Science.gov

Sample records for absorber layer thickness

  1. Thin film CdTe solar cells with an absorber layer thickness in micro- and sub-micrometer scale

    NASA Astrophysics Data System (ADS)

    Bai, Zhizhong; Yang, Jun; Wang, Deliang

    2011-10-01

    CdTe thin film solar cell with an absorber layer as thin as 0.5 μm was fabricated. An efficiency of 7.9% was obtained for a 1-μm-thick CdTe solar cell. An increased intensity of deep recombination states in the band gap, which was responsible for the reduced open-circuit voltage and fill factor for ultra-thin solar cells, was induced due to the not-well-developed polycrystalline CdTe microstructure and the CdS/CdTe heterojunction and the presence of Cu in the back contact. The experimental results presented in this study demonstrated that 1-μm-thick absorber layer is thick enough to fabricate CdTe solar cell with a decent efficiency.

  2. Ferroelectrics based absorbing layers

    NASA Astrophysics Data System (ADS)

    Hao, Jianping; Sadaune, Véronique; Burgnies, Ludovic; Lippens, Didier

    2014-07-01

    We show that ferroelectrics-based periodic structure made of BaSrTiO3 (BST) cubes, arrayed onto a metal plate with a thin dielectric spacer film exhibit a dramatic enhancement of absorbance with value close to unity. The enhancement is found around the Mie magnetic resonance of the Ferroelectrics cubes with the backside metal layer stopping any transmitted waves. It also involves quasi-perfect impedance matching resulting in reflection suppression via simultaneous magnetic and electrical activities. In addition, it was shown numerically the existence of a periodicity optimum, which is explained from surface waves analysis along with trade-off between the resonance damping and the intrinsic loss of ferroelectrics cubes. An experimental verification in a hollow waveguide configuration with a good comparison with full-wave numerical modelling is at last reported by measuring the scattering parameters of single and dual BST cubes schemes pointing out coupling effects for densely packed structures.

  3. Frequency Controllable Metamaterial Absorber by an Added Dielectric Layer

    NASA Astrophysics Data System (ADS)

    Li, Xiong; Feng, Qin; Luo, Xiangang; Hong, Minghui

    2011-03-01

    In this paper, we introduce a covered dielectric layer in the traditional metamaterial absorber (MA) constructed by periodic resonant split rings. The absorber frequency can be simply controlled by the permittivity and the thickness of the added layer, without affecting the shape of the absorptivity spectrum. Furthermore, the dielectric loss property of the added layer does not influence the absorption characteristic obviously when the loss is not high. Based on these unique properties, a dynamically tunable MA can be realized by modulating a covered liquid dielectric layer.

  4. UDOF direct improvement by modulating mask absorber thickness

    NASA Astrophysics Data System (ADS)

    Yu, Tuan-Yen; Lio, En Chuan; Chen, Po Tsang; Wei, Chih I.; Chen, Yi Ting; Peng, Ming Chun; Chou, William; Yu, Chun Chi

    2016-10-01

    As the process generation migrate to advanced and smaller dimension or pitch, the mask and resist 3D effects will impact the lithography focus common window severely because of both individual depth-of-focus (iDOF) range decrease and center mismatch. Furthermore, some chemical or thermal factors, such as PEB (Post Exposure Bake) also worsen the usable depth-of-focus (uDOF) performance. So the mismatch of thru-pitch iDOF center should be considered as a lithography process integration issue, and more complicated to partition the 3D effects induced by optical or chemical factors. In order to reduce the impact of 3D effects induced by both optical and chemical issues, and improve iDOF center mismatch, we would like to propose a mask absorber thickness offset approach, which is directly to compensate the iDOF center bias by adjusting mask absorber thickness, for iso, semi-iso or dense characteristics in line, space or via patterns to enlarge common process window, i.e uDOF, which intends to provide similar application as Flexwave[1] (ASML trademark). By the way, since mask absorber thickness offset approach is similar to focus tuning or change on wafer lithography process, it could be acted as the process tuning method of photoresist (PR) profile optimization locally, PR scum improvement in specific patterns or to modulate etching bias to meet process integration request. For mass production consideration, and available material, current att-PSM blank, quartz, MoSi with chrome layer as hard-mask in reticle process, will be implemented in this experiment, i.e. chrome will be kept remaining above partial thru-pitch patterns, and act as the absorber thickness bias in different patterns. And then, from the best focus offset of thru-pitch patterns, the iDOF center shifts could be directly corrected and to enlarge uDOF by increasing the overlap of iDOF. Finally, some negative tone development (NTD) result in line patterns will be demonstrated as well.

  5. Analysis of single-layer metamaterial absorber with reflection theory

    NASA Astrophysics Data System (ADS)

    Xiong, Han; Tang, Ming-Chun; Hong, Jing-Song

    2015-04-01

    A reflection theory is employed to analyze a single-layered metamaterial absorber. With the necessary conditions for zero reflection, the permittivity and permeability as functions of absorptivity were obtained, which are suitable for analyzing the absorption properties of single-layered metamaterial absorber at both normal and oblique incidence cases. With the obtained expressions, it not only can explain why the absorption peaks monotonously decrease with increasing of the incident angles but also can explore the relationship between the absorptivity and spacer thickness of the dielectric slab. A Jerusalem cross metamaterial absorber was simulated and verified the validity of this proposed reflection theory. The main contribution of our work is that it can explain the physical mechanism of the various absorption peaks by using the analytical formula and highlights its potential guidance for designing and analyzing metamaterial absorbers in the future.

  6. Antireflection treatment of thickness sensitive spectrally selective (TSSS) paints for thermal solar absorbers

    SciTech Connect

    Lundh, M.; Waeckelgaard, E.; Blom, T.

    2010-01-15

    There are several methods to produce solar absorbers, and one cheap alternative is painted absorbers, preferably painted with a spectrally selective paint. The optical properties of Thickness Sensitive Spectrally Selective (TSSS) paints are, however, limited by the thickness of the paint layer. In this study it is shown that the solar absorptance of two commercial TSSS paints can be increased between 0.01 and 0.02 units with an antireflection treatment using a silicon dioxide layer deposited from silica-gel. It was found that the thermal emittance (100 C) did not change significantly after the treatment. (author)

  7. Absorbing layers for the Dirac equation

    SciTech Connect

    Pinaud, Olivier

    2015-05-15

    This work is devoted to the construction of perfectly matched layers (PML) for the Dirac equation, that not only arises in relativistic quantum mechanics but also in the dynamics of electrons in graphene or in topological insulators. While the resulting equations are stable at the continuous level, some care is necessary in order to obtain a stable scheme at the discrete level. This is related to the so-called fermion doubling problem. For this matter, we consider the numerical scheme introduced by Hammer et al. [19], and combine it with the discretized PML equations. We state some arguments for the stability of the resulting scheme, and perform simulations in two dimensions. The perfectly matched layers are shown to exhibit, in various configurations, superior absorption than the absorbing potential method and the so-called transport-like boundary conditions.

  8. Steady incompressible variable thickness shear layer aerodynamics

    NASA Technical Reports Server (NTRS)

    Chi, M. R.

    1976-01-01

    A shear flow aerodynamic theory for steady incompressible flows is presented for both the lifting and non lifting problems. The slow variation of the boundary layer thickness is considered. The slowly varying behavior is treated by using multitime scales. The analysis begins with the elementary wavy wall problem and, through Fourier superpositions over the wave number space, the shear flow equivalents to the aerodynamic transfer functions of classical potential flow are obtained. The aerodynamic transfer functions provide integral equations which relate the wall pressure and the upwash. Computational results are presented for the pressure distribution, the lift coefficient, and the center of pressure travel along a two dimensional flat plate in a shear flow. The aerodynamic load is decreased by the shear layer, compared to the potential flow. The variable thickness shear layer decreases it less than the uniform thickness shear layer based upon equal maximum shear layer thicknesses.

  9. Microwave absorption properties of double-layer absorber based on carbonyl iron/barium hexaferrite composites

    NASA Astrophysics Data System (ADS)

    Ren, Xiaohu; Fan, Huiqing; Cheng, Yankui

    2016-05-01

    The microwave absorption properties of BaCo0.4Zn1.6Fe16O27 ferrite and carbonyl iron powder with single-layer and double-layer composite absorbers were investigated based on the electromagnetic transmission line theory in the frequency range from 1 to 14 GHz. XRD was used to characterize the structure of prepared absorbing particles. SEM was used to examine the micromorphology of the particles and composites. The complex permittivity and permeability of composites were measured by using a vector network analyzer. The reflection loss of the single-layer and double-layer absorbers with different thicknesses and orders was investigated. The results show that double-layer absorbers have better microwave absorption properties than single-layer absorbers. The microwave absorption properties of the double-layer structure are influenced by the coupling interactions between the matching and absorption layers. As the pure ferrite used as matching layer and the composite of BF-5CI used as absorption, the minimum RL of absorber can achieve to -55.4 dB and the bandwidth of RL <-10 dB ranged from 5.6 to 10.8 GHz when the thicknesses of matching layer and absorption layer were 0.9 and 1.4 mm, respectively.

  10. Laser-induced back-side etching with liquid and the solid hydrocarbon absorber films of different thicknesses

    NASA Astrophysics Data System (ADS)

    Ehrhardt, M.; Lorenz, P.; Yunxiang, P.; Bayer, L.; Han, B.; Zimmer, K.

    2017-04-01

    Laser-induced backside wet and dry etching (LIBWE and LIBDE) are methods for high-quality surface patterning of transparent dielectrics that making use of an additional absorber material attached to the rear side that is ablated in a confined configuration. Due to the manifold of the involved processes, the mechanism of the etching process and the parameter influence on the material removal process are multifaceted and not fully understood yet. In the present paper, we investigate the influence of the confinement to the backside etching process by studying the impact of the thickness of the attached liquid or solid absorber within a range of 12-125 and 0.2-11.7 μm, respectively. It was found that for the liquid and solid absorbers, the etching rate increases with the thickness of the absorber layer and saturates exceeding a certain value, which depends on the used laser fluence. Moreover, the incubation of etching depends on the absorber thickness. The comparison of the etching results of a similar thickness of the liquid and the solid absorber layers shows that the phase of the absorber (liquid or solid) does not influence the back-side etching process. Time-resolved shadowgraph images of the process indicate that with higher absorber layer thickness, the interaction time and strength of the laser-induced processes at the sample surface increase. The results suggest that confinement of the rear side attached absorber ablation influences the impact of the laser-induced secondary processes to the strength of the material modifications and, therefore, the etching rate.

  11. Imaging Absorbing Structures Embedded in Thick Diffusing Media.

    NASA Astrophysics Data System (ADS)

    Dilworth, David Saunders

    Linear systems models and confocal imaging techniques are applied to the problem of imaging absorbing structures embedded in thick diffusing media. At the microscopic level, the model is linear in complex field and space variant; at the macroscopic level where spatial averaging processes are considered the model is linear in irradiance and space variant, thereby becoming mathematically more tractable. We describe the planar confocal imager, in which a small spot of light scans the front surface of a diffuser, and the light distribution on the back surface is sampled for each position of the scanning spot. A composite image is then formed by selection of one pixel from each of the 25,600 images, viz., a pixel from a spot opposite or nearly opposite from the scanning spot. The overall process is effectively a confocal imaging process. The planar system can be modified to create 3-D confocal imaging, where many stereo image pairs are created of the absorbing structures within a thick diffuser. Techniques for both planar and exfoliative deconvolution are investigated. Planar deconvolution sharpens images affected by space invariant processes in which the image point spread function is always the same. Exfoliatative deconvolution is a systematic method for sharpening images formed by space variant processes in which the point spread function varies in accordance with the depth of the embedded object. Results from planar and 3-D confocal scanning verify the linear systems model and demonstrate that the broad beam point spread function width (the point spread function formed by conventional, non-confocal imaging) can be reduced by a factor of 2. Results from planar and exfoliative deconvolution demonstrate that the confocal point spread function width can be reduced by a factor of 1.5. Preliminary optical and data processing techniques are discussed for developing a coherent confocal scanner. The image resolution from this type of scanner will be determined by the

  12. Effect of low-Z absorber's thickness on gamma-ray shielding parameters

    NASA Astrophysics Data System (ADS)

    Mann, Kulwinder Singh; Heer, Manmohan Singh; Rani, Asha

    2015-10-01

    Gamma ray shielding behaviour of any material can be studied by various interaction parameters such as total mass attenuation coefficient (μm); half value layer (HVL); tenth value layer (TVL); effective atomic number (Zeff), electron density (Nel), effective atomic weight (Aeff) and buildup factor. For gamma rays, the accurate measurements of μm (cm2 g-1) theoretically require perfect narrow beam irradiation geometry. However, the practical geometries used for the experimental investigations deviate from perfect-narrowness thereby the multiple scattered photons cause systematic errors in the measured values of μm. Present investigation is an attempt to find the optimum value of absorber thickness (low-Z) for which these errors are insignificant and acceptable. Both experimental and theoretical calculations have been performed to investigate the effect of absorber's thickness on μm of six low-Z (10absorbers with thickness ≤0.5 mean free paths, thus considered it as optimum thickness for low-Z materials in the selected energy range. White cement was found to possess maximum shielding effectiveness for the selected gamma rays.

  13. Preparation of Cu2ZnSnSe4 Absorber Layer by Nonvacuum Method

    NASA Astrophysics Data System (ADS)

    Liu, Shang-En; Lin, Yu-Hsuan; Huang, Hou-Ying

    2013-12-01

    Cu2ZnSnSe4 (CZTSe) was prepared by a nonvacuum, solution-based method, and used as an absorber layer in CZTSe solar cells. Copper(II) acetate monohydrate, zinc(II) acetate dehydrate, and tin(II) chloride dihydrate were used as the starting materials of the sol-gel method, and 2-methoxyethanol and monoethanolamine were used as the solvent and stabilizer, respectively. The precursor solution was deposited on Mo-coated soda lime glass (SLG) by spin-coating, then annealed at 570 °C in selenium atmosphere to convert it into the CZTSe absorber layer. The synthesized CZTSe absorber layer phase was identified by X-ray diffraction (XRD) and Raman spectrum analyses. By increasing the number of spin-coating/drying cycles, the CZTSe absorber layer thickness was increased and resulted in a current density increase in the current-voltage curve. Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) were carried out to confirm the absorber layer thickness and metal ratios. The highest efficiency of the solar cell was 1.08% with a 1.45 µm absorber layer.

  14. Extremely efficient and recyclable absorbents for oily pollutants enabled by ultrathin-layered functionalization.

    PubMed

    Wang, Qianqian; Wang, Hanghua; Xiong, Sen; Chen, Rizhi; Wang, Yong

    2014-11-12

    Oils and organic solvents that leak into water bodies must be promptly removed to avoid ecological disasters, for example, by selective absorption using oleophilic absorbents. However, it remains a challenge for the low-cost synthesis of efficient and recyclable absorbents for oily pollutants. By surface functionalization to inexpensive polyurethane (PU) foams, we synthesize oil absorbents exhibiting the highest absorption capacity and the best recyclability among all polymeric absorbents. The synthesis is enabled by atomic layer deposition of ∼5 nm-thick Al2O3 transition layer onto the skeleton surface of PU foams, followed by coupling a single-molecule layer of silanes to the Al2O3 layer. The sub-10 nm functionalization layer provides the PU foam an outstanding water-repelling and oil-absorbing functionality without compromising its high porosity and elasticity. The functionalized foam is able to quickly absorb oily pollutants spread on water surfaces or precipitated in water with a capacity more than 100 times its own weight. This ultrathin-layer-functionalization method is also applicable to renewable porous biomaterials, providing a sustainable solution for oil spills. Moreover, we propose devices than can continuously operate to efficiently collect oil spills from water surfaces based on the functionalized PU foam developed in this work.

  15. Synthesis and absorbing mechanism of two-layer microwave absorbers containing polycrystalline iron fibers and carbonyl iron

    NASA Astrophysics Data System (ADS)

    Ding, Qingwei; Zhang, Mingang; Zhang, Cunrui; Qian, Tianwei

    2013-04-01

    Polycrystalline iron fibers were fabricated by α-FeOOH fiber precursors. Two-layer microwave absorber had been prepared by as-prepared polycrystalline iron fibers and carbonyl iron. The structure, morphology and properties of the composites were characterized with X-ray diffraction, scanning electron microscope and Network Analyzer. The complex permittivity and reflection loss (dB) of the composites were measured employing vector network analyzer model PNA 3629D vector in the frequency range between 30 and 6000 MHz. The thickness effect of the carbonyl iron layer on the microwave loss properties of the composites was investigated. A possible microwave-absorbing mechanism of polycrystalline iron fibers/carbonyl iron composite was proposed. The polycrystalline iron fibers/carbonyl iron composite can find applications in suppression of electromagnetic interference, and reduction of radar signature.

  16. Relationship Between Absorber Layer Properties and Device Operation Modes For High Efficiency Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Ravichandran, Ram; Kokenyesi, Robert; Wager, John; Keszler, Douglas; CenterInverse Design Team

    2014-03-01

    A thin film solar cell (TFSC) can be differentiated into two distinct operation modes based on the transport mechanism. Current TFSCs predominantly exploit diffusion to extract photogenerated minority carriers. For efficient extraction, the absorber layer requires high carrier mobilities and long minority carrier lifetimes. Materials exhibiting a strong optical absorption onset near the fundamental band gap allows reduction of the absorber layer thickness to significantly less than 1 μm. In such a TFSC, a strong intrinsic electric field drives minority carrier extraction, resulting in drift-based transport. The basic device configuration utilized in this simulation study is a heterojunction TFSC with a p-type absorber layer. The diffusion/drift device operation modes are simulated by varying the thickness and carrier concentration of the absorber layer, and device performance between the two modes is compared. In addition, the relationship between device operation mode and transport properties, including carrier mobility and minority carrier lifetime are explored. Finally, candidate absorber materials that enable the advantages of a drift-based TFSC developed within the Center for Inverse Design are presented. School of Electrical Engineering and Computer Science.

  17. Expanded graphite—Phenolic resin composites based double layer microwave absorber for X-band applications

    NASA Astrophysics Data System (ADS)

    Gogoi, Jyoti Prasad; Bhattacharyya, Nidhi Saxena

    2014-11-01

    In this investigation, double layer microwave absorbers are designed and developed with paired combination of 5 wt. %, 7 wt. %, 8 wt. %, and 10 wt. % expanded graphite-novolac phenolic resin (EG-NPR) composites, in the frequency range of 8.2-12.4 GHz. The thickness and compositional combination of the two layers constituting the absorber are optimized to achieve minimum value of reflection loss (dB) and a broad microwave absorption bandwidth. Double layer combinations showing -25 dB absorption bandwidth >2 GHz and -30 dB absorption bandwidth >1 GHz are chosen for fabrication. The total thickness of the fabricated double layer microwave absorber is varied from 3 mm to 3.4 mm. Absorption bandwidths at -10 dB, -20 dB, -25 dB and -30 dB are determined for the fabricated structure. The maximum -25 dB and -30 dB absorption bandwidth of 2.47 GHz and 1.77 GHz, respectively, are observed for the double layer structure with (5 wt. %-8 wt. %) EG-NPR composites with total thickness of 3.2 mm, while -10 dB bandwidth covers the entire X-band range.

  18. Stratocumulus to Cumulus Transition Capped by a Light-Absorbing Smoke Layer

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Feingold, G.; Kazil, J.; McComiskey, A. C.

    2015-12-01

    Biomass burning aerosol emitted from Africa seasonally advects over the eastern Atlantic and forms a layer of light-absorbing smoke above stratocumulus clouds, which influences heating profiles, dynamics, and cloud microphysics. In this study, large-eddy simulation is used to investigate the effect of the absorbing smoke layer on the stratocumulus to cumulus transition (SCT). A prognostic absorbing smoke model incorporates humidity effects on optical properties, and is coupled with a two-moment bulk microphysics scheme and an interactive radiation code. Smoke both absorbs shortwave radiation and acts as cloud condensation nuclei (CCN). Simulations are of three day duration. The simulations assess sensitivity of the SCT to distance of the smoke layer from the cloud top, aerosol optical thickness and single scattering albedo, and precipitation. Our simulations show that 1) As a shortwave absorber, the smoke stabilizes the free atmosphere and strengthens the temperature jump at the boundary layer top, which limits entrainment; 2) Smoke helps evaporate cloud during daytime, which amplifies the diurnal cycle of cloud cover; 3) As a source of CCN, the entrained smoke suppresses rain formation, which inhibits precipitation-generated cloud breakup. The net effect of smoke is modification of heating profiles to limit the deepening of the planetary boundary layer, and suppression of precipitation. This leads to enhancement of the diurnal cycle of cloudiness but a delay in the SCT.

  19. Perfectly matched layer absorbing boundary condition for nonlinear two-fluid plasma equations

    NASA Astrophysics Data System (ADS)

    Sun, X. F.; Jiang, Z. H.; Hu, X. W.; Zhuang, G.; Jiang, J. F.; Guo, W. X.

    2015-04-01

    Numerical instability occurs when coupled Maxwell equations and nonlinear two-fluid plasma equations are solved using finite difference method through parallel algorithm. Thus, a perfectly matched layer (PML) boundary condition is set to avoid the instability caused by velocity and density gradients between vacuum and plasma. A splitting method is used to first decompose governing equations to time-dependent nonlinear and linear equations. Then, a proper complex variable is used for the spatial derivative terms of the time-dependent nonlinear equation. Finally, with several auxiliary function equations, the governing equations of the absorbing boundary condition are derived by rewriting the frequency domain PML in the original physical space and time coordinates. Numerical examples in one- and two-dimensional domains show that the PML boundary condition is valid and effective. PML stability depends on the absorbing coefficient and thickness of absorbing layers.

  20. Development of 4-Pixel-Array TES Microcalorimeters with Mushroom-Shaped Absorbers with Insulating Layers Supporting Overhang Regions

    NASA Astrophysics Data System (ADS)

    Maehata, K.; Iyomoto, N.; Maeda, M.; Ezaki, S.; Takano, A.; Matsumura, S.; Hara, T.; Mitsuda, K.; Yamasaki, N. Y.; Tanaka, K.

    2014-08-01

    A four-pixel-array superconducting transition-edge sensor (TES) microcalorimeter with a mushroom-shaped absorber was developed for energy dispersive spectroscopy performed on a transmission electron microscope. The TES consists of a bilayer of Au/Ti with either a 120- or 50-nm thickness. The absorber is made from a Au layer and its stem is deposited in the center of the TES surface. A TaO insulating layer of 100-nm thickness is inserted between the overhang region of the absorber and the TES surface. Two types of microcalorimeter were fabricated with differing absorber thicknesses of 0.5 and 5.0 m. An energy resolution of 15 eV FWHM with 5.9-keV X-rays was obtained using the 0.5-m-type microcalorimeter.

  1. Effect of layer thickness on device response of silicon heavily supersaturated with sulfur

    NASA Astrophysics Data System (ADS)

    Hutchinson, David; Mathews, Jay; Sullivan, Joseph T.; Akey, Austin; Aziz, Michael J.; Buonassisi, Tonio; Persans, Peter; Warrender, Jeffrey M.

    2016-05-01

    We report on a simple experiment in which the thickness of a hyperdoped silicon layer, supersaturated with sulfur by ion implantation followed by pulsed laser melting and rapid solidification, is systematically varied at constant average sulfur concentration, by varying the implantation energy, dose, and laser fluence. Contacts are deposited and the external quantum efficiency (EQE) is measured for visible wavelengths. We posit that the sulfur layer primarily absorbs light but contributes negligible photocurrent, and we seek to support this by analyzing the EQE data for the different layer thicknesses in two interlocking ways. In the first, we use the measured concentration depth profiles to obtain the approximate layer thicknesses, and, for each wavelength, fit the EQE vs. layer thickness curve to obtain the absorption coefficient of hyperdoped silicon for that wavelength. Comparison to literature values for the hyperdoped silicon absorption coefficients [S.H. Pan et al. Applied Physics Letters 98, 121913 (2011)] shows good agreement. Next, we essentially run this process in reverse; we fit with Beer's law the curves of EQE vs. hyperdoped silicon absorption coefficient for those wavelengths that are primarily absorbed in the hyperdoped silicon layer, and find that the layer thicknesses obtained from the fit are in good agreement with the original values obtained from the depth profiles. We conclude that the data support our interpretation of the hyperdoped silicon layer as providing negligible photocurrent at high S concentrations. This work validates the absorption data of Pan et al. [Applied Physics Letters 98, 121913 (2011)], and is consistent with reports of short mobility-lifetime products in hyperdoped layers. It suggests that for optoelectronic devices containing hyperdoped layers, the most important contribution to the above band gap photoresponse may be due to photons absorbed below the hyperdoped layer.

  2. Impact of structural heterogeneity in solar absorber layers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Toney, Michael

    2016-09-01

    Impact of structural heterogeneity in solar absorber layers Michael F Toney SLAC National Accelerator Laboratory Structural and morphological heterogeneity is common in thin film and emerging solar cell absorber layers, including organic photovoltaic bulk heterojunctions (OPV BHJs), hybrid organic-inorganic perovskites (HOIP), and Cu2ZnSn(S,Se)4 (CZTSSe), and has a significant impact on the (opto)electronic heterogeneity and hence absorber properties. In this talk I will use X-ray based methods, including scattering and spectroscopies, to characterize and quantify the heterogeneity in OPV BHJs and HOIP absorber layers. The BHJ films are blends of the small molecule X2 and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) where it has been established that there are three distinct region of the films - pure PC71BM, pure X2 and intimately mixed X2:PC71BM. This talk will show how the absolute concentration of the mixed phase can be used to explain the large PC71BM:X2 composition range where good performance is observed [1]. The talk will also show that spin cast CH3NH3PbI3 films consistent of both crystalline and amorphous regions, which can explain previous heterogeneity in the PL imaging [2]. [1] Huang et al., Adv. Energy Mater. 4, 1301886 (2014). [2] deQuilettes et al., Science 348, 683 (2015).

  3. System for etching thick aluminum layers minimizes bridging and undercutting

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Four step photoresist process for etching thick aluminum layers for semiconductor device contacts produces uniform contact surfaces, eliminates bridging, minimizes undercutting, and may be used on various materials of any thickness.

  4. Assessment of Bulk Absorber Properties for Multi-Layer Perforates in Porous Honeycomb Liners

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Parrott, Tony L.

    2006-01-01

    CONTINUING progress in materials technology provides potential for improved acoustic liners for attenuating broadband fan noise emissions from aircraft engine nacelles. Conventional liners (local-reacting perforate-over-honeycomb structures) provide significant narrow-band attenuation, but limited attenuation over wide bandwidths. Two approaches for increasing attenuation bandwidth are to (1) replace the honeycomb structure with bulk material, or (2) cascade multiple layers of perforate/honeycomb structures. Usage of the first approach is limited because of mechanical and maintenance reasons, while multi-layer liners are limited to about three layers because of their additional mechanical complexity, depth and weight. The current research concerns a novel approach reported by the University of Cincinnati, in which a single-layer conventional liner is converted into an extended-reaction, broadband absorber by making the honeycomb core structure porous. This modified single-layer liner requires no increase in depth and weight, and minimal increase in mechanical complexity. Langley has initiated research to identify potential benefits of liner structures with porous cell walls. This research has two complementary goals: (1) develop and validate experimental techniques for treating multi-layer perforates (representative of the internal cells of a liner with porous cell walls) as 1-D bulk materials, and (2) develop analytical approaches to validate this bulk material assumption. If successful, the resultant model can then be used to design optimized porous honeycomb liners. The feasibility of treating an N-layer perforate system (N porous plates separated by uniform air gaps) as a one-dimensional bulk absorber is assessed using the Two-Thickness Method (TTM), which is commonly used to educe bulk material intrinsic acoustic parameters. Tests are conducted with discrete tone and random noise sources, over an SPL range sufficient to determine the nonlinearity of the test

  5. The Effects of an Absorbing Smoke Layer on MODIS Marine Boundary Layer Cloud Optical Property Retrievals and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Meyer, Kerry; Platnick, Steven

    2012-01-01

    Clouds, aerosols, and their interactions are widely considered to be key uncertainty components in our current understanding of the Earth's atmosphere and radiation budget. The work presented here is focused on the quasi-permanent marine boundary layer . (MBL) clouds off the southern Atlantic coast of Africa and the effects on MODIS cloud optical property retrievals (MOD06) of an overlying absorbing smoke layer. During much of August and September, a persistent smoke layer resides over this region, produced from extensive biomass burning throughout the southern African savanna. The resulting absorption, which increases with decreasing wavelength, potentially introduces biases into the MODIS cloud optical property retrievals of the underlying MBL clouds. This effect is more pronounced in the cloud optical thickness retrievals, which over ocean are derived from the wavelength channel centered near 0.86 micron (effective particle size retrievals are derived from the longer-wavelength near-IR channels at 1.6, 2.1, and 3.7 microns). Here, the spatial distributions of the scalar statistics of both the cloud and aerosol layers are first determined from the CALIOP 5 km layer products. Next, the MOD06 look-up tables (LUTs) are adjusted by inserting an absorbing smoke layer of varying optical thickness over the cloud. Retrievals are subsequently performed for a subset of MODIS pixels collocated with the CALIOP ground track, using smoke optical thickness from the CALIOP 5km aerosol layer product to select the appropriate LUT. The resulting differences in cloud optical property retrievals due to the inclusion of the smoke layer in the LUTs will be examined. In addition, the direct radiative forcing of this smoke layer will be investigated from the perspective of the cloud optical property retrieval differences.

  6. Study on metal microparticle content of the material transferred with Absorbing Film Assisted Laser Induced Forward Transfer when using silver absorbing layer

    NASA Astrophysics Data System (ADS)

    Smausz, T.; Hopp, B.; Kecskeméti, G.; Bor, Z.

    2006-04-01

    Absorbing Film Assisted Laser Induced Forward Transfer (AFA-LIFT) is a modified LIFT method where a high absorption coefficient thin film coating of a transparent substrate is used to transform the laser energy into kinetic in order to transfer the "target" material spread on it. This method can be used for the transfer of biomaterials and living cells, which could be damaged by direct irradiation of the laser beam. In previous experiments, ˜50-100 nm thick metal films have been used as absorbing layer. The transferred material can also contain metal microparticles originating from the absorbing thin film and acting as non-desired impurities in some cases. The aim of our work was to study how the properties (number, size and covered area) of metal particles transferred during the AFA-LIFT process depend on film thickness and the applied fluence. Silver thin films with different thickness (50-400 nm) were used as absorbing layers and real experimental conditions were modeled by a 100 μm thick water layer. The particles transferred without the use of water layer were also studied. The threshold laser fluence for the complete removal of the absorber from the irradiated area was found to strongly increase with increasing film thickness. The deposited micrometer and submicrometer particles were observed with optical microscope and atomic force microscope. Their size ranged from 100 nm to 20 μm and depended on the laser fluence. The increase in fluence resulted in an increasing number of particles of smaller average size.

  7. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films

    PubMed Central

    Kocer, Hasan; Butun, Serkan; Palacios, Edgar; Liu, Zizhuo; Tongay, Sefaattin; Fu, Deyi; Wang, Kevin; Wu, Junqiao; Aydin, Koray

    2015-01-01

    Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2) phase transition. Using planar layered thin film structures, where top layer is chosen to be an ultrathin (20 nm) VO2 film, we demonstrate broadband IR light absorption tuning (from ~90% to ~30% in measured absorption) over the entire mid-wavelength infrared spectrum. Our numerical and experimental results indicate that the bandwidth of the absorption bands can be controlled by changing the dielectric spacer layer thickness. Broadband tunable absorbers can find applications in absorption filters, thermal emitters, thermophotovoltaics and sensing. PMID:26294085

  8. Antimony sulphide, an absorber layer for solar cell application

    NASA Astrophysics Data System (ADS)

    Ali, N.; Hussain, Arshad; Ahmed, R.; Shamsuri, W. N. Wan; Shaari, A.; Ahmad, N.; Abbas, S. M.

    2016-01-01

    Replacement of the toxic, expensive and scarce materials with nontoxic, cheap and earth-abundant one, in solar cell absorber layer, is immensely needed to realize the vision of green and sustainable energy. Two-micrometre-thin antimony sulphide film is considered to be adequate as an absorbing layer in solar cell applications. In this paper, we synthesize antimony sulphide thin films on glass substrate by physical vapour deposition technique, and the obtained films were then annealed at different temperatures (150-250 °C). The as-deposited and annealed samples were investigated for structural and optoelectronic properties using different characterization techniques. The X-ray diffraction analysis showed that the annealed samples were polycrystalline with Sb2S3 phase, while the as-deposited sample was amorphous in nature. The optical properties are measured via optical ellipsometric techniques. The measured absorbance of the film is adequately high, and every photon is found to be absorbed in visible and NIR range. The conductivity type of the films measured by hot-point probe technique is determined to be p-type. The optical band gap of the resulted samples was in the range (2.4-1.3 eV) for the as-deposited and annealed films.

  9. On the Absorber Thickness of Microcalorimetric Detectors in Experiments at Nuclear Storage Rings

    NASA Astrophysics Data System (ADS)

    Andrianov, V. A.; Kraft-Bermuth, S.; Scholz, P.

    2016-07-01

    Low-temperature calorimetric detectors are now successfully used in experiments on Lamb-Shift measurements at experimental storage rings. Strong Doppler broadening of the detected X-ray lines is a prominent feature of these experiments. Accordingly, an optimization procedure for the absorber thickness is proposed that considers the self-width of the X-ray detector line, the Doppler broadening, and the absorption efficiency, taking into account the possibility of the escape of secondary radiation. The optimum thickness for Sn-absorbers in this type of experiments is determined as 0.17 mm.

  10. Spray CVD for Making Solar-Cell Absorber Layers

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Harris, Jerry; Jin, Michael H.; Hepp, Aloysius

    2007-01-01

    Spray chemical vapor deposition (spray CVD) processes of a special type have been investigated for use in making CuInS2 absorber layers of thin-film solar photovoltaic cells from either of two subclasses of precursor compounds: [(PBu3) 2Cu(SEt)2In(SEt)2] or [(PPh3)2Cu(SEt)2 In(SEt)2]. The CuInS2 films produced in the experiments have been characterized by x-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and four-point-probe electrical tests.

  11. A robust absorbing layer method for anisotropic seismic wave modeling

    SciTech Connect

    Métivier, L.; Brossier, R.; Labbé, S.; Operto, S.; Virieux, J.

    2014-12-15

    When applied to wave propagation modeling in anisotropic media, Perfectly Matched Layers (PML) exhibit instabilities. Incoming waves are amplified instead of being absorbed. Overcoming this difficulty is crucial as in many seismic imaging applications, accounting accurately for the subsurface anisotropy is mandatory. In this study, we present the SMART layer method as an alternative to PML approach. This method is based on the decomposition of the wavefield into components propagating inward and outward the domain of interest. Only outgoing components are damped. We show that for elastic and acoustic wave propagation in Transverse Isotropic media, the SMART layer is unconditionally dissipative: no amplification of the wavefield is possible. The SMART layers are not perfectly matched, therefore less accurate than conventional PML. However, a reasonable increase of the layer size yields an accuracy similar to PML. Finally, we illustrate that the selective damping strategy on which is based the SMART method can prevent the generation of spurious S-waves by embedding the source in a small zone where only S-waves are damped.

  12. On the parameters of absorbing layers for shallow water models

    NASA Astrophysics Data System (ADS)

    Modave, Axel; Deleersnijder, Éric; Delhez, Éric J. M.

    2010-02-01

    Absorbing/sponge layers used as boundary conditions for ocean/marine models are examined in the context of the shallow water equations with the aim to minimize the reflection of outgoing waves at the boundary of the computational domain. The optimization of the absorption coefficient is not an issue in continuous models, for the reflection coefficient of outgoing waves can then be made as small as we please by increasing the absorption coefficient. The optimization of the parameters of absorbing layers is therefore a purely discrete problem. A balance must be found between the efficient damping of outgoing waves and the limited spatial resolution with which the resulting spatial gradients must be described. Using a one-dimensional model as a test case, the performances of various spatial distributions of the absorption coefficient are compared. Two shifted hyperbolic distributions of the absorption coefficient are derived from theoretical considerations for a pure propagative and a pure advective problems. These distribution show good performances. Their free parameter has a well-defined interpretation and can therefore be determined on a physical basis. The properties of the two shifted hyperbolas are illustrated using the classical two-dimensional problems of the collapse of a Gaussian-shaped mound of water and of its advection by a mean current. The good behavior of the resulting boundary scheme remains when a full non-linear dynamics is taken into account.

  13. Reliability of Intra-Retinal Layer Thickness Estimates

    PubMed Central

    Oberwahrenbrock, Timm; Weinhold, Maria; Mikolajczak, Janine; Zimmermann, Hanna; Paul, Friedemann; Beckers, Ingeborg; Brandt, Alexander U.

    2015-01-01

    Purpose Measurement of intra-retinal layer thickness using optical coherence tomography (OCT) has become increasingly prominent in multiple sclerosis (MS) research. Nevertheless, the approaches used for determining the mean layer thicknesses vary greatly. Insufficient data exist on the reliability of different thickness estimates, which is crucial for their application in clinical studies. This study addresses this lack by evaluating the repeatability of different thickness estimates. Methods Studies that used intra-retinal layer segmentation of macular OCT scans in patients with MS were retrieved from PubMed. To investigate the repeatability of previously applied layer estimation approaches, we generated datasets of repeating measurements of 15 healthy subjects and 13 multiple sclerosis patients using two OCT devices (Cirrus HD-OCT and Spectralis SD-OCT). We calculated each thickness estimate in each repeated session and analyzed repeatability using intra-class correlation coefficients and coefficients of repeatability. Results We identified 27 articles, eleven of them used the Spectralis SD-OCT, nine Cirrus HD-OCT, two studies used both devices and two studies applied RTVue-100. Topcon OCT-1000, Stratus OCT and a research device were used in one study each. In the studies that used the Spectralis, ten different thickness estimates were identified, while thickness estimates of the Cirrus OCT were based on two different scan settings. In the simulation dataset, thickness estimates averaging larger areas showed an excellent repeatability for all retinal layers except the outer plexiform layer (OPL). Conclusions Given the good reliability, the thickness estimate of the 6mm-diameter area around the fovea should be favored when OCT is used in clinical research. Assessment of the OPL was weak in general and needs further investigation before OPL thickness can be used as a reliable parameter. PMID:26349053

  14. Thickness of the retinal nerve fiber layer in primate eyes.

    PubMed

    Radius, R L

    1980-09-01

    Thickness of the retinal nerve fiber layer is studied in the eyes of three primate species. Measurements are made at various points throughout the fundus, including the peripapillary, arcuate, macular (area centralis), equatorial, and peripheral parts of the retina. Anatomic findings are compared with the clinical appearance of retinal light reflexes in these way. It is proposed that the nature of this light reflex is, in part, determined by the thickness of the retinal nerve fiber layer.

  15. Measurements of the Thermal Neutron Macroscopic Absorption Cross Section for Neutron Absorbing Layers

    NASA Astrophysics Data System (ADS)

    Kiyani, Abouzar; Rostam, G. Gh.; Sadat Kiai, S. M.; Bakhsh, Hossin Jahan; Mahdavi, Farzad

    2011-12-01

    Objective of this study is measuring the macroscopic cross section of a neutron absorbing layer for thermal neutrons. For this purpose a neutron source and BF 3 detector have been applied. For measuring macroscopic cross section of thermal neutrons by the Formula, it is necessary to provide suitable geometric conditions in order to assume the production and build-up coefficient to be the unit value (=1). To fulfill required conditions for this assumption, surface of the detector is covered with a 2 mm thick layer of cadmium. Radiation window of the detector has a 3 cm diameter, situated directly in front of the source. By placing the cadmium cover over the detector, variation of values verses thickness of absorbent layer, renders linear function behavior, making it possible to measure the macroscopic cross section. The next stage is applying the MCNP code by simulating F1 tally and cosine-cards for calculating Total Macroscopic Cross-Section. Validation of this study is achieved through comparison of simulation by the MCNP code and results rendered by experiment measurements.

  16. Dependence of lattice strain relaxation, absorbance, and sheet resistance on thickness in textured ZnO@B transparent conductive oxide for thin-film solar cell applications

    PubMed Central

    Kou, Kuang-Yang; Huang, Yu-En; Chen, Chien-Hsun

    2016-01-01

    Summary The interplay of surface texture, strain relaxation, absorbance, grain size, and sheet resistance in textured, boron-doped ZnO (ZnO@B), transparent conductive oxide (TCO) materials of different thicknesses used for thin film, solar cell applications is investigated. The residual strain induced by the lattice mismatch and the difference in the thermal expansion coefficient for thicker ZnO@B is relaxed, leading to an increased surface texture, stronger absorbance, larger grain size, and lower sheet resistance. These experimental results reveal the optical and material characteristics of the TCO layer, which could be useful for enhancing the performance of solar cells through an optimized TCO layer. PMID:26925355

  17. Dependence of lattice strain relaxation, absorbance, and sheet resistance on thickness in textured ZnO@B transparent conductive oxide for thin-film solar cell applications.

    PubMed

    Kou, Kuang-Yang; Huang, Yu-En; Chen, Chien-Hsun; Feng, Shih-Wei

    2016-01-01

    The interplay of surface texture, strain relaxation, absorbance, grain size, and sheet resistance in textured, boron-doped ZnO (ZnO@B), transparent conductive oxide (TCO) materials of different thicknesses used for thin film, solar cell applications is investigated. The residual strain induced by the lattice mismatch and the difference in the thermal expansion coefficient for thicker ZnO@B is relaxed, leading to an increased surface texture, stronger absorbance, larger grain size, and lower sheet resistance. These experimental results reveal the optical and material characteristics of the TCO layer, which could be useful for enhancing the performance of solar cells through an optimized TCO layer.

  18. New layer thickness parameterization of diffusive convection in the ocean

    NASA Astrophysics Data System (ADS)

    Zhou, Sheng-Qi; Lu, Yuan-Zheng; Song, Xue-Long; Fer, Ilker

    2016-03-01

    In the present study, a new parameterization is proposed to describe the convecting layer thickness in diffusive convection. By using in situ observational data of diffusive convection in the lakes and oceans, a wide range of stratification and buoyancy flux is obtained, where the buoyancy frequency N varies between 10-4 and 0.1 s-1 and the heat-related buoyancy flux qT varies between 10-12 and 10-7 m2 s-3. We construct an intrinsic thickness scale, H0 =[qT3 / (κTN8) ] 1 / 4, here κT is the thermal diffusivity. H0 is suggested to be the scale of an energy-containing eddy and it can be alternatively represented as H0 = ηRebPr1/4, here η is the dissipation length scale, Reb is the buoyant Reynolds number, and Pr is the Prandtl number. It is found that the convective layer thickness H is directly linked to the stability ratio Rρ and H0 with the form of H ∼ (Rρ - 1)2H0. The layer thickness can be explained by the convective instability mechanism. To each convective layer, its thickness H reaches a stable value when its thermal boundary layer develops to be a new convecting layer.

  19. Designing and adjusting the thickness of polyvinylpyrrolidone waveguide layer on plasmonic nanofilm for humidity sensing

    NASA Astrophysics Data System (ADS)

    Feng, Zhiqing; Bai, Lan; Guo, Lijiao; Cao, Baosheng; Wu, Jinlei; He, Yangyang

    2017-01-01

    We developed a fast response and high-resolution plasmonic waveguide sensor for sensing environmental humidity by converting the optical signal in the visible light region. The sensor was designed as a layer-on-layer film structure in which the hydrophilic polymer of polyvinylpyrrolidone (PVP) film served as the waveguide layer and was dip-coated onto the plasmonic gold (Au) nanofilm for sensing the environmental humidity. The amount of the absorbed water molecules on the PVP layer could affect the refractive index and thickness of the PVP, leading to a shift of the surface plasmon resonance peak position of Au nanofilm at the different order modes of the waveguide. The theoretic calculations indicated that the optimal thickness of the waveguide layer on the Au nanofilm ranged from 550 to 650 nm. By adjusting the thickness of the PVP layer to 560 nm, the high-resolution optical signals were observed in the visible light region with the humidity shifts ranging from 11% to 85% relative humidity (RH). Our work details a successful attempt to design and prepare the plasmonic waveguide sensor with the lost-cost polymer as the sensing layer for real-time detection of environmental humidity.

  20. Mid-infrared broadband absorber of full semiconductor epi-layers

    NASA Astrophysics Data System (ADS)

    Wang, Shaohua; Wang, Yufei; Zhang, Siriguleng; Zheng, Wanhua

    2017-04-01

    We demonstrate mid-infrared dual channel near-perfect absorbers based on full semiconductor epi-layers theoretically. Strong absorption (>99.9%) is observed at 25.04 THz. Through introducing composite grating and controlling the thickness of the dielectric layer, we can get a broadband absorption with absorptivity above 80% at the range from 8 μm to 12 μm with a good incidence angle tolerance. The structure investigated in this paper shows a broadband, all-semiconductor, plasmonic architecture, which is of great importance for many applications such as bolometers, cloaking, imaging devices and also can be used in enhancing interaction of mid-infrared radiation with integrated semiconductor optoelectronic elements.

  1. Comparison of GEANT4 Simulations with Experimental Data for Thick Al Absorbers

    SciTech Connect

    Yevseyeva, Olga; Assis, Joaquim de; Diaz, Katherin; Lopes, Ricardo

    2009-06-03

    Proton beams in medical applications deal with relatively thick targets like the human head or trunk. Therefore, relatively small differences in the total proton stopping power given, for example, by the different models provided by GEANT4 can lead to significant disagreements in the final proton energy spectra when integrated along lengthy proton trajectories. This work presents proton energy spectra obtained by GEANT4.8.2 simulations using ICRU49, Ziegler1985 and Ziegler2000 models for 19.68 MeV protons passing through a number of Al absorbers with various thicknesses. The spectra were compared with the experimental data, with TRIM/SRIM2008 and MCNPX2.4.0 simulations, and with the Payne analytical solution for the transport equation in the Fokker-Plank approximation. It is shown that the MCNPX simulations reasonably reproduce well all experimental spectra. For the relatively thin targets all the methods give practically identical results but this is not the same for the thick absorbers. It should be noted that all the spectra were measured at the proton energies significantly above 2 MeV, i.e., in the so-called 'Bethe-Bloch region'. Therefore the observed disagreements in GEANT4 results, simulated with different models, are somewhat unexpected. Further studies are necessary for better understanding and definitive conclusions.

  2. Automated segmentation of intraretinal layers from spectral-domain macular OCT: reproducibility of layer thickness measurements

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmoo; Abràmoff, Michael D.; Sonka, Milan; Garvin, Mona K.

    2011-03-01

    Changes in intraretinal layer thickness occur in a variety of diseases such as glaucoma, macular edema and diabetes. To segment the intraretinal layers from macular spectral-domain OCT (SD-OCT) scans, we previously introduced an automated multiscale 3-D graph search method and validated its performance by computing unsigned border positioning differences when compared with human expert tracings. However, it is also important to study the reproducibility of resulting layer thickness measurements, as layer thickness is a commonly used clinical parameter. In this work, twenty eight (14 x 2) repeated macular OCT volumes were acquired from the right eyes of 14 normal subjects using two Zeiss-Cirrus SD-OCT scanners. After segmentation of 10 intraretinal layers and rigid registration of layer thickness maps from the repeated OCT scans, the thickness difference of each layer was calculated. The overall mean global and regional thickness differences of 10 intraretinal layers were 0.46 +/- 0.25 μm (1.70 +/- 0.72 %) and 1.16 +/- 0.84 μm (4.03 +/- 2.05 %), respectively. No specific local region showed a consistent thickness difference across the layers.

  3. Melanoma thickness measurement in two-layer tissue phantoms using pulsed photothermal radiometry (PPTR)

    NASA Astrophysics Data System (ADS)

    Wang, Tianyi; Qiu, Jinze; Paranjape, Amit; Milner, Thomas E.

    2009-02-01

    Melanoma is a malignant tumor of melanocytes which are found predominantly in skin. Melanoma is one of the rarer types of skin cancer but causes the majority of skin cancer related deaths. The staging of malignant melanoma using Breslow thickness is important because of the relationship to survival rate after five years. Pulsed photothermal radiometry (PPTR) is based on the time-resolved acquisition of infrared (IR) emission from a sample after pulsed laser exposure. PPTR can be used to investigate the relationship between melanoma thickness and detected radiometric temperature using two-layer tissue phantoms. We used a Monte Carlo simulation to mimic light transport in melanoma and employed a three-dimensional heat transfer model to obtain simulated radiometric temperature increase and, in comparison, we also conducted PPTR experiments to confirm our simulation results. Simulation and experimental results show similar trends: thicker absorbing layers corresponding to deeper lesions produce slower radiometric temperature decays. A quantitative relationship exists between PPTR radiometric temperature decay time and thickness of the absorbing layer in tissue phantoms.

  4. Comparison of SRIM, MCNPX and GEANT simulations with experimental data for thick Al absorbers.

    PubMed

    Evseev, Ivan G; Schelin, Hugo R; Paschuk, Sergei A; Milhoretto, Edney; Setti, João A P; Yevseyeva, Olga; de Assis, Joaquim T; Hormaza, Joel M; Díaz, Katherin S; Lopes, Ricardo T

    2010-01-01

    Proton computerized tomography deals with relatively thick targets like the human head or trunk. In this case precise analytical calculation of the proton final energy is a rather complicated task, thus the Monte Carlo simulation stands out as a solution. We used the GEANT4.8.2 code to calculate the proton final energy spectra after passing a thick Al absorber and compared it with the same conditions of the experimental data. The ICRU49, Ziegler85 and Ziegler2000 models from the low energy extension pack were used. The results were also compared with the SRIM2008 and MCNPX2.4 simulations, and with solutions of the Boltzmann transport equation in the Fokker-Planck approximation.

  5. Masking ability of opaque thickness on layered metal-ceramic.

    PubMed

    Pieper, Cari M; Waldemarin, Renato Fa; Camacho, Guilherme B

    2016-09-01

    This study evaluated the masking ability of two opaques applied in different thicknesses. Eighty NiCr metal discs 16 mm in diameter and 1.0 mm thick were prepared. The disks were divided into 8 groups (n = 10). Ceramic opaque in paste (groups 1 to 4) or powder (groups 5 to 8) presentations were applied. They were machined with aluminum oxide burs to the following thicknesses: G1 and G5 = 0.10 mm; G2 and G6 = 0.15 mm; G3 and G7 = 0.20 mm and G4 and G8 = 0.30 mm. Dentin ceramic 0.7 mm thick was applied over these discs, sintered and glazed according manufacturer's instructions. Color was assessed with a Minolta CR10 spectrocolorimeter on the CIELab scale. Powder opaque had higher values on (L) and (ΔE) variables, and lower values on (a) and (b) variables compared to paste opaque. For opaque thickness, 0.10 mm had higher ΔE than all other thicknesses. L values were higher for 0.20 mm and 0.30 mm. Lowest and highest a* values were observed for 0.10 mm and 0.30 mm, respectively. No difference was observed for b* values. There were differences between paste and powder opaque types; 0.10 mm thickness behaves differently from the other thicknesses, with higher ΔE, while 0.15 mm does not differ statistically from thicker layers.

  6. Acoustic perfect absorber based on metasurface with deep sub-wavelength thickness (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Assouar, Badreddine; Li, Yong

    2016-04-01

    The concept of the coiling up space, based on which artificial structures could exhibit extreme acoustic properties, such as high refractive index, double negativity, near-zero index, etc., have been investigated intensively recently due to the fascinating underlying physics and diverse potential applications [1-3]. One of the most important functionality is the ability to shrink bulky structures into deep sub-wavelength scale. It is therefore intuitive to prospect that the concept of coiling up space, if could be extended into the perforated system, will benefit to significantly reduce the total thickness while keeping total absorption. Conventional acoustic absorbers require a structure with a thickness comparable to the working wavelength, resulting major obstacles in real applications in low frequency range. We present a metasurface-based perfect absorber capable of achieving the total absorption of acoustic wave in extremely low frequency region. The metasurface possessing a deep sub-wavelength thickness down to a feature size of ~ lambda/223 is composed of a perforated plate and a coiled coplanar air chamber. Simulations based on fully coupled acoustic with thermodynamic equations and theoretical impedance analysis are utilized to reveal the underlying physics and the acoustic performances, showing an excellent agreement. Our realization should have high impact on amount of applications due to the extremely thin thickness, easy fabrication and high efficiency of the proposed structure. References 1. Z. Liang and J. Li, Phys. Rev. Lett. 108, 114301 (2012). 2. Y. Li, B. Liang, X. Tao, X. F. Zhu, X. Y. Zou, and J. C. Cheng, Appl. Phys. Lett. 101, 233508 (2012). 3. Y. Xie, W. Wang, H. Chen, A. Konneker, B. I. Popa, and S. A. Cummer, Nat. Commun. 5, 5553 (2014).

  7. Mapping liquefiable layer thickness for seismic hazard assessment

    SciTech Connect

    O`Rourke, T.D.; Pease, J.W.

    1997-01-01

    Investigations of liquefaction sites, combining subsurface mapping and evaluation of liquefaction damage, are summarized for four areas in San Francisco affected by 1906 and 1989 earthquakes, where more than 950 borehole and sounding records were collected and analyzed. The maps developed from this database provide a comprehensive picture of subsurface conditions with substantial practical value. Postliquefaction settlement, horizontal displacement caused by lateral spread, and earthquake damage to buried pipelines are shown to be related closely with the thickness of underlying liquefiable soil. The influence of surface and liquefiable layer thicknesses on liquefaction damage is evaluated. Mapping liquefiable layer thickness is shown to be an excellent means of locating areas of potentially severe liquefaction, which is adapted easily to geographic information systems (GIS) for planning and design purposes.

  8. Quantification of retinal layer thickness changes in acute macular neuroretinopathy

    PubMed Central

    Munk, Marion R; Beck, Marco; Kolb, Simone; Larsen, Michael; Hamann, Steffen; Valmaggia, Christophe; Zinkernagel, Martin S

    2017-01-01

    Purpose To quantitatively evaluate retinal layer thickness changes in acute macular neuroretinopathy (AMN). Methods AMN areas were identified using near-infrared reflectance (NIR) images. Intraretinal layer segmentation using Heidelberg software was performed. The inbuilt ETDRS -grid was moved onto the AMN lesion and the mean retinal layer thicknesses of the central grid were recorded and compared with the corresponding area of the fellow eye at initial presentation and during follow-up. Results Eleven patients were included (mean age 26±6 years). AMN lesions at baseline had a significantly thinner outer nuclear layer (ONL) (51±21 µm vs 73±17 µm, p=0.002). The other layers, including inner nuclear layer (37±8 µm vs 38±6 µm, p=0.9) and outer plexiform layer (OPL) (45±19 µm vs 33±16 µm, p=0.1) did not show significant differences between the study eyes and fellow eyes. Adjacent to NIR image lesions, areas of OPL thickening were identified (study eye: 50±14 µm vs fellow eye: 39±16 µm, p=0.005) with corresponding thinning of ONL (study eye: 52±16 µm vs fellow eye: 69±16 µm, p=0.002). Conclusions AMN presents with characteristic quantitative retinal changes and the extent of the lesion may be more extensive than initially presumed from NIR image lesions. PMID:27170518

  9. Design of multiple-layer microwave absorbing structure based on rice husk and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Seng, Lee Yeng; Wee, F. H.; Rahim, H. A.; AbdulMalek, MohamedFareq; You, Y. K.; Liyana, Z.; Ezanuddin, A. A. M.

    2017-01-01

    This paper presents a multiple-layered microwave absorber using rice husk and carbon nanotube composite. The dielectric properties of each layer composite were measured and analysed. The different layer of microwave absorber enables to control the microwave absorption performance. The microwave absorption performances are demonstrated through measurements of reflectivity over the frequency range 2-18 GHz. An improvement of microwave absorption <-20 dB is observed with respect to a high lossy composite placed at bottom layer of multiple layers. Reflectivity evaluations indicate that the composites display a great potential application as wideband electromagnetic wave absorbers.

  10. Assessing the Relationship between Central Corneal Thickness and Retinal Nerve Fiber Layer Thickness in Healthy Subjects

    PubMed Central

    Mumcuoglu, Tarkan; Townsend, Kelly A; Wollstein, Gadi; Ishikawa, Hiroshi; Bilonick, Richard A; Sung, Kyung Rim; Kagemann, Larry; Schuman, Joel S

    2008-01-01

    Purpose To determine the relationship between central corneal thickness (CCT) and retinal nerve fiber layer (RNFL) thickness obtained by scanning laser polarimetry (GDx-VCC; Carl Zeiss Meditec, Dublin, CA) confocal scanning laser ophthalmoscopy (HRT II; Heidelberg Engineering, Heidelberg, Germany) and optical coherence tomography (Stratus OCT; Carl Zeiss Meditec, Dublin, CA). Design Multi-center clinical trial, retrospective cross-sectional study. Methods One hundred and nine healthy subjects from the Advanced Imaging in Glaucoma Study were enrolled in this study. All subjects had a standard clinical examination, including visual field and good quality scans from all three imaging devices. Central corneal thickness was measured using an ultrasonic pachymeter. A linear mixed effects model was used to assess the relationship between RNFL thickness and CCT, accounting for clustering of eyes within subjects, testing site, ethnicity, family history of glaucoma, axial length intraocular pressure and visual field global indices. Results For OCT and GDx, there was a slight non-statistically significant positive relationship between CCT and RNFL thickness. For HRT, there was a slight non-statistically significant negative relationship between CCT and RNFL thickness. Relationships for each device were found to differ between sites. Conclusions CCT was not statistically significantly related to RNFL thickness in healthy eyes. PMID:18657796

  11. Near independence of OLED operating voltage on transport layer thickness

    SciTech Connect

    Swensen, James S.; Wang, Liang; Polikarpov, Evgueni; Rainbolt, James E.; Koech, Phillip K.; Cosimbescu, Lelia; Padmaperuma, Asanga B.

    2013-01-01

    We report organic light emitting devices (OLEDs) with weak drive voltage dependence on the thickness of the hole transport layer (HTL) for thicknesses up to 1150 Å using the N,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (α-NPD) and N,N'-bis(3-methyl phenyl)-N,N'-diphenyl-[1,1'-biphenyl]-4,4'diamine (TPD), both of which have hole mobilities in the range of 2 × 10-3 cm2V-1s-1. Lower mobility HTL materials show larger operating voltage dependence on thickness. The near independence of the operating voltage for high mobility transport material thickness was only observed when the energy barrier for charge injection into the transport material was minimized. To ensure low injection barriers, a thin film of 2-(3-(adamantan-1-yl)propyl)-3,5,6-trifluorotetracyanoquinodimethane (F3TCNQ-Adl) was cast from solution onto the ITO surface. These results indicate that thick transport layers can be integrated into OLED stacks without the need for bulk conductivity doping.

  12. Measuring for thickness distribution of recording layer of PLH

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Chun; Guo, Lurong; Guo, Yongkang

    1991-07-01

    An interference microscope is employed to take a photo of the interfering fringes, and its density is analyzed by a computer image system to measure the thickness distribution of a photolithographic hologram (PLH). This method is much more simple than that of SEM. The theory of measuring is presented in the paper. The authors measured the distributions of photolithographic gratings before and after the etching process. Comparing both the thickness distributions of corresponding recording layers, some primary rules of pattern transfer process by etching were identified.

  13. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    DOEpatents

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  14. Physicochemical controls on absorbed water film thickness in unsaturated geological media

    SciTech Connect

    Tokunaga, T.

    2011-06-14

    Adsorbed water films commonly coat mineral surfaces in unsaturated soils and rocks, reducing flow and transport rates. Therefore, it is important to understand how adsorbed film thickness depends on matric potential, surface chemistry, and solution chemistry. Here, the problem of adsorbed water film thickness is examined through combining capillary scaling with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Novel aspects of this analysis include determining capillary influences on film thicknesses, and incorporating solution chemistry-dependent electrostatic potential at air-water interfaces. Capillary analysis of monodisperse packings of spherical grains provided estimated ranges of matric potentials where adsorbed films are stable, and showed that pendular rings within drained porous media retain most of the 'residual' water except under very low matric potentials. Within drained pores, capillary contributions to thinning of adsorbed films on spherical grains are shown to be small, such that DLVO calculations for flat surfaces are suitable approximations. Hamaker constants of common soil minerals were obtained to determine ranges of the dispersion component to matric potential-dependent film thickness. The pressure component associated with electrical double layer forces was estimated using the compression and linear superposition approximations. The pH-dependent electrical double layer pressure component is the dominant contribution to film thicknesses at intermediate values of matric potential, especially in lower ionic strength solutions (< 10 mol m{sup -3}) on surfaces with higher magnitude electrostatic potentials (more negative than - 50 mV). Adsorbed water films are predicted to usually range in thickness from 1 to 20 nm in drained pores and fractures of unsaturated environments.

  15. Compression response of thick layer composite laminates with through-the-thickness reinforcement

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.; Smith, Barry T.; Maiden, Janice

    1992-01-01

    Compression and compression-after-impact (CAI) tests were conducted on seven different AS4-3501-6 (0/90) 0.64-cm thick composite laminates. Four of the seven laminates had through-the-thickness (TTT) reinforcement fibers. Two TTT reinforcement methods, stitching and integral weaving, and two reinforcement fibers, Kevlar and carbon, were used. The remaining three laminates were made without TTT reinforcements and were tested to establish a baseline for comparison with the laminates having TTT reinforcement. Six of the seven laminates consisted of nine thick layers whereas the seventh material was composed of 46 thin plies. The use of thick-layer material has the potential for reducing structural part cost because of the reduced part count (layers of material). The compression strengths of the TTT reinforced laminates were approximately one half those of the materials without TTT reinforcements. However, the CAI strengths of the TTT reinforced materials were approximately twice those of materials without TTT reinforcements. The improvement in CAI strength is due to an increase in interlaminar strength produced by the TTT reinforcement. Stitched laminates had slightly higher compression and CAI strengths than the integrally woven laminates.

  16. Turbulent Boundary Layer Thickness Estimation Method and Apparatus

    DTIC Science & Technology

    2003-04-02

    correlation coefficient is computed with measured data from the recorded voltage. A laboratory non- dimensional value of the correlation coefficient is independently determined from laboratory data. The real non-dimensional value is compared with the laboratory non-dimensional value to obtain a boundary layer thickness having a value which minimizes a difference between the values of the real non-dimensional value and the laboratory non-dimensional

  17. Minimum Wind Dynamic Soaring Trajectories under Boundary Layer Thickness Limits

    NASA Astrophysics Data System (ADS)

    Bousquet, Gabriel; Triantafyllou, Michael; Slotine, Jean-Jacques

    2015-11-01

    Dynamic soaring is the flight technique where a glider, either avian or manmade, extracts its propulsive energy from the non-uniformity of horizontal winds. Albatrosses have been recorded to fly an impressive 5000 km/week at no energy cost of their own. In the sharp boundary layer limit, we show that the popular image, where the glider travels in a succession of half turns, is suboptimal for travel speed, airspeed, and soaring ability. Instead, we show that the strategy that maximizes the three criteria simultaneously is a succession of infinitely small arc-circles connecting transitions between the calm and windy layers. The model is consistent with the recordings of albatross flight patterns. This lowers the required wind speed for dynamic soaring by over 50% compared to previous beliefs. In the thick boundary layer limit, energetic considerations allow us to predict a minimum wind gradient necessary for sustained soaring consistent with numerical models.

  18. Retinal Nerve Fiber Layer Thickness in Amblyopic Eyes

    PubMed Central

    Repka, Michael X.; Kraker, Raymond T.; Tamkins, Susanna M.; Suh, Donny W.; Sala, Nicholas A.; Beck, Roy W.

    2010-01-01

    Purpose To compare the peripapillary retinal nerve fiber layer (RNFL) thickness of amblyopic and fellow eyes. We hypothesized that the RNFL of the amblyopic eye might be thinner. Design Prospective cross-sectional observational case series Methods Optical coherence tomography (OCT) of the peripapillary RNFL thickness of amblyopic and fellow eyes was performed in 37 patients age 7 to 12 years (mean 9.2 ± 1.5) with unilateral strabismic, anisometropic or combined mechanism amblyopia enrolled in a randomized treatment trial. Results Mean global RNFL thickness of the amblyopic and fellow eyes was 111.4 microns and 109.6 microns, respectively (mean difference = 1.8 microns thicker in the amblyopic eyes, 95% confidence interval -0.6 to +4.3 microns). The amblyopic eye was 8 or more microns thicker than the fellow eye in 9 patients (24%); the fellow eye was 8 or more microns thicker than the amblyopic eye in 2 patients (5%); and the difference was within test-retest variability (7 microns) in 26 patients (70%). Conclusions Our findings do not indicate that peripapillary RNFL thickness is thinner in eyes with moderate amblyopia compared with their fellow eyes. PMID:19327749

  19. Oil shale ash-layer thickness and char combustion kinetics

    SciTech Connect

    Aldis, D.F.; Singleton, M.F.; Watkins, B.E.; Thorsness, C.B.; Cena, R.J.

    1992-04-15

    A Hot-Recycled-Solids (HRS) oil shale retort is being studied at Lawrence Livermore National Laboratory. In the HRS process, raw shale is heated by mixing it with burnt retorted shale. Retorted shale is oil shale which has been heated in an oxygen deficient atmosphere to pyrolyze organic carbon, as kerogen into oil, gas, and a nonvolatile carbon rich residue, char. In the HRS retort process, the char in the spent shale is subsequently exposed to an oxygen environment. Some of the char, starting on the outer surface of the shale particle, is burned, liberating heat. In the HRS retort, the endothermic pyrolysis step is supported by heat from the exothermic char combustion step. The rate of char combustion is controlled by three resistances; the resistance of oxygen mass transfer through the gas film surrounding the solid particle, resistance to mass transfer through a ash layer which forms on the outside of the solid particles as the char is oxidized and the resistance due to the intrinsic chemical reaction rate of char and oxygen. In order to estimate the rate of combustion of the char in a typical oil shale particle, each of these resistances must be accurately estimated. We begin by modeling the influence of ash layer thickness on the over all combustion rate of oil shale char. We then present our experimental measurements of the ash layer thickness of oil shale which has been processed in the HRS retort.

  20. Usage of Neural Network to Predict Aluminium Oxide Layer Thickness

    PubMed Central

    Michal, Peter; Vagaská, Alena; Gombár, Miroslav; Kmec, Ján; Spišák, Emil; Kučerka, Daniel

    2015-01-01

    This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage) and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A·dm−2 and 3 A·dm−2 for creating aluminium oxide layer. PMID:25922850

  1. A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers.

    PubMed

    Xu, Man; Wachters, Arthur J H; van Deelen, Joop; Mourad, Maurice C D; Buskens, Pascal J P

    2014-03-10

    We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the CIGS layer does not decrease monotonically with its layer thickness due to interference effects. Ergo, high precision is required in the CIGS production process, especially when using ultra-thin absorber layers, to accurately realize the required thickness of the ZnO, cadmium sulfide (CdS) and CIGS layer. We show that patterning the ZnO window layer can strongly suppress these interference effects allowing a higher tolerance in the production process.

  2. Ultrasonic eggshell thickness measurement for selection of layers.

    PubMed

    Kibala, Lucyna; Rozempolska-Rucinska, Iwona; Kasperek, Kornel; Zieba, Grzegorz; Lukaszewicz, Marek

    2015-10-01

    This study aimed to develop a methodology for using ultrasonic technology (USG) to record eggshell thickness for selection of layers. Genetic correlations between eggshell strength and its thickness have been reported to be around 0.8, making shell thickness a selection index candidate element. Applying ultrasonic devices to measure shell thickness leaves an egg intact for further handling. In this study, eggs from 2 purebred populations of Rhode Island White (RIW) and Rhode Island Red (RIR) hens were collected on a single day in the 33rd week of the farm laying calendar from 2,414 RIR and 4,525 RIW hens. Beginning from the large end of the egg, measurements were taken at 5 latitudes: 0º (USG0), 45º (USG45), 90º (USG90), 135º (USG135), and 180º (USG180). To estimate the repeatability of readings, measurements were repeated at each parallel on 3 meridians. Electronic micrometer measurement ( EMM: ) were taken with an electronic micrometer predominantly at the wider end of eggs from 2,397 RIR and 4,447 RIW hens. A multiple-trait statistical model fit the fixed effect of year-of-hatch × hatch-within-year, and random effects due to repeated measurements (except EMM) and an animal's additive genetic component. The shell was thinnest in the region where chicks break it upon hatching (USG0, USG45). Heritabilities of shell thickness in different regions of the shell ranged from 0.09 to 0.19 (EMM) in RIW and from 0.12 to 0.23 (EMM) in RIR and were highest for USG45 and USG0. Because the measurement repeatabilities were all above 0.90, our recommendation for balancing egg strength against hatching ease is to take a single measurement of USG45. Due to high positive genetic correlations between shell thickness in different regions of the shell its thickness in the pointed end region will be modified accordingly, in response to selection for USG45.

  3. The Multi-Layer Variable Absorbers in NGC 1365 Revealed by XMM-Newton and NuSTAR

    NASA Technical Reports Server (NTRS)

    Rivers, E.; Risaliti, G.; Walton, D. J.; Harrison, F.; Arevalo, P.; Baur, F. E.; Boggs, S. E.; Brenneman, L. W.; Brightman, M.; Zhang, W. W.

    2015-01-01

    Between 2012 July and 2013 February, NuSTAR and XMM-Newton performed four long-look joint observations of the type 1.8 Seyfert, NGC 1365. We have analyzed the variable absorption seen in these observations in order to characterize the geometry of the absorbing material. Two of the observations caught NGC 1365 in an unusually low absorption state, revealing complexity in the multi-layer absorber that had previously been hidden. We find the need for three distinct zones of neutral absorption in addition to the two zones of ionized absorption and the Compton-thick torus previously seen in this source. The most prominent absorber is likely associated with broad-line region clouds with column densities of around approximately 10 (sup 23) per square centimeter and a highly clumpy nature as evidenced by an occultation event in 2013 February. We also find evidence of a patchy absorber with a variable column around approximately 10 (sup 22) per square centimeter and a line-of-sight covering fraction of 0.3-0.9, which responds directly to the intrinsic source flux, possibly due to a wind geometry. A full-covering, constant absorber with a low column density of approximately 1 by 10 (sup 22) per square centimeter is also present, though the location of this low density haze is unknown.

  4. The Multi-layer Variable Absorbers in NGC 1365 Revealed by XMM-Newton and NuSTAR

    NASA Astrophysics Data System (ADS)

    Rivers, E.; Risaliti, G.; Walton, D. J.; Harrison, F.; Arévalo, P.; Baur, F. E.; Boggs, S. E.; Brenneman, L. W.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Fürst, F.; Hailey, C. J.; Hickox, R. C.; Marinucci, A.; Reeves, J.; Stern, D.; Zhang, W. W.

    2015-05-01

    Between 2012 July and 2013 February, NuSTAR and XMM-Newton performed four long-look joint observations of the type 1.8 Seyfert, NGC 1365. We have analyzed the variable absorption seen in these observations in order to characterize the geometry of the absorbing material. Two of the observations caught NGC 1365 in an unusually low absorption state, revealing complexity in the multi-layer absorber that had previously been hidden. We find the need for three distinct zones of neutral absorption in addition to the two zones of ionized absorption and the Compton-thick torus previously seen in this source. The most prominent absorber is likely associated with broad-line region clouds with column densities of around ˜1023 cm-2 and a highly clumpy nature as evidenced by an occultation event in 2013 February. We also find evidence of a patchy absorber with a variable column around ˜1022 cm-2 and a line-of-sight covering fraction of 0.3-0.9, which responds directly to the intrinsic source flux, possibly due to a wind geometry. A full-covering, constant absorber with a low column density of ˜1 × 1022 cm-2 is also present, though the location of this low density haze is unknown.

  5. 3-D solar cells by electrochemical-deposited Se layer as extremely-thin absorber and hole conducting layer on nanocrystalline TiO2 electrode

    NASA Astrophysics Data System (ADS)

    Nguyen, Duy-Cuong; Tanaka, Souichirou; Nishino, Hitoshi; Manabe, Kyohei; Ito, Seigo

    2013-01-01

    A three-dimensional selenium solar cell with the structure of Au/Se/porous TiO2/compact TiO2/fluorine-doped tin oxide-coated glass plates was fabricated by an electrochemical deposition method of selenium, which can work for the extremely thin light absorber and the hole-conducting layer. The effect of experimental conditions, such as HCl and H2SeO3 in an electrochemical solution and TiO2 particle size of porous layers, was optimized. This kind of solar cell did not use any buffer layer between an n-type electrode (porous TiO2) and a p-type absorber layer (selenium). The crystallinity of the selenium after annealing at 200°C for 3 min in the air was significantly improved. The cells with a selenium layer deposited at concentrations of HCl = 11.5 mM and H2SeO3 = 20 mM showed the best performance, resulting in 1- to 2-nm thickness of the Se layer, short-circuit photocurrent density of 8.7 mA/cm2, open-circuit voltage of 0.65 V, fill factor of 0.53, and conversion efficiency of 3.0%.

  6. 3-D solar cells by electrochemical-deposited Se layer as extremely-thin absorber and hole conducting layer on nanocrystalline TiO2 electrode.

    PubMed

    Nguyen, Duy-Cuong; Tanaka, Souichirou; Nishino, Hitoshi; Manabe, Kyohei; Ito, Seigo

    2013-01-03

    A three-dimensional selenium solar cell with the structure of Au/Se/porous TiO2/compact TiO2/fluorine-doped tin oxide-coated glass plates was fabricated by an electrochemical deposition method of selenium, which can work for the extremely thin light absorber and the hole-conducting layer. The effect of experimental conditions, such as HCl and H2SeO3 in an electrochemical solution and TiO2 particle size of porous layers, was optimized. This kind of solar cell did not use any buffer layer between an n-type electrode (porous TiO2) and a p-type absorber layer (selenium). The crystallinity of the selenium after annealing at 200°C for 3 min in the air was significantly improved. The cells with a selenium layer deposited at concentrations of HCl = 11.5 mM and H2SeO3 = 20 mM showed the best performance, resulting in 1- to 2-nm thickness of the Se layer, short-circuit photocurrent density of 8.7 mA/cm2, open-circuit voltage of 0.65 V, fill factor of 0.53, and conversion efficiency of 3.0%.

  7. Polarization and Thickness Dependent Absorption Properties of Black Phosphorus: New Saturable Absorber for Ultrafast Pulse Generation

    PubMed Central

    Li, Diao; Jussila, Henri; Karvonen, Lasse; Ye, Guojun; Lipsanen, Harri; Chen, Xianhui; Sun, Zhipei

    2015-01-01

    Black phosphorus (BP) has recently been rediscovered as a new and interesting two-dimensional material due to its unique electronic and optical properties. Here, we study the linear and nonlinear optical properties of BP flakes. We observe that both the linear and nonlinear optical properties are anisotropic and can be tuned by the film thickness in BP, completely different from other typical two-dimensional layered materials (e.g., graphene and the most studied transition metal dichalcogenides). We then use the nonlinear optical properties of BP for ultrafast (pulse duration down to ~786 fs in mode-locking) and large-energy (pulse energy up to >18 nJ in Q-switching) pulse generation in fiber lasers at the near-infrared telecommunication band ~1.5 μm. We observe that the output of our BP based pulsed lasers is linearly polarized (with a degree-of-polarization ~98% in mode-locking, >99% in Q-switching, respectively) due to the anisotropic optical property of BP. Our results underscore the relatively large optical nonlinearity of BP with unique polarization and thickness dependence, and its potential for polarized optical pulse generation, paving the way to BP based nonlinear and ultrafast photonic applications (e.g., ultrafast all-optical polarization switches/modulators, frequency converters etc.). PMID:26514090

  8. Direct numerical simulation of turbulent boundary layer with constant thickness

    NASA Astrophysics Data System (ADS)

    Yao, Yichen; Xu, Chunxiao; Huang, Weixi

    2016-11-01

    Direct numerical simulation is performed to turbulent boundary layer (TBL) with constant thickness at Reθ = 1420 . Periodic boundary condition is applied in the streamwise direction, and a mean body force equivalent to the convection term in the mean momentum equation is imposed in this direction. The body force is calculated using the published TBL data of Schlatter and Orlu (2010) at Reθ = 1420 . The presently simulated TBL is compared with the conventional TBL and turbulent channel flow at the prescribed Reynolds number. The turbulent statistics agrees well with that of Schlatter and Orlu (2010). The pre-multiplied energy spectra in current simulation also present high similarity with the conventional TBL, while differ obviously with those in turbulent channel. The successful replication of turbulent boundary in the current simulation provides an alternative method for boundary layer simulation with much less computational cost. Meanwhile, in aspect of both turbulent statistics and flow structures, the current results indicate that the differences between turbulent channel and boundary layer flow mainly caused by the discrepancy in driving force distribution rather than the periodic boundary restriction. National Natural Science Foundation of China (Project No. 11490551, 11472154, 11322221, 11132005).

  9. Spatio-temporal modeling of Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Touyz, J.; Apanasovich, T. V.; Streletskiy, D. A.; Shiklomanov, N. I.

    2015-12-01

    Arctic Regions are experiencing an unprecedented rate of environmental and climate change. The active layer (the uppermost layer of soil between the atmosphere and permafrost that freezes in winter and thaws in summer) is sensitive to both climate and environmental changes and plays an important role in the functioning of Arctic ecosystems, planning, and economic activities. Knowledge about spatio-temporal variability of ALT is crucial for environmental and engineering applications. The objective of this study is to provide the methodology to model and estimate spatio-temporal variation in the active layer thickness (ALT) at several sites located in the Circumpolar region spanning the Alaska North Slope, and to demonstrate its use in spatio-temporal interpolation as well as time-forward prediction. In our data analysis we estimate a parametric trend and examine residuals for the presence of spatial and temporal dependence. We propose models that provide a description of residual space-time variability in ALT. Formulations that take into account interaction among spatial and temporal components are also developed. Moreover, we compare our models to naive models in which residual spatio-temporal and temporal correlations are not considered. The predicted root mean squared and absolute errors are significantly reduced when our approach is employed. While the methodology is developed in the context of ALT, it can also be applied to model and predict other environmental variables which use similar spatio-temporal sampling designs.

  10. Reduction in retinal nerve fiber layer thickness in migraine patients.

    PubMed

    Gipponi, Stefano; Scaroni, Niccolò; Venturelli, Elisabetta; Forbice, Eliana; Rao, Renata; Liberini, Paolo; Padovani, Alessandro; Semeraro, Francesco

    2013-06-01

    Migraine is a common disorder and its pathogenesis remains still unclear. Several hypotheses about the mechanisms involved in the pathogenesis of migraine have been proposed, but the issue is still far from being fully clarified. Neurovascular system remains one of the most important mechanisms involved in the pathogenesis of migraine and it could be possible that hypoperfusion might involve other areas besides brain, including the retina. This is, for example, of particular interest in a form of migraine, the retinal migraine, which has been associated with hypoperfusion and vasoconstriction of the retinal vasculature. Although vasoconstriction of cerebral and retinal blood vessels is a transient phenomenon, the chronic nature of the migraine might cause permanent structural abnormalities of the brain and also of the retina. On this basis, a few studies have evaluated whether retina is involved in migraine patients: Tan et al. have not found differences in retinal nerve fiber layer (RNFL) thickness between migraine patients and healthy subjects, while Martinez et al. have shown that RNFL in the temporal retinic quadrant of migraineurs is thinner than in normal people. The aim of our study was to analyze if there are differences in retinal nerve fiber layer thickness between migraine patients and normal subjects by studying 24 consecutive migraine patients who presented at the Headache Center of our Neurological Department. Migraine diagnosis has been made according to the International Classification of Headache disorder (ICHD-II). Patients have been recruited according to strict inclusion criteria; then patients have undergone a complete ophthalmological examination at the Ophthalmological Department. All patients and controls who met the ophthalmological criteria have been examined with ocular coherence tomography spectral domain (OCT-SD) after pupillary dilation. OCT-SD is an optical system designed to acquire the retinal layer images simultaneously with fundus

  11. Cell poking: quantitative analysis of indentation of thick viscoelastic layers.

    PubMed

    Duszyk, M; Schwab, B; Zahalak, G I; Qian, H; Elson, E L

    1989-04-01

    A recently introduced device, the cell poker, measures the force required to indent the exposed surface of a cell adherent to a rigid substratum. The cell poker has provided phenomenological information about the viscoelastic properties of several different types of cells, about mechanical changes triggered by external stimuli, and about the role of the cytoskeleton in these mechanical functions. Except in special cases, however, it has not been possible to extract quantitative estimates of viscosity and elasticity moduli from cell poker measurements. This paper presents cell poker measurements of well characterized viscoelastic polymeric materials, polydimethylsiloxanes of different degrees of polymerization, in a simple shape, a flat, thick layer, which for our purposes can be treated as a half space. Analysis of the measurements in terms of a linear viscoelasticity theory yields viscosity values for three polymer samples in agreement with those determined by measurements on a macroscopic scale. Theoretical analysis further indicates that the measured limiting static elasticity of the layers may result from the tension generated at the interface between the polymer and water. This work demonstrates the possibility of obtaining quantitative viscoelastic material properties from cell poker measurements and represents the first step in extending these quantitative studies to more complicated structures including cells.

  12. Cell poking: quantitative analysis of indentation of thick viscoelastic layers.

    PubMed Central

    Duszyk, M; Schwab, B; Zahalak, G I; Qian, H; Elson, E L

    1989-01-01

    A recently introduced device, the cell poker, measures the force required to indent the exposed surface of a cell adherent to a rigid substratum. The cell poker has provided phenomenological information about the viscoelastic properties of several different types of cells, about mechanical changes triggered by external stimuli, and about the role of the cytoskeleton in these mechanical functions. Except in special cases, however, it has not been possible to extract quantitative estimates of viscosity and elasticity moduli from cell poker measurements. This paper presents cell poker measurements of well characterized viscoelastic polymeric materials, polydimethylsiloxanes of different degrees of polymerization, in a simple shape, a flat, thick layer, which for our purposes can be treated as a half space. Analysis of the measurements in terms of a linear viscoelasticity theory yields viscosity values for three polymer samples in agreement with those determined by measurements on a macroscopic scale. Theoretical analysis further indicates that the measured limiting static elasticity of the layers may result from the tension generated at the interface between the polymer and water. This work demonstrates the possibility of obtaining quantitative viscoelastic material properties from cell poker measurements and represents the first step in extending these quantitative studies to more complicated structures including cells. PMID:2720066

  13. Controversy of critical layer thickness for InGaAs/GaAs strained-layer epitaxy

    SciTech Connect

    Gourley, P.L.; Fritz, I.J.; Dawson, L.R.

    1988-02-01

    The critical layer thickness for In/sub x/Ga/sub 1-//sub x/As layers in In/sub x/Ga/sub 1-//sub x/As/GaAs single strained quantum wells (SSQW's) and strained-layer superlattices (SLS's) are investigated. Photoluminescence microscopy (PLM) images and x-ray rocking curves for two series of SSQW and SLS structures corresponding to many different layer thicknesses were obtained. We find that the PLM technique, which directly images dislocations and is sensitive to low dislocation densities, is much more suitable for determining the onset of dislocation creation. The x-ray technique can detect lattice relaxation by dislocations but only at relatively high densities of dislocations. Using the former technique, we determine critical thicknesses of 190 A for SSQW's and 250 A for SLS's with xapprox. =0.2. These results are near the theoretical predictions of J. W. Matthews, S. Mader, and T. B. Light (J. Appl. Phys. 41, 3800 (1970)) (150 and 300 A, respectively) and are much lower than results obtained by x-ray or other techniques which sense lattice relaxation.

  14. Optical approaches to improve the photocurrent generation in Cu(In,Ga)Se2 solar cells with absorber thicknesses down to 0.5 μm

    NASA Astrophysics Data System (ADS)

    Dahan, N.; Jehl, Z.; Hildebrandt, T.; Greffet, J.-J.; Guillemoles, J.-F.; Lincot, D.; Naghavi, N.

    2012-11-01

    Improving the optical management is a key issue for ultrathin based solar cells performance. It can be accomplished either by trapping the light in the active layer or by decreasing the parasitic absorptions in the cell. We calculate the absorption of the different layers of Cu(In,Ga)Se2 (CIGSe) based solar cell and propose to increase the absorption in the CIGSe layer by optimizing three parameters. First, by increasing the transmitted light to the cell using a textured surface of ZnO:Al front contact which functions as a broadband antireflection layer. Second, by replacing the CdS/i-ZnO buffer layers with ZnS/ZnMgO buffer layers which have higher energy bandgaps. Third, by replacing the Mo back contact with a higher reflective metal, such as silver or gold. Calculations show that modifying these layers improves the total absorption by 32% in a 0.5 μm thick CIGSe absorber. These predicted improvements of the short circuit current are confirmed experimentally.

  15. Illumination angle and layer thickness influence on the photo current generation in organic solar cells: A combined simulative and experimental study

    SciTech Connect

    Mescher, Jan Mertens, Adrian; Egel, Amos; Kettlitz, Siegfried W.; Colsmann, Alexander; Lemmer, Uli

    2015-07-15

    In most future organic photovoltaic applications, such as fixed roof installations, facade or clothing integration, the solar cells will face the sun under varying angles. By a combined simulative and experimental study, we investigate the mutual interdependencies of the angle of light incidence, the absorber layer thickness and the photon harvesting efficiency within a typical organic photovoltaic device. For thin absorber layers, we find a steady decrease of the effective photocurrent towards increasing angles. For 90-140 nm thick absorber layers, however, we observe an effective photocurrent enhancement, exhibiting a maximum yield at angles of incidence of about 50°. Both effects mainly originate from the angle-dependent spatial broadening of the optical interference pattern inside the solar cell and a shift of the absorption maximum away from the metal electrode.

  16. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength.

    PubMed

    Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2015-02-01

    An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected.

  17. Composite Fermion Spin Polarization Energy with Finite Layer Thickness

    NASA Astrophysics Data System (ADS)

    Shayegan, Mansour; Liu, Yang; Hasdemir, Sukret; Pfeiffer, Loren; West, Ken; Baldwin, Kirk

    2014-03-01

    We study the spin polarization transitions of fractional quantum Hall (FQH) states in the filling range 1 < ν < 2 in symmetric quantum wells (QWs), as a function of density. Our results reveal a strong well-width dependence of the critical density nC and ratio between the Zeeman energy (EZ) normalized to the Coulomb energy (e2 / 4 πɛlB), above which a certain FQH state becomes spin polarized. For example, the ν = 7 / 5 FQH state becomes spin polarized at about 3 times higher density or 1.7 times larger EZ in the 31-nm-wide QW than in the 65-nm-wide QW. This well-width dependence of the spin polarization stems from by the finite electron layer thickness in these QWs and the resulting softening of the Coulomb interaction. We acknowledge support through the DOE BES (DE-FG02-00-ER45841) for measurements, and the Gordon and Betty Moore Foundation (Grant GBMF2719), Keck Foundation, and the NSF (DMR-0904117, DMR-1305691 and MRSEC DMR-0819860) for sample fabrication. Work at Arg.

  18. Impact of annealing on electrical properties of Cu2ZnSnSe4 absorber layers

    NASA Astrophysics Data System (ADS)

    Weiss, Thomas Paul; Redinger, Alex; Rey, Germain; Schwarz, Torsten; Spies, Maria; Cojocura-Mirédin, Oana; Choi, P.-P.; Siebentritt, Susanne

    2016-07-01

    Reported growth processes for kesterite absorber layers generally rely on a sequential process including a final high temperature annealing step. However, the impact and details for this annealing process vary among literature reports and little is known on its impact on electrical properties of the absorber. We used kesterite absorber layers prepared by a high temperature co-evaporation process to explicitly study the impact of two different annealing processes. From electrical characterization it is found that the annealing process incorporates a detrimental deep defect distribution. On the other hand, the doping density could be reduced leading to a better collection and a higher short circuit current density. The activation energy of the doping acceptor was studied with admittance spectroscopy and showed Meyer-Neldel behaviour. This indicates that the entropy significantly contributes to the activation energy.

  19. Obtaining Thickness Maps of Corneal Layers Using the Optimal Algorithm for Intracorneal Layer Segmentation

    PubMed Central

    Rabbani, Hossein; Kazemian Jahromi, Mahdi; Jorjandi, Sahar; Mehri Dehnavi, Alireza; Hajizadeh, Fedra; Peyman, Alireza

    2016-01-01

    Optical Coherence Tomography (OCT) is one of the most informative methodologies in ophthalmology and provides cross sectional images from anterior and posterior segments of the eye. Corneal diseases can be diagnosed by these images and corneal thickness maps can also assist in the treatment and diagnosis. The need for automatic segmentation of cross sectional images is inevitable since manual segmentation is time consuming and imprecise. In this paper, segmentation methods such as Gaussian Mixture Model (GMM), Graph Cut, and Level Set are used for automatic segmentation of three clinically important corneal layer boundaries on OCT images. Using the segmentation of the boundaries in three-dimensional corneal data, we obtained thickness maps of the layers which are created by these borders. Mean and standard deviation of the thickness values for normal subjects in epithelial, stromal, and whole cornea are calculated in central, superior, inferior, nasal, and temporal zones (centered on the center of pupil). To evaluate our approach, the automatic boundary results are compared with the boundaries segmented manually by two corneal specialists. The quantitative results show that GMM method segments the desired boundaries with the best accuracy. PMID:27247559

  20. Obtaining Thickness Maps of Corneal Layers Using the Optimal Algorithm for Intracorneal Layer Segmentation.

    PubMed

    Rabbani, Hossein; Kafieh, Rahele; Kazemian Jahromi, Mahdi; Jorjandi, Sahar; Mehri Dehnavi, Alireza; Hajizadeh, Fedra; Peyman, Alireza

    2016-01-01

    Optical Coherence Tomography (OCT) is one of the most informative methodologies in ophthalmology and provides cross sectional images from anterior and posterior segments of the eye. Corneal diseases can be diagnosed by these images and corneal thickness maps can also assist in the treatment and diagnosis. The need for automatic segmentation of cross sectional images is inevitable since manual segmentation is time consuming and imprecise. In this paper, segmentation methods such as Gaussian Mixture Model (GMM), Graph Cut, and Level Set are used for automatic segmentation of three clinically important corneal layer boundaries on OCT images. Using the segmentation of the boundaries in three-dimensional corneal data, we obtained thickness maps of the layers which are created by these borders. Mean and standard deviation of the thickness values for normal subjects in epithelial, stromal, and whole cornea are calculated in central, superior, inferior, nasal, and temporal zones (centered on the center of pupil). To evaluate our approach, the automatic boundary results are compared with the boundaries segmented manually by two corneal specialists. The quantitative results show that GMM method segments the desired boundaries with the best accuracy.

  1. Layer-by-layer Assembly of Thick, Cu2+-Chelating Films

    PubMed Central

    Wijeratne, Salinda; Bruening, Merlin L.; Baker, Gregory L.

    2013-01-01

    Layer-by-layer adsorption of protonated poly(allylamine) (PAH) and deprotonated poly(N,N-dicarboxymethylallyl amine) (PDCMAA) yields thick films with a high density of iminodiacetic acid (IDA) ligands that bind metal ions. When film deposition occurs at pH 3.0, PAH/PDCMAA bilayer thicknesses reach 200 nm, and Cu2+ binding capacities are ~2.5 mmoles per cm3 of film. (PAH/PDCMAA)10 films deposited at pH 3.0 are 4- to 8-fold thicker than films formed at pH 5.0, 7.0, or 9.0, presumably because of the low charge density on PDCMAA chains at pH 3.0. However, with normalization to film thickness, all films bind similar amounts of Cu2+ from pH 4.1 solutions of CuSO4. In μm-thick films, equilibration of binding sites with Cu2+ requires ~4 h due to a low Cu2+ diffusion coefficient (~2.6×10−12 cm2/sec). Sorption isotherms determined at several temperatures show that Cu2+ binding is endothermic with a positive entropy (binding constants increase with increasing temperature), presumably because metal-ion complexation involves displacement of both a proton from IDA and water molecules from Cu2+. (PAH/PDCMAA)10 films retain their binding capacity over 4 absorption/elution cycles and may prove useful in metal-ion scavenging, catalysis, and protein binding. PMID:24044576

  2. Magnetic and magnetoresistance studies of nanometric electrodeposited Co films and Co/Cu layered structures: Influence of magnetic layer thickness

    NASA Astrophysics Data System (ADS)

    Zsurzsa, S.; Péter, L.; Kiss, L. F.; Bakonyi, I.

    2017-01-01

    The magnetic properties and the magnetoresistance behavior were investigated for electrodeposited nanoscale Co films, Co/Cu/Co sandwiches and Co/Cu multilayers with individual Co layer thicknesses ranging from 1 nm to 20 nm. The measured saturation magnetization values confirmed that the nominal and actual layer thicknesses are in fairly good agreement. All three types of layered structure exhibited anisotropic magnetoresistance for thick magnetic layers whereas the Co/Cu/Co sandwiches and Co/Cu multilayers with thinner magnetic layers exhibited giant magnetoresistance (GMR), the GMR magnitude being the largest for the thinnest Co layers. The decreasing values of the relative remanence and the coercive field when reducing the Co layer thickness down to below about 3 nm indicated the presence of superparamagnetic (SPM) regions in the magnetic layers which could be more firmly evidenced for these samples by a decomposition of the magnetoresistance vs. field curves into a ferromagnetic and an SPM contribution. For thicker magnetic layers, the dependence of the coercivity (Hc) on magnetic layer thickness (d) could be described for each of the layered structure types by the usual equation Hc=Hco+a/dn with an exponent around n=1. The common value of n suggests a similar mechanism for the magnetization reversal by domain wall motion in all three structure types and hints also at the absence of coupling between magnetic layers in the Co/Cu/Co sandwiches and Co/Cu multilayers.

  3. Cloud layer thicknesses from a combination of surface and upper-air observations

    NASA Technical Reports Server (NTRS)

    Poore, Kirk D.; Wang, Junhong; Rossow, William B.

    1995-01-01

    Cloud layer thicknesses are derived from base and top altitudes by combining 14 years (1975-1988) of surface and upper-air observations at 63 sites in the Northern Hemisphere. Rawinsonde observations are employed to determine the locations of cloud-layer top and base by testing for dewpoint temperature depressions below some threshold value. Surface observations serve as quality checks on the rawinsonde-determined cloud properties and provide cloud amount and cloud-type information. The dataset provides layer-cloud amount, cloud type, high, middle, or low height classes, cloud-top heights, base heights and layer thicknesses, covering a range of latitudes from 0 deg to 80 deg N. All data comes from land sites: 34 are located in continental interiors, 14 are near coasts, and 15 are on islands. The uncertainties in the derived cloud properties are discussed. For clouds classified by low-, mid-, and high-top altitudes, there are strong latitudinal and seasonal variations in the layer thickness only for high clouds. High-cloud layer thickness increases with latitude and exhibits different seasonal variations in different latitude zones: in summer, high-cloud layer thickness is a maximum in the Tropics but a minimum at high latitudes. For clouds classified into three types by base altitude or into six standard morphological types, latitudinal and seasonal variations in layer thickness are very small. The thickness of the clear surface layer decreases with latitude and reaches a summer minimum in the Tropics and summer maximum at higher latitudes over land, but does not vary much over the ocean. Tropical clouds occur in three base-altitude groups and the layer thickness of each group increases linearly with top altitude. Extratropical clouds exhibit two groups, one with layer thickness proportional to their cloud-top altitude and one with small (less than or equal to 1000 m) layer thickness independent of cloud-top altitude.

  4. Epitaxial Crystal Silicon Absorber Layers and Solar Cells Grown at 1.8 Microns per Minute: Preprint

    SciTech Connect

    Bobela, D. C.; Teplin, C. W.; Young, D. L.; Branz, H. M.; Stradins, P.

    2011-07-01

    We have grown device-quality epitaxial silicon thin films at growth rates up to 1.8 μm/min, using hot-wire chemical vapor deposition from silane at substrate temperatures below 750 degrees C. At these rates, which are more than 30 times faster than those used by the amorphous and nanocrystalline Si industry, capital costs for large-scale solar cell production would be dramatically reduced, even for cell absorber layers up to 10 ?m thick. We achieved high growth rates by optimizing the three key parameters: silane flow, depletion, and filament geometry, based on our model developed earlier. Hydrogen coverage of the filament surface likely limits silane decomposition and growth rate at high system pressures. No considerable deterioration in PV device performance is observed when grown at high rate, provided that the epitaxial growth is initiated at low rate. A simple mesa device structure (wafer/epi Si/a-Si(i)/a-Si:H(p)/ITO) with a 2.3 um epitaxial silicon absorber layer was grown at 700 nm/min. The finished device had an open-circuit voltage of 0.424 V without hydrogenation treatment.

  5. Metaporous layer to overcome the thickness constraint for broadband sound absorption

    SciTech Connect

    Yang, Jieun; Lee, Joong Seok; Kim, Yoon Young

    2015-05-07

    The sound absorption of a porous layer is affected by its thickness, especially in a low-frequency range. If a hard-backed porous layer contains periodical arrangements of rigid partitions that are coordinated parallel and perpendicular to the direction of incoming sound waves, the lower bound of the effective sound absorption can be lowered much more and the overall absorption performance enhanced. The consequence of rigid partitioning in a porous layer is to make the first thickness resonance mode in the layer appear at much lower frequencies compared to that in the original homogeneous porous layer with the same thickness. Moreover, appropriate partitioning yields multiple thickness resonances with higher absorption peaks through impedance matching. The physics of the partitioned porous layer, or the metaporous layer, is theoretically investigated in this study.

  6. Electromagnetic resonances of solar-selective absorbers with nanoparticle arrays embedded in a dielectric layer

    NASA Astrophysics Data System (ADS)

    Sakurai, Atsushi; Kawamata, Tomoaki

    2016-11-01

    We numerically investigate a solar-selective absorber with tungsten core-shell nanoparticle arrays embedded in an SiO2 layer. The 3D full-wave finite-difference time-domain (FDTD) simulations are performed to investigate the geometric effects of different types of solar-selective absorbers. Consequently, broadband light absorption was achieved with either a tungsten nanoparticle array or a tungsten core-shell nanoparticle array because of the strong electric field enhancement in the gap between the core nanoparticles. The solar performance of the proposed structure is shown for high-efficiency solar light absorption. This study enhances understanding of the light absorption mechanism of metallic nanoparticle/dielectric composite and facilitates the design of high-efficiency solar-selective absorbers.

  7. Effects of Membrane- and Catalyst-layer-thickness Nonuniformitiesin Polymer-electrolyte Fuel Cells

    SciTech Connect

    Weber, Adam Z.; Newman, John

    2006-09-01

    In this paper, results from mathematical, pseudo 2-D simulations are shown for four different along-the-channel thickness distributions of both the membrane and cathode catalyst layer. The results and subsequent analysis clearly demonstrate that for the membrane thickness distributions, cell performance is affected a few percent under low relative-humidity conditions and that the position along the gas channel is more important than the local thickness variations. However, for the catalyst-layer thickness distributions, global performance is not impacted, although for saturated conditions there is a large variability in the local temperature and performance depending on the thickness.

  8. Oceanic Double-Diffusive Layer Thicknesses in the Presence of Turbulence

    NASA Astrophysics Data System (ADS)

    Shibley, Nicole; Timmermans, Mary-Louise

    2016-11-01

    Double-diffusive stratification in the ocean is characterized by staircase structures consisting of mixed layers separated by high-gradient interfaces in temperature and salinity. Several past studies have examined mechanisms that govern the observed thicknesses of staircase mixed layers. In one formalism, the mixed-layer thickness is set by layer formation that arises when a heat source is applied at the base of water that is stably-stratified in salinity; in another, the equilibrium thickness of mixed layers has been explained as the product of "merging," where thin layers continue to grow until they reach a thickness determined by a criterion relating the ratio of heat flux to salt flux and the density ratio. We extend the above two theories to consider the influence of turbulence on mixed-layer thicknesses. The study has implications for the Arctic Ocean where double-diffusive staircases are widely present, and mixed-layer thicknesses are well-resolved by ocean measurements. Our theoretical framework provides a means to determine turbulent diffusivities (in regions where microstructure measurements are not available) by considering only observations of density ratio, stratification, and layer thicknesses.

  9. On absorbing boundary conditions for linearized Euler equations by a perfectly matched layer

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.

    1995-01-01

    Recently, Berenger introduced a Perfectly Matched Layer (PML) technique for absorbing electromagnetic waves. In the present paper, a perfectly matched layer is proposed for absorbing out-going two-dimensional waves in a uniform mean flow, generated by linearized Euler equations. It is well known that the linearized Euler equations support acoustic waves, which travel with the speed of sound relative to the mean flow, and vorticity and entropy waves, which travel with the mean flow. The PML equations to be used at a region adjacent to the artificial boundary for absorbing these linear waves are defined. Plane waves solutions to the PML equations are developed and wave propagation and absorption properties are given. It is shown that the theoretical reflection coefficients at an interface between the Euler and PML domains are zero, independent of the angle of incidence and frequency of the waves. As such, the present study points out a possible alternative approach for absorbing out-going waves of the Euler equations with little or no reflection in computation. Numerical examples that demonstrate the validity of the proposed PML equations are also presented.

  10. Effect of age and sex on retinal layer thickness and volume in normal eyes

    PubMed Central

    Won, Jae Yon; Kim, Sung Eun; Park, Young-Hoon

    2016-01-01

    Abstract The aim of the study was to evaluate the effect of sex and age on the thickness of the retinal layer in normal eyes using spectral-domain optical coherence tomography (SD-OCT). Fifty healthy subjects between the ages of 20 and 80 had their retinal layers measured using SD-OCT at Seoul St. Mary's Hospital. Mean thickness and volume were measured for 9 retinal layers in the fovea, the pericentral ring, and the peripheral ring. The differences of sex- and age-related thickness and volume in each retinal layer were analyzed. The retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), and outer plexiform layer (OPL) were thinnest in the fovea area, whereas the outer nuclear layer (ONL), photoreceptor layer (PHL), and retinal pigment epithelium (RPE) were thickest at similar locations. Mean thickness of the RNFL, GCL, IPL, and OPL was significantly greater in men than women. However, mean thickness of the ONL was greater in women than in men. When compared between patients < 30 years and > 60 years of age, the thickness and volume of peripheral RNFL, GCL, and pericentral and peripheral IPL were significantly larger in the younger group than the older group. Conversely, the thickness and volume of foveal INL and IR were larger in the older group than in the younger group. The thickness and volume of the retinal layer in normal eyes significantly vary depending on age and sex. These results should be considered when evaluating layer analysis in retinal disease. PMID:27861391

  11. Aqueous Solution Processed Photoconductive Cathode Interlayer for High Performance Polymer Solar Cells with Thick Interlayer and Thick Active Layer.

    PubMed

    Nian, Li; Chen, Zhenhui; Herbst, Stefanie; Li, Qingyuan; Yu, Chengzhuo; Jiang, Xiaofang; Dong, Huanli; Li, Fenghong; Liu, Linlin; Würthner, Frank; Chen, Junwu; Xie, Zengqi; Ma, Yuguang

    2016-09-01

    An aqueous-solution-processed photoconductive cathode interlayer is developed, in which the photoinduced charge transfer brings multiple advantages such as increased conductivity and electron mobility, as well as reduced work function. Average power conversion efficiency over 10% is achieved even when the thickness of the cathode interlayer and active layer is up to 100 and 300 nm, respectively.

  12. Study of alternative capping and absorber layers for extreme ultraviolet (EUV) masks for sub-16nm half-pitch nodes

    NASA Astrophysics Data System (ADS)

    Rastegar, Abbas; House, Matthew; Tian, Ruahi; Laursen, Thomas; Antohe, Alin; Kearney, Patrick

    2014-04-01

    Multiple challenges, including the availability of a reliable high power source, defect free mask, and proper resist material, have forced extreme ultraviolet (EUV) lithography to be considered for sub-10 nm half-pitch nodes. Therefore, techniques such as phase shift masks (PSMs) or high numerical aperture (NA) lithography might be considered. Such techniques require thin EUV absorber materials to be optimized to reduce EUV mask shadowing effects. Despite the challenges in dry etching of Ni and finding proper chemistries with a high etch selectivity to suitable capping materials, we decided to examine the chemical stability of Ni for existing mask cleaning chemistries. Ni, after Ag, has the highest absorption in EUV light at λ = 13.5 nm, which makes it a proper candidate—in pure form or in mixing with other elements—for thin absorber film. Depending on the composition of the final material, proper integration schemes will be developed. We studied Ni stability in commonly used mask cleaning processes based on ammonium hydroxide/ hydrogen peroxide (APM) and water mixtures. Ni films deposited with an ion beam deposition technique with a thickness of 35 nm are sufficient to totally absorb EUV light at λ = 13.5 nm. Multiple cleanings of these Ni films resulted in Ni oxidation— confirmed by time-of-flight secondary ion mass spectroscopy (TOF-SIMS) analysis as NiO with thickness about 1.5 nm. Furthermore, Ni oxidation processes are self-limiting and oxide layer thickness did not increase with a further cleaning. A three minute exposure to sulfuric acid/hydrogen peroxide mixture (SPM) can remove NiO and Ni totally. To protect Ni film from etching by SPM chemistry a 3 nm Si capping was used on top of Ni film. However, Si capping was removed by APM chemistry and could not protect Ni film against SPM chemistry. TiO2 may be a very good capping layer for EUV optics but it is not suitable for EUV mask blanks and will be removed by APM chemistries.

  13. An exactly solvable model for calculating critical misfit and thickness in epitaxial superlattices - Layers of equal elastic constants and thicknesses

    NASA Technical Reports Server (NTRS)

    Van Der Merwe, Jan H.; Jesser, W. A.

    1988-01-01

    A parabolic interaction potential has been used to develop a model for calculating the misfit dislocation (MD) energy in the case of a superlattice of alternating layers of materials with equal elastic constants and thicknesses. The model, which is believed to be a good one for small misfits and to have some merit for covalent bonded materials, is exactly solvable for the critical thickness above which it is energetically favorable to lose coherency by the introduction of MDs into the interfaces. It was found, for a given misfit f, that the critical thickness for epitaxial superlattices free from their substrate is somewhat more than four times that for a single epilayer on a thick substrate. Furthermore, the critical thickness varies almost inversely with misfit to the power 1.22 when Poisson's ratio is 1/3. It was also shown that the critical misfit f(c) obtained by equating maximal misfit strain and MD energies is a significant overestimate of f(c). The results for a superlattice are compared with those of a thin layer on a thick substrate.

  14. Improving impact resistance of ceramic materials by energy absorbing surface layers

    NASA Technical Reports Server (NTRS)

    Kirchner, H. P.; Seretsky, J.

    1974-01-01

    Energy absorbing surface layers were used to improve the impact resistance of silicon nitride and silicon carbide ceramics. Low elastic modulus materials were used. In some cases, the low elastic modulus was achieved using materials that form localized microcracks as a result of thermal expansion anisotropy, thermal expansion differences between phases, or phase transformations. In other cases, semi-vitreous or vitreous materials were used. Substantial improvements in impact resistance were observed at room and elevated temperatures.

  15. The effect of chain rigidity on the interfacial layer thickness and dynamics of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Cheng, Shiwang; Carrillo, Jan-Michael Y.; Carroll, Bobby; Sumpter, Bobby G.; Sokolov, Alexei P.

    There are growing experimental evidences showing the existence of an interfacial layer that has a finite thickness with slowing down dynamics in polymer nanocomposites (PNCs). Moreover, it is believed that the interfacial layer plays a significant role on various macroscopic properties of PNCs. A thicker interfacial layer is found to have more pronounced effect on the macroscopic properties such as the mechanical enhancement. However, it is not clear what molecular parameter controls the interfacial layer thickness. Inspired by our recent computer simulations that showed the chain rigidity correlated well with the interfacial layer thickness, we performed systematic experimental studies on different polymer nanocomposites by varying the chain stiffness. Combining small-angle X-ray scattering, broadband dielectric spectroscopy and temperature modulated differential scanning calorimetry, we find a good correlation between the polymer Kuhn length and the thickness of the interfacial layer, confirming the earlier computer simulations results. Our findings provide a direct guidance for the design of new PNCs with desired properties.

  16. Change in Tear Film Lipid Layer Thickness, Corneal Thickness, Volume and Topography after Superficial Cauterization for Conjunctivochalasis.

    PubMed

    Chan, Tommy C Y; Ye, Cong; Ng, Paul K F; Li, Emmy Y M; Yuen, Hunter K L; Jhanji, Vishal

    2015-07-17

    We evaluated the change in tear film lipid layer thickness, corneal thickness, volume and topography after superficial cauterization of symptomatic conjunctivochalasis. Bilateral superficial conjunctival cauterization was performed in 36 eyes of 18 patients with symptomatic conjunctivochalasis. The mean age of patients (12 males, 6 females) was 68.6 ± 10.9 years (range: 44-83 years). Preoperatively, 28 eyes (77.8%) had grade 1 conjunctivochalasis, and 8 eyes (22.2%) had grade 2 conjunctivochalasis. At 1 month postoperatively, the severity of conjunctivochalasis decreased significantly (p < 0.001) and 29 eyes (80.6%) had grade 0 conjunctivochalasis whereas 7 eyes (19.4%) had grade 1 conjunctivochalasis. The mean Ocular Surface Disease Index score decreased from 31.5 ± 15.2 preoperatively to 21.5 ± 14.2 at the end of 1 month postoperatively (p = 0.001). There was a statistically significant increase in mean tear film lipid layer thickness 1 month after the surgery (49.6 ± 16.1 nm vs 62.6 ± 21.6 nm; p < 0.001). The central corneal thickness, thinnest corneal thickness and corneal volume decreased significantly postoperatively (p < 0.001). Our study showed that superficial conjunctival cauterization is an effective technique for management of conjunctivochalasis in the short term. An increase in tear film lipid layer thickness along with a decrease in corneal thickness and volume were observed after surgical correction of conjunctivochalasis.

  17. Effect of Index of Refraction on Radiation Characteristics in a Heated Absorbing, Emitting, and Scattering Layer

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1992-01-01

    The effect of the index of refraction on the temperature distribution and radiative heat flux in semitransparent materials, such as some ceramics, is investigated analytically. In the case considered here, a plane layer of a ceramic material is subjected to external radiative heating incident on each of its surfaces; the material emits, absorbs, and isotropically scatters radiation. It is shown that, for radiative equilibrium in a gray layer with diffuse interfaces, the temperature distribution and radiative heat flux for any index of refraction can be obtained in a simple manner from the results for an index of refraction of unity.

  18. Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing

    NASA Astrophysics Data System (ADS)

    Xu, Jixian; Sutherland, Brandon R.; Hoogland, Sjoerd; Fan, Fengjia; Kinge, Sachin; Sargent, Edward H.

    2015-10-01

    Atomic layer deposition (ALD), prized for its high-quality thin-film formation in the absence of high temperature or high vacuum, has become an industry standard for the large-area deposition of a wide array of oxide materials. Recently, it has shown promise in the formation of nanocrystalline sulfide films. Here, we demonstrate the viability of ALD lead sulfide for photodetection. Leveraging the conformal capabilities of ALD, we enhance the absorption without compromising the extraction efficiency in the absorbing layer by utilizing a ZnO nanowire electrode. The nanowires are first coated with a thin shunt-preventing TiO2 layer, followed by an infrared-active ALD PbS layer for photosensing. The ALD PbS photodetector exhibits a peak responsivity of 10-2 A W-1 and a shot-derived specific detectivity of 3 × 109 Jones at 1530 nm wavelength.

  19. Development of energy-absorbing reaction-sintered Si3N4 surface layers on hot-pressed Si3N4

    NASA Technical Reports Server (NTRS)

    Brennan, J. J.

    1981-01-01

    Energy-absorbing Si3N4 surface layers on dense Si3N4 substrates were formed by in-place nitridation of fine-grained silicon powder. Ballistic impact tests performed on samples with 1-mm thick layers at room temperature and 1370 C showed up to an eightfold increase in the energy necessary to fracture the substrate. For maximum impact resistance, a small amount (about 20 vol %) of residual Si must be present in the reaction-sintered Si3N4 surface layer. Thermal cycling to 1370 C did not affect impact resistance, even though a considerable amount of SiO2 formed within the reaction-sintered Si3N4 layer during cycling. Erosion testing of samples in a Mach 0.8 burner rig at 1370 C resulted in minimal surface recession of the surface layer. Chemically vapor-deposited SiC-coated material similarly tested exhibited no surface recession.

  20. Direct determination of the thickness of stratospheric layers from single-channel satellite radiance measurements.

    NASA Technical Reports Server (NTRS)

    Quiroz, R. S.; Gelman, M. E.

    1972-01-01

    The direct use of measured radiances for determining the thickness of stratospheric layers is investigated. Layers based at 100-10 mb, with upper boundaries at 10-0.5 mb, are investigated using a carefully selected family of stratospheric temperature profiles and computed radiances. On the basis of physical reasoning, a high correlation of thickness with radiance is anticipated for deep layers, such as the 100- to 2-mb layer (from about 15 to 43 km), that emit a substantial part of the infrared energy reaching a satellite radiometer in a particular channel. Empirical regression curves relating thickness and radiance are developed and are compared with blackbody curves obtained by substituting the blackbody temperature in the hydrostatic equation. Maximum thickness-radiance correlation is found, for each infrared channel, for the layer having the best agreement of empirical and blackbody curves.

  1. Dependence of Curie temperature on Pt layer thickness in Co/Pt system

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Obinata, A.; Hibino, Y.; Hirohata, A.; Kuerbanjiang, B.; Lazarov, V. K.; Chiba, D.

    2015-03-01

    The Pt thickness dependence of the Curie temperature of perpendicularly magnetized ultra-thin (Pt/)Co/Pt films has been investigated by magnetization measurements. The Curie temperature and the saturation magnetic moment increase with the Co layer thickness and even with the Pt layer thickness. The Curie temperature is found to have linear dependence on the total magnetic moment of the system and the coefficients of the linear fits are almost identical, regardless of whether the thicknesses of the ferromagnetic Co layer or the Pt layer are varied. The Curie temperature also increases with the magnetic anisotropy, but no systematic dependence is observed. These results suggest that the magnetic moment induced in the Pt layer by the ferromagnetic proximity effect plays a significant role in determining the Curie temperatures of such two-dimensional ferromagnetic systems.

  2. The Effect of Axial Length on the Thickness of Intraretinal Layers of the Macula

    PubMed Central

    Szigeti, Andrea; Tátrai, Erika; Varga, Boglárka Enikő; Szamosi, Anna; DeBuc, Delia Cabrera; Nagy, Zoltán Zsolt; Németh, János; Somfai, Gábor Márk

    2015-01-01

    Purpose The aim of this study was to evaluate the effect of axial length (AL) on the thickness of intraretinal layers in the macula using optical coherence tomography (OCT) image analysis. Methods Fifty three randomly selected eyes of 53 healthy subjects were recruited for this study. The median age of the participants was 29 years (range: 6 to 67 years). AL was measured for each eye using a Lenstar LS 900 device. OCT imaging of the macula was also performed by Stratus OCT. OCTRIMA software was used to process the raw OCT scans and to determine the weighted mean thickness of 6 intraretinal layers and the total retina. Partial correlation test was performed to assess the correlation between the AL and the thickness values. Results Total retinal thickness showed moderate negative correlation with AL (r = -0.378, p = 0.0007), while no correlation was observed between the thickness of the retinal nerve fiber layer (RNFL), ganglion cell layer (GCC), retinal pigment epithelium (RPE) and AL. Moderate negative correlation was observed also between the thickness of the ganglion cell layer and inner plexiform layer complex (GCL+IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL) and AL which were more pronounced in the peripheral ring (r = -0.402, p = 0.004; r = -0.429, p = 0.002; r = -0.360, p = 0.01; r = -0.448, p = 0.001). Conclusions Our results have shown that the thickness of the nuclear layers and the total retina is correlated with AL. The reason underlying this could be the lateral stretching capability of these layers; however, further research is warranted to prove this theory. Our results suggest that the effect of AL on retinal layers should be taken into account in future studies. PMID:26544553

  3. Inversion of lunar regolith layer thickness with CELMS data using BPNN method

    NASA Astrophysics Data System (ADS)

    Meng, Zhiguo; Xu, Yi; Zheng, Yongchun; Zhu, Yongchao; Jia, Yu; Chen, Shengbo

    2014-10-01

    Inversion of the lunar regolith layer thickness is one of the scientific objectives of current Moon research. In this paper, the global lunar regolith layer thickness is inversed with the back propagation neural network (BPNN) technique. First, the radiative transfer simulation is employed to study the relationship between the lunar regolith layer thickness d and the observed brightness temperature TB's. The simulation results show that the parameters such as the surface roughness σ, slope θs and the (FeO+TiO2) abundance S have strong influence on the observed TB's. Therefore, TB's, σ, θs and S are selected as the inputs of the BPNN network. Next, the four-layer BPNN network with seven-dimension input and two hidden layers is constructed by taking nonlinearity into account with sigmoid functions. Then, BPNN network is trained with the corresponding parameters collected in Apollo landing sites. To tackle issues introduced by the small number of the training samples, the six-dimension similarity degree is introduced to indicate similarities of the inversion results to the correspondent training samples. Thus, the output lunar regolith layer thickness is defined as the sum of the product of the similarity degree and the thickness at the corresponding landing site. Once training phase finishes, the lunar regolith layer thickness can be inversed speedily with the four-channel TB's concluded from the CELMS data, σ and θs estimated from LOLA data and S derived from Clementine UV/vis data. the inversed thickness agrees well with the values estimated by ground-based radar data in low latitude regions. The results indicate that the thickness in the maria varies from about 0.5 m to 12 m, and the mean is about 6.52 m; while the thickness in highlands is a bit thicker than the previous estimation, where the thickness varies widely from 10 m to 31.5 m, and the mean thickness is about 16.8 m. In addition, the relation between the ages, the (FeO+TiO2) abundance and the

  4. The unique Suzaku discovery of variability in the Compton-thick absorber in NGC 4945

    NASA Astrophysics Data System (ADS)

    Marinucci, A.; Risaliti, G.; Nardini, E.; Bianchi, S.; Matt, G.; Elvis, M.

    2012-03-01

    We present a complete X-ray spectral analysis of the obscured AGN in NGC 4945, based on a Suzaku campaign spanning a period of seven months. NGC 4945 is the archetypal Compton-thick Seyfert 2 galaxy, with a reflection-dominated spectrum below 10 keV, and the intrinsic emission visible only at higher energies. Taking advantage of the unique Suzaku-HXD capabilities we detect for the first time absorption variations larger than 1024 cm-2 on time scales of a few weeks, suggesting that the obscuring material consists of gas clouds at parsec-scale distance. This result proves the fundamental importance of a time-resolved broadband X-ray study of AGNs.

  5. Thickness measurement of multi-layer conductive coatings using multifrequency eddy current techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Dejun; Yu, Yating; Lai, Chao; Tian, Guiyun

    2016-07-01

    To ensure the key structural performance in high-temperature and high-stress environments, thermal barrier coatings (TBCs) are often adopted in engineering. The thickness of these multi-layer conductive coatings is an important quality indicator. In order to measure the thickness of multi-layer conductive coatings, a new measurement approach is presented using eddy current testing techniques, and then, an inversion algorithm is proposed and proved efficient and applicable, of which the maximum experimental relative error is within 10%. Therefore, the new approach can be effectively applied to thickness measurement of multi-layer conductive coatings such as TBCs.

  6. Evanescent field response to immunoassay layer thickness on planar waveguides

    NASA Astrophysics Data System (ADS)

    Yan, Rongjin; Yuan, Guangwei; Stephens, Matthew D.; He, Xinya; Henry, Charles S.; Dandy, David S.; Lear, Kevin L.

    2008-09-01

    The response of a compact photonic immunoassay biosensor based on a planar waveguide to variation in antigen (C-reactive protein) concentration as well as waveguide ridge height has been investigated. Near-field scanning optical microscope measurements indicate 1.7%/nm and 3.3%/nm top surface optical intensity modulation due to changes in effective adlayer thickness on waveguides with 16.5 and 10nm ridge heights, respectively. Beam propagation method simulations are in good agreement with the experimental sensitivities as well as the observation of leaky mode interference both within and after the adlayer region.

  7. Bi-layer metamaterials as fully functional near-perfect infrared absorbers

    NASA Astrophysics Data System (ADS)

    Adomanis, Bryan M.; Watts, Claire M.; Koirala, Machhindra; Liu, Xianliang; Tyler, Talmage; West, Kevin G.; Starr, Tatiana; Bringuier, Jonathan N.; Starr, Anthony F.; Jokerst, Nan Marie; Padilla, Willie J.

    2015-07-01

    In this letter, we discuss the design, fabrication, and experimental characterization of a bi-layer fully functional near-perfect metamaterial absorber (MMA) in the long-wavelength infrared (LWIR), which is broadband and generally insensitive to polarization up to a 60° incidence angle. A spectral absorptance of ≥99% was attained simultaneously at multiple LWIR wavelengths, with a bandwidth of 2 μm where the absorptance is ≥90%. This remarkable behavior is attributed to the strong mixing of coupling modes between the two resonators and the ground plane in the presence of a lossy dielectric, in which single layer structures do not exhibit. Furthermore, we show, by comparing two different MMA structures, how the absorption can be tailored by design within and across several IR subdivisions through a slight change in geometrical parameters. The bi-layer MMA has the immediate application of a functionally versatile, low-profile thermal sensor or emitter.

  8. Pavement thickness and stabilised foundation layer assessment using ground-coupled GPR

    NASA Astrophysics Data System (ADS)

    Hu, Jinhui; Vennapusa, Pavana K. R.; White, David J.; Beresnev, Igor

    2016-07-01

    Experimental results from field and laboratory investigations using a ground-coupled ground penetrating radar (GPR), dielectric measurement, magnetic imaging tomography (MIT) and dynamic cone penetrometer (DCP) tests are presented. Dielectric properties of asphalt pavement and stabilised and unstabilised pavement foundation materials were evaluated in the laboratory in frozen and unfrozen conditions. Laboratory test results showed that dielectric properties of materials back-calculated from GPR in comparison to dielectric gauge measurements are strongly correlated and repeatable. For chemically stabilised materials, curing time affected the dielectric properties of the materials. Field tests were conducted on asphalt pavement test sections with different foundation materials (stabilised and unstabilised layers), drainage conditions and layer thicknesses. GPR and MIT results were used to determine asphalt layer thicknesses and were compared with measured core thicknesses, while GPR and DCP were used to assess foundation layer profiles. Asphalt thicknesses estimated from GPR showed an average error of about 11% using the dielectric gauge values as input. The average error reduced to about 4% when calibrated with cores thicknesses. MIT results showed thicknesses that are about 9% higher than estimated using GPR. Foundation layer thicknesses could not be measured using GPR due to variations in moisture conditions between the test sections, which is partly attributed to variations in gradation and drainage characteristics of the subbase layer.

  9. Study the spatial variability of organic soil layer thickness within Barataria Bay marshes, Louisiana

    SciTech Connect

    Hudnall, W.H.; Dharmasri, L.C.; Holladay, K.W.; Pelletier, R.

    1997-08-01

    Marshes convert to open water at a high rate in Louisiana. Organic layers degrade in eroding marshes. Organic accretion results in thick organic layers that help to maintain healthy marshes. Thin organic layers may be characteristic of erodible marshes that convert into open water. Thickness of the surface organic layer is a significant soil morphological feature that may indicate the status of the marsh. Soil morphology can show a significant spatial variability within marshes. Accretion rates and the landscape may be disturbed by hurricane activity, presence of channels, open water areas, and man made changes. Understanding spatial variability of organic layer thickness will enable one to delineate critical marsh areas and plan marsh management strategies. Study of multi-dimensional variability may help to understand the spatial variability of soil morphological characteristics and prominent pedogenic processes that can be related to a landscape-soil model. Thickness of surface organic layer (or depth to mineral horizon) was measured using grids at 200 m intervals established within one square mile area in saline and brackish marsh. The soils had a variable organic layer thickness over sandy or clayey alluvium. Data were used to generate thickness contour maps. Soil morphology indicated a considerable spatial variability within the saline and brackish marshes.

  10. Detection of charged particles in thick hydrogenated amorphous silicon layers

    SciTech Connect

    Fujieda, I.; Cho, G.; Kaplan, S.N.; Perez-Mendez, V.; Qureshi, S.; Ward, W.; Street, R.A.

    1988-03-01

    We show our results in detecting particles of various linear energy transfer, including minimum ionizing electrons from a Sr-90 source with 5 to 12 micron thick n-i-p and p-i-n diodes. We measured W ( average energy to produce one electron-hole pair) using 17keV filtered xray pulses with a result W = 6.0 /+-/ 0.2eV. This is consistent with the expected value for a semiconductor with band gap of 1.7 to 1.9eV. With heavily ionizing particles such as 6 MeV alphas and 1 to 2 MeV protons, there was some loss of signal due to recombination in the particle track. The minimum ionizing electrons showed no sign of recombination. Applications to pixel and strip detectors for physics experiments and medical imaging will be discussed. 7 refs., 8 figs.

  11. Measurement of excited layer thickness in highly photo-excited GaAs

    NASA Astrophysics Data System (ADS)

    Liang, Lingliang; Tian, Jinshou; Wang, Tao; Wu, Shengli; Li, Fuli; Gao, Guilong

    2016-10-01

    Highly photo-excited layer thickness in GaAs is measured using a pump probe arrangement. A normally incident pump illumination spatially modulated by a mask will induce a corresponding refractive index change distribution in the depth direction due to edge scattering and attenuation absorption effect, which can deflect the probe beam passing through this excited region. Maximum deflection of the probe beam will be limited by the thickness of excited layer, and thus can also be employed to measure the thickness of the photo-excited layer of the material. Theoretical calculation confirms the experimental results. This method can find its application in measurements of photo-excited layer thickness of many kinds of materials and be significant to study the characteristics of materials in laser machining, grating and waveguide fabricating.

  12. Effect of spacer layer thickness on magnetic interactions in self-assembled single domain iron nanoparticles

    SciTech Connect

    Herndon, Nichole B; Ho, S; Abiade, J.; Pai, Devdas M.; Sankar, Jag; Pennycook, Stephen J

    2009-01-01

    The magnetic characteristics of iron nanoparticles embedded in an alumina thin film matrix have been studied as a function of spacer layer thickness. Alumina as well as iron nanoparticles were deposited in a multilayered geometry using sequential pulsed laser deposition. The role of spacer layer thickness was investigated by making layered thin film composites with three different spacer layer thicknesses 6, 12, and 18 nm with fixed iron particle size of 13 nm. Intralayer magnetic interactions being the same in each sample, the variation in coercivity and saturation magnetization is attributed to thickness dependent interlayer magnetic interactions of three types: exchange, strong dipolar, and weak dipolar. A thin film composite multilayer structure offers a continuously tunable strength of interparticle dipole-dipole interaction and is thus well suited for studies of the influence of interaction on the magnetic properties of small magnetic particle systems.

  13. Asymmetric transmission of acoustic waves in a layer thickness distribution gradient structure using metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Jung-San; Chang, I.-Ling; Huang, Wan-Ting; Chen, Lien-Wen; Huang, Guan-Hua

    2016-09-01

    This research presents an innovative asymmetric transmission design using alternate layers of water and metamaterial with complex mass density. The directional transmission behavior of acoustic waves is observed numerically inside the composite structure with gradient layer thickness distribution and the rectifying performance of the present design is evaluated. The layer thickness distributions with arithmetic and geometric gradients are considered and the effect of gradient thickness on asymmetric wave propagation is systematically investigated using finite element simulation. The numerical results indicate that the maximum pressure density and transmission through the proposed structure are significantly influenced by the wave propagation direction over a wide range of audible frequencies. Tailoring the thickness of the layered structure enables the manipulation of asymmetric wave propagation within the desired frequency range. In conclusion, the proposed design offers a new possibility for developing directional-dependent acoustic devices.

  14. Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates.

    PubMed

    Li, Song-Lin; Miyazaki, Hisao; Song, Haisheng; Kuramochi, Hiromi; Nakaharai, Shu; Tsukagoshi, Kazuhito

    2012-08-28

    We demonstrate the possibility in quantifying the Raman intensities for both specimen and substrate layers in a common stacked experimental configuration and, consequently, propose a general and rapid thickness identification technique for atomic-scale layers on dielectric substrates. Unprecedentedly wide-range Raman data for atomically flat MoS(2) flakes are collected to compare with theoretical models. We reveal that all intensity features can be accurately captured when including optical interference effect. Surprisingly, we find that even freely suspended chalcogenide few-layer flakes have a stronger Raman response than that from the bulk phase. Importantly, despite the oscillating intensity of specimen spectrum versus thickness, the substrate weighted spectral intensity becomes monotonic. Combined with its sensitivity to specimen thickness, we suggest this quantity can be used to rapidly determine the accurate thickness for atomic layers.

  15. Layer thickness-dependent phonon properties and thermal conductivity of MoS2

    NASA Astrophysics Data System (ADS)

    Gu, Xiaokun; Li, Baowen; Yang, Ronggui

    2016-02-01

    For conventional materials, the thermal conductivity of thin films is usually suppressed when the thickness decreases due to phonon-boundary scattering. However, this is not necessarily true for the van der Waals solids if the thickness is reduced to only a few layers. In this letter, the layer thickness-dependent phonon properties and thermal conductivity in the few-layer MoS2 are studied using the first-principles-based Peierls-Boltzmann transport equation approach. The basal-plane thermal conductivity of 10-μm-long samples is found to monotonically reduce from 138 W/mK to 98 W/mK for naturally occurring MoS2, and from 155 W/mK to 115 W/mK for isotopically pure MoS2, when its thickness increases from one layer to three layers. The thermal conductivity of tri-layer MoS2 approaches to that of bulk MoS2. Both the change of phonon dispersion and the thickness-induced anharmonicity are important for explaining such a thermal conductivity reduction. The increased anharmonicity in bi-layer MoS2 results in stronger phonon scattering for ZAi modes, which is linked to the breakdown of the symmetry in single-layer MoS2.

  16. Monte Carlo modeling (MCML) of light propagation in skin layers for detection of fat thickness

    NASA Astrophysics Data System (ADS)

    Nilubol, Chonnipa; Treerattrakoon, Kiatnida; Mohammed, Waleed S.

    2010-05-01

    Nowadays, most activities require lesser physical actions, which could ultimately lead to accumulation of excessive body fat. The main roles of body fat are to store energy and acts as various kinds of insulators for the body. The thickness of fat layers can be measured to indicate fat-body weight ratio. Exceeding the body-mass index (BMI) could lead to many illnesses regarding obesity. Consequently, many studies have proposed various principles and techniques to measure the amount of fat within one's body. In this paper, infrared interactance in skin layers is studied for investigation of the influence of fat thickness upon photon travelling pattern in skin tissues using Monte Carlo model (MCML). Photon propagation is numerically simulated in simplified multi-layered tissues. The optical coefficients of each skin layers are accounted for different traveling paths of photons that move through random motion. The thickness of fat layer is varied, and changing in optical parameters is observed. Then the statistically obtained data are computed and analyzed for the effect of the fat layer upon reflection percentage using different wavelengths. The calculations have shown increment in the slope of change of reflection percentage versus fat thickness, when using infrared compare to visible light. This technique can be used to construct a mobile device that is capable of measuring the volume fraction of melanin and blood in the epidermis layer and dermis layer, to calculate for the necessary optical coefficients that would be necessary for measurement of fat thickness.

  17. Microstructure evolution with varied layer thickness in magnetron-sputtered Ni/C multilayer films

    PubMed Central

    Peng, Jichang; Li, Wenbin; Huang, Qiushi; Wang, Zhanshan

    2016-01-01

    The microstructure evolution of magnetron-sputtered Ni/C multilayers was investigated by varying the Ni and C layer thickness in the region of a few nanometers. For the samples having 2.6-nm-thick C layers, the interface width increases from 0.37 to 0.81 nm as the Ni layer thickness decreases from 4.3 to 1.3 nm. Especially for the samples with Ni layers less than 2.0 nm, the interface width changes significantly due to the discontinuously distributed Ni crystallites. For the samples having 2.8-nm-thick Ni layers, the interface width increases from 0.37 to 0.59 nm when the C layer thickness decreases from 4.3 to 0.7 nm. The evolution of interface microstructures with varied Ni and C layers is explained based on a proposed simple growth model of Ni and C layers. PMID:27515586

  18. CIGS absorber layer with double grading Ga profile for highly efficient solar cells

    NASA Astrophysics Data System (ADS)

    Saadat, M.; Moradi, M.; Zahedifar, M.

    2016-04-01

    It is well-known that the band gap grading in CIGS solar cells is crucial for achieving highly efficient solar cells. We stimulate a CIGS solar cell and investigate the effects of the band gap grading on performance of the CIGS solar cell, where Ga/(Ga + In) ratio (GGI) at back (Cb) and front (Cf) of the absorber layer are considered constant. Our simulations show that by increasing the GGI at middle of CIGS absorber layer (Cm), the JSC decreases and VOC increases independent of the distance of the Cm from the back contact (Xm). For Cm lower than Cf, JSC increases and VOC decreases when the Xm shifts to the front of the CIGS layer. The behavior of JSC and VOC became reverse for the case of Cm greater than Cf. Almost in all of the structures, efficiency and FF have same behaviors. Our simulations show that the highest efficiency is obtained at Cm = 0.8 and Xm = 200 nm.

  19. Effect of Index of Refraction on Radiation Characteristics in a Heated Absorbing, Emitting, and Scattering Layer

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1992-01-01

    The index of refraction can considerably influence the temperature distribution and radiative heat flow in semitransparent materials such as some ceramics. For external radiant heating, the refractive index influences the amount of energy transmitted into the interior of the material. Emission within a material depends on the square of its refractive index, and hence this emission can be many times that for a biackbody radiating into a vacuum. Since radiation exiting through an interface into a vacuum cannot exceed that of a blackbody, there is extensive reflection at the internal surface of an interface, mostly by total internal reflection. This redistributes energy within the layer and tends to make its temperature distribution more uniform. The purpose of the present analysis is to show that, for radiative equilibrium in a gray layer with diffuse interfaces, the temperature distribution and radiative heat flux for any index of refraction can be obtained very simply from the results for an index of refraction of unity. For the situation studied here, the layer is subjected to external radiative heating incident on each of its surfaces. The material emits, absorbs, and isotropically scatters radiation. For simplicity the index of refraction is unity in the medium surrounding the layer. The surfaces of the layer are assumed diffuse. This is probably a reasonable approximation for a ceramic layer that has not been polished. When transmitted radiation or radiation emitted from the interior reaches the inner surface of an interface, the radiation is diffused and some of it thereby placed into angular directions for which there is total internal reflection. This provides a trapping effect for retaining energy within the layer and tends to equalize its temperature distribution. An analysis of temperature distributions in absorbing-emitting layers, including index of refraction effects, was developed by Gardon (1958) to predict cooling and heat treating of glass plates

  20. Organic solar cells with graded absorber layers processed from nanoparticle dispersions.

    PubMed

    Gärtner, Stefan; Reich, Stefan; Bruns, Michael; Czolk, Jens; Colsmann, Alexander

    2016-03-28

    The fabrication of organic solar cells with advanced multi-layer architectures from solution is often limited by the choice of solvents since most organic semiconductors dissolve in the same aromatic agents. In this work, we investigate multi-pass deposition of organic semiconductors from eco-friendly ethanol dispersion. Once applied, the nanoparticles are insoluble in the deposition agent, allowing for the application of further nanoparticulate layers and hence for building poly(3-hexylthiophene-2,5-diyl):indene-C60 bisadduct absorber layers with vertically graded polymer and conversely graded fullerene concentration. Upon thermal annealing, we observe some degrees of polymer/fullerene interdiffusion by means of X-ray photoelectron spectroscopy and Kelvin probe force microscopy. Replacing the common bulk-heterojunction by such a graded photo-active layer yields an enhanced fill factor of the solar cell due to an improved charge carrier extraction, and consequently an overall power conversion efficiency beyond 4%. Wet processing of such advanced device architectures paves the way for a versatile, eco-friendly and industrially feasible future fabrication of organic solar cells with advanced multi-layer architectures.

  1. Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser.

    PubMed

    Zhang, Baitao; Lou, Fei; Zhao, Ruwei; He, Jingliang; Li, Jing; Su, Xiancui; Ning, Jian; Yang, Kejian

    2015-08-15

    High-quality black phosphorus (BP) saturable absorber mirror (SAM) was successfully fabricated with few-layered BP (phosphorene). By employing the prepared phosphorene SAM, we have demonstrated ultrafast pulse generation from a BP mode-locked bulk laser for the first time to our best knowledge. Pulses as short as 6.1 ps with an average power of 460 mW were obtained at the central wavelength of 1064.1 nm. Considering the direct and flexible band gap for different layers of phosphorene, this work may provide a possible method for fabricating BP SAM to achieve ultrafast solid-state lasers in IR and mid-IR wavelength region.

  2. Estimate of the Impact of Absorbing Aerosol Over Cloud on the MODIS Retrievals of Cloud Optical Thickness and Effective Radius Using Two Independent Retrievals of Liquid Water Path

    NASA Technical Reports Server (NTRS)

    Wilcox, Eric M.; Harshvardhan; Platnick, Steven

    2009-01-01

    Two independent satellite retrievals of cloud liquid water path (LWP) from the NASA Aqua satellite are used to diagnose the impact of absorbing biomass burning aerosol overlaying boundary-layer marine water clouds on the Moderate Resolution Imaging Spectrometer (MODIS) retrievals of cloud optical thickness (tau) and cloud droplet effective radius (r(sub e)). In the MODIS retrieval over oceans, cloud reflectance in the 0.86-micrometer and 2.13-micrometer bands is used to simultaneously retrieve tau and r(sub e). A low bias in the MODIS tau retrieval may result from reductions in the 0.86-micrometer reflectance, which is only very weakly absorbed by clouds, owing to absorption by aerosols in cases where biomass burning aerosols occur above water clouds. MODIS LWP, derived from the product of the retrieved tau and r(sub e), is compared with LWP ocean retrievals from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E), determined from cloud microwave emission that is transparent to aerosols. For the coastal Atlantic southern African region investigated in this study, a systematic difference between AMSR-E and MODIS LWP retrievals is found for stratocumulus clouds over three biomass burning months in 2005 and 2006 that is consistent with above-cloud absorbing aerosols. Biomass burning aerosol is detected using the ultraviolet aerosol index from the Ozone Monitoring Instrument (OMI) on the Aura satellite. The LWP difference (AMSR-E minus MODIS) increases both with increasing tau and increasing OMI aerosol index. During the biomass burning season the mean LWP difference is 14 g per square meters, which is within the 15-20 g per square meter range of estimated uncertainties in instantaneous LWP retrievals. For samples with only low amounts of overlaying smoke (OMI AI less than or equal to 1) the difference is 9.4, suggesting that the impact of smoke aerosols on the mean MODIS LWP is 5.6 g per square meter. Only for scenes with OMI aerosol index greater than 2 does the

  3. Computational optimization and solution-processing of thick and efficient luminescent down-shifting layers for photovoltaics

    NASA Astrophysics Data System (ADS)

    Solodovnyk, Anastasiia; Kick, Christopher; Osvet, Andres; Egelhaaf, Hans-Joachim; Stern, Edda; Batentschuk, Miroslaw; Forberich, Karen; Brabec, Christoph J.

    2016-03-01

    Luminescent down-shifting (LDS) is a simple, powerful tool for increasing the range of solar irradiance that can be efficiently utilized by photovoltaic devices. We developed an optical model to simulate the ideal optical properties (absorbance, transmittance, luminescence quantum yield, etc.) of LDS layers for solar cells. We evaluated which quantum efficiencies and which optical densities are necessary to achieve an improvement in solar cell performance. In particular we considered copper indium gallium diselenide (CIGS) devices. Our model relies on experimentally measured data for the transmission and emission spectra as well as for the external quantum efficiency (EQE) of the solar cell. By combining experimental work with this optical model, we aim to propose an environmentally friendly technology for coating thick (300-500 μm), efficient luminescent down-shifting layers. These layers consist of polyvinyl butyral (PVB) and organic UV-converting fluorescent dyes. The absorption coefficients and luminescence quantum yields of the dyes were determined both in a solution of the solvent benzyl alcohol and in the solid polymer layers. This data shows that the dyes retain luminescence quantum yields of approximately 90% after solution-processing. The produced layers were then applied to CIGS solar cells, thereby improving the EQE of the devices in the UV region. At a wavelength of 390 nm, for instance, the EQE increased from 18% to 53%. These values closely agree with the theoretically calculated ones. The proposed technology, thus, provides a pathway toward efficient, fully solutionprocessable encapsulated photovoltaic modules.

  4. Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer

    NASA Astrophysics Data System (ADS)

    Doraiswamy, A.; Narayan, R. J.; Lippert, T.; Urech, L.; Wokaun, A.; Nagel, M.; Hopp, B.; Dinescu, M.; Modi, R.; Auyeung, R. C. Y.; Chrisey, D. B.

    2006-04-01

    We present a novel laser-based approach for developing tissue engineered constructs and other cell-based assembly's. We have deposited mesoscopic patterns of viable B35 neuroblasts using a soft direct approach of the matrix assisted pulsed laser evaporation direct write (MAPLE DW) process. As a development of the conventional direct write process, an intermediate layer of absorbing triazene polymer is used to provide gentler and efficient transfers. Transferred cells were examined for viability and proliferation and compared with that of as-seeded cells to determine the efficacy of the process. Results suggest that successful transfers can be achieved at lower fluences than usual by the incorporation of the intermediate absorbing layer thus avoiding any damage to cells and other delicate materials. MAPLE DW offers rapid computer-controlled deposition of mesoscopic voxels at high spatial resolutions, with extreme versatility in depositing combinations of natural/synthetic, living/non-living, organic/inorganic and hard/soft materials. Our approach offers a gentle and efficient transfer of viable cells which when combined with a variety of matrix materials allows development of constructs and bioactive systems in bioengineering.

  5. One-dimensional semiconductor nanostructures as absorber layers in solar cells.

    PubMed

    Jayadevan, K P; Tseng, T Y

    2005-11-01

    The one-dimensional (1-D) nanostructures of cadmium chalcogenides (Il-VI: CdSe, CdTe), InP and GaAs (III-V), and the ternary chalcopyrites CulnS2, CulnSe2, and CulnTe2 (I-III-VI2) are the candidate semiconductors of interest as absorber layers in solar cells. In the confinement regime (approximately 1-10 nm) of these 1-D nanostructures, the electronic energy levels are quantized so that the oscillator strength and the resultant absorption of solar energy are enhanced. Moreover, the discrete energy levels effectively separate the electrons and holes at the two electrodes or at the interfaces with a polymer in a hybrid structure, so that an oriented and 1-D nanostructured absorber layer is expected to improve the conversion efficiency of solar cells. The intrinsic anisotropy of Il-VI and l-lll-VI2 crystal lattices and the progress in various growth processes are assessed to derive suitable morphological features of these 1-D semiconductor nanostructures. The present status of research in nanorod-based solar cells is reviewed and possible routes are identified to improve the performance of nanorod-based solar cells. Finally, the characteristics of nanorod-based solar cells are compared with the dye-sensitized and organic solar cells.

  6. Influences and interactions of inundation, peat, and snow on active layer thickness

    DOE PAGES

    Atchley, Adam L.; Coon, Ethan T.; Painter, Scott L.; ...

    2016-05-18

    The effect of three environmental conditions: 1) thickness of organic soil, 2) snow depth, and 3) soil moisture content or water table height above and below the soil surface, on active layer thickness (ALT) are investigated using an ensemble of 1D thermal hydrology models. Sensitivity analyses of the ensemble exposed the isolated influence of each environmental condition on ALT and their multivariate interactions. The primary and interactive influences are illustrated in the form of color maps of ALT change. Results show that organic layer acts as a strong insulator, and its thickness is the dominant control of ALT, but themore » strength of the effect of organic layer thickness is dependent on the saturation state. Snow depth, subsurface saturation, and ponded water depth are strongly codependent and positively correlated to ALT.« less

  7. Influences and interactions of inundation, peat, and snow on active layer thickness

    SciTech Connect

    Atchley, Adam L.; Coon, Ethan T.; Painter, Scott L.; Harp, Dylan R.; Wilson, Cathy J.

    2016-05-18

    The effect of three environmental conditions: 1) thickness of organic soil, 2) snow depth, and 3) soil moisture content or water table height above and below the soil surface, on active layer thickness (ALT) are investigated using an ensemble of 1D thermal hydrology models. Sensitivity analyses of the ensemble exposed the isolated influence of each environmental condition on ALT and their multivariate interactions. The primary and interactive influences are illustrated in the form of color maps of ALT change. Results show that organic layer acts as a strong insulator, and its thickness is the dominant control of ALT, but the strength of the effect of organic layer thickness is dependent on the saturation state. Snow depth, subsurface saturation, and ponded water depth are strongly codependent and positively correlated to ALT.

  8. Characteristics of blue organic light emitting diodes with different thick emitting layers

    NASA Astrophysics Data System (ADS)

    Li, Chong; Tsuboi, Taiju; Huang, Wei

    2014-08-01

    We fabricated blue organic light emitting diodes (called blue OLEDs) with emitting layer (EML) of diphenylanthracene derivative 9,10-di(2-naphthyl)anthracene (ADN) doped with blue-emitting DSA-ph (1-4-di-[4-(N,N-di-phenyl)amino]styryl-benzene) to investigate how the thickness of EML and hole injection layer (HIL) influences the electroluminescence characteristics. The driving voltage was observed to increase with increasing EML thickness from 15 nm to 70 nm. The maximum external quantum efficiency of 6.2% and the maximum current efficiency of 14 cd/A were obtained from the OLED with 35 nm thick EML and 75 nm thick HIL. High luminance of 120,000 cd/m2 was obtained at 7.5 V from OLED with 15 nm thick EML.

  9. Ratiometric analysis of in vivo retinal layer thicknesses in multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Bhaduri, Basanta; Nolan, Ryan M.; Shelton, Ryan L.; Pilutti, Lara A.; Motl, Robert W.; Boppart, Stephen A.

    2016-09-01

    We performed ratiometric analysis of retinal optical coherence tomography images for the first time in multiple sclerosis (MS) patients. The ratiometric analysis identified differences in several retinal layer thickness ratios in the cohort of MS subjects without a history of optic neuritis (ON) compared to healthy control (HC) subjects, and there was no difference in standard retinal nerve fiber layer thickness (RNFLT). The difference in such ratios between HC subjects and those with mild MS-disability, without a difference in RNFLT, further suggests the possibility of using layer ratiometric analysis for detecting early retinal changes in MS. Ratiometric analysis may be useful and potentially more sensitive for detecting disease changes in MS.

  10. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    SciTech Connect

    Rosikhin, Ahmad Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  11. The case for using a sacrificial layer of absorbent insulation in the design of flat and low-sloped roofing

    NASA Astrophysics Data System (ADS)

    Stockton, Gregory R.

    2013-05-01

    Beginning about twenty-five years ago, there was a marked increase in the number of single-ply membrane roof designs used to cover and waterproof flat and low-sloped building roofs. Over the past ten years, there has been a substantial increase in the number of installations of white and more reflective single-ply roof systems, mostly using high density cellular foam insulation in the substrate for insulation. A major factor in the increase in the popularity of these highly insulated and more reflective roof systems is the fact that many governments began offering incentives for building owners to use reflective coverings and better insulated roofs. Now, owing to the energy efficient requirements for the design and construction of new buildings put forth in ASHRAE Standard 90.1, "Energy Standard for Buildings Except Low-Rise Residential Buildings" and the world's apparent desire to be "green" (or at least appear to be), more and more roof designs will include these reflective single-ply membranes, which use the cellular foam insulation boards to meet these requirements. Using a lower density traditional insulation will mean that the roof will have to be very thick to comply, increasing the costs of installation. High density cellular foams do not absorb water until time, vapor pressure drive, UV and thermal shock break down the foam and it becomes more absorbent. This could be 5-7 years or longer, depending on the roof construction and other factors. This means that any water that enters the roof through a breach (leak) in the membrane goes straight into the building. This is not a good consequence since the failure mode of any roof is water entering the building. Keeping the water out of the building is the purpose of the waterproofing layer. This paper reviews the techniques of moisture testing on building roofs and infrared (IR) thermography, and puts forth the idea and reasoning behind having a sacrificial layer of very absorbent insulation installed in every

  12. Retinal nerve fiber layer thickness and neuropsychiatric manifestations in systemic lupus erythematosus.

    PubMed

    Shulman, S; Shorer, R; Wollman, J; Dotan, G; Paran, D

    2017-01-01

    Background Cognitive impairment is frequent in systemic lupus erythematosus. Atrophy of the corpus callosum and hippocampus have been reported in patients with systemic lupus erythematosus, and diffusion tensor imaging studies have shown impaired white matter integrity, suggesting that white matter damage in systemic lupus erythematosus may underlie the cognitive impairment as well as other neuropsychiatric systemic lupus erythematosus manifestations. Retinal nerve fiber layer thickness, as assessed by optical coherence tomography, has been suggested as a biomarker for white matter damage in neurologic disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Retinal nerve fiber layer thinning may occur early, even in patients with mild clinical symptoms. Aim The objective of this study was to assess the association of retinal nerve fiber layer thickness, as a biomarker of white matter damage in systemic lupus erythematosus patients, with neuropsychiatric systemic lupus erythematosus manifestations, including cognitive impairment. Methods Twenty-one consecutive patients with systemic lupus erythematosus underwent neuropsychological testing using a validated computerized battery of tests as well as the Rey-Auditory verbal learning test. All 21 patients, as well as 11 healthy, age matched controls, underwent optical coherence tomography testing to assess retinal nerve fiber layer thickness. Correlations between retinal nerve fiber layer thickness and results in eight cognitive domains assessed by the computerized battery of tests as well as the Rey-Auditory verbal learning test were assessed in patients with systemic lupus erythematosus, with and without neuropsychiatric systemic lupus erythematosus, and compared to retinal nerve fiber layer thickness in healthy controls. Results No statistically significant correlation was found between retinal nerve fiber layer thickness in patients with systemic lupus erythematosus as compared to healthy

  13. Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing

    SciTech Connect

    Xu, Jixian; Sutherland, Brandon R.; Hoogland, Sjoerd; Fan, Fengjia; Sargent, Edward H.; Kinge, Sachin

    2015-10-12

    Atomic layer deposition (ALD), prized for its high-quality thin-film formation in the absence of high temperature or high vacuum, has become an industry standard for the large-area deposition of a wide array of oxide materials. Recently, it has shown promise in the formation of nanocrystalline sulfide films. Here, we demonstrate the viability of ALD lead sulfide for photodetection. Leveraging the conformal capabilities of ALD, we enhance the absorption without compromising the extraction efficiency in the absorbing layer by utilizing a ZnO nanowire electrode. The nanowires are first coated with a thin shunt-preventing TiO{sub 2} layer, followed by an infrared-active ALD PbS layer for photosensing. The ALD PbS photodetector exhibits a peak responsivity of 10{sup −2} A W{sup −1} and a shot-derived specific detectivity of 3 × 10{sup 9} Jones at 1530 nm wavelength.

  14. Analysis of Retinal Layer Thicknesses and Their Clinical Correlation in Patients with Traumatic Optic Neuropathy

    PubMed Central

    Lee, Ju-Yeun; Cho, Kyuyeon; Park, Kyung-Ah; Oh, Sei Yeul

    2016-01-01

    The aims of this study were 1) To evaluate retinal nerve fiber layer (fRNFL) thickness and ganglion cell layer plus inner plexiform layer (GCIPL) thickness at the fovea in eyes affected with traumatic optic neuropathy (TON) compared with contralateral normal eyes, 2) to further evaluate these thicknesses within 3 weeks following trauma (defined as “early TON”), and 3) to investigate the relationship between these retinal layer thicknesses and visual function in TON eyes. Twenty-nine patients with unilateral TON were included. Horizontal and vertical spectral-domain optical coherence tomography (SD-OCT) scans of the fovea were taken in patients with unilateral TON. The main outcome measure was thickness of the entire retina, fRNFL, and GCIPL in eight areas. Thickness of each retinal layer was compared between affected and unaffected eyes. The correlation between the thickness of each retinal layer and visual function parameters, including best corrected visual acuity, color vision, P100 latency, and P100 amplitude in visual evoked potential (VEP), mean deviation (MD) and visual field index (VFI) in Humphrey visual field analysis in TON eyes was analyzed. Thicknesses of the entire retina, fRNFL, and GCIPL in SD-OCT were significantly thinner (3–36%) in all measurement areas of TON eyes compared to those in healthy eyes (all p<0.05). Whereas, only GCIPL in the outer nasal, superior, and inferior areas was significantly thinner (5–10%) in the early TON eyes than that in the control eyes (all p<0.01). A significant correlation was detected between retinal layer thicknesses and visual function parameters including color vision, P100 latency and P100 amplitude in VEP, MD, and VFI (particularly P100 latency, MD, and VFI) (r = -0.70 to 0.84). Among the retinal layers analyzed in this study, GCIPL (particularly in the superior and inferior areas) was most correlated with these five visual function parameters (r = -0.70 to 0.71). Therefore, evaluation of morphological

  15. Three-layer structure microwave absorbers based on nanocrystalline alpha-Fe, Fe0.2(Co0.2Ni0.8)0.8 and Ni0.5Zn0.5Fe2O4 porous microfibers.

    PubMed

    Liu, Hongbo; Meng, Xianfeng; Yang, Xinchun; Jing, Maoxiang; Shen, Xiangqian; Dong, Mingdong

    2014-04-01

    The three-layer structure microwave absorbers with thickness of 2 mm were designed based on nanocrystalline alpha-Fe, Fe0.2(Co0.2Ni0.8)0.8 and Ni0.5Zno.sFe204 porous microfibers with diameters about 2-5 microm. The electromagnetic parameters and microwave absorption properties were investigated by vector network analyzer in the frequency range of 2-18 GHz. The results show that the three-layer structure microwave absorbers display stronger absorption properties in a wide frequency range than the single-layer and double-layer microwave absorber. For the three-layer structure, the microwave absorption properties are mainly influenced by the microfibers layer arrangement order, total thickness and each layer thickness. When the Ni0.5Zn0.5Fe2O4 porous microfibers layer is arranged as the impedance-matching surface layer, with a total thickness of 2 mm consisting of 0.7 mm thick alpha-Fe porous microfibers inner layer, 0.9 mm thick Fe0.2(Co0.2Ni0.8)0.8 porous microfibers medium layer and 0.4 mm thick impedance-matching surface layer, the three-layer structure has a strongest microwave absorption of 45.7 dB at 12.8 GHz, the absorption bandwidth (with RL < -10 dB ) of 10.2 GHz from 7.8 GHz to 18 GHz and bandwidth (with RL < -20 dB) of 4.4 GHz from 11.1 GHz to 15.5 GHz respectively. This three-layer structure is promising microwave absorbers to meet the requirements of thin thickness, light weight and wide band for military and civil applications.

  16. Thin layer thickness measurements by zero group velocity Lamb mode resonances.

    PubMed

    Cès, Maximin; Clorennec, Dominique; Royer, Daniel; Prada, Claire

    2011-11-01

    Local and non-contact measurements of the thickness of thin layers deposited on a thick plate have been performed by using zero group velocity (ZGV) Lamb modes. It was shown that the shift of the resonance frequency is proportional to the mass loading through a factor which depends on the mechanical properties of the layer and of the substrate. In the experiments, ZGV Lamb modes were generated by a Nd:YAG pulsed laser and the displacement normal to the plate surface was measured by an optical interferometer. Measurements performed at the same point that the generation on the non-coated face of the plate demonstrated that thin gold layers of a few hundred nanometers were detected through a 1.5-mm thick Duralumin plate. The shift of the resonance frequency (1.9 MHz) of the fundamental ZGV mode is proportional to the layer thickness: typically 10 kHz per μm. Taking into account the influence of the temperature, a 240-nm gold layer was measured with a ±4% uncertainty. This thickness has been verified on the coated face with an optical profiling system.

  17. Assessment of Layer Thickness and Interface Quality in CoP Electrodeposited Multilayers.

    PubMed

    Lucas, Irene; Ciudad, David; Plaza, Manuel; Ruiz-Gómez, Sandra; Aroca, Claudio; Pérez, Lucas

    2016-07-27

    The magnetic properties of CoP electrodeposited alloys can be easily controlled by layering the alloys and modulating the P content of the different layers by using pulse plating in the electrodeposition process. However, because of its amorphous nature, the study of the interface quality, which is a limitation for the optimization of the soft magnetic properties of these alloys, becomes a complex task. In this work, we use Rutherford backscattering spectroscopy (RBS) to determine that electrodeposited Co0.74P0.26/Co0.83P0.17 amorphous multilayers with layers down to 20 nm-thick are composed by well-defined layers with interfacial roughness below 3 nm. We have also determined, using magnetostriction measurements, that 4 nm is the lower limitation for the layer thickness. Below this thickness, the layers are mixed and the magnetic behavior of the multilayered films is similar to that shown by single layers, thus going from in-plane to out-of-plane magnetic anisotropy. Therefore, these results establish the range in which the magnetic properties of these alloys can be controlled by layering.

  18. Simple electrodepositing of CoFe/Cu multilayers: Effect of ferromagnetic layer thicknesses

    NASA Astrophysics Data System (ADS)

    Tekgül, Atakan; Alper, Mürsel; Kockar, Hakan

    2017-01-01

    The CoFe/Cu magnetic multilayers were produced by changing CoFe ferromagnetic layers from 3 nm to 10 nm using electrodeposition. By now, the thinnest Cu (0.5 nm) layer thicknesses were used to see whether the GMR effect in the multilayers can be obtained or not since the pinning of non-magnetic layer between the ferromagnetic layers is required. For the proper depositions, the cyclic voltammograms was used, and the current-time transients were obtained. The Cu and CoFe layers were deposited at a cathode potential of -0.3 and -1.5 V with respect to saturated calomel electrode, respectively. From the XRD patterns, the multilayers were shown to be fcc crystal structures. For the magnetization measurements, saturation magnetization increases from 160 to 600 kA/m from 3 to 8 nm ferromagnetic layer thicknesses. And, the coercivity values increase until the 8 nm of the CoFe layer thickness. It is seen that the thin Cu layer (fixed at 0.5 nm) and pinholes support the random magnetization orientation and thus all multilayers exhibited the giant magnetoresistance (GMR) effect, and the highest GMR value was observed about 5.5%. And, the variation of GMR field sensitivity was calculated. The results show that the GMR and GMR sensitivity are compatible among the multilayers. The CoFe/Cu magnetic multilayers having GMR properties are used in GMR sensors and hard disk drive of the nano-technological devices.

  19. Influences of thicknesses and structures of barrier cap layers on As ion profiles and implant damages in HgCdTe epilayers

    NASA Astrophysics Data System (ADS)

    Shi, Changzhi; Lin, Chun; Wei, Yanfeng; Chen, Lu; Ye, Zhenhua

    2016-05-01

    The barrier cap layer (BCL) is considered to be able to absorb partially implant induced damages during ion implantation, thus its structure and property could impact the result of ion implantation. In this paper, for As ion implantation in HgCdTe, the different BCLs were deposited on the CdZnTe-based (LPE) and GaAs-based (MBE) HgCdTe epilayers, respectively. Then, the influences of thicknesses and structures of these BCLs on dopant profiles and implant damages were investigated. The as-grown BCLs include thermally evaporated (TE) ZnS, TE CdTe, electron beam evaporated (EBE) CdTe and in-situ CdTe/ZnTe grown by MBE. The SIMS profiles and TEM characterization indicate: For TE ZnS BCLs, there exists an optimized thickness to obtain the deepest As indiffusion after high temperature annealing, and the end-of-range (EOR) depth is linearly proportional to the thickness ratio of a-MCT layer/damage layer. For TE CdTe BCLs, the barrier layer induced channeling effect (BLICE) occurs to the thin BCL samples, while this effect is suppressed in the thick BCL samples. The phenomenon might be due to that the blocking effect of the layered structure inside each crystal column becomes dominate in the thick BCL samples. Additionally, the EBE CdTe BCL with layered structure can suppress effectively the BLICE effect; in the in-situ CdTe/ZnTe BCL, the short defect layer generated in the CdTe buffer layer and the amorphization of the ZnTe layer during ion implantation also play a significant role in suppressing the BLICE effect.

  20. Fragmentation of 200 and 244 MeV/u Carbon Beams in Thick Tissue-Like Absorbers

    NASA Technical Reports Server (NTRS)

    Golovchenko, A. N.; Skvar, J.; Ili, R.; Sihver, L.; Bamblevski, V. P.; Tretyskova, S. P.; Schardt, D.; Tripathi, R. K.; Wilson, J. W.

    1999-01-01

    Stacks consisting of thin CR-39 sheets sandwiched between thick Lucite and water absorbers were perpendicularly bombarded by C-12 ions at 200 and 244 MeV/u. Track radius distributions representing the charge composition of the fragmented beams were automatically measured by a particle track analysis system. After analysis of the nuclear charge distributions, the total charge removal cross sections and elemental production cross sections of fragments with atomic numbers from 5 to 3, were obtained down to the lower energies (approximately 50 and 100 MeV/u, respectively). It has been found that the measured total charge removal cross section agrees with theoretical predictions within approximately 10% and very well with previous experiments in corresponding energy regions. Two model calculations for production of B fragment are in good agreement with our measured data while a third model overestimates it by approximately 12%. Theoretical cross sections for Be and Li fragments differ strongly among the different models and from measured values.

  1. The polarization of a nanoparticle surrounded by a thick electric double layer.

    PubMed

    Zhao, Hui; Bau, Haim H

    2009-05-15

    The polarization of a charged, dielectric, nanoparticle enveloped by a thick electric double layer and subjected to a uniform, alternating electric field is studied theoretically with the standard model (the Poisson-Nernst-Planck PNP equations). The dipole coefficient (f) is calculated as a function of the electric field's frequency and the double layer's thickness (lambda(D)). For a weakly charged particle with a small zeta potential zeta, an approximate, analytic expression for the dipole moment coefficient, accurate within O(zeta(2)), is derived. Two processes contribute to the dipole moment: the ion transport in the electric double layer under the action of the electric field and the particle's electrophoretic motion. As the thickness of the electric double layer increases so does the importance of the latter. In contrast to the case of the thin electric double layer, the particle with the thick double layer exhibits only high-frequency dispersion. The theoretical predictions are compared and favorably agree with experimental data, leading one to conclude that the standard, PNP based-model adequately represents the behavior of nanoparticles subject to electric fields.

  2. Influence of water layer thickness on hard tissue ablation with pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Zhang, Xianzeng; Zhan, Zhenlin; Liu, Haishan; Zhao, Haibin; Xie, Shusen; Ye, Qing

    2012-03-01

    The theory of hard tissue ablation reported for IR lasers is based on a process of thermomechanical interaction, which is explained by the absorption of the radiation in the water component of the tissue. The microexplosion of the water is the cause of tissue fragments being blasted from hard tissue. The aim of this study is to evaluate the influence of the interdependence of water layer thickness and incident radiant exposure on ablation performance. A total of 282 specimens of bovine shank bone were irradiated with a pulse CO2 laser. Irradiation was carried out in groups: without a water layer and with a static water layer of thickness ranging from 0.2 to 1.2 mm. Each group was subdivided into five subgroups for different radiant exposures ranging from 18 to 84 J/cm2, respectively. The incision geometry, surface morphology, and microstructure of the cut walls as well as thermal injury were examined as a function of the water layer thickness at different radiant exposures. Our results demonstrate that the additional water layer is actually a mediator of laser-tissue interaction. There exists a critical thickness of water layer for a given radiant exposure, at which the additional water layer plays multiple roles, not only acting as a cleaner to produce a clean cut but also as a coolant to prevent bone heating and reduce thermal injury, but also helping to improve the regularity of the cut shape, smooth the cut surface, and enhance ablation rate and efficiency. The results suggest that desired ablation results depend on optimal selection of both water layer thickness and radiant exposure.

  3. Influence of water layer thickness on hard tissue ablation with pulsed CO2 laser.

    PubMed

    Zhang, Xianzeng; Zhan, Zhenlin; Liu, Haishan; Zhao, Haibin; Xie, Shusen; Ye, Qing

    2012-03-01

    The theory of hard tissue ablation reported for IR lasers is based on a process of thermomechanical interaction, which is explained by the absorption of the radiation in the water component of the tissue. The microexplosion of the water is the cause of tissue fragments being blasted from hard tissue. The aim of this study is to evaluate the influence of the interdependence of water layer thickness and incident radiant exposure on ablation performance. A total of 282 specimens of bovine shank bone were irradiated with a pulse CO(2) laser. Irradiation was carried out in groups: without a water layer and with a static water layer of thickness ranging from 0.2 to 1.2 mm. Each group was subdivided into five subgroups for different radiant exposures ranging from 18 to 84 J/cm(2), respectively. The incision geometry, surface morphology, and microstructure of the cut walls as well as thermal injury were examined as a function of the water layer thickness at different radiant exposures. Our results demonstrate that the additional water layer is actually a mediator of laser-tissue interaction. There exists a critical thickness of water layer for a given radiant exposure, at which the additional water layer plays multiple roles, not only acting as a cleaner to produce a clean cut but also as a coolant to prevent bone heating and reduce thermal injury, but also helping to improve the regularity of the cut shape, smooth the cut surface, and enhance ablation rate and efficiency. The results suggest that desired ablation results depend on optimal selection of both water layer thickness and radiant exposure.

  4. Focusing of dipole radiation by a negative index chiral layer. 1. A thick layer as compared with the wavelength

    SciTech Connect

    Guzatov, D V; Klimov, V V

    2014-09-30

    We have derived and investigated the analytical expressions for the fields of scattered radiation of an electric dipole source by a chiral (bi-isotropic) layer with arbitrary permittivity and permeability and arbitrary thickness. It is shown that in the negativeindex chiral layer the focus spot of dipole radiation is split due to excitation of right- and left-hand circularly polarised waves. The conditions are found under which the waves with one of the polarisations can be suppressed, which leads to a substantial improvement of the focusing properties of the chiral layer. (metamaterials)

  5. Measurement of the dead layer thickness in a p-type point contact germanium detector

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Yue, Qian; Li, Yu-Lan; Kang, Ke-Jun; Li, Yuan-Jing; Li, Jin; Lin, Shin-Ted; Liu, Shu-Kui; Ma, Hao; Ma, Jing-Lu; Su, Jian; Tsz-King Wong, Henry; Yang, Li-Tao; Zhao, Wei; Zeng, Zhi

    2016-09-01

    A 994 g mass p-type PCGe detector has been deployed during the first phase of the China Dark matter EXperiment, aiming at direct searches for light weakly interacting massive particles. Measuring the thickness of the dead layer of a p-type germanium detector is an issue of major importance since it determines the fiducial mass of the detector. This work reports a method using an uncollimated 133Ba source to determine the dead layer thickness. The experimental design, data analysis and Monte Carlo simulation processes, as well as the statistical and systematic uncertainties are described. A dead layer thickness of 1.02 mm was obtained based on a comparison between the experimental data and the simulated results. Supported by National Natural Science Foundation of China (10935005, 10945002, 11275107, 11175099)

  6. Prediction of Layer Thickness in Molten Borax Bath with Genetic Evolutionary Programming

    NASA Astrophysics Data System (ADS)

    Taylan, Fatih

    2011-04-01

    In this study, the vanadium carbide coating in molten borax bath process is modeled by evolutionary genetic programming (GEP) with bath composition (borax percentage, ferro vanadium (Fe-V) percentage, boric acid percentage), bath temperature, immersion time, and layer thickness data. Five inputs and one output data exist in the model. The percentage of borax, Fe-V, and boric acid, temperature, and immersion time parameters are used as input data and the layer thickness value is used as output data. For selected bath components, immersion time, and temperature variables, the layer thicknesses are derived from the mathematical expression. The results of the mathematical expressions are compared to that of experimental data; it is determined that the derived mathematical expression has an accuracy of 89%.

  7. Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer

    SciTech Connect

    Wang, Hao; Yang, Yue; Wang, Liping

    2014-08-18

    We numerically demonstrate a switchable metamaterial absorber/emitter by thermally turning on or off the excitation of magnetic resonance upon the phase transition of vanadium dioxide (VO{sub 2}). Perfect absorption peak exists around the wavelength of 5 μm when the excitation of magnetic resonance is supported with the insulating VO{sub 2} spacer layer. The wavelength-selective absorption is switched off when the magnetic resonance is disabled with metallic VO{sub 2} that shorts the top and bottom metallic structures. The resonance wavelength can be tuned with different geometry, and the switchable metamaterial exhibits diffuse behaviors at oblique angles. The results would facilitate the design of switchable metamaterials for active control in energy and sensing applications.

  8. Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers.

    PubMed

    Ma, Jie; Lu, Shunbin; Guo, Zhinan; Xu, Xiaodong; Zhang, Han; Tang, Dingyuan; Fan, Dianyuan

    2015-08-24

    We experimentally demonstrated that few-layer black phosphorus (BP) could be used as an optical modulator for solid-state lasers to generate short laser pulses. The BP flakes were fabricated by the liquid phase exfoliation method and drop-casted on a high-reflection mirror to form a BP-based saturable absorber mirror (BP-SAM). Stable Q-switched pulses with a pulse width of 620 ns at the wavelength of 1046 nm were obtained in a Yb:CaYAlO(4) (Yb:CYA) laser with the BP-SAM. The generated pulse train has a repetition rate of 113.6 kHz and an average output power of 37 mW. Our results show that the BP-SAMs could have excellent prospective for ultrafast photonics applications.

  9. Effect of Thickness of a Water Repellent Soil Layer on Soil Evaporation Rate

    NASA Astrophysics Data System (ADS)

    Ahn, S.; Im, S.; Doerr, S.

    2012-04-01

    A water repellent soil layer overlying wettable soil is known to affect soil evaporation. This effect can be beneficial for water conservation in areas where water is scarce. Little is known, however, about the effect of the thickness of the water repellent layer. The thickness of this layer can vary widely, and particularly after wildfire, with the soil temperature reached and the duration of the fire. This study was conducted to investigate the effect of thickness of a top layer of water repellent soil on soil evaporation rate. In order to isolate the thickness from other possible factors, fully wettable standard sand (300~600 microns) was used. Extreme water repellency (WDPT > 24 hours) was generated by 'baking' the sand mixed with oven-dried pine needles (fresh needles of Pinus densiflora) at the mass ratio of 1:13 (needle:soil) at 185°C for 18 hours. The thicknesses of water repellent layers were 1, 2, 3 and 7 cm on top of wettable soil. Fully wettable soil columns were prepared as a control. Soil columns (8 cm diameter, 10 cm height) were covered with nylon mesh. Tap water (50 ml, saturating 3 cm of a soil column) was injected with hypoderm syringes from three different directions at the bottom level. The injection holes were sealed with hot-melt adhesive immediately after injection. The rate of soil evaporation through the soil surface was measured by weight change under isothermal condition of 40°C. Five replications were made for each. A trend of negative correlation between the thickness of water repellent top layer and soil evaporation rate is discussed in this contribution.

  10. Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Gao, Xu; Lin, Meng-Fang; Mao, Bao-Hua; Shimizu, Maki; Mitoma, Nobuhiko; Kizu, Takio; Ou-Yang, Wei; Nabatame, Toshihide; Liu, Zhi; Tsukagoshi, Kazuhito; Wang, Sui-Dong

    2017-01-01

    Decreasing the active layer thickness has been recently reported as an alternative way to achieve fully depleted oxide thin-film transistors for the realization of low-voltage operations. However, the correlation between the active layer thickness and device resistivity to environmental changes is still unclear, which is important for the optimized design of oxide thin-film transistors. In this work, the ambient gas stability of IGZO thin-film transistors is found to be strongly correlated to the IGZO thickness. The TFT with the thinnest IGZO layer shows the highest intrinsic electron mobility in a vacuum, which is greatly reduced after exposure to O2/air. The device with a thick IGZO layer shows similar electron mobility in O2/air, whereas the mobility variation measured in the vacuum is absent. The thickness dependent ambient gas stability is attributed to a high-mobility region in the IGZO surface vicinity with less sputtering-induced damage, which will become electron depleted in O2/air due to the electron transfer to adsorbed gas molecules. The O2 adsorption and deduced IGZO surface band bending is demonstrated by the ambient-pressure x-ray photoemission spectroscopy results.

  11. Diurnal changes in retinal nerve fiber layer thickness with obstructive sleep apnea/hypopnea syndrome

    PubMed Central

    Chirapapaisan, Niphon; Likitgorn, Techawit; Pleumchitchom, Mintra; Sakiyalak, Darin; Banhiran, Wish; Saiman, Manatsawin; Chuenkongkaew, Wanicha

    2016-01-01

    AIM To compare the retinal nerve fiber layer (RNFL) thickness in the morning and evening in Thai patients with varying degrees of obstructive sleep apnea/hypopnea syndrome (OSAHS). METHODS In this cross-sectional study, potential OSAHS patients at Siriraj Hospital underwent polysomnography to determine the severity of OSAHS and an eye examination (including best corrected visual acuity, slit-lamp examination, and Goldmann applanation tonometry). RNFL thickness was recorded once in the morning and once in the evening, using spectral domain optical coherence tomography. Thickness was expressed as an average and given for each quadrant. Patients with ocular or systemic diseases that might affect RNFL thickness were excluded. RESULTS Forty-one eyes of 41 patients were classified into 4 OSAHS groups. The average and mean RNFL thickness in most of the four quadrants of the severe OSAHS group trended toward being less than those in the comparable quadrants of the other groups in both the morning and evening. In the moderate OSAHS group, the average RNFL thickness and temporal and superior quadrant thickness in the morning were significantly higher than in the evening (P=0.01, P=0.01, and P=0.03, respectively). In the severe OSAHS group, the inferior quadrant thickness in the morning was significantly higher than in the evening (P=0.03). CONCLUSION The RNFL thickness in the morning was higher than in the evening in moderate OSAHS. PMID:27500104

  12. Effect of separating layer thickness on W/Si multilayer replication.

    PubMed

    Wang, Fangfang; Mu, Baozhong; Jin, Huijun; Yang, Xiajun; Zhu, Jingtao; Wang, Zhanshan

    2011-08-15

    The direct replication of W/Si multilayers and the effect of separating layer thickness on the performance of the multilayer before and after replication are investigated systematically. Platinum separating layers with different layer thicknesses were first deposited onto different supersmooth mandrels and then W/Si multilayers with the similar structure were deposited onto these Pt-coated mandrels by using a high vacuum DC magnetron sputtering system. After the deposition, these multilayers were replicated onto the commercially available float glass substrates by epoxy replication technique. These multilayers before and after replication are characterized by grazing-incident X-ray reflectance measurement and atomic force microscope. The measured results show that before and after replication, the reflectivity curves are much similar to those calculated and the surface roughness of each sample is close to that of the mandrel, when the separating layer thickness is larger than 1.5 nm. These results reveal that the W/Si multilayer with the separating layer thickness larger than 1.5 nm can be successfully replicated onto a substrate without modification of the structure, significant increase of surface roughness or apparent change of reflectivity.

  13. Micrometer-Thick Graphene Oxide-Layered Double Hydroxide Nacre-Inspired Coatings and Their Properties.

    PubMed

    Yan, You-Xian; Yao, Hong-Bin; Mao, Li-Bo; Asiri, Abdullah M; Alamry, Khalid A; Marwani, Hadi M; Yu, Shu-Hong

    2016-02-10

    Robust, functional, and flame retardant coatings are attractive in various fields such as building construction, food packaging, electronics encapsulation, and so on. Here, strong, colorful, and fire-retardant micrometer-thick hybrid coatings are reported, which can be constructed via an enhanced layer-by-layer assembly of graphene oxide (GO) nanosheets and layered double hydroxide (LDH) nanoplatelets. The fabricated GO-LDH hybrid coatings show uniform nacre-like layered structures that endow them good mechanic properties with Young's modulus of ≈ 18 GPa and hardness of ≈ 0.68 GPa. In addition, the GO-LDH hybrid coatings exhibit nacre-like iridescence and attractive flame retardancy as well due to their well-defined 2D microstructures. This kind of nacre-inspired GO-LDH hybrid thick coatings will be applied in various fields in future due to their high strength and multifunctionalities.

  14. Stress dependence in Fe89Co11 Si multilayers on layer thicknesses

    NASA Astrophysics Data System (ADS)

    Teichert, Anke; Krist, Thomas; Mezei, Ferenc

    2006-11-01

    We report on a study of the stress developing in materials which are used for polarising neutron supermirrors. The stress was examined as function of the thickness of Si and Fe89Co11 layers in multilayer systems. The samples were produced in a triode sputter machine. The bending of the samples was measured on a profilometer and the stress was calculated with the Stoney formula. The samples were characterized with polarized neutron and X-ray reflectometry and XRD. It was found that an increase in layer thickness leads to decreasing compressive stress for FeCo layers and to decreasing tensile stress for Si layers. A formula is given which allows to estimate the resulting stress.

  15. Empirical model predicting the layer thickness and porosity of p-type mesoporous silicon

    NASA Astrophysics Data System (ADS)

    Wolter, Sascha J.; Geisler, Dennis; Hensen, Jan; Köntges, Marc; Kajari-Schröder, Sarah; Bahnemann, Detlef W.; Brendel, Rolf

    2017-04-01

    Porous silicon is a promising material for a wide range of applications because of its versatile layer properties and the convenient preparation by electrochemical etching. Nevertheless, the quantitative dependency of the layer thickness and porosity on the etching process parameters is yet unknown. We have developed an empirical model to predict the porosity and layer thickness of p-type mesoporous silicon prepared by electrochemical etching. The impact of the process parameters such as current density, etching time and concentration of hydrogen fluoride is evaluated by ellipsometry. The main influences on the porosity of the porous silicon are the current density, the etching time and their product while the etch rate is dominated by the current density, the concentration of hydrogen fluoride and their product. The developed model predicts the resulting layer properties of a certain porosification process and can, for example be used to enhance the utilization of the employed chemicals.

  16. Laser generated guided waves and finite element modeling for the thickness gauging of thin layers

    SciTech Connect

    Lefevre, F.; Jenot, F.; Ouaftouh, M.; Duquennoy, M.; Ourak, M.

    2010-03-15

    In this paper, nondestructive testing has been performed on a thin gold layer deposited on a 2 in. silicon wafer. Guided waves were generated and studied using a laser ultrasonic setup and a two-dimensional fast Fourier transform technique was employed to obtain the dispersion curves. A gold layer thickness of 1.33 {mu}m has been determined with a {+-}5% margin of error using the shape of the two first propagating modes, assuming for the substrate and the layer an uncertainty on the elastic parameters of {+-}2.5%. A finite element model has been implemented to validate the data post-treatment and the experimental results. A good agreement between the numerical simulation, the analytical modeling and the experimentations has been observed. This method was considered suitable for thickness layer higher than 0.7 {mu}m.

  17. Determination of Mean Thickness of an Oxide Layer on a Silicon Sphere by Spectroscopic Ellipsometry

    NASA Astrophysics Data System (ADS)

    Zhang, Ji-Tao; Li, Yan; Luo, Zhi-Yong; Wu, Xue-Jian

    2010-05-01

    One of the biggest obstacles to reduce the uncertainty of the Avogadro constant NA is such that there will be an oxide layers on the surface of a silicon sphere. The thickness of this layer is measured by a modified spectroscopic ellipsometer, which can eliminate the influence of the curved surface, and the results are calibrated by x-ray reflectivity. Fifty positions distributed nearly uniformly on the surface of the silicon sphere are measured twice. The results show that the mean thickness of the overall oxide layer is 3.75 nm with the standard uncertainty of 0.21 nm, which means that the relative uncertainty component of NA owing to this layer can be reduced to 1.2 × 10-8.

  18. Effects of accumulated film layers on the accuracy of quartz film thickness monitors

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Miller, W. E.

    1978-01-01

    The effect of accumulation layers on the accuracy of quartz thin-film thickness monitors is evaluated. Use of an expanded plane wave ultrasonic propagation theory correctly accounts for observed experimental data. The magnitude of the maximum errors calculated for simply reversing the order of a series of aluminum gold deposits is on the order of 5%. If one totally neglects intervening layers, multiple film propagation and nonlinearity can produce errors greater than 50%.

  19. Characterizing ultrathin and thick organic layers by surface plasmon resonance three-wavelength and waveguide mode analysis.

    PubMed

    Granqvist, Niko; Liang, Huamin; Laurila, Terhi; Sadowski, Janusz; Yliperttula, Marjo; Viitala, Tapani

    2013-07-09

    A three-wavelength angular-scanning surface plasmon resonance based analysis has been utilized for characterizing optical properties of organic nanometer-thick layers with a wide range of thicknesses. The thickness and refractive index were determined for sample layers with thicknesses ranging from subnanometer to hundreds of nanometers. The analysis approach allows for simultaneous determination of both the refractive index and thickness without prior knowledge of either the refractive index or the thickness of the sample layers and without the help of other instruments, as opposed to current methods and approaches for characterizing optical properties of organic nanometer-thick layers. The applicability of the three-wavelength angular-scanning surface plasmon resonance approach for characterizing thin and thick organic layers was demonstrated by ex situ deposited mono- and multilayers of stearic acid and hydrogenated soy phosphatidylcholine and in situ layer-by-layer deposition of two different polyelectrolyte multilayer systems. In addition to the three-wavelength angular-scanning surface plasmon resonance approach, another surface plasmon resonance optical phenomenon, i.e., the surface plasmon resonance waveguide mode, was utilized to characterize organic sample layers whose thicknesses border the micrometer scale. This was demonstrated by characterizing both in situ layer-by-layer deposited polyelectrolyte multilayer systems and an ex situ deposited spin-coated polymer layer.

  20. Influence of thickness and permeability of endothelial surface layer on transmission of shear stress in capillaries

    NASA Astrophysics Data System (ADS)

    Zhang, SongPeng; Zhang, XiangJun; Tian, Yu; Meng, YongGang; Lipowsky, Herbert

    2015-07-01

    The molecular coating on the surface of microvascular endothelium has been identified as a barrier to transvascular exchange of solutes. With a thickness of hundreds of nanometers, this endothelial surface layer (ESL) has been treated as a porous domain within which fluid shear stresses are dissipated and transmitted to the solid matrix to initiate mechanotransduction events. The present study aims to examine the effects of the ESL thickness and permeability on the transmission of shear stress throughout the ESL. Our results indicate that fluid shear stresses rapidly decrease to insignificant levels within a thin transition layer near the outer boundary of the ESL with a thickness on the order of ten nanometers. The thickness of the transition zone between free fluid and the porous layer was found to be proportional to the square root of the Darcy permeability. As the permeability is reduced ten-fold, the interfacial fluid and solid matrix shear stress gradients increase exponentially two-fold. While the interfacial fluid shear stress is positively related to the ESL thickness, the transmitted matrix stress is reduced by about 50% as the ESL thickness is decreased from 500 to 100 nm, which may occur under pathological conditions. Thus, thickness and permeability of the ESL are two main factors that determine flow features and the apportionment of shear stresses between the fluid and solid phases of the ESL. These results may shed light on the mechanisms of force transmission through the ESL and the pathological events caused by alterations in thickness and permeability of the ESL.

  1. Lack of Correlation Between Diabetic Macular Edema and Thickness of the Peripapillary Retinal Nerve Fibre Layer

    PubMed Central

    Alkuraya, Hisham S.; Al-Gehedan, Saeed M.; Alsharif, Abdulrahman M.; Alasbali, Tariq; Lotfy, Nancy M.; Khandekar, Rajiv

    2016-01-01

    Introduction: We compared the thickness of the peripapillary retinal nerve fiber layer (RNFL) in patients with diabetic macular edema (DME) and/against the thickness in the normal population. Methods: This cross-sectional study compared the RNFL thickness in patients with DME (DME group) using optical coherence tomography (OCT) to a comparable group of healthy (nondiabetic) patients (control group). Measurements were performed in different/the four peripapillary quadrants and in the macula region for the fovea, parafoveal, and perifoveal areas. The mean RNFL thickness was compared between both groups. Results: There were fifty eyes of fifty nonglaucomatous diabetic patients with DME (29 with nonproliferative diabetic retinopathy [PDR] and 21 with PDR), and fifty eyes in the control group. The macular regions were significantly thicker in the DME group compared to the control group. The central foveal thickness was 149 μ thicker in eyes with DME compared to the control group (P < 0.001). The difference in total RNFL thickness between groups was not significant (4.4 μ [95% confidence interval: −3.1 to +12]). The between-group differences in peripapillary RNFL thickness by age group, glycemic control, history of intravitreal treatments, and refractive errors were not statistically significant (P > 0.05, all comparisons). Conclusion: Peripapillary RNFL thickness measurements were not significantly influenced by DME. Hence, OCT parameters could be used to monitor/early detect glaucomatous eyes even in the presence of DME. PMID:27555707

  2. Holographic Characteristics of an Acrylamide/Bisacrylamide Photopolymer in 40 1000 µm Thick Layers

    NASA Astrophysics Data System (ADS)

    Ortuño, M.; Gallego, S.; García, C.; Pascual, I.; Neipp, C.; Beléndez, A.

    2005-01-01

    In this study we analyze the holographic behaviour of an acrylamide/bisacrylamide photopolymer in layers that range in thickness from 40 to 1000 µm. The photopolymer is composed of acrylamide as polymerizable monomer, N,N' methylene-bis-acrylamide as crosslinker, triethanolamine as radical generator, yellowish eosin as sensitizer and polyvinyl alcohol as binder. The composition and method of depositing the solution varies depending on the desired thickness of the final layer. For each thickness we analyze the holographic behaviour of the material during recording of unslanted diffraction gratings using a continuous argon laser (514 nm) at an intensity of 5 mW/cm2. The response of the material is monitored in real time with an He-Ne laser. The results obtained for the different parameters evaluated vary considerably depends on the layer thickness. Therefore, the different potential applications of the material (fabrication of holographic optical elements, use as recording material in holographic interferometry, or manufacture of holographic memories) depends on its thickness.

  3. Effect of the Platinum Electroplated Layer Thickness on the Coatings' Microstructure

    NASA Astrophysics Data System (ADS)

    Zagula-Yavorska, Maryana; Gancarczyk, Kamil; Sieniawski, Jan

    2017-03-01

    CMSX 4 and Inconel 625 superalloys were coated by platinum layers (3 and 7 μm thick) in the electroplating process. The heat treatment of platinum layers (at 1,050 ˚C for 2 h) was performed to increase platinum adherence to the superalloys substrate. The diffusion zone obtained on CMSX 4 superalloy (3 and 7 μm platinum thick before heat treatment) consisted of two phases: γ-Ni(Al, Cr) and (Al0.25Pt0.75)Ni3. The diffusion zone obtained on Inconel 625 superalloy (3 μm platinum thick before heat treatment) consisted of the α-Pt(Ni, Cr, Al) phase. Moreover, γ-Ni(Cr, Al) phase was identified. The X-ray diffraction (XRD) results revealed the presence of platinum in the diffusion zone of the heat-treated coating (7 μm platinum thick) on Inconel 625 superalloy. The surface roughness parameter Ra of heat-treated coatings increased with the increase of platinum layers thickness. This was due to the unequal mass flow of platinum and nickel.

  4. Thickness Considerations of Two-Dimensional Layered Semiconductors for Transistor Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Youwei; Li, Hui; Wang, Haomin; Xie, Hong; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-07-01

    Layered two-dimensional semiconductors have attracted tremendous attention owing to their demonstrated excellent transistor switching characteristics with a large ratio of on-state to off-state current, Ion/Ioff. However, the depletion-mode nature of the transistors sets a limit on the thickness of the layered semiconductor films primarily determined by a given Ion/Ioff as an acceptable specification. Identifying the optimum thickness range is of significance for material synthesis and device fabrication. Here, we systematically investigate the thickness-dependent switching behavior of transistors with a wide thickness range of multilayer-MoS2 films. A difference in Ion/Ioff by several orders of magnitude is observed when the film thickness, t, approaches a critical depletion width. The decrease in Ion/Ioff is exponential for t between 20 nm and 100 nm, by a factor of 10 for each additional 10 nm. For t larger than 100 nm, Ion/Ioff approaches unity. Simulation using technical computer-aided tools established for silicon technology faithfully reproduces the experimentally determined scaling behavior of Ion/Ioff with t. This excellent agreement confirms that multilayer-MoS2 films can be approximated as a homogeneous semiconductor with high surface conductivity that tends to deteriorate Ion/Ioff. Our findings are helpful in guiding material synthesis and designing advanced field-effect transistors based on the layered semiconductors.

  5. Thickness of retinal layers in the foveas of children with anisometropic amblyopia

    PubMed Central

    Zhou, Jinjing; Gu, Zhouqun; Huang, Shenghai; Li, Heming; Qin, Zhuoer; Yu, Xinping

    2017-01-01

    Purpose To use highly precise spectral-domain optical coherence tomography (SD-OCT) to determine whether there were structural abnormalities in the layers of different regions of the fovea in children with anisometropic amblyopia. Methods Eighteen children (mean age 7.8 years old; range 5–11 years) with unilateral anisometropic amblyopia and 18 age-matched control subjects participated. Foveal thickness was measured with an enhanced depth imaging system, SD-OCT and segmented into layers using custom developed software. The thickness of each layer of the fovea was compared among amblyopic eyes, fellow eyes and control eyes with optical magnification correction for axial length and statistical correction for age and sex. Results The total thickness and each intra-ocular layer of the central fovea were the same for each group. However, the amblyopic eyes were significantly thicker than the normal control eyes in 2 of 4 quadrants of the peripheral retina. Exploring intra-retinal layers in these two quadrants, the nasal nerve fiber layer (NFL) and inferior inner nuclear layer (INL)were significantly thicker in amblyopic eyes than in control eyes (p = 0.01 and 0.012, respectively, by ANCOVA). Conclusion The SD-OCT data revealed marginal differences in some foveal layers at peripheral locations and indicated that structural differences might exist between individuals with amblyopia and visually normal control subjects. However, the differences were scattered and represented no identifiable pattern. More studies with large samples and precise locations of the retinal layers must be performed to extend the present results. PMID:28328978

  6. Ground-penetrating radar reveals ice thickness and undisturbed englacial layers at Kilimanjaro's Northern Ice Field

    NASA Astrophysics Data System (ADS)

    Bohleber, Pascal; Sold, Leo; Hardy, Douglas R.; Schwikowski, Margit; Klenk, Patrick; Fischer, Andrea; Sirguey, Pascal; Cullen, Nicolas J.; Potocki, Mariusz; Hoffmann, Helene; Mayewski, Paul

    2017-02-01

    Although its Holocene glacier history is still subject to debate, the ongoing iconic decline of Kilimanjaro's largest remaining ice body, the Northern Ice Field (NIF), has been documented extensively based on surface and photogrammetric measurements. The study presented here adds, for the first time, ground-penetrating radar (GPR) data at centre frequencies of 100 and 200 MHz to investigate bed topography, ice thickness and internal stratigraphy at NIF. The direct comparison of the GPR signal to the visible glacier stratigraphy at NIF's vertical walls is used to validate ice thickness and reveals that the major internal reflections seen by GPR can be associated with dust layers. Internal reflections can be traced consistently within our 200 MHz profiles, indicating an uninterrupted, spatially coherent internal layering within NIF's central flat area. We show that, at least for the upper 30 m, it is possible to follow isochrone layers between two former NIF ice core drilling sites and a sampling site on NIF's vertical wall. As a result, these isochrone layers provide constraints for future attempts at linking age-depth information obtained from multiple locations at NIF. The GPR profiles reveal an ice thickness ranging between (6.1 ± 0.5) and (53.5 ± 1.0) m. Combining these data with a very high resolution digital elevation model we spatially extrapolate ice thickness and give an estimate of the total ice volume remaining at NIF's southern portion as (12.0 ± 0.3) × 106 m3.

  7. Pseudoepitaxial transrotational structures in 14 nm-thick NiSi layers on [001] silicon.

    PubMed

    Alberti, Alessandra; Bongiorno, Corrado; Cafra, Brunella; Mannino, Giovanni; Rimini, Emanuele; Metzger, Till; Mocuta, Cristian; Kammler, Thorsten; Feudel, Thomas

    2005-10-01

    In a system consisting of two different lattices, structural stability is ensured when an epitaxial relationship occurs between them and allows the system to retain the stress whilst avoiding the formation of a polycrystalline film. The phenomenon occurs if the film thickness does not exceed a critical value. Here we show that in spite of its orthorhombic structure, a 14 nm-thick NiSi layer can three-dimensionally adapt to the cubic Si lattice by forming transrotational domains. Each domain arises by the continuous bending of the NiSi lattice, maintaining a close relationship with the substrate structure. The presence of transrotational domains does not cause a roughening of the layer, but instead it improves the structural and electrical stability of the silicide in comparison with a 24 nm-thick layer formed using the same annealing process. These results have relevant implications for the thickness scaling of NiSi layers which are currently used as metallizations of electronic devices.

  8. Reduction in Retinal Nerve Fiber Layer Thickness in Young Adults with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Emberti Gialloreti, Leonardo; Pardini, Matteo; Benassi, Francesca; Marciano, Sara; Amore, Mario; Mutolo, Maria Giulia; Porfirio, Maria Cristina; Curatolo, Paolo

    2014-01-01

    Recent years have seen an increase in the use of retinal nerve fiber layer (RNFL) evaluation as an easy-to-use, reproducible, proxy-measure of brain structural abnormalities. Here, we evaluated RNFL thickness in a group of subjects with high functioning autism (HFA) or with Asperger Syndrome (AS) to its potential as a tool to study autism…

  9. Effect of layer thickness setting on deposition characteristics in direct energy deposition (DED) process

    NASA Astrophysics Data System (ADS)

    Shim, Do-Sik; Baek, Gyeong-Yun; Seo, Jin-Seon; Shin, Gwang-Yong; Kim, Kee-Poong; Lee, Ki-Yong

    2016-12-01

    Direct energy deposition is an additive manufacturing technique that involves the melting of metal powder with a high-powered laser beam and is used to build a variety of components. In laser-assisted metal deposition, the mechanical and metallurgical properties achieved are influenced by many factors. This paper addresses methods for selecting an appropriate layer thickness setting, which is an important parameter in layer-by-layer deposition manufacturing. A new procedure is proposed for determining the layer thickness setting for use in slicing of a part based on the single-layer height for a given depositing condition. This procedure was compared with a conventional method that uses an empirically determined layer thickness and with a feedback control method. The micro-hardness distribution, location of the melting pool, and microstructures of the deposited layers after deposition of a simple target shape were investigated for each procedure. The experimental results show that even though the feedback control method is the most effective method for obtaining the desired geometry, the deposited region was characterized by inhomogeneity of micro-hardness due to the time-variable depositing conditions involved. The largest dimensional error was associated with the conventional deposition procedure, which produced a rise in the melting zone due to over-deposition with respect to the slicing thickness, especially at the high laser power level considered. In contrast, the proposed procedure produced a stable melting zone position during deposition, which resulted in the deposited part having reasonable dimensional accuracy and uniform micro-hardness throughout the deposited region.

  10. Relationship between Retinal Layer Thickness and the Visual Field in Early Age-Related Macular Degeneration

    PubMed Central

    Acton, Jennifer H.; Smith, R. Theodore; Hood, Donald C.; Greenstein, Vivienne C.

    2012-01-01

    Purpose. To quantify and compare the structural and functional changes in subjects with early age-related macular degeneration (AMD), using spectral-domain optical coherence tomography (SD-OCT) and microperimetry. Methods. Twenty-one eyes of 21 subjects with early AMD were examined. MP-1 10-2 visual fields (VFs) and SD-OCT line and detail volume scans were acquired. The thicknesses of the outer segment (OS; distance between inner segment ellipsoid band and upper retinal pigment epithelium [RPE] border) and RPE layers and elevation of the RPE from Bruch's membrane were measured using a computer-aided manual segmentation technique. Thickness values were compared with those for 15 controls, and values at locations with VF total deviation defects were compared with values at nondefect locations at equivalent eccentricities. Results. Sixteen of 21 eyes with AMD had VF defects. Compared with controls, line scans showed significant thinning of the OS layer (P = 0.006) and thickening and elevation of the RPE (P = 0.037, P = 0.002). The OS layer was significantly thinner in locations with VF defects compared with locations without defects (P = 0.003). There was a negligible difference between the retinal layer thickness values of the 5 eyes without VF defects and the values of normal controls. Conclusions. In early AMD, when VF defects were present, there was significant thinning of the OS layer and thickening and elevation of the RPE. OS layer thinning was significantly associated with decreased visual sensitivity, consistent with known photoreceptor loss in early AMD. For AMD subjects without VF defects, thickness values were normal. The results highlight the clinical utility of both SD-OCT retinal layer quantification and VF testing in early AMD. PMID:23074210

  11. Determining mean thickness of the oxide layer by mapping the surface of a silicon sphere.

    PubMed

    Zhang, Jitao; Li, Yan; Wu, Xuejian; Luo, Zhiyong; Wei, Haoyun

    2010-03-29

    To determine Avogadro constant with a relative uncertainty of better than 2 x 10(-8), the mean thickness of the oxide layer grown non-uniformly on the silicon sphere should be determined with about 0.1 nm uncertainty. An effective and flexible mapping strategy is proposed, which is insensitive to the angle resolution of the sphere-rotating mechanism. In this method, a sphere-rotating mechanism is associated with spectroscopic ellipsometer to determine the distribution of the layer, and a weighted mean method based on equal-area projection theory is applied to estimate the mean thickness. The spectroscopic ellipsometer is calibrated by X-ray reflectivity method. Within 12 hours, eight hundred positions on the silicon sphere are measured twice. The mean thickness is determined to be 4.23 nm with an uncertainty of 0.13 nm, which is in the acceptable level for the Avogadro project.

  12. Presence and function of a thick mucous layer rich in polysaccharides around Bacillus subtilis spores.

    PubMed

    Faille, Christine; Ronse, Annette; Dewailly, Etienne; Slomianny, Christian; Maes, Emmanuel; Krzewinski, Frédéric; Guerardel, Yann

    2014-01-01

    This study was designed to establish the presence and function of the mucous layer surrounding spores of Bacillus subtilis. First, an external layer of variable thickness and regularity was often observed on B. subtilis spores. Further analyses were performed on B. subtilis 98/7 spores surrounded by a thick layer. The mechanical removal of the layer did not affect their resistance to heat or their ability to germinate but rendered the spore less hydrophilic, more adherent to stainless steel, and more resistant to cleaning. This layer was mainly composed of 6-deoxyhexoses, ie rhamnose, 3-O-methyl-rhamnose and quinovose, but also of glucosamine and muramic lactam, known also to be a part of the bacterial peptidoglycan. The specific hydrolysis of the peptidoglycan using lysozyme altered the structure of the required mucous layer and affected the physico-chemical properties of the spores. Such an outermost mucous layer has also been seen on spores of B. licheniformis and B. clausii isolated from food environments.

  13. Dependence of seed layer thickness on sensitivity of nano-ZnO cholesterol biosensor

    NASA Astrophysics Data System (ADS)

    Lu, Yang-Ming; Wang, Po-Chin; Tang, Jian-Fu; Chu, Sheng-Yuan

    2017-01-01

    The anemone-like ZnO nanostructures have been synthesized by hydrothermal method and were further adsorbed immobilized cholesterol oxidase (ChOx) as a nano-biosensor. In this study, the sensitivity of biosensor were improved by varying the thickness of the ZnO seed layer. The SEM analysis showed changes in thickness of seed layer will not affect the morphologies of anemone-like ZnO nanostructures. The X-ray Diffraction patterns showed that the (002) plane of anemone-like ZnO grown on various thickness of the seed layer was more prouded than other crystal plane. Abioelectrode (ChOx/ZnO/ITO/glass) grown on the 30nm of ZnO seed layer with high sensitivity of 57.533μAmM-1cm-2 (1.488 μA (mg/dl) -1cm-2), a wide sensitive range from 25 to 500 mg/dl. It is concluded that the thinner sputtered ZnO seed layer for growing anemone-like ZnO nanostructure can effectively improve the sensitivity of the ZnO biosensor.

  14. Influence of bulk turbulence and entrance boundary layer thickness on the curved duct flow field

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.

    1988-01-01

    The influence of bulk turbulence and boundary layer thickness on the secondary flow development in a square, 90 degree turning duct was investigated. A three-dimensional laser velocimetry system was utilized to measure the mean and fluctuating components of velocity at six cross-planes in the duct. The results from this investigation, with entrance boundary layer thickness of 20 percent, were compared with the thin boundary layer results documented in NASA CR-174811. The axial velocity profiles, cross-flow velocities, and turbulence intensities were compared and evaluated with regard to the influence of bulk turbulence intensity and boundary layer thickness, and the influence was significant. The results of this investigation expand the 90 degree curved duct experimental data base to higher turbulence levels and thicker entrance boundary layers. The experimental results provide a challenging benchmark data base for computational fluid dynamics code development and validation. The variation of inlet bulk turbulence intensity provides additional information to aid in turbulence model evaluation.

  15. Influence of bulk turbulence and entrance boundary layer thickness on the curved duct flow field

    NASA Astrophysics Data System (ADS)

    Crawford, R. A.

    1988-11-01

    The influence of bulk turbulence and boundary layer thickness on the secondary flow development in a square, 90 degree turning duct was investigated. A three-dimensional laser velocimetry system was utilized to measure the mean and fluctuating components of velocity at six cross-planes in the duct. The results from this investigation, with entrance boundary layer thickness of 20 percent, were compared with the thin boundary layer results documented in NASA CR-174811. The axial velocity profiles, cross-flow velocities, and turbulence intensities were compared and evaluated with regard to the influence of bulk turbulence intensity and boundary layer thickness, and the influence was significant. The results of this investigation expand the 90 degree curved duct experimental data base to higher turbulence levels and thicker entrance boundary layers. The experimental results provide a challenging benchmark data base for computational fluid dynamics code development and validation. The variation of inlet bulk turbulence intensity provides additional information to aid in turbulence model evaluation.

  16. Ultrasound-based measurement of liquid-layer thickness: A novel time-domain approach

    NASA Astrophysics Data System (ADS)

    Praher, Bernhard; Steinbichler, Georg

    2017-01-01

    Measuring the thickness of a thin liquid layer between two solid materials is important when the adequate separation of metallic parts by a lubricant film (e.g., in bearings or mechanical seals) is to be assessed. The challenge in using ultrasound-based systems for such measurements is that the signal from the liquid layer is a superposition of multiple reflections. We have developed an algorithm for reconstructing this superimposed signal in the time domain. By comparing simulated and measured signals, the time-of-flight of the ultrasonic pulse in a layer can be estimated. With the longitudinal sound velocity known, the layer thickness can then be calculated. In laboratory measurements, we validate successfully (maximum relative error 4.9%) our algorithm for layer thicknesses ranging from 30 μm to 200 μm. Furthermore, we tested our method in the high-temperature environment of polymer processing by measuring the clearance between screw and barrel in the plasticisation unit of an injection moulding machine. The results of such measurements can indicate (i) the wear status of the tribo-mechanical screw-barrel system and (ii) unsuitable process conditions.

  17. Correlation of Retinal Nerve Fiber Layer Thickness and Axial Length on Fourier Domain Optical Coherence Tomography

    PubMed Central

    Dhasmana, Renu; Nagpal, R.C.

    2016-01-01

    Introduction The assessment of the peripapillary Retinal Nerve Fiber Layer (RNFL) thickness has been an important tool for evaluating and diagnosing glaucoma and its progression. Literature suggests that myopic eyes are at an increased risk for developing glaucoma. This study gives an insight into the relationship of RNFL thickness to the axial length in normal population. Aim To correlate the RNFL thickness and the axial length in normal individuals with Fourier domain Optical Coherence Tomography (OCT). Materials and Methods In the current study, 298 eyes of 149 normal individuals (10 years or older) with or without refractive error were recruited. The RNFL thickness was measured using Optovue (RTVue) three-dimensional Fourier domain OCT. Results We observed an inverse relationship between average RNFL thickness and increasing axial length(p=0.003). Maximum RNFL thickness was seen in the Infero-Temporal (IT) quadrant and minimum in the Supero-Nasal (SN) quadrant. RNFL thickness did not show any tendency to decline with age using the Pearsons correlation (r=0.07). Females had an increased RNFL thickness in the Supero-Temporal (ST) and Infero-Nasal (IN) quadrant (p-value 0.046 and 0.02) in comparison to males. There was a statistically significant thinning in Ganglion Cell Complex (GCC) with increasing axial length (p-value 0.000) Conclusion The current study suggests that the average RNFL thickness does not decrease with age. The RNFL and GCC thickness shows an inverse correlation with axial length of the eyeball hence observations have to be carefully interpreted in myopic eyes. Clinicians need to keep the anatomical variations in RNFL for better patient management. PMID:27190850

  18. Physical properties of new iron arsenide oxide with thick perovskite-type oxide layer

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Naoto; Ogino, Hiraku; Kishio, Koji; Shimoyama, Junichi

    2010-03-01

    Since the discovery of high-Tc superconductivity in LaFeAsO, a large number of layered compounds having anti-fluorite type Fe- or Ni-pnictide layer have been discovered. Among them, a series of pnictide oxides having perovskite-type oxide layersfootnotetextH. Ogino et al., Supercond. Sci. Technol. 22 (2009) 075008 are attractive because of their chemical flexibility particularly at the perovskite-type oxide layer, which may results in new compounds. In the present study, various physical properties have been investigated for the new iron pnictide oxides with thick perovskite-type blocking layers, i.e., large interlayer distance between Fe-layers more than 1.7 nm. These samples showed metallic and paramagnetic behaviors in resistivity and magnetization measurements, respectively, down to 2 K without any signs of superconductivity and other anomalies. Relationship among crystal structure, constituent elements and physical properties will be discussed for the newly discovered system.

  19. Optical coherence tomography layer thickness characterization of a mock artery during angioplasty balloon deployment

    NASA Astrophysics Data System (ADS)

    Azarnoush, Hamed; Vergnole, Sébastien; Boulet, Benoît; Lamouche, Guy

    2011-03-01

    Optical coherence tomography (OCT) is used to study the deformation of a mock artery in an angioplasty simulation setup. An OCT probe integrated in a balloon catheter provides intraluminal real-time images during balloon inflation. Swept-source OCT is used for imaging. A 4 mm semi-compliant polyurethane balloon is used for experiments. The balloon is inflated inside a custom-built multi-layer artery phantom. The phantom has three layers to mock artery layers, namely, intima, media and adventitia. Semi-automatic segmentation of phantom layers is performed to provide a detailed assessment of the phantom deformation at various inflation pressures. Characterization of luminal diameter and thickness of different layers of the mock artery is provided for various inflation pressures.

  20. Retinal Fibre Layer Thickness Measurement in Normal Paediatric Population in Sweden Using Optical Coherence Tomography

    PubMed Central

    Ntoula, Evangelia

    2016-01-01

    Purpose. To evaluate the correlation between peripapillary retinal nerve fibre layer (RNFL) thickness and both age and refraction error in healthy children using optical coherence tomography (OCT). Patients and Methods. 80 healthy children with a mean age of 9.1 years (range 3.8 to 16.7 years) undergoing routine ocular examination at the orthoptic section of the Ophthalmology Department were recruited for this cross-sectional study. After applying cycloplegia, the peripapillary RNFL thickness was measured in both eyes using the Topcon 3D OCT 2000 device. Results. 138 eyes were included in the analysis. The average refractive error (SE) was +1.7 D (range −5.25 to +7.25 D). The mean total RNFL thickness was 105 μm ± 10.3, the mean superior RNFL thickness was 112.7 μm ± 16.5, and the mean inferior RNFL thickness was 132.6 μm ± 18.3. We found no statistically significant effect of age on RNFL thickness (ANOVA, f = 0.33, p = 0.56). Refraction was proven to have a statistically significant effect (ANOVA, f = 67.1, p < 0.05) in RNFL measurements. Conclusions. Data obtained from this study may assist in establishing a normative database for a paediatric population. Refraction error should be taken into consideration due to its statistically significant correlation with RNFL thickness. PMID:27980862

  1. Adaptive step-size algorithm for Fourier beam-propagation method with absorbing boundary layer of auto-determined width

    SciTech Connect

    Learn, R.; Feigenbaum, E.

    2016-05-27

    Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. Furthermore, the second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.

  2. Extracting Information about the Electronic Quality of Organic Solar-Cell Absorbers from Fill Factor and Thickness

    NASA Astrophysics Data System (ADS)

    Kaienburg, Pascal; Rau, Uwe; Kirchartz, Thomas

    2016-08-01

    Understanding the fill factor in organic solar cells remains challenging due to its complex dependence on a multitude of parameters. By means of drift-diffusion simulations, we thoroughly analyze the fill factor of such low-mobility systems and demonstrate its dependence on a collection coefficient defined in this work. We systematically discuss the effect of different recombination mechanisms, space-charge regions, and contact properties. Based on these findings, we are able to interpret the thickness dependence of the fill factor for different experimental studies from the literature. The presented model provides a facile method to extract the photoactive layer's electronic quality which is of particular importance for the fill factor. We illustrate that over the past 15 years, the electronic quality has not been continuously improved, although organic solar-cell efficiencies increased steadily over the same period of time. Only recent reports show the synthesis of polymers for semiconducting films of high electronic quality that are able to produce new efficiency records.

  3. Leaping shampoo glides on a 500-nm-thick lubricating air layer

    NASA Astrophysics Data System (ADS)

    Li, Erqiang; Lee, Sanghyun; Marston, Jeremy; Bonito, Andrea; Thoroddsen, Sigurdur

    2013-11-01

    When a stream of shampoo is fed onto a pool in one's hand, a jet can leap sideways or rebound from the liquid surface in an intriguing phenomenon known as the Kaye effect. Earlier studies have debated whether non-Newtonian effects are the underlying cause of this phenomenon, making the jet glide on top of a shear-thinning liquid layer, or whether an entrained air layer is responsible. Herein we show unambiguously that the jet slides on a lubricating air layer [Lee et al., Phys. Rev. E 87, 061001 (2013)]. We identify this layer by looking through the pool liquid and observing its rupture into fine micro-bubbles. The resulting micro-bubble sizes suggest that the thickness of this air layer is around 500 nm. This thickness estimate is also supported by the tangential deceleration of the jet during the rebounding, with the shear stress within the thin air layer sufficient for the observed deceleration. Particle tracking within the jet shows uniform velocity, with no pronounced shear, which would be required for shear-thinning effects. The role of the surfactant may primarily be to stabilize the air film.

  4. Quantification of photoreceptor layer thickness in different macular pathologies using ultrahigh-resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Drexler, Wolfgang; Hermann, Boris; Unterhuber, Angelika; Sattmann, Harald; Wirtitsch, Matthias; Stur, Michael; Scholda, Christoph; Ergun, Erdem; Anger, Elisabeth; Ko, Tony H.; Schubert, Christian; Ahnelt, Peter K.; Fujimoto, James G.; Fercher, Adolf F.

    2004-07-01

    In vivo ultrahigh resolution ophthalmic OCT has been performed in more than 300 eyes of 200 patients with several retinal pathologies, demonstrating unprecedented visualization of all major intraretinal layers, in particular the photoreceptor layer. Visualization as well as quantification of the inner and outer segment of the photoreceptor layer especially in the foveal region has been acvhieved. In normal subjects the photoreceptor layer thickness in the center of the fovea is about of 90 μm, approximately equally distributed to the inner and the outer photoreceptor segment. In the parafoveal region this thickness is reduced to ~50 μm (~30 μm for the inner and ~20 μm for the outer segment). This is in good agreement with well known increase of cone outer segments in the central foveal region. Photoreceptor layer impairment in different macular pathologies like macular hole, central serous chorioretinopathy, age related macular degeneration, foveomacular dystrophies, Stargardt dystrophy as well as retinitis pigmentosa has been investigated. Photoreceptor layer loss significantly correlated with visual acuity (R2 = 0.6, p < 0.001) and microperimetry findings for the first time in 22 eyes with Stargardt dystrophy. Visualization and quantification of photoreceptor inner and outer segment using ultrahigh resolution OCT has the potential to improve early ophthalmic diagnosis, contributes to a better understanding of pathogenesis of retinal diseases as well as might have impact in the development and monitoring of novel therapy approaches.

  5. Calcined Mg-Fe layered double hydroxide as an absorber for the removal of methyl orange

    NASA Astrophysics Data System (ADS)

    Peng, Chao; Dai, Jing; Yu, Jianying; Yin, Jian

    2015-05-01

    In this work, methyl orange (MO) was effectively removed from aqueous solution with the calcined product of hydrothermal synthesized Mg/Fe layered double hydroxide (Mg/Fe-LDH). The structure, composition, morphology and textural properties of the Mg/Fe-LDH before and after adsorption were characterized by X-ray diffraction, Fourier transformation infrared spectroscopy, transmission electron microscopy, nitrogen adsorption apparatus and X-ray photoelectron spectroscopy. It was confirmed that MO had been absorbed by calcined Mg/Fe-LDH which had strong interactions with MO. The adsorption of MO onto the Mg/Fe-LDH was systematically investigated by batch tests. The adsorption capacity of the Mg/Fe-LDH toward MO was found to be 194.9 mg • g-1. Adsorption kinetics and isotherm studies revealed that the adsorption of MO onto Mg/Fe-LDH was a spontaneous and endothermic process. These results indicate that Mg/Fe-LDH is a promising material for the removal of MO.

  6. Calcined Mg-Fe layered double hydroxide as an absorber for the removal of methyl orange

    SciTech Connect

    Peng, Chao; Dai, Jing; Yu, Jianying; Yin, Jian

    2015-05-15

    In this work, methyl orange (MO) was effectively removed from aqueous solution with the calcined product of hydrothermal synthesized Mg/Fe layered double hydroxide (Mg/Fe-LDH). The structure, composition, morphology and textural properties of the Mg/Fe-LDH before and after adsorption were characterized by X-ray diffraction, Fourier transformation infrared spectroscopy, transmission electron microscopy, nitrogen adsorption apparatus and X-ray photoelectron spectroscopy. It was confirmed that MO had been absorbed by calcined Mg/Fe-LDH which had strong interactions with MO. The adsorption of MO onto the Mg/Fe-LDH was systematically investigated by batch tests. The adsorption capacity of the Mg/Fe-LDH toward MO was found to be 194.9 mg • g{sup −1}. Adsorption kinetics and isotherm studies revealed that the adsorption of MO onto Mg/Fe-LDH was a spontaneous and endothermic process. These results indicate that Mg/Fe-LDH is a promising material for the removal of MO.

  7. Chemical precursor impact on the properties of Cu2ZnSnS4 absorber layer

    NASA Astrophysics Data System (ADS)

    Vashistha, Indu B.; Sharma, Mahesh C.; Sharma, S. K.

    2016-04-01

    In present work impact of different chemical precursor on the deposition of solar absorber layer Cu2ZnSnS4 (CZTS) were studied by Chemical Bath Deposition (CBD) method without using expensive vacuum facilities and followed by annealing. As compared to the other deposition methods, CBD method is interesting one because it is simple, reproducible, non-hazardous, cost effective and well suited for producing large-area thin films at low temperatures, although effect of precursors and concentration plays a vital role in the deposition. So, the central theme of this work is optimizing and controlling of chemical reactions for different chemical precursors. Further Effect of different chemical precursors i.e. sulphate and chloride is analyzed by structural, morphological, optical and electrical properties. The X-ray diffraction (XRD) of annealed CZTS thin film revealed that films were polycrystalline in nature with kestarite tetragonal crystal structure. The Atomic Force micrographs (AFM) images indicated total coverage compact film and as well as growth of crystals. The band gap of annealed CZTS films was found in the range of optimal band gap by absorption spectroscopy.

  8. Optimization of UV absorptivity of layered double hydroxide by intercalating organic UV-absorbent molecules.

    PubMed

    Mohsin, Sumaiyah Megat Nabil; Hussein, Mohd Zobir; Sarijo, Siti Halimah; Fakurazi, Sharida; Arulselvan, Palanisamy; Taufiq-Yap, Yun Hin

    2014-08-01

    Intercalation of Zn/Al layered double hydroxide (LDH) with benzophenone 9 (B9), a strong ultraviolet (UV) absorber, had been carried out by two different routes; co-precipitation and ion exchange method. Powder X-ray diffraction (PXRD) patterns of co-precipitated (ZB9C) and ion exchanged product (ZB91) showed basal spacing of 15.9 angstrom and 16.6 angstrom, respectively, as a result of the intercalation of B9 anions into the lamellae spaces of LDH. Intercalation was further confirmed by Fourier transform infrared spectra (FTIR), carbon, hydrogen, nitrogen and sulfur (CHNS) and thermogravimetric and differential thermogravimetric (TGA/DTG) studies. UV-vis absorption properties of the nanocomposite was investigated with diffuse reflectance UV-visible spectrometer and showed broader UV absorption range. Furthermore, stability of sunscreen molecules in LDH interlayer space was tested in deionized water, artificial sea water and skin pH condition to show slow deintercalation and high retention in host. Cytotoxicity study of the synthesized nanocomposites on human dermal fibroblast (HDF) cells shows no significant cytotoxicity after 24 h exposure for test concentrations up to 25 microg/mL.

  9. Toward Efficient Thick Active PTB7 Photovoltaic Layers Using Diphenyl Ether as a Solvent Additive.

    PubMed

    Zheng, Yifan; Goh, Tenghooi; Fan, Pu; Shi, Wei; Yu, Junsheng; Taylor, André D

    2016-06-22

    The development of thick organic photovoltaics (OPV) could increase absorption in the active layer and ease manufacturing constraints in large-scale solar panel production. However, the efficiencies of most low-bandgap OPVs decrease substantially when the active layers exceed ∼100 nm in thickness (because of low crystallinity and a short exciton diffusion length). Herein, we report the use of solvent additive diphenyl ether (DPE) that facilitates the fabrication of thick (180 nm) active layers and triples the power conversion efficiency (PCE) of conventional thienothiophene-co-benzodithiophene polymer (PTB7)-based OPVs from 1.75 to 6.19%. These results demonstrate a PCE 20% higher than those of conventional (PTB7)-based OPV devices using 1,8-diiodooctane. Morphology studies reveal that DPE promotes the formation of nanofibrillar networks and ordered packing of PTB7 in the active layer that facilitate charge transport over longer distances. We further demonstrate that DPE improves the fill factor and photocurrent collection by enhancing the overall optical absorption, reducing the series resistance, and suppressing bimolecular recombination.

  10. The scaling transition of Nu number and boundary layer thickness in RB convection

    NASA Astrophysics Data System (ADS)

    Zou, Hong-Yue; Chen, Xi; She, Zhen-Su

    2016-11-01

    A quantitative theory is developed for the vertical mean temperature profile (MTP) and mean velocity profile (MVP) in turbulent Rayleigh-Benard Convection (RBC), which explains the experimental and numerical observations of logarithmic law in MTP and the Rayleigh number (Ra)-dependence of its coefficient A. The theory extends a symmetry analysis of canonical wall-bounded turbulent flows, which allows to extract accurate Ra scaling of the sub-layer, buffer layer and log-layer thicknesses from the empirical data over a wide range of Ra. In particular, the scaling of the multi-layer thicknesses predicts that the log-law coefficient A follows a -0.121 scaling, which agrees well with the experimental data. More interestingly, a scaling transition is discovered for the kinetic sublayer thickness around Ra of 1010, which yields a scaling transition of Nu from 1/3 to 0.38. We also develop a new explanation for mean temperature logarithmic law: the effect of inverse pressure gradient drives plumes upwards near the side wall, and yields a similarity between temperature and momentum transport in the vertical direction.

  11. Strength and thickness of the layer of materials used for ceramic veneers bonding.

    PubMed

    Mazurek, Karolina; Mierzwińska-Nastalska, Elżbieta; Molak, Rafał; Kożuchowski, Mariusz; Pakieła, Zbigniew

    2012-01-01

    The use of adhesive bonding systems and composites in prosthetic dentistry brought improved and more aesthetic prosthetic restorations. The adhesive bonding of porcelain veneers is based on the micromechanical and chemical bond between tooth surface, cement layer and ceramic material. The aim of the study was to measure the thickness of the material layer formed during cementing of a ceramic restoration, and - in the second part of the study - to test tension of these cements. The materials investigated comprised dual-curing materials: Variolink II, KoNroot Cem, KoNroot Cem Viscous and Panavia F 2.0, as well as a light-curing composite: Variolink Veneer. The thickness was measured with the use of ZIP Lite 250 optical gauging apparatus. SEM microscope - Hitachi Tabletop Microscope TM-100 - was used to analyse the characteristics of an adhesive bond and filler particle size of particular materials. Tension tests of the cements under study were carried out on the MTS Q Test 10 static electrodynamic apparatus. The tests showed that KoNroot Cem exhibited the best mechanical properties of bonding to enamel and dentin among the materials tested. Variolink II base light-curing cement formed the thinnest layer. All the materials tested formed the layer not exceeding 1/3 of ceramic restoration thickness.

  12. Cooperative Lamb shift in an atomic vapor layer of nanometer thickness.

    PubMed

    Keaveney, J; Sargsyan, A; Krohn, U; Hughes, I G; Sarkisyan, D; Adams, C S

    2012-04-27

    We present an experimental measurement of the cooperative Lamb shift and the Lorentz shift using a nanothickness atomic vapor layer with tunable thickness and atomic density. The cooperative Lamb shift arises due to the exchange of virtual photons between identical atoms. The interference between the forward and backward propagating virtual fields is confirmed by the thickness dependence of the shift, which has a spatial frequency equal to twice that of the optical field. The demonstration of cooperative interactions in an easily scalable system opens the door to a new domain for nonlinear optics.

  13. Influence of electron transport layer thickness on optical properties of organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Guohong; Liu, Yong; Li, Baojun; Zhou, Xiang

    2015-06-01

    We investigate experimentally and theoretically the influence of electron transport layer (ETL) thickness on properties of typical N,N'-diphenyl-N,N'-bis(1-naphthyl)-[1,1'-biphthyl]-4,4'-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq3) heterojunction based organic light-emitting diodes (OLEDs), where the thickness of ETL is varied to adjust the distance between the emitting zone and the metal electrode. The devices showed a maximum current efficiency of 3.8 cd/A when the ETL thickness is around 50 nm corresponding to an emitter-cathode distance of 80 nm, and a second maximum current efficiency of 2.6 cd/A when the ETL thickness is around 210 nm corresponding to an emitter-cathode distance of 240 nm. We adopt a rigorous electromagnetic approach that takes parameters, such as dipole orientation, polarization, light emitting angle, exciton recombination zone, and diffusion length into account to model the optical properties of devices as a function of varying ETL thickness. Our simulation results are accurately consistent with the experimental results with a widely varying thickness of ETL, indicating that the theoretical model may be helpful to design high efficiency OLEDs.

  14. Evaluation of retinal nerve fiber layer thickness profile in thyroid ophthalmopathy without optic nerve dysfunction

    PubMed Central

    Mugdha, Kumari; Kaur, Apjit; Sinha, Neha; Saxena, Sandeep

    2016-01-01

    AIM To evaluate retinal nerve fiber layer (RNFL) thickness profile in patients of thyroid ophthalmopathy with no clinical signs of optic nerve dysfunction. METHODS A prospective, case-control, observational study conducted at a tertiary care centre. Inclusion criteria consisted of patients with eyelid retraction in association with any one of: biochemical thyroid dysfunction, exophthalmos, or extraocular muscle involvement; or thyroid dysfunction in association with either exophthalmos or extra-ocular muscle involvement; or a clinical activity score (CAS)>3/7. Two measurements of RNFL thickness were done for each eye, by Cirrus HD-optical coherence tomography 6mo apart. RESULTS Mean age of the sample was 38.75y (range 13-70y) with 18 males and 22 females. Average RNFL thickness at first visit was 92.06±12.44 µm, significantly lower than control group (101.28±6.64 µm) (P=0.0001). Thickness of inferior quadrant decreased from 118.2±21.27 µm to 115.0±22.27 µm after 6mo (P=0.02). There was no correlation between the change in CAS and RNFL thickness. CONCLUSION Decreased RNFL thickness is an important feature of thyroid orbitopathy, which is an inherent outcome of compressive optic neuropathy of any etiology. Subclinical RNFL damage continues in the absence of clinical activity of the disease. RNFL evaluation is essential in Grave's disease and active intervention may be warranted in the presence of significant damage. PMID:27990368

  15. Influence of electron transport layer thickness on optical properties of organic light-emitting diodes

    SciTech Connect

    Liu, Guohong; Liu, Yong; Li, Baojun; Zhou, Xiang

    2015-06-07

    We investigate experimentally and theoretically the influence of electron transport layer (ETL) thickness on properties of typical N,N′-diphenyl-N,N′-bis(1-naphthyl)-[1,1′-biphthyl]-4,4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}) heterojunction based organic light-emitting diodes (OLEDs), where the thickness of ETL is varied to adjust the distance between the emitting zone and the metal electrode. The devices showed a maximum current efficiency of 3.8 cd/A when the ETL thickness is around 50 nm corresponding to an emitter-cathode distance of 80 nm, and a second maximum current efficiency of 2.6 cd/A when the ETL thickness is around 210 nm corresponding to an emitter-cathode distance of 240 nm. We adopt a rigorous electromagnetic approach that takes parameters, such as dipole orientation, polarization, light emitting angle, exciton recombination zone, and diffusion length into account to model the optical properties of devices as a function of varying ETL thickness. Our simulation results are accurately consistent with the experimental results with a widely varying thickness of ETL, indicating that the theoretical model may be helpful to design high efficiency OLEDs.

  16. Identification of atmospheric boundary layer thickness using doppler radar datas and WRF - ARW model in Merauke

    NASA Astrophysics Data System (ADS)

    Putri, R. J. A.; Setyawan, T.

    2017-01-01

    In the synoptic scale, one of the important meteorological parameter is the atmospheric boundary layer. Aside from being a supporter of the parameters in weather and climate models, knowing the thickness of the layer of the atmosphere can help identify aerosols and the strength of the vertical mixing of pollutants in it. The vertical wind profile data from C-band Doppler radar Mopah-Merauke which is operated by BMKG through Mopah-Merauke Meteorological Station can be used to identify the peak of Atmospheric Boundaryu Layer (ABL). ABL peak marked by increasing wind shear over the layer blending. Samples in January 2015 as a representative in the wet and in July 2015 as the representation of a dry month, shows that ABL heights using WRF models show that in July (sunny weather) ABL height values higher than in January (cloudy)

  17. Aerodynamically-driven condensate layer thickness distributions on isothermal cylindrical surfaces

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Gunes, D.; Nazih-Anous, N.

    1983-01-01

    A simple yet rather general mathematical model is presented for predicting the distribution of condensate layer thickness when aerodynamic shear is the dominant mechanism of liquid flow along the surface. The Newtonian condensate film is treated using well-known thin-layer (lubrication theory) approximations, and condensate supply is taken to be the result of either convective diffusion or inertial impaction. Illustrative calculations for a circular cylinder in a crossflow at Re = 100,000 reveal the consequences of alternate condensate arrival mechanisms and the existence of thicker reverse-flow films behind the position of gas boundary-layer separation. The present formulation is readily generalized to include transient liquid layer flows on noncircular objects of variable surface temperature, as encountered in turbine-blade materials testing or operation.

  18. Improved performance of P-type DSCs with a compact blocking layer coated by different thicknesses

    NASA Astrophysics Data System (ADS)

    Ho, Phuong; Bao, Le Quoc; Cheruku, Rajesh; Kim, Jae Hong

    2016-09-01

    The introduction of different thicknesses of a compact NiO blocking layer coating with different spin speeds on FTO and followed by a coating of photoactive NiO electrode for p-type dye-sensitized solar cells ( p-DSCs). This study examined the fabrication of a compact NiO blocking layer by decomposing an ethanolic precursor solution of nickel acetate tetrahydrate. The DCBZ dye used as the photosensitizer for the NiO electrode in the p-DSCs device and their performances have been analyzed. The enhancement of photovoltaic performance and resulted from an increase in the power conversion efficiency ( η). The electrochemical impedance spectroscopy (EIS) measurement demonstrated that charge recombination was suppressed when a compact NiO blocking layer was applied. The results showed that the best p-DSC was achieved by employing 3000 rpm spin-coated process for different times of blocking layer.

  19. Aerodynamically-driven condensate layer thickness distributions on isothermal cylindrical surfaces

    NASA Astrophysics Data System (ADS)

    Rosner, D. E.; Gunes, D.; Nazih-Anous, N.

    A simple yet rather general mathematical model is presented for predicting the distribution of condensate layer thickness when aerodynamic shear is the dominant mechanism of liquid flow along the surface. The Newtonian condensate film is treated using well-known thin-layer (lubrication theory) approximations, and condensate supply is taken to be the result of either convective diffusion or inertial impaction. Illustrative calculations for a circular cylinder in a crossflow at Re = 100,000 reveal the consequences of alternate condensate arrival mechanisms and the existence of thicker reverse-flow films behind the position of gas boundary-layer separation. The present formulation is readily generalized to include transient liquid layer flows on noncircular objects of variable surface temperature, as encountered in turbine-blade materials testing or operation.

  20. Monte Carlo analysis of the influence of germanium dead layer thickness on the HPGe gamma detector experimental efficiency measured by use of extended sources.

    PubMed

    Chham, E; García, F Piñero; El Bardouni, T; Ferro-García, M Angeles; Azahra, M; Benaalilou, K; Krikiz, M; Elyaakoubi, H; El Bakkali, J; Kaddour, M

    2014-09-22

    We have carried out a study to figure out the influence of crystal inactive-layer thickness on gamma spectra measured by an HPGe detector. The thickness of this dead layer (DL) is not known (no information about it was delivered by the manufacturer) due to the existence of a transition zone where photons are increasingly absorbed. To perform this analyses a virtual model of a Canberra HPGe detector was produced with the aid of MCNPX 2.7 code. The main objective of this work is to produce an optimal modeling for our GPGe detector. To this end, the study included the analysis of the total inactive germanium layer thickness and the active volume that are needed in order to obtain the smallest discrepancy between calculated and experimental efficiencies. Calculations and measurements were performed for all of the radionuclides included in a standard calibration gamma cocktail solution. Different geometry sources were used: a Marinelli and two other new sources represented as S(1) and S(2). The former was used for the determination of the active volume, whereas the two latter were used for the determination of the face and lateral DL, respectively. The model was validated by comparing calculated and experimental full energy peak efficiencies in the 50-1900keV energy range. the results show that the insertion of the DL parameter in the modeling is absolutely essential to reproduce the experimental results, and that the thickness of this DL varies from one position to the other on the detector surface.

  1. A method for determining the thickness of tribological performing thin layers formed by selective transfer

    NASA Astrophysics Data System (ADS)

    Ilie, Filip; Chisiu, Georgiana; Ipate, George

    2017-02-01

    A new stage in the research of the unconventional friction couples (alloys or pseudo-alloys in thin layers) to implement them in the designing and execution of machines is represented by the modern friction couples which are based on selective transfer (transfer of a material from one element of the friction couple to the other in the presence of a lubricant forming a superficial layer, antifriction, very thin, the order of several microns, which behaves very well to friction and wear). A selective transfer can be achieved with certainty in a friction couple, lubricated with glycerine or with a special lubricant, if in the friction area there is a material from alloys on based copper. The thin superficial layer formed through selective transfer in the friction process of a friction couple is made of the elements of the alloy based on copper, where the copper is predominant. Hence results the practical necessity to determine the thickness of superficial thin layers (0.1 - 4 μm) obtained in the friction couples, by selective transfer (mass selective transfer through diffusion from one element of the friction couple to another, in conditions of local energies favourable to the transfer process and in the presence of relative motion). The aim of this paper is presenting and explaining a methodology for determining the thickness of layers formed by selective transfer, in the friction process, on the surfaces of elements friction couples.

  2. A novel ellipsometer for measuring thickness of oxide layer on the surface of silicon sphere

    NASA Astrophysics Data System (ADS)

    Zhang, Jitao; Li, Yan

    2008-03-01

    The Avogadro constant NA is used as one of the several possible routes to redefinition of the kilogram in metrology today. Usually in order to accurately determine NA, the volume of a perfect single crystal silicon sphere of nearly 1 kg mass should be measured with a high relative uncertainty, i.e. about 1×10 -8. However, the oxide layer grown on the surface of the silicon sphere causes a remarkable systematic difference between the measured and real diameters. A novel ellipsometer has been developed to determine the thickness of the oxide layer accurately and automatically. The arrangement of this instrument is suitable for measuring the layer on the sphere surface. What's more, the measuring is faster by optimizing the parameters and developing the algorithm of calculating the thickness and refractive index of the oxide layer. The preliminary simulation result has present. Thus, the uncertainty of the diameter measurement caused by the oxide layer can be observably reduced. And the further improving of this ellipsometer is discussed in the end.

  3. A preliminary investigation into the relationship between ocular surface temperature and lipid layer thickness.

    PubMed

    Giraldez, Maria Jesus; Naroo, Shehzad A; Resua, Carlos Garcia

    2009-08-01

    The aim of this study was to establish the relationship between OST, tear film stability as assessed by NIBUT and subjective evaluation of the lipid layer thickness in a young, asymptomatic, sample group (N=29). Non-invasive tear break-up time (NIBUT) and tear lipid layer structure were evaluated through a slit-lamp mounted Tearscope Plus. A self-calibrating infrared thermography camera was used to record two OST values (one immediately post-blink and one immediately pre the subsequent blink). The most common lipid layer pattern observed was the amorphous pattern (48.3%). Differences between post- and pre-blink OST values were observed (paired t-test; p<0.001). Significant differences of pre-blink OST values were observed between the closed marmoreal group with that from the amorphous and flow groups (Tukey post hoc test, p<0.05). There were no differences of NIBUT values between each lipid layer thickness (Kruskal-Wallis test; p=0.152). A no significant tendency for higher OST in eyes with increased NIBUT was observed. This study suggests that higher OST values could be associated with thicker tear lipid layer in normal subjects. The lack of significant results in relation with tear film stability may be due to only normal subjects were included.

  4. Mointoring Thickness Deviations in Planar Multi-Layered Elastic Structures Using Impedance Signatures

    SciTech Connect

    Fisher, K A

    2007-01-26

    In this letter, a low frequency ultrasonic resonance technique that operates in the (20 - 80 kHz) regime is presented that demonstrates detection of thickness changes on the order of +/- 10{micro}m. This measurement capability is a result of the direct correlation between the electrical impedance of an electro-acoustic transducer and the mechanical loading it experiences when placed in contact with a layered elastic structure. The relative frequency shifts of the resonances peaks can be estimated through a simple one-dimensional transmission model. Separate experimental measurements confirm this technique to be sensitive to subtle changes in the underlying layered elastic structure.

  5. Retinal nerve fiber layer thickness analysis in suspected malingerers with optic disc temporal pallor

    PubMed Central

    Civelekler, Mustafa; Halili, Ismail; Gundogan, Faith C; Sobaci, Gungor

    2009-01-01

    Purpose: To investigate the value of temporal retinal nerve fiber layer (RNFLtemporal) thickness in the prediction of malingering. Materials and Methods: This prospective, cross-sectional study was conducted on 33 military conscripts with optic disc temporal pallor (ODTP) and 33 age-and sex-matched healthy controls. Initial visual acuity (VAi) and visual acuity after simulation examination techniques (VAaset) were assessed. The subjects whose VAaset were two or more lines higher than VAi were determined as malingerers. Thickness of the peripapillary RNFL was determined with OCT (Stratus OCT™, Carl Zeiss Meditec, Inc.). RNFLtemporal thickness of the subjects were categorized into one of the 1+ to 4+ groups according to 50% confidence interval (CI), 25% CI and 5% CI values which were assessed in the control group. The VAs were converted to LogMAR-VAs for statistical comparisons. Results: A significant difference was found only in the temporal quadrant of RNFL thickness in subjects with ODTP (P=0.002). Mean LogMAR-VA increased significantly after SETs (P<0.001). Sensitivity, specificity, positive and negative predictive values of categorized RNFLtemporal thickness in diagnosing malingering were 84.6%, 75.0%, 68.8%, 88.2%, respectively. ROC curve showed that RNFLtemporal thickness of 67.5 μm is a significant cut-off point in determining malingering (P=0.001, area under the curve:0.862). The correlations between LogMAR-VAs and RNFLtemporal thicknesses were significant; the correlation coefficient for LogMAR-VAi was lower than the correlation for LogMAR-VAaset (r=−0.447, P=0.009 for LogMAR-VAi; r=−0.676, P<0.001 for LogMAR-VAaset). Conclusions: RNFLtemporal thickness assessment may be a valuable tool in determining malingering in subjects with ODTP objectively. PMID:19700875

  6. Investigation of void formation beneath thin AlN layers by decomposition of sapphire substrates for self-separation of thick AlN layers grown by HVPE

    NASA Astrophysics Data System (ADS)

    Kumagai, Yoshinao; Enatsu, Yuuki; Ishizuki, Masanari; Kubota, Yuki; Tajima, Jumpei; Nagashima, Toru; Murakami, Hisashi; Takada, Kazuya; Koukitu, Akinori

    2010-09-01

    Void formation at the interface between thick AlN layers and (0 0 0 1) sapphire substrates was investigated to form a predefined separation point of the thick AlN layers for the preparation of freestanding AlN substrates by hydride vapor phase epitaxy (HVPE). By heating 50-200 nm thick intermediate AlN layers above 1400 °C in a gas flow containing H 2 and NH 3, voids were formed beneath the AlN layers by the decomposition reaction of sapphire with hydrogen diffusing to the interface. The volume of the sapphire decomposed at the interface increased as the temperature and time of the heat treatment was increased and as the thickness of the AlN layer decreased. Thick AlN layers subsequently grown at 1450 °C after the formation of voids beneath the intermediate AlN layer with a thickness of 100 nm or above self-separated from the sapphire substrates during post-growth cooling with the aid of voids. The 79 μm thick freestanding AlN substrate obtained using a 200 nm thick intermediate AlN layer had a flat surface with no pits, high optical transparency at wavelengths above 208.1 nm, and a dislocation density of 1.5×10 8 cm -2.

  7. Two-wavelengths laser-speckle technique for thickness determination of transparent layers on rough surfaces

    NASA Astrophysics Data System (ADS)

    Lettner, J.; Zagar, B. G.

    2013-11-01

    In this work, a non-contacting laser-speckle technique and two different implementations thereof for measuring the thickness of thin transparent liquid layers on optically rough surfaces are presented. The optical system allows large stand-off distances and can be used in harsh environments and industrial applications. The thickness of the (oil) coating can be measured down into the μm range, which is below that of the surface roughness. The distribution of the coating depends on adhesive and cohesive forces, the temperature and primarily on the surface topography itself. The thickness of transparent coatings can be evaluated statistically considering wavelengths and roughness. We describe the two measurement principles and the data processing, present measurement results and discuss the advantages and disadvantages of both methods. For a better understanding, the theoretical considerations of the diffraction of sinusoidal phase gratings in the Fraunhofer region will be given.

  8. An Integrated Observational and Model Synthesis Approach to Examine Dominant Environmental Controls on Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Atchley, A. L.; Coon, E.; Painter, S. L.; Harp, D. R.; Wilson, C. J.

    2015-12-01

    The active layer thickness (ALT) - the annual maximum depth of soil with above 0°C temperatures - in part determines the volume of carbon-rich stores available for decomposition and therefore potential greenhouse gas release into the atmosphere from Arctic tundra. However, understanding and predicting ALT in polygonal tundra landscapes is difficult due to the complex nature of hydrothermal atmospheric-surface-subsurface interactions in freezing/thawing soil. Simply deconvolving effects of single environmental controls on ALT is not possible with measurements alone as processes act in concert to drive thaw depth formation. Process-rich models of thermal hydrological dynamics, conversely, are a valuable tool for understanding the dominant controls and uncertainties in predicting permafrost conditions. By integrating observational data with known physical relationships to form process-rich models, synthetic experiments can then be used to explore a breadth of environmental conditions encountered and the effect of each environmental attribute may be assessed. Here a process rich thermal hydrology model, The Advanced Terrestrial Simulator, has been created and calibrated using observed data from Barrow, AK. An ensemble of 1D thermal hydrologic models were simulated that span a range of three environmental factors 1) thickness of organic rich soil, 2) snow depth, and 3) soil moisture content, to investigate the role of each factor on ALT. Results show that organic layer thickness acts as a strong insulator and is the dominant control of ALT, but the strength of the effect of organic layer thickness is also dependent on the saturation state. Using the ensemble results, the effect of peat thickness on ALT was then examined on a 2D domain. This work was supported by LANL Laboratory Directed Research and Development Project LDRD201200068DR and by the The Next-Generation Ecosystem Experiments (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and

  9. Oscillating layer thickness and vortices generated in oscillation of finite plate

    NASA Astrophysics Data System (ADS)

    Sin, V. K.; Wong, I. K.

    2016-06-01

    Moving mesh strategy is used in the model of flow induced by oscillating finite plate through software - COMSOL Multiphysics. Flow is assumed to be laminar and arbitrary Lagrangian-Eulerian method is used for moving mesh in the simulation. Oscillating layer thickness is found which is different from the analytical solution by 2 to 3 times depends on the oscillating frequency. Vortices are also observed near the oscillating finite plate because of the edge effect of the finite plate.

  10. Minimum Thickness Requirements for Asphalt Surface Course and Base Layer in Airfield Pavements

    DTIC Science & Technology

    2011-08-01

    e.g., Donovan and Tutumluer 2008, 2009; Tao et al. 2010), a waterproof surface, protection from foreign object damage (FOD), and a durable surface...mechanisms for premature deterioration, and quantify the service life of thin asphalt concrete pavements. Six sections with different layer...32,500 7,794 The full-scale test data analysis led to a conclusion that the Department of Defense’s (DoD) minimum asphalt concrete thickness

  11. Macular Microcysts in Mitochondrial Optic Neuropathies: Prevalence and Retinal Layer Thickness Measurements

    PubMed Central

    Carbonelli, Michele; La Morgia, Chiara; Savini, Giacomo; Cascavilla, Maria Lucia; Borrelli, Enrico; Chicani, Filipe; do V. F. Ramos, Carolina; Salomao, Solange R.; Parisi, Vincenzo; Sebag, Jerry; Bandello, Francesco; Sadun, Alfredo A.; Carelli, Valerio; Barboni, Piero

    2015-01-01

    Purpose To investigate the thickness of the retinal layers and to assess the prevalence of macular microcysts (MM) in the inner nuclear layer (INL) of patients with mitochondrial optic neuropathies (MON). Methods All patients with molecularly confirmed MON, i.e. Leber’s Hereditary Optic Neuropathy (LHON) and Dominant Optic Atrophy (DOA), referred between 2010 and 2012 were enrolled. Eight patients with MM were compared with two control groups: MON patients without MM matched by age, peripapillary retinal nerve fiber layer (RNFL) thickness, and visual acuity, as well as age-matched controls. Retinal segmentation was performed using specific Optical coherence tomography (OCT) software (Carl Zeiss Meditec). Macular segmentation thickness values of the three groups were compared by one-way analysis of variance with Bonferroni post hoc corrections. Results MM were identified in 5/90 (5.6%) patients with LHON and 3/58 (5.2%) with DOA. The INL was thicker in patients with MON compared to controls regardless of the presence of MM [133.1±7μm vs 122.3±9μm in MM patients (p<0.01) and 128.5±8μm vs. 122.3±9μm in no-MM patients (p<0.05)], however the outer nuclear layer (ONL) was thicker in patients with MM (101.4±1mμ) compared to patients without MM [77.5±8mμ (p<0.001)] and controls [78.4±7mμ (p<0.001)]. ONL thickness did not significantly differ between patients without MM and controls. Conclusion The prevalence of MM in MON is low (5-6%), but associated with ONL thickening. We speculate that in MON patients with MM, vitreo-retinal traction contributes to the thickening of ONL as well as to the production of cystic spaces. PMID:26047507

  12. Effects of the Thickness of Niobium Surface Oxide Layers on Field Emission

    SciTech Connect

    A.T. Wu, S. Jin, J.D. Mammosser, R.A. Rimmer, X.Y. Lu, K. Zhao

    2011-09-01

    Field emission on the inner surfaces of niobium superconducting radio frequency cavities is still one of the major obstacles for reaching high accelerating gradients for SRF community. Our previous experimental results* seemed to imply that the threshold of field emission was related to the thickness of Nb surface oxide layers. In this contribution, a more detailed study on the influences of the surface oxide layers on the field emission on Nb surfaces will be reported. By anodization technique, the thickness of the surface pentoxide layer was artificially fabricated from 3 nm up to 460 nm. A home-made scanning field emission microscope was employed to perform the scans on the surfaces. Emitters were characterized using a scanning electron microscope together with an energy dispersive x-ray analyzer. The SFEM experimental results were analyzed in terms of surface morphology and oxide thickness of Nb samples and chemical composition and geographic shape of the emitters. A model based on the classic electromagnetic theory was developed trying to understand the experimental results. Possibly implications for Nb SRF cavity applications from this study will be discussed.

  13. The roles of buffer layer thickness on the properties of the ZnO epitaxial films

    NASA Astrophysics Data System (ADS)

    Tang, Kun; Huang, Shimin; Gu, Shulin; Zhu, Shunming; Ye, Jiandong; Xu, Zhonghua; Zheng, Youdou

    2016-12-01

    In this article, the authors have investigated the optimization of the buffer thickness for obtaining high-quality ZnO epi-films on sapphire substrates. The growth mechanism of the buffers with different thickness has been clearly revealed, including the initial nucleation and vertical growth, the subsequent lateral growth with small grain coalescence, and the final vertical growth along the existing larger grains. Overall, the quality of the buffer improves with increasing thickness except the deformed surface morphology. However, by a full-scale evaluation of the properties for the epi-layers, the quality of the epi-film is briefly determined by the surface morphology of the buffer, rather than the structural, optical, or electrical properties of it. The best quality epi-layer has been grown on the buffer with a smooth surface and well-coalescent grains. Meanwhile, due to the huge lattice mismatch between sapphire and ZnO, dislocations are inevitably formed during the growth of buffers. More importantly, as the film grows thicker, the dislocations may attracting other smaller dislocations and defects to reduce the total line energy and thus result in the formation of V-shape defects, which are connected with the bottom of the threading dislocations in the buffers. The V-defects appear as deep and large hexagonal pits from top view and they may act as electron traps which would affect the free carrier concentration of the epi-layers.

  14. Macular Ganglion Cell Inner Plexiform Layer Thickness in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects

    PubMed Central

    Zhang, Chunwei; Tatham, Andrew J.; Abe, Ricardo Y.; Hammel, Na’ama; Belghith, Akram; Weinreb, Robert N.; Medeiros, Felipe A.; Liebmann, Jeffrey M.; Girkin, Christopher A.; Zangwill, Linda M.

    2016-01-01

    Purpose To investigate macular ganglion cell–inner plexiform layer (mGCIPL) thickness in glaucomatous eyes with visible localized retinal nerve fiber layer (RNFL) defects on stereophotographs. Methods 112 healthy and 149 glaucomatous eyes from the Diagnostic Innovations in Glaucoma Study (DIGS) and the African Descent and Glaucoma Evaluation Study (ADAGES) subjects had standard automated perimetry (SAP), optical coherence tomography (OCT) imaging of the macula and optic nerve head, and stereoscopic optic disc photography. Masked observers identified localized RNFL defects by grading of stereophotographs. Result 47 eyes had visible localized RNFL defects on stereophotographs. Eyes with visible localized RNFL defects had significantly thinner mGCIPL thickness compared to healthy eyes (68.3 ± 11.4 μm versus 79.2 ± 6.6 μm respectively, P<0.001) and similar mGCIPL thickness to glaucomatous eyes without localized RNFL defects (68.6 ± 11.2 μm, P = 1.000). The average mGCIPL thickness in eyes with RNFL defects was 14% less than similarly aged healthy controls. For 29 eyes with a visible RNFL defect in just one hemiretina (superior or inferior) mGCIPL was thinnest in the same hemiretina in 26 eyes (90%). Eyes with inferior-temporal RNFL defects also had significantly thinner inferior-temporal mGCIPL (P<0.001) and inferior mGCIPL (P = 0.030) compared to glaucomatous eyes without a visible RNFL defect. Conclusion The current study indicates that presence of a localized RNFL defect is likely to indicate significant macular damage, particularly in the region of the macular that topographically corresponds to the location of the RNFL defect. PMID:27537107

  15. To determine ice layer thickness of Europa by high energy neutrino

    NASA Astrophysics Data System (ADS)

    Shoji, D.; Kurita, K.; Tanaka, H. K.

    2010-12-01

    Europa, the second closest Galilean satellite is one of the targets which are suspected to have an internal ocean. Detection and characterization of the internal ocean is one of the main subjects for Europa orbiter exploration. Although the gravitational data has shown the thickness of the surface H2O layer of 80-170km[1], it can not determine the phase of H2O. The variations in the magnetic field associated with the induced current in the internal ocean can determine the thickness of the layer of ice if satellite's orbits satisfy the required conditions. Observations of tidal amplitude forced by Jupiter can also resolve the thickness of the surface lithosphere[2]. At moment because of the lack of observational constraints there exist two contrasting models:thick ice layer model and thin model. Here we propose new method to detect the ocean directly based on the radiation by high energy neutrino interacted with matter. Schaefer et al[3] have proposed a similar method to determine ice layer thickness. We will focus on the detection of internal ocean for Europa and present the method is suitable for actual situations of Europa exploration by numerical simulations. Neutrino is famous for its traveling at long distance without any interaction with matter. When high energy neutrinos traverse in Europa hadronic showers are produced by the weak interaction with the nucleons that makes the body of Europa. These hadronic showers induces excess electrons. Because of these excess electrons, Cherenkov photons are emitted. When this radiation occurs in the ice layer, radiations whose wave length is over 10cm should be coherent because the scale of the shower becomes small (a few cm) in the ice, which is called as Askaryan effect[3]. Thus, the intensity of the radiation whose frequency is a few GHz should be enhanced. Since ice has a much longer attenuation length than water, the radiations which occur in the surface ice layer could be detected by the antenna outside Europa but

  16. Enhancing cell-free layer thickness by bypass channels in a wall.

    PubMed

    Saadatmand, M; Shimogonya, Y; Yamaguchi, T; Ishikawa, T

    2016-07-26

    When blood flows near a wall, red blood cells (RBCs) drift away from the wall and a cell-free layer (CFL) is formed adjacent to the wall. Controlling the CFL thickness is important for preventing adhesion of cells in the design of biomedical devices. In this study, a novel wall configuration with stenoses and bypass channels is proposed to increase the CFL thickness. We found that the presence of bypass channels modified the spatial distribution of cells and substantially increased the CFL downstream of the stenosis. A single-bypass geometry with 5% hematocrit (Hct) blood flow showed a 1.7μm increase in CFL thickness compared to without the bypass. In the case of three bypass channels, a 3μm increase in CFL thickness was observed. The CFL enhancement was observed up to 10% Hct, but no significant enhancement of CFL was indicated for 20% Hct blood flow. The mechanism of the CFL enhancement was investigated using a numerical simulation of the flow field. The results showed that the distance between each streamline and the corner of the stenosis compared with size of RBC was important parameter in regulating CFL thickness. These results show the potential of the proposed mechanism to prevent adhesion of cells to biomedical devices.

  17. Polarization-insensitive wide-angle multiband metamaterial absorber with a double-layer modified electric ring resonator array

    NASA Astrophysics Data System (ADS)

    Li, Wangchang; Zhou, Xiang; Ying, Yao; Qiao, Xiaojing; Qin, Faxiang; Li, Qian; Che, Shenglei

    2015-06-01

    In this letter, we report the design, demonstration and discussion of a multi- and broad- band metamaterial absorber (MMA) with wide angle polarization insensitive at microwave region. The MMA consisting of double layered electric ring resonator (ERR) with four fold rotational symmetry structure is used to realize a desirable absorption. Strong triple absorption peaks in 2˜8 GHz and broadband microwave absorption in 10˜18 GHz are demonstrated. The absorption can be reached as high as 0.73, 0.73 and 0.94 at 4.41, 5.15, 6.37 GHz, respectively. The multiband absorbing features originate from the synergetic effects of dipole resonance and Fabry-Pérot interference between two or three metasurfaces. This design is of high practical for constructing broad band and multiband absorber for electromagnetic intereference/compatibility (EMI/EMC) applications.

  18. Plasma expander viscosity effects on red cell-free layer thickness after moderate hemodilution.

    PubMed

    Yalcin, Ozlem; Wang, Qi; Johnson, Paul C; Palmer, Andre F; Cabrales, Pedro

    2011-01-01

    The objective of the study was to investigate the effects of plasma viscosity after hemodilution on the thickness of the erythrocyte cell free layer (CFL) and on the interface between the flowing column of erythrocytes and the vascular endothelium. The erythrocyte CFL thickness was measured in the rat cremaster muscle preparation. Plasma viscosity was modified in an isovolemic hemodilution, in which the systemic hematocrit (Hctsys) was lowered to 30%. The plasma expanders (PE) of similar nature and different viscosities were generated by glutaraldehyde polymerization of human serum albumin (HSA) at various molar ratios glutaraldehyde to HSA: (i) unpolymerized HSA; (ii) PolyHSA24:1, molar ratio = 24 and (iii) PolyHSA60:1, molar ratio = 60. The HSA viscosities determined at 200 s(-1) were 1.1, 4.2 and 6.0 dyn x cm(-2), respectively. CFL thickness, vessel diameter and blood flow velocity were measured, while volumetric flow, shear rate and stress were calculated. Hemodilution with PolyHSA60:1 increased plasma viscosity and the blood showed marked shear thinning behavior. CFL thickness decreased as plasma viscosity increased after hemodilution; thus the CFL thickness with HSA and PolyHSA24:1 increased compared to baseline. Conversely, the CFL thickness of PolyHSA60:1 was not different from baseline. Blood flow increased with both PolyHSA's compared to baseline. Wall shear rate and shear stress increased for PolyHSA60:1 compared to HSA and PolyHSA24:1, respectively. In conclusion, PE viscosity determined plasma viscosity after hemodilution and affected erythrocyte column hydrodynamics, changing the velocity profile, CFL thickness, and wall shear stress. This study relates the perfusion caused by PolyHSA60:1 to hemodynamic changes induced by the rheological properties of blood diluted with PolyHSA60:1.

  19. Field electron emission of layered Bi2Se3 nanosheets with atom-thick sharp edges

    NASA Astrophysics Data System (ADS)

    Huang, Huihui; Li, Yuan; Li, Qi; Li, Borui; Song, Zengcai; Huang, Wenxiao; Zhao, Chujun; Zhang, Han; Wen, Shuangchun; Carroll, David; Fang, Guojia

    2014-06-01

    Field electron emission properties of solution processed few-layer Bi2Se3 nanosheets are studied for the first time, which exhibit a low turn-on field of 2.3 V μm-1, a high field enhancement factor of up to 6860 and good field emission stability. This performance is better than that of the as reported layered MoS2f sheets and is comparable to that of single layer graphene films. The efficient field emission behaviours are found to be not only attributed to their lower work function but also related to their numerous sharp edges or protrusion decorated structure based on our simulation results. Besides, the contribution of possible two-dimensional electron gas surface states of atom-thick layered Bi2Se3 nanosheets is discussed in this paper. We anticipate that these solution processed layered Bi2Se3 nanosheets have great potential as robust high-performance vertical structure electron emitters for future light weight and highly flexible vacuum micro/nano-electronic device applications.Field electron emission properties of solution processed few-layer Bi2Se3 nanosheets are studied for the first time, which exhibit a low turn-on field of 2.3 V μm-1, a high field enhancement factor of up to 6860 and good field emission stability. This performance is better than that of the as reported layered MoS2f sheets and is comparable to that of single layer graphene films. The efficient field emission behaviours are found to be not only attributed to their lower work function but also related to their numerous sharp edges or protrusion decorated structure based on our simulation results. Besides, the contribution of possible two-dimensional electron gas surface states of atom-thick layered Bi2Se3 nanosheets is discussed in this paper. We anticipate that these solution processed layered Bi2Se3 nanosheets have great potential as robust high-performance vertical structure electron emitters for future light weight and highly flexible vacuum micro/nano-electronic device applications

  20. Synthesis of CoFe/Al2O3 composite nanoparticles as the impedance matching layer of wideband multilayer absorber

    NASA Astrophysics Data System (ADS)

    Zhen, L.; Gong, Y. X.; Jiang, J. T.; Xu, C. Y.; Shao, W. Z.; Liu, P.; Tang, J.

    2011-04-01

    CoFe/Al2O3 composite nanoparticles were successfully prepared by hydrogen-thermally reducing cobalt aluminum ferrite. Compared with CoFe alloy nanoparticles, the permeability of CoFe/Al2O3 composite nanoparticles was remarkably enhanced and an improved impedance characteristic was achieved due to the introduction of insulated Al2O3. A multilayer absorber with CoFe/Al2O3 composite nanoparticles as the impedance matching layer and CoFe nanoflake as the dissipation layer was designed by using genetic algorithm, in which an ultrawide operation frequency bandwidth over 2.5-18 GHz was obtained. The microwave absorption performance in both normal and oblique incident case was evaluated by using electromagnetic simulator. The backward radar cross-section (RCS) was decreased at least 10 dB over a wide frequency range by covering the multilayer absorber on the surface of perfect electrical conductive plate.

  1. Investigations into alterntive substrate, absorber, and buffer layer processing for Cu(In,Ga)Se{sub 2}-based solar cells

    SciTech Connect

    Tuttle, J.R.; Berens, T.A.; Keane, J.

    1996-05-01

    High-performance Cu(In,Ga)Se{sub 2}(CIGS)-based solar cells are presently fabricated within a narrow range of processing options. In this contribution, alternative substrate, absorber, and buffer layer processing is considered. Cell performance varies considerably when alternative substrates are employed. These variations are narrowed with the addition of Na via a Na{sub 2}S compound. Sputtered and electrodeposited CIGS precursors and completed absorbers show promise as alternatives to evaporation. A recrystallization process is required to improve their quality. (In,Ga){sub y}Se buffer layers contribute to cell performance above 10. Further improvements in these alternatives will lead to combined cell performance greater than 10% in the near term.

  2. Angular distributions of absorbed dose of Bremsstrahlung and secondary electrons induced by 18-, 28- and 38-MeV electron beams in thick targets.

    PubMed

    Takada, Masashi; Kosako, Kazuaki; Oishi, Koji; Nakamura, Takashi; Sato, Kouichi; Kamiyama, Takashi; Kiyanagi, Yoshiaki

    2013-03-01

    Angular distributions of absorbed dose of Bremsstrahlung photons and secondary electrons at a wide range of emission angles from 0 to 135°, were experimentally obtained using an ion chamber with a 0.6 cm(3) air volume covered with or without a build-up cap. The Bremsstrahlung photons and electrons were produced by 18-, 28- and 38-MeV electron beams bombarding tungsten, copper, aluminium and carbon targets. The absorbed doses were also calculated from simulated photon and electron energy spectra by multiplying simulated response functions of the ion chambers, simulated with the MCNPX code. Calculated-to-experimental (C/E) dose ratios obtained are from 0.70 to 1.57 for high-Z targets of W and Cu, from 15 to 135° and the C/E range from 0.6 to 1.4 at 0°; however, the values of C/E for low-Z targets of Al and C are from 0.5 to 1.8 from 0 to 135°. Angular distributions at the forward angles decrease with increasing angles; on the other hand, the angular distributions at the backward angles depend on the target species. The dependences of absorbed doses on electron energy and target thickness were compared between the measured and simulated results. The attenuation profiles of absorbed doses of Bremsstrahlung beams at 0, 30 and 135° were also measured.

  3. Impact of layer thickness and well orientation on caprock integrity for geologic carbon storage

    DOE PAGES

    Newell, P.; Martinez, M. J.; Eichhubl, P.

    2016-07-29

    Economic feasibility of geologic carbon storage demands sustaining large storage rates without damaging caprock seals. Reactivation of pre-existing or newly formed fractures may provide a leakage pathway across caprock layers. In this paper, we apply an equivalent continuum approach within a finite element framework to model the fluid-pressure-induced reactivation of pre-existing fractures within the caprock, during high-rate injection of super-critical CO2 into a brine-saturated reservoir in a hypothetical system, using realistic geomechanical and fluid properties. We investigate the impact of reservoir to caprock layer thickness, wellbore orientation, and injection rate on overall performance of the system with respect to caprockmore » failure and leakage. We find that vertical wells result in locally higher reservoir pressures relative to horizontal injection wells for the same injection rate, with high pressure inducing caprock leakage along reactivated opening-mode fractures in the caprock. After prolonged injection, leakage along reactivated fractures in the caprock is always higher for vertical than horizontal injection wells. Furthermore, we find that low ratios of reservoir to caprock thickness favor high excess pressure and thus fracture reactivation in the caprock. Finally, injection into thick reservoir units thus lowers the risk associated with CO2 leakage.« less

  4. Weakly nonlinear Rayleigh-Taylor instability of a finite-thickness fluid layer

    SciTech Connect

    Wang, L. F. Ye, W. H. Liu, Jie; He, X. T.; Guo, H. Y.; Wu, J. F. Zhang, W. Y.

    2014-12-15

    A weakly nonlinear (WN) model has been developed for the Rayleigh-Taylor instability of a finite-thickness incompressible fluid layer (slab). We derive the coupling evolution equations for perturbations on the (upper) “linearly stable” and (lower) “linearly unstable” interfaces of the slab. Expressions of temporal evolutions of the amplitudes of the perturbation first three harmonics on the upper and lower interfaces are obtained. The classical feedthrough (interface coupling) solution obtained by Taylor [Proc. R. Soc. London A 201, 192 (1950)] is readily recovered by the first-order results. Our third-order model can depict the WN perturbation growth and the saturation of linear (exponential) growth of the perturbation fundamental mode on both interfaces. The dependence of the WN perturbation growth and the slab distortion on the normalized layer thickness (kd) is analytically investigated via the third-order solutions. Comparison is made with Jacobs-Catton's formula [J. W. Jacobs and I. Catton, J. Fluid Mech. 187, 329 (1988)] of the position of the “linearly unstable” interface. Using a reduced formula, the saturation amplitude of linear growth of the perturbation fundamental mode is studied. It is found that the finite-thickness effects play a dominant role in the WN evolution of the slab, especially when kd < 1. Thus, it should be included in applications where the interface coupling effects are important, such as inertial confinement fusion implosions and supernova explosions.

  5. Weakly nonlinear Rayleigh-Taylor instability of a finite-thickness fluid layer

    NASA Astrophysics Data System (ADS)

    Wang, L. F.; Guo, H. Y.; Wu, J. F.; Ye, W. H.; Liu, Jie; Zhang, W. Y.; He, X. T.

    2014-12-01

    A weakly nonlinear (WN) model has been developed for the Rayleigh-Taylor instability of a finite-thickness incompressible fluid layer (slab). We derive the coupling evolution equations for perturbations on the (upper) "linearly stable" and (lower) "linearly unstable" interfaces of the slab. Expressions of temporal evolutions of the amplitudes of the perturbation first three harmonics on the upper and lower interfaces are obtained. The classical feedthrough (interface coupling) solution obtained by Taylor [Proc. R. Soc. London A 201, 192 (1950)] is readily recovered by the first-order results. Our third-order model can depict the WN perturbation growth and the saturation of linear (exponential) growth of the perturbation fundamental mode on both interfaces. The dependence of the WN perturbation growth and the slab distortion on the normalized layer thickness (kd) is analytically investigated via the third-order solutions. Comparison is made with Jacobs-Catton's formula [J. W. Jacobs and I. Catton, J. Fluid Mech. 187, 329 (1988)] of the position of the "linearly unstable" interface. Using a reduced formula, the saturation amplitude of linear growth of the perturbation fundamental mode is studied. It is found that the finite-thickness effects play a dominant role in the WN evolution of the slab, especially when kd < 1. Thus, it should be included in applications where the interface coupling effects are important, such as inertial confinement fusion implosions and supernova explosions.

  6. Facile synthesis of few-layer graphene with a controllable thickness using rapid thermal annealing.

    PubMed

    Chu, Jae Hwan; Kwak, Jinsung; Kwon, Tae-Yang; Park, Soon-Dong; Go, Heungseok; Kim, Sung Youb; Park, Kibog; Kang, Seoktae; Kwon, Soon-Yong

    2012-03-01

    Few-layer graphene films with a controllable thickness were grown on a nickel surface by rapid thermal annealing (RTA) under vacuum. The instability of nickel films in air facilitates the spontaneous formation of ultrathin (<2-3 nm) carbon- and oxygen-containing compounds on a nickel surface; thus, the high-temperature annealing of the nickel samples without the introduction of intentional carbon-containing precursors results in the formation of graphene films. From annealing temperature and ambient studies during RTA, it was found that the evaporation of oxygen atoms from the surface is the dominant factor affecting the formation of graphene films. The thickness of the graphene layers is strongly dependent on the RTA temperature and time, and the resulting films have a limited thickness (<2 nm), even for an extended RTA time. The transferred films have a low sheet resistance of ~0.9 ± 0.4 kΩ/sq, with ~94% ± 2% optical transparency, making them useful for applications as flexible transparent conductors.

  7. Impact of layer thickness and well orientation on caprock integrity for geologic carbon storage

    SciTech Connect

    Newell, P.; Martinez, M. J.; Eichhubl, P.

    2016-07-29

    Economic feasibility of geologic carbon storage demands sustaining large storage rates without damaging caprock seals. Reactivation of pre-existing or newly formed fractures may provide a leakage pathway across caprock layers. In this paper, we apply an equivalent continuum approach within a finite element framework to model the fluid-pressure-induced reactivation of pre-existing fractures within the caprock, during high-rate injection of super-critical CO2 into a brine-saturated reservoir in a hypothetical system, using realistic geomechanical and fluid properties. We investigate the impact of reservoir to caprock layer thickness, wellbore orientation, and injection rate on overall performance of the system with respect to caprock failure and leakage. We find that vertical wells result in locally higher reservoir pressures relative to horizontal injection wells for the same injection rate, with high pressure inducing caprock leakage along reactivated opening-mode fractures in the caprock. After prolonged injection, leakage along reactivated fractures in the caprock is always higher for vertical than horizontal injection wells. Furthermore, we find that low ratios of reservoir to caprock thickness favor high excess pressure and thus fracture reactivation in the caprock. Finally, injection into thick reservoir units thus lowers the risk associated with CO2 leakage.

  8. Decreased retinal nerve fiber layer thickness in patients with obstructive sleep apnea syndrome

    PubMed Central

    Sun, Cheng-Lin; Zhou, Li-Xiao; Dang, Yalong; Huo, Yin-Ping; Shi, Lei; Chang, Yong-Jie

    2016-01-01

    Abstract Objective: To investigate the changes of retinal nerve fiber layer (RNFL) thickness in obstructive sleep apnea syndrome (OSAS) patients. Methods: Relevant studies were selected from 3 major literature databases (PubMed, Cochrane Library, and EMBASE) without language restriction. Main inclusion criteria is that a case-control study in which RNFL thickness was measured by a commercial available optical coherence tomography (OCT) in OSAS patients. Meta-analysis was performed using STATA 12.0 software. Efficacy estimates were evaluated by weighted mean difference with corresponding 95% confidence intervals (CIs). Primary outcome evaluations were: the average changes of RNFL thickness in total OSAS patients, subgroup analysis of RNFL thickness changes in patients of different OSAS stages, and subgroup analysis of 4-quadrant RNFL thickness changes in total OSAS patients. Results: Of the initial 327 literatures, 8 case-control studies with 763 eyes of OSA patients and 474 eyes of healthy controls were included (NOS scores ≥6). For the people of total OSAS, there had an average 2.92 μm decreased RNFL thickness compared with controls (95% CI: −4.61 to −1.24, P = 0.001). For subgroup analysis of OSAS in different stages, the average changes of RNFL thickness in mild, moderate, severe, and moderate to severe OSAS were 2.05 (95% CI: −4.40 to 0.30, P = 0.088), 2.32 (95% CI: −5.04 to 0.40, P = 0.094), 4.21 (95% CI: −8.36 to −0.06, P = 0.047), and 4.02 (95% CI: −7.65 to −0.40, P = 0.03), respectively. For subgroup analysis of 4-quadrant, the average changes of RNFL thickness in Superior, Nasal, Inferior, and Temporal quadrant were 2.43 (95% CI: −4.28 to −0.57, P = 0.01), 1.41 (95% CI: −3.33 to 0.51, P = 0.151), 3.75 (95% CI: −6.92 to −0.59, P = 0.02), and 0.98 (95% CI: −2.49 to 0.53, P = 0.203), respectively. Conclusion: Our study suggests that RNFL thickness in OSAS patients is much thinner than

  9. Growth of thick GaN layers on laser-processed sapphire substrate by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Koyama, Koji; Aida, Hideo; Kim, Seong-Woo; Ikejiri, Kenjiro; Doi, Toshiro; Yamazaki, Tsutomu

    2014-10-01

    A 600 μm thick GaN layer was successfully grown by hydride vapor phase epitaxy by replacing the standard sapphire substrate with that processed by a focused laser beam within the substrate. The effects of the laser processing on the curvature and cracking of the GaN layer were investigated. Microscopic observations of the interior of the thick GaN layer revealed that the laser-processed substrate suppressed the generation of microcracks in the GaN layer. In addition, the laser processing was also found to reduce the change in the curvature during the GaN layer growth in comparison to that on the standard substrate. It is shown that the overlapping microcracks observed in the GaN layer on the standard sapphire substrate lead to serious cracking after thick GaN layer growth.

  10. Electrocaloric properties of ferroelectric-paraelectric superlattices controlled by the thickness of paraelectric layer in a wide temperature range

    SciTech Connect

    Ma, D. C.; Lin, S. P.; Chen, W. J.; Zheng, Yue Xiong, W. M.; Wang, Biao

    2014-10-15

    As functions of the paraelectric layer thickness, misfit strain and temperature, the electrocaloric properties of ferroelectric-paraelectric superlattices are investigated using a time-dependent Ginzburg-Landau thermodynamic model. Ferroelectric phase transition driven by the relative thickness of the superlattice is found to dramatically impact the electrocaloric response. Near the phase transition temperature, the magnitude of the electrocaloric effect is maximized and shifted to lower temperatures by increasing the relative thickness of paraelectric layer. Theoretical calculations also imply that the electrocaloric effect of the superlattices depends not only on the relative thickness of paraelectric layer but also on misfit strain. Furthermore, control of the relative thickness of paraelectric layer and the misfit strain can change availably both the magnitude and the temperature sensitivity of the electrocaloric effect, which suggests that ferroelectric-paraelectric superlattices may be promising candidates for use in cooling devices in a wide temperature range.

  11. Thickness-dependent electron mobility of single and few-layer MoS2 thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Ji Heon; Kim, Tae Ho; Lee, Hyunjea; Park, Young Ran; Choi, Woong; Lee, Cheol Jin

    2016-06-01

    We investigated the dependence of electron mobility on the thickness of MoS2 nanosheets by fabricating bottom-gate single and few-layer MoS2 thin-film transistors with SiO2 gate dielectrics and Au electrodes. All the fabricated MoS2 transistors showed on/off-current ratio of ˜107 and saturated output characteristics without high-k capping layers. As the MoS2 thickness increased from 1 to 6 layers, the field-effect mobility of the fabricated MoS2 transistors increased from ˜10 to ˜18 cm2V-1s-1. The increased subthreshold swing of the fabricated transistors with MoS2 thickness suggests that the increase of MoS2 mobility with thickness may be related to the dependence of the contact resistance and the dielectric constant of MoS2 layer on its thickness.

  12. Retinal nerve fiber layer thickness in prematurity is correlated with stage of retinopathy of prematurity

    PubMed Central

    Park, K-A; Oh, S Y

    2015-01-01

    Purpose To compare retinal nerve fiber layer (RNFL) thickness profiles between preterm and full-term children and to investigate factors affecting the RNFL distribution in preterm children. Methods We performed Spectral domain optical coherence tomography (SD-OCT) peripapillary RNFL circular scan centered on the optic disc in 50 premature and 58 full-term children. RNFL thickness profiles were compared between preterm and full-term children using a linear regression model. Among preterm patients in this study, 20 patients previously received laser treatment for severe retinopathy of prematurity (ROP). Results Global average, nasal, and superior disc RNFL thickness profiles were significantly smaller in preterm children (92.70±16.57 μm, 56.02±17.04 μm, and 108.74±27.36 μm, respectively) compared with full-term children (101.63±9.21 μm, P=0.006, 69.14±14.15 μm, P<0.001, and superior, 129.11±18.14 μm, P<0.001, respectively). Multivariable analysis revealed that ROP stage was inversely correlated with nasal RNFL thickness (P=0.010). Conclusions Our SD-OCT data demonstrate decreased global average, nasal, and superior disc RNFL thicknesses in preterm children. ROP stage was inversely correlated with nasal RNFL thickness. Further studies are needed to better understand the association between these structural changes and visual functions in preterm children. PMID:26403327

  13. Effect of suction on macular thickness and retinal nerve fiber layer thickness during LASIK used femtosecond laser and Moria M2 microkeratome

    PubMed Central

    Zhang, Jing; Zhou, Yue-Hua

    2015-01-01

    AIM To compare the effect of suction on the macular thickness and retinal nerve fiber layer (RNFL) thickness during laser in situ keratomileusis (LASIK) used Ziemer FEMTO LDV femtosecond laser (Ziemer group) and Moria M2 automated microkeratome (Moria group) for flap creation. METHODS Fourier-domain optical coherence tomography (FD-OCT) was used to measure macular thickness, ganglion cell complex thickness and (RNFL) thickness of 204 eyes of 102 patients with the Ziemer femtosecond laser (102 eyes) and the Moria M2 microkeratome (102 eyes) before surgery and 30min; 1, 3d; 1wk; 1, 3mo; 1y after surgery. RESULTS The average foveal thickness and parafoveal retinal thickness 30min after the surgery were statistically more than that before surgery (Ziemer P<0.001, P=0.003 and Moria P=0.001, P=0.006) and the effect was less in the Ziemer group than that in the Moria group (P all<0.05). The ganglion cell complex thickness was not significantly changed in both groups (P all>0.05). The RNFL thickness was statistically less 30min after surgery in both groups (P=0.014, P<0.001), but the influence was less in Ziemer group than that in Moria group (P=0.038). However, the RNFL thickness had recovered to the preoperative level only 1d after surgery. CONCLUSION The suction of femtosecond laser and mechanical microkeratome led to the increase in macular central fovea thickness and the decrease in RNFL thickness values at the early stage after LASIK. The effect of suction on macular and the RNFL thicknesses in Ziemer group is smaller than that in Moria group. PMID:26309879

  14. Thickness related textural properties of retinal nerve fiber layer in color fundus images.

    PubMed

    Odstrcilik, Jan; Kolar, Radim; Tornow, Ralf-Peter; Jan, Jiri; Budai, Attila; Mayer, Markus; Vodakova, Martina; Laemmer, Robert; Lamos, Martin; Kuna, Zdenek; Gazarek, Jiri; Kubena, Tomas; Cernosek, Pavel; Ronzhina, Marina

    2014-09-01

    Images of ocular fundus are routinely utilized in ophthalmology. Since an examination using fundus camera is relatively fast and cheap procedure, it can be used as a proper diagnostic tool for screening of retinal diseases such as the glaucoma. One of the glaucoma symptoms is progressive atrophy of the retinal nerve fiber layer (RNFL) resulting in variations of the RNFL thickness. Here, we introduce a novel approach to capture these variations using computer-aided analysis of the RNFL textural appearance in standard and easily available color fundus images. The proposed method uses the features based on Gaussian Markov random fields and local binary patterns, together with various regression models for prediction of the RNFL thickness. The approach allows description of the changes in RNFL texture, directly reflecting variations in the RNFL thickness. Evaluation of the method is carried out on 16 normal ("healthy") and 8 glaucomatous eyes. We achieved significant correlation (normals: ρ=0.72±0.14; p≪0.05, glaucomatous: ρ=0.58±0.10; p≪0.05) between values of the model predicted output and the RNFL thickness measured by optical coherence tomography, which is currently regarded as a standard glaucoma assessment device. The evaluation thus revealed good applicability of the proposed approach to measure possible RNFL thinning.

  15. Is Retinal Nerve Fiber Layer Thickness Change Related to Headache Lateralization in Migraine?

    PubMed Central

    Demirci, Seden; Tok, Levent; Tok, Ozlem; Demirci, Serpil; Kutluhan, Süleyman

    2016-01-01

    Purpose To evaluate retinal nerve fiber layer (RNFL) thickness in migraine patients with unilateral headache. Methods A total of 58 patients diagnosed with migraine headache consistently occurring on the same side and 58 age- and sex-matched healthy subjects were evaluated in this cross-sectional study. RNFL thickness was measured using spectral-domain optical coherence tomography, and the side with the headache was com-pared with the contralateral side as well as with the results of healthy subjects. Results The mean patient age was 33.05 ± 8.83 years, and that of the healthy subjects was 31.44 ± 8.64 years (p = 0.32). The mean duration of disease was 10.29 ± 9.03 years. The average and nasal RNFL thicknesses were significantly thinner on the side of headache and on the contralateral side compared to control eyes (p < 0.05, for all). Thinning was higher on the side of the headache compared to the contralateral side; however, this difference was not statistically significant. Conclusions The RNFL thicknesses were thinner on the side of the headache compared to the contralateral side in the migraine patients with unilateral headache, but this difference was not statistically significant. PMID:27051262

  16. Macular and retinal nerve fiber layer thickness in Japanese measured by Stratus optical coherence tomography.

    PubMed

    Oshitari, Toshiyuki; Hanawa, Katsuhiro; Adachi-Usami, Emiko

    2007-06-01

    The purpose of this study was to determine the thickness of the macula and the retinal nerve fiber layer (RNFL) in Japanese subjects by Stratus optical coherence tomography (OCT), and to compare the findings with the normative data of subjects from the United States of America (USA). Sixty-one eyes from 31 healthy subjects were used for the measurement of the macular thickness, and 60 eyes from 30 healthy subjects were used for the RNFL thickness measurements. The values obtained from the Japanese subjects were compared with the corresponding values in healthy subjects from the USA. The superior, nasal, temporal, and inferior macular sectors and the mean and inferior areas of the RNFL in the Japanese subjects were significantly thicker than the corresponding areas of normal subjects in the USA (272 +/- 13 vs 255 +/- 17 mum, 274 +/- 12 vs 267 +/- 16 mum, 262 +/- 12 vs 251 +/- 13 mum, 268 +/- 13 vs 260 +/- 15 mum; p < 0.0001, 104 +/- 11 vs 100 +/- 12 mum, 134 +/- 20 vs. 126 +/- 18 mum; p = 0.0167, 0.0047, respectively). In conclusion, the significantly thicker macular regions and RNFL in the Japanese indicate not only that there are racial differences in retinal thicknesses but also that the normative values provided by the Stratus OCT should not be used for different races.

  17. Magnetohydrodynamic effects on a charged colloidal sphere with arbitrary double-layer thickness

    NASA Astrophysics Data System (ADS)

    Hsieh, Tzu H.; Keh, Huan J.

    2010-10-01

    An analytical study is presented for the magnetohydrodynamic (MHD) effects on a translating and rotating colloidal sphere in an arbitrary electrolyte solution prescribed with a general flow field and a uniform magnetic field at a steady state. The electric double layer surrounding the charged particle may have an arbitrary thickness relative to the particle radius. Through the use of a simple perturbation method, the Stokes equations modified with an electric force term, including the Lorentz force contribution, are dealt by using a generalized reciprocal theorem. Using the equilibrium double-layer potential distribution from solving the linearized Poisson-Boltzmann equation, we obtain closed-form formulas for the translational and angular velocities of the spherical particle induced by the MHD effects to the leading order. It is found that the MHD effects on the particle movement associated with the translation and rotation of the particle and the ambient fluid are monotonically increasing functions of κa, where κ is the Debye screening parameter and a is the particle radius. Any pure rotational Stokes flow of the electrolyte solution in the presence of the magnetic field exerts no MHD effect on the particle directly in the case of a very thick double layer (κa →0). The MHD effect caused by the pure straining flow of the electrolyte solution can drive the particle to rotate, but it makes no contribution to the translation of the particle.

  18. Interfacial properties of hydrophilized poly(lactic-co-glycolic acid) layers with various thicknesses.

    PubMed

    Gyulai, G; Pénzes, Cs B; Mohai, M; Lohner, T; Petrik, P; Kurunczi, S; Kiss, É

    2011-10-15

    Biodegradable polyesters such as poly(lactic-co-glycolic acid) copolymers (PLGA) are preferred materials for drug carrier systems although their surface hydrophobicity greatly limits their use in controlled drug delivery. PLGA thin films on a solid support blended with PEG-containing compound (Pluronic) were used as model systems to study the interfacial interactions with aqueous media. Degree of surface hydrophilization was assessed by wettability, and X-ray photoelectron spectroscopy (XPS) measurements. Protein adsorption behavior was investigated by in situ spectroscopic ellipsometry. The degree of protein adsorption showed a good correlation with the hydrophilicity, and surface composition. Unexpectedly, the layer thickness was found to have a great impact on the interfacial characteristics of the polymer films in the investigated regime (20-200 nm). Thick layers presented higher hydrophilicity and great resistance to protein adsorption. That special behavior was explained as the result of the swelling of the polymer film combined with the partial dissolution of Pluronic from the layer. This finding might promote the rational design of surface modified biocompatible nanoparticles.

  19. Endoscopic full-thickness resection for gastric submucosal tumors arising from the muscularis propria layer

    PubMed Central

    Huang, Liu-Ye; Cui, Jun; Lin, Shu-Juan; Zhang, Bo; Wu, Cheng-Rong

    2014-01-01

    AIM: To evaluate the efficacy, safety and feasibility of endoscopic full-thickness resection (EFR) for the treatment of gastric submucosal tumors (SMTs) arising from the muscularis propria. METHODS: A total of 35 gastric SMTs arising from the muscularis propria layer were resected by EFR between January 2010 and September 2013. EFR consists of five major steps: injecting normal saline into the submucosa; pre-cutting the mucosal and submucosal layers around the lesion; making a circumferential incision as deep as the muscularis propria around the lesion using endoscopic submucosal dissection and an incision into the serosal layer around the lesion with a Hook knife; a full-thickness resection of the tumor, including the serosal layer with a Hook or IT knife; and closing the gastric wall with metallic clips. RESULTS: Of the 35 gastric SMTs, 14 were located at the fundus, and 21 at the corpus. EFR removed all of the SMTs successfully, and the complete resection rate was 100%. The mean operation time was 90 min (60-155 min), the mean hospitalization time was 6.0 d (4-10 d), and the mean tumor size was 2.8 cm (2.0-4.5 cm). Pathological examination confirmed the presence of gastric stromal tumors in 25 patients, leiomyomas in 7 and gastric autonomous nerve tumors in 2. No gastric bleeding, peritonitis or abdominal abscess occurred after EFR. Postoperative contrast roentgenography on the third day detected no contrast extravasation into the abdominal cavity. The mean follow-up period was 6 mo, with no lesion residue or recurrence noted. CONCLUSION: EFR is efficacious, safe and minimally invasive for patients with gastric SMTs arising from the muscularis propria layer. This technique is able to resect deep gastric lesions while providing precise pathological information about the lesion. With the development of EFR, the indications of endoscopic resection might be extended. PMID:25320536

  20. What is the copper thin film thickness effect on thermal properties of NiTi/Cu bi-layer?

    NASA Astrophysics Data System (ADS)

    Fazeli, Sara; Vahedpour, Morteza; Khatiboleslam Sadrnezhaad, Sayed

    2017-02-01

    Molecular dynamics (MD) simulation was used to study of thermal properties of NiTi/Cu. Embedded atom method (EAM) potentials for describing of inter-atomic interaction and Nose–Hoover thermostat and barostat are employed. The melting of the bi-layers was considered by studying the temperature dependence of the cohesive energy and mean square displacement. To highlight the differences between bi-layers with various copper layer thickness, the effect of copper film thickness on thermal properties containing the cohesive energy, melting point, isobaric heat capacity and latent heat of fusion was estimated. The results show that thermal properties of bi-layer systems are higher than that of their corresponding of pure NiTi. But, these properties of bi-layer systems approximately are independent of copper film thicknesses. The mean square displacement (MSD) results show that, the diffusion coefficients enhance upon increasing of copper film thickness in a linear performance.

  1. In-plane thermal conductivity of sub-20 nm thick suspended mono-crystalline Si layers

    NASA Astrophysics Data System (ADS)

    Ferrando-Villalba, P.; Lopeandia, A. F.; Abad, Ll; Llobet, J.; Molina-Ruiz, M.; Garcia, G.; Gerbolès, M.; Alvarez, F. X.; Goñi, A. R.; Muñoz-Pascual, F. J.; Rodríguez-Viejo, J.

    2014-05-01

    We measure the thermal conductivity of a 17.5-nm-thick single crystalline Si layer by using a suspended structure developed from a silicon-on-insulator wafer, in which the Si layer bridges the suspended platforms. The obtained value of 19 Wm-1 K-1 at room temperature represents a tenfold reduction with respect to bulk Si. This design paves the way for subsequent lateral nanostructuration of the layer with lithographic techniques, to define different geometries such as Si nanowires, nanostrips or phononic grids. As a proof of concept, nanostrips of 0.5 × 10 μm have been defined by focused ion beam (FIB) in the ultrathin Si layer. After the FIB cutting process with Ga ions at 30 kV and 100 pA, the measured thermal conductivity dramatically decreased to 1.7 Wm-1 K-1, indicating that the structure became severely damaged (amorphous). Re-crystallization of the structure was promoted by laser annealing while monitoring the Raman spectra. The thermal conductivity of the layer increased again to a value of 9.5 Wm-1 K-1 at room temperature, below that of the single crystalline material due to phonon scattering at the grain boundaries.

  2. The impact of layer thickness on the performance of additively manufactured lapping tools

    NASA Astrophysics Data System (ADS)

    Williams, Wesley B.

    2015-10-01

    Lower cost additive manufacturing (AM) machines which have emerged in recent years are capable of producing tools, jigs, and fixtures that are useful in optical fabrication. In particular, AM tooling has been shown to be useful in lapping glass workpieces. Various AM machines are distinguished by the processes, materials, build times, and build resolution they provide. This research investigates the impact of varied build resolution (specifically layer resolution) on the lapping performance of tools built using the stereolithographic assembly (SLA) process in 50 μm and 100 μm layer thicknesses with a methacrylate photopolymer resin on a high resolution desktop printer. As with previous work, the lapping tools were shown to remove workpiece material during the lapping process, but the tools themselves also experienced significant wear on the order of 2-3 times the mass loss of the glass workpieces. The tool wear rates for the 100 μm and 50 μm layer tools were comparable, but the 50 μm layer tool was 74% more effective at removing material from the glass workpiece, which is attributed to some abrasive particles being trapped in the coarser surface of the 100 um layer tooling and not being available to interact with the glass workpiece. Considering the tool wear, these additively manufactured tools are most appropriate for prototype tooling where the low cost (<$45) and quick turnaround make them attractive when compared to a machined tool.

  3. In-plane thermal conductivity of sub-20 nm thick suspended mono-crystalline Si layers.

    PubMed

    Ferrando-Villalba, P; Lopeandia, A F; Abad, Ll; Llobet, J; Molina-Ruiz, M; Garcia, G; Gerbolès, M; Alvarez, F X; Goñi, A R; Muñoz-Pascual, F J; Rodríguez-Viejo, J

    2014-05-09

    We measure the thermal conductivity of a 17.5-nm-thick single crystalline Si layer by using a suspended structure developed from a silicon-on-insulator wafer, in which the Si layer bridges the suspended platforms. The obtained value of 19 Wm(-1) K(-1) at room temperature represents a tenfold reduction with respect to bulk Si. This design paves the way for subsequent lateral nanostructuration of the layer with lithographic techniques, to define different geometries such as Si nanowires, nanostrips or phononic grids. As a proof of concept, nanostrips of 0.5 × 10 μm have been defined by focused ion beam (FIB) in the ultrathin Si layer. After the FIB cutting process with Ga ions at 30 kV and 100 pA, the measured thermal conductivity dramatically decreased to 1.7 Wm(-1) K(-1), indicating that the structure became severely damaged (amorphous). Re-crystallization of the structure was promoted by laser annealing while monitoring the Raman spectra. The thermal conductivity of the layer increased again to a value of 9.5 Wm(-1) K(-1) at room temperature, below that of the single crystalline material due to phonon scattering at the grain boundaries.

  4. Thickness-Dependent Dielectric Constant of Few-Layer In₂Se₃ Nanoflakes.

    PubMed

    Wu, Di; Pak, Alexander J; Liu, Yingnan; Zhou, Yu; Wu, Xiaoyu; Zhu, Yihan; Lin, Min; Han, Yu; Ren, Yuan; Peng, Hailin; Tsai, Yu-Hao; Hwang, Gyeong S; Lai, Keji

    2015-12-09

    The dielectric constant or relative permittivity (ε(r)) of a dielectric material, which describes how the net electric field in the medium is reduced with respect to the external field, is a parameter of critical importance for charging and screening in electronic devices. Such a fundamental material property is intimately related to not only the polarizability of individual atoms but also the specific atomic arrangement in the crystal lattice. In this Letter, we present both experimental and theoretical investigations on the dielectric constant of few-layer In2Se3 nanoflakes grown on mica substrates by van der Waals epitaxy. A nondestructive microwave impedance microscope is employed to simultaneously quantify the number of layers and local electrical properties. The measured ε(r) increases monotonically as a function of the thickness and saturates to the bulk value at around 6-8 quintuple layers. The same trend of layer-dependent dielectric constant is also revealed by first-principles calculations. Our results of the dielectric response, being ubiquitously applicable to layered 2D semiconductors, are expected to be significant for this vibrant research field.

  5. Quantification of cell-free layer thickness and cell distribution of blood by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lauri, Janne; Bykov, Alexander; Fabritius, Tapio

    2016-04-01

    A high-speed optical coherence tomography (OCT) with 1-μm axial resolution was applied to assess the thickness of a cell-free layer (CFL) and a spatial distribution of red blood cells (RBC) next to the microchannel wall. The experiments were performed in vitro in a plain glass microchannel with a width of 2 mm and height of 0.2 mm. RBCs were suspended in phosphate buffered saline solution at the hematocrit level of 45%. Flow rates of 0.1 to 0.5 ml/h were used to compensate gravity induced CFL. The results indicate that OCT can be efficiently used for the quantification of CFL thickness and spatial distribution of RBCs in microcirculatory blood flow.

  6. Atmospheric pressure spatial atomic layer deposition web coating with in situ monitoring of film thickness

    SciTech Connect

    Yersak, Alexander S.; Lee, Yung C.; Spencer, Joseph A.; Groner, Markus D.

    2014-01-15

    Spectral reflectometry was implemented as a method for in situ thickness monitoring in a spatial atomic layer deposition (ALD) system. Al{sub 2}O{sub 3} films were grown on a moving polymer web substrate at 100 °C using an atmospheric pressure ALD web coating system, with film growth of 0.11–0.13 nm/cycle. The modular coating head design and the in situ monitoring allowed for the characterization and optimization of the trimethylaluminum and water precursor exposures, purge flows, and web speed. A thickness uniformity of ±2% was achieved across the web. ALD cycle times as low as 76 ms were demonstrated with a web speed of 1 m/s and a vertical gap height of 0.5 mm. This atmospheric pressure ALD system with in situ process control demonstrates the feasibility of low-cost, high throughput roll-to-roll ALD.

  7. Influences and interactions of inundation, peat, and snow on active layer thickness: Modeling Archive

    DOE Data Explorer

    Scott Painter; Ethan Coon; Cathy Wilson; Dylan Harp; Adam Atchley

    2016-04-21

    This Modeling Archive is in support of an NGEE Arctic publication currently in review [4/2016]. The Advanced Terrestrial Simulator (ATS) was used to simulate thermal hydrological conditions across varied environmental conditions for an ensemble of 1D models of Arctic permafrost. The thickness of organic soil is varied from 2 to 40cm, snow depth is varied from approximately 0 to 1.2 meters, water table depth was varied from -51cm below the soil surface to 31 cm above the soil surface. A total of 15,960 ensemble members are included. Data produced includes the third and fourth simulation year: active layer thickness, time of deepest thaw depth, temperature of the unfrozen soil, and unfrozen liquid saturation, for each ensemble member. Input files used to run the ensemble are also included.

  8. Expanded graphite/Novolac phenolic resin composite as single layer electromagnetic wave absorber for x-band applications

    NASA Astrophysics Data System (ADS)

    Gogoi, Jyoti P.; Bhattacharyya, Nidhi Saxena

    2013-01-01

    Expanded graphite/novolac phenolic resin (EG/NPR) composites are developed as dielectric absorbers with 4mm thickness and its microwave absorption ability studied in the frequency range 8.4 to 12.4 GHz. A high reflection loss ~ -43 dB is observed at 12.4 GHz for 5 wt. % EG/NPR composites. With the increase in EG concentration in the composite the reflection loss decreases and the absorption peak shifts towards lower frequency. 7 wt. %, 8 wt. % and 10 wt. % composites shows a 10dB absorption bandwidth of order of 1GHz. Light weight EG/NPR composite shows potential to be used as cost-effective broadband microwave absorber over the X-band.

  9. Charge trapping properties of the HfO2 layer with various thicknesses for charge trap flash memory applications

    NASA Astrophysics Data System (ADS)

    You, Hee-Wook; Cho, Won-Ju

    2010-03-01

    MHOS (metal-HfO2-SiO2-Si) structure capacitors were fabricated to investigate the charge trapping properties of HfO2 layer with various thicknesses for the applications of charge trap flash (CTF) memory devices. Also, the centroid of charge trap in HfO2 layer was extracted by constant current stress method and compared with that of conventional Si3N4 layer. The gate leakage current of MHOS capacitor due to tunneling was significantly reduced by stacking the HfO2 trap layer on thin SiO2 tunnel layer. The MHOS capacitors showed a larger memory window than the MNOS (metal-Si3N4-SiO2-Si) capacitors at the same trap layer thickness, because the HfO2 layer has better charge trapping efficiency than the Si3N4 layer. It is found that ultrathin HfO2 trap layer with a thickness of 2 nm stored almost the same charges with Si3N4 layer with a thickness of 7 nm. Consequently, the application of ultrathin HfO2 to charge storage layer can considerably improve the performance and enhance the high density of CTF memory.

  10. Longitudinal Change of Circumpapillary Retinal Nerve Fiber Layer Thickness in Children with Optic Pathway Gliomas

    PubMed Central

    Avery, Robert A.; Cnaan, Avital; Schuman, Joel S.; Trimboli-Heidler, Carmelina; Chen, Chieh-Li; Packer, Roger J.; Ishikawa, Hiroshi

    2015-01-01

    Purpose To evaluate longitudinal changes in circumpapillary retinal nerve fiber layer (RNFL) thickness, as measured by spectral-domain optical coherence tomography (SD-OCT), in children with optic pathway gliomas. Design Longitudinal cohort study Methods Global and quadrant specific circumpapillary RNFL thickness measures were acquired using either a hand-held during sedation or a table-top SD-OCT in children old enough to cooperate. Vision loss was defined as either a 0.2 logMAR decline in visual acuity, or progression of visual field. Percent change in circumpapillary RNFL thickness in eyes experiencing vision loss was compared to eyes with stable vision. Results Fifty-five eyes completed two-hundred fifty study visits. Ten eyes (18%) from 7 patients experienced a new episode of vision loss during the study and 45 (82%) eyes from 39 patients demonstrated stable vision across study visits. Percent decline of RNFL thickness between the baseline visit and first event of vision loss event was greatest in the superior (−14%) and inferior (−10%) quadrants as well as global average (−13%). Using a threshold of ≥ 10% decline in RNFL, the positive and negative predictive value for vision loss when two or more anatomic sectors were affected was 100% and 94%, respectively. Conclusions Children experiencing vision loss from their optic pathway gliomas frequently demonstrate a ≥ 10% decline of RNFL thickness in one or more anatomic sectors. Global average and the inferior quadrant demonstrated the best positive and negative predictive values. Circumpapillary RNFL is a surrogate marker of vision and could be helpful in making treatment decisions for children with optic pathway gliomas. PMID:26231306

  11. Comparison of retinal nerve fiber layer thickness in patients having pseudo exfoliation syndrome with healthy adults

    PubMed Central

    Yasmeen, Naila; Fatima, Nauroz; Qamar-ul-Islam

    2016-01-01

    Objective: To compare mean retinal nerve fiber layer (RNFL) thickness in patients having pseudo exfoliation (PXF) with normal age matched controls using spectral domain optical coherence tomography (SD-OCT). Methods: This was a case control study conducted at Armed Forces Institute of Ophthalmology (AFIO) Rawalpindi from 12 June 2013 to 12 January 2014. Seventy eyes (Group A - 35 patients with PXF and Group B - 35 healthy age matched subjects) of more than 40 years of age were included in the study. Intraocular pressure (IOP) was measured with Goldmann applanation tonometer (GAT) and peripapillary RNFL thickness was measured in four quadrants with SD-OCT (Topcon 3D OCT-1000 Mark II) in all subjects. Data was analyzed using the SPSS version 14. Results: Mean age of group A (PXF patients) was 65.63 ± 8.47 years and of group B (Healthy subjects) was 64.31 ± 6.51 years (p = 0.470). Both groups were gender matched with male preponderance (p = 0.673). Mean IOP in each group was 13.80 ± 2.59 mm Hg, and 13.49 ± 2.07 mm Hg respectively (p= 0.578). Mean average peripapillary RNFL thickness was 77.46 ± 12.17 µm in group A and 83.96 ± 10.58 µm in group B. Statistically significant differences were detected between two groups for mean average RNFL thickness (p= 0.020) and mean RNFL thickness in inferior quadrant (p=0.014). Conclusion: PXF patients with normal IOP and visual fields have thin RNFL as compared to healthy age matched controls. Therefore routine assessment and follow up of PXF patients with OCT may help in early diagnosis of PXF glaucoma. PMID:28083059

  12. Anatomy and physiology of the thick-tufted layer 5 pyramidal neuron

    PubMed Central

    Ramaswamy, Srikanth; Markram, Henry

    2015-01-01

    The thick-tufted layer 5 (TTL5) pyramidal neuron is one of the most extensively studied neuron types in the mammalian neocortex and has become a benchmark for understanding information processing in excitatory neurons. By virtue of having the widest local axonal and dendritic arborization, the TTL5 neuron encompasses various local neocortical neurons and thereby defines the dimensions of neocortical microcircuitry. The TTL5 neuron integrates input across all neocortical layers and is the principal output pathway funneling information flow to subcortical structures. Several studies over the past decades have investigated the anatomy, physiology, synaptology, and pathophysiology of the TTL5 neuron. This review summarizes key discoveries and identifies potential avenues of research to facilitate an integrated and unifying understanding on the role of a central neuron in the neocortex. PMID:26167146

  13. Resistivity due to weak double layers - A model for auroral arc thickness

    NASA Technical Reports Server (NTRS)

    Prakash, Manju; Lysak, Robert L.

    1992-01-01

    We have calculated the resistivity due to a sequence of fluctuating weak double layers aligned parallel to the ambient magnetic field line. The average response of an electron drifting through a 1D randomly oriented array of WDLs is studied using a test particle approach. The average is taken over the randomly fluctuating values of the electric field associated with the double layers. Based on our calculations, we estimate that a 350 eV electron energy the thickness of the visual auroral arc is about 2.5 km and that of the auroral fine structure as about 250 m when mapped down to the ionosphere. The significance of our calculations is discussed in the context of magnetosphere-ionosphere coupling.

  14. The computation of thick axisymmetric boundary layers and wakes around bodies of revolution

    NASA Astrophysics Data System (ADS)

    Markatos, N. C.

    The paper is concerned with the computational investigation of thick, axisymmetric, turbulent boundary layers and wakes around bodies of revolution. The procedures employed take full account of the influence of longitudinal and transverse surface curvatures and normal pressure gradients on the development of the boundary layer and wake, and also the viscous-inviscid interaction in the tail region of the body. The method makes it possible to calculate the static pressure and the velocity profiles along the body as well as the drag components; and it is applicable to both two- and three-dimensional situations, enabling, for example, the prediction of flows around ships' and submarines' hulls to be made. The application of the fully-elliptic calculation procedure to a body of revolution is described, and comparisons made between predictions and experimental measurements. The calculated axial variation of skin friction and pressure coefficient, and the velocity profiles are shown to be in fair agreement with experimental values.

  15. Properties of PZT thick film made on LTCC substrates with dielectric intermediate layers

    NASA Astrophysics Data System (ADS)

    DÄ browski, Arkadiusz; Golonka, Leszek

    2016-11-01

    Results of experiments on application of various interlayers between LTCC (Low Temperature Cofired Ceramics) substrate and thick-film PZT (Lead Zirconate - Titanate) are described in this work. Thick-film intermediate layers were based on several dielectric materials: TiN, Al2O3, SiC, TiO2, SiC, YSZ, BN. Seven screen printable pastes were prepared on the base of powders of mentioned materials with addition of glass and organic vehicle. The substrates were made of 951 (DuPont), CeramTapeGC (CeramTec) and HL2000 (Heraeus) LTCC tapes. Sandwich type transducers, consisting of barrier layer, gold bottom electrode, PZT layer and silver top electrode were prepared and characterized. Basic piezoelectric parameters - permittivity, effective charge constant (d33(eff)) and remanent polarization were determined. The best properties were obtained for substrates made of 951. In general, interlayers based on TiO2, SiC and Al2O3 improved permittivity and charge constant comparing to bare substrates. For example, for 951 substrate the PZT layer exhibited d33(eff) equal to 160, 215, 250 and 230 pC/N for bare substrate, TiO2 interlayer, SiC interlayer and Al2O3 interlayer, respectively. In case of CeramTape GC substrates determined permittivity was equal to 215, 245, 235 and 275 for bare substrate, TiO2 interlayer, SiC interlayer and Al2O3 interlayer, respectively. In case of TiN and BN materials the parameters were considerably deteriorated.

  16. Changes in Inner and Outer Retinal Layer Thicknesses after Vitrectomy for Idiopathic Macular Hole: Implications for Visual Prognosis

    PubMed Central

    Hashimoto, Yuki; Saito, Wataru; Fujiya, Akio; Yoshizawa, Chikako; Hirooka, Kiriko; Mori, Shohei; Noda, Kousuke; Ishida, Susumu

    2015-01-01

    Purpose To investigate sequential post-operative thickness changes in inner and outer retinal layers in eyes with an idiopathic macular hole (MH). Methods Retrospective case series. Twenty-four eyes of 23 patients who had received pars plana vitrectomy (PPV) for the closure of MH were included in the study. Spectral domain optical coherence tomography C-scan was used to automatically measure the mean thickness of the inner and outer retinal layers pre-operatively and up to 6 months following surgery. The photoreceptor outer segment (PROS) length was measured manually and was used to assess its relationship with best-corrected visual acuity (BCVA). Results Compared with the pre-operative thickness, the inner layers significantly thinned during follow-up (P = 0.02), particularly in the parafoveal (P = 0.01), but not perifoveal, area. The post-operative inner layer thinning ranged from the ganglion cell layer to the inner plexiform layer (P = 0.002), whereas the nerve fiber layer was unaltered. Outer layer thickness was significantly greater post-operatively (P = 0.002), and especially the PROS lengthened not only in the fovea but also in the parafovea (P < 0.001). Six months after surgery, BCVA was significantly correlated exclusively with the elongated foveal PROS (R = 0.42, P = 0.03), but not with any of the other thickness parameters examined. Conclusions Following PPV for MH, retinal inner layers other than the nerve fiber layer thinned, suggestive of subclinical thickening in the inner layers where no cyst was evident pre-operatively. In contrast, retinal outer layer thickness significantly increased, potentially as a result of PROS elongation linking tightly with favorable visual prognosis in MH eyes. PMID:26291526

  17. Peripapillary retinal nerve fiber layer thickness in patients with iron deficiency anemia

    PubMed Central

    Cikmazkara, Ipek; Ugurlu, Seyda Karadeniz

    2016-01-01

    Purpose: To evaluate the effect of iron deficiency anemia (IDA) on peripapillary retinal nerve fiber layer (RNFL) thickness with optical coherence tomography (OCT). Materials and Methods: 102 female patients who had IDA (hemoglobin <12 g/dl, serum transferrin saturation <15%, serum iron <50 μg/dl, and serum ferritin <15 μg/dl) were enrolled in the study. Optic disc and RNFL parameters obtained by Cirrus high-definition OCT 4000 were compared with those of 49 age and sex-matched nonanemic individuals. The time between blood analysis and OCT measurements was 3.14 ± 5.6 (range, 0–28) days in the anemia group, and 3.5 ± 6.7 (range, 0–27) days in the control group (P = 0.76). Results: Average ages of 102 patients and 49 control subjects were 35.76 ± 10.112 (range, 18–66) years, and 36.08 ± 8.416 (range, 19–57) years (P = 0.850), respectively. The average RNFL thickness was 94.67 ± 9.380 in the anemia group, and 100.22 ± 9.12 in the control group (P = 0.001). Temporal, nasal, and lower quadrant average RNFL thicknesses of IDA group were thinner than the control group (P = 0.001, P = 0.013, P = 0.008). Upper quadrant RNFL thicknesses in IDA and control groups were similar. Correlation analysis revealed positive correlation between mean RNFL thickness and hemoglobin (r = 0.273), iron (r = 0.177), ferritin (r = 0.163), and transferrin saturations (r = 0.185), while a negative correlation was found between total iron binding capacity (r = −0.199) and mean RNFL thickness. Conclusions: Peripapillary RNFL thickness measured by OCT is thinner in adult female patients with IDA. It may have a significant influence on the management of many disorders such as glaucoma and neuro-ophthalmological diseases. PMID:27146929

  18. Diagnostic Ability of Retinal Nerve Fiber Layer Thickness Deviation Map for Localized and Diffuse Retinal Nerve Fiber Layer Defects

    PubMed Central

    Shin, Joong Won; Seong, Mincheol; Lee, Jung Wook; Hong, Eun Hee

    2017-01-01

    Purpose. To evaluate the diagnostic ability of the retinal nerve fiber layer (RNFL) deviation map for glaucoma with localized or diffuse RNFL defects. Methods. Eyes of 139 glaucoma patients and 165 healthy subjects were enrolled. All participants were imaged with Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA, USA). A RNFL defect was defined as at least 10 contiguous red (<1% level) superpixels in RNFL deviation map. The area, location, and angular width of RNFL defects were automatically measured. We compared sensitivities, specificities, and area under the receiver operating characteristic curves (AUCs) of RNFL deviation map and circumpapillary RNFL thickness for localized and diffuse RNFL defects. Subgroup analysis was performed according to the severity of glaucoma. Results. For localized defects, the area of RNFL defects (AUC, 0.991; sensitivity, 97%; specificity, 90%) in deviation map showed a higher diagnostic performance (p = 0.002) than the best circumpapillary RNFL parameter (inferior RNFL thickness; AUC, 0.914; sensitivity, 79%; specificity, 92%). For diffuse defects, there was no significant difference between the RNFL deviation map and circumpapillary RNFL parameters. In mild glaucoma with localized defect, RNFL deviation map showed a better diagnostic performance than circumpapillary RNFL measurement. Conclusions. RNFL deviation map is a useful tool for evaluating glaucoma regardless of localized or diffuse defect type and has advantages over circumpapillary RNFL measurement for detecting localized RNFL defects. PMID:28168048

  19. High-efficiency inverted polymer solar cells controlled by the thickness of polyethylenimine ethoxylated (PEIE) interfacial layers.

    PubMed

    Li, Ping; Wang, Gang; Cai, Lun; Ding, Baofu; Zhou, Dachen; Hu, Yi; Zhang, Yujun; Xiang, Jin; Wan, Keming; Chen, Lijia; Alameh, Kamal; Song, Qunliang

    2014-11-21

    In this work, we investigate the effect of the thickness of the polyethylenimine ethoxylated (PEIE) interface layer on the performance of two types of polymer solar cells based on inverted poly(3-hexylthiophene) (P3HT):phenyl C61-butryric acid methyl ester (PCBM) and thieno[3,4-b]thiophene/benzodithiophene (PTB7):[6,6]-phenyl C71-butyric acid methyl ester (PC71BM). Maximum power conversion efficiencies of 4.18% and 7.40% were achieved at a 5.02 nm thick PEIE interface layer, for the above-mentioned solar cell types, respectively. The optimized PEIE layer provides a strong enough dipole for the best charge collection while maintaining charge tunneling ability. Optical transmittance and atomic force microscopy measurements indicate that all PEIE films have the same high transmittance and smooth surface morphology, ruling out the influence of the PEIE layer on these two parameters. The measured external quantum efficiencies for the devices with thick PEIE layers are quite similar to those of the optimized devices, indicating the poor charge collection ability of thick PEIE layers. The relatively low performance of devices with a PEIE layer of thickness less than 5 nm is the result of a weak dipole and partial coverage of the PEIE layer on ITO.

  20. Thickness scaling effect on interfacial barrier and electrical contact to two-dimensional MoS2 layers.

    PubMed

    Li, Song-Lin; Komatsu, Katsuyoshi; Nakaharai, Shu; Lin, Yen-Fu; Yamamoto, Mahito; Duan, Xiangfeng; Tsukagoshi, Kazuhito

    2014-12-23

    Understanding the interfacial electrical properties between metallic electrodes and low-dimensional semiconductors is essential for both fundamental science and practical applications. Here we report the observation of thickness reduction induced crossover of electrical contact at Au/MoS2 interfaces. For MoS2 thicker than 5 layers, the contact resistivity slightly decreases with reducing MoS2 thickness. By contrast, the contact resistivity sharply increases with reducing MoS2 thickness below 5 layers, mainly governed by the quantum confinement effect. We find that the interfacial potential barrier can be finely tailored from 0.3 to 0.6 eV by merely varying MoS2 thickness. A full evolution diagram of energy level alignment is also drawn to elucidate the thickness scaling effect. The finding of tailoring interfacial properties with channel thickness represents a useful approach controlling the metal/semiconductor interfaces which may result in conceptually innovative functionalities.

  1. Strain relaxation of thick (11–22) semipolar InGaN layer for long wavelength nitride-based device

    SciTech Connect

    Kim, Jaehwan; Min, Daehong; Jang, Jongjin; Lee, Kyuseung; Chae, Sooryong; Nam, Okhyun

    2014-10-28

    In this study, the properties of thick stress-relaxed (11–22) semipolar InGaN layers were investigated. Owing to the inclination of growth orientation, misfit dislocations (MDs) occurred at the heterointerface when the strain state of the (11–22) semipolar InGaN layers reached the critical point. We found that unlike InGaN layers based on polar and nonpolar growth orientations, the surface morphologies of the stress-relaxed (11–22) semipolar InGaN layers did not differ from each other and were similar to the morphology of the underlying GaN layer. In addition, misfit strain across the whole InGaN layer was gradually relaxed by MD formation at the heterointerface. To minimize the effect of surface roughness and defects in GaN layers on the InGaN layer, we conducted further investigation on a thick (11–22) semipolar InGaN layer grown on an epitaxial lateral overgrown GaN template. We found that the lateral indium composition across the whole stress-relaxed InGaN layer was almost uniform. Therefore, thick stress-relaxed (11–22) semipolar InGaN layers are suitable candidates for use as underlying layers in long-wavelength devices, as they can be used to control strain accumulation in the heterostructure active region without additional influence of surface roughness.

  2. Validity of the "thin" and "thick" double-layer assumptions to model streaming currents in porous media

    NASA Astrophysics Data System (ADS)

    Leinov, E.; Jackson, M.

    2012-12-01

    Measurements of the streaming potential component of the spontaneous potential have been used to characterize groundwater flow and subsurface hydraulic properties in numerous studies. Streaming potentials in porous media arise from the electrical double layer which forms at solid-fluid interfaces. The solid surfaces typically become electrically charged, in which case an excess of counter-charge accumulates in the adjacent fluid. If the fluid is induced to flow by an external pressure gradient, then some of the excess charge within the diffuse part of the double layer is transported with the flow, giving rise to a streaming current. Divergence of the streaming current density establishes an electrical potential, termed the streaming potential. Within the diffuse layer, the Poisson-Boltzmann equation is typically used to describe the variation in electrical potential with distance from the solid surface. In many subsurface settings, it is reasonable to assume that the thickness of the diffuse layer is small compared to the pore radius. This is the so-called 'thin double layer assumption', which has been invoked by numerous authors to model streaming potentials in porous media. However, a number of recent papers have proposed a different approach, in which the thickness of the diffuse layer is assumed to be large compared to the pore radius. This is the so-called 'thick double layer assumption' in which the excess charge density within the pore is assumed to be constant and independent of distance from the solid surface. The advantage of both the 'thin' and 'thick' double layer assumptions is that calculation of the streaming current is greatly simplified. However, perhaps surprisingly, the conditions for which these assumptions are valid have not been determined quantitatively, yet they have a significant impact on the interpretation of streaming potential measurements in natural systems. We use a simple capillary tubes to model investigate the validity of the thin

  3. Area-Selective Atomic Layer Deposition: Conformal Coating, Subnanometer Thickness Control, and Smart Positioning.

    PubMed

    Fang, Ming; Ho, Johnny C

    2015-09-22

    Transistors have already been made three-dimensional (3D), with device channels (i.e., fins in trigate field-effect transistor (FinFET) technology) that are taller, thinner, and closer together in order to enhance device performance and lower active power consumption. As device scaling continues, these transistors will require more advanced, fabrication-enabling technologies for the conformal deposition of high-κ dielectric layers on their 3D channels with accurate position alignment and thickness control down to the subnanometer scale. Among many competing techniques, area-selective atomic layer deposition (AS-ALD) is a promising method that is well suited to the requirements without the use of complicated, complementary metal-oxide semiconductor (CMOS)-incompatible processes. However, further progress is limited by poor area selectivity for thicker films formed via a higher number of ALD cycles as well as the prolonged processing time. In this issue of ACS Nano, Professor Stacy Bent and her research group demonstrate a straightforward self-correcting ALD approach, combining selective deposition with a postprocess mild chemical etching, which enables selective deposition of dielectric films with thicknesses and processing times at least 10 times larger and 48 times shorter, respectively, than those obtained by conventional AS-ALD processes. These advances present an important technological breakthrough that may drive the AS-ALD technique a step closer toward industrial applications in electronics, catalysis, and photonics, etc. where more efficient device fabrication processes are needed.

  4. Moderately large vibrations of doubly curved shallow open shells composed of thick layers

    NASA Astrophysics Data System (ADS)

    Adam, Christoph

    2007-02-01

    This paper addresses nonlinear flexural vibrations of shallow shells composed of three thick layers with different shear flexibility, which are symmetrically arranged with respect to the middle surface. The considered shell structures of polygonal planform are hard hinged simply supported (i.e. all in-plane rotations and the bending moment vanish) with the edges fully restraint against displacements in any direction. The kinematic field equations are formulated by layerwise application of a first-order shear deformation theory. A modification of Berger's theory is employed to model the nonlinear characteristics of the structural response. The continuity of the transverse shear stress across the interfaces is specified according to Hooke's law, and subsequently the equations of motion of this higher order problem can be derived in analogy to a homogeneous single-layer shear deformable shallow shell. Numerical results of rectangular shallow shells in nonlinear steady-state vibration are presented for various ratios of shell rise to thickness, and non-dimensional load amplitude.

  5. Effect of optic nerve sheath fenestration for idiopathic intracranial hypertension on retinal nerve fiber layer thickness.

    PubMed

    Starks, Victoria; Gilliland, Grant; Vrcek, Ivan; Gilliland, Connor

    2016-01-01

    The objective of the study was to evaluate whether optic nerve sheath fenestration in patients with idiopathic intracranial hypertension was associated with improvement in visual field pattern deviation and optical coherence tomography retinal nerve fiber layer thickness.The records of 13 eyes of 11 patients who underwent optic nerve sheath fenestration were reviewed. The subjects were patients of a clinical practice in Dallas, Texas. Charts were reviewed for pre- and postoperative visual field pattern deviation (PD) and retinal nerve fiber layer thickness (RNFL).PD and RNFL significantly improved after surgery. Average PD preoperatively was 8.51 DB and postoperatively was 4.80 DB (p = 0.0002). Average RNFL preoperatively was 113.63 and postoperatively was 102.70 (p = 0.01). The preoperative PD and RNFL did not correlate strongly.Our results demonstrate that PD and RNFL are improved after optic nerve sheath fenestration. The pre- and postoperative RNFL values were compared to the average RNFL value of healthy optic nerves obtained from the literature. Post-ONSF RNFL values were significantly closer to the normal value than preoperative. RNFL is an objective parameter for monitoring the optic nerve after optic nerve sheath fenestration. This study adds to the evidence that OCT RNFL may be an effective monitoring tool for patients with IIH and that it continues to be a useful parameter after ONSF.

  6. Peripapillary Retinal Nerve Fiber Layer Thickness and the Evolution of Cognitive Performance in an Elderly Population

    PubMed Central

    Méndez-Gómez, Juan Luis; Rougier, Marie-Bénédicte; Tellouck, Laury; Korobelnik, Jean-François; Schweitzer, Cédric; Delyfer, Marie-Noëlle; Amieva, Hélène; Dartigues, Jean-François; Delcourt, Cécile; Helmer, Catherine

    2017-01-01

    Retinal nerve fiber layer (RNFL) thickness is reduced in Alzheimer’s patients. However, whether it is associated with early evolution of cognitive function is unknown. Within 427 participants from the Three-City-Alienor longitudinal population-based cohort, we explored the relationship between peripapillary RNFL thicknesses and the evolution of cognitive performance. RNFL was assessed at baseline by spectral domain optical coherence tomography; cognitive performances were assessed at baseline and at 2 years, with the Mini–Mental State Examination, the Isaacs’ set test, and the Free and Cued Selective Reminding Test (FCSRT). Multivariate linear mixed models were performed. The RNFL was not associated with initial cognitive performance. Nevertheless, a thicker RNFL was significantly associated with a better cognitive evolution over time in the free delayed recall (p = 0.0037) and free + cued delayed recall (p = 0.0043) scores of the FCSRT, particularly in the temporal, superotemporal, and inferotemporal segments. No associations were found with other cognitive tests. The RNFL was associated with changes in scores that assess episodic memory. RNFL thickness could reflect a higher risk of developing cognitive impairment over time. PMID:28373855

  7. Electronic consequences of random layer-thickness fluctuations in AlAs/GaAs superlattices

    NASA Astrophysics Data System (ADS)

    Mäder, Kurt A.; Wang, Lin-Wang; Zunger, Alex

    1995-12-01

    We study the effects of a few types of atomic disorder on the electronic and optical properties of AlAs/GaAs (001) and (111) superlattices: (i) atomic intermixing across the interfaces; (ii) replacing a single monolayer in a superlattice by one containing the opposite atomic type (isoelectronic δ doping); and (iii) random layer-thickness fluctuations in superlattices (SL). Type (i) is an example of lateral disorder, while types (ii) and (iii) are examples of vertical disorder. Using three-dimensional empirical pseudopotential theory and a plane-wave basis, we calculate the band gaps, electronic wave functions, and optical matrix elements for systems containing up to 2000 atoms in the computational unit cell. Spin-orbit interactions are omitted. Computationally much less costly effective-mass calculations are used to evaluate the density of states and eigenstates away from the band edges in vertically disordered SLs. Our main findings are: (i) Chemical intermixing across the interface can significantly shift the SL energy levels and even change the identity (e.g., symmetry) of the conduction-band minimum in AlAs/GaAs SLs; (ii) any amount of thickness fluctuations in SLs leads to band-edge wave-function localization; (iii) these fluctuation-induced bound states will emit photons at energies below the ``intrinsic'' absorption edge (red shift of photoluminescence); (iv) monolayer fluctuations in thick superlattices create a gap level whose energy is pinned at the value produced by a single δ layer with ``wrong'' thickness; (v) (001) AlAs/GaAs SLs with monolayer thickness fluctuations have a direct band gap, while the ideal (001) superlattices are indirect for n<4; (vi) there is no mobility edge for vertical transport in a disordered superlattice, because all the states are localized; however, the density of states retains some of the features of the ordered-superlattice counterpart. We find quantitative agreement with experiments on intentionally disordered SLs [A

  8. Interpretation of Isopycnal Layer Thickness Advection in Terms of Eddy-Topography Interaction

    NASA Astrophysics Data System (ADS)

    Liu, Chuanyu; Koehl, Armin; Stammer, Detlef

    2013-04-01

    Spatially varying amplitude of the eddy isopycnal layer thickness diffusivity Kgm and the layer thickness advection Kgmskew of the modified Gent and McWilliams parameterization are estimated using two different approaches: the adjoint estimation from a global data assimilation system and the inversion calculation according to divergent buoyancy eddy flux-mean buoyancy gradient relation using results from idealized eddy resolving numerical models with various bottom topographies. This work focuses on the properties of Kgmskew. From the adjoint estimation, large Kgmskew values are found along meandering currents and predominantly positive (negative) over the deep ocean and negative (positive) over seamounts in the southern (northern) hemisphere, implying close relation to the 'Neptune effect" parameterization by Holloway in which the eddy induced mean velocity stream function is represented by -fHL, where H is the bottom depth, f the Coriolis parameter and L a length scale. In the inversion calculation, divergent buoyancy eddy fluxes are obtained by removing the rotational components from the total buoyancy eddy fluxes through Helmholtz-Hodge decomposition. Though subject to topographic length scale, the inversed Kgmskew reveals characteristics of both f and H, and interactions with the mean current, inter-confirming the adjoint estimation results. Applying this parameterization for Kgmskew in the general circulation model produces cold domes and anti-cyclonic circulations over seamounts, which reduces common model biases there. By construction, the original thickness advection Kgmskew redistributes potential energy and the original "Neptune effect" parameterization improves potential vorticity conservation, applying the latter into the former as suggested in the present study thus more correctly reproduces the potential vorticity structure over a sloping topography while conserving the total potential energy.

  9. Optical in-situ monitoring system for simultaneous measurement of thickness and curvature of thick layer stacks during hydride vapor phase epitaxy growth of GaN

    NASA Astrophysics Data System (ADS)

    Semmelroth, K.; Berwian, P.; Schröter, C.; Leibiger, G.; Schönleber, M.; Friedrich, J.

    2015-10-01

    For improved real-time process control we integrated a novel optical in-situ monitoring system in a vertical reactor for hydride vapor phase epitaxy (HVPE) growth of gallium nitride (GaN) bulk crystals. The in-situ monitoring system consists of a fiber-optical interferometric sensor in combination with an optimized differential measuring head. The system only needs one small optical path perpendicular to the center of the layer stack typically consisting of sapphire as substrate and GaN. It can handle sample distances up to 1 m without difficulty. The in-situ monitoring system is simultaneously measuring the optical layer thicknesses of the GaN/sapphire layer stack and the absolute change of the distance between the measuring head and the backside of the layer stack. From this data it is possible to calculate the thickness of the growing GaN up to a thickness of about 1000 μm and the absolute change in curvature of the layer stack. The performance of the in-situ monitoring system is shown and discussed based on the measured interference signals recorded during a short-time and a long-time HVPE growth run.

  10. Estimating the Direct Radiative Effect of Absorbing Aerosols Overlying Marine Boundary Layer Clouds in the Southeast Atlantic Using MODIS and CALIOP

    NASA Technical Reports Server (NTRS)

    Meyer, Kerry; Platnick, Steven; Oreopoulos, Lazaros; Lee, Dongmin

    2013-01-01

    Absorbing aerosols such as smoke strongly absorb solar radiation, particularly at ultraviolet and visible/near-infrared (VIS/NIR) wavelengths, and their presence above clouds can have considerable implications. It has been previously shown that they have a positive (i.e., warming) direct aerosol radiative effect (DARE) when overlying bright clouds. Additionally, they can cause biased passive instrument satellite retrievals in techniques that rely on VIS/NIR wavelengths for inferring the cloud optical thickness (COT) and effective radius (re) of underlying clouds, which can in turn yield biased above-cloud DARE estimates. Here we investigate Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical property retrieval biases due to overlying absorbing aerosols observed by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and examine the impact of these biases on above-cloud DARE estimates. The investigation focuses on a region in the southeast Atlantic Ocean during August and September (2006-2011), where smoke from biomass burning in southern Africa overlies persistent marine boundary layer stratocumulus clouds. Adjusting for above-cloud aerosol attenuation yields increases in the regional mean liquid COT (averaged over all ocean-only liquid clouds) by roughly 6%; mean re increases by roughly 2.6%, almost exclusively due to the COT adjustment in the non-orthogonal retrieval space. It is found that these two biases lead to an underestimate of DARE. For liquid cloud Aqua MODIS pixels with CALIOP-observed above-cloud smoke, the regional mean above-cloud radiative forcing efficiency (DARE per unit aerosol optical depth (AOD)) at time of observation (near local noon for Aqua overpass) increases from 50.9Wm(sup-2)AOD(sup-1) to 65.1Wm(sup-2)AOD(sup -1) when using bias-adjusted instead of nonadjusted MODIS cloud retrievals.

  11. Optimal Cu buffer layer thickness for growing epitaxial Co overlayers on Si(111)7 x 7

    SciTech Connect

    Ivanov, Yu. P.; Zotov, A. V.; Ilin, A. I.; Davydenko, A. V.

    2011-10-15

    Using scanning tunneling microscopy, reflection high energy diffraction and magnetic optical Kerr effect measurements, growth mode and the magnetic properties of epitaxial Co films on Si(111) with epitaxial Cu(111) buffer layers of various thicknesses have been studied. The strained 3.5-monolayer-thick Cu/Si(111) film has been found to be an optimal buffer, in which case an almost ideal layer-by-layer like growth of Co is observed up to six Co monolayers, due to a negligible lattice mismatch. The coercivity of Co films grown in this layer-by-layer like fashion has been determined to be about 10 Oe, testifying to the high quality of the formed Co film and Co/Cu interface. Changeover of the Co film growth mode from layer-by-layer like to multilayer has been found to result in the transition of the film magnetic properties from isotropic to markedly uniaxially anisotropic.

  12. Microcavity Laser Based on a Single Molecule Thick High Gain Layer.

    PubMed

    Palatnik, Alexander; Aviv, Hagit; Tischler, Yaakov R

    2017-04-05

    The ability to confine excitons within monolayers has led to fundamental investigations of non-radiative energy transfer, super-radiance, strong light-matter coupling, high-efficiency LEDs, and recently lasers in lateral resonator architectures. Vertical Cavity Surface Emitting Lasers (VCSELs), in which lasing occurs perpendicular to the device plane, are critical for telecommunications and large-scale photonics integration, however strong optical self-absorption and low fluorescence quantum yields have thus far prevented coherent emission from a monolayer microcavity device. Here we show lasing from a monolayer VCSEL using a single molecule thick film of amphiphilic fluorescent dye, assembled via Langmuir-Blodgett deposition, as the gain layer. Threshold was observed when 5% of the molecules were excited (4.4 μJ/cm(2)). At this level of excitation, the optical gain in the monolayer exceeds 1056 cm(-1). High localization of the excitons in the VCSEL gain layer can enhance their collective emission properties with Langmuir-Blodgett deposition presenting a paradigm for engineering the high gain layers on the molecular level.

  13. Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure

    PubMed Central

    Wang, Ben-Xin; Wang, Gui-Zhen; Sang, Tian; Wang, Ling-Ling

    2017-01-01

    This paper reports on a numerical study of the six-band metamaterial absorber composed of two alternating stack of metallic-dielectric layers on top of a continuous metallic plane. Six obvious resonance peaks with high absorption performance (average larger than 99.37%) are realized. The first, third, fifth, and the second, fourth, sixth resonance absorption bands are attributed to the multiple-order responses (i.e., the 1-, 3- and 5-order responses) of the bottom- and top-layer of the structure, respectively, and thus the absorption mechanism of six-band absorber is due to the combination of two sets of the multiple-order resonances of these two layers. Besides, the size changes of the metallic layers have the ability to tune the frequencies of the six-band absorber. Employing the results, we also present a six-band polarization tunable absorber through varying the sizes of the structure in two orthogonal polarization directions. Moreover, nine-band terahertz absorber can be achieved by using a three-layer stacked structure. Simulation results indicate that the absorber possesses nine distinct resonance bands, and average absorptivities of them are larger than 94.03%. The six-band or nine-band absorbers obtained here have potential applications in many optoelectronic and engineering technology areas. PMID:28120897

  14. Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure

    NASA Astrophysics Data System (ADS)

    Wang, Ben-Xin; Wang, Gui-Zhen; Sang, Tian; Wang, Ling-Ling

    2017-01-01

    This paper reports on a numerical study of the six-band metamaterial absorber composed of two alternating stack of metallic-dielectric layers on top of a continuous metallic plane. Six obvious resonance peaks with high absorption performance (average larger than 99.37%) are realized. The first, third, fifth, and the second, fourth, sixth resonance absorption bands are attributed to the multiple-order responses (i.e., the 1-, 3- and 5-order responses) of the bottom- and top-layer of the structure, respectively, and thus the absorption mechanism of six-band absorber is due to the combination of two sets of the multiple-order resonances of these two layers. Besides, the size changes of the metallic layers have the ability to tune the frequencies of the six-band absorber. Employing the results, we also present a six-band polarization tunable absorber through varying the sizes of the structure in two orthogonal polarization directions. Moreover, nine-band terahertz absorber can be achieved by using a three-layer stacked structure. Simulation results indicate that the absorber possesses nine distinct resonance bands, and average absorptivities of them are larger than 94.03%. The six-band or nine-band absorbers obtained here have potential applications in many optoelectronic and engineering technology areas.

  15. Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber.

    PubMed

    Song, Yufeng; Chen, Si; Zhang, Qian; Li, Lei; Zhao, Luming; Zhang, Han; Tang, Dingyuan

    2016-11-14

    We report on the optical saturable absorption of few-layer black phosphorus nanoflakes and demonstrate its application for the generation of vector solitons in an erbium-doped fiber laser. By incorporating the black phosphorus nanoflakes-based saturable absorber (SA) into an all-fiber erbium-doped fiber laser cavity, we are able to obtain passive mode-locking operation with soliton pulses down to ~670 fs. The properties and dynamics of the as-generated vector solitons are experimentally investigated. Our results show that BP nanoflakes could be developed as an effective SA for ultrashort pulse fiber lasers, particularly for the generation of vector soliton pulses in fiber lasers.

  16. Narrowband impedance matching layer for high efficiency thickness mode ultrasonic transducers.

    PubMed

    Toda, Minoru

    2002-03-01

    A new matching layer design concept has been proposed for narrowband continuous wave (CW) devices. Analysis has shown that the mechanical impedance of a resonant-type transducer in thickness mode CW operation does not equal its acoustic impedance rhoVs but roughly equals rhoVs/Q, where p is density, Vs is acoustic velocity, and Q is the mechanical quality factor. The value of rhoVs/Q is much lower than the acoustic impedance of water for any transducer material, including lead zirconium titanate (PZT), single crystals, or polyvinylidene fluoride (PVDF). With this new approach, the impedance of the matching layer must also be between water and pVs/Q, but there are few such practical low impedance materials. To realize equivalent low impedance structure, a novel double layer design is presented: a relatively low impedance material (such as polyethylene or polyurethane) on the inside and a relatively high impedance material (such as polyester or metal) on the outside. A high power CW transducer structure was designed and fabricated with PVDF-TrFE (polyvinylidene fluoride trifluoroethylene) to operate at 1.4 MHz. The basic quarter wavelength resonator structure is 0.7-mm alumina/0.2-mm piezo-polymer/0.25-mm polyester, and the matching section is 0.2-mm polyurethane and 0.25-mm polyester. A maximum power output of 6 to 9 W/cm2 with conversion efficiency of 30 to 35% was observed. For the transducer without matching section, the observed power was 3 to 4 W/cm2. Mason's model analyses (1) predict that the traditional matching layer is for broadband purposes and reduces output power both for PZT and PVDF-TrFE (2); this new matching scheme can be applied to PZT high power transducer. This high efficiency technique has application in various CW systems, such as Doppler sensors, interferometry, phase-sensitive imaging, or high energy focused beam systems.

  17. 1-nm-thick graphene tri-layer as the ultimate copper diffusion barrier

    SciTech Connect

    Nguyen, Ba-Son; Lin, Jen-Fin

    2014-02-24

    We demonstrate the thinnest ever reported Cu diffusion barrier, a 1-nm-thick graphene tri-layer. X-ray diffraction patterns and Raman spectra show that the graphene is thermally stable at up to 750 °C against Cu diffusion. Transmission electron microscopy images show that there was no inter-diffusion in the Cu/graphene/Si structure. Raman analyses indicate that the graphene may have degraded into a nanocrystalline structure at 750 °C. At 800 °C, the perfect carbon structure was damaged, and thus the barrier failed. The results of this study suggest that graphene could be the ultimate Cu interconnect diffusion barrier.

  18. Million year old ice found under meter thick debris layer in Antarctica

    NASA Astrophysics Data System (ADS)

    Bibby, Theodore; Putkonen, Jaakko; Morgan, Daniel; Balco, Greg; Shuster, David L.

    2016-07-01

    Cosmogenic nuclide measurements associated with buried glacier ice in Ong Valley, in the Transantarctic Mountains, suggest the preservation of ancient ice. There are three glacial tills on the valley floor which have formed from the concentration of regolith contained within sublimating glacier ice. Two tills are less than 1 m thick and underlain by ice. Measurements of cosmogenic 10Be, 26Al, and 21Ne show that (i) the youngest buried ice unit and corresponding till are at least 11-13 ka, (ii) another ice unit and corresponding intermediate-age till are at least 1.1 Ma old under any circumstances and most likely older than 1.78 Ma, and (iii) the oldest till is at least 1.57 Ma and most likely greater than 2.63 Ma. These observations highlight the longevity of ice under thin debris layers and the potential to sample ancient ice for paleoclimate/paleoatmosphere information close to the present land surface.

  19. Preliminary experimental research on friction characteristics of a thick gravitational casted babbit layer on steel substrate

    NASA Astrophysics Data System (ADS)

    Paleu, V.; Georgescu, S.; Baciu, C.; Istrate, B.; Baciu, E. R.

    2016-08-01

    The ability of the antifriction materials to withstand with no lubrication for a while can be a solution for the catastrophic failure of automotive journal bearings from the internal combustion engines in accidental breakdown of the oil pump. A thick layer of antifriction material (babbit) was deposited by gravitational casting on a steel disk substrate. Four tribological disk samples coated with babbit are tested against a steel shoe on Amsler tribometer at different speeds and loads in dry friction. The values of the friction coefficient versus speed and load are presented, the obtained results indicating a mild wear regime, recommending the new babbit as a possible coating for the bushes of the journal bearings in automotive internal combustion engines. Further tests must be dedicated to the establishment of the wear intensity of the steel shoe - babbit disk tribological pair, both for motor oil lubricated and dry friction conditions.

  20. Thick escaping magnetospheric ion layer in magnetopause reconnection with MMS observations

    NASA Astrophysics Data System (ADS)

    Nagai, T.; Kitamura, N.; Hasegawa, H.; Shinohara, I.; Yokota, S.; Saito, Y.; Nakamura, R.; Giles, B. L.; Pollock, C.; Moore, T. E.; Dorelli, J. C.; Gershman, D. J.; Paterson, W. R.; Avanov, L. A.; Chandler, M. O.; Coffey, V.; Sauvaud, J. A.; Lavraud, B.; Russell, C. T.; Strangeway, R. J.; Oka, M.; Genestreti, K. J.; Burch, J. L.

    2016-06-01

    The structure of asymmetric magnetopause reconnection is explored with multiple point and high-time-resolution ion velocity distribution observations from the Magnetospheric Multiscale mission. On 9 September 2015, reconnection took place at the magnetopause, which separated the magnetosheath and the magnetosphere with a density ratio of 25:2. The magnetic field intensity was rather constant, even higher in the asymptotic magnetosheath. The reconnected field line region had a width of approximately 540 km. In this region, streaming and gyrating ions are discriminated. The large extension of the reconnected field line region toward the magnetosheath can be identified where a thick layer of escaping magnetospheric ions was formed. The scale of the magnetosheath side of the reconnected field line region relative to the scale of its magnetospheric side was 4.5:1.

  1. Optical methods for determining thicknesses of few-layer graphene flakes

    NASA Astrophysics Data System (ADS)

    Ouyang, Wengen; Liu, Xin-Z.; Li, Qunyang; Zhang, Yingying; Yang, Jiarui; Zheng, Quan-shui

    2013-12-01

    Optical microscopy (OM) methods have been commonly used as a convenient means for locating and identifying few-layer graphene (FLG) on SiO2/Si substrates. However, it is less clear how reliably optical images of FLG could be used to determine the sample thickness. In this work, various OM methods based on color differences and color contrasts are presented and their reliabilities are evaluated. Our analysis shows that these color-based OM methods depend sensitively on certain parameters of the measuring system, particularly the light source and the reference substrate. These parameters have usually been overlooked and less controlled in routine experiments. From evaluating the performance of these OM methods with both virtual and real FLG samples, we propose some practical guidelines for minimizing the impact of these less-controlled experimental parameters and provide a user-friendly MATLAB script for facilitating the implementation.

  2. Development of Very Low Frequency Self-Nulling Probe for Inspection of Thick Layered Aluminum Structures

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Namkung, Min

    1998-01-01

    It is clear from simple skin depth considerations that steady state electromagnetic inspection of thick multi-layered conductors requires low frequency excitation. Conventional pickup sensors, however, lose sensitivity at lower frequencies. Giant magneto resistive materials offer a unique alternative for very low frequency electromagnetic NDE due to their high sensitivity to low frequency fields, small size, ease of use, and low cost. This paper outlines the development and testing of a Very Low Frequency Self-Nulling Probe incorporating a GMR sensor. The initial test results show flaw detectability at depths up to 1 cm in aluminum 2024. Optimization of the probe design based upon finite element modeling and GMR sensor characteristics (including hysteresis, linearity and saturation) is under way.

  3. Surface charging of thick porous water ice layers relevant for ion sputtering experiments

    NASA Astrophysics Data System (ADS)

    Galli, A.; Vorburger, A.; Pommerol, A.; Wurz, P.; Jost, B.; Poch, O.; Brouet, Y.; Tulej, M.; Thomas, N.

    2016-07-01

    We use a laboratory facility to study the sputtering properties of centimeter-thick porous water ice subjected to the bombardment of ions and electrons to better understand the formation of exospheres of the icy moons of Jupiter. Our ice samples are as similar as possible to the expected moon surfaces but surface charging of the samples during ion irradiation may distort the experimental results. We therefore monitor the time scales for charging and discharging of the samples when subjected to a beam of ions. These experiments allow us to derive an electric conductivity of deep porous ice layers. The results imply that electron irradiation and sputtering play a non-negligible role for certain plasma conditions at the icy moons of Jupiter. The observed ion sputtering yields from our ice samples are similar to previous experiments where compact ice films were sputtered off a micro-balance.

  4. Novel multi-layer polymer-metal structures for use in ultrasonic transducer impedance matching and backing absorber applications.

    PubMed

    Toda, Minoru; Thompson, Mitchell

    2010-12-01

    This paper presents a novel design principle for designing multilayer polymer-metal structures which are well suited for front surface impedance conversion (matching) and for back surface acoustic absorption. It is shown that a polymer layer with an outer metal layer, when loaded by a low impedance propagation medium, acts as an efficient impedance converter. The resulting impedance seen at the inner polymer surface is increased and the structure provides the same performance as a traditional quarter-wavelength matching layer. Experimental evidence is also shown for a double-matching scheme for a lead zirconate titanate (PZT) transducer using an inner polymer-metal multilayer and an outer polymer quarterwavelength layer, resulting in a 55% bandwidth at 2.6 MHz with air backing. Also, it is theoretically shown that multiple layers of a lossy polymer adhesive-metal structure produce low propagation velocity and high absorption. Experimental proof of this ultrasonic multilayer backing absorber is provided. Design theories based on both a simplified mass and spring model and a rigorous one-dimensional wave model have been developed and show fair agreement.

  5. Effect of Morphology Control of Light Absorbing Layer on CH3NH3PbI3 Perovskite Solar Cells.

    PubMed

    Lei, Binglong; Eze, Vincent Obiozo; Mori, Tatsuo

    2016-04-01

    As one of the most significant components of perovskite solar cells, the perovskite light absorbing layer demands high quality to guarantee extraordinary power conversion efficiency (PCE). We have fabricated series of CH3NH3PbI3 perovskite solar cells by virtue of gas-flowing assisting (GFA), spin coating twice for the Pbl2 layer and dipping the semi-samples in a thermal CH3NH3I solution, by which some undesirable perovskite morphologies can be effectively avoided. The modified conductions have also dramatically improved the perovskite layer and elevated the coverage ratio from 53.6% to 79.5%. All the fabrication processes, except the steps for deposition of the hole transport material (HTM) and back gold electrode, have been conducted in air and an average PCE of 6.6% has been achieved by initiatively applying N,N'-bis(1-naphtyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (α-NPD) doped by MoO3 as HTM. The CH3NH3PbI3 perovskite's morphology and its coverage ratio to the underneath TiO2 mesoporic layer are evaluated to account for the cells' performance. It has demonstrated that higher homogeneity and coverage ratio of the CH3NH3PbI3 layer have most significantly contributed to the solar cells' light conversion efficiency. Keywords: Perovskite, Solar Cell, Morphology, Coverage Ratio, Hole Transport Material.

  6. Active-layer thickness estimation from X-band SAR backscatter intensity

    NASA Astrophysics Data System (ADS)

    Widhalm, Barbara; Bartsch, Annett; Leibman, Marina; Khomutov, Artem

    2017-02-01

    The active layer above the permafrost, which seasonally thaws during summer, is an important parameter for monitoring the state of permafrost. Its thickness is typically measured locally, but a range of methods which utilize information from satellite data exist. Mostly, the normalized difference vegetation index (NDVI) obtained from optical satellite data is used as a proxy. The applicability has been demonstrated mostly for shallow depths of active-layer thickness (ALT) below approximately 70 cm. Some permafrost areas including central Yamal are, however, characterized by larger ALT. Surface properties including vegetation structure are also represented by microwave backscatter intensity. So far, the potential of such data for estimating ALT has not been explored. We therefore investigated the relationship between ALT and X-band synthetic aperture radar (SAR) backscatter of TerraSAR-X (averages for 10 × 10 m window) in order to examine the possibility of delineating ALT with continuous and larger spatial coverage in this area and compare it to the already-established method of using NDVI from Landsat (30 m). Our results show that the mutual dependency of ALT and TerraSAR-X backscatter on land cover types suggests a connection of both parameters. A range of 5 dB can be observed for an ALT range of 100 cm (40-140 cm), and an R2 of 0.66 has been determined over the calibration sites. An increase of ALT with increasing backscatter can be determined. The root mean square error (RMSE) over a comparably heterogeneous validation site with maximum ALT of > 150 cm is 20 cm. Deviations are larger for measurement locations with mixed vegetation types (especially partial coverage by cryptogam crust) with respect to the spatial resolution of the satellite data.

  7. Thickness dependent effects of an intermediate molecular blocking layer on the optoelectronic characteristics of organic bilayer photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Steindamm, A.; Brendel, M.; Topczak, A. K.; Pflaum, J.

    2012-10-01

    In this work, we address the microscopic effects related to the implementation of a bathophenanthroline (BPhen) exciton blocking layer (EBL) sandwiched between Ag cathode and molecular diindenoperylene (DIP)/C60 bilayer of a photovoltaic cell. Complementary studies of current density, external quantum efficiency, and photoluminescence quenching for EBL thicknesses up to 50 nm indicate that Ag atoms are able to penetrate through the whole 35 nm thick C60 film into the polycrystalline DIP layer underneath, thereby enhancing exciton quenching if no blocking layer is applied. In contrast, an optimal trade-off between exciton blocking, suppression of metal penetration, and electron transport is achieved for a 5 nm thick BPhen layer yielding an improvement of power conversion efficiency by more than a factor of 2.

  8. Longitudinal Study of Vision and Retinal Nerve Fiber Layer Thickness in MS

    PubMed Central

    Talman, Lauren S.; Bisker, Esther R.; Sackel, David J.; Long, David A.; Galetta, Kristin M.; Ratchford, John N.; Lile, Deacon J.; Farrell, Sheena K.; Loguidice, Michael J.; Remington, Gina; Conger, Amy; Frohman, Teresa C.; Jacobs, Dina A.; Markowitz, Clyde E.; Cutter, Gary R.; Ying, Gui-Shuang; Dai, Yang; Maguire, Maureen G.; Galetta, Steven L.; Frohman, Elliot M.; Calabresi, Peter A.; Balcer, Laura J.

    2010-01-01

    Objective Cross-sectional studies of optical coherence tomography (OCT) show that retinal nerve fiber layer (RNFL) thickness is reduced in multiple sclerosis (MS) and correlates with visual function. We determined how longitudinal changes in RNFL thickness relate to visual loss. We also examined patterns of RNFL thinning over time in MS eyes with and without a prior history of acute optic neuritis (ON). Methods Patients underwent OCT measurement of RNFL thickness at baseline and at 6-month intervals during a mean follow-up of 18 months at three centers. Low-contrast letter acuity (2.5%, 1.25% contrast) and visual acuity (VA) were assessed. Results Among 299 patients (593 eyes) with ≥6 months follow-up, eyes with visual loss showed greater RNFL thinning compared to eyes with stable vision (low-contrast acuity, 2.5%: p<0.001; VA: p=0.005). RNFL thinning increased over time, with average losses of 2.9 μm at 2-3 years and 6.1 μm at 3-4.5 years (p<0.001 vs. 0.5-1-year follow-up interval). These patterns were observed for eyes with or without prior history of ON. Proportions of eyes with RNFL loss greater than test-retest variability (≥6.6 μm) increased from 11% at 0-1 year to 44% at 3-4.5 years (p<0.001). Interpretation Progressive RNFL thinning occurs as a function of time in some patients with MS, even in the absence of ON, and is associated with clinically significant visual loss. These findings are consistent with sub-clinical axonal loss in the anterior visual pathway in MS and support the use of OCT and low-contrast acuity as methods to evaluate the effectiveness of putative neuroprotection protocols. PMID:20517936

  9. Elastic bending modulus of single-layer molybdenum disulfide (MoS2): finite thickness effect.

    PubMed

    Jiang, Jin-Wu; Qi, Zenan; Park, Harold S; Rabczuk, Timon

    2013-11-01

    We derive, from an empirical interaction potential, an analytic formula for the elastic bending modulus of single-layer MoS2 (SLMoS2). By using this approach, we do not need to define or estimate a thickness value for SLMoS2, which is important due to the substantial controversy in defining this value for two-dimensional or ultrathin nanostructures such as graphene and nanotubes. The obtained elastic bending modulus of 9.61 eV in SLMoS2 is significantly higher than the bending modulus of 1.4 eV in graphene, and is found to be within the range of values that are obtained using thin shell theory with experimentally obtained values for the elastic constants of SLMoS2. This increase in bending modulus as compared to monolayer graphene is attributed, through our analytic expression, to the finite thickness of SLMoS2. Specifically, while each monolayer of S atoms contributes 1.75 eV to the bending modulus, which is similar to the 1.4 eV bending modulus of monolayer graphene, the additional pairwise and angular interactions between out of plane Mo and S atoms contribute 5.84 eV to the bending modulus of SLMoS2.

  10. Validation and Variation of Upper Layer Thickness in South China Sea from Satellite Altimeter Data

    PubMed Central

    Lin, Chun-Yi; Ho, Chung-Ru; Zheng, Zhe-Wen; Kuo, Nan-Jung

    2008-01-01

    Satellite altimeter data from 1993 to 2005 has been used to analyze the seasonal variation and the interannual variability of upper layer thickness (ULT) in the South China Sea (SCS). Base on in-situ measurements, the ULT is defined as the thickness from the sea surface to the depth of 16°C isotherm which is used to validate the result derived from satellite altimeter data. In comparison with altimeter and in-situ derived ULTs yields a correlation coefficient of 0.92 with a slope of 0.95 and an intercept of 6 m. The basin averaged ULT derived from altimeter is 160 m in winter and 171 m in summer which is similar to the in-situ measurements of 159 m in winter and 175 m in summer. Both results also show similar spatial patterns. It suggests that the sea surface height data derived from satellite sensors are usable for study the variation of ULT in the semi-closed SCS. Furthermore, we also use satellite derived ULT to detect the development of eddy. Interannual variability of two meso-scale cyclonic eddies and one anticyclonic eddy are strongly influenced by El Niño events. In most cases, there are highly positive correlations between ULT and sea surface temperature except the periods of El Niño. During the onset of El Niño event, ULT is deeper when sea surface temperature is lower. PMID:27879909

  11. The kinetic boundary layer around an absorbing sphere and the growth of small droplets

    SciTech Connect

    Widder, M.E.; Titulaer, U.M. )

    1989-06-01

    Deviations from the classical Smoluchowski expression for the growth rate of a droplet in a supersaturated vapor can be expected when the droplet radius is not large compared to the mean free path of a vapor molecule. The growth rate then depends significantly on the structure of the kinetic boundary layer around a sphere. The authors consider this kinetic boundary layer for a dilute system of Brownian particles. For this system a large class of boundary layer problems for a planar wall have been solved. They show how the spherical boundary layer can be treated by a perturbation expansion in the reciprocal droplet radius. In each order one has to solve a finite number of planar boundary layer problems. The first two corrections to the planar problem are calculated explicitly. For radii down to about two velocity persistence lengths (the analog of the mean free path for a Brownian particle) the successive approximations for the growth rate agree to within a few percent. A reasonable estimate of the growth rate for all radii can be obtained by extrapolating toward the exactly known value at zero radius. Kinetic boundary layer effects increase the time needed for growth from 0 to 10 (or 2{1/2}) velocity persistence lengths by roughly 35% (or 175%).

  12. Analytical Sensor Response Function of Viscosity Sensors Based on Layered Piezoelectric Thickness Shear Resonators

    NASA Astrophysics Data System (ADS)

    Benes, Ewald; Nowotny, Helmut; Braun, Stefan; Radel, Stefan; Gröschl, Martin

    Resonant piezoelectric sensors based on bulk acoustic wave (BAW) thickness shear resonators are promising for the inline measurement of fluid viscosity, e.g., in industrial processes. The sensor response function can be derived from the general rigorous transfer matrix description of one-dimensional layered structures consisting of piezoelectric and non-piezoelectric layers of arbitrary number. This model according to Nowotny et al. provides a complete analytical description of the electrical and mechanical behaviour of such structures with two electrodes and arbitrary acoustic termination impedances (Rig-1d-Model). We apply this model to derive the sensor response functions and the mechanical displacement curves of the following configurations appropriate for viscosity sensors: An AT cut quartz crystal plate in contact with vacuum at the backside plane and with the liquid under investigation at the front side plane (QL). An AT cut quartz crystal in contact with the liquid under investigation at both sides (LQL). It is shown that in the QL case the originally only heuristically introduced and well established sensor response function according to Kanasawa can be derived from the Rig-1d-Model by introducing minor approximations. Experimental results are presented for the LQL configuration using an N1000 viscosity reference oil as test fluid.

  13. Theory of margination and cell-free layer thickness in blood flow

    NASA Astrophysics Data System (ADS)

    Graham, Michael

    2016-11-01

    A mechanistic model is developed to describe segregation in confined multicomponent suspensions such as blood during Couette or plane Poiseuille flow. We focus attention on the case of a binary suspension with a deformable primary component (e.g. red blood cells) that completely dominates the collision dynamics in the system. The model captures the phenomena of depletion layer formation and margination observed in confined multicomponent suspensions of deformable particles. The depletion layer thickness of the primary component is predicted to follow a master curve relating it in a specific way to confinement ratio and volume fraction. Results from experiments and detailed simulations with different parameters (flexibility, viscosity ratio, confinement) collapse onto this curve with only one adjustable parameter. In a binary suspension, several regimes of segregation arise, depending on the value of a "margination parameter" M. Most importantly, in both Couette and Poiseuille flows there is a critical value of M below which a sharp "drainage transition" occurs: one component is completely depleted from the bulk flow to the vicinity of the walls. Direct simulations also exhibit this transition as the size or flexibility ratio of the components changes.

  14. Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation.

    PubMed

    Das, Saroj Kumar; Bedar, Amita; Kannan, Aadithya; Jasuja, Kabeer

    2015-06-04

    The discovery of graphene has led to a rising interest in seeking quasi two-dimensional allotropes of several elements and inorganic compounds. Boron, carbon's neighbour in the periodic table, presents a curious case in its ability to be structured as graphene. Although it cannot independently constitute a honeycomb planar structure, it forms a graphenic arrangement in association with electron-donor elements. This is exemplified in magnesium diboride (MgB2): an inorganic layered compound comprising boron honeycomb planes alternated by Mg atoms. Till date, MgB2 has been primarily researched for its superconducting properties; it hasn't been explored for the possibility of its exfoliation. Here we show that ultrasonication of MgB2 in water results in its exfoliation to yield few-layer-thick Mg-deficient hydroxyl-functionalized nanosheets. The hydroxyl groups enable an electrostatically stabilized aqueous dispersion and create a heterogeneity leading to an excitation wavelength dependent photoluminescence. These chemically modified MgB2 nanosheets exhibit an extremely small absorption coefficient of 2.9 ml mg(-1) cm(-1) compared to graphene and its analogs. This ability to exfoliate MgB2 to yield nanosheets with a chemically modified lattice and properties distinct from the parent material presents a fundamentally new perspective to the science of MgB2 and forms a first foundational step towards exfoliating metal borides.

  15. Direct nanomechanical measurement of layer thickness and compressibility of smectic liquid crystals.

    PubMed

    Carbone, Giovanni; Zappone, Bruno; Barberi, Riccardo; Bartolino, Roberto; Musevic, Igor

    2011-05-01

    Using an atomic force microscope (AFM) we confined a smectic-A liquid crystal (LC) between a flat glass plate and a 10-μm glass sphere attached to the free end of the AFM cantilever. Both surfaces were treated with a surfactant that induces normal alignment of the LC molecules. We measured the force F acting on the cantilever while varying the plate-sphere distance D with subnanometer precision. For D < 50 nm, the force was periodically oscillating and decayed as D was increased. Analyzing the force in the framework of a simple model of elastic deformation of the smectic layers, we have evaluated the undeformed layer thickness a(0) and compressibility modulus B. Compared to other techniques used to determine a(0) and B, AFM measurements are faster and require a much smaller amount (microliters) of LC. Moreover, they are based on purely mechanical deformations of the LC structure and do not require any static or radiative electromagnetic field.

  16. Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation

    PubMed Central

    Das, Saroj Kumar; Bedar, Amita; Kannan, Aadithya; Jasuja, Kabeer

    2015-01-01

    The discovery of graphene has led to a rising interest in seeking quasi two-dimensional allotropes of several elements and inorganic compounds. Boron, carbon’s neighbour in the periodic table, presents a curious case in its ability to be structured as graphene. Although it cannot independently constitute a honeycomb planar structure, it forms a graphenic arrangement in association with electron-donor elements. This is exemplified in magnesium diboride (MgB2): an inorganic layered compound comprising boron honeycomb planes alternated by Mg atoms. Till date, MgB2 has been primarily researched for its superconducting properties; it hasn’t been explored for the possibility of its exfoliation. Here we show that ultrasonication of MgB2 in water results in its exfoliation to yield few-layer-thick Mg-deficient hydroxyl-functionalized nanosheets. The hydroxyl groups enable an electrostatically stabilized aqueous dispersion and create a heterogeneity leading to an excitation wavelength dependent photoluminescence. These chemically modified MgB2 nanosheets exhibit an extremely small absorption coefficient of 2.9 ml mg−1 cm−1 compared to graphene and its analogs. This ability to exfoliate MgB2 to yield nanosheets with a chemically modified lattice and properties distinct from the parent material presents a fundamentally new perspective to the science of MgB2 and forms a first foundational step towards exfoliating metal borides. PMID:26041686

  17. Distribution and landscape controls of organic layer thickness and carbon within the Alaskan Yukon River Basin

    USGS Publications Warehouse

    Pastick, Neal J.; Rigge, Matthew B.; Wylie, Bruce K.; Jorgenson, M. Torre; Rose, Joshua R.; Johnson, Kristofer D.; Ji, Lei

    2014-01-01

    Understanding of the organic layer thickness (OLT) and organic layer carbon (OLC) stocks in subarctic ecosystems is critical due to their importance in the global carbon cycle. Moreover, post-fire OLT provides an indicator of long-term successional trajectories and permafrost susceptibility to thaw. To these ends, we 1) mapped OLT and associated uncertainty at 30 m resolution in the Yukon River Basin (YRB), Alaska, employing decision tree models linking remotely sensed imagery with field and ancillary data, 2) converted OLT to OLC using a non-linear regression, 3) evaluate landscape controls on OLT and OLC, and 4) quantified the post-fire recovery of OLT and OLC. Areas of shallow (2 = 0.68; OLC: R2 = 0.66), where an average of 16 cm OLT and 5.3 kg/m2 OLC were consumed by fires. Strong predictors of OLT included climate, topography, near-surface permafrost distributions, soil wetness, and spectral information. Our modeling approach enabled us to produce regional maps of OLT and OLC, which will be useful in understanding risks and feedbacks associated with fires and climate feedbacks.

  18. Constraining the Thickness of the Crystal Mush in Layered Mafic Intrusions

    NASA Astrophysics Data System (ADS)

    Holness, M. B.; Tegner, C.; Nielsen, T. F.

    2009-12-01

    When basaltic magma stalls in the crust, cooling leads to growth of a marginal mushy layer. The thickness of this crystal mush can be constrained using the step-changes in textural maturity (quantified by the median augite(cpx)-plag-plag dihedral angle, Θcpp) caused by the change in fractional latent heat accompanying the arrival of a new liquidus phase. At the instant of its saturation in the bulk magma, the top of the mush is marked by the first appearance of the new primocryst phase. At this moment, the high porosity upper zone of the mush comprises poorly consolidated material, with no cpx-plag-plag junctions: at deeper levels porosity decreases by primocryst overgrowth, growth of interstitial augite, and compaction. In the context of dihedral angle populations, the mush zone can be divided into 3: the upper zone, where melt is adjacent to all plag-plag junctions; the middle zone where augite fills some of the pore corners; and the lower zone where augite fills all pore corners. For our purposes, the base of this lower zone corresponds to the point at which diffusive change of grain boundary orientations has effectively ceased. The change in fractional latent heat accompanying the addition to the liquidus assemblage will be fully recorded within the upper zone since all cpx-plag-plag junctions are created after the change and its consequent decrease in the contribution of sensible heat to the total enthalpy loss: Θcpp will be high. The middle zone will record a mixture of the new and old thermal regime: junctions which were melt-filled at the moment of arrival of the new phase will have less opportunity to increase the cpx-plag-plag angle, while those which were already filled by augite will have higher angles. Θcpp will therefore range from the new higher value at the top of middle zone, to some lower value at the base. Cumulates in the lower zone had no melt-filled junctions: Θcpp will increase from a low value corresponding to the previous value of

  19. Retinal Nerve Fiber Layer Thickness Changes in Parkinson Disease: A Meta-Analysis

    PubMed Central

    Yu, Ji-guo; Feng, Yi-fan; Xiang, Yi; Huang, Jin-hai; Savini, Giacomo; Parisi, Vincenzo; Yang, Wan-ju; Fu, Xun-an

    2014-01-01

    Background Parkinson disease (PD) is a neurodegenerative process that leads to a selective loss of dopaminergic neurons, mainly in the basal ganglia of the brain. Numerous studies have analyzed the ability of optical coherence tomography (OCT) to detect retinal nerve fiber layer (RNFL) thickness abnormalities and changes in PD, but the results have not always been consistent. Therefore, we carried out a meta-analysis to evaluate the RNFL thickness measured with OCT in PD. Methods and Findings Case-control studies were selected through an electronic search of the Cochrane Controlled Trials Register, PUBMED and EMBASE. For the continuous outcomes, we calculated the weighted mean difference (WMD) and 95% confidence interval (CI). The statistical analysis was performed by RevMan 5.0 software. Thirteen case-control studies were included in the present meta-analysis, containing a total of 644 eyes in PD patients and 604 eyes in healthy controls. The results of our study showed that there was a significant reduction in average RNFL thickness in patients with PD compared to healthy controls (WMD = −5.76, 95% CI: −8.99 to −2.53, P = 0.0005). Additionally, differences of RNFL thickness in superior quadrant (WMD = −4.44, 95% CI: −6.93 to −1.94, P = 0.0005), inferior quadrant (WMD = −7.56, 95% CI: −11.33 to −3.78, P<0.0001), nasal quadrant (WMD = −3.12, 95% CI: −5.63 to −0.61, P = 0.01) and temporal quadrant (WMD = −4.63, 95% CI: −7.20 to −2.06, P = 0.0004) were all significant between the two groups. Conclusion In view of these results and the noninvasive nature of OCT technology, we surmise that OCT could be a useful tool for evaluating the progression of the Parkinson disease. Trial Registration ClinicalTrials.gov NCT01928212 PMID:24465663

  20. Macular Ganglion Cell -Inner Plexiform Layer Thickness Is Associated with Clinical Progression in Mild Cognitive Impairment and Alzheimers Disease

    PubMed Central

    Choi, Seong Hye; Park, Sang Jun

    2016-01-01

    Purpose We investigated the association of the macular ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (RNFL) thicknesses with disease progression in mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Methods We recruited 42 patients with AD, 26 with MCI, and 66 normal elderly controls. The thicknesses of the RNFL and GCIPL were measured via spectral-domain optic coherent tomography in all participants at baseline. The patients with MCI or AD underwent clinical and neuropsychological tests at baseline and once every year thereafter for 2 years. Results The Clinical Dementia Rating scale-Sum of Boxes (CDR-SB) score exhibited significant negative relationships with the average GCIPL thickness (β = -0.15, p < 0.05) and the GCIPL thickness in the superotemporal, superonasal, and inferonasal sectors. The composite memory score exhibited significant positive associations with the average GCIPL thickness and the GCIPL thickness in the superotemporal, inferonasal, and inferotemporal sectors. The temporal RNFL thickness, the average and minimum GCIPL thicknesses, and the GCIPL thickness in the inferonasal, inferior, and inferotemporal sectors at baseline were significantly reduced in MCI patients who were converted to AD compared to stable MCI patients. The change of CDR-SB from baseline to 2 years exhibited significant negative associations with the average (β = -0.150, p = 0.006) and minimum GCIPL thicknesses as well as GCIPL thickness in the superotemporal, superior, superonasal, and inferonasal sectors at baseline. Conclusions Our data suggest that macular GCIPL thickness represents a promising biomarker for monitoring the progression of MCI and AD. PMID:27598262

  1. An investigation of the effects of ductile-layer thickness on the fracture behavior of nickel aluminide microlaminates

    SciTech Connect

    Li, M.; Soboyejo, W.O.

    2000-05-01

    This article presents the results of a combined experimental and analytical study of the effects of ductile-layer thickness on the initiation toughness and resistance-curve behavior of nickel aluminide composites that are reinforced with ductile V and Nb-15Al-40Ti layers. The initiation toughness and specimen-independent steady-state toughness values are shown to increase with increasing layer thickness. Stable crack growth and toughening in the crack-arrestor orientation are also attributed to crack bridging and the interactions of crack tips with the ductile layers. The overall toughening in the microlaminates is modeled by superposing the shielding contributions due to crack bridging on the stress-intensity factor required to promote renucleation ahead of the first ductile layer ahead of the precrack. The implications of the results are also discussed for the design of ductile phase-toughened microlaminates.

  2. Influence of Clinical Factors and Magnification Correction on Normal Thickness Profiles of Macular Retinal Layers Using Optical Coherence Tomography

    PubMed Central

    Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K. W.; Yoshimura, Nagahisa

    2016-01-01

    Purpose To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. Methods The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Results Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. Conclusions The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction. PMID:26814541

  3. Co-intercalation of Acid Red 337 and a UV absorbent into layered double hydroxides: enhancement of photostability.

    PubMed

    Li, Dianqing; Qian, Leilei; Feng, Yongjun; Feng, Junting; Tang, Pinggui; Yang, Lan

    2014-12-10

    Organic-inorganic hybrid pigments with enhanced thermo- and photostability have been prepared by co-intercalating C.I. Acid Red 337 (AR337) and a UV absorbent (BP-4) into the interlayer of ZnAl layered double hydroxides through a coprecipitation method. The obtained compounds were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric-differential thermogravimetric-differential thermal analysis, UV-visible spectroscopy, and the International Commission on Illumination (CIE) 1976 L*a*b* color scales. The results show the successful co-intercalation of AR337 and BP-4 into the interlayer region of layered double hydroxides (LDHs) and reveal the presence of host-guest interactions between LDH host layers and guest anions of AR337 and BP-4 and guest-guest interactions between AR337 and BP-4. The intercalation can improve the thermostability of AR337 due to the protection of LDH layers. Moreover, the co-intercalation of AR337 and BP-4 not only markedly enhances the photostability of AR337 but also significantly influences the color of the hybrid pigment.

  4. Potential vorticity and layer thickness variations in the flow around Jupiter's Great Red Spot and White Oval BC

    NASA Technical Reports Server (NTRS)

    Dowling, Timothy E.; Ingersoll, Andrew P.

    1988-01-01

    Using Voyager images, layer thickness variations in the flow around Jupiter's Great Red Spot (GRS) and White Oval BC were investigated by treating potential vorticity as a conserved tracer. Fluid trajectories around the GRS and the White Oval BC were calculated assuming the flow to be frictionless, adiabatic, hydrostatic, and steady in the reference frame of the vortex. The data obtained constitute a useful diagnostic which will help to differentiate between models of Jovian vortices. Implications of the observations were studied in the context of a one-layer quasi-geostrophic model in which a thin upper weather layer, which contains the vortex, is supported hydrostatically by a much deeper lower layer.

  5. Analyses of layer-thickness effects in bilayered dental ceramics subjected to thermal stresses and ring-on-ring tests

    SciTech Connect

    Hsueh, Chun-Hway; Thompson, G. A.; Jadaan, Osama M.; Wereszczak, Andrew A; Becher, Paul F

    2008-01-01

    Objectives. The purpose of this study was to analyze the stress distribution through the thickness of bilayered dental ceramics subjected to both thermal stresses and ring-on-ring tests and to systematically examine how the individual layer thickness influences this stress distribution and the failure origin. Methods. Ring-on-ring tests were performed on In-Ceram Alumina/Vitadur Alpha porcelain bilayered disks with porcelain in the tensile side, and In-Ceram Alumina to porcelain layer thickness ratios of 1:2, 1:1, and 2:1 were used to characterize the failure origins as either surface or interface. Based on the thermomechanical properties and thickness of each layer, the cooling temperature from glass transition temperature, and the ring-on-ring loading configuration, the stress distribution through the thickness of the bilayer was calculated using closed-form solutions. Finite element analyses were also performed to verify the analytical results. Results. The calculated stress distributions showed that the location of maximum tension during testing shifted from the porcelain surface to the In-Ceram Alumina/porcelain interface when the relative layer thickness ratio changed from 1:2 to 1:1 and to 2:1. This trend is in agreement with the experimental observations of the failure origins. Significance. For bilayered dental ceramics subjected to ring-on-ring tests, the location of maximum tension can shift from the surface to the interface depending upon the layer thickness ratio. The closed-form solutions for bilayers subjected to both thermal stresses and ring-on-ring tests are explicitly formulated which allow the biaxial strength of the bilayer to be evaluated.

  6. Temperature and layer thickness dependent in situ investigations on epindolidione organic thin-film transistors.

    PubMed

    Lassnig, R; Striedinger, B; Jones, A O F; Scherwitzl, B; Fian, A; Głowacl, E D; Stadlober, B; Winkler, A

    2016-08-01

    We report on in situ performance evaluations as a function of layer thickness and substrate temperature for bottom-gate, bottom-gold contact epindolidione organic thin-film transistors on various gate dielectrics. Experiments were carried out under ultra-high vacuum conditions, enabling quasi-simultaneous electrical and surface analysis. Auger electron spectroscopy and thermal desorption spectroscopy (TDS) were applied to characterize the quality of the substrate surface and the thermal stability of the organic films. Ex situ atomic force microscopy (AFM) was used to gain additional information on the layer formation and surface morphology of the hydrogen-bonded organic pigment. The examined gate dielectrics included SiO2, in its untreated and sputtered forms, as well as the spin-coated organic capping layers poly(vinyl-cinnamate) (PVCi) and poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE, from the class of polynorbornenes). TDS and AFM revealed Volmer-Weber island growth dominated film formation with no evidence of a subjacent wetting layer. This growth mode is responsible for the comparably high coverage required for transistor behavior at 90-95% of a monolayer composed of standing molecules. Surface sputtering and an increased sample temperature during epindolidione deposition augmented the surface diffusion of adsorbing molecules and therefore led to a lower number of better-ordered islands. Consequently, while the onset of charge transport was delayed, higher saturation mobility was obtained. The highest, bottom-contact configuration, mobilities of approximately 2.5 × 10(-3)cm(2)/Vs were found for high coverages (50 nm) on sputtered samples. The coverage dependence of the mobility showed very different characteristics for the different gate dielectrics, while the change of the threshold voltage with coverage was approximately the same for all systems. An apparent decrease of the mobility with increasing coverage on the

  7. Temperature and layer thickness dependent in situ investigations on epindolidione organic thin-film transistors

    PubMed Central

    Lassnig, R.; Striedinger, B.; Jones, A.O.F.; Scherwitzl, B.; Fian, A.; Głowacl, E.D.; Stadlober, B.; Winkler, A.

    2016-01-01

    We report on in situ performance evaluations as a function of layer thickness and substrate temperature for bottom-gate, bottom-gold contact epindolidione organic thin-film transistors on various gate dielectrics. Experiments were carried out under ultra-high vacuum conditions, enabling quasi-simultaneous electrical and surface analysis. Auger electron spectroscopy and thermal desorption spectroscopy (TDS) were applied to characterize the quality of the substrate surface and the thermal stability of the organic films. Ex situ atomic force microscopy (AFM) was used to gain additional information on the layer formation and surface morphology of the hydrogen-bonded organic pigment. The examined gate dielectrics included SiO2, in its untreated and sputtered forms, as well as the spin-coated organic capping layers poly(vinyl-cinnamate) (PVCi) and poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE, from the class of polynorbornenes). TDS and AFM revealed Volmer-Weber island growth dominated film formation with no evidence of a subjacent wetting layer. This growth mode is responsible for the comparably high coverage required for transistor behavior at 90–95% of a monolayer composed of standing molecules. Surface sputtering and an increased sample temperature during epindolidione deposition augmented the surface diffusion of adsorbing molecules and therefore led to a lower number of better-ordered islands. Consequently, while the onset of charge transport was delayed, higher saturation mobility was obtained. The highest, bottom-contact configuration, mobilities of approximately 2.5 × 10−3cm2/Vs were found for high coverages (50 nm) on sputtered samples. The coverage dependence of the mobility showed very different characteristics for the different gate dielectrics, while the change of the threshold voltage with coverage was approximately the same for all systems. An apparent decrease of the mobility with increasing coverage on the

  8. Urban Geocryology: Mapping Urban-Rural Contrasts in Active-Layer Thickness, Barrow Penninsula, Northern Alaska

    NASA Astrophysics Data System (ADS)

    Klene, A. E.; Nelson, F. E.

    2014-12-01

    As development proceeds in the high latitudes, information about interactions between urban influences and the thickness of the active layer above permafrost becomes vital, particularly given the possibility of increasing temperatures accompanying climate change. Permafrost characteristics are often mapped at small geographical scales (i.e., over large areas), at low resolution, and without extensive field validation. Although maps of active-layer thickness (ALT) have been created for areas of relatively undisturbed terrain, this has rarely been done within urbanized areas, even though ALT is a critical factor in the design of roads, buildings, pipelines, and other elements of infrastructure. The need for detailed maps of ALT is emphasized in work on potential hazards in permafrost regions associated with global warming scenarios. Northern Alaska is a region considered to be at moderate to high risk for thaw-induced damage under climatic warming. The Native Village of Barrow (71°17'44"N; 156°45' 59"W), the economic, transportation, and administrative hub of the North Slope Borough, is the northernmost community in the USA, and the largest native settlement in the circum-Arctic. A winter urban heat island in Barrow, earlier snowmelt in the village, and dust deposition downwind of gravel pads and roads are all urban effects that could increase ALT. A recent empirical study documented a 17 to 41 cm difference in ALT between locations in the village of Barrow and surrounding undeveloped tundra, even in similar land-cover classes. We mapped ALT in the Barrow Peninsula, with particular attention to contrasts between the urbanized village and relatively undisturbed tundra in the nearby Barrow Environmental Observatory. The modified Berggren solution, an advanced analytic solution to the general Stefan problem of calculating frost and thaw depth, was used in a geographic context to map ALT over the 150 km² area investigated in the Barrow Urban Heat Island Study. The

  9. Determining the Effective Density and Stabilizer Layer Thickness of Sterically Stabilized Nanoparticles

    PubMed Central

    2016-01-01

    A series of model sterically stabilized diblock copolymer nanoparticles has been designed to aid the development of analytical protocols in order to determine two key parameters: the effective particle density and the steric stabilizer layer thickness. The former parameter is essential for high resolution particle size analysis based on analytical (ultra)centrifugation techniques (e.g., disk centrifuge photosedimentometry, DCP), whereas the latter parameter is of fundamental importance in determining the effectiveness of steric stabilization as a colloid stability mechanism. The diblock copolymer nanoparticles were prepared via polymerization-induced self-assembly (PISA) using RAFT aqueous emulsion polymerization: this approach affords relatively narrow particle size distributions and enables the mean particle diameter and the stabilizer layer thickness to be adjusted independently via systematic variation of the mean degree of polymerization of the hydrophobic and hydrophilic blocks, respectively. The hydrophobic core-forming block was poly(2,2,2-trifluoroethyl methacrylate) [PTFEMA], which was selected for its relatively high density. The hydrophilic stabilizer block was poly(glycerol monomethacrylate) [PGMA], which is a well-known non-ionic polymer that remains water-soluble over a wide range of temperatures. Four series of PGMAx–PTFEMAy nanoparticles were prepared (x = 28, 43, 63, and 98, y = 100–1400) and characterized via transmission electron microscopy (TEM), dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS). It was found that the degree of polymerization of both the PGMA stabilizer and core-forming PTFEMA had a strong influence on the mean particle diameter, which ranged from 20 to 250 nm. Furthermore, SAXS was used to determine radii of gyration of 1.46 to 2.69 nm for the solvated PGMA stabilizer blocks. Thus, the mean effective density of these sterically stabilized particles was calculated and determined to lie between 1.19 g

  10. Atomic layer deposition of titanium sulfide and its application in extremely thin absorber solar cells

    SciTech Connect

    Mahuli, Neha; Sarkar, Shaibal K.

    2015-01-15

    Atomic layer deposition (ALD) of TiS{sub 2} is investigated with titanium tetrachloride and hydrogen sulfide precursors. In-situ quartz crystal microbalance and ex-situ x-ray reflectivity measurements are carried out to study self-limiting deposition chemistry and material growth characteristics. The saturated growth rate is found to be ca. 0.5 Å/cycle within the ALD temperature window of 125–200 °C. As grown material is found poorly crystalline. ALD grown TiS{sub 2} is applied as a photon harvesting material for solid state sensitized solar cells with TiO{sub 2} as electron transport medium. Initial results with Spiro-OMeTAD as hole conducting layer show ca. 0.6% energy conversion efficiency under 1 sun illumination.

  11. First-principles analysis of the spectroscopic limited maximum efficiency of photovoltaic absorber layers for CuAu-like chalcogenides and silicon.

    PubMed

    Bercx, Marnik; Sarmadian, Nasrin; Saniz, Rolando; Partoens, Bart; Lamoen, Dirk

    2016-07-27

    Chalcopyrite semiconductors are of considerable interest for application as absorber layers in thin-film photovoltaic cells. When growing films of these compounds, however, they are often found to contain CuAu-like domains, a metastable phase of chalcopyrite. It has been reported that for CuInS2, the presence of the CuAu-like phase improves the short circuit current of the chalcopyrite-based photovoltaic cell. We investigate the thermodynamic stability of both phases for a selected list of I-III-VI2 materials using a first-principles density functional theory approach. For the CuIn-VI2 compounds, the difference in formation energy between the chalcopyrite and CuAu-like phase is found to be close to 2 meV per atom, indicating a high likelihood of the presence of CuAu-like domains. Next, we calculate the spectroscopic limited maximum efficiency (SLME) of the CuAu-like phase and compare the results with those of the corresponding chalcopyrite phase. We identify several candidates with a high efficiency, such as CuAu-like CuInS2, for which we obtain an SLME of 29% at a thickness of 500 nm. We observe that the SLME can have values above the Shockley-Queisser (SQ) limit, and show that this can occur because the SQ limit assumes the absorptivity to be a step function, thus overestimating the radiative recombination in the detailed balance approach. This means that it is possible to find higher theoretical efficiencies within this framework simply by calculating the J-V characteristic with an absorption spectrum. Finally, we expand our SLME analysis to indirect band gap absorbers by studying silicon, and find that the SLME quickly overestimates the reverse saturation current of indirect band gap materials, drastically lowering their calculated efficiency.

  12. Changes of the Macular Ganglion Cell-Inner Plexiform Layer Thickness after Cataract Surgery in Glaucoma Patients

    PubMed Central

    Roh, Hyun Cheol; Park, Choul Yong

    2016-01-01

    Purpose. To investigate the effect of uneventful cataract surgery on macular ganglion cell-inner plexiform layer (mGC-IPL) thickness in glaucoma patients. Methods. This retrospective study included 65 eyes of 65 subjects who underwent uneventful cataract surgery, including 13 glaucoma eyes and 52 normal eyes. Using spectral domain optical coherence tomography, the mGC-IPL thickness was measured and compared between glaucoma and normal eyes preoperatively as well as 1 month and 3 months postoperatively. Linear regression analysis was used to determine the factors associated with postoperative change in mGC-IPL thickness. Results. The mean mGC-IPL significantly increased in both groups 1 month and 3 months after surgery (all P values equal to or less than 0.001). The postoperative changes between groups were not significantly different (P = 0.171). In the multivariate regression analysis, preoperative mGC-IPL thickness showed a significant association with the change of average mGC-IPL thickness 1 month and 3 months after surgery (all P values < 0.001). Conclusions. The mean mGC-IPL thickness was increased after cataract surgery, and the postoperative mGC-IPL thickness changes were associated with preoperative mGC-IPL thickness in both groups and axial length in normal eye. The effects of cataract surgery on mean mGC-IPL thickness were not different in glaucomatous and normal eyes. PMID:28101378

  13. The determination of the thickness of the layers deposited on the electronic circuit boards through tribological methods

    NASA Astrophysics Data System (ADS)

    Petrescu, A. M.; Tudor, A.; Chişiu, G.; Stoica, N. A.; Cihak Bayr, U.

    2017-02-01

    The purpose of the paper is to determinate the thickness of the copper layer deposit on the electronic circuit boards, the thickness of the soldering alloy SAC 307 (96.5%Sn/3.0%Ag/0.7%Cu) deposit on the copper-PCB assembly used in electronic industry and also to determinate the sliding length of the sphere on those materials. Slurry composed of water and SiC was used to reduce the testing time. For the experiment a CSEM Calowear equipment was used and the tested materials were the layer of FR4(flame retardant 4) with copper deposit and the soldering alloy SAC 307.

  14. Note: Accurate determination of thickness of multiple layers of thin film deposited on a piezoelectric quartz crystal.

    PubMed

    Wajid, Abdul

    2013-10-01

    Modern day piezoelectric quartz crystal microbalances for thin film deposition control are based on Z-match equation, which is mathematically valid for deposition of a single material on a given quartz crystal. When multiple layers are deposited, thickness and deposition rate errors accumulate due to mismatch of acoustic impedance of different materials. Here we present a novel method, based on the acoustic transfer matrix formalism, for accurate determination of thickness of an arbitrary number of layers of dissimilar materials deposited on a quartz crystal. Laboratory data show excellent accuracy of the method compared to conventional Z-match equation.

  15. Note: Accurate determination of thickness of multiple layers of thin film deposited on a piezoelectric quartz crystal

    NASA Astrophysics Data System (ADS)

    Wajid, Abdul

    2013-10-01

    Modern day piezoelectric quartz crystal microbalances for thin film deposition control are based on Z-match equation, which is mathematically valid for deposition of a single material on a given quartz crystal. When multiple layers are deposited, thickness and deposition rate errors accumulate due to mismatch of acoustic impedance of different materials. Here we present a novel method, based on the acoustic transfer matrix formalism, for accurate determination of thickness of an arbitrary number of layers of dissimilar materials deposited on a quartz crystal. Laboratory data show excellent accuracy of the method compared to conventional Z-match equation.

  16. Evaluation of layer thickness in human teeth using higher-order-mode leaky Lamb wave interdigital transducers

    SciTech Connect

    Toda, Shinji; Fujita, Takeshi; Arakawa, Hirohisa; Toda, Kohji

    2005-03-01

    An ultrasonic nondestructive evaluation technique of the layer thickness in human teeth is proposed using a leaky Lamb wave device with two arch-shaped interdigital transducers, operating at a plate/water interface. The use of a higher-order-mode leaky Lamb wave with a phase velocity higher than the longitudinal wave velocity in the human tooth is essential to detect reflected ultrasound beams from the tooth section The layer thickness of dentin, estimated from the measured time interval between two reflected echoes, is in good agreement with the optically measured data.

  17. The Bending Strength, Internal Bonding and Thickness Swelling of a Five Layer Sandwiched Bamboo Particleboard

    NASA Astrophysics Data System (ADS)

    Jamaludin, M. A.; Bahari, S. A.; Nordin, K.; Soh, T. F. T.

    2010-03-01

    The demand for wood based material is increasing but the supply is decreasing. Therefore the price of these raw materials has increased. Bamboo provides an economically feasible alternative raw material for the wood based industry. Its properties are comparable to wood. It is also compatible with the existing processing technology. Bamboo is in abundance, easy to propagate and of short maturation period. Bamboo provides a cheaper alternative resource for the wood based industry. The development of new structural components from bamboo will widen its area of application from handicrafts to furniture and building components. In this study, five layer sandwiched bamboo particleboard were manufactured. The sandwiched Bamboo PB consists of a bamboo PB core, oil palm middle veneers and thin meranti surface veneers. The physical and mechanical properties of the bamboo sandwiched particleboards were tested in accordance to the BS-EN 317:1993 [1] and BS-EN 310:1993 [2], respectively. All the samples passed the standards. The modulus of elasticity was about 352% higher than the value specified in the BS standard, BS-EN 312-4:1996 [3]. The Internal bonding was about 23% higher than the general requirements specified in the standard. On the other hand, the thickness swelling was about 6% lower than the standard. No glue line failure was observed in the strength tests. Critical failures in the IB tests were observed in the particleboards. Tension failures were observed in the surface veneers in the bending tests. The five layer sandwiched bamboo particleboard can be used for light weight construction such as furniture, and wall and door panels in buildings.

  18. Estimation of thickness of concentration boundary layers by osmotic volume flux determination.

    PubMed

    Jasik-Ślęzak, Jolanta S; Olszówka, Kornelia M; Slęzak, Andrzej

    2011-06-01

    The estimation method of the concentration boundary layers thicknesses (δ) in a single-membrane system containing non-electrolytic binary or ternary solutions was devised using the Kedem-Katchalsky formalism. A square equation used in this method contains membrane transport (L(p), σ, ω) and solution (D, C) parameters as well as a volume osmotic flux (J(v)). These values can be determined in a series of independent experiments. Calculated values δ are nonlinearly dependent on the concentrations of investigated solutions and the membrane system configuration. These nonlinearities are the effect of a competition between spontaneously occurring diffusion and natural convection. The mathematical model based on Kedem-Katchalsky equations and a concentration Rayleigh number (R(C)) was presented. On the basis of this model we introduce the dimensionless parameter, called by us a Katchalsky number (Ka), modifies R(C) of membrane transport. The critical value of this number well describes a moment of transition from the state of diffusion into convective diffusion membrane transport.

  19. Effect of layer thickness on the superconducting properties in ultrathin Pb films

    NASA Astrophysics Data System (ADS)

    Durajski, A. P.

    2015-09-01

    Recently, superconductivity was found in one atomic layer of Pb film, promising a new field of research where superconductors can be studied on the atomic level. In the presented paper, we report a theoretical study of the superconductivity in ultrathin Pb films consisting of five to ten monolayers. Using the strong coupling Eliashberg formalism we reproduced the experimental values of critical temperature (TC) and we estimated the superconducting energy gap (Δ (0)), thermodynamic critical field (HC) and the specific heat jump at critical temperature (Δ C≤ft({T}{{C}}\\right)\\equiv {C}{{S}}≤ft({T}{{C}}\\right)-{C}{{N}}≤ft({T}{{C}}\\right)) for a wide range of film thicknesses. In these systems, we found an oscillatory behaviour of the above thermodynamic properties modulated by quantum size effects. Moreover, the large values of 2Δ (0){/k}{{B}}{T}{{C}} and Δ C≤ft({T}{{C}}\\right)/{C}{{N}}≤ft({T}{{C}}\\right), and the small values of {T}{{C}}{C}{{N}}≤ft({T}{{C}}\\right)/{H}{{C}}2(0) prove that the thermodynamic properties of Pb films cannot be correctly described using the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity due to the strong coupling and retardation effects.

  20. A large-deformation thin plate theory with application to one-atom-thick layers

    NASA Astrophysics Data System (ADS)

    Delfani, M. R.; Shodja, H. M.

    2016-02-01

    Nowadays, two-dimensional materials due to their vast engineering and biomedical applications have been the focus of many researches. The present paper proposes a large-deformation theory for thin plates with application to one-atom-thick layers (OATLs). The deformation is formulated exactly in the mathematical framework of Lagrangian description. In particular, an exact finite strain analysis is given - in addition to the usual strain tensor associated to the middle surface, the second and third fundamental forms of the middle surface of the deformed thin plate are also maintained in the analysis. Exact closed-form solutions for a uniaxially curved thin plate due to pure bending in one case and due to a combination of vertical and horizontal loading in another are obtained. As a special case of the latter problem, the exact solution for the plane-strain bulge test of thin plates is derived. Subsequently, the approximation of Vlassak and Nix [Vlassak, J.J., Nix, W.D., 1992. J. Mater. Res., 7(12), 3242-3249] for the load-deflection equation is recovered. The given numerical results are devoted to graphene as the most well-known OATL.

  1. Electrical and thermal conduction in atomic layer deposition nanobridges down to 7 nm thickness.

    PubMed

    Yoneoka, Shingo; Lee, Jaeho; Liger, Matthieu; Yama, Gary; Kodama, Takashi; Gunji, Marika; Provine, J; Howe, Roger T; Goodson, Kenneth E; Kenny, Thomas W

    2012-02-08

    While the literature is rich with data for the electrical behavior of nanotransistors based on semiconductor nanowires and carbon nanotubes, few data are available for ultrascaled metal interconnects that will be demanded by these devices. Atomic layer deposition (ALD), which uses a sequence of self-limiting surface reactions to achieve high-quality nanolayers, provides an unique opportunity to study the limits of electrical and thermal conduction in metal interconnects. This work measures and interprets the electrical and thermal conductivities of free-standing platinum films of thickness 7.3, 9.8, and 12.1 nm in the temperature range from 50 to 320 K. Conductivity data for the 7.3 nm bridge are reduced by 77.8% (electrical) and 66.3% (thermal) compared to bulk values due to electron scattering at material and grain boundaries. The measurement results indicate that the contribution of phonon conduction is significant in the total thermal conductivity of the ALD films.

  2. Dual-wavelength synchronously Q-switched solid-state laser with multi-layered graphene as saturable absorber.

    PubMed

    Zhao, Yongguang; Li, Xianlei; Xu, Miaomiao; Yu, Haohai; Wu, Yongzhong; Wang, Zhengping; Hao, Xiaopeng; Xu, Xinguang

    2013-02-11

    Using multilayered graphene as the saturable absorber (SA), Nd:LYSO crystal as the laser material, we demonstrated a laser-diode (LD) pumped, dual-wavelength passively Q-switched solid-state laser. The maximum average output power is 1.8 W, the largest pulse energy and highest peak power is 11.3 μJ, 118 W, respectively. As we have known, they are the best results for passively Q-switched operation of graphene. The pulse laser is strong enough to realize extra-cavity frequency conversions. With a KTP crystal as the sum-frequency generator, the dual wavelengths are proved to be well time overlapped, which manifests the synchronous modulation to the dual-wavelength with multi-layered graphene.

  3. Instability of a compressible circular free jet with consideration of the influence of the jet boundary layer thickness

    NASA Technical Reports Server (NTRS)

    Michalke, A.

    1977-01-01

    The instability of a circular jet was investigated by means of the inviscid linearized stability theory. By variation of a jet parameter which takes the ratio of jet radius to boundary layer thickness into account, the influence of axisymmetry on the spatial growth rate and disturbance phase velocity is studied. The influence of Mach number and temperature ratio is discussed. A comparison with measurements shows that the instability of a turbulent jet boundary layer may also be explained by these results.

  4. Influence of Covering on Critical Thickness of Strained In(x)Ga(1-x)As Layer

    DTIC Science & Technology

    2002-06-03

    Van der Pauw method, not only the channel layer lattice 3. Results and discussion relaxation but also electrical parameters of HEMT struc- tures with...parameters of these structures by the Van der Pauw Blakeslee limit and experimentally determined the value. method, the contact layer was not deposited...obtained by Van der Pauw measurements and placed in carrier scattering cause decreasing electron mobility with Table 1. going up channel thickness. A

  5. Quantifying Variability in Longitudinal Peripapillary RNFL and Choroidal Layer Thickness Using Surface Based Registration of OCT Images

    PubMed Central

    Lee, Sieun; Heisler, Morgan; Mackenzie, Paul J.; Sarunic, Marinko V.; Beg, Mirza Faisal

    2017-01-01

    Purpose To assess within-subject variability of retinal nerve fiber layer (RNFL) and choroidal layer thickness in longitudinal repeat optical coherence tomography (OCT) images with point-to-point measurement comparison made using nonrigid surface registration. Methods Nine repeat peripapillary OCT images were acquired over 3 weeks from 12 eyes of 6 young, healthy subjects using a 1060-nm prototype swept-source device. The RNFL, choroid and the Bruch's membrane opening (BMO) were segmented, and point-wise layer thicknesses and BMO dimensions were measured. For each eye, the layer surfaces of eight follow-up images were registered to those of the baseline image, first by rigid alignment using blood vessel projections and axial height and tilt correction, followed by nonrigid registration of currents-based diffeomorphisms algorithms. This mapped all follow-up measurements point-wise to the common baseline coordinate system, allowing for point-wise statistical analysis. Measurement variability was evaluated point-wise for layer thicknesses and BMO dimensions by time-standard deviation (tSD). Results The intraclass correlation coefficients (ICCs) of BMO area and eccentricity were 0.993 and 0.972, respectively. Time-mean and tSD were computed point-wise for RNFL and choroidal thickness and color-mapped on the baseline surfaces. tSD was less than two coherence lengths of the system 2ℓ = 12 μm at most vertices. High RNFL thickness variability corresponded to the locations of retinal vessels, and choroidal thickness varied more than RNFL thickness. Conclusions Our registration-based end-to-end pipeline produced point-wise correspondence among time-series retinal and choroidal surfaces with high measurement repeatability (low variability). Blood vessels were found to be the main sources contributing to the normal variability of the RNFL thickness measure. The computational pipeline with a measurement of normal variability can be used in future longitudinal studies to

  6. The sub-ice platelet layer and its influence on freeboard to thickness conversion of Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Price, D.; Rack, W.; Langhorne, P. J.; Haas, C.; Leonard, G.; Barnsdale, K.

    2014-02-01

    This is an investigation to quantify the influence of the sub-ice platelet layer on satellite measurements of total freeboard and their conversion to thickness of Antarctic sea ice. The sub-ice platelet layer forms as a result of the seaward advection of supercooled ice shelf water from beneath ice shelves. This ice shelf water provides an oceanic heat sink promoting the formation of platelet crystals which accumulate at the sea ice-ocean interface. The build-up of this porous layer increases sea ice freeboard, and if not accounted for, leads to overestimates of sea ice thickness from surface elevation measurements. In order to quantify this buoyant effect, the solid fraction of the sub-ice platelet layer must be estimated. An extensive in situ data set measured in 2011 in McMurdo Sound in the south-western Ross Sea is used to achieve this. We use drill-hole measurements and the hydrostatic equilibrium assumption to estimate a mean value for the solid fraction of this sub-ice platelet layer of 0.16. This is highly dependent upon the uncertainty in sea ice density. We test this value with independent Global Navigation Satellite System (GNSS) surface elevation data to estimate sea ice thickness. We find that sea ice thickness can be overestimated by up to 19%, with a mean deviation of 12% as a result of the influence of the sub-ice platelet layer. It is concluded that in close proximity to ice shelves this influence should be considered universally when undertaking sea ice thickness investigations using remote sensing surface elevation measurements.

  7. The sub-ice platelet layer and its influence on freeboard to thickness conversion of Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Price, D.; Rack, W.; Langhorne, P. J.; Haas, C.; Leonard, G.; Barnsdale, K.

    2014-06-01

    This is an investigation to quantify the influence of the sub-ice platelet layer on satellite measurements of total freeboard and their conversion to thickness of Antarctic sea ice. The sub-ice platelet layer forms as a result of the seaward advection of supercooled ice shelf water from beneath ice shelves. This ice shelf water provides an oceanic heat sink promoting the formation of platelet crystals which accumulate at the sea ice-ocean interface. The build-up of this porous layer increases sea ice freeboard, and if not accounted for, leads to overestimates of sea ice thickness from surface elevation measurements. In order to quantify this buoyant effect, the solid fraction of the sub-ice platelet layer must be estimated. An extensive in situ data set measured in 2011 in McMurdo Sound in the southwestern Ross Sea is used to achieve this. We use drill-hole measurements and the hydrostatic equilibrium assumption to estimate a mean value for the solid fraction of this sub-ice platelet layer of 0.16. This is highly dependent upon the uncertainty in sea ice density. We test this value with independent Global Navigation Satellite System (GNSS) surface elevation data to estimate sea ice thickness. We find that sea ice thickness can be overestimated by up to 19%, with a mean deviation of 12% as a result of the influence of the sub-ice platelet layer. It is concluded that within 100 km of an ice shelf this influence might need to be considered when undertaking sea ice thickness investigations using remote sensing surface elevation measurements.

  8. The Effect of Various Factors on Variability of Retinal Nerve Fiber Layer Thickness Measurements Using Optical Coherence Tomography

    PubMed Central

    Youm, Dong Ju; Kim, Hyunjoong; Shim, Seong Hee; Jang, Hyo Ju; Kim, Joon Mo; Park, Ki Ho; Choi, Chul Young

    2012-01-01

    Purpose To evaluate the effects of various factors on the variability of retinal nerve fiber layer (RNFL) thickness measurements using the Stratus optical coherence tomography (OCT) in normal and glaucomatous eyes. Methods Four hundred seventy-four subjects (103 normal eyes and 371 glaucomatous eyes) were scanned to determine the RNFL thickness measurements using the Stratus OCT. Measurements were obtained twice during the same day. The standard deviation (SD) was used to compare the variability in RNFL thickness measurements of the normal subjects to that of the glaucomatous patients. Multivariate regression analysis was used to evaluate which covariates were independent predictors of SD in overall mean RNFL thickness. Results The mean SD of all RNFL thickness measurements was larger in the glaucoma group except in one sector. In the multivariate regression analysis, the average signal strength (SS) and the relative SS change (difference in SS between initial and repeat scans, divided by initial SS) were independent predictors of the SD in the RNFL thickness measurements (partial R2 = 0.018, 0.013; p = 0.016, 0.040, respectively). Conclusions Glaucomatous eyes tend to be more variable than normal eyes in RNFL thickness measurement using the Straus OCT. The average SS and the relative SS changes appear to correlate with the variability in RNFL thickness measurement. Therefore, the results of the RNFL analysis should not be interpreted independently of these factors. PMID:22511836

  9. Direct evidence of void passivation in Cu(InGa)(SSe){sub 2} absorber layers

    SciTech Connect

    Lee, Dongho; Kim, Young-Su; Mo, Chan B.; Huh, Kwangsoo; Yang, JungYup E-mail: ddang@korea.ac.kr; Nam, Junggyu; Baek, Dohyun; Park, Sungchan; Kim, ByoungJune; Kim, Dongseop; Lee, Jaehan; Heo, Sung; Park, Jong-Bong; Kang, Yoonmook E-mail: ddang@korea.ac.kr

    2015-02-23

    We have investigated the charge collection condition around voids in copper indium gallium sulfur selenide (CIGSSe) solar cells fabricated by sputter and a sequential process of selenization/sulfurization. In this study, we found direct evidence of void passivation by using the junction electron beam induced current method, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The high sulfur concentration at the void surface plays an important role in the performance enhancement of the device. The recombination around voids is effectively suppressed by field-assisted void passivation. Hence, the generated carriers are easily collected by the electrodes. Therefore, when the S/(S + Se) ratio at the void surface is over 8% at room temperature, the device performance degradation caused by the recombination at the voids is negligible at the CIGSSe layer.

  10. Dust devil height and spacing with relation to the martian planetary boundary layer thickness

    NASA Astrophysics Data System (ADS)

    Fenton, Lori K.; Lorenz, Ralph

    2015-11-01

    In most remote and unmonitored places, little is known about the characteristics of daytime turbulent activity. Few processes render the optically transparent atmospheres of Earth and Mars visible; put more plainly, without clever instruments it is difficult to "see the unseen". To address this, we present a pilot study of images of martian dust devils (DDs) testing the hypothesis that DD height and spacing correlates with the thickness of the planetary boundary layer (PBL), h. The survey includes Context Camera (CTX) images from a 580 × 590 km2 area (196-208°E, 30-40°N) in northern Amazonis Planitia, spanning ∼3.6 Mars Years (MY) from Ls = 134.55°, MY 28 (13 November 2006) to Ls = 358.5°, MY 31 (28 July 2013). DD activity follows a repeatable seasonal pattern similar to that found in previous surveys, with a distinct "on" season during local summer, beginning shortly before the northern spring equinox (Ls = 0°) and lasting until just after the northern fall equinox (Ls = 180°). DD heights measured from shadow lengths varied considerably, with median values peaking at local midsummer. Modeled PBL heights, constrained by those measured from radio occultation data, follow a similar seasonal trend, and correlation of the two suggests that the martian PBL thickness is approximately 5 times the median DD height. These results compare favorably to the limited terrestrial data available. DD spacing was measured using nearest neighbor statistics, following the assumption that because convection cell widths have been measured to be ∼1.2 ± 0.2h (Willis, G.E., Deardorff, J.W. [1979]. J. Geophys. Res. 84(C1), 295-302), a preference for DD formation at vertices of convection cells intersections could be used to estimate the PBL height. During local spring and summer, the DD average nearest neighbor (ANN) ranged from ∼1 to 2h, indicating that DD spacing does indeed correlate with PBL height. However, this result is complicated by two factors: (1) convection cell

  11. The Influence of Irradiation Time and Layer Thickness on Elution of Triethylene Glycol Dimethacrylate from SDR® Bulk-Fill Composite

    PubMed Central

    Jakubowska, Katarzyna; Chlubek, Dariusz; Buczkowska-Radlińska, Jadwiga

    2016-01-01

    Objective. This study aimed to evaluate triethylene glycol dimethacrylate (TEGDMA) elution from SDR bulk-fill composite. Methods. Three groups of samples were prepared, including samples polymerized in a 4 mm layer for 20 s, in a 4 mm layer for 40 s, and in a 2 mm layer for 20 s. Elution of TEGDMA into 100% ethanol, a 75% ethanol/water solution, and distilled water was studied. The TEGDMA concentration was measured using HPLC. Results. The TEGDMA concentration decreased in the following order: 100% ethanol > 75% ethanol > distilled water. Doubling the energy delivered to the 4 mm thick sample caused decrease (p < 0.05) in TEGDMA elution to distilled water. In ethanol solutions, the energy increase had no influence on TEGDMA elution. Decreasing the sample thickness resulted in decrease (p < 0.05) in TEGDMA elution for all the solutions. Conclusions. The concentration of eluted TEGDMA and the elution time were both strongly affected by the hydrophobicity of the solvent. Doubling the energy delivered to the 4 mm thick sample did not decrease the elution of TEGDMA but did decrease the amount of the monomer available to less aggressive solvents. Elution of TEGDMA was also correlated with the exposed sample surface area. Clinical Relevance. Decreasing the SDR layer thickness decreases TEGDMA elution. PMID:27366742

  12. The Influence of Irradiation Time and Layer Thickness on Elution of Triethylene Glycol Dimethacrylate from SDR® Bulk-Fill Composite.

    PubMed

    Łagocka, Ryta; Jakubowska, Katarzyna; Chlubek, Dariusz; Buczkowska-Radlińska, Jadwiga

    2016-01-01

    Objective. This study aimed to evaluate triethylene glycol dimethacrylate (TEGDMA) elution from SDR bulk-fill composite. Methods. Three groups of samples were prepared, including samples polymerized in a 4 mm layer for 20 s, in a 4 mm layer for 40 s, and in a 2 mm layer for 20 s. Elution of TEGDMA into 100% ethanol, a 75% ethanol/water solution, and distilled water was studied. The TEGDMA concentration was measured using HPLC. Results. The TEGDMA concentration decreased in the following order: 100% ethanol > 75% ethanol > distilled water. Doubling the energy delivered to the 4 mm thick sample caused decrease (p < 0.05) in TEGDMA elution to distilled water. In ethanol solutions, the energy increase had no influence on TEGDMA elution. Decreasing the sample thickness resulted in decrease (p < 0.05) in TEGDMA elution for all the solutions. Conclusions. The concentration of eluted TEGDMA and the elution time were both strongly affected by the hydrophobicity of the solvent. Doubling the energy delivered to the 4 mm thick sample did not decrease the elution of TEGDMA but did decrease the amount of the monomer available to less aggressive solvents. Elution of TEGDMA was also correlated with the exposed sample surface area. Clinical Relevance. Decreasing the SDR layer thickness decreases TEGDMA elution.

  13. Influence of defects and indium distribution on emission properties of thick In-rich InGaN layers grown by the DERI technique

    NASA Astrophysics Data System (ADS)

    Dobrovolskas, Darius; Mickevičius, Jūras; Nargelas, Saulius; Vaitkevičius, Augustas; Nanishi, Yasushi; Araki, Tsutomu; Tamulaitis, Gintautas

    2017-02-01

    We report on the spatial variation of optical properties in thick, In-rich InGaN layers, grown by a novel droplet elimination by radical beam irradiation (DERI) technique. The increase of layer thickness causes layer relaxation and results in double-peaked photoluminescence spectra. Spatially resolved measurements show that the defects in the strained sub-layer are distributed inhomogeneously. An increase in the layer thickness results in faster nonradiative recombination due to increasing density of nonradiative recombination centers, as evidenced by time-resolved free carrier absorption, and facilitates larger indium incorporation in the upper part of the layer.

  14. Thickness and Lower Limit Seismogenic Layer within the Crust beneath Japanese Islands on the Japan Sea Side

    NASA Astrophysics Data System (ADS)

    Matsubara, M.; Sato, H.

    2015-12-01

    1. Introduction I investigate the depth of the seismogenic layer in order to estimate the lower limit of the seismogenic fault plane since this depth is related to the size of the earthquake caused by the active fault. I have indexes D10 and D90 as the upper and lower limits of the seismogenic layer defined as the depth above which 10 % and 90 % of the whole crustal earthquakes occurred from the surface, respectively. The difference between the D10 and D90 is the thickness of the seismogenic layer. 2. Data and method The NIED Hi-net has a catalog of hypocenters determined with one-dimensional velocity (1D) structure (Ukawa et al., 1984) and I estimated the D10 and D90 with this catalog at first. I construct the system to relocate the hypocenters from 2001 to 2013 with magnitude greater than 1.5 on the Japan Sea side shallower than 50 km depth with the three-dimensional velocity (3D) structure (Matsubara and Obara, 2011) obtained by seismic tomography. I estimate the D10 and D90 from the hypocenter catalog with 3D structure. 3. Result Many earthquakes shallower than 5 km with 1D structure are relocated to deeper with 3D structure and the earthquakes deeper than 15 km are relocated to about 5 km shallower. With 3D structure D10 deepens and D90 shallows from 1D structure. D90 beneath the northern Honshu is deeper than the other area and D90 beneath the Japan Sea is much deeper than the inland area. The thickness of the seismogenic layer beneath the Japan Sea is also thick from 8-16 km. D90 on the Japan Sea side of the southwestern Japan on the west side of the Itoigawa Shizuoka Tectonic Line is very shallow as 11-16 km and the thickness of the seismogenic layer is also thin as 2-7 km. 4. Discussion Omuralieva et al. (2012) relocated the JMA unified hypocenters with 3D structure and estimated shallower D90 than that from the JMA catalog. Very deep D90 beneath the northern Hokkaido and northern Honshu is consistent with our result. 5. Conclusion Using 3D velocity

  15. Choroid, Haller's, and Sattler's Layer Thickness in Intermediate Age-Related Macular Degeneration With and Without Fellow Neovascular Eyes

    PubMed Central

    Esmaeelpour, Marieh; Ansari-Shahrezaei, Siamak; Glittenberg, Carl; Nemetz, Susanne; Kraus, Martin F.; Hornegger, Joachim; Fujimoto, James G.; Drexler, Wolfgang; Binder, Susanne

    2014-01-01

    Purpose. To analyze choroidal, Sattler's, and Haller's layer thickness maps in age-related macular degeneration (AMD) patients having eyes with bilateral large drusen and pigment changes (intermediate AMD), in patients having intermediate AMD eyes with neovascular fellow eyes (nAMD), and in healthy subjects using three-dimensional (3D) 1060-nm optical coherence tomography (OCT). Methods. Automatically generated choroidal thickness (ChT), retinal thickness, and Sattler's and Haller's layer thickness maps were statistically analyzed in 67 subjects consisting of intermediate AMD (n = 21), intermediate AMD (n = 22) with fellow nAMD eyes (n = 22), and healthy eyes (n = 24) with no age and axial eye length difference between groups of eyes (P > 0.05, ANOVA). Eyes were imaged by a prototype high-speed (60,000 A-scans/s) spectral-domain 3D 1060-nm OCT over a 36° × 36° field of view. Results. The mean ± SD (μm) subfoveal ChT for healthy subjects and for bilateral intermediate AMD, unilateral intermediate AMD, and their nAMD fellow eyes was 259 ± 95 and 222 ± 98, 149 ± 60, and 171 ± 78, respectively. Choroidal thickness maps demonstrated significant submacular thinning in unilateral intermediate AMD in comparison to healthy and bilateral intermediate AMD eyes (P < 0.001, ANOVA, post hoc P < 0.001 and P < 0.05, respectively). Sattler's and Haller's layers were thinnest in intermediate AMDs that presented with nAMD fellow eyes (Kruskal-Wallis test P < 0.01). For the choroid and its sublayers, there was no difference between the intermediate AMD eyes and their fellow nAMD eyes (paired testing, P < 0.05). Conclusions. The 3D 1060-nm OCT choroidal imaging visualized significant changes in choroidal, Sattler's, and Haller's layer thickness in relation to the progression of AMD. This may be important for understanding the choroidopathy in the pathophysiology of AMD. PMID:25052997

  16. Intercalation of IR absorber into layered double hydroxides: Preparation, thermal stability and selective IR absorption

    SciTech Connect

    Zhu, Haifeng; Tang, Pinggui; Feng, Yongjun; Wang, Lijing; Li, Dianqing

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer PMIDA anions were intercalated into Mg{sub 2}Al-NO{sub 3} LDH by anion-exchange method. Black-Right-Pointing-Pointer The prepared material has highly selective IR absorption property in 9-11 {mu}m. Black-Right-Pointing-Pointer The obtained material has practical applications as heat-retaining additive. -- Abstract: N-phosphonomethyl aminodiacetic acid (PMIDA) was intercalated into the interlayer spacing of layered double hydroxides (LDH) by an anion-exchange method. The intercalated LDHs were characterized by various techniques such as powder X-ray diffraction (XRD), FT-IR spectroscopy, elemental analysis and simultaneous thermogravimetric and mass spectrometry (TG-MS) in details. The results show the formation of Mg{sub 2}Al-PMIDA LDH based on the expansion of d-spacing from 0.89 nm to 1.22 nm and the disappearance of the characteristic IR absorption band at 1384 cm{sup -1} for NO{sub 3}{sup -} anions. The incorporation of Mg{sub 2}Al-PMIDA LDH into the low density polyethylene (LDPE) as an additive enhances the selectivity of IR absorption in the main wavelength region 9-11 {mu}m for radiant heat loss at night. Mg{sub 2}Al-PMIDA LDH as a heat-retaining additive has practical application in agricultural plastic films.

  17. Determination of thickness of thin turbid painted over-layers using micro-scale spatially offset Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Conti, Claudia; Realini, Marco; Colombo, Chiara; Botteon, Alessandra; Bertasa, Moira; Striova, Jana; Barucci, Marco; Matousek, Pavel

    2016-12-01

    We present a method for estimating the thickness of thin turbid layers using defocusing micro-spatially offset Raman spectroscopy (micro-SORS). The approach, applicable to highly turbid systems, enables one to predict depths in excess of those accessible with conventional Raman microscopy. The technique can be used, for example, to establish the paint layer thickness on cultural heritage objects, such as panel canvases, mural paintings, painted statues and decorated objects. Other applications include analysis in polymer, biological and biomedical disciplines, catalytic and forensics sciences where highly turbid overlayers are often present and where invasive probing may not be possible or is undesirable. The method comprises two stages: (i) a calibration step for training the method on a well characterized sample set with a known thickness, and (ii) a prediction step where the prediction of layer thickness is carried out non-invasively on samples of unknown thickness of the same chemical and physical make up as the calibration set. An illustrative example of a practical deployment of this method is the analysis of larger areas of paintings. In this case, first, a calibration would be performed on a fragment of painting of a known thickness (e.g. derived from cross-sectional analysis) and subsequently the analysis of thickness across larger areas of painting could then be carried out non-invasively. The performance of the method is compared with that of the more established optical coherence tomography (OCT) technique on identical sample set. This article is part of the themed issue "Raman spectroscopy in art and archaeology".

  18. Low-Temperature Solution-Processed Kesterite Solar Cell Based on in Situ Deposition of Ultrathin Absorber Layer.

    PubMed

    Hou, Yi; Azimi, Hamed; Gasparini, Nicola; Salvador, Michael; Chen, Wei; Khanzada, Laraib S; Brandl, Marco; Hock, Rainer; Brabec, Christoph J

    2015-09-30

    The production of high-performance, solution-processed kesterite Cu2ZnSn(Sx,Se1-x)4 (CZTSSe) solar cells typically relies on high-temperature crystallization processes in chalcogen-containing atmosphere and often on the use of environmentally harmful solvents, which could hinder the widespread adoption of this technology. We report a method for processing selenium free Cu2ZnSnS4 (CZTS) solar cells based on a short annealing step at temperatures as low as 350 °C using a molecular based precursor, fully avoiding highly toxic solvents and high-temperature sulfurization. We show that a simple device structure consisting of ITO/CZTS/CdS/Al and comprising an extremely thin absorber layer (∼110 nm) achieves a current density of 8.6 mA/cm(2). Over the course of 400 days under ambient conditions encapsulated devices retain close to 100% of their original efficiency. Using impedance spectroscopy and photoinduced charge carrier extraction by linearly increasing voltage (photo-CELIV), we demonstrate that reduced charge carrier mobility is one limiting parameter of low-temperature CZTS photovoltaics. These results may inform less energy demanding strategies for the production of CZTS optoelectronic layers compatible with large-scale processing techniques.

  19. The relationship of boundary layer clouds in the tropical southeast Atlantic to absorbing aerosols, meteorology and climate change

    NASA Astrophysics Data System (ADS)

    Zuidema, P.; Adebiyi, A. A.; Ramajiguru, L.

    2015-12-01

    Ascension Island, a remote island located in the middle of the Atlantic Ocean within the trade-wind region oat 8S, 14.5W, experiences the outflow of biomass-burning aerosols from continental Africa, over 2000 km away, from July through November, peaking in August and September. The shortwave-absorbing free-tropospheric aerosols, located in a region of high solar irradiance, provide a climate warming that is poorly represented in global aerosol climate models. The low clouds can respond to the smoke layer in myriad possible ways that are not yet well-documented. The shortwave-warming can stabilize the free-troposphere, enhancing the low cloud fraction. The deepening boundary layer and subsiding smoke layer also increase the likelihood of aerosol-cloud microphysical interactions. Interest in this climate regime is supporting an observational strategy of a year-long DOE ARM Mobile Facility deployment to Ascension (Layered Atlantic Smoke Interactions with Clouds, or LASIC), and an NSF aircraft campaign (ObservatioNs of Fire's Impact on the southeast atlantic REgion, or ONFIRE) based on Sao Tome Island. These campaigns will be integrated with NASA, UK and African activities sharing similar goals based further south in Namibia. Initial analysis is distinguishing meteorology from aerosol impacts on the boundary layer cloud fields. The forward trajectories of emissions from over 24,000 fire sources on continental Africa show that a free-tropospheric jet can advect aerosols to above Ascension island in just one-two days. The fast transport time encourages retention of signatures of the fire sources, in particular the radiatively-crucial single-scattering albedo value. Thereafter, a deep land-based anticyclonic high recirculates over one-third of these trajectories back to the African continent, explaining the widespread extent of the aerosol layer. The free-tropospheric jet also reduces the mean atmospheric subsidence independently of shortwave absorption by the aerosols

  20. Black sea surface temperature anomaly on 5th August 1998 and the ozone layer thickness

    NASA Astrophysics Data System (ADS)

    Manev, A.; Palazov, K.; Raykov, St.; Ivanov, V.

    2003-04-01

    BLACK SEA SURFACE TEMPERATURE ANOMALY ON 5th AUGUST 1998 AND THE OZONE LAYER THICKNESS A. Manev , K. Palazov , St. Raykov, V. Ivanov Solar Terrestrial Influences Laboratory, Bulgarian Academy of Sciences amanev@abv.bg This paper focuses on the peculiarities of the Black Sea surface temperature anomaly on 05.08.1998. Researching the daily temperature changes in a number of control fields in the course of 8-10 years, we have found hidden correlations and anomalous deviations in the sea surface temperatures on a global scale. Research proves the statistical reliability of the temperature anomaly on the entire Black Sea surface registered on 04.-05.08.1998. In the course of six days around these dates the temperatures are up to 2°C higher than the maximum temperatures in this period in the other seven years. A more detailed analysis of the dynamics of the anomaly required the investigation of five Black Sea surface characteristic zones of 75x75 km. The analysis covers the period 20 days - 10 days before and 10 days after the anomaly. Investigations aimed at interpreting the reasons for the anomalous heating of the surface waters. We have tried to analyze the correlation between sea surface temperature and the global ozone above the Black Sea by using simultaneously data from the two satellite systems NOAA and TOMS. Methods of processing and comparing the data from the two satellite systems are described. The correlation coefficients values for the five characteristic zones are very high and close, which proves that the character of the correlation ozone - sea surface temperature is the same for the entire Black Sea surface. Despite the high correlation coefficient, we have proved that causality between the two phenomena at the time of the anomaly does not exit.

  1. Study of carrier recombination transient characteristics in MOCVD grown GaN dependent on layer thickness

    SciTech Connect

    Gaubas, E. Čeponis, T.; Jasiunas, A.; Jelmakas, E.; Juršėnas, S.; Kadys, A.; Malinauskas, T.; Tekorius, A.; Vitta, P.

    2013-11-15

    The MOCVD grown GaN epi-layers of different thickness have been examined in order to clarify a role of surface recombination, to separate an impact of radiative and non-radiative recombination and disorder factors. The microwave probed –photoconductivity (MW-PC) and spectrally resolved photo-luminescence (PL) transients were simultaneously recorded under ultraviolet (UV) light 354 nm pulsed 500 ps excitation. The MW-PC transients exhibited the carrier decay components associated with carrier decay within micro-crystals and the disordered structure on the periphery areas surrounding crystalline columns. Three PL bands were resolved within PL spectrum, namely, the exciton ascribed UV-PL band edge for hν>3.3 eV, blue B-PL band for 2.5 < hν < 3.0 eV and yellow Y-PL band with hν < 2.4 eV. It has been obtained that intensity of UV-PL band increases with excitation density, while intensity of B-PL band is nearly invariant. However, intensity of the Y-PL increases with reduction of the excitation density. The Y-PL can be associated with trapping centers. A reduction of UV excitation density leads to a decrease of the relative amplitude of the asymptotic component within the MW-PC transients and to an increase of the amplitude as well as duration of the yellow spectral band (Y-PL) asymptotic component. Fractional index α with values 0.5 < α < 0.8 was evaluated for the stretched-exponent component which fits the experimental transients determined by the disordered structure ascribed to the periphery areas surrounding the crystalline columns.

  2. Super-resolved thickness maps of thin film phantoms and in vivo visualization of tear film lipid layer using OCT

    PubMed Central

    dos Santos, Valentin Aranha; Schmetterer, Leopold; Triggs, Graham J.; Leitgeb, Rainer A.; Gröschl, Martin; Messner, Alina; Schmidl, Doreen; Garhofer, Gerhard; Aschinger, Gerold; Werkmeister, René M.

    2016-01-01

    In optical coherence tomography (OCT), the axial resolution is directly linked to the coherence length of the employed light source. It is currently unclear if OCT allows measuring thicknesses below its axial resolution value. To investigate spectral-domain OCT imaging in the super-resolution regime, we derived a signal model and compared it with the experiment. Several island thin film samples of known refractive indices and thicknesses in the range 46 – 163 nm were fabricated and imaged. Reference thickness measurements were performed using a commercial atomic force microscope. In vivo measurements of the tear film were performed in 4 healthy subjects. Our results show that quantitative super-resolved thickness measurement can be performed using OCT. In addition, we report repeatable tear film lipid layer visualization. Our results provide a novel interpretation of the OCT axial resolution limit and open a perspective to deeper extraction of the information hidden in the coherence volume. PMID:27446696

  3. Real-Space Direct Visualization of the Layer-Dependent Roughening Transition in Nanometer-Thick Pb Films

    NASA Astrophysics Data System (ADS)

    Calleja, F.; Passeggi, M. C. G., Jr.; Hinarejos, J. J.; de Parga, A. L. Vázquez; Miranda, R.

    2006-11-01

    By means of variable-temperature scanning tunneling microscopy and spectroscopy we studied the thickness-dependent roughening temperature of Pb films grown on Cu(111), whose electronic structure and total energy is controlled by quantum well states created by the spatial confinement of electrons. Large scale STM images are employed to quantify the layer population, i.e., the fraction of the surface area covered by different Pb thicknesses, directly in the real space as a function of temperature. The roughening temperature oscillates repeatedly with bilayer periodicity plus a longer beating period, mirroring the thickness dependence of surface energy calculations. Conditions have been found to stabilize at 300 K Pb films of particular magic thicknesses, atomically flat over microns.

  4. A Technique for Measuring the Thickness of a Thin Contaminant Layer

    DTIC Science & Technology

    A method of determining the thickness of a known contaminant on a 77K metallic reflecting surface is considered. A single reflectance measurement is used to determine the thickness after the optical constants of the contaminant and the reflecting surface have been determined. An existing research chamber is modified for experimental evaluation of this approach to a thickness measurement, and an experimental program is outlined. (Author)

  5. Investigation of the crater-like microdefects induced by laser shock processing with aluminum foil as absorbent layer

    NASA Astrophysics Data System (ADS)

    Ye, Y. X.; Xuan, T.; Lian, Z. C.; Feng, Y. Y.; Hua, X. J.

    2015-06-01

    This paper reports that 3D crater-like microdefects form on the metal surface when laser shock processing (LSP) is applied. LSP was conducted on pure copper block using the aluminum foil as the absorbent material and water as the confining layer. There existed the bonding material to attach the aluminum foil on the metal target closely. The surface morphologies and metallographs of copper surfaces were characterized with 3D profiler, the optical microscopy (OM) or the scanning electron microscopy (SEM). Temperature increases of metal surface due to LSP were evaluated theoretically. It was found that, when aluminum foil was used as the absorbent material, and if there existed air bubbles in the bonding material, the air temperatures within the bubbles rose rapidly because of the adiabatic compression. So at the locations of the air bubbles, the metal materials melted and micromelting pool formed. Then under the subsequent expanding of the air bubbles, a secondary shock wave was launched against the micromelting pool and produced the crater-like microdefects on the metal surface. The temperature increases due to shock heat and high-speed deformation were not enough to melt the metal target. The temperature increase induced by the adiabatic compression of the air bubbles may also cause the gasification of the metal target. This will also help form the crater-like microdefects. The results of this paper can help to improve the surface quality of a metal target during the application of LSP. In addition, the results provide another method to fabricate 3D crater-like dents on metal surface. This has a potential application in mechanical engineering.

  6. Ganglion Cell-Inner Plexiform Layer, Peripapillary Retinal Nerve Fiber Layer, and Macular Thickness in Eyes with Myopic β-Zone Parapapillary Atrophy

    PubMed Central

    Choi, Jin A.; Kim, Jung-sub

    2016-01-01

    Purpose. To assess the correlations of myopic β-zone parapapillary atrophy (β-PPA) with the optic nerve head (ONH) and retina. Methods. We selected 27 myopic patients who showed prominent β-PPA in one eye and no β-PPA in the other eye. We studied their macula, macular ganglion cell-inner plexiform layer (mGCIPL), peripapillary retinal nerve fiber layer (pRNFL) thickness, and ONH parameters using optical coherence tomography. Results. The average of five out of six sectors and minimum values of mGCIPL thicknesses in eyes with prominent β-PPA discs were significantly less than those of the control eyes. The results of clock-hour sector analyses showed significant differences for pRNFL thickness in one sector. In the ONH analyses, no significant difference was observed between myopic β-PPA and control eyes. The macular thickness of the β-PPA eyes was thinner than control eyes in all sectors. There was a significant difference between the two groups in three sectors (the inner superior macula, inner temporal macula, and inner inferior macula) but there was no significant difference in the other sectors, including the fovea. Conclusions. The myopic β-PPA eyes showed thinner mGCIPL, parafovea, and partial pRNFL layers compared with myopic eyes without β-PPA. PMID:27867659

  7. Reproducibility of SD-OCT–Based Ganglion Cell–Layer Thickness in Glaucoma Using Two Different Segmentation Algorithms

    PubMed Central

    Garvin, Mona K.; Lee, Kyungmoo; Burns, Trudy L.; Abràmoff, Michael D.; Sonka, Milan; Kwon, Young H.

    2013-01-01

    Purpose. To compare the reproducibility of spectral-domain optical coherence tomography (SD-OCT)–based ganglion cell–layer-plus-inner plexiform–layer (GCL+IPL) thickness measurements for glaucoma patients obtained using both a publicly available and a commercially available algorithm. Methods. Macula SD-OCT volumes (200 × 200 × 1024 voxels, 6 × 6 × 2 mm3) were obtained prospectively from both eyes of patients with open-angle glaucoma or with suspected glaucoma on two separate visits within 4 months. The combined GCL+IPL thickness was computed for each SD-OCT volume within an elliptical annulus centered at the fovea, based on two algorithms: (1) a previously published graph-theoretical layer segmentation approach developed at the University of Iowa, and (2) a ganglion cell analysis module of version 6 of Cirrus software. The mean overall thickness of the elliptical annulus was computed as was the thickness within six sectors. For statistical analyses, eyes with an SD-OCT volume with low signal strength (<6), image acquisition errors, or errors in performing the commercial GCL+IPL analysis in at least one of the repeated acquisitions were excluded. Results. Using 104 eyes (from 56 patients) with repeated measurements, we found the intraclass correlation coefficient for the overall elliptical annular GCL+IPL thickness to be 0.98 (95% confidence interval [CI]: 0.97–0.99) with the Iowa algorithm and 0.95 (95% CI: 0.93–0.97) with the Cirrus algorithm; the intervisit SDs were 1.55 μm (Iowa) and 2.45 μm (Cirrus); and the coefficients of variation were 2.2% (Iowa) and 3.5% (Cirrus), P < 0.0001. Conclusions. SD-OCT–based GCL+IPL thickness measurements in patients with early glaucoma are highly reproducible. PMID:24045993

  8. Differences of Intrasession Reproducibility of Circumpapillary Total Retinal Thickness and Circumpapillary Retinal Nerve Fiber Layer Thickness Measurements Made with the RS-3000 Optical Coherence Tomograph

    PubMed Central

    Kita, Yoshiyuki; Hollό, Gábor; Kita, Ritsuko; Horie, Daisuke; Inoue, Makoto; Hirakata, Akito

    2015-01-01

    Purpose To evaluate the intrasession reproducibility of various thickness parameters used to diagnose and follow-up glaucoma, in particular circumpapillary total retinal thickness (cpTR) provided by the RS-3000 optical coherence tomograph (OCT). Methods Fifty-three healthy eyes of 28 subjects underwent three consecutive imaging with the RS-3000 Advance OCT (NIDEK, Aichi,Japan) to evaluate the intrasession reproducibility of circumpapillary total retinal thickness (cpTR), circumpapillary retinal nerve fiber layer thickness (cpRNFL), macular ganglion cell complex thickness (mGCC) and macular total retina thickness (mTR) measurements. Intraclass correlation (ICC), coefficient of variation (CV) and reproducibility coefficient (RC) were calculated for each parameter. Results The ICC and CV values for mean cpTR and cpRNFL were 0.987 and 0.897, and 0.60% and 2.81%, respectively. The RC values for the mean cpTR and cpRNFL were 5.95 μm and 9.04 μm, respectively. For all cpTR parameters the ICC values were higher and both the CV and RC values were lower than those for the corresponding cpRNFL parameters. The ICC and CV values for superior mGCC, inferior mGCC, superior mTR and inferior mTR were 0.983, 0.980, 0.983 and 0.988, and 0.84%, 0.98%, 0.48% and 0.43%, respectively. The RC values for superior mGCC, inferior mGCC, superior mTR and inferior mTR were 2.86 μm, 3.12 μm, 4.41μm and 4.43 μm, respectively. Conclusions Intrasession reproducibility of cpTR, mGCC and mTR measurements made on healthy eyes was high. Repeatability of cpTR measurements was better than that of the corresponding cpRNFL measurements. These results suggest that future clinical investigations addressing detection of glaucoma and glaucomatous progression with the RS-3000 OCT may benefit from focusing on the cpTR parameters. PMID:26657805

  9. Multiple sclerosis and optic nerve: an analysis of retinal nerve fiber layer thickness and color Doppler imaging parameters

    PubMed Central

    Akçam, H T; Capraz, I Y; Aktas, Z; Batur Caglayan, H Z; Ozhan Oktar, S; Hasanreisoglu, M; Irkec, C

    2014-01-01

    Purpose To compare both retinal nerve fiber layer thickness and orbital color Doppler ultrasonography parameters in patients with multiple sclerosis (MS) versus healthy controls. Methods This is an observational case–control study. Forty eyes from MS patients and twenty eyes from healthy volunteers were examined. Eyes were classified into three groups as group 1, eyes from MS patients with previous optic neuritis (n=20); group 2, eyes from MS patients without previous optic neuritis (n=20); and group 3, eyes from healthy controls (n=20). Following complete ophthalmologic examination and retinal nerve fiber layer thickness measurement for each group, blood flow velocities of posterior ciliary arteries, central retinal artery, ophthalmic artery, and superior ophthalmic vein were measured. Pourcelot index (resistive index), an indicator of peripheral vascular resistance, was also calculated. The statistical assessment was performed with the assistance of Pearson's Chi-square test, Mann–Whitney U-test, Kruskal–Wallis test, and Spearman's correlation test. Results The studied eyes exposed similar values in terms of intraocular pressure and central corneal thickness, implying no evidence in favor of glaucoma. All nerve fiber layer thickness values, except superior nasal quadrants, in group 1 were found to be significantly thinner than groups 2 and 3. Blood flow velocity and mean resistivity index parameters were similar in all the groups. Conclusions In MS patients, especially with previous optic neuritis, diminished retinal nerve fiber layer thickness was observed. Contrary to several studies in the current literature, no evidence supporting potential vascular origin of ocular involvement in MS was found. PMID:25081285

  10. Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates

    NASA Astrophysics Data System (ADS)

    Bogumilowicz, Y.; Hartmann, J. M.; Rochat, N.; Salaun, A.; Martin, M.; Bassani, F.; Baron, T.; David, S.; Bao, X.-Y.; Sanchez, E.

    2016-11-01

    We have grown GaAs epitaxial layers on Ge buffers, themselves on Si (001) substrates, using an Applied Materials 300 mm metal organic chemical vapor deposition tool. We varied the Ge buffer thickness between 0.36 and 1.38 μm and studied the properties of a 0.27 μm thick GaAs layer on top. We found that increasing the Ge buffer thickness yielded smoother GaAs films with an rms surface roughness as low as 0.5 nm obtained on a 5×5 μm2 area. The bow of the substrate increased following a linear law with the epitaxial stack thickness up to 240 μm for a 1.65 μm stack. We have also characterized the threading dislocations present in the GaAs layers using X-ray diffraction and cathodoluminescence. Increasing the Ge buffer thickness resulted in lower threading dislocation densities, enabling us to obtain anti-phase boundary - free GaAs films with a threading dislocation density as low as 3×107 cm-2. In addition, atomic force microscopy surface topology measurements showed the presence of pits in the GaAs layers whose density agreed well with other threading dislocation density assessments. It thus seems that threading dislocations can in certain cases induce some growth rate variations, making them visible in as-grown GaAs films. Using thicker Ge buffers results in smoother films with less threading dislocations, with the side effect of increasing the bow on the wafer. If bow is not an issue, this is a practical approach to improve the GaAs (on Ge buffer) on silicon quality.

  11. The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition.

    PubMed

    Wang, Zi-Yi; Zhang, Rong-Jun; Lu, Hong-Liang; Chen, Xin; Sun, Yan; Zhang, Yun; Wei, Yan-Feng; Xu, Ji-Ping; Wang, Song-You; Zheng, Yu-Xiang; Chen, Liang-Yao

    2015-01-01

    The aluminum oxide (Al2O3) thin films with various thicknesses under 50 nm were deposited by atomic layer deposition (ALD) on silicon substrate. The surface topography investigated by atomic force microscopy (AFM) revealed that the samples were smooth and crack-free. The ellipsometric spectra of Al2O3 thin films were measured and analyzed before and after annealing in nitrogen condition in the wavelength range from 250 to 1,000 nm, respectively. The refractive index of Al2O3 thin films was described by Cauchy model and the ellipsometric spectra data were fitted to a five-medium model consisting of Si substrate/SiO2 layer/Al2O3 layer/surface roughness/air ambient structure. It is found that the refractive index of Al2O3 thin films decrease with increasing film thickness and the changing trend revised after annealing. The phenomenon is believed to arise from the mechanical stress in ALD-Al2O3 thin films. A thickness transition is also found by transmission electron microscopy (TEM) and SE after 900°C annealing.

  12. Strain distribution in Si capping layers on SiGe islands: influence of cap thickness and footprint in reciprocal space.

    PubMed

    Hrauda, N; Zhang, J J; Süess, M J; Wintersberger, E; Holý, V; Stangl, J; Deiter, C; Seeck, O H; Bauer, G

    2012-11-23

    We present investigations on the strain properties of silicon capping layers on top of regular SiGe island arrays, in dependence on the Si-layer thickness. Such island arrays are used as stressors for the active channel in field-effect transistors where the desired tensile strain in the Si channel is a crucial parameter for the performance of the device. The thickness of the Si cap was varied from 0 to 30 nm. The results of high resolution x-ray diffraction experiments served as input to perform detailed strain calculations via finite element method models. Thus, detailed information on the Ge distribution within the buried islands and the strain interaction between the SiGe island and Si cap was obtained. It was found that the tensile strain within the Si capping layer strongly depends on its thickness, even if the Ge concentration of the buried dot remains unchanged, with tensile strains degrading if thicker Si layers are used.

  13. In vivo sweat film layer thickness measured with Fourier-domain optical coherence tomography (FD-OCT)

    NASA Astrophysics Data System (ADS)

    Jonathan, Enock

    2008-06-01

    While human sweat secretion is accepted as a mechanism by which the body cools off, excessive sweating (hyperhidrosis) is now appreciated as a medical condition and the primary site for diagnosis is the palm of the hand. We propose sweat film layer thickness as a potential clinical diagnostic parameter when screening for excessive sweating. In this preliminary study we demonstrate the usefulness of Fourier-domain optical coherence tomography (FD-OCT) for measurement of sweat film thickness in vivo with micron-scale resolution on the hand of a human volunteer. FD-OCT has a superior image acquisition time and identification of active sweat glands, ducts and pores is also possible.

  14. Signal Strength Is an Important Determinant of Accuracy of Nerve Fiber Layer Thickness Measurement by Optical Coherence Tomography

    PubMed Central

    Wu, Ziqiang; Huang, Jingjing; Dustin, Laurie; Sadda, Srinivas

    2009-01-01

    Purpose To investigate the effect of signal strength on the measurement of the retinal nerve fiber layer (RNFL) using optical coherence tomography (OCT). Methods Eyes with known or suspected glaucoma or non-glaucomatous optic atrophy were scanned twice within the same visit using Stratus OCT's Fast Nerve Fiber Layer Thickness (FNFLT) protocol. Only those eyes with two high quality scans (signal strengths of at least 5 and different from each other, no error messages, and no obvious segmentation errors) were included in the study. The RNFL thickness measurements from the initial and the repeat scans were compared and then correlated with the differences in signal strength. Subgroup analyses were performed similarly among patients with average RNFL thickness less than 90 microns and those with at least 90 microns. Results Scans with higher signal strengths are associated with greater RNFL thickness measurements if the signal strength is less than 7. Scans with signal strength of at least 7 have higher reproducibility. This is true among all patients as well as subgroups divided on the basis of average RNFL thickness. Additionally, we found that the greater the variability between the initial and repeat scans, the greater the variability in the RNFL thickness measurements. Scans with higher signal strengths have less variability, especially when the optic nerve is relatively healthy. Conclusions When measuring the RNFL thickness with the Stratus OCT, it is important to aim for a signal strength of at least 7. Visual field testing may be more reliable in some patients, especially when the optic nerve is significantly compromised. PMID:19295375

  15. Effect of Refractive Correction Error on Retinal Nerve Fiber Layer Thickness: A Spectralis Optical Coherence Tomography Study

    PubMed Central

    Ma, Xiaoli; Chen, Yutong; Liu, Xianjie; Ning, Hong

    2016-01-01

    Background Identifying and assessing retinal nerve fiber layer defects are important for diagnosing and managing glaucoma. We aimed to investigate the effect of refractive correction error on retinal nerve fiber layer (RNFL) thickness measured with Spectralis spectral-domain optical coherence tomography (SD-OCT). Material/Methods We included 68 participants: 32 healthy (normal) and 36 glaucoma patients. RNFL thickness was measured using Spectralis SD-OCT circular scan. Measurements were made with a refractive correction of the spherical equivalent (SE), the SE+2.00D and the SE–2.00D. Results Average RNFL thickness was significantly higher in the normal group (105.88±10.47 μm) than in the glaucoma group (67.67±17.27 μm, P<0.001). In the normal group, +2.00D of refractive correction error significantly affected measurements of average (P<0.001) and inferior quadrant (P=0.037) RNFL thickness. In the glaucoma group, +2.00D of refractive correction error significantly increased average (P<0.001) and individual quadrant (superior: P=0.016; temporal: P=0.004; inferior: P=0.008; nasal: P=0.003) RNFL measurements compared with those made with the proper refractive correction. However, −2.00D of refractive correction error did not significantly affect RNFL thickness measurements in either group. Conclusions Positive defocus error significantly affects RNFL thickness measurements made by the Spectralis SD-OCT. Negative defocus error did not affect RNFL measurement examined. Careful correction of refractive error is necessary to obtain accurate baseline and follow-up RNFL thickness measurements in healthy and glaucomatous eyes. PMID:28030536

  16. Tear lipid layer thickness with eye drops in meibomian gland dysfunction

    PubMed Central

    Fogt, Jennifer S; Kowalski, Matthew J; King-Smith, P Ewen; Epitropolous, Alice T; Hendershot, Andrew J; Lembach, Carrie; Maszczak, John Paul; Jones-Jordan, Lisa A; Barr, Joseph T

    2016-01-01

    Purpose The aim of this study was to evaluate the efficacy of a lipid containing emollient eye drop, Soothe XP, which was reformulated in 2014 with a more stable preservative and buffer system, compared to a control, non-emollient, eye drop (Systane Ultra) in improving lipid layer thickness (LLT) in subjects with dry eye due to meibomian gland dysfunction (MGD). Patients and methods This prospective single-center, open-label, cross-over, examiner masked-study enrolled subjects aged 30–75 years with lipid-deficient dry eye and a clinical diagnosis of MGD as determined by a slit lamp examination, an evaluation of meibomian gland drop out with meibography, and a standard patient evaluation of eye dryness questionnaire of >5. Eligibility was then determined by a LLT of <75 nm at baseline and the inability to increase LLT ≥15 nm with three blinks, as determined by interferometric methods. Subjects were randomized to receive a single emollient or non-emollient eye drop at Visit 1 and were crossed over for the alternate treatment at Visit 2. At each visit, LLT was measured prior to and 15 minutes following the instillation of the assigned eye drop. The primary endpoint was the change in LLT from baseline. Results Subjects (n=40) were enrolled and 35 completed the two study arms. Mean (±SD) patient age was 55.7 years (10.9) and 69% were female. Mean (±SD) LLT at baseline was 49.5 nm (9.2). Instillation of Soothe XP resulted in an increase in LLT to 77.5 nm (29.3) 15 minutes following drop instillation, which is an increase of 28.0 nm (27.4) (P<0.001). In contrast, LLT 15 minutes after the instillation of Systane Ultra was 50.8 nm (14.1), which was not statistically significant when compared to the baseline LLT. Conclusion In this study of subjects with MGD, the emollient, or lipid containing eye drop, increased the LLT of tears when measured 15 minutes after instilling a single eye drop. PMID:27853352

  17. CZTS absorber layer for thin film solar cells from electrodeposited metallic stacked precursors (Zn/Cu-Sn)

    NASA Astrophysics Data System (ADS)

    Khalil, M. I.; Atici, O.; Lucotti, A.; Binetti, S.; Le Donne, A.; Magagnin, L.

    2016-08-01

    In the present work, Kesterite-Cu2ZnSnS4 (CZTS) thin films were successfully synthesized from stacked bilayer precursor (Zn/Cu-Sn) through electrodeposition-annealing route. Adherent and homogeneous Cu-poor, Zn-rich stacked metal Cu-Zn-Sn precursors with different compositions were sequentially electrodeposited, in the order of Zn/Cu-Sn onto Mo foil substrates. Subsequently, stacked layers were soft annealed at 350 °C for 20 min in flowing N2 atmosphere in order to improve intermixing of the elements. Then, sulfurization was completed at 585 °C for 15 min in elemental sulfur environment in a quartz tube furnace with N2 atmosphere. Morphological, compositional and structural properties of the films were investigated using SEM, EDS and XRD methods. Raman spectroscopy with two different excitation lines (514.5 and 785 nm), has been carried out on the sulfurized films in order to fully characterize the CZTS phase. Higher excitation wavelength showed more secondary phases, but with low intensities. Glow discharge optical emission spectroscopy (GDOES) has also been performed on films showing well formed Kesterite CZTS along the film thickness as compositions of the elements do not change along the thickness. In order to investigate the electronic structure of the CZTS, Photoluminescence (PL) spectroscopy has been carried out on the films, whose results matched up with the literatures.

  18. Prepare dispersed CIS nano-scale particles and spray coating CIS absorber layers using nano-scale precursors

    NASA Astrophysics Data System (ADS)

    Liou, Jian-Chiun; Diao, Chien-Chen; Lin, Jing-Jenn; Chen, Yen-Lin; Yang, Cheng-Fu

    2014-01-01

    In this study, the Mo-electrode thin films were deposited by a two-stepped process, and the high-purity copper indium selenide-based powder (CuInSe2, CIS) was fabricated by hydrothermal process by Nanowin Technology Co. Ltd. From the X-ray pattern of the CIS precursor, the mainly crystalline phase was CIS, and the almost undetectable CuSe phase was observed. Because the CIS powder was aggregated into micro-scale particles and the average particle sizes were approximately 3 to 8 μm, the CIS power was ground into nano-scale particles, then the 6 wt.% CIS particles were dispersed into isopropyl alcohol to get the solution for spray coating method. Then, 0.1 ml CIS solution was sprayed on the 20 mm × 10 mm Mo/glass substrates, and the heat treatment for the nano-scale CIS solution under various parameters was carried out in a selenization furnace. The annealing temperature was set at 550°C, and the annealing time was changed from 5 to 30 min, without extra Se content was added in the furnace. The influences of annealing time on the densification, crystallization, resistivity ( ρ), hall mobility ( μ), and carrier concentration of the CIS absorber layers were well investigated in this study.

  19. Multiresidue analysis of pesticides in vegetables and fruits using two-layered column with graphitized carbon and water absorbent polymer.

    PubMed

    Obana, H; Akutsu, K; Okihashi, M; Hori, S

    2001-09-01

    A high-throughput multiresidue analysis of pesticides in non-fatty vegetables and fruits was developed. The method consisted of a single extraction and a single clean-up procedure. Food samples were extracted with ethyl acetate and the mixture of extract and food dregs were poured directly into the clean-up column. The clean-up column consisted of two layers of water-absorbent polymer (upper) and graphitized carbon (lower), which were packed in a reservoir (75 ml ) of a cartridge column. The polymer removed water in the extract while the carbon performed clean-up. In a recovery test, 110 pesticides were spiked and average recoveries were more than 95% from spinach and orange. Most pesticides were recovered in the range 70-115% with RSD usually < 10% for five experiments. The residue analyses were performed by the extraction of 12 pesticides from 13 samples. The two methods resulted in similar residue levels except chlorothalonil in celery, for which the result was lower with the proposed method. The results confirmed that the proposed method could be applied to monitoring of pesticide residue in foods.

  20. Analysis of an Interface Crack for a Functionally Graded Strip Sandwiched between Two Homogeneous Layers of Finite Thickness

    NASA Technical Reports Server (NTRS)

    Shbeeh, N. I.; Binienda, W. K.

    1999-01-01

    The interface crack problem for a composite layer that consists of a homogeneous substrate, coating and a non-homogeneous interface was formulated for singular integral equations with Cauchy kernels and integrated using the Lobatto-Chebyshev collocation technique. Mixed-mode Stress Intensity Factors and Strain Energy Release Rates were calculated. The Stress Intensity Factors were compared for accuracy with relevant results previously published. The parametric studies were conducted for the various thickness of each layer and for various non-homogeneity ratios. Particular application to the Zirconia thermal barrier on steel substrate is demonstrated.

  1. Approach for simultaneous determination of thickness and sound velocity in layered structures based on sound field simulations

    NASA Astrophysics Data System (ADS)

    Kühnicke, Elfgard; Wolf, Mario; Kümmritz, Sebastian

    2017-02-01

    This paper describes a non-invasive, nondestructive method for the simultaneous determination of sound velocity and thickness of the different layers of a layered structure by means of ultrasound. It will be demonstrated how further information about the reflected sound field, in addition to the time of flight, is acquired by using annular arrays. Because of this supplementary information, reflectors or other probes at known distances are not necessary and the specimen does not have to be placed in a medium with known sound velocity. Two different evaluation methods combined with a geometric model are explained. To improve the accuracy, measured signals are also evaluated by a wave propagation model.

  2. Thickness Gauging of Single-Layer Conductive Materials with Two-Point Non Linear Calibration Algorithm

    NASA Technical Reports Server (NTRS)

    Fulton, James P. (Inventor); Namkung, Min (Inventor); Simpson, John W. (Inventor); Wincheski, Russell A. (Inventor); Nath, Shridhar C. (Inventor)

    1998-01-01

    A thickness gauging instrument uses a flux focusing eddy current probe and two-point nonlinear calibration algorithm. The instrument is small and portable due to the simple interpretation and operational characteristics of the probe. A nonlinear interpolation scheme incorporated into the instrument enables a user to make highly accurate thickness measurements over a fairly wide calibration range from a single side of nonferromagnetic conductive metals. The instrument is very easy to use and can be calibrated quickly.

  3. Gate-tunable and thickness-dependent electronic and thermoelectric transport in few-layer MoS2

    NASA Astrophysics Data System (ADS)

    Kayyalha, Morteza; Maassen, Jesse; Lundstrom, Mark; Shi, Li; Chen, Yong P.

    2016-10-01

    Over the past few years, there has been a growing interest in layered transition metal dichalcogenides such as molybdenum disulfide (MoS2). Most studies so far have focused on the electronic and optoelectronic properties of single-layer MoS2, whose band structure features a direct bandgap, in sharp contrast to the indirect bandgap of thicker MoS2. In this paper, we present a systematic study of the thickness-dependent electrical and thermoelectric properties of few-layer MoS2. We observe that the electrical conductivity ( σ) increases as we reduce the thickness of MoS2 and peaks at about two layers, with six-times larger conductivity than our thickest sample (23-layer MoS2). Using a back-gate voltage, we modulate the Fermi energy ( E F ) of the sample where an increase in the Seebeck coefficient ( S ) is observed with decreasing gate voltage ( E F ) towards the subthreshold (OFF state) of the device, reaching as large as 500 μ V / K in a four-layer MoS2. While previous reports have focused on a single-layer MoS2 and measured Seebeck coefficient in the OFF state, which has vanishing electrical conductivity and thermoelectric power factor ( P F = S 2 σ ), we show that MoS2-based devices in their ON state can have P F as large as > 50 /μ W cm K 2 in the two-layer sample. The P F increases with decreasing thickness and then drops abruptly from double-layer to single-layer MoS2, a feature we suggest as due to a change in the energy dependence of the electron mean-free-path according to our theoretical calculation. Moreover, we show that care must be taken in thermoelectric measurements in the OFF state to avoid obtaining erroneously large Seebeck coefficients when the channel resistance is very high. Our study paves the way towards a more comprehensive examination of the thermoelectric performance of two-dimensional (2D) semiconductors.

  4. Trends in (LaMnO3)n/(SrTiO3)m superlattices with varying layer thicknesses

    PubMed Central

    Jilili, J.; Cossu, F.; Schwingenschlögl, U.

    2015-01-01

    We investigate the thickness dependence of the structural, electronic, and magnetic properties of (LaMnO3)n/(SrTiO3)m (n, m = 2, 4, 6, 8) superlattices using density functional theory. The electronic structure turns out to be highly sensitive to the onsite Coulomb interaction. In contrast to bulk SrTiO3, strongly distorted O octahedra are observed in the SrTiO3 layers with a systematic off centering of the Ti atoms. The systems favour ferromagnetic spin ordering rather than the antiferromagnetic spin ordering of bulk LaMnO3 and all show half-metallicity, while a systematic reduction of the minority spin band gaps as a function of the LaMnO3 and SrTiO3 layer thicknesses originates from modifications of the Ti dxy states. PMID:26323361

  5. Modulation of spin-orbit torque efficiency by thickness control of heavy metal layers in Co/Pt multilayers

    NASA Astrophysics Data System (ADS)

    Sethi, P.; Krishnia, S.; Li, S. H.; Lew, W. S.

    2017-03-01

    We investigate and quantify spin-orbit torque (SOT) strength by current induced effective in-plane magnetic fields and spin Hall angle (SHA) using AC harmonic Hall voltage measurements techniques on Ta/Pt/Co/Pt/Co/Ta thin film structures. The proposed Co/Pt thin film double stack gives property enhancement on thermal stability and perpendicular magnetization anisotropy strength over the single stack Pt/Co/Ta. In the proposed Co/Pt double stack we observed that increasing the Ta capping thickness to three times enhances the SHA in similar order, consistent with larger spin injection efficiency. Doubling the Pt spacer layer thickness reduces the SHA by nearly 1.4 times, due to partial cancellation of SOT by bottom layer Pt, negating the increase from the top Co/Pt interface. The in-plane current threshold for magnetization switching is lower with the increase of the SHA.

  6. Correlation between the bronchial subepithelial layer and whole airway wall thickness in patients with asthma

    PubMed Central

    Kasahara, K; Shiba, K; Ozawa, T; Okuda, K; Adachi, M

    2002-01-01

    Background: The epithelial reticular basement membrane (Rbm) of the airway wall thickens in patients with asthma. However, whether the thickening parallels whole airway wall thickening, which limits airflow, is unknown. The aim of this study was to examine the correlation between the bronchial Rbm thickening and whole airway wall thickening in asthma. In addition, the association of Rbm and whole wall thickening with airflow obstruction was examined. Methods: Forty nine patients with asthma and 18 healthy control subjects took part in the study. The Rbm thickness was measured in bronchial biopsy specimens and whole airway wall thickness was assessed with high resolution computed tomographic (HRCT) scanning after pretreatment with oral steroids for 2 weeks and inhaled ß2 agonist to minimise reversible changes of the airway walls. The percentage airway wall area (WA%; defined as (wall area/total airway area) x 100) and percentage airway wall thickness (WT%; defined as [(ideal outer diameter – ideal luminal diameter)/ideal outer diameter] x 100) were determined from HRCT scans to assess whole airway wall thickness. Spirometric tests were also performed. Results: WA% and WT% were higher in patients with asthma than in healthy subjects. Both WA% and WT% were strongly correlated with Rbm thickness. Moreover, these three indices of airway wall thickness were inversely correlated with the percentage of predicted forced expiratory volume in 1 second in patients with asthma. Conclusions: These findings indicate that Rbm thickening parallels whole airway wall thickening which can cause irreversible airflow obstruction in patients with asthma. PMID:11867829

  7. Efficiency enhancement in solid state dye sensitized solar cells by including inverse opals with controlled layer thicknesses

    NASA Astrophysics Data System (ADS)

    Zheng, Hanbin; Shah, Said Karim; Abbas, Mamatimin; Ly, Isabelle; Rivera, Thomas; Almeida, Rui M.; Hirsch, Lionel; Toupance, Thierry; Ravaine, Serge

    2016-09-01

    The photoconversion efficiency of dye sensitized solar cells can be enhanced by the incorporation of light management nanostructures such as photonic crystals. Here, we present a facile route to incorporate titania inverse opals into solid state dye sensitized solar cells and report photoconversion efficiency enhancements of up to 56% compared with a model system without the inverse opal. Our approach is based on the precise design of titania inverse opals with a predetermined thickness that can be controlled at the individual layer level. By choosing an inverse opal exhibiting a photonic bandgap which overlaps the absorption bands of the dye, our results show that there is an optimal thickness of the inverse opal structure for maximum efficiency enhancement of the cell. This is the first experimental proof that the thickness of a titania inverse opal plays a pivotal role in cell efficiency enhancement in solid state dye sensitized solar cells.

  8. Effect of Refractive Status and Axial Length on Peripapillary Retinal Nerve Fibre Layer Thickness: An Analysis Using 3D OCT

    PubMed Central

    Sowmya, V.; Venkataramanan, V.R.

    2015-01-01

    Background Accurate measurement of retinal nerve fiber layer (RNFL) is now possible with the high resolution optical coherence tomography (OCT). Effect of refractive status of the eye on RNFL thickness may be relevant in the diagnosis of glaucoma and other optic nerve diseases. Aim To assess the RNFL thickness and compare its correlation with refractive status and axial length of the eye. Material and Methods Three hundred eyes of 150 patients were included in this study, who underwent RNFL analysis using TOPCON 3D OCT 2000. Analysis of variance has been used to find the significance of study parameters between the study groups. Results The study showed that refractive status/axial length affected the peripapillary RNFL thickness significantly. Conclusion The study suggests that the diagnostic accuracy of OCT may be improved by considering refractive status and axial length of the eye when RNFL is measured. PMID:26500931

  9. Dependence of perpendicular magnetic anisotropy and hall resistivity on Pd-layer thickness in CoSiB/Pd multilayer

    NASA Astrophysics Data System (ADS)

    Jung, Sol; Yim, Haein; Kim, Sung Yong

    2015-08-01

    We investigated the perpendicular magnetic anisotropy and the Hall resistivity of CoSiB/Pd multilayers. The CoSiB/Pd multilayers consisted of CoSiB (7-Å thickness) and Pd (Pd thickness t Pd = 10, 12, 14, 16, 18, and 20 Å), and a CoSiB/Pd bilayer was stacked five times. The coercivity shows oscillating values between tPd = 12 Å and t Pd = 20 Å. The value of the saturation magnetization increased between t Pd = 10 Å and t Pd = 12 Å and then decreased after t Pd = 12 Å. The perpendicular magnetic anisotropy constant depended on the thickness of Pd-layer and the values repeatedly increased and decreased. All CoSiB/Pd multilayers exhibited a positive Hall effect, and the Hall resistivity was not proportional to the magnetic moment.

  10. Ganglion Cell Layer–Inner Plexiform Layer Thickness and Vision Loss in Young Children With Optic Pathway Gliomas

    PubMed Central

    Gu, Sherry; Glaug, Natalie; Cnaan, Avital; Packer, Roger J.; Avery, Robert A.

    2014-01-01

    Purpose. To determine if measures of macular ganglion cell layer–inner plexiform layer (GCL-IPL) thickness can discriminate between children with and without vision loss (visual acuity or field) from their optic pathway glioma (OPG) using spectral-domain optical coherence tomography (SD-OCT). Methods. Children with OPGs (sporadic or secondary to neurofibromatosis type 1) enrolled in a prospective study of SD-OCT were included if they were cooperative for vision testing and macular SD-OCT images were acquired. Manual segmentation of the macular GCL-IPL and macular retinal nerve fiber layer (RNFL) was performed using elliptical annuli with diameters of 1.5, 3.0, and 4.5 mm. Logistic regression assessed the ability of GCL-IPL and RNFL thickness measures (micrometers) to differentiate between the normal and abnormal vision groups. Results. Forty-seven study eyes (normal vision = 31, abnormal vision = 16) from 26 children with OPGs were included. Median age was 5.3 years (range, 2.5–12.8). Thickness of all GCL-IPL and RNFL quadrants differed between the normal and abnormal vision groups (P < 0.01). All GCL-IPL measures demonstrated excellent discrimination between groups (area under the curve [AUC] > 0.90 for all diameters). Using the lower fifth percentile threshold, the number of abnormal GCL-IPL inner macula (3.0 mm) quadrants achieved the highest AUC (0.989) and was greater than the macula RNFL AUCs (P < 0.05). Conclusions. Decreased GCL-IPL thickness (layer thickness could be used as a surrogate marker of vision in children with OPGs. PMID:24519429

  11. Macular Ganglion Cell Layer and Peripapillary Retinal Nerve Fibre Layer Thickness in Patients with Unilateral Posterior Cerebral Artery Ischaemic Lesion: An Optical Coherence Tomography Study

    PubMed Central

    Anjos, Rita; Vieira, Luisa; Costa, Livio; Vicente, André; Santos, Arnaldo; Alves, Nuno; Amado, Duarte; Ferreira, Joana; Cunha, João Paulo

    2016-01-01

    ABSTRACT The purpose of this study is to evaluate the macular ganglion cell layer (GCL) and peripapillary retinal nerve fibre layer (RNFL) thickness in patients with unilateral posterior cerebral artery (PCA) ischaemic lesions using spectral-domain optical coherence tomography (SD-OCT). A prospective, case-control study of patients with unilateral PCA lesion was conducted in the neuro-ophthalmology clinic of Centro Hospitalar Lisboa Central. Macular and peripapillary SD-OCT scans were performed in both eyes of each patient. Twelve patients with PCA lesions (stroke group) and 12 healthy normal controls were included in this study. Peripapillary RNFL comparison between both eyes of the same subject in the stroke group found a thinning in the superior-temporal (p = 0.008) and inferior-temporal (p = 0.023) sectors of the ipsilateral eye and nasal sector (p = 0.003) of the contralateral eye. Macular GCL thickness comparison showed a reduction temporally in the ipsilateral eye (p = 0.004) and nasally in the contralateral eye (p = 0.002). Peripapillary RNFL thickness was significantly reduced in both eyes of patients with PCA compared with controls, affecting all sectors in the contralateral eye and predominantly temporal sectors in the ipsilateral eye. A statistically significant decrease in macular GCL thickness was found in both hemiretinas of both eyes of stroke patients when compared with controls (p < 0.05). This study shows that TRD may play a role in the physiopathology of lesions of the posterior visual pathway. PMID:27928376

  12. Measurement of peripapillary retinal nerve fiber layer thickness and macular thickness in anisometropia using spectral domain optical coherence tomography: a prospective study

    PubMed Central

    Singh, Neha; Rohatgi, Jolly; Gupta, Ved Prakash; Kumar, Vinod

    2017-01-01

    Purpose To study whether there is a difference in central macular thickness (CMT) and peripapillary retinal nerve fiber layer (RNFL) thickness between the two eyes of individuals having anisometropia >1 diopter (D) using spectral domain optical coherence tomography (OCT). Material and methods One hundred and one subjects, 31 with myopic anisometropia, 28 with astigmatic anisometropia, and 42 with hypermetropic anisometropia, were enrolled in the study. After informed consent, detailed ophthalmological examination was performed for every patient including cycloplegic refraction, best corrected visual acuity, slit lamp, and fundus examination. After routine ophthalmic examination peripapillary RNFL and CMT were measured using spectral domain OCT and the values of the two eyes were compared in the three types of anisometropia. Axial length was measured using an A Scan ultrasound biometer (Appa Scan-2000). Results The average age of subjects was 21.7±9.3 years. The mean anisometropia was 3.11±1.7 D in myopia; 2±0.99 D in astigmatism; and 3.68±1.85 D in hypermetropia. There was a statistically significant difference in axial length of the worse and better eye in both myopic and hypermetropic anisometropia (P=0.00). There was no significant difference between CMT of better and worse eyes in anisomyopia (P=0.79), anisohypermetropia (P=0.09), or anisoastigmatism (P=0.16). In anisohypermetropia only inferior quadrant RNFL was found to be significantly thicker (P=0.011) in eyes with greater refractive error. Conclusion There does not appear to be a significant difference in CMT and peripapillary RNFL thickness in anisomyopia and anisoastigmatism. However, in anisohypermetropia inferior quadrant RNFL was found to be significantly thicker. PMID:28260856

  13. Pd Layer Thickness Dependence of Tunnel Magnetoresistance Properties in CoFeB/MgO-Based Magnetic Tunnel Junctions with Perpendicular Anisotropy CoFe/Pd Multilayers

    NASA Astrophysics Data System (ADS)

    Mizunuma, Kotaro; Yamanouchi, Michihiko; Ikeda, Shoji; Sato, Hideo; Yamamoto, Hiroyuki; Gan, Hua-Dong; Miura, Katsuya; Hayakawa, Jun; Matsukura, Fumihiro; Ohno, Hideo

    2011-02-01

    The authors investigated tunnel magnetoresistance (TMR) properties in [CoFe/Pd]-multilayer/CoFeB/MgO/CoFeB/[Pd/CoFe]-multilayer magnetic tunnel junctions (MTJs) having two different Pd layer thicknesses. By reducing the Pd layer thickness from 1.2 to 0.2 nm, the TMR ratio was enhanced from 7 to 101% at the annealing temperature (Ta) of 300 °C. The thin Pd layers resulted in high residual B concentration in the CoFeB layer after high-Ta annealing and in the suppression of crystallization of the CoFeB layer from the fcc(111)-Pd layer side.

  14. The study of flexible emission and photoconductivity in 2D layered InSe toward an applicable 1000-nm light emitter and absorber

    NASA Astrophysics Data System (ADS)

    Chuang, Ching-An; Lin, Min-Han; Yeh, Bo-Xian; Chu, Yun-Ju; Ho, Ching-Hwa

    2017-03-01

    Multilayer InSe with a thickness above 20 nm is a direct semiconductor proposed for solar-energy conversion and to use in flexible optoelectronics. We demonstrate herein a superior 1000-nm light emission and absorption capability of two-dimensional (2D) multilayer InSe studied by photoluminescence (PL) and photoconductivity (PC) experiments. Layered crystals of InSe have been grown by chemical vapor transport method using ICl3 as a transport agent. Polarized Raman measurement confirmed 2 H ɛ crystalline phase of the as-grown crystals. For 2D flexible applications, the bending photoluminescence (BPL) result of InSe ( t ≈ 30 nm) showed an enhancement in light intensity with respect to that of the flat PL condition. It might be because the cylinder surface area under bending (convex) is larger than that of the flat surface under the same laser excitation condition. Besides, the luminescence efficiency of BPL is also enhanced owing to the widening of emission solid angle of each Se-In-In-Se unit in the InSe as compared to that of the flat PL condition. The emission wavelength is about 1000 nm at room temperature. Furthermore, for the PC study, photoresponsivity spectrum of a Ag-InSe-Ag multilayer photoconductor demonstrates a prominent peak absorption at 1.1 1.3 eV, matching well with the direct-free-exciton energy of the multilayer InSe. All the experimental results demonstrate that 2D multilayer InSe is a promising 1000 nm light emitter and absorber available for potential optoelectronics applications.

  15. Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Backes, Claudia; Paton, Keith R.; Hanlon, Damien; Yuan, Shengjun; Katsnelson, Mikhail I.; Houston, James; Smith, Ronan J.; McCloskey, David; Donegan, John F.; Coleman, Jonathan N.

    2016-02-01

    Liquid phase exfoliation is a powerful and scalable technique to produce defect-free mono- and few-layer graphene. However, samples are typically polydisperse and control over size and thickness is challenging. Notably, high throughput techniques to measure size and thickness are lacking. In this work, we have measured the extinction, absorption, scattering and Raman spectra for liquid phase exfoliated graphene nanosheets of various lateral sizes (90 <= <= 810 nm) and thicknesses (2.7 <= <= 10.4). We found all spectra to show well-defined dependences on nanosheet dimensions. Measurements of extinction and absorption spectra of nanosheet dispersions showed both peak position and spectral shape to vary with nanosheet thickness in a manner consistent with theoretical calculations. This allows the development of empirical metrics to extract the mean thickness of liquid dispersed nanosheets from an extinction (or absorption) spectrum. While the scattering spectra depended on nanosheet length, poor signal to noise ratios made the resultant length metric unreliable. By analyzing Raman spectra measured on graphene nanosheet networks, we found both the D/G intensity ratio and the width of the G-band to scale with mean nanosheet length allowing us to establish quantitative relationships. In addition, we elucidate the variation of 2D/G band intensities and 2D-band shape with the mean nanosheet thickness, allowing us to establish quantitative metrics for mean nanosheet thickness from Raman spectra.Liquid phase exfoliation is a powerful and scalable technique to produce defect-free mono- and few-layer graphene. However, samples are typically polydisperse and control over size and thickness is challenging. Notably, high throughput techniques to measure size and thickness are lacking. In this work, we have measured the extinction, absorption, scattering and Raman spectra for liquid phase exfoliated graphene nanosheets of various lateral sizes (90 <= <= 810 nm) and

  16. Systematic determination of the thickness of a thin oxide layer on a multilayered structure by using an X-ray reflectivity analysis

    NASA Astrophysics Data System (ADS)

    Lee, Jisung; Park, Sungkyun

    2016-09-01

    X-ray reflectometry was used to determine the chemical structure of oxidized Permalloy films grown at different oxidation times. The oxidation time-dependent thickness, roughness and chemical density of each layer were examined simultaneously using the Parratt formalism. With increasing oxidation time, the Permalloy thickness decreased while forming a new oxide layer. After oxidation for 40 sec, the Permalloy film's thickness remained the same for further oxidation, indicating the formation of an oxidation barrier with a scattering length density much lower than that of the Permalloy. The interfacial roughness between the interface layer and the top protective layer remained the same regardless of the oxidation time.

  17. Reflection of an acoustic wave from a bubble layer of finite thickness

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Fedorov, Yu. V.

    2016-10-01

    The problem of reflection of an acoustic wave from a two-layer medium containing a layer of bubble liquid is considered. The wave reflectance for a water-water mixture with an air bubble-air mixture is calculated and compared with experimental data. The parameters of the problem at which the reflectance takes extreme values are found and illustrated.

  18. Changes in Retinal Nerve Fiber Layer Thickness after Multiple Injections of Novel VEGF Decoy Receptor Conbercept for Various Retinal Diseases

    PubMed Central

    Zhang, Zhihua; Yang, Xiaolu; Jin, Huiyi; Qu, Yuan; Zhang, Yuan; Liu, Kun; Xu, Xun

    2016-01-01

    Conbercept is a recombinant fusion protein with high affinity for all vascular endothelial growth factor isoforms and placental growth factor. The repeated intravitreal injection of conbercept may cause intraocular pressure (IOP) fluctuations and long-term suppression of neurotrophic cytokines, which could lead to retinal nerve fiber layer (RNFL) damage. This retrospective fellow-eye controlled study included 98 eyes of 49 patients. The changes in IOP and RNFL thickness as well as the correlation between RNFL changes and associated factors were evaluated. The IOP value between the baseline and the last follow-up visit in the injection group and the IOP value of the last follow-up visit between the injection and non-injection groups were not significantly different (p = 0.452 and 0.476, respectively). The global average thickness of the RNFL (μm) in the injection group decreased from 108.9 to 106.1; however, the change was not statistically significant (p = 0.118). No significant difference in the average RNFL thickness was observed at the last follow-up visit between the injection and non-injection groups (p = 0.821). The type of disease was the only factor associated with RNFL thickness changes. In conclusion, repeated intravitreal injections with 0.05 mL conbercept revealed an excellent safety profile for RNFL thickness, although short-term IOP changes were observed. PMID:27922068

  19. The correlation between cognitive performance and retinal nerve fibre layer thickness is largely explained by genetic factors

    PubMed Central

    Jones-Odeh, Eneh; Yonova-Doing, Ekaterina; Bloch, Edward; Williams, Katie M.; Steves, Claire J.; Hammond, Christopher J.

    2016-01-01

    Retinal nerve fibre layer (RNFL) thickness has been associated with cognitive function but it is unclear whether RNFL thinning is secondary to cortical loss, or if the same disease process affects both. We explored whether there is phenotypic sharing between RNFL thickness and cognitive traits, and whether such sharing is due to genetic factors. Detailed eye and cognitive examination were performed on 1602 twins (mean age: 56.4 years; range: 18–89) from the TwinsUK cohort. Associations between RNFL thickness and ophthalmic, cognitive and other predictors were assessed using linear regression or analysis of variance models. Heritability analyses were performed using uni- and bivariate Cholesky decomposition models. RNFL was thinner with increase in myopia and with decrease in disc area (p < 0.001). A thicker RNFL was associated with better performance on mini mental state examination (MMSE, F(5,883) = 5.8, p < 0.001), and with faster reaction time (RT, β = −0.01; p = 0.01); independent of the effects of age, refractive error and disc area (p < 0.05). RNFL thickness was highly heritable (82%) but there was low phenotypic sharing between RNFL thickness and MMSE (5%, 95% CI: 0–10%) or RT (7%, 95% CI: 1–12%). This sharing, however, was mostly due to additive genetic effects (67% and 92% of the shared variance respectively). PMID:27677702

  20. Thermoelastic characteristics of thermal barrier coatings with layer thickness and edge conditions through mathematical analysis.

    PubMed

    Go, Jaegwi; Myoung, Sang-Won; Lee, Je-Hyun; Jung, Yeon-Gil; Kim, Seokchan; Paik, Ungyu

    2014-10-01

    The thermoelastic behaviors of such as temperature distribution, displacements, and stresses in thermal barrier coatings (TBCs) are seriously influenced by top coat thickness and edge conditions, which were investigated based on the thermal and mechanical properties of plasma-sprayed TBCs. A couple of governing partial differential equations were derived based on the thermoelastic theory. Since the governing equations are too involved to solve analytically, a finite volume method was developed to obtain approximations. The thermoelastic characteristics of TBCs with the various thicknesses and microstructures were estimated through mathematical approaches with different edge conditions. The results demonstrated that the top coat thickness and the edge condition in theoretical analysis are crucial factors to be considered in controlling the thermoelastic characteristics of plasma-sprayed TBCs.

  1. Tuning the thickness of electrochemically grafted layers in large area molecular junctions

    SciTech Connect

    Fluteau, T.; Bessis, C.; Barraud, C. Della Rocca, M. L.; Lafarge, P.; Martin, P.; Lacroix, J.-C.

    2014-09-21

    We have investigated the thickness, the surface roughness, and the transport properties of oligo(1-(2-bisthienyl)benzene) (BTB) thin films grafted on evaporated Au electrodes, thanks to a diazonium-based electro-reduction process. The thickness of the organic film is tuned by varying the number of electrochemical cycles during the growth process. Atomic force microscopy measurements reveal the evolution of the thickness in the range of 2–27 nm. Its variation displays a linear dependence with the number of cycles followed by a saturation attributed to the insulating behavior of the organic films. Both ultrathin (2 nm) and thin (12 and 27 nm) large area BTB-based junctions have then been fabricated using standard CMOS processes and finally electrically characterized. The electronic responses are fully consistent with a tunneling barrier in case of ultrathin BTB film whereas a pronounced rectifying behavior is reported for thicker molecular films.

  2. Impacts of temperature increase and acidification on thickness of the surface mucopolysaccharide layer of the Caribbean coral Diploria spp.

    NASA Astrophysics Data System (ADS)

    Pratte, Zoe A.; Richardson, Laurie L.

    2014-06-01

    Coral mechanisms of resilience and resistance to stressors such as increasing sea surface temperature and ocean acidification must first be understood in order to facilitate the survival of coral reefs as we know them. One such mechanism is production of the protective surface mucopolysaccharide layer (SML). In this study, we investigated changes in the thickness of the SML in response to increasing temperature and acidification for the three Caribbean scleractinian coral species of the genus Diploria, which have been shown to exhibit differential resilience to disease and bleaching. Among the three species, Diploria strigosa is known to have a higher susceptibility to disease, Diploria labyrinthiformis is known to bleach more quickly, and Diploria clivosa is relatively unstudied. When temperature was increased from 25 to 31 °C over a 1- or 6-week period, the overall thickness of the SML decreased from 33 to 55 % for all three species. Average SML thickness at 25 °C for all three species ranged from 106 to 156 μm, while average thickness at 31 °C ranged from 64 to 86 μm. SML thickness was significantly different among species at 25 °C, but not at 31 °C. D. labyrinthiformis demonstrated lower fragment mortality due to thermal stress when compared to the other Diploria species. Acidification from pH 8.2 to 7.7 over 5 weeks had no effect on SML thickness for any species. The observed decrease in SML thickness in response to increased temperature might be attributed to a decrease in the production of mucus or an increase in the viscosity of the SML. These findings may help to explain the increased prevalence of coral disease during the warmer months, since increased temperature compromises an important aspect of coral innate immunity, as well as differences in disease and bleaching susceptibilities between Diploria species.

  3. Tuning the Thickness of Ba-Containing "Functional" Layer toward High-Performance Ceria-Based Solid Oxide Fuel Cells.

    PubMed

    Gong, Zheng; Sun, Wenping; Shan, Duo; Wu, Yusen; Liu, Wei

    2016-05-04

    Developing highly efficient ceria-based solid oxide fuel cells with high power density is still a big concern for commercial applications. In this work, a novel structured Ce0.8Sm0.2O2-δ (SDC)-based fuel cell with a bilayered anode consisting of Ni-SDC and Ni-BaZr0.1Ce0.7Y0.2O3-δ (Ni-BZCY) was designed. In addition to the catalysis function, the Ni-BZCY anode "functional" layer also provides Ba source for generating an electron-blocking layer in situ at the anode/electrolyte interface during sintering. The Ni-BZCY thickness significantly influences the quality of the electron-blocking layer and electrochemical performances of the cell. The cell with a 50 μm thick Ni-BZCY layer exhibits the best performance in terms of open circuit voltage (OCV) and peak power density (1068 mW cm(-2) at 650 °C). The results demonstrate that this cell with an optimal structure has a distinct advantage of delivering high power performance with a high efficiency at reduced temperatures.

  4. Optical Coherence Tomography Measurement of Macular and Nerve Fiber Layer Thickness in Normal and Glaucomatous Human Eyes

    PubMed Central

    Guedes, Viviane; Schuman, Joel S.; Hertzmark, Ellen; Wollstein, Gadi; Correnti, Anthony; Mancini, Ronald; Lederer, David; Voskanian, Serineh; Velazquez, Leonardo; Pakter, Helena M.; Pedut-Kloizman, Tamar; Fujimoto, James G.; Mattox, Cynthia

    2007-01-01

    Purpose To evaluate the hypothesis that macular thickness correlates with the diagnosis of glaucoma. Design Cross-sectional study. Participants We studied 367 subjects (534 eyes), including 166 eyes of 109 normal subjects, 83 eyes of 58 glaucoma suspects, 196 eyes of 132 early glaucoma patients, and 89 eyes of 68 advanced glaucoma patients. Methods We used optical coherence tomography (OCT) to measure macular and nerve fiber layer (NFL) thickness and to analyze their correlation with each other and with glaucoma status. We used both the commercial and prototype OCT units and evaluated correspondence between measurements performed on the same eyes on the same days. Main Outcome Measure Macular and NFL thickness as measured by OCT. Results All NFL parameters both in prototype and commercial OCT units were statistically significantly different comparing normal subjects and either early or advanced glaucoma (P < 0.001). Inner ring, outer ring, and mean macular thickness both in prototype and commercial OCT devices were found to be significantly different between normal subjects and advanced glaucomatous eyes (P < 0.001). The outer ring was the only macular parameter that could significantly differentiate between normal and early glaucoma with either the prototype or commercial OCT unit (P = 0.003, P = 0.008, respectively). The area under the receiver operator characteristic (AROC) curves comparing mean NFL thickness between normal and advanced glaucomatous eyes was 1.00 for both the prototype and commercial OCT devices for eyes scanned on both machines on the same day. The AROC comparing mean macular thickness in normal and advanced glaucomatous eyes scanned on both machines on the same day was 0.88 for the prototype OCT device and 0.80 for the commercial OCT. Conclusions Both macular and NFL thickness as measured by OCT showed statistically significant correlations with glaucoma, although NFL thickness showed a stronger association than macular thickness. There was

  5. Magnetic layer thickness dependence of all-optical magnetization switching in GdFeCo thin films

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Hiroki; El Moussaoui, Souliman; Terashita, Shinnosuke; Ueda, Ryohei; Tsukamoto, Arata

    2016-07-01

    To clarify the relationship between all-optical magnetization switching (AOS) and nonlocal and nonadiabatic energy dissipation process, we focus on the contribution from energy dissipation in the depth direction. Differently designed structure dependence of created magnetic domain is observed from the reversal phenomenon, AOS, or multidomains by thermomagnetic nucleation (TMN) in GdFeCo multilayer thin films. TMN depends on the shared absorbed energy throughout the continuous metallic volume. On the other hand, AOS critically depends on nonadiabatic energy dissipation process with the electron system in sub-picoseconds. Furthermore, the laser fluence dependence of AOS-created domain sizes indicates that the value of irradiated laser fluence threshold per magnetic domain volume is almost constant. However, a lower laser irradiation fluence below 1-2 mW has a larger value and thickness dependence. From these results, we suggest that AOS depends on energy dissipation from the incident surface in the depth direction for a few picoseconds.

  6. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest.

    PubMed

    Fisher, James P; Estop-Aragonés, Cristian; Thierry, Aaron; Charman, Dan J; Wolfe, Stephen A; Hartley, Iain P; Murton, Julian B; Williams, Mathew; Phoenix, Gareth K

    2016-09-01

    Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active-layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active-layer thickness; ALT), but a quantitative understanding of the relative importance of plant and soil characteristics, and their interactions in determine ALTs, is currently lacking. To address this, we undertook an extensive survey of multiple vegetation and edaphic characteristics and ALTs across multiple plots in four field sites within boreal forest in the discontinuous permafrost zone (NWT, Canada). Our sites included mature black spruce, burned black spruce and paper birch, allowing us to determine vegetation and edaphic drivers that emerge as the most important and broadly applicable across these key vegetation and disturbance gradients, as well as providing insight into site-specific differences. Across sites, the most important vegetation characteristics limiting thaw (shallower ALTs) were tree leaf area index (LAI), moss layer thickness and understory LAI in that order. Thicker soil organic layers also reduced ALTs, though were less influential than moss thickness. Surface moisture (0-6 cm) promoted increased ALTs, whereas deeper soil moisture (11-16 cm) acted to modify the impact of the vegetation, in particular increasing the importance of understory or tree canopy shading in reducing thaw. These direct and indirect effects of moisture indicate that future changes in precipitation and evapotranspiration may have large influences on ALTs. Our work also suggests that forest fires cause greater ALTs by simultaneously decreasing multiple ecosystem characteristics which otherwise protect permafrost. Given that vegetation and edaphic characteristics have such clear and large influences on ALTs, our data provide a key benchmark against which to evaluate process models used to predict

  7. Study on thermal evolution of the CuSe phase in nanoparticle-based absorber layers for solution-processed chalcopyrite photovoltaic devices.

    PubMed

    Seo, Yeong-Hui; Lee, Byung-Seok; Jo, Yejin; Kim, Han-Gyeol; Woo, Kyoohee; Moon, Jooho; Choi, Youngmin; Ryu, Beyong-Hwan; Jeong, Sunho

    2013-08-14

    Nanoparticle-based, solution-processed chalcopyrite photovoltaic devices have drawn tremendous attraction for the realization of low-cost, large-area solar cell applications. In particular, it has been recently demonstrated that the CuSe phase plays a critical role in allowing the formation of device-quality, nanoparticle-based chalcopyrite absorber layers. For further in-depth study, with the aim of understanding the thermal behavior of the CuSe phase that triggers the vigorous densification reaction, a requisite for high-performance chalcopyrite absorber layers, both multiphase (CuSe-phase including) and single-phase (CuSe-phase free) CISe nanoparticles are investigated from the viewpoint of compositional variation and crystalline structural evolution. In addition, with CuSe-phase including CISe particulate layers, the basic restrictions in thermal treatment necessary for activating effectively the CuSe-phase induced densification reaction are suggested, in conjunction with consideration on the thermal decomposition of organic additives that are inevitably incorporated in nanoparticle-based absorber layers.

  8. Wall energy and wall thickness of exchange-coupled rare-earth transition-metal triple layer stacks

    SciTech Connect

    Raasch, D.; Mathieu, C.

    1997-08-01

    The room-temperature wall energy {sigma}{sub w}=4.0{times}10{sup {minus}3}J/m{sup 2} of an exchange-coupled Tb{sub 19.6}Fe{sub 74.7}Co{sub 5.7}/Dy{sub 28.5}Fe{sub 43.2}Co{sub 28.3} double layer stack can be reduced by introducing a soft magnetic intermediate layer in between both layers exhibiting a significantly smaller anisotropy compared to Tb{endash}FeCo and Dy{endash}FeCo. {sigma}{sub w} will decrease linearly with increasing intermediate layer thickness, d{sub IL}, until the wall is completely located within the intermediate layer for d{sub IL}{ge}d{sub w}, where d{sub w} denotes the wall thickness. Thus, d{sub w} can be obtained from the plot {sigma}{sub w} versus d{sub IL}. We determined {sigma}{sub w} and d{sub w} on Gd{endash}FeCo intermediate layers with different anisotropy behavior (perpendicular and in-plane easy axis) and compared the results with data obtained from Brillouin light-scattering measurements, where exchange stiffness, A, and uniaxial anisotropy, K{sub u}, could be determined. With the knowledge of A and K{sub u}, wall energy and thickness were calculated and showed an excellent agreement with the magnetic measurements. A ten times smaller perpendicular anisotropy of Gd{sub 28.1}Fe{sub 71.9} in comparison to Tb{endash}FeCo and Dy{endash}FeCo resulted in a much smaller {sigma}{sub w}=1.1{times}10{sup {minus}3}J/m{sup 2} and d{sub w}=24nm at 300 K. A Gd{sub 34.1}Fe{sub 61.4}Co{sub 4.5} with in-plane anisotropy at room temperature showed a further reduced {sigma}{sub w}=0.3{times}10{sup {minus}3}J/m{sup 2} and d{sub w}=17nm. The smaller wall energy was a result of a different wall structure compared to perpendicular layers. {copyright} {ital 1997 American Institute of Physics.}

  9. Improved color purity and electroluminescent efficiency obtained by modulating thicknesses and evaporation rates of hole block and electron transport layers

    NASA Astrophysics Data System (ADS)

    Zhou, Liang; Deng, Ruiping; Feng, Jing; Li, Xiaona; Li, Xiyan; Zhang, Hongjie

    2011-01-01

    In this work, a series of electroluminescent (EL) devices based on trivalent europium (Eu3+) complex Eu(TTA)3phen (TTA = thenoyltrifluoroacetone, phen = 1,10-phenanthroline) were fabricated by selecting 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and tris(8-hydroxyquinoline) aluminum (Alq3) as hole block and electron transport materials, respectively. Interestingly, we found the transport of electrons decreases gradually with increasing thicknesses and evaporation rates of BCP and Alq3 layers. Analyzing carrier distribution and EL spectra, we conclude that appropriately modulating the thicknesses and evaporation rates is an efficient way to decrease the accumulation of electrons in HBL, thus suppressing the EL of hole block material. On the other hand, decreasing the transport of electrons can also facilitate the balance of holes and electrons on Eu(TTA)3phen molecules, thus further enhancing the EL efficiency. As a result, pure Eu3+ emission with the efficiency as high as 8.49 cd/A was realized by controlling the thicknesses and evaporation rates of BCP and Alq3 layers to be 30 nm and 0.10 nm/s, 40 nm and 0.10 nm/s, respectively.

  10. Impact of buffer layer and Pt thickness on the interface structure and magnetic properties in (Co/Pt) multilayers

    NASA Astrophysics Data System (ADS)

    Bersweiler, M.; Dumesnil, K.; Lacour, D.; Hehn, M.

    2016-08-01

    The influence of Pt thickness on the interface structure (roughness / intermixing) and magnetic properties has been investigated for (Co / Pt) multilayers sputtered on a Pt or a thin oxide (MgO or AlO x ) buffer layer. When Pt thickness increases from 1.2 nm-2.2 nm, we observe that the effective anisotropy increases with the Pt thickness, simultaneously with the decrease of roughness, i.e. the occurrence of sharper interfaces. Perpendicular magnetic anisotropy (PMA) is still achieved on the oxide buffer layers, but with a lower effective anisotropy correlated to more perturbed interfaces. The detailed analysis of the saturation magnetization shows that: (i) M s is significantly enhanced in the case of rough/intermixed interfaces, which is attributed to and discussed in the framework of Pt induced polarization, (ii) the change in volume dipolar anisotropy is the main factor responsible for the reduction of K eff for systems grown on oxides. Beyond the major role of volume dipolar contribution that reduces PMA, a supplemental positive contribution promoting PMA can be invoked for rough interfaces and large M s (deposit on oxide). This contribution is consistent with a dipolar surface anisotropy term and increases for rough interfaces, in contrast to the Néel surface anisotropy. These opposite variations may interestingly lead to an enhanced anisotropy in (Co / Pt) stackings grown on oxides compared to systems deposited on Pt, i.e. with sharper interfaces.

  11. Impact of buffer layer and Pt thickness on the interface structure and magnetic properties in (Co/Pt) multilayers.

    PubMed

    Bersweiler, M; Dumesnil, K; Lacour, D; Hehn, M

    2016-08-24

    The influence of Pt thickness on the interface structure (roughness / intermixing) and magnetic properties has been investigated for (Co / Pt) multilayers sputtered on a Pt or a thin oxide (MgO or AlO x ) buffer layer. When Pt thickness increases from 1.2 nm-2.2 nm, we observe that the effective anisotropy increases with the Pt thickness, simultaneously with the decrease of roughness, i.e. the occurrence of sharper interfaces. Perpendicular magnetic anisotropy (PMA) is still achieved on the oxide buffer layers, but with a lower effective anisotropy correlated to more perturbed interfaces. The detailed analysis of the saturation magnetization shows that: (i) M s is significantly enhanced in the case of rough/intermixed interfaces, which is attributed to and discussed in the framework of Pt induced polarization, (ii) the change in volume dipolar anisotropy is the main factor responsible for the reduction of K eff for systems grown on oxides. Beyond the major role of volume dipolar contribution that reduces PMA, a supplemental positive contribution promoting PMA can be invoked for rough interfaces and large M s (deposit on oxide). This contribution is consistent with a dipolar surface anisotropy term and increases for rough interfaces, in contrast to the Néel surface anisotropy. These opposite variations may interestingly lead to an enhanced anisotropy in (Co / Pt) stackings grown on oxides compared to systems deposited on Pt, i.e. with sharper interfaces.

  12. Thickness management in three-dimensional laser manufacturing of suspended structures in a single SU-8 layer

    NASA Astrophysics Data System (ADS)

    Li, Biao; Gueit, Aurelien; Sharon, Andre

    2006-06-01

    Cantilevers, embedded channels, microcavities, and other high-aspect-ratio geometries requiring gaps between layers are essential to microfluidic components used for biotech/biomedical applications. Intensive efforts have been expanded in the development of novel approaches for efficiently manufacturing suspended structures. We have recently demonstrated a three-dimensional (3D) fabrication technique for rapid processing of microfluidic structures using a scanning laser system [B. Li et al. Appl. Phys. Lett. 85, 2426 (2004)]. This technique enables spot-by-spot laser pulsing for both in-plane and in-depth (parallel to film thickness) processing. Its maskless feature allows rapid prototyping of multilevel microfluidic structures at low cost. This article describes our latest results in thickness management using the 3D laser manufacturing technique. Suspended beams of various thicknesses have been fabricated by modifying grid size, laser energy, and degree of focus. Towards this end, we have demonstrated a microfluidic system with a functional microvalve in a single SU-8 layer.

  13. Characteristics of GaN-based light emitting diodes with different thicknesses of buffer layer grown by HVPE and MOCVD

    NASA Astrophysics Data System (ADS)

    Tian, Pengfei; Edwards, Paul R.; Wallace, Michael J.; Martin, Robert W.; McKendry, Jonathan J. D.; Gu, Erdan; Dawson, Martin D.; Qiu, Zhi-Jun; Jia, Chuanyu; Chen, Zhizhong; Zhang, Guoyi; Zheng, Lirong; Liu, Ran

    2017-02-01

    GaN-based light emitting diodes (LEDs) have been fabricated on sapphire substrates with different thicknesses of GaN buffer layer grown by a combination of hydride vapor phase epitaxy and metalorganic chemical vapor deposition. We analyzed the LED efficiency and modulation characteristics with buffer thicknesses of 12 μm and 30 μm. With the buffer thickness increase, cathodoluminescence hyperspectral imaging shows that the dislocation density in the buffer layer decreases from  ∼1.3  ×  108 cm‑2 to  ∼1.0  ×  108 cm‑2, and Raman spectra suggest that the compressive stress in the quantum wells is partly relaxed, which leads to a large blue shift in the peak emission wavelength of the photoluminescence and electroluminescent spectra. The combined effects of the low dislocation density and stress relaxation lead to improvements in the efficiency of LEDs with the 30 μm GaN buffer, but the electrical-to-optical modulation bandwidth is higher for the LEDs with the 12 μm GaN buffer. A rate equation analysis suggests that defect-related nonradiative recombination can help increase the modulation bandwidth but reduce the LED efficiency at low currents, suggesting that a compromise should be made in the choice of defect density.

  14. Correlation between skin, bone, and cerebrospinal fluid layer thickness and optical coefficients measured by multidistance frequency-domain near-infrared spectroscopy in term and preterm infants

    NASA Astrophysics Data System (ADS)

    Demel, Anja; Feilke, Katharina; Wolf, Martin; Poets, Christian F.; Franz, Axel R.

    2014-01-01

    Near-infrared spectroscopy (NIRS) is increasingly used in neonatal intensive care. We investigated the impact of skin, bone, and cerebrospinal fluid (CSF) layer thickness in term and preterm infants on absorption-(μa) and/or reduced scattering coefficients (μs‧) measured by multidistance frequency-domain (FD)-NIRS. Transcranial ultrasound was performed to measure the layer thicknesses. Correlations were only statistically significant for μa at 692 nm with bone thickness and μs‧ at 834 nm with skin thickness. There is no evidence that skin, bone, or CSF thickness have an important effect on μa and μs‧. Layer thicknesses of skin, bone, and CSF in the range studied do not seem to affect cerebral oxygenation measurements by multidistance FD-NIRS significantly.

  15. Simultaneous measurement of ultrasonic longitudinal wave velocities and thicknesses of a two layered media in the absence of an interface echo.

    PubMed

    Kannajosyula, Surya Prakash; Chillara, Vamshi Krishna; Balasubramaniam, Krishnan; Krishnamurthy, C V

    2010-10-01

    A measurement technique has been developed to extract the phase information of successive echoes for the simultaneous estimation of thicknesses and ultrasonic velocities of individual layers in a two layered media. The proposed method works in the absence of an interface echo and requires the total thickness of the sample to be known. Experiments have been carried out on two layered samples of white cast iron and gray cast iron with layer thickness variation in the range of 2-8 mm for total thickness variation in the range of 12-13 mm. Comparison with micrographs of a few samples confirmed the model predictions. The model is found to be sensitive to the total sample thickness but fairly insensitive to noise in the data.

  16. Simultaneous measurement of ultrasonic longitudinal wave velocities and thicknesses of a two layered media in the absence of an interface echo

    NASA Astrophysics Data System (ADS)

    Kannajosyula, Surya Prakash; Chillara, Vamshi Krishna; Balasubramaniam, Krishnan; Krishnamurthy, C. V.

    2010-10-01

    A measurement technique has been developed to extract the phase information of successive echoes for the simultaneous estimation of thicknesses and ultrasonic velocities of individual layers in a two layered media. The proposed method works in the absence of an interface echo and requires the total thickness of the sample to be known. Experiments have been carried out on two layered samples of white cast iron and gray cast iron with layer thickness variation in the range of 2-8 mm for total thickness variation in the range of 12-13 mm. Comparison with micrographs of a few samples confirmed the model predictions. The model is found to be sensitive to the total sample thickness but fairly insensitive to noise in the data.

  17. Thickness-Dependent Binding Energy Shift in Few-Layer MoS2 Grown by Chemical Vapor Deposition.

    PubMed

    Lin, Yu-Kai; Chen, Ruei-San; Chou, Tsu-Chin; Lee, Yi-Hsin; Chen, Yang-Fang; Chen, Kuei-Hsien; Chen, Li-Chyong

    2016-08-31

    The thickness-dependent surface states of MoS2 thin films grown by the chemical vapor deposition process on the SiO2-Si substrates are investigated by X-ray photoelectron spectroscopy. Raman and high-resolution transmission electron microscopy suggest the thicknesses of MoS2 films to be ranging from 3 to 10 layers. Both the core levels and valence band edges of MoS2 shift downward ∼0.2 eV as the film thickness increases, which can be ascribed to the Fermi level variations resulting from the surface states and bulk defects. Grainy features observed from the atomic force microscopy topographies, and sulfur-vacancy-induced defect states illustrated at the valence band spectra imply the generation of surface states that causes the downward band bending at the n-type MoS2 surface. Bulk defects in thick MoS2 may also influence the Fermi level oppositely compared to the surface states. When Au contacts with our MoS2 thin films, the Fermi level downshifts and the binding energy reduces due to the hole-doping characteristics of Au and easy charge transfer from the surface defect sites of MoS2. The shift of the onset potentials in hydrogen evolution reaction and the evolution of charge-transfer resistances extracted from the impedance measurement also indicate the Fermi level varies with MoS2 film thickness. The tunable Fermi level and the high chemical stability make our MoS2 a potential catalyst. The observed thickness-dependent properties can also be applied to other transition-metal dichalcogenides (TMDs), and facilitates the development in the low-dimensional electronic devices and catalysts.

  18. Detection of Glaucoma Progression with Stratus OCT Retinal Nerve Fiber Layer, Optic Nerve Head, and Macular Thickness Measurements

    PubMed Central

    Medeiros, Felipe A.; Zangwill, Linda M.; Alencar, Luciana M.; Bowd, Christopher; Sample, Pamela A.; Susanna, Remo; Weinreb, Robert N.

    2010-01-01

    Purpose To evaluate and compare the ability of optical coherence tomography (OCT) retinal nerve fiber layer (RNFL), optic nerve head, and macular thickness parameters to detect progressive structural damage in glaucoma. Methods This observational cohort study included 253 eyes of 253 patients. Images were obtained annually with the Stratus OCT (Carl Zeiss Meditec, Inc., Dublin, CA) along with optic disc stereophotographs and standard automated perimetry (SAP) visual fields. The median follow-up time was 4.01 years. Progression was determined by the Guided Progression Analysis software for SAP (Carl Zeiss Meditec, Inc.) and by masked assessment of optic disc stereophotographs performed by expert graders. Random coefficient models and receiver operating characteristic (ROC) curves were used to evaluate the relationship between change in Stratus OCT parameters over time and progression as determined by SAP and/or stereophotographs. Results From the 253 eyes, 31 (13%) showed progression over time by stereophotographs and/or SAP. Mean rates of change in average RNFL thickness were significantly higher for progressors compared with nonprogressors (−0.72 μm/y vs. 0.14 μm/y; P = 0.004), with sensitivity of 77% for specificity of 80%. RNFL parameters performed significantly better than ONH and macular thickness measurements in discriminating progressors from nonprogressors. The parameters with the largest ROC curve areas for each scanning area were inferior RNFL thickness (0.84), cup area (0.66), and inferior inner macula thickness (0.64). Conclusions Stratus OCT RNFL parameters discriminated between eyes progressing by visual fields or optic disc photographs and eyes that remained stable by these methods and performed significantly better than ONH and macular thickness parameters in detecting change over time. PMID:19815731

  19. Full-thickness skin wound healing using autologous keratinocytes and dermal fibroblasts with fibrin: bilayered versus single-layered substitute.

    PubMed

    Idrus, Ruszymah Bt Hj; Rameli, Mohd Adha bin P; Low, Kiat Cheong; Law, Jia Xian; Chua, Kien Hui; Latiff, Mazlyzam Bin Abdul; Saim, Aminuddin Bin

    2014-04-01

    Split-skin grafting (SSG) is the gold standard treatment for full-thickness skin defects. For certain patients, however, an extensive skin lesion resulted in inadequacies of the donor site. Tissue engineering offers an alternative approach by using a very small portion of an individual's skin to harvest cells for propagation and biomaterials to support the cells for implantation. The objective of this study was to determine the effectiveness of autologous bilayered tissue-engineered skin (BTES) and single-layer tissue-engineered skin composed of only keratinocytes (SLTES-K) or fibroblasts (SLTES-F) as alternatives for full-thickness wound healing in a sheep model. Full-thickness skin biopsies were harvested from adult sheep. Isolated fibroblasts were cultured using medium Ham's F12: Dulbecco modified Eagle medium supplemented with 10% fetal bovine serum, whereas the keratinocytes were cultured using Define Keratinocytes Serum Free Medium. The BTES, SLTES-K, and SLTES-F were constructed using autologous fibrin as a biomaterial. Eight full-thickness wounds were created on the dorsum of the body of the sheep. On 4 wounds, polyvinyl chloride rings were used as chambers to prevent cell migration at the edge. The wounds were observed at days 7, 14, and 21. After 3 weeks of implantation, the sheep were euthanized and the skins were harvested. The excised tissues were fixed in formalin for histological examination via hematoxylin-eosin, Masson trichrome, and elastin van Gieson staining. The results showed that BTES, SLTES-K, and SLTES-F promote wound healing in nonchambered and chambered wounds, and BTES demonstrated the best healing potential. In conclusion, BTES proved to be an effective tissue-engineered construct that can promote the healing of full-thickness skin lesions. With the support of further clinical trials, this procedure could be an alternative to SSG for patients with partial- and full-thickness burns.

  20. Forward Versus Back Thrusts in Accretionary Wedges: Effects of Rheology and Thickness of the Décollement Layer

    NASA Astrophysics Data System (ADS)

    Ito, Garrett; Olive, Jean-Arthur; Moore, Gregory; Gutscher, Marc-Andre; Weiss, Jonathan

    2016-04-01

    The mechanical processes that control whether major thrusts in accretionary wedges verge forward toward the foreland, versus backward toward the hinterland has long been a topic of debate. Whereas forethrusts are the most common major thrusts, the importance of the globally rare back thrusts has recently been highlighted given their prominence along the Cascadia margin off of the NW coast of North America as well as along the Andaman-Sumatra subduction zone, in the rupture area of the great 2004 earthquake. We address this problem using 2-D numerical models that use a finite-difference, particle-in-cell method with a viscoelastic-plastic rheology for simulating thrusting in accretionary wedges. Simulations of a weak frictional décollement confirm prior numerical and analogue modeling studies in that they predict lower wedge tapers and repeated sequences of doubly verging conjugate thrusts. A forward dipping backstop was shown in prior laboratory experiments to promote backthrusting, and our results confirm that backthrusting occurs near the backstop but as the wedge widens away from the backstop forethrusts become dominant. Other laboratory experimental studies have found that a non-brittle, viscously deforming décollement can promote backthrusting. Our numerical models show that if the viscosity of the décollement layer η is too high, such that the stress scale, ηU/H (where U is the convergence rate and H is the décollement layer thickness), is comparable to the frictional strength at the base, then forethrusts dominate. For ηU/H less than the basal frictional strength, doubly verging faults are prominent over a wide range of décollement layer thicknesses. Only for cases with relatively low ηU/H and décollement layer thicknesses H that are 25-33% of the thickness of the whole, incoming sediment layer do backthrusts dominate. Thus backthrusting appears to require unusual rheological properties of the deepest sediments, which is consistent with the rarity

  1. Perpendicular Magnetic Anisotropy in CoSiB/Pd/CoSiB Trilayer Thin Films with Varying Pd-Layer Thicknesses.

    PubMed

    Jung, Sol; Kim, Taewan; Yim, Haein

    2015-11-01

    We investigate the magnetic properties of CoSiB (1 5-Å-thickness)/Pd (Pd thickness = 8, 11, 14, 17, 20, 24, 27, 29 and 33 Å)/CoSiB (15-Å-thickness) trilayer thin films. The CoSiB-layer thickness was fixed to 15 Å, while the Pd-layer thickness was varied from 8-33 Å. In this paper, we present a new type of thin film containing amorphous Co75Si15B10 and Pd. We investigate the magnetic properties of a fabricated CoSiB/Pd/CoSiB trilayer thin film with perpendicular magnetic anisotropy, and determine the correlation between the magnetic properties and the nonmagnetic Pd-layer thickness. With increasing Pd-layer thickness, both the coercivity and the saturation magnetization decreased. Furthermore, the maximum values of the magnetic anisotropy were calculated as 0.3 x 10(6) erg/cc. In order to examine the difference between the in-plane magnetic anisotropy and perpendicular magnetic anisotropy, magnetic force microscopy images of the CoSiB (15-Å-thickness)/Pd (Pd thickness = 8 and 14 Å)/CoSiB (15-Å-thickness) trilayer thin films were obtained.

  2. Nondestructive thickness measurement system for multiple layers of paint based on femtosecond fiber laser technologies

    NASA Astrophysics Data System (ADS)

    Sudo, Masaaki; Takayanagi, Jun; Ohtake, Hideyuki

    2016-11-01

    Because optical fiber-based optical systems are generally robust against external interference, they can be used as reliable systems in industrial applications in various fields. This paper describes fiber lasers generating femtosecond pulses that use optical fibers as gain media and optical paths. Additionally, the nondestructive paint multilayer thickness measurement of automotive parts using terahertz waves generated and detected by femtosecond fiber laser systems was conducted.

  3. Evaluation of porosity and thickness on effective diffusivity in gas diffusion layer

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Montana, Angel; Chen, Fengxiang

    2017-02-01

    Porosity and thickness are two key properties of GDL and both affect the transport properties of porous media. This paper focuses on the influence of the GDL microstructure on its transport properties, which will be analyzed from different samples. The results show that thickness affects permeability through the principal flow direction more than through non-principal directions, thus it is necessary to increase the anisotropic characteristics of the material. Moreover, it is ascertained that permeability is more affected by the number of fibers than by the thickness. For the variable porosity sample groups, the simulation results are coincident with the fractal model in principal and non-principal flow directions, and water saturation inside the GDL samples has been evaluated. They are shown several cases of the GDL model to illustrate the fluid flow along through-plane and in-plane directions as well as the conditions at inlet and outlet boundaries. These results have a strong potential to gain deeper understanding of the microscopic flow phenomenon within the porous structures and to determine the influence the microstructure has on the macroscopic transport properties, thus leading to notable improvements of fuel cell performance.

  4. Thickness-dependent structure and properties of SnS2 thin films prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Seo, Wondeok; Shin, Seokyoon; Ham, Giyul; Lee, Juhyun; Lee, Seungjin; Choi, Hyeongsu; Jeon, Hyeongtag

    2017-03-01

    Tin disulfide (SnS2) thin films were deposited by a thermal atomic layer deposition (ALD) method at low temperatures. The physical, chemical, and electrical characteristics of SnS2 were investigated as a function of the film thickness. SnS2 exhibited a (001) hexagonal plane peak at 14.9° in the X-ray diffraction (XRD) results and an A1g peak at 311 cm‑1 in the Raman spectra. These results demonstrate that SnS2 thin films grown at 150 °C showed a crystalline phase at film thicknesses above 11.2 nm. The crystallinity of the SnS2 thin films was evaluated by a transmission electron microscope (TEM). The X-ray photoelectron spectroscopy (XPS) analysis revealed that SnS2 consisted of Sn4+ and S2‑ valence states. Both the optical band gap and the transmittance of SnS2 decreased as the film thickness increased. The band gap of SnS2 decreased from 3.0 to 2.4 eV and the transmittance decreased from 85 to 32% at a wavelength of 400 nm. In addition, the resistivity of the thin film SnS2 decreased from 1011 to 106 Ω·cm as the film thickness increased.

  5. Transient Increase of Retinal Nerve Fiber Layer Thickness after Vitrectomy with ILM Peeling for Idiopathic Macular Hole

    PubMed Central

    Sato, Atsuko; Senda, Nami; Fukui, Emi

    2016-01-01

    Purpose. The purpose of this study was to determine the long-term changes in the circumpapillary retinal nerve fiber layer (RNFL) thickness following macular hole surgery with internal limiting membrane (ILM) peeling combined with phacoemulsification. Methods. Thirty-eight eyes of 37 patients who had pars plana vitrectomy (n = 36) between 2010 and 2014 were studied. The average thicknesses of the global and the six sectors of the RNFL were determined before and at 1, 3, 6, 12, and 24 (n = 22) months (M) after the surgery by spectral-domain optical coherent tomography. The postoperative mean RNFL thickness at each time was compared to that before the surgery by paired t-tests. Results. The RNFL of the operated eyes was significantly thicker at 1 month (1 M) and 3 M in all but the inferior-nasal sectors. The significant increase remained until 12 M in the superior-temporal and superior-nasal sectors. In addition, the RNFL was also significantly thicker in the temporal-inferior sector at 12 M based on the findings in 38 eyes. Conclusions. The postoperative RNFL was thicker in all but the nasal-inferior sector for at least 12 M after surgery. This prolonged increase of the RNFL thickness may indicate damage and mild edema of the RNFL. PMID:27803812

  6. Hybrid pn-junction solar cells based on layers of inorganic nanocrystals and organic semiconductors: optimization of layer thickness by considering the width of the depletion region.

    PubMed

    Saha, Sudip K; Guchhait, Asim; Pal, Amlan J

    2014-03-07

    We report the formation and characterization of hybrid pn-junction solar cells based on a layer of copper diffused silver indium disulfide (AgInS2@Cu) nanoparticles and another layer of copper phthalocyanine (CuPc) molecules. With copper diffusion in the nanocrystals, their optical absorption and hence the activity of the hybrid pn-junction solar cells was extended towards the near-IR region. To decrease the particle-to-particle separation for improved carrier transport through the inorganic layer, we replaced the long-chain ligands of copper-diffused nanocrystals in each monolayer with short-ones. Under illumination, the hybrid pn-junctions yielded a higher short-circuit current as compared to the combined contribution of the Schottky junctions based on the components. A wider depletion region at the interface between the two active layers in the pn-junction device as compared to that of the Schottky junctions has been considered to analyze the results. Capacitance-voltage characteristics under a dark condition supported such a hypothesis. We also determined the width of the depletion region in the two layers separately so that a pn-junction could be formed with a tailored thickness of the two materials. Such a "fully-depleted" device resulted in an improved photovoltaic performance, primarily due to lessening of the internal resistance of the hybrid pn-junction solar cells.

  7. Application of the multi-step EPD technique to fabricate thick TiO2 layers: effect of organic medium viscosity on the layer microstructure.

    PubMed

    Sadeghi, A A; Ebadzadeh, T; Raissi, B; Ghashghaie, S; Fateminia, S M A

    2013-02-14

    In the present study, electrophoretic deposition (EPD) was used to obtain dense layers of TiO(2) in four organic media-methanol, ethanol, 1-propanol, and butanol-with different TiO(2) nanoparticle concenterations of 1-8 g/L. Microstructural study of the obtained layers by scanning electron (SEM) and optical microscope (OM) revealed that the multistep EPD technique could effectively prevent crack formation across the layer compared with the single-step method and will consequently increase the critical cracking thickness (CCT). The quality of EPD layers was also affected by viscosity. According to SEM and atomic force microscope (AFM) results, as the viscosity of the medium increased, more compact layers were formed which can be attributed to the lower deposition rates in heavier alcohols. High deposition rate in methanol and ethanol was also confirmed by zeta potential results. Suspension viscosity was interestingly observed to control the threshold concentration above which crack formation would occur. These values were measured to be 3 and 5 g/L for methanol and ethanol, respectively. However, in suspensions based on more viscous alcohols, the threshold concentration increased to 8 g/L which implied the decisive role of medium on concentration limits. It indicates that by employing organic vehicles of higher viscosity it is possible to maintain the CCT values obtained in less viscous media with no need to decrease the colloidal concentration of the suspension.

  8. Quantification of Mixing of a Sonic Jet in Supersonic Crossflow due to Thick Turbulent Boundary Layer Interaction

    NASA Astrophysics Data System (ADS)

    Rossmann, Tobias; Pizzaia, Adam

    2013-11-01

    The upstream injection surface boundary layer is shown to have a significant effect on the mixing characteristics of a sonic jet in supersonic cross flow. A circular, high-pressure, sonic jet is injected into a M =3.5 supersonic crossflow through different boundary layer thickness (δ/D = 7.5 and 1), with variable injection angles (-20 to +20 degrees), and variable momentum ratios (J = 2, 5, and 10). Planar Laser Mie Scattering of condensed ethanol droplets is used to quantitatively image the injected fluid concentration in both the side and end views. Jet fluid concentrations PDFs are constructed to better understand the mixing dynamics. These PDFs are integrated to create mixed fluid fraction profiles that are then reduced to mixing efficiency. Mixing efficiency values are computed from different two-dimensional planes to determine if centerline mixing efficiencies are characteristic of the entire three-dimensional flow. Through these analyses, it is seen that thick boundary layers tend to marginally alter jet penetration and spread, but significantly worsen jet mixing capabilities, regardless of momentum ratio or injection angle.

  9. Fabrication of a nanometer thick nitrogen delta doped layer at the sub-surface region of (100) diamond

    NASA Astrophysics Data System (ADS)

    Chandran, Maneesh; Michaelson, Shaul; Saguy, Cecile; Hoffman, Alon

    2016-11-01

    In this letter, we report on the proof of a concept of an innovative delta doping technique to fabricate an ensemble of nitrogen vacancy centers at shallow depths in (100) diamond. A nitrogen delta doped layer with a concentration of ˜1.8 × 1020 cm-3 and a thickness of a few nanometers was produced using this method. Nitrogen delta doping was realized by producing a stable nitrogen terminated (N-terminated) diamond surface using the RF nitridation process and subsequently depositing a thin layer of diamond on the N-terminated diamond surface. The concentration of nitrogen on the N-terminated diamond surface and its stability upon exposure to chemical vapor deposition conditions are determined by x-ray photoelectron spectroscopy analysis. The SIMS profile exhibits a positive concentration gradient of 1.9 nm/decade and a negative gradient of 4.2 nm/decade. The proposed method offers a finer control on the thickness of the delta doped layer than the currently used ion implantation and delta doping techniques.

  10. Evaluation of a multi-layer adipose-derived stem cell sheet in a full-thickness wound healing model.

    PubMed

    Lin, Yen-Chih; Grahovac, Tara; Oh, Sun Jung; Ieraci, Matthew; Rubin, J Peter; Marra, Kacey G

    2013-02-01

    Cell sheet technology has been studied for applications such as bone, ligament and skin regeneration. There has been limited examination of adipose-derived stem cells (ASCs) for cell sheet applications. The specific aim of this study was to evaluate ASC sheet technology for wound healing. ASCs were isolated from discarded human abdominal subcutaneous adipose tissue, and ASC cell sheets were created on the surface of fibrin-grafted culture dishes. In vitro examination consisted of the histochemical characterization of the ASC sheets. In vivo experiments consisted of implanting single-layer cell sheets, triple-layer cell sheets or non-treated control onto a full-thickness wound defect (including epidermis, dermis, and subcutaneous fat) in nude mice for 3 weeks. Cell sheets were easily peeled off from the culture dishes using forceps. The single- and triple-layer ASC sheets showed complete extracellular structure via hematoxylin & eosin staining. In vivo, the injury area was measured 7, 10, 14 and 21 days post-treatment to assess wound recovery. The ASC sheet-treated groups' injury area was significantly smaller than that of the non-treated control group at all time points except day 21. The triple-layer ASC sheet treatment significantly enhanced wound healing compared to the single-layer ASC sheet at 7, 10 and 14 days. The density of blood vessels showed that ASC cell sheet treatment slightly enhanced total vessel proliferation compared to the empty wound injury treatment. Our studies indicate that ASC sheets present a potentially viable matrix for full-thickness defect wound healing in a mouse model. Consequently, our ASC sheet technology represents a substantial advance in developing various types of three-dimensional tissues.

  11. Improving lithography intra wafer CD for C045 implant layers using STI thickness feed forward?

    NASA Astrophysics Data System (ADS)

    Massin, Jean; Orlando, Bastien; Gatefait, Maxime; Chapon, Jean-Damien; Le-Gratiet, Bertrand; Minghetti, Blandine; Goirand, Pierre-Jérôme

    2008-03-01

    In this paper we performed an analysis of various data collection preformed on C045 production lots in order to assess the influence of STI oxide layers on the CD uniformity of implant photolithography layers. Our final purpose is to show whether the DOSE MAPPER TM software option for interfiled dose correction available on ASML scanners combined with a run-to-run feed-forward regulation loop could improve global CD uniformity on C045 implants layers. After a brief presentation of the C045 implants context the results of the analysis are presented : swing curves, process windows analysis, and intra-die CD measurements are presented. The conclusion of the analysis is that it is not possible, in the current C045 industrial environment, to use a robust and general method of interfield dose correction in order to achieve a better global CD uniformity.

  12. In vitro corrosion of pure magnesium and AZ91 alloy—the influence of thin electrolyte layer thickness

    PubMed Central

    Zeng, Rong-Chang; Qi, Wei-Chen; Zhang, Fen; Li, Shuo-Qi

    2016-01-01

    In vivo degradation predication faces a huge challenge via in vitro corrosion test due to the difficulty for mimicking the complicated microenvironment with various influencing factors. A thin electrolyte layer (TEL) cell for in vitro corrosion of pure magnesium and AZ91 alloy was presented to stimulate the in vivo corrosion in the micro-environment built by the interface of the implant and its neighboring tissue. The results demonstrated that the in vivo corrosion of pure Mg and the AZ91 alloy was suppressed under TEL condition. The AZ91 alloy was more sensitive than pure Mg to the inhibition of corrosion under a TEL thickness of less than 200 µm. The TEL thickness limited the distribution of current, and thus localized corrosion was more preferred to occur under TEL condition than in bulk solution. The TEL cell might be an appropriate approach to simulating the in vivo degradation of magnesium and its alloys. PMID:26816655

  13. In vitro corrosion of pure magnesium and AZ91 alloy-the influence of thin electrolyte layer thickness.

    PubMed

    Zeng, Rong-Chang; Qi, Wei-Chen; Zhang, Fen; Li, Shuo-Qi

    2016-03-01

    In vivo degradation predication faces a huge challenge via in vitro corrosion test due to the difficulty for mimicking the complicated microenvironment with various influencing factors. A thin electrolyte layer (TEL) cell for in vitro corrosion of pure magnesium and AZ91 alloy was presented to stimulate the in vivo corrosion in the micro-environment built by the interface of the implant and its neighboring tissue. The results demonstrated that the in vivo corrosion of pure Mg and the AZ91 alloy was suppressed under TEL condition. The AZ91 alloy was more sensitive than pure Mg to the inhibition of corrosion under a TEL thickness of less than 200 µm. The TEL thickness limited the distribution of current, and thus localized corrosion was more preferred to occur under TEL condition than in bulk solution. The TEL cell might be an appropriate approach to simulating the in vivo degradation of magnesium and its alloys.

  14. Epitaxial growth and characterization of thick multi-layer 4H-SiC for very high-voltage insulated gate bipolar transistors

    NASA Astrophysics Data System (ADS)

    Miyazawa, Tetsuya; Nakayama, Koji; Tanaka, Atsushi; Asano, Katsunori; Ji, Shi-yang; Kojima, Kazutoshi; Ishida, Yuuki; Tsuchida, Hidekazu

    2015-08-01

    Techniques to fabricate thick multi-layer 4H-SiC epitaxial wafers were studied for very high-voltage p- and n-channel insulated gate bipolar transistors (IGBTs). Multi-layer epitaxial growth, including a thick p- drift layer (˜180 μm), was performed on a 4H-SiC n+ substrate to form a p-IGBT structure. For an n-IGBT structure, an inverted growth process was employed, in which a thick n- drift layer (˜180 μm) and a thick p++ injector layer (>55 μm) were epitaxially grown. The epitaxial growth conditions were modified to attain a low defect density, a low doping concentration, and a long carrier lifetime in the drift layers. Reduction of the forward voltage drop was attempted by using carrier lifetime enhancement processes, specifically, carbon ion implantation/annealing and thermal oxidation/annealing or hydrogen annealing. Simple PiN diodes were fabricated to demonstrate the effective conductivity modulation in the thick drift layers. The forward voltage drops of the PiN diodes with the p- and n-IGBT structures promise to obtain the extremely low-loss and very high-voltage IGBTs. The change in wafer shape during the processing of the very thick multi-layer 4H-SiC is also discussed.

  15. Multi-layered black phosphorus as saturable absorber for pulsed Cr:ZnSe laser at 2.4 μm.

    PubMed

    Wang, Zhaowei; Zhao, Ruwei; He, Jingliang; Zhang, Baitao; Ning, Jian; Wang, Yiran; Su, Xiancui; Hou, Jia; Lou, Fei; Yang, Kejian; Fan, Yisong; Bian, Jintian; Nie, Jinsong

    2016-01-25

    A high-quality black phosphorus (BP) saturable-absorber mirror (SAM) was successfully fabricated with the multi-layered BP, prepared by liquid-phase exfoliation (LPE) method. The modulation depth and saturation power intensity of BP absorber were measured to be 10.7% and 0.96 MW/cm(2), respectively. Using the BP-SAM, we experimentally demonstrated the mid-infrared (mid-IR) pulse generation from a BP Q-switched Cr:ZnSe laser for the first time to our best knowledge. Stable Q-switched pulse as short as 189 ns with an average output power of 36 mW was realized at 2.4 μm, corresponding to a repetition rate of 176 kHz and a single pulse energy of 205 nJ. Our work sufficiently validated that multi-layer BP could be used as an optical modulator for mid-IR pulse laser sources.

  16. Preparation of a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine) by surface-initiated atom transfer radical polymerization and analysis of protein adsorption resistance.

    PubMed

    Inoue, Yuuki; Onodera, Yuya; Ishihara, Kazuhiko

    2016-05-01

    The purpose of this study was to prepare a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine (MPC)) and assess its resistance to protein adsorption from the dissolved state of poly(MPC) chains in an aqueous condition. The thick poly(MPC) brush layer was prepared through the surface-initiated atom transfer radical polymerization (SI-ATRP) of MPC with a free initiator from an initiator-immobilized substrate at given [Monomer]/[Free initiator] ratios. The ellipsometric thickness of the poly(MPC) brush layers could be controlled by the polymerization degree of the poly(MPC) chains. The thickness of the poly(MPC) brush layer in an aqueous medium was larger than that in air, and this tendency became clearer when the polymerization degree of the poly(MPC) increased. The maximum thickness of the poly(MPC) brush layer in an aqueous medium was around 110 nm. The static air contact angle of the poly(MPC) brush layer in water indicated a reasonably hydrophilic nature, which was independent of the thickness of the poly(MPC) brush layer at the surface. This result occurred because the hydrated state of the poly(MPC) chains is not influenced by the environment surrounding them. Finally, as measured with a quartz crystal microbalance, the amount of protein adsorbed from a fetal bovine serum solution (10% in phosphate-buffered saline) on the original substrate was 420 ng/cm(2). However, the poly(MPC) brush layer reduced this value dramatically to less than 50 ng/cm(2). This effect was independent of the thickness of the poly(MPC) brush layer for thicknesses between 20 nm and about 110 nm. These results indicated that the surface covered with a poly(MPC) brush layer is a promising platform to avoid biofouling and could also be applied to analyze the reactions of biological molecules with a high signal/noise ratio.

  17. Synthesis and study of photovoltaic performance on various photoelectrode materials for DSSCs: Optimization of compact layer on nanometer thickness

    NASA Astrophysics Data System (ADS)

    Surya, Subramanian; Thangamuthu, Rangasamy; Senthil Kumar, Sakkarapalayam Murugesan; Murugadoss, Govindhasamy

    2017-02-01

    Dye-sensitized solar cells (DSSCs) have gained widespread attention in recent years because of their low production costs, ease of fabrication process and tuneable optical properties, such as colour and transparency. In this work, we explored a strategy wherein nanoparticles of pure TiO2, TiO2sbnd SnO2 nanocomposite, Sn (10%) doped TiO2 and SnO2 synthesized by the simple chemical precipitation method were employed as photoelectrodes to enhance the photovoltaic conversion efficiency of solar cells. The nanoparticles were characterized by different characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM with EDX), transmission electron microscopy (TEM), high resolution electron microscopy (HR-TEM), UV-Visible absorbance (UV-vis), photoluminescence (PL), thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) measurements. Moreover, we also demonstrated the effect of thin compact layer in DSSCs by architecture with various precursor materials of different concentrations. We found that the optimized compact layer material TDIP (titanium diisopropoxide) with a concentration of 0.3 M % is produced the highest efficiency of 2.25% for Sn (10%) doped TiO2 electron transport material (ETM) and 4.38% was achieved for pure TiO2 ETM using SnCl2 compact layer with 0.1 M concentrations.

  18. Bidirectional Reflectance of Flat, Optically Thick Particulate Layers: An Efficient Radiative Transfer Solution and Applications to Snow and Soil Surfaces

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yanovitsku, Edgard G.; Zakharova, Nadia T.

    1999-01-01

    We describe a simple and highly efficient and accurate radiative transfer technique for computing bidirectional reflectance of a macroscopically flat scattering layer composed of nonabsorbing or weakly absorbing, arbitrarily shaped, randomly oriented and randomly distributed particles. The layer is assumed to be homogeneous and optically semi-infinite, and the bidirectional reflection function (BRF) is found by a simple iterative solution of the Ambartsumian's nonlinear integral equation. As an exact Solution of the radiative transfer equation, the reflection function thus obtained fully obeys the fundamental physical laws of energy conservation and reciprocity. Since this technique bypasses the computation of the internal radiation field, it is by far the fastest numerical approach available and can be used as an ideal input for Monte Carlo procedures calculating BRFs of scattering layers with macroscopically rough surfaces. Although the effects of packing density and coherent backscattering are currently neglected, they can also be incorporated. The FORTRAN implementation of the technique is available on the World Wide Web at http://ww,,v.giss.nasa.gov/-crmim/brf.html and can be applied to a wide range of remote sensing, engineering, and biophysical problems. We also examine the potential effect of ice crystal shape on the bidirectional reflectance of flat snow surfaces and the applicability of the Henyey-Greenstein phase function and the 6-Eddington approximation in calculations for soil surfaces.

  19. Influence of layer doping and thickness on predicted performance of NPN AlGaN/GaN HBTs

    NASA Astrophysics Data System (ADS)

    Lee, K. P.; Dabiran, A.; Chow, P. P.; Pearton, S. J.; Ren, F.

    2003-06-01

    The effects of base doping and thickness on dc current gain, collector-emitter saturation voltage, saturation current and collector-emitter breakdown voltage of GaN/AlGaN heterojunction bipolar transistors were investigated using a drift-diffusion transport model. Given the low ionization efficiency of Mg acceptors in the base, it is important to design structures that avoid depletion of the base layer. The presence of a resistive base causes current to flow directly to the collector, severely reducing gain. The effect of emitter doping on current gain and of collector doping on the breakdown voltage of the C-E junction were also investigated.

  20. The influence of matrix composition and ink layer thickness on iron gall ink determination by the PIXE method

    NASA Astrophysics Data System (ADS)

    Uršič, Mitja; Budnar, Miloš; Simčič, Jure; Pelicon, Primož

    2006-06-01

    The elemental composition of iron gall inks in historical documents can be effectively studied using the non-destructive proton induced X-ray emission (PIXE) method. The in-air proton beam experimental set-up installed at the Microanalytical Centre of the Jožef Stefan Institute was used for this purpose. The aim of the present investigation was to model and evaluate the uncertainties in the analysis due to the incompletely known matrix composition and iron gall ink layer thickness. Estimation of these uncertainties helped in quantifying the accuracy of multi-elemental PIXE analysis of historical documents.

  1. The complex evolution of strain during nanoscale patterning of 60 nm thick strained silicon layer directly on insulator

    NASA Astrophysics Data System (ADS)

    Moutanabbir, O.; Reiche, M.; Erfurth, W.; Naumann, F.; Petzold, M.; Gösele, U.

    2009-06-01

    The strain behavior in nanoscale patterned biaxial tensile strained Si layer on insulator is investigated in 60-nm-thick nanostructures with dimensions in the 80-400 nm range. The in-plane strain is evaluated by using UV micro-Raman. We found that less than 30% of the biaxial strain is maintained in the 200×200 nm2 nanostructures. This relaxation, due to the formation of free surfaces, becomes more important in smaller nanostructures. The strain is completely relieved at 80 nm. This phenomenon is described based on detailed three-dimensional finite element simulations. The anisotropic relaxation in rectangular nanostructures is also discussed.

  2. Using ground-penetrating radar, topography and classification of vegetation to model the sediment and active layer thickness in a periglacial lake catchment, western Greenland

    NASA Astrophysics Data System (ADS)

    Petrone, Johannes; Sohlenius, Gustav; Johansson, Emma; Lindborg, Tobias; Näslund, Jens-Ove; Strömgren, Mårten; Brydsten, Lars

    2016-11-01

    The geometries of a catchment constitute the basis for distributed physically based numerical modeling of different geoscientific disciplines. In this paper results from ground-penetrating radar (GPR) measurements, in terms of a 3-D model of total sediment thickness and active layer thickness in a periglacial catchment in western Greenland, are presented. Using the topography, the thickness and distribution of sediments are calculated. Vegetation classification and GPR measurements are used to scale active layer thickness from local measurements to catchment-scale models. Annual maximum active layer thickness varies from 0.3 m in wetlands to 2.0 m in barren areas and areas of exposed bedrock. Maximum sediment thickness is estimated to be 12.3 m in the major valleys of the catchment. A method to correlate surface vegetation with active layer thickness is also presented. By using relatively simple methods, such as probing and vegetation classification, it is possible to upscale local point measurements to catchment-scale models, in areas where the upper subsurface is relatively homogeneous. The resulting spatial model of active layer thickness can be used in combination with the sediment model as a geometrical input to further studies of subsurface mass transport and hydrological flow paths in the periglacial catchment through numerical modeling. The data set is available for all users via the PANGAEA database, doi:10.1594/PANGAEA.845258.

  3. Effect of sound-absorbing materials on intensity of disturbances in the shock layer on a flat plate aligned at an angle of attack

    NASA Astrophysics Data System (ADS)

    Maslov, A. A.; Mironov, S. G.; Poplavskaya, T. V.; Tsyryulnikov, I. S.; Kirilovskiy, S. V.

    2012-03-01

    Results of a numerical and experimental study of characteristics of disturbances in a hypersonic shock layer on a flat plate covered by a sound-absorbing coating and aligned at an angle of attack are presented. Experiments and computations are performed for the free-stream Mach number M ∞ = 21 and Reynolds number Re L = 6 · 104. A possibility of suppressing pressure fluctuations in the shock layer at frequencies of 20-40 kHz with the use of tubular and porous materials incorporated into the plate surface is demonstrated. Results of numerical simulations are found to be in good agreement with experimental data.

  4. Retinal nerve fiber layer thickness changes in obstructive sleep apnea syndrome: a systematic review and Meta-analysis

    PubMed Central

    Wang, Jia-Song; Xie, Hua-Tao; Jia, Ye; Zhang, Ming-Chang

    2016-01-01

    AIM To evaluate the retinal nerve fiber layer (RNFL) thickness changes in patients with obstructive sleep apnoea syndrome (OSAS), and detect possible prevalence of glaucoma in this population. METHODS Comprehensive studies were conducted on the Cochrane Library, PubMed and Embase through March, 2015. Only studies that fit the selection criteria about RNFL and OSAS would be included. For the measures, we calculated the 95% confidence interval (CI) and weighted mean differences (WMD). The systematic review and Meta-analysis was performed by RevMan 5.2 software. RESULTS Nine case-control studies were analyzed containing a total of 1086 cases and 580 controls. Average RNFL thickness in OSAS was reduced significantly compared with healthy controls in random effects model (WMD=-2.56, 95% CI: -4.82 to -0.31, P =0.003, I2=57%). A significant RNFL thickness reduction were found between the two groups in inferior quadrant (WMD=-3.11, 95% CI: -5.53 to -0.69, P=0.01), superior quadrant (WMD=-2.37, 95%CI: -4.7 to 0.04, P=0.05). In nasal quadrant (WMD=-2.54, 95% CI: -6.53 to 1.45, P=0.21) and temporal quadrant (WMD=-1.26, 95% CI: -2.19 to 0.47, P=0.15) there was no difference of RNFL thickness between the two groups. CONCLUSION The results show that RNFL thickness is lower in patients with moderate or severe OSAS than in normal subjects or patients with mild OSAS according to the nine homogeneity studies. PMID:27990371

  5. Characterization of Failed Surface of Ti and Imidex (PI) Film for Different Inter-layer Thicknesses of Ti Film

    NASA Astrophysics Data System (ADS)

    Lubna, Nusrat; Chaudhury, Zariff; Newaz, Golam

    2012-09-01

    For miniaturized biomedical devices, laser joining of dissimilar materials offers excellent potential to make precise joints. An important system for consideration is titanium (Ti) coated glass joined with biocompatible imidex polyimide (PI). Metallic Ti with various thicknesses was deposited on top of pyrex 7740 borosilicate glass by using DC-magnetron sputtering deposition method. Effect of bond strength between Ti coated glass and imidex polyimide (PI), due to thickness variation of sputtered Ti coating was studied. Three different Ti inter-layer thicknesses were considered, 50, 200, and 400 nm. Tests results indicated that the thinner film produced lower shear strength and higher thickness produced higher shear strength. It has been observed that thicker film (200 and 400 nm) enhanced considerably the bond strength with enhancing the film roughness as well. Higher roughness resulted in more contact area at the interface, results higher number of chemical bonds and increased mechanical interlocking; which in turn increase the laser joint strength. For stronger bond with higher thickness, mixed mode failure was observed which included cohesive failure of polymer, interface failure of Ti/glass and failure on the glass itself. On the other hand, for weak bond with thinner film, mostly interface failure was observed for this system of Ti coated glass/imidex. For thicker film, chemical bond of Ti-C and Ti-O were observed. The role of both surface characteristics and chemical bonding for laser joints were investigated by using advanced techniques such as X-ray photoelectron spectroscopy, scanning electron microscopy, and energy dispersive spectroscopy.

  6. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Milbourne, M.

    2005-01-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. The objective of this task is to quantify lifetimes through measurement of the optical and mechanical stability of candidate polymeric glazing and absorber materials. Polycarbonate sheet glazings, as proposed by two industry partners, have been tested for resistance to UV radiation with three complementary methods. Incorporation of a specific 2-mil thick UV-absorbing screening layer results in glazing lifetimes of at least 15 years; improved screens promise even longer lifetimes. Proposed absorber materials were tested for creep and embrittlement under high temperature, and appear adequate for planned ICS absorbers.

  7. Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells with improved performance.

    PubMed

    Lee, Sangjun; Mason, Daniel R; In, Sungjun; Park, Namkyoo

    2014-06-30

    We propose and numerically investigate the optical performance of a novel plasmonic organic solar cell with metallic nanowire electrodes embedded within the active layer. A significant improvement (~15%) in optical absorption over both a conventional ITO organic solar cell and a conventional plasmonic organic solar cell with top-loaded metallic grating is predicted in the proposed structure. Optimal positioning of the embedded metal electrodes (EME) is shown to preserve the condition for their strong plasmonic coupling with the metallic back-plane, meanwhile halving the hole path length to the anode which allows for a thicker active layer that increases the optical path length of propagating modes. With a smaller sheet resistance than a typical 100 nm thick ITO film transparent electrode, and an increased optical absorption and hole collection efficiency, our EME scheme could be an excellent alternative to ITO organic solar cells.

  8. Coordinated Airborne, Spaceborne, and Ground-Based Measurements of Massive, Thick Aerosol Layers During the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J.; Torres, O.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    During the dry-season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), unique coordinated observations were made of massive, thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sunphotometer measurements of aerosol optical depth (lambda=354-1558 nm), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data MPL-Net), and with measurements from a downward-pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths from the Sunphotometer and those retrieved over land and over water using four spaceborne sensors (TOMS (Total Ozone Mapping Spectrometer), MODIS (Moderate Resolution Imaging Spectrometer), MISR (Multiangle Imaging Spectroradiometer) and ATSR-2 (Along Track Scanning Radiometer)).

  9. Coordinated Airborne, Spaceborne and Ground-based Measurements of Massive Thick Aerosol Layers during the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J. R.; Torres, O.

    2003-01-01

    During the dry season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), coordinated observations were made of massive thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sun photometer measurements of aerosol optical depth (lambda = 0.354- 1.557 microns), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data (MPL-Net), and with measurements from a downward pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths fiom the Sun photometer and those retrieved over land and over water using four spaceborne sensors (TOMS, MODIS, MISR, and ATSR-2).

  10. Effect of antiferromagnetic layer thickness on exchange bias, training effect, and magnetotransport properties in ferromagnetic/antiferromagnetic antidot arrays

    SciTech Connect

    Gong, W. J.; Liu, W. Feng, J. N.; Zhang, Z. D.; Kim, D. S.; Choi, C. J.

    2014-04-07

    The effect of antiferromagnetic (AFM) layer on exchange bias (EB), training effect, and magnetotransport properties in ferromagnetic (FM) /AFM nanoscale antidot arrays and sheet films Ag(10 nm)/Co(8 nm)/NiO(t{sub NiO})/Ag(5 nm) at 10 K is studied. The AFM layer thickness dependence of the EB field shows a peak at t{sub NiO} = 2 nm that is explained by using the random field model. The misalignment of magnetic moments in the three-dimensional antidot arrays causes smaller decrease of EB field compared with that in the sheet films for training effect. The anomalous magnetotransport properties, in particular positive magnetoresistance (MR) for antidot arrays but negative MR for sheet films are found. The training effect and magnetotransport properties are strongly affected by the three-dimensional spin-alignment effects in the antidot arrays.

  11. Interpreting layer thickness advection in terms of eddy-topography interaction

    NASA Astrophysics Data System (ADS)

    Liu, Chuanyu; Köhl, Armin; Stammer, Detlef

    2014-09-01

    A parameterization for the spatial pattern of the eddy induced thickness advection parameter estimated from a dynamically consistent data assimilation procedure is presented. Values of the thickness advection parameter are predominantly negative (positive) over seamounts, and positive (negative) over the deep ocean in the southern (northern) hemisphere along strong currents; its magnitude is large at high latitudes but low in the tropical regions. Those characteristics motivate a parameterization based on the Coriolis parameter, the bottom depth and an eddy length scale. As a parameterization for an eddy streamfunction, the associated bolus velocities advect density anti-cyclonically (cyclonically) around seamounts (troughs). Although the parameterization has the same form as Holloway’s streamfunction for the Neptune effect, and is also related to eddy-topography interactions, Holloway’s streamfunction is in contrast applied to the momentum equation. The parameterization is independently confirmed by the flux-mean gradient relation from the output of a high resolution model. The effect of the proposed scheme is investigated using a channel model with idealized bottom topographies and a global ocean circulation model with realistic bottom topography. In agreement with the high resolution model, our scheme generates cold (warm) domes and cyclonic circulations over seamounts (troughs), which is consistent with the eddy movement in presence of the topographic β effect. This provides a different mechanism for eddy-topography interaction than the Neptune effect, which generates circulations of opposing sign.

  12. The impact of the layer thickness on the thermodynamic properties of pd hydride thin film electrodes.

    PubMed

    Vermeulen, Paul; Ledovskikh, Alexander; Danilov, Dmitry; Notten, Peter H L

    2006-10-19

    Recently, a lattice gas model was presented and successfully applied to simulate the absorption/desorption isotherms of various hydride-forming materials. The simulation results are expressed by parameters corresponding to several energy contributions, e.g., interaction energies. However, the use of a model system is indispensable in order to show the strength of the simulations. The palladium-hydrogen system is one of the most thoroughly described metal hydrides found in the literature and is therefore ideal for this purpose. The effects of decreasing the thickness of Pd thin films on the isotherms have been monitored experimentally and subsequently simulated. An excellent fit of the lattice gas model to the experimental data is found, and the corresponding parameters are used to describe several thermodynamic properties. It is analyzed that the contribution of H-H interaction energies to the total energy and the influence of the host lattice energy are significantly and systematically changing as a function of Pd thickness. Conclusively, it has been verified that the lattice gas model is a useful tool to analyze thermodynamic properties of hydrogen storage materials.

  13. A glimpse beneath Antarctic sea ice: observation of platelet-layer thickness and ice-volume fraction with multifrequency EM

    NASA Astrophysics Data System (ADS)

    Hoppmann, Mario; Hunkeler, Priska A.; Hendricks, Stefan; Kalscheuer, Thomas; Gerdes, Rüdiger

    2016-04-01

    In Antarctica, ice crystals (platelets) form and grow in supercooled waters below ice shelves. These platelets rise, accumulate beneath nearby sea ice, and subsequently form a several meter thick, porous sub-ice platelet layer. This special ice type is a unique habitat, influences sea-ice mass and energy balance, and its volume can be interpreted as an indicator of the health of an ice shelf. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In the present study, we applied a lateral constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the ice-shelf influenced fast-ice regime of Atka Bay, eastern Weddell Sea. We adapted the inversion algorithm to incorporate a sensor specific signal bias, and confirmed the reliability of the algorithm by performing a sensitivity study using synthetic data. We inverted the field data for sea-ice and platelet-layer thickness and electrical conductivity, and calculated ice-volume fractions within the platelet layer using Archie's Law. The thickness results agreed well with drillhole validation datasets within the uncertainty range, and the ice-volume fraction yielded results comparable to other studies. Both parameters together enable an estimation of the total ice volume within the platelet layer, which was found to be comparable to the volume of landfast sea ice in this region, and corresponded to more than a quarter of the annual basal melt volume of the nearby Ekström Ice Shelf. Our findings show that multi-frequency EM induction sounding is a suitable approach to efficiently map sea-ice and platelet-layer properties, with important implications for research into ocean/ice-shelf/sea-ice interactions. However, a successful application of this

  14. New iron pnictide oxide with thick perovskite-type blocking layers

    NASA Astrophysics Data System (ADS)

    Ogino, Hiraku; Sato, Shinya; Matsumura, Yutaka; Kawaguchi, Naoto; Machida, Kenji; Shimizu, Yasuaki; Ushiyama, Koichi; Horii, Shigeru; Shimoyama, Jun-Ichi; Kishio, Kohji

    2010-03-01

    Since the discovery of high-Tc superconductivity in LaFeAs(O,F), development of the materials having iron or nickel pnictide layers are subject of study. As presented in last APS March meeting, we have discovered iron and nickel pnictide oxide superconductors with perovskite-type oxide layers[1]. Until now, several compounds of this system have been found such as (M'2Pn2)(Sr4M2O6) [M' = Fe, Ni; Pn = P, As; M = Sc, Cr, (Mg,Ti)]. These compounds have higher pnictogen heights and lower Pn-Fe-Pn angles compared to REFeAsO system. These features of the system may lead to realization of high-Tc superconductivity. Recently we discovered new material belongs to this kind of system. Structural features and physical properties of the compounds in this system as well as new compound will be presented. [1] H. Ogino et al., Supercond. Sci. Technol. 22 (2009) 075008.

  15. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition.

    PubMed

    Riemensberger, Johann; Hartinger, Klaus; Herr, Tobias; Brasch, Victor; Holzwarth, Ronald; Kippenberg, Tobias J

    2012-12-03

    We demonstrate dispersion engineering of integrated silicon nitride based ring resonators through conformal coating with hafnium dioxide deposited on top of the structures via atomic layer deposition. Both, magnitude and bandwidth of anomalous dispersion can be significantly increased. The results are confirmed by high resolution frequency-comb-assisted-diode-laser spectroscopy and are in very good agreement with the simulated modification of the mode spectrum.

  16. Further results determining permeability and thickness for a multi-layer five spot tracer test

    SciTech Connect

    Brown, S.L.; Brigham, W.E.

    1981-02-01

    This report presents further results obtained using a computer algorithm developed by Dexter Yuen, which gives an indication of the heterogeneity among the layers of a reservoir. Yuen, Brigham and Cinco-Ley presented a match obtained by this program with field data reported by Brigham and Smith. To find a more accurate fit for these data, the program was modified to allow the selection of up to ten peaks. Results of this more detailed analysis are presented.

  17. Critical layer thickness enhancement of InAs overgrowth on porous GaAs

    NASA Astrophysics Data System (ADS)

    Beji, L.; Ismaı̈l, B.; Sfaxi, L.; Hassen, F.; Maaref, H.; Ben Ouada, H.

    2003-10-01

    In the present work we have investigated the initial stage of InAs layer grown on porous GaAs (π-GaAs) substrate by using reflection high-energy electron diffraction (RHEED) and low temperature photoluminescence (PL). RHEED measurements show that the 2D-3D growth mode transition appears after a deposition of 4.2 atomic monolayer (ML) of InAs, which is higher than that deposited on nominal GaAs (1.7 ML). PL investigations show two luminescence bands at 1.24 and 1.38 eV. The 1.24 eV PL peak emission is associated to the radiative transitions in InAs quantum dots (QDs), whereas the 1.38 eV PL peak emission is attributed to the InAs wetting layer (WL). The results show that π-GaAs is a promising candidate to obtain a reduced QDs size distribution, and to grow pseudomorphic epitaxial layer on GaAs substrate with higher indium concentration.

  18. The effect of different gloss levels on in-line monitoring of the thickness of printed layers by NIR spectroscopy.

    PubMed

    Mirschel, Gabriele; Savchuk, Olesya; Scherzer, Tom; Genest, Beatrix

    2012-08-01

    Near-infrared (NIR) reflection spectroscopy was used for monitoring the thickness or rather the coating weight of thin printed layers of transparent oil-based offset printing varnishes in a range from 0.5 to 5 g m(-2). Quantitative analysis of the spectral data was carried out with partial least squares regression. Surface properties such as the gloss were found to strongly affect the prediction of the coating weight. This influence was minimized by the development of calibration models, which contained spectra of layers with a broad range of gloss levels. The prediction error of these models was in the order of 0.12 to 0.16 g m(-2). In-line measurements were carried out at a sheet-fed offset printing press in order to test the performance of the models under real process control conditions. Varnishes were applied to paper at printing speeds of 90 or 180 m min(-1). A close correlation between the predictions from in-line NIR spectra and the reference data from gravimetry was observed regardless of the specific degree of gloss of the layers (errors between 0.15 and 0.17 g m(-2)). The results clearly prove the efficiency of NIR reflection spectroscopy for quantitative investigations on thin layers in fast processes such as printing and demonstrate its analytical potential for quality and process control.

  19. Ultra-high resolution profiles of macular intra-retinal layer thicknesses and associations with visual field defects in primary open angle glaucoma

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Huang, Shenghai; Ma, Qingkai; Lin, Huiling; Pan, Mengmeng; Liu, Xinting; Lu, Fan; Shen, Meixiao

    2017-02-01

    The structural characteristics of the outer retinal layers in primary open angle glaucoma (POAG) are still controversial, and these changes, along with those in the inner retinal layers, could have clinical and/or pathophysiological significance. A custom-built ultra-high resolution optical coherence tomography (UHR-OCT) combined with an automated segmentation algorithm can image and measure the eight intra-retinal layers. The purpose of this study is to determine the thickness characteristics of the macular intra-retinal layers, especially the outer layers, in POAG patients. Thirty-four POAG patients (56 eyes) and 33 normal subjects (63 eyes) were enrolled. Thickness profiles of the eight intra-retinal layers along a 6-mm length centred on the fovea at the horizontal and vertical meridians were obtained and the regional thicknesses were compared between two groups. The associations between the thicknesses of each intra-retinal layer and the macular visual field (VF) sensitivity were then analysed. POAG affected not only the inner retinal layers but also the photoreceptor layers and retinal pigment epithelium of the outer retina. However, the VF loss was correlated mainly with the damage of the inner retinal layers. UHR-OCT with automated algorithm is a useful tool in detecting microstructural changes of macula with respect to the progression of glaucoma.

  20. Ultra-high resolution profiles of macular intra-retinal layer thicknesses and associations with visual field defects in primary open angle glaucoma

    PubMed Central

    Chen, Qi; Huang, Shenghai; Ma, Qingkai; Lin, Huiling; Pan, Mengmeng; Liu, Xinting; Lu, Fan; Shen, Meixiao

    2017-01-01

    The structural characteristics of the outer retinal layers in primary open angle glaucoma (POAG) are still controversial, and these changes, along with those in the inner retinal layers, could have clinical and/or pathophysiological significance. A custom-built ultra-high resolution optical coherence tomography (UHR-OCT) combined with an automated segmentation algorithm can image and measure the eight intra-retinal layers. The purpose of this study is to determine the thickness characteristics of the macular intra-retinal layers, especially the outer layers, in POAG patients. Thirty-four POAG patients (56 eyes) and 33 normal subjects (63 eyes) were enrolled. Thickness profiles of the eight intra-retinal layers along a 6-mm length centred on the fovea at the horizontal and vertical meridians were obtained and the regional thicknesses were compared between two groups. The associations between the thicknesses of each intra-retinal layer and the macular visual field (VF) sensitivity were then analysed. POAG affected not only the inner retinal layers but also the photoreceptor layers and retinal pigment epithelium of the outer retina. However, the VF loss was correlated mainly with the damage of the inner retinal layers. UHR-OCT with automated algorithm is a useful tool in detecting microstructural changes of macula with respect to the progression of glaucoma. PMID:28169283

  1. Tunable THz perfect absorber using graphene-based metamaterials

    NASA Astrophysics Data System (ADS)

    Faraji, Mahboobeh; Moravvej-Farshi, Mohammad Kazem; Yousefi, Leila

    2015-11-01

    A tunable THz absorber, with absorbance more than 90% is proposed, and numerically characterized. The absorber structure is based on metamaterials with unit cells consisting of two patterned graphene layers separated by a 5-nm thick layer of Al2O3. Numerical results show that when the chemical potential of the top graphene microribbons are tuned by an external variable bias and that of the lower graphene fishnet is kept at μC=0, frequency of the absorption peaks can be tuned as desired, therefore we can have a tunable or switchable absorber. The proposed absorber can have applications in designing tunable reflective THz filters or tunable THz switches and modulators. It can also be used for cloaking objects in THz range.

  2. In situ metalorganic growth control of GaAlAs thick layers using 1.32 μm laser reflectometry

    NASA Astrophysics Data System (ADS)

    Kuszelewicz, R.; Rafflé, Y.; Azoulay, R.; Dugrand, L.; Le Roux, G.

    1995-02-01

    We report on the use of in situ reflectometry using 1.32 μm laser light to monitor the metalorganic growth of thick GaAlAs layers. With respect to the particular growth conditions, the calibration of effective indices was carried out for bulk as well as multi quantum well layers. This allowed in situ measurements of large thickness layers, Al concentration determination of AlGaAS layers, and metal-semiconductor-field effect transistor (MESFET) structure monitoring with highly improved precision and reproducibility.

  3. Scattering layer thickness and position estimated by radar frequency domain interferometry: 2. Effects of tilts of the scattering layer or radar beam

    NASA Astrophysics Data System (ADS)

    Luce, H.; RöTtger, J.; Crochet, M.; Yamamoto, M.; Fukao, S.

    2000-09-01

    In the companion paper (part 1), theoretical studies on the dual frequency domain interferometry (FDI) technique have been presented. Two possible causes of biases in the layer thickness and position estimations by FDI have been considered: the limited extent of the scattering structure in the horizontal plane and the advection of this structure by the wind. In the present work, we study the effects of the tilts of the scattering layer from horizontal. It is shown that in case of large tilt angles, substantial biases on position and thickness can occur. The model, first developed by Liu and Pan [1993] but more extensively described in this paper, can also be used for a prediction of the variations of the FDI coherence with the zenith angle and their relation to the anisotropy of the scatterers. Some preliminary observations of the zenith angle dependence of the FDI coherence and echo power obtained with the middle and upper atmosphere (MU) radar from the vertical up to 28° off zenith with a step of 2° are shown and discussed. In principle, comparisons between the observed power and coherence variations with those given by the model could give more information on the structures that contribute around and far from the zenith.

  4. Magnetic properties and microstructure of Sm-Co/α-Fe nanocomposite thick film-magnets composed of multi-layers over 700 layers

    SciTech Connect

    Tou, A. Morimura, T.; Nakano, M.; Yamai, T.; Fukunaga, H.

    2014-05-07

    We synthesized Sm-Co/α-Fe nanocomposite film-magnets, approximately 10 μm in thickness, composed of 780 layers by the pulse laser deposition method. Transmission electron microscopic observations revealed that the synthesized film is composed of Sm-Co and α-Fe layers with the well-controlled α-Fe thickness of approximately 10–20 nm, which is suitable one predicted by the micromagnetic simulation. In spite of the enhanced interlayer diffusion of Fe and Co by annealing for crystallization, the (BH){sub max} value of 100 kJ/m{sup 3} was obtained at the averaged compositions of Sm/(Sm + Co) = 0.16 and Fe/(Sm + Co + Fe) = 0.47. The α-Fe fraction for obtaining the highest (BH){sub max} value was smaller than that expected from the micromagnetic simulation. Although the annealing for crystallization lay the easy direction of magnetization in the plane, the film is not expected to have strong crystallographic texture.

  5. Thick amorphous silicon layers suitable for the realization of radiation detectors

    SciTech Connect

    Hong, Wan-Shick; Drewery, J.S.; Jing, Tao; Lee, Hyong-Koo; Perez-Mendez, V.; Petrova-Koch, V.

    1995-04-01

    Thick silicon films with good electronic quality have been prepared by glow discharge of He-diluted SiH{sub 4} at a substrate temperature {approximately} 150{degree}C and subsequent annealing at 160{degree}C for about 100 hours. The stress in the films obtained this way decreased to {approximately} 100 MPa compared to the 350 MPa in conventional a-Si:H. The post-annealing helped to reduce the ionized dangling bond density from 2.5 {times} 10{sup 15} cm{sup {minus}3} to 7 {times} 10{sup 14} cm{sup {minus}3} without changing the internal stress. IR spectroscopy and hydrogen effusion measurements implied the existence of microvoids and tiny crystallites in the material showing satisfactory electronic properties. P-I-N diodes for radiation detection applications have been realized out of the new material.

  6. Spin-susceptibility of the Two-Dimensional Electron Gas: effect of the finite layer thickness

    NASA Astrophysics Data System (ADS)

    de Palo, Stefania; Gaetano, Senatore; Michela, Botti; Moroni, Saverio

    2004-03-01

    Recent measurements[1] on a 2DEG in a GaAs HIGHFET yield a spin susceptibility that is as much as 30most accurate theoretical prediction[2] for a one-valley, strictly 2D, clean electron gas (1V2DEG). We consider here the effect of the finite thickness of the 2DEG on the magnetic response, starting from the known energy and pair correlations of the 1V2DEG[2]. We find a substantial reduction of the discrepancies, with the theoretical prediction however still remaining above the experimental estimate. [1] J. Zhu, H. L. Stormer, L. N. Pfeiffer,K. W. Baldwin, and K.W. West, Phys. Rev. Lett. 90, 056805 (2003) [2]C. Attaccalite, S. Moroni, P. Gori-Giorgi, and G. B. Bachelet, Phys. Rev. Lett. 88, 256601 (2002)

  7. Visual study of propagation of self-sustained evaporation front within the thickness of a thermal liquid layer

    NASA Astrophysics Data System (ADS)

    Zhukov, V. E.; Moiseev, M. I.; Kuznetsov, D. V.

    2016-10-01

    In the range of low reduced pressures, the development of self-sustained evaporation front along the heat-releasing surface at non-stationary heat release is an important factor that determines possible transition to film boiling at heat fluxes, significantly lower than the critical heat fluxes at stationary heat release. This paper presents the experimental results on the scale of a leading part of the interface of self-sustained evaporation front at stepped heat release. The scale of the leading part of the interface of the evaporation front is compared with the thermal layer thickness, registered using the shadow method of visualization at high-speed video shooting with up to 25,000 frames per second. Experiments were carried out in Freon R21 under the conditions of free convection at relative pressures of 0.032 - 0.068. It is shown that self-sustained evaporation front spreads along the heated wall within the thickness of a liquid layer, superheated relative to the saturation temperature. Dependence of the front velocity on wall superheating relative to the saturation temperature does not change with significant subcooling to the temperature of liquid saturation in the volume.

  8. Coordinated airborne, space borne, and ground based measurements of massive, thick haze layers during the SAFARI-2000 Dry Season Campaign

    NASA Astrophysics Data System (ADS)

    Schmid, B.; Russell, P.; Pilewskie, P.; Redemann, J.; Hobbs, P.; Holben, B.; Welton, E.; Campbell, J.; Hlavka, D.; McGill, M.; Chu, A.; Remer, L.; Torres, O.; Kahn, R.

    2001-12-01

    From August 13 to September 25, the Southern African Regional Science Initiative's (SAFARI 2000) dry-season airborne campaign coordinated ground-based measurement teams, multiple research aircraft, and satellite overpasses across nine African nations. Among many others, unique coordinated observations were made of the evolution of massive, thick haze layers produced by biomass burning, industrial emissions, marine and biogenic sources. The NASA Ames Airborne Tracking 14-channel Sunphotometer (AATS-14) was operated successfully aboard the University of Washington CV-580 during 24 data flights. The AATS-14 instrument measures the transmission of the direct solar beam at 14 discrete wavelengths (354-1558 nm) from which we derive spectral aerosol optical depths (AOD), columnar water vapor (CWV) and columnar ozone. Flying at different altitudes over a fixed location allows derivation of layer AOD and CWV. Data taken during feasible vertical profiles allows derivation of aerosol extinction and water vapor density. In the talk, we show comparisons with ground-based AERONET sun/sky photometer results, with ground based MPL-Net lidar data, and with measurements from a lidar (CPL) aboard the high-flying ER-2 aircraft. We will use measurements from the Ames Solar Spectral Flux Radiometer to derive estimates of solar spectral forcing as a function of aerosol thickness. Validations of MODIS, MISR and TOMS satellite aerosol and water vapor retrievals will also be presented.

  9. Influence of the magnetic dead layer thickness of Mg-Zn ferrites nanoparticle on their magnetic properties

    NASA Astrophysics Data System (ADS)

    El-Sayed, H. M.; Ali, I. A.; Azzam, A.; Sattar, A. A.

    2017-02-01

    Nanoparticle ferrite with chemical formula Mg(1-x)ZnxFe2O4 (where x=0.0, 0.2, 0.4, 0.6, 0.8 and 1) were prepared by sol-gel technique. Single phase structure of these ferrites was confirmed using X-ray diffraction (XRD). Transmission Electron Microscope (TEM) showed that the particle size of the samples in the range of (5.7-10.6 nm). The hysteresis studies showed superparamagnetic behaviour at room temperature. The magnetization behaviour with Zn-content is expressed in the light of Yafet-Kittel angles. The dead layer thickness (t) was calculated and its effect on the magnetization and magnetic losses was debated. The Specific Absorption Rate (SAR) in an alternating magnetic field with frequency 198 kHz for these ferrites has been studied. It is found that, the thickness of magnetic dead layer of the surface of the materials has greatly affected the SAR value of the samples.

  10. Performance Dependences of Multiplication Layer Thickness for InP/InGaAs Avalanche Photodiodes Based on Time Domain Modeling

    NASA Technical Reports Server (NTRS)

    Xiao, Yegao; Bhat, Ishwara; Abedin, M. Nurul

    2005-01-01

    InP/InGaAs avalanche photodiodes (APDs) are being widely utilized in optical receivers for modern long haul and high bit-rate optical fiber communication systems. The separate absorption, grading, charge, and multiplication (SAGCM) structure is an important design consideration for APDs with high performance characteristics. Time domain modeling techniques have been previously developed to provide better understanding and optimize design issues by saving time and cost for the APD research and development. In this work, performance dependences on multiplication layer thickness have been investigated by time domain modeling. These performance characteristics include breakdown field and breakdown voltage, multiplication gain, excess noise factor, frequency response and bandwidth etc. The simulations are performed versus various multiplication layer thicknesses with certain fixed values for the areal charge sheet density whereas the values for the other structure and material parameters are kept unchanged. The frequency response is obtained from the impulse response by fast Fourier transformation. The modeling results are presented and discussed, and design considerations, especially for high speed operation at 10 Gbit/s, are further analyzed.

  11. Effects of Boundary-Layer Thickness on Unsteady Flow Characteristics Inside Open Cavities at Subsonic and Transonic Speeds

    NASA Astrophysics Data System (ADS)

    Yang, Dang-Guo; Li, Jian-Qiang; Fan, Zhao-Lin; Luo, Xin-Fu

    An experimental study was conducted in a 0.6m by 0.6m wind-tunnel to analyze effects of boundary-layer thickness on unsteady flow characteristics inside a rectangular open cavity at subsonic and transonic speeds. The sound pressure level (SPL) distributions at the centerline of the cavity floor and Sound pressure frequency spectrum (SPFS) characteristics on some measurement positions presented herein was obtained with cavity length-to-depth ratio (L/D) of 8 over Mach numbers (Ma) of 0.6 and 1.2 at a Reynolds numbers (Re) of 1.23 × 107 and 2.02 × 107 per meter under different boundary-layer thickness to cavity-depth ratios (δ/D). The experimental angle of attack, yawing and rolling angles were 0°. The results indicate that decrease in δ/D leads to severe flow separation and unsteady pressure fluctuation, which induces increase in SPL at same measurement points inside the cavity at Ma of 0.6. At Ma of 1.2, decrease in δ/D results in enhancing compressible waves. Generally, decrease in δ/D induces more flow self-sustained oscillation frequencies. It also makes severer aerodynamic noise inside the open cavity.

  12. Association between retinal nerve fiber layer thickness and magnetic resonance imaging findings and intelligence in patients with multiple sclerosis

    PubMed Central

    Ashtari, Fereshteh; Emami, Parisa; Akbari, Mojtaba

    2015-01-01

    Background: Multiple Sclerosis (MS) is a neurological disease in which demyelination and axonal loss leads to progressive disability. Cognition impairment is among the most common complication. Studying axonal loss in the retina is a new marker for MS. The main goal of our study is to search for correlations between magnetic resonance imaging (MRI) findings and the retinal nerve fiber layer (RNFL) thickness at the macula and head of the optic nerve and Wechsler Adult Intelligence Scale-Revised (WAIS-R) Scores that assess multiple domains of intelligence, and to explore the relationship between changes in the RNFL thickness with intellectual and cognitive dysfunction. Materials and Methods: A prospective cross-sectional study was conducted at the University Hospital of Kashani, Isfahan, Iran, from September to December 2013. All patients were assessed with a full-scale intelligence quotient (IQ) on the WAIS-R. An optical coherence tomography study and brain MRI were performed in the same week for all the patients. Statistical analysis was conducted by using a bivariate correlation, by utilizing SPSS 20.0. A P value ≤ 0.05 was the threshold of statistical significance. Results: Examination of a 100 patients showed a significant correlation between the average RNFL thickness of the macula and the verbal IQ (P value = 0.01) and full IQ (P value = 0.01). There was a significant correlation between brain atrophy and verbal IQ. Conclusion: The RNFL loss was correlated with verbal IQ and full IQ. PMID:26682201

  13. Study of Retinal Nerve Fibre Layer Thickness in Patients with Diabetes Mellitus Using Fourier Domain Optical Coherence Tomography

    PubMed Central

    Sah, Sonal; Gupta, Neeti

    2016-01-01

    Introduction Diabetic retina undergoes degenerative changes in retinal nerve fiber layer (RNFL) in addition to vascular changes. Loss of RNFL with changes in inner retina and their association with metabolic control have been studied with varied results in diabetic patients. Aim To compare the RNFL thickness between diabetic patients and age matched healthy controls and to correlate the thickness to metabolic control. Materials and Methods One hundred and sixty five patients were enrolled in the study out of which 50 served as controls, 58 patients were diabetic without retinopathy and 57 patients had diabetic retinopathy. Both eyes of all patients underwent optical coherence tomography scans for RNFL and ganglion cell complex. Foveal and parafoveal thickness were also measured. All the parameters were compared to patient’s metabolic control. Results RNFL thinning was observed in superotemporal (p-value = 0.001) and upper nasal sectors (p-value = 0.031) around the optic disc in eyes with diabetic retinopathy. Ganglion cell complex also showed statistically significant thinning in diabetic patients. Creatinine levels showed a weak negative correlation to the RNFL. Conclusion This study positively concluded that neurodegeneration in an early component of diabetic retinopathy. PMID:27630874

  14. Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials

    PubMed Central

    Zhong, Shuomin; He, Sailing

    2013-01-01

    We present a theory of perfect absorption in a bilayer model composed of a mu-near-zero (MNZ) metamaterial (MM) absorbing layer on a metallic substrate. Our analytical solutions reveal that a MM layer with a large purely imaginary permeability and a moderate permittivity backed by a metallic plane has a zero reflection at normal incidence when the thickness is ultrathin. The impedance-mismatched metamaterial absorber (MA) can be 77.3% thinner than conventional impedance-matched MAs with the same material loss in order to get the same absorption. A microwave absorber using double-layered spiral MMs with a thickness of only about one percent of the operating wavelength is designed and realized. An absorption efficiency above 93% at 1.74 GHz is demonstrated experimentally at illumination angles up to 60 degrees. Our absorber is 98% lighter than traditional microwave absorbers made of natural materials working at the same frequencies. PMID:23803861

  15. Measure Guideline. Incorporating Thick Layers of Exterior Rigid Insulation on Walls

    SciTech Connect

    Lstiburek, Joseph; Baker, Peter

    2015-04-09

    This measure guideline, written by the U.S. Department of Energy’s Building America team Building Science Corporation, provides information about the design and construction of wall assemblies that use layers of rigid exterior insulation thicker than 1-½ in. and that require a secondary cladding attachment location exterior to the insulation. The guideline is separated into several distinct sections that cover: (1) fundamental building science principles relating to the use of exterior insulation on wall assemblies; (2) design principles for tailoring this use to the specific project goals and requirements; and (3) construction detailing to increase understanding about implementing the various design elements.

  16. Measure Guideline: Incorporating Thick Layers of Exterior Rigid Insulation on Walls

    SciTech Connect

    Lstiburek, Joseph; Baker, Peter

    2015-04-01

    This measure guideline provides information about the design and construction of wall assemblies that use layers of rigid exterior insulation thicker than 1-½ inches and that require a secondary cladding attachment location exterior to the insulation. The guideline is separated into several distinct sections that cover: fundamental building science principles relating to the use of exterior insulation on wall assemblies; design principles for tailoring this use to the specific project goals and requirements; and construction detailing to increase understanding about implementing the various design elements.

  17. Characterization methods dedicated to nanometer-thick hBN layers

    NASA Astrophysics Data System (ADS)

    Schué, Léonard; Stenger, Ingrid; Fossard, Frédéric; Loiseau, Annick; Barjon, Julien

    2017-03-01

    Hexagonal boron nitride (hBN) has regained interest as a strategic component in graphene engineering and in van der Waals heterostructures built with two dimensional materials. It is crucial then, to handle reliable characterization techniques capable to assess the quality of structural and electronic properties of the hBN material used. We present here characterization procedures based on optical spectroscopies, namely cathodoluminescence and Raman, with the additional support of structural analysis conducted by transmission electron microscopy. We show the capability of optical spectroscopies to investigate and benchmark the optical and structural properties of various hBN thin layers sources.

  18. Double-layer antireflection from silver nanoparticle integrated SiO2 layer on silicon wafer: effect of nanoparticle morphology and SiO2 film thickness

    NASA Astrophysics Data System (ADS)

    Parashar, Piyush K.; Sharma, R. P.; Komarala, Vamsi K.

    2017-01-01

    Optical properties of silver nanoparticles (Ag NPs) on SiO2 thin films of variable thickness, as a plasmonic double layer on a plain silicon wafer, are investigated for broadband antireflection. The light confinement into the silicon is found to be sensitive to the SiO2 film thickness of a few nanometers due to an evanescent character of the Ag NPs’ near-fields. The Ag NPs’ size anisotropy plays a pivotal role in incident light coupling due to the sub-wavelength spatial variation of near-fields at the interface, which leads to reflectance spectrum oscillation behavior in the nanoparticles’ surface plasmon resonance and off-resonance regions. With an optimized SiO2/Ag NP double layer, the average reflectance in the 300-1200 nm spectral range is reduced to 14% in comparison to 42% in bare silicon, with a flat minimum reflectance of 3.5% in the 725-1020 nm spectral region. Finite difference time domain calculations are performed for spatial variation of near-fields and their angular distribution of far-fields at different inhomogeneous interfaces (where near-fields exist). The total reflectance from various configurations is simulated theoretically by considering the experimentally optimized physical parameters of the plasmonic double layer to support the observations. To verify the role of SiO2 surface topology apart from the nanoparticle morphology in plasmon near-field coupling, thermally grown SiO2 films are investigated along with the sputtered SiO2 thin films.

  19. Effects of thickness, morphology and molecular structure of donor and acceptor layers in thermally interdiffused polymer photovoltaics

    NASA Astrophysics Data System (ADS)

    Gopal, Anamika

    An in-depth study of concentration gradients in thermally-interdiffused polymer---fullerene photovoltaic devices, with a focus on thickness and heat treatments, is presented in this thesis. Device performance is improved from the bilayer by the creation of a concentration gradient of the donor and acceptor materials throughout the active layer of the device. Concentration gradients are expected to improve device performance by optimizing the charge transfer, transport and collection processes. This is achieved through heat-induced interdiffusion of the two materials at temperatures above the glass transition temperature of the polymer. Investigation of the poly(3-octylthiophene) (P3OT) - C60 system show a three-fold improvement in the external quantum efficiencies (EQE) as compared with bilayer devices. Auger spectroscopy, combined with argon-ion beam milling, serves to record the concentration depth profile and identify concentration gradients in the device through detection of the sulfur in the P3OT backbone. Concentration gradients are optimized to yield the best devices through a thickness variation study conducted on the P3OT - C60 system for fixed thermal interdiffusion conditions at 118°C for 5 minutes. An optimum thickness of 40 to 60 nm is obtained for the two materials that yields the ideal morphology of a concentration gradient as recorded by Auger spectroscopy. For such devices, the concentration gradient is seen to extend through the device, ending in a thin layer of pure material at each electrode. A monochromatic power conversion efficiency of 2.05% is obtained for 5.3 mW/cm2 illumination at 470 nm. A brief study is also presented to optimize the concentration gradient profile through variations of the thermal parameters. The dependence of the concentration gradient on the interdiffusion time and temperature is investigated. The merits of heat treatment on the crystallinity of P3OT and the overall device performance are also discussed. It is shown

  20. Value of corneal epithelial and Bowman’s layer vertical thickness profiles generated by UHR-OCT for sub-clinical keratoconus diagnosis

    PubMed Central

    Xu, Zhe; Jiang, Jun; Yang, Chun; Huang, Shenghai; Peng, Mei; Li, Weibo; Cui, Lele; Wang, Jianhua; Lu, Fan; Shen, Meixiao

    2016-01-01

    Ultra-high resolution optical coherence tomography (UHR-OCT) can image the corneal epithelium and Bowman’s layer and measurement the thicknesses. The purpose of this study was to validate the diagnostic power of vertical thickness profiles of the corneal epithelium and Bowman’s layer imaged by UHR-OCT in the diagnosis of sub-clinical keratoconus (KC). Each eye of 37 KC patients, asymptomatic fellow eyes of 32 KC patients, and each eye of 81 normal subjects were enrolled. Vertical thickness profiles of the corneal epithelium and Bowman’s layer were measured by UHR-OCT. Diagnostic indices were calculated from vertical thickness profiles of each layer and output values of discriminant functions based on individual indices. Receiver operating characteristic curves were determined, and the accuracy of the diagnostic indices were assessed as the area under the curves (AUC). Among all of the individual indices, the maximum ectasia index for epithelium had the highest ability to discriminate sub-clinical KC from normal corneas (AUC = 0.939). The discriminant function containing maximum ectasia indices of epithelium and Bowman’s layer further increased the AUC value (AUC = 0.970) for sub-clinical KC diagnosis. UHR-OCT-derived thickness indices from the entire vertical thickness profiles of the corneal epithelium and Bowman’s layer can provide valuable diagnostic references to detect sub-clinical KC. PMID:27511620

  1. Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer-Lambert law absorbance of highly scattering materials.

    PubMed

    Gobrecht, Alexia; Bendoula, Ryad; Roger, Jean-Michel; Bellon-Maurel, Véronique

    2015-01-01

    Visible and Near Infrared (Vis-NIR) Spectroscopy is a powerful non destructive analytical method used to analyze major compounds in bulk materials and products and requiring no sample preparation. It is widely used in routine analysis and also in-line in industries, in-vivo with biomedical applications or in-field for agricultural and environmental applications. However, highly scattering samples subvert Beer-Lambert law's linear relationship between spectral absorbance and the concentrations. Instead of spectral pre-processing, which is commonly used by Vis-NIR spectroscopists to mitigate the scattering effect, we put forward an optical method, based on Polarized Light Spectroscopy to improve the absorbance signal measurement on highly scattering samples. This method selects part of the signal which is less impacted by scattering. The resulted signal is combined in the Absorption/Remission function defined in Dahm's Representative Layer Theory to compute an absorbance signal fulfilling Beer-Lambert's law, i.e. being linearly related to concentration of the chemicals composing the sample. The underpinning theories have been experimentally evaluated on scattering samples in liquid form and in powdered form. The method produced more accurate spectra and the Pearson's coefficient assessing the linearity between the absorbance spectra and the concentration of the added dye improved from 0.94 to 0.99 for liquid samples and 0.84-0.97 for powdered samples.

  2. Crack-free thick (∼5 µm) α-Ga2O3 films on sapphire substrates with α-(Al,Ga)2O3 buffer layers

    NASA Astrophysics Data System (ADS)

    Oda, Masaya; Kaneko, Kentaro; Fujita, Shizuo; Hitora, Toshimi

    2016-12-01

    To obtain crack-free thick α-Ga2O3 films on sapphire substrates, effects and behaviors of buffer layers have been investigated. With the growth of an α-Ga2O3 layer, there appeared an unintentionally formed layer in the sample, which was associated with stress accumulation and could be the seed for crack generation. We obtained a thick (∼5 µm) α-Ga2O3 layer on a sapphire substrate with the insertion of α-(Al0.12Ga0.88)2O3/α-(Al0.02Ga0.98)2O3 buffer layers, and for this sample, we did not observe the intermediate layer, suggesting that the buffer layers were effective for eliminating the stress accumulation at the α-Ga2O3/sapphire interface region.

  3. Symmetry of the Pupillary Light Reflex and Its Relationship to Retinal Nerve Fiber Layer Thickness and Visual Field Defect

    PubMed Central

    Chang, Dolly S.; Boland, Michael V.; Arora, Karun S.; Supakontanasan, Wasu; Chen, Bei Bei; Friedman, David S.

    2013-01-01

    Purpose. To assess the relationship between the pupillary light reflex (PLR) and visual field (VF) mean deviation (MD) and retinal nerve fiber layer (RNFL) thickness. Methods. A total of 148 patients with glaucoma (mean age 67 ± 11, 49% female) and 71 controls (mean age 60 ± 10, 69% female) were included in this study. Using a pupillometer, we recorded and analyzed pupillary responses at varied stimulus patterns (full field, superonasal and inferonasal quadrant arcs). We compared the responses between the two eyes, compared responses to stimuli in the superonasal and inferonasal fields within each eye, and calculated the absolute PLR value of each individual eye. We assessed the relationship among PLR, MD, and RNFL thickness using the Pearson correlation coefficient. For analyses performed at the level of individual eyes, we used multilevel modeling to account for between-eye correlations within individuals. Results. For every 0.3 log unit difference in between-eye asymmetry of PLR, there was an average 2.6-dB difference in visual field MD (correlation coefficient R = 0.83, P < 0.001) and a 3.2-μm difference in RNFL thickness between the two eyes (R = 0.67, P < 0.001). Greater VF damage and thinner RNFL for each individual eye were associated with smaller response amplitude, slower velocity, and longer time to peak constriction and dilation after adjusting for age and sex (all P < 0.001). However, within-eye asymmetry of PLR between superonasal and inferonasal stimulation was not associated with corresponding within-eye differences in VF or RNFL. Conclusions. As measured by this particular device, the PLR is strongly correlated with VF functional testing and measurements of RNFL thickness. PMID:23860751

  4. The Thermal And Hydrodynamic Behavior of Thick, Rough-Wall, Turbulent Boundary Layers,

    DTIC Science & Technology

    1979-08-01

    In d ~- 0 9 it .00y .T TN - u0t’ o CctP - c. or. r- o w’ 0 -~L C’~~N𔄃~ 0( 6 c 00 c C: I 0 0 ; 0 a C ,)aC D0C DaC 0CC 0 C0C MM CI 0 r - 0-( C’ I’ C-4...made by H. W. Coleman, E. J. Kerschen, D . J. Vitanye, and K. W. Randall. The authors thank these individuals and other members of the Department of...Conclusions .. ........ ...... 40 Vi ... -- d Chapter Page 3 EXPERIMENTAL RESULTS: FULLY ROUGH AND TRANSITIONALLY ROUGH TURBULENT BOUNDARY LAYERS

  5. Effect of well layer thickness on quantum and energy conversion efficiencies for InGaN/GaN multiple quantum well solar cells

    NASA Astrophysics Data System (ADS)

    Miyoshi, Makoto; Tsutsumi, Tatsuya; Kabata, Tomoki; Mori, Takuma; Egawa, Takashi

    2017-03-01

    We investigated the effect of well layer thicknesses on the external quantum efficiency (EQE) and energy conversion efficiency (ECE) for InGaN/GaN multiple quantum well (MQW) solar cells grown on sapphire substrates by metalorganic chemical vapor deposition. The results indicated that EQE and ECE have maximum values at a specific well thickness. When the well thickness is sufficiently thin, EQE and ECE increase with an increase in the well thickness owing to an increase in light absorption. Then, once the well thickness surpasses a critical thickness, EQE and ECE begin to decrease owing to the influence of nonradiative recombination processes, which was indicated by the static and dynamic photoluminescence analyses. The critical well thickness probably depends not only on the MQW design but also on growth conditions. Further, we confirmed that the increased total thickness of the stacked well layers leads to increased light absorption and thereby contributes to the improvement of solar cell performance. A high short circuit current density of 1.34 mA/cm2 and a high ECE of 1.31% were achieved for a InGaN/GaN MQW solar cell with a 3.2-nm-thick InGaN well with total well thickness of 115 nm.

  6. Effects of Co layer thickness and annealing temperature on the magnetic properties of inverted [Pt/Co] multilayers

    SciTech Connect

    Lee, Tae Young; Chan Won, Young; Su Son, Dong; Lee, Seong-Rae; Ho Lim, Sang

    2013-11-07

    The effects of Co layer thickness and annealing temperature on the perpendicular magnetic anisotropy (PMA) properties of inverted [Pt (0.2 nm)/Co (t{sub Co})]{sub 6} multilayers (where t{sub Co} indicates the thickness of the Co layer) have been investigated. The cross-sectional microstructure, as observed from the high-resolution transmission electron microscope images, shows a clear layered structure with atomically flat interfaces both in the as-deposited state as well as after annealing, indicating the interface effects for PMA. The effective PMA energy density (K{sub eff}) increases significantly with an increase in t{sub Co} from 0.2 to 0.28 nm and then becomes almost saturated with further increases in t{sub Co}, followed by a slight reduction at the highest Co thickness, t{sub Co} = 0.6 nm. In order to explain the t{sub Co} dependence on K{sub eff}, the intrinsic PMA energy density (K{sub i}) is calculated by additionally measuring a similar set of results for the saturation magnetization. The K{sub i} value increases nearly linearly with the increase in t{sub Co} from 0.2 to 0.5 nm, followed by saturation at a higher t{sub Co} value of 0.6 nm. Owing to a close relationship between K{sub i} and the quality of the interfaces, these results indicate a similar t{sub Co} dependence on the quality of the interfaces. This is further supported from the magnetic measurements of the samples annealed at the highest temperature of 500 °C, where a second phase is formed, which show a similar t{sub Co} dependence on the amount of the second phase. The K{sub i} value is nearly independent of the annealing temperature at t{sub Co} ≤ 0.4 nm, above which a substantial reduction is observed, when the annealing temperature exceeds 500 °C.

  7. Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin

    PubMed Central

    Saxena, Sumit; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-01-01

    Stanene is one of most important of 2D materials due to its potential to demonstrate room temperature topological effects due to opening of spin-orbit gap. In this pursuit we report synthesis and investigation of optical properties of stanene up to few layers, a two-dimensional hexagonal structural analogue of graphene. Atomic scale morphological and elemental characterization using HRTEM equipped with SAED and EDAX detectors confirm the presence of hexagonal lattice of Sn atoms. The position of Raman peak along with the inter-planar ‘d’ spacing obtained from SAED for prepared samples are in good agreement with that obtained from first principles calculations and confirm that the sheets are not (111) α-Sn sheets. Further, the optical signature calculated using density functional theory at ~191 nm and ~233 nm for low buckled stanene are in qualitative agreement with the measured UV-Vis absorption spectrum. AFM measurements suggest interlayer spacing of ~0.33 nm in good agreement with that reported for epitaxial stanene sheets. No traces of oxygen were observed in the EDAX spectrum suggesting the absence of any oxidized phases. This is also confirmed by Raman measurements by comparing with oxidized stanene sheets. PMID:27492139

  8. Absorber topography dependence of phase edge effects

    NASA Astrophysics Data System (ADS)

    Shanker, Aamod; Sczyrba, Martin; Connolly, Brid; Waller, Laura; Neureuther, Andy

    2015-10-01

    Mask topography contributes to phase at the wafer plane, even for OMOG binary masks currently in use at the 22nm node in deep UV (193nm) lithography. Here, numerical experiments with rigorous FDTD simulation are used to study the impact of mask 3D effects on aerial imaging, by varying the height of the absorber stack and its sidewall angle. Using a thin mask boundary layer model to fit to rigorous simulations it is seen that increasing the absorber thickness, and hence the phase through the middle of a feature (bulk phase) monotonically changes the wafer-plane phase. Absorber height also influences best focus, revealed by an up/down shift in the Bossung plot (linewidth vs. defocus). Bossung plot tilt, however, responsible for process window variability at the wafer, is insensitive to changes in the absorber height (and hence also the bulk phase). It is seen to depend instead on EM edge diffraction from the thick mask edge (edge phase), but stays constant for variations in mask thickness within a 10% range. Both bulk phase and edge phase are also independent of sidewall angle fluctuation, which is seen to linearly affect the CD at the wafer, but does not alter wafer phase or the defocus process window. Notably, as mask topography varies, the effect of edge phase can be replicated by a thin mask model with 8nm wide boundary layers, irrespective of absorber height or sidewall angle. The conclusions are validated with measurements on phase shifting masks having different topographic parameters, confirming the strong dependence of phase variations at the wafer on bulk phase of the mask absorber.

  9. Effect of Layer Thickness in Selective Laser Melting on Microstructure of Al/5 wt.%Fe2O3 Powder Consolidated Parts

    PubMed Central

    Hao, Liang

    2014-01-01

    In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM) to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75 μm layer thickness, and 50 μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance) were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe) oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process. PMID:24526879

  10. Effect of layer thickness in selective laser melting on microstructure of Al/5 wt.%Fe2O3 powder consolidated parts.

    PubMed

    Dadbakhsh, Sasan; Hao, Liang

    2014-01-01

    In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM) to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75  μm layer thickness, and 50  μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance) were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe) oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process.

  11. Effect of change in macular birefringence imaging protocol on retinal nerve fiber layer thickness parameters using GDx VCC in eyes with macular lesions.

    PubMed

    Dada, Tanuj; Tinwala, Sana I; Dave, Vivek; Agarwal, Anand; Sharma, Reetika; Wadhwani, Meenakshi

    2014-08-01

    This study evaluates the effect of two macular birefringence protocols (bow-tie retardation and irregular macular scan) using GDx VCC on the retinal nerve fiber layer (RNFL) thickness parameters in normal eyes and eyes with macular lesions. In eyes with macular lesions, the standard protocol led to significant overestimation of RNFL thickness which was normalized using the irregular macular pattern protocol. In eyes with normal macula, absolute RNFL thickness values were higher in irregular macular pattern protocols with the difference being statistically significant for all parameters except for inferior average thickness. This has implications for monitoring glaucoma patients who develop macular lesions during the course of their follow-up.

  12. Change in the nature of the principal donors and the surface morphology of CdSe layers when their thickness and condensation temperature are increased

    SciTech Connect

    Smyntyna, V.A.; Babinchuk, U.S.; Vashpanov, Y.A.

    1986-01-01

    The authors study the mechanism responsible for the change in the nature of the principal donors and its effect on the formation and recrystallization of cadmium selenide layers when both their thickness increases and the temperature of the substrate is raised. It is shown that the increase in the electrical conductivity accompanying an increase in the thickness of the layer and the temperature of the substrate is determined by the change in the nature of the principal donors, occurring as a result of recrystallization of the layer owing to the accumulation of defects in the structure of the crystallites during growth.

  13. Forecast of Permafrost Distribution, Temperature and Active Layer Thickness for Arctic National Parks of Alaska through 2100

    NASA Astrophysics Data System (ADS)

    Panda, S. K.; Romanovsky, V. E.; Marchenko, S. S.; Swanson, D. K.

    2015-12-01

    Though permafrost distribution, temperature and active layer thickness at high spatial resolution are needed to better model the ecosystem dynamics and biogeochemical processes including emission of greenhouse gases at regional and local scale, no such high-resolution permafrost map products existed for Arctic national parks of Alaska until recently. This was due to the lack of information about ecosystem properties such as soil and vegetation characteristics at high spatial resolution. In recent years, the National Park Service (NPS) has carried out several projects mapping ecotype and soil in the Arctic parks from Landsat satellite data at 28.5 m spatial resolution. We used these detailed ecotype and soil maps along with downscaled climate forcing from the IPCC and Climatic Research Unit, University of East Anglia (UK) to model near-surface permafrost distribution, temperature and active layer thickness at decadal time scale from the present through 2100 at 28.5 m resolution for the five Arctic national parks in Alaska: Gates of the Arctic National Park and Preserve, Noatak National Preserve, Kobuk Valley National Park, Cape Krusenstern National Monument, and Bering Land Bridge National Preserve. Our results suggest the near-surface permafrost distribution, i.e. permafrost immediately below the active layer, will likely decrease from the current 99% of the total park area (five parks combined) to 89% by 2050 and 36% by 2100. The near-surface permafrost will likely continue to exist in the northern half of the Gates of the Arctic and Kobuk Valley parks, and in majority of the Noatak preserves by 2100, though its temperature will be up to 5 °C warmer than the present at certain places. Taliks will likely occupy the ground below the active layer in rest of the park areas. These products f