was utilized to assess the migration characteristics of the marrow-derived osteoblasts on RGDS modified hydrogels. Marrow-stromal osteoblasts migration was greater on hydrogels modified with 100 nmol/mL linked RGDS when compared with hydrogels modified with 1000 nmol/mL linked RGDS, while proliferation was not affected. These P(PF-co-EG) hydrogels modified in the bulk with RGDS peptide are potential candidates as in situ forming scaffolds for bone tissue engineering applications.

  8. Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering.

    PubMed

    Zhao, Xin; Lang, Qi; Yildirimer, Lara; Lin, Zhi Yuan; Cui, Wenguo; Annabi, Nasim; Ng, Kee Woei; Dokmeci, Mehmet R; Ghaemmaghami, Amir M; Khademhosseini, Ali

    2016-01-07

    Natural hydrogels are promising scaffolds to engineer epidermis. Currently, natural hydrogels used to support epidermal regeneration are mainly collagen- or gelatin-based, which mimic the natural dermal extracellular matrix but often suffer from insufficient and uncontrollable mechanical and degradation properties. In this study, a photocrosslinkable gelatin (i.e., gelatin methacrylamide (GelMA)) with tunable mechanical, degradation, and biological properties is used to engineer the epidermis for skin tissue engineering applications. The results reveal that the mechanical and degradation properties of the developed hydrogels can be readily modified by varying the hydrogel concentration, with elastic and compressive moduli tuned from a few kPa to a few hundred kPa, and the degradation times varied from a few days to several months. Additionally, hydrogels of all concentrations displayed excellent cell viability (>90%) with increasing cell adhesion and proliferation corresponding to increases in hydrogel concentrations. Furthermore, the hydrogels are found to support keratinocyte growth, differentiation, and stratification into a reconstructed multilayered epidermis with adequate barrier functions. The robust and tunable properties of GelMA hydrogels suggest that the keratinocyte laden hydrogels can be used as epidermal substitutes, wound dressings, or substrates to construct various in vitro skin models.

  9. Photothermally driven fast responding photo-actuators fabricated with comb-type hydrogels and magnetite nanoparticles

    PubMed Central

    Lee, Eunsu; Kim, Dowan; Kim, Haneul; Yoon, Jinhwan

    2015-01-01

    To overcome the slow kinetics of the volume phase transition of stimuli-responsive hydrogels as platforms for soft actuators, thermally responsive comb-type hydrogels were prepared using synthesized poly(N-isopropylacrylamide) macromonomers bearing graft chains. Fast responding light-responsive hydrogels were fabricated by combining a comb-type hydrogel matrix with photothermal magnetite nanoparticles (MNP). The MNPs dispersed in the matrix provide heat to stimulate the volume change of the hydrogel matrix by converting absorbed visible light to thermal energy. In this process, the comb-type hydrogel matrix exhibited a rapid response due to the free, mobile grafted chains. The comb-type hydrogel exhibited significantly enhanced light-induced volume shrinkage and rapid recovery. The comb-type hydrogels containing MNP were successfully used to fabricate a bilayer-type photo-actuator with fast bending motion. PMID:26459918

  10. Reflection-type spatial amplitude modulation of visible light based on a sub-wavelength plasmonic absorber.

    PubMed

    Hwang, Chi-Young; Yi, Yoonsik; Choi, Choon-Gi

    2016-03-01

    We present a method for reflection-type spatial amplitude modulation using a sub-wavelength plasmonic absorber structure that can operate in the visible region. We utilize a pixelated array of absorbing elements based on a two-dimensional sub-wavelength metal grating, and the reflectance of each pixel is controlled by simple structural modification. For the purpose of validation, numerical simulations were performed on an amplitude modulation hologram fabricated using our method.

  11. Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber

    PubMed Central

    Zhen, Guoshuai; Zhou, Peiheng; Luo, Xiaojia; Xie, Jianliang; Deng, Longjiang

    2017-01-01

    Surface plasmon polaritons (SPPs) and standing wave modes provide interesting and exotic properties for infrared metamaterial absorbers. Coupling of these modes promises further development in this field but restricted by the complexity of modes analysis. In this work, we investigate the general phenomenon of modes coupling supported by a metal (with grating)-dielectric-metal sandwich structure based on rigorous coupled-wave analysis (RCWA) method and experiment results. Through the analysis of fundamental modes, a new approach based on the boundary conditions is introduced to reveal the coupling mechanism and the corresponding resonance shifting phenomenon with simple but rigorous derivations. The strong coupling between SPPs excited on the dielectric-metal interfaces and rigorous modes of standing waves in the dielectric layer can be manipulated to improve the detection sensitivity of sensors and emissivity efficiency of infrared emitters.

  12. Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber.

    PubMed

    Zhen, Guoshuai; Zhou, Peiheng; Luo, Xiaojia; Xie, Jianliang; Deng, Longjiang

    2017-04-11

    Surface plasmon polaritons (SPPs) and standing wave modes provide interesting and exotic properties for infrared metamaterial absorbers. Coupling of these modes promises further development in this field but restricted by the complexity of modes analysis. In this work, we investigate the general phenomenon of modes coupling supported by a metal (with grating)-dielectric-metal sandwich structure based on rigorous coupled-wave analysis (RCWA) method and experiment results. Through the analysis of fundamental modes, a new approach based on the boundary conditions is introduced to reveal the coupling mechanism and the corresponding resonance shifting phenomenon with simple but rigorous derivations. The strong coupling between SPPs excited on the dielectric-metal interfaces and rigorous modes of standing waves in the dielectric layer can be manipulated to improve the detection sensitivity of sensors and emissivity efficiency of infrared emitters.

  13. Note: Vibration suppression using tunable vibration absorber based on stiffness variable magneto-rheological gel

    NASA Astrophysics Data System (ADS)

    Shin, Beom-Cheol; Yoon, Jung-Hwan; Kim, Young-Keun; Kim, Kyung-Soo

    2015-10-01

    This paper proposes a novel adaptive tunable vibration absorber (TVA) based on a smart material the magnetorheological gel (MRG) to achieve a wide range of tonal vibration suppression on the primary system to protect any connected sensitive device. The vibration suppression performance of the MRG TVA was analyzed by conducting a modal test of the primary system under different magnetic fields. The experiment verified that the proposed MRG TVA can be controlled to produce 379% of stiffness change or 115% of tuning frequency under just 200 mT magnetic field. The proposed MRG TVA was found to possess a wider tuning frequency range than the TVA based on other smart material such as magnetorheological elastomer.

  14. Modeling and characterization of extremely thin absorber (eta) solar cells based on ZnO nanowires.

    PubMed

    Mora-Seró, Iván; Giménez, Sixto; Fabregat-Santiago, Francisco; Azaceta, Eneko; Tena-Zaera, Ramón; Bisquert, Juan

    2011-04-21

    Extremely thin absorber (eta)-solar cells based on ZnO nanowires sensitized with a thin layer of CdSe have been prepared, using CuSCN as hole transporting material. Samples with significantly different photovoltaic performance have been analyzed and a general model of their behavior was obtained. We have used impedance spectroscopy to model the device discriminating the series resistance, the role of the hole conducting material CuSCN, and the interface process. Correlating the impedance analysis with the microstructural properties of the solar cell interfaces, a good description of the solar cell performance is obtained. The use of thick CdSe layers leads to high recombination resistances, increasing the open circuit voltage of the devices. However, there is an increase of the internal recombination in thick light absorbing layers that also inhibit a good penetration of CuSCN, reducing the photocurrent. The model will play an important role on the optimization of these devices. This analysis could have important implications for the modeling and optimization of all-solid devices using a sensitizing configuration.

  15. Measurement-based estimates of direct radiative effects of absorbing aerosols above clouds

    NASA Astrophysics Data System (ADS)

    Feng, Nan; Christopher, Sundar A.

    2015-07-01

    The elevated layers of absorbing smoke aerosols from western African (e.g., Gabon and Congo) biomass burning activities have been frequently observed above low-level stratocumulus clouds off the African coast, which presents an excellent natural laboratory for studying the effects of aerosols above clouds (AAC) on regional energy balance in tropical and subtropical environments. Using spatially and temporally collocated Moderate Resolution Imaging Spectroradiometer, Ozone Monitoring Instrument (OMI), and Clouds and the Earth's Radiant Energy System data sets, the top-of-atmosphere shortwave aerosol direct shortwave radiative effects (ARE) of absorbing aerosols above low-level water clouds in the southeast Atlantic Ocean was examined in this study. The regional averaged instantaneous ARE has been estimated to be 36.7 ± 20.5 Wm-2 (regional mean ± standard deviation) along with a mean positive OMI Aerosol Index at 1.3 in August 2006 based on multisensors measurements. The highest magnitude of instantaneous ARE can even reach 138.2 Wm-2. We assess that the 660 nm cloud optical depth (COD) values of 8-12 is the critical value above (below) which aerosol absorption (scattering) effect dominates and further produces positive (negative) ARE values. The results further show that ARE values are more sensitive to aerosols above lower COD values than cases for higher COD values. This is among the first studies to provide quantitative estimates of shortwave ARE due to AAC events from an observational perspective.

  16. [Experimental study on CO2 absorption by aqueous ammonia-based blended absorbent].

    PubMed

    Xia, Zhi-Xiang; Xiang, Qun-Yang; Zhou, Xu-Ping; Fang, Meng-Xiang

    2014-07-01

    A crucial problem for the promising absorbent aqueous ammonia (NH3) is the low CO2 absorption rate. The mass transfer coefficient (K(G)) of CO2 in aqueous NH3-based absorbents on a wetted wall column facility was investigated. Monoethanolamine (MEA), piperazine (PZ), 1-methyl piperazine (1-MPZ) and 2-methyl piperazine (2-MPZ) were introduced into NH3 solutions as additives, all of which significantly increased the mass transfer coefficient of CO2 in the solutions. With CO2 loading of 0, 0.1, 0.3, 0.5 mol x mol(-1), K(G) of 3 mol x L(-1) NH3 + 0.3 mol x L(-1) PZ blended solution increased by 2, 2.2, 2.2, and 1.9 fold as compared to that of 3 mol x L(-1) NH3. Typically, PZ, the additive with best performance, was chosen for further study. The effects of temperature and PZ concentration on CO2 absorption in PZ solution and the blended NH3/PZ solution. The calculated pseudo first order rate constant [42.7 m3 x (mol x s)(-1)] was analyzed to further elucidate the reaction mechanism in the blended NH3/PZ solution.

  17. Absorbed Dose Calculations Using Mesh-based Human Phantoms And Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Kramer, Richard

    2011-08-01

    Health risks attributable to the exposure to ionizing radiation are considered to be a function of the absorbed or equivalent dose to radiosensitive organs and tissues. However, as human tissue cannot express itself in terms of equivalent dose, exposure models have to be used to determine the distribution of equivalent dose throughout the human body. An exposure mode