Sample records for absorber material standard

  1. A Two-Step Absorber Deposition Approach To Overcome Shunt Losses in Thin-Film Solar Cells: Using Tin Sulfide as a Proof-of-Concept Material System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinmann, Vera; Chakraborty, Rupak; Rekemeyer, Paul H.

    2016-08-31

    As novel absorber materials are developed and screened for their photovoltaic (PV) properties, the challenge remains to reproducibly test promising candidates for high-performing PV devices. Many early-stage devices are prone to device shunting due to pinholes in the absorber layer, producing 'false-negative' results. Here, we demonstrate a device engineering solution toward a robust device architecture, using a two-step absorber deposition approach. We use tin sulfide (SnS) as a test absorber material. The SnS bulk is processed at high temperature (400 degrees C) to stimulate grain growth, followed by a much thinner, low-temperature (200 degrees C) absorber deposition. At a lowermore » process temperature, the thin absorber overlayer contains significantly smaller, densely packed grains, which are likely to provide a continuous coating and fill pinholes in the underlying absorber bulk. We compare this two-step approach to the more standard approach of using a semi-insulating buffer layer directly on top of the annealed absorber bulk, and we demonstrate a more than 3.5x superior shunt resistance Rsh with smaller standard error ..sigma..Rsh. Electron-beam-induced current (EBIC) measurements indicate a lower density of pinholes in the SnS absorber bulk when using the two-step absorber deposition approach. We correlate those findings to improvements in the device performance and device performance reproducibility.« less

  2. The Aspects About of Objectively Appraisals of Modeling Gypsum Quality and Composites of Phonic-Absorbent and Orthopedic on Base of Gypsum

    NASA Astrophysics Data System (ADS)

    Pop, P. A.; Ungur, P. A.; Lazar, L.; Marcu, F.

    2009-11-01

    The EU Norms about of protection environment, outside and inside ambient, and human health demands has lead at obtain of new materials on the base of airborne material, with high thermo and phonic-absorbent properties, porous and lightweight. The α and β-modeling gypsum plaster quality and lightweight depend on many factors as: fabrication process, granulation, roast temperature, work temperature, environment, additives used, breakage, etc. Also, the objectively appraisal of modeling gypsum quality depends of proper tests methods selection, which are legislated in norms, standards and recommendations. In Romanian Standards SR EN 13279-1/2005 and SR EN 13279-2/2005, adaptable from EU Norms EN 13279-1/2004 and EN 13279-2/2004, the characteristics gypsum family tests are well specification, as: granule-metric analysis, determination of water/plaster ratio, setting time, mechanical characteristics, adhesions and water restrain. For plaster with special use (phonic-absorbent and orthopedic materials, etc.) these determinations are not concluding, being necessary more parameters finding, as: elastic constant, phonic-absorbent coefficient, porosity, working, etc., which is imposed the completion of norms and standards with new determinations.

  3. Wave Absorber with Fine Weatherability for Improving ETC Environment

    NASA Astrophysics Data System (ADS)

    Miura, Yu; Matsumoto, Kouta; Okada, Osamu; Hashimoto, Osamu

    Wave absorber of rubber sheet containing natural rubber and EPDM is designed, fabricated and measured for improving ETC environment. As a result, proposed absorption material has fine weatherability and wave absorption satisfied with ETC standard can be realized theoretically before and after the weatherability test if the thickness of absorber is fabricated at the ranging from 2.26mm to 2.52mm. Moreover, absorber sheet sample based on theoretical values is fabricated and are measured. As a result, 20dB or more is also confirmed at the incident angle ranging from 5 to 55 degrees experimentally. Therefore, the wave absorber with fine weatherability being satisfied with ETC standard can be realized.

  4. Liquid chromatography with absorbance detection and with isotope-dilution mass spectrometry for determination of isoflavones in soy standard reference materials.

    PubMed

    Phillips, Melissa M; Bedner, Mary; Reitz, Manuela; Burdette, Carolyn Q; Nelson, Michael A; Yen, James H; Sander, Lane C; Rimmer, Catherine A

    2017-02-01

    Two independent analytical approaches, based on liquid chromatography with absorbance detection and liquid chromatography with mass spectrometric detection, have been developed for determination of isoflavones in soy materials. These two methods yield comparable results for a variety of soy-based foods and dietary supplements. Four Standard Reference Materials (SRMs) have been produced by the National Institute of Standards and Technology to assist the food and dietary supplement community in method validation and have been assigned values for isoflavone content using both methods. These SRMs include SRM 3234 Soy Flour, SRM 3236 Soy Protein Isolate, SRM 3237 Soy Protein Concentrate, and SRM 3238 Soy-Containing Solid Oral Dosage Form. A fifth material, SRM 3235 Soy Milk, was evaluated using the methods and found to be inhomogeneous for isoflavones and unsuitable for value assignment. Graphical Abstract Separation of six isoflavone aglycones and glycosides found in Standard Reference Material (SRM) 3236 Soy Protein Isolate.

  5. Liquid Chromatography with Absorbance Detection and with Isotope-Dilution Mass Spectrometry for Determination of Isoflavones in Soy Standard Reference Materials

    PubMed Central

    Phillips, Melissa M.; Bedner, Mary; Gradl, Manuela; Burdette, Carolyn Q.; Nelson, Michael A.; Yen, James H.; Sander, Lane C.; Rimmer, Catherine A.

    2017-01-01

    Two independent analytical approaches, based on liquid chromatography with absorbance detection and liquid chromatography with mass spectrometric detection, have been developed for determination of isoflavones in soy materials. These two methods yield comparable results for a variety of soy-based foods and dietary supplements. Four Standard Reference Materials (SRMs) have been produced by the National Institute of Standards and Technology to assist the food and dietary supplement community in method validation and have been assigned values for isoflavone content using both methods. These SRMs include SRM 3234 Soy Flour, SRM 3236 Soy Protein Isolate, SRM 3237 Soy Protein Concentrate, and SRM 3238 Soy-Containing Solid Oral Dosage Form. A fifth material, SRM 3235 Soy Milk, was evaluated using the methods and found to be inhomogeneous for isoflavones and unsuitable for value assignment. PMID:27832301

  6. Absorbable magnesium-based stent: physiological factors to consider for in vitro degradation assessments

    PubMed Central

    Wang, Juan; Smith, Christopher E.; Sankar, Jagannathan; Yun, Yeoheung; Huang, Nan

    2015-01-01

    Absorbable metals have been widely tested in various in vitro settings using cells to evaluate their possible suitability as an implant material. However, there exists a gap between in vivo and in vitro test results for absorbable materials. A lot of traditional in vitro assessments for permanent materials are no longer applicable to absorbable metallic implants. A key step is to identify and test the relevant microenvironment and parameters in test systems, which should be adapted according to the specific application. New test methods are necessary to reduce the difference between in vivo and in vitro test results and provide more accurate information to better understand absorbable metallic implants. In this investigative review, we strive to summarize the latest test methods for characterizing absorbable magnesium-based stent for bioabsorption/biodegradation behavior in the mimicking vascular environments. Also, this article comprehensively discusses the direction of test standardization for absorbable stents to paint a more accurate picture of the in vivo condition around implants to determine the most important parameters and their dynamic interactions. PMID:26816631

  7. Absorbing Boundary Conditions For Optical Pulses In Dispersive, Nonlinear Materials

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Kwak, Dochan (Technical Monitor)

    1995-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that provides absorbing boundary conditions for optical pulses in dispersive, nonlinear materials. A new numerical absorber at the boundaries has been developed that is responsive to the spectral content of the pulse. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of "light bullet" like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. Comparisons will be shown of calculations that use the standard boundary conditions and the new ones.

  8. Parametric study on the performance of automotive MR shock absorbers

    NASA Astrophysics Data System (ADS)

    Gołdasz, J.; Dzierżek, S.

    2016-09-01

    The paper contains the results of a parametric study to explore the influence of various quantities on the performance range of semi-active automotive shock absorbers using the magnetorheological (MR) fluid under steady-state and transient excitations. The analysis was performed with simulated data and using a standard single-tube shock absorber configuration with a single-gap MR valve. Additionally, the impact of material variables and valves geometry was examined as the parameters were varied and its dynamic range studied.

  9. Correlation between standard Charpy and sub-size Charpy test results of selected steels in upper shelf region

    NASA Astrophysics Data System (ADS)

    Konopík, P.; Džugan, J.; Bucki, T.; Rzepa, S.; Rund, M.; Procházka, R.

    2017-02-01

    Absorbed energy obtained from impact Charpy tests is one of the most important values in many applications, for example in residual lifetime assessment of components in service. Minimal absorbed energy is often the value crucial for extending components service life, e.g. turbines, boilers and steam lines. Using a portable electric discharge sampling equipment (EDSE), it is possible to sample experimental material non-destructively and subsequently produce mini-Charpy specimens. This paper presents a new approach in correlation from sub-size to standard Charpy test results.

  10. Evaluation of absorbent materials for use as ad hoc dry decontaminants during mass casualty incidents as part of the UK’s Initial Operational Response (IOR)

    PubMed Central

    Kassouf, Nick; Syed, Sara; Larner, Joanne; Amlôt, Richard

    2017-01-01

    The UK’s Initial Operational Response (IOR) is a revised process for the medical management of mass casualties potentially contaminated with hazardous materials. A critical element of the IOR is the introduction of immediate, on-scene disrobing and decontamination of casualties to limit the adverse health effects of exposure. Ad hoc cleansing of the skin with dry absorbent materials has previously been identified as a potential means of facilitating emergency decontamination. The purpose of this study was to evaluate the in vitro oil and water absorbency of a range of materials commonly found in the domestic and clinical environments and to determine the effectiveness of a small, but representative selection of such materials in skin decontamination, using an established ex vivo model. Five contaminants were used in the study: methyl salicylate, parathion, diethyl malonate, phorate and potassium cyanide. In vitro measurements of water and oil absorbency did not correlate with ex vivo measurements of skin decontamination. When measured ex vivo, dry decontamination was consistently more effective than a standard wet decontamination method (“rinse-wipe-rinse”) for removing liquid contaminants. However, dry decontamination was ineffective against particulate contamination. Collectively, these data confirm that absorbent materials such as wound dressings and tissue paper provide an effective, generic capability for emergency removal of liquid contaminants from the skin surface, but that wet decontamination should be used for non-liquid contaminants. PMID:28152053

  11. Bubble-driven light-absorbing hydrogel microrobot for the assembly of bio-objects.

    PubMed

    Hu, Wenqi; Fan, Qihui; Tonaki, Wade; Ohta, Aaron T

    2013-01-01

    Microrobots made of light-absorbing hydrogel material were actuated by optically induced thermocapillary flow and move at up to 700 µm/s. The micro-assembly capabilities of the microrobots were demonstrated by assembling polystyrene beads and yeast cells into various patterns on standard glass microscope slides. Two microrobots operating independently in parallel were also used to assemble micro-hydrogel structures.

  12. Determination of fat-soluble vitamins and carotenoids in standard reference material 3280 multivitamin/multielement tablets by liquid chromatography with absorbance detection.

    PubMed

    Thomas, Jeanice B; Sharpless, Katherine E; Yen, James H; Rimmer, Catherine A

    2011-01-01

    The concentrations of selected fat-soluble vitamins and carotenoids in Standard Reference Material (SRM) 3280 Multivitamin/Multielement Tablets have been determined by two independent LC methods, with measurements performed by the National Institute of Standards and Technology (NIST). This SRM has been prepared as part of a collaborative effort between NIST and the National Institutes of Health Office of Dietary Supplements. The SRM is also intended to support the Dietary Supplement Ingredient Database that is being established by the U.S. Department of Agriculture. The methods used at NIST to determine the concentration levels of vitamins A and E, and beta-carotene in the SRM used RPLC with absorbance detection. The relative precision of these methods ranged from 2 to 8% for the analytes measured. SRM 3280 is primarily intended for use in validating analytical methods for the determination of selected vitamins, carotenoids, and elements in multivitamin/multielement tablets and similar matrixes.

  13. Standard specification for nuclear grade hafnium oxide pellets. ASTM standard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This specification is under the jurisdiction of ASTM Committee C-26 on Nuclear Fuel Cycle and is the direct responsibility of Subcommittee C26.03 on Neutron Absorber Materials Specifications. Current edition approved May 10, 1997. Published May 1998. Originally published as C 1076-87. Last previous edition C 1076-92.

  14. The X-ray and ultraviolet absorbing outflow in 3C 351

    NASA Astrophysics Data System (ADS)

    Mathur, Smita; Wilkes, Belinda; Elvis, Martin; Fiore, Fabrizio

    1994-10-01

    3C 351 (z = 0.371), and X-ray-'quiet' quasar, is one of the few quasars showing signs of a 'warm absorber' in its X-ray spectrum; i.e., partially ionized absorbing material in the line of sight whose opacity depends on its ionization structure. The main feature in the X-ray spectrum is a K-edge due to O VII or O VIII. 3C 351 also shows unusually strong, blueshifted, associated, absorption lines in the ultraviolet (Bahcall et al. 1993) including O VI (lambda lambda 1031, 1037). This high ionization state strongly suggests an identification with the X-ray absorber and a site within the active nucleus. In this paper we demonstrate that the X-ray and UV absorption is due to the same material. This is the first confirmed UV/X-ray absorber. Physical conditions of the absorber are determined through the combination of constraints derived from both the X-ray and UV analysis. This highly ionized, outflowing, low-density, high-column density absorber situated outside the broad emission line region (BELR) is a previously unknown component of nuclear material. We rule out the identification of the absorber with a BELR cloud as the physical conditions in the two regions are inconsistent with one another. The effect of the X-ray quietness and IR upturn in the 3C 351 continuum on the BELR is also investigated. The strengths of the high-ionization lines of C IV lambda-1549 and O VI lambda-1034 with respect to Lyman-alpha are systematically lower (up to a factor of 10) in the material ionized by the 3C 351 continuum as compared to those produced by the 'standard' quasar continuum, the strongest effect being on the strength of O VI lambda-1034. We find that for a 3C 351-like continuum, C III) lambda-1909 ceases to be a density indicator.

  15. 16 CFR 1633.9 - Glossary of terms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS The Standard § 1633.9 Glossary of terms. (a) Absorbent pad. Pad used... may include constructed frames, foam, box springs or other materials used alone or in combination. (q..., solid foam core segments. ...

  16. 16 CFR 1633.9 - Glossary of terms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS The Standard § 1633.9 Glossary of terms. (a) Absorbent pad. Pad used... may include constructed frames, foam, box springs or other materials used alone or in combination. (q..., solid foam core segments. ...

  17. 16 CFR 1633.9 - Glossary of terms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS The Standard § 1633.9 Glossary of terms. (a) Absorbent pad. Pad used... may include constructed frames, foam, box springs or other materials used alone or in combination. (q..., solid foam core segments. ...

  18. Method and apparatus for selectively annealing heterostructures using microwave

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A. (Inventor); Brain, Ruth A. (Inventor); Barmatz, Martin B. (Inventor)

    1998-01-01

    The present invention discloses a process for selectively annealing heterostructures using microwaves. A heterostructure, comprised of a material having higher microwave absorption and a material having lower microwave absorption, is exposed to microwaves in the cavity. The higher microwave absorbing material absorbs the microwaves and selectively heats while the lower microwave absorbing material absorbs small amounts of microwaves and minimally heats. The higher microwave absorbing material is thereby annealed onto the less absorbing material which is thermally isolated.

  19. Method and apparatus for selectively annealing heterostructures using microwaves

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A. (Inventor); Brain, Ruth A. (Inventor); Barmatz, Martin B. (Inventor)

    1998-01-01

    The present invention discloses a process for selectively annealing heterostructures using microwaves. A heterostructure, comprised of a material having higher microwave absorption and a material having lower microwave absorption, is exposed to microwaves in the cavity. The higher microwave absorbing material absorbs the microwaves and selectively heats while the lower microwave absorbing material absorbs small amounts of microwaves and minimally heats. The higher microwave absorbing material is thereby annealed onto the less absorbing material which is thermally isolated.

  20. Experiment evaluation of impact attenuator for a racing car under static load

    NASA Astrophysics Data System (ADS)

    Imanullah, Fahmi; Ubaidillah, Prasojo, Arfi Singgih; Wirawan, Adhe Aji

    2018-02-01

    The automotive world is a world where one of the factors that must be considered carefully is the safety aspect. In the formula student car one of the safety factor in the form of impact attenuator. Impact attenuator is used as anchoring when a collision occurs in front of the vehicle. In the rule of formula society of automotive engineer (FSAE) student, impact attenuator is required to absorb the energy must meet or exceed 7350 Joules with a slowdown in speed not exceeding 20 g average and peak of 40 g. The student formula participants are challenged to pass the boundaries so that in designing and making the impact attenuator must pay attention to the strength and use of the minimum material so that it can minimize the expenditure. In this work, an impact attenuator was fabricated and tested using static compression. The primary goal was evaluating the actual capability of the impact attenuator for impact energy absorption. The prototype was made of aluminum alloy in a prismatic shape, and the inside wall was filled with rooftop plastic slices and polyurethane hard foam. The compression test has successfully carried out, and the load versus displacement data could be used in calculating energy absorption capability. The result of the absorbent energy of the selected impact attenuator material. Impact attenuator full polyurethane absorbed energy reach 6380 Joule. For impact attenuator with aluminum polyurethane with a slashed rooftop material as section absorbed energy reach 6600 Joule. Impact attenuator with Aluminum Polyurethane with aluminum orange peel partitions absorbed energy reach 8800 Joule. From standard student formula, energy absorbed in this event must meet or exceed 7350 Joules that meet aluminum polyurethane with aluminum orange peel partitions with the ability to absorb 8800 Joule.

  1. Modeling material failure during cab car end frame impact

    DOT National Transportation Integrated Search

    2009-03-03

    New standards have been proposed to increase the strength requirements for cab car end structures and impose further requirements on their ability to absorb energy during a grade-crossing collision. This conference paper reports on a set of full-scal...

  2. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  3. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  4. New System for Measuring Impact Vibration on Floor Decking Sheets

    PubMed Central

    Moron, Carlos; Garcia, Alfonso; Ferrandez, Daniel

    2015-01-01

    Currently, there is a narrow range of materials that are used as attenuators of impact noise and building vibrations. Materials used in construction, such as elastic materials, must meet the requirement of having very low elastic modulus values. For the determination of the material's elastic modulus and the acoustic insulation of the same, costly and difficult to execute testing is required. The present paper exposes an alternative system that is simpler and more economic, consisting of a predefined striking device and a sensor able to determine, once the strike is produced, the energy absorbed by the plate. After the impact is produced, the plate undergoes a deformation, which absorbs part of the energy, the remaining part being transmitted to the slab and, at the same time, causing induced airborne noise in the adjoining room. The plate absorbs the power through its own deformation, which is measured with the help of a capacitive sensor. This way, it would be possible to properly define the geometry of the plates, after the execution of the test, and we will try to establish a relationship between the values proposed in this research and the acoustic behavior demanded by the Spanish standards. PMID:25558998

  5. Modeling gamma radiation dose in dwellings due to building materials.

    PubMed

    de Jong, Peter; van Dijk, Willem

    2008-01-01

    A model is presented that calculates the absorbed dose rate in air of gamma radiation emitted by building materials in a rectangular body construction. The basis for these calculations is formed by a fixed set of specific absorbed dose rates (the dose rate per Bq kg(-1) 238U, 232Th, and 40K), as determined for a standard geometry with the dimensions 4 x 5 x 2.8 m3. Using the computer codes Marmer and MicroShield, correction factors are assessed that quantify the influence of several room and material related parameters on the specific absorbed dose rates. The investigated parameters are the position in the construction; the thickness, density, and dimensions of the construction parts; the contribution from the outer leave; the presence of doors and windows; the attenuation by internal partition walls; the contribution from building materials present in adjacent rooms; and the effect of non-equilibrium due to 222Rn exhalation. To verify the precision, the proposed method is applied to three Dutch reference dwellings, i.e., a row house, a coupled house, and a gallery apartment. The averaged difference with MCNP calculations is found to be 4%.

  6. In-depth analysis and discussions of water absorption-typed high power laser calorimeter

    NASA Astrophysics Data System (ADS)

    Wei, Ji Feng

    2017-02-01

    In high-power and high-energy laser measurement, the absorber materials can be easily destroyed under long-term direct laser irradiation. In order to improve the calorimeter's measuring capacity, a measuring system directly using water flow as the absorber medium was built. The system's basic principles and the designing parameters of major parts were elaborated. The system's measuring capacity, the laser working modes, and the effects of major parameters were analyzed deeply. Moreover, the factors that may affect the accuracy of measurement were analyzed and discussed. The specific control measures and methods were elaborated. The self-calibration and normal calibration experiments show that this calorimeter has very high accuracy. In electrical calibration, the average correction coefficient is only 1.015, with standard deviation of only 0.5%. In calibration experiments, the standard deviation relative to a middle-power standard calorimeter is only 1.9%.

  7. Neutron absorbers and methods of forming at least a portion of a neutron absorber

    DOEpatents

    Guillen, Donna P; Porter, Douglas L; Swank, W David; Erickson, Arnold W

    2014-12-02

    Methods of forming at least a portion of a neutron absorber include combining a first material and a second material to form a compound, reducing the compound into a plurality of particles, mixing the plurality of particles with a third material, and pressing the mixture of the plurality of particles and the third material. One or more components of neutron absorbers may be formed by such methods. Neutron absorbers may include a composite material including an intermetallic compound comprising hafnium aluminide and a matrix material comprising pure aluminum.

  8. Solar energy collector

    DOEpatents

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  9. METHOD OF TESTING THERMAL NEUTRON FISSIONABLE MATERIAL FOR PURITY

    DOEpatents

    Fermi, E.; Anderson, H.L.

    1961-01-24

    A process is given for determining the neutronic purity of fissionable material by the so-called shotgun test. The effect of a standard neutron absorber of known characteristics and amounts on a neutronic field also of known characteristics is measured and compared with the effect which the impurities derived from a known quantity of fissionable material has on the same neutronic field. The two readings are then made the basis of calculation from which the amount of impurities can be computed.

  10. COMPOSITE CONTROL ROD

    DOEpatents

    Rock, H.R.

    1963-12-24

    A composite control rod for use in controlling a nuclear reactor is described. The control rod is of sandwich construction in which finned dowel pins are utilized to hold together sheets of the neutron absorbing material and nonabsorbing structural material thereby eliminating the need for being dependent on the absorbing material for structural support. The dowel pins perform the function of absorbing the forces due to differential thermal expansion, seating further with the fins into the sheets of material and crushing before damage is done either to the absorbing or non-absorbing material. (AEC)

  11. Welding/sealing glass-enclosed space in a vacuum

    DOEpatents

    Tracy, C.E.; Benson, D.K.

    1996-02-06

    A method of welding and sealing the edges of two juxtaposed glass sheets together to seal a vacuum space between the sheets comprises the steps of positioning a radiation absorbent material, such as FeO, VO{sub 2}, or NiO, between the radiation transmissive glass sheets adjacent the edges and then irradiating the absorbent material, preferably with a laser beam, through at least one of the glass sheets. Heat produced by the absorbed radiation in the absorbent material melts glass in the portions of both glass sheets that are adjacent the absorbent material, and the melted glass from both sheets flows together to create the weld when the melted glass cools and hardens. The absorbent material can be dissolved and diffused into the melted glass to the extent that it no longer absorbs enough energy to keep the glass melted, thus, with appropriate proportioning of absorbent material to source energy power and welding heat needed, the process can be made self-stopping. 8 figs.

  12. Welding/sealing glass-enclosed space in a vacuum

    DOEpatents

    Tracy, C. Edwin; Benson, David K.

    1996-01-01

    A method of welding and sealing the edges of two juxtaposed glass sheets together to seal a vacuum space between the sheets comprises the steps of positioning a radiation absorbant material, such as FeO, VO.sub.2, or NiO, between the radiation transmissive glass sheets adjacent the edges and then irradiating the absorbant material, preferably with a laser beam, through at least one of the glass sheets. Heat produced by the absorbed radiation in the absorbant material melts glass in the portions of both glass sheets that are adjacent the absorbant material, and the melted glass from both sheets flows together to create the weld when the melted glass cools and hardens. The absorbant material can be dissolved and diffused into the melted glass to the extent that it no longer absorbs enough energy to keep the glass melted, thus, with appropriate proportioning of absorbant material to source energy power and welding heat needed, the process can be made self-stopping.

  13. Liftoff process for exfoliation of thin film photovoltaic devices and back contact formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haight, Richard A.; Hannon, James B.; Oida, Satoshi

    A method for forming a back contact on an absorber layer in a photovoltaic device includes forming a two dimensional material on a first substrate. An absorber layer including Cu--Zn--Sn--S(Se) (CZTSSe) is grown over the first substrate on the two dimensional material. A buffer layer is grown on the absorber layer on a side opposite the two dimensional material. The absorber layer is exfoliated from the two dimensional material to remove the first substrate from a backside of the absorber layer opposite the buffer layer. A back contact is deposited on the absorber layer.

  14. Characterization of NIST food-matrix Standard Reference Materials for their vitamin C content.

    PubMed

    Thomas, Jeanice B; Yen, James H; Sharpless, Katherine E

    2013-05-01

    The vitamin C concentrations in three food-matrix Standard Reference Materials (SRMs) from the National Institute of Standards and Technology (NIST) have been determined by liquid chromatography (LC) with absorbance detection. These materials (SRM 1549a Whole Milk Powder, SRM 1849a Infant/Adult Nutritional Formula, and SRM 3233 Fortified Breakfast Cereal) have been characterized to support analytical measurements made by food processors that are required to provide information about their products' vitamin C content on the labels of products distributed in the United States. The SRMs are primarily intended for use in validating analytical methods for the determination of selected vitamins, elements, fatty acids, and other nutrients in these materials and in similar matrixes. They can also be used for quality assurance in the characterization of test samples or in-house control materials, and for establishing measurement traceability. Within-day precision of the LC method used to measure vitamin C in the food-matrix SRMs characterized in this study ranged from 2.7% to 6.5%.

  15. Design of broadband absorber using 2-D materials for thermo-photovoltaic cell application

    NASA Astrophysics Data System (ADS)

    Agarwal, Sajal; Prajapati, Y. K.

    2018-04-01

    Present study is done to analyze a nano absorber for thermo-photovoltaic cell application. Optical absorbance of two-dimensional materials is exploited to achieve high absorbance. It is found that few alternating layers of graphene/transition metal dichalcogenide provide high absorbance of electromagnetic wave in visible as well as near infrared region. Four transition metal dichalcogenides are considered and found that most of these provide perfect absorbance for almost full considered wavelength range i.e. 200-1000 nm. Demonstrated results confirm the extended operating region and improved absorbance of the proposed absorber in comparison to the existing absorbers made of different materials. Further, absorber performance is improved by using thin layers of gold and chromium. Simple geometry of the proposed absorber also ensures easy fabrication.

  16. Mechanical and Physicochemical Properties of Newly Formed ZnO-PMMA Nanocomposites for Denture Bases.

    PubMed

    Cierech, Mariusz; Osica, Izabela; Kolenda, Adam; Wojnarowicz, Jacek; Szmigiel, Dariusz; Łojkowski, Witold; Kurzydłowski, Krzysztof; Ariga, Katsuhiko; Mierzwińska-Nastalska, Elżbieta

    2018-05-06

    The aim of this study was to investigate the selected properties of zinc oxide- polymethyl methacrylate (ZnO-PMMA) nanocomposites that can influence the microorganism deposition on their surface. Non-commercial ZnO-NPs were prepared, characterized and used for the preparation of PMMA nanocomposite. Roughness, absorbability, contact angle and hardness of this new nanomaterial were evaluated. PMMA without ZnO-NPs served as control. Compared to unenriched PMMA, incorporation of ZnO-NPs to 7.5% for PMMA nanocomposite increases the hardness (by 5.92%) and the hydrophilicity. After modification of the material with zinc oxide nanoparticles the roughness parameter did not change. All tested materials showed absorption within the range of 1.82 to 2.03%, which meets the requirements of International Organization for Standardization (ISO) standards for denture base polymers. The results showed no significant deterioration in the properties of acrylic resin that could disqualify the nanocomposite for clinical use. Increased hydrophilicity and hardness with absorbability within the normal range can explain the reduced microorganism growth on the denture base, as has been proven in a previous study.

  17. Development and application of a water calorimeter for the absolute dosimetry of short-range particle beams.

    PubMed

    Renaud, J; Rossomme, S; Sarfehnia, A; Vynckier, S; Palmans, H; Kacperek, A; Seuntjens, J

    2016-09-21

    In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min -1 , with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user's beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.

  18. Development and application of a water calorimeter for the absolute dosimetry of short-range particle beams

    NASA Astrophysics Data System (ADS)

    Renaud, J.; Rossomme, S.; Sarfehnia, A.; Vynckier, S.; Palmans, H.; Kacperek, A.; Seuntjens, J.

    2016-09-01

    In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min-1, with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user’s beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.

  19. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  20. 77 FR 22504 - Hazardous Materials; Packages Intended for Transport by Aircraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... material to absorb the entire contents of the inner packaging, before being placed in its outer package... combination packaging intended for the air transportation of liquid hazardous materials is capable of..., leakproof receptacle or intermediate packaging containing sufficient absorbent material to absorb the entire...

  1. Wide band design on the scaled absorbing material filled with flaky CIPs

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Yuan, Liming; Gao, Wei; Wang, Xiaobing; Liang, Zichang; Liao, Yi

    2018-02-01

    The scaled target measurement is an important method to get the target characteristic. Radar absorbing materials are widely used in the low detectable target, considering the absorbing material frequency dispersion characteristics, it makes designing and manufacturing scaled radar absorbing materials on the scaled target very difficult. This paper proposed a wide band design method on the scaled absorbing material of the thin absorption coating with added carbonyl iron particles. According to the theoretical radar cross section (RCS) of the plate, the reflection loss determined by the permittivity and permeability was chosen as the main design factor. Then, the parameters of the scaled absorbing materials were designed using the effective medium theory, and the scaled absorbing material was constructed. Finally, the full-size coating plate and scaled coating plates (under three different scale factors) were simulated; the RCSs of the coating plates were numerically calculated and measured at 4 GHz and a scale factor of 2. The results showed that the compensated RCS of the scaled coating plate was close to that of the full-size coating plate, that is, the mean deviation was less than 0.5 dB, and the design method for the scaled material was very effective.

  2. Evaluation of suture material characteristics in an in vitro experimental model.

    PubMed

    Justan, I

    2010-01-01

    The purpose of our study was to indentify the mechanical characteristics of various suture materials. We created an in-vitro experimental flexor tendon model. Materials were divided into four groups: monofilament polypropylene non-absorbable material (group 1); monofilament long-term absorbable material (group 2); polyester multifilament non-absorbable coated material (group 3) and polyester multifilament non-absorbable uncoated material (group 4). We performed 135 tests. The mean maximal tensile strength was 62.92 N in group 1, 75.20 N in group 2, 36.38 N in group 3 and 72.4 N in group 4. Elasticity in millimetres was adjusted at the 35N level: group 1:2.01 mm, group 2:2.18 mm, group 3:2.14 and group 4:1.51 mm. With regard to its elasticity and favourable SD for tensile strength measurements, polyester multifilament non-absorbable uncoated material was considered to be the most suitable material.

  3. A Wide Band Absorbing Material Design Using Band-Pass Frequency Selective Surface

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Xu, Qiang; Liu, Ting; Zheng, Dianliang; Zhou, Li

    2018-03-01

    Based on the high frequency advantage characteristics of the Fe based absorbing coating, a method for designing the structure of broadband absorbing structure by using frequency selective surface (FSS) is proposed. According to the transmission and reflection characteristic of the different size FSS structure, the frequency variation characteristic was simulated. Secondly, the genetic algorithm was used to optimize the high frequency broadband absorbing materials, including the single and double magnetic layer material. Finally, the absorbing characteristics in iron layer were analyzed as the band pass FSS structure was embedded, the results showed that the band-pass FSS had the influence on widening the absorbing frequency. As the FSS was set as the bottom layer, it was effective to achieve the good absorbing property in low frequency and the high frequency absorbing performance was not weakened, because the band-pass FSS led the low frequency absorption and the high frequency shielding effect. The results of this paper are of guiding significance for designing and manufacturing the broadband absorbing materials.

  4. Composite neutron absorbing coatings for nuclear criticality control

    DOEpatents

    Wright, Richard N.; Swank, W. David; Mizia, Ronald E.

    2005-07-19

    Thermal neutron absorbing composite coating materials and methods of applying such coating materials to spent nuclear fuel storage systems are provided. A composite neutron absorbing coating applied to a substrate surface includes a neutron absorbing layer overlying at least a portion of the substrate surface, and a corrosion resistant top coat layer overlying at least a portion of the neutron absorbing layer. An optional bond coat layer can be formed on the substrate surface prior to forming the neutron absorbing layer. The neutron absorbing layer can include a neutron absorbing material, such as gadolinium oxide or gadolinium phosphate, dispersed in a metal alloy matrix. The coating layers may be formed by a plasma spray process or a high velocity oxygen fuel process.

  5. Intercomparison of standards of absorbed dose between the USSR and the UK

    NASA Astrophysics Data System (ADS)

    Berlyand, V. A.; Bregadze, J. I.; Burns, J. E.; Dusautoy, A. R.; Sharpe, P. H. G.

    1991-05-01

    A comparison of national standards of absorbed dose was carried out between the All-Union Research Institute for Physical Technical and Radiotechnical Measurements (VNIIFTRI), USSR, and the National Physical Laboratotry (NPL), UK (United Kingdom). Absorbed dose to water for cobalt 60 gamma radiation was compared by means of Fricke dosimeters and ionization chambers in 1985 and 1986. The primary standards used to derive absorbed dose to water were cavity ionization chambers at NPL and a graphite calorimeter at VNIIFTRI. The ratio of absorbed dose to water, NPL to VNIIFTRI, using Fricke dosimeters was 1.008; using ionization chambers it was 1.007. This agreement is within the estimated uncertainties of the standards and measurement methods.

  6. Pico-second laser materials interactions: mechanisms, material lifetime and performance optimization Ted Laurence(14-ERD-014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, Ted A.

    2016-12-14

    Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multiphoton ionization- and avalanche ionization-based ablation with fs pulses to defectdominated, thermal-based damage with ns pulses. We investigated the morphology and scaling of damage for commonly used silica and hafnia coatings as well as fused silica. Using carefully calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we showed that defects play an important role in laser-induced damage for pulse durations as short as 1 ps. Three damage morphologies were observed: standard material ablation, ultra-high density pits, and isolated absorbers.more » For 10 ps and longer, the isolated absorbers limited the damage performance of the coating materials. We showed that damage resulting from the isolated absorbers grows dramatically with subsequent pulses for sufficient fluences. For hafnia coatings, we used electric field modeling and experiments to show that isolated absorbers near the surface were affected by the chemical environment (vacuum vs. air) for pulses as short as 10 ps. Coupled with the silica results, these results suggested that improvements in the performance in the 10 -60 ps range have not reached fundamental limits. These findings motivate new efforts, including a new SI LDRD in improving the laser-damage performance of multi-layer dielectric coatings. A damage test facility for ps pulses was developed and automated, and was used for testing production optics for ARC. The resulting software was transferred to other laser test facilities for fs pulses and multiple wavelengths with 30 ps pulses. Additionally, the LDRD supported the retention and promotion of an important staff scientist in high-resolution dynamic microscopy and laser-damage testing.« less

  7. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  8. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  9. Novel Application of Glass Fibers Recovered From Waste Printed Circuit Boards as Sound and Thermal Insulation Material

    NASA Astrophysics Data System (ADS)

    Sun, Zhixing; Shen, Zhigang; Ma, Shulin; Zhang, Xiaojing

    2013-10-01

    The aim of this study is to investigate the feasibility of using glass fibers, a recycled material from waste printed circuit boards (WPCB), as sound absorption and thermal insulation material. Glass fibers were obtained through a fluidized-bed recycling process. Acoustic properties of the recovered glass fibers (RGF) were measured and compared with some commercial sound absorbing materials, such as expanded perlite (EP), expanded vermiculite (EV), and commercial glass fiber. Results show that RGF have good sound absorption ability over the whole tested frequency range (100-6400 Hz). The average sound absorption coefficient of RGF is 0.86, which is prior to those of EP (0.81) and EV (0.73). Noise reduction coefficient analysis indicates that the absorption ability of RGF can meet the requirement of II rating for sound absorbing material according to national standard. The thermal insulation results show that RGF has a fair low thermal conductivity (0.046 W/m K), which is comparable to those of some insulation materials (i.e., EV, EP, and rock wool). Besides, an empirical dependence of thermal conductivity on material temperature was determined for RGF. All the results showed that the reuse of RGF for sound and thermal insulation material provided a promising way for recycling WPCB and obtaining high beneficial products.

  10. High-Operating-Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Hill, Cory, J.; Soibel, Alexander; Bandara, Sumith V.; Gunapala, Sarath D.

    2011-01-01

    A mid-wavelength infrared (MWIR) barrier photodetector is capable of operating at higher temperature than the prevailing MWIR detectors based on InSb. The standard high-operating-temperature barrier infrared detector (HOT-BIRD) is made with an InAsSb infrared absorber that is lattice-matched to a GaSb substrate, and has a cutoff wavelength of approximately 4 microns. To increase the versatility and utility of the HOT-BIRD, it is implemented with IR absorber materials with customizable cutoff wavelengths. The HOT-BIRD can be built with the quaternary alloy GaInAsSb as the absorber, GaAlSbAs as the barrier, on a lattice-matching GaSb substrate. The cutoff wavelength of the GaInAsSb can be tailored by adjusting the alloy composition. To build a HOT-BIRD requires a matching pair of absorber and barrier materials with the following properties: (1) their valence band edges must be approximately the same to allow unimpeded hole flow, while their conduction band edges should have a large difference to form an electron barrier; and (2) the absorber and the barrier must be respectively lattice-matched and closely lattice-matched to the substrate to ensure high material quality and low defect density. To make a HOT-BIRD with cutoff wavelength shorter than 4 microns, a GaInAsSb quaternary alloy was used as the absorber, and a matching GaAlSbAs quaternary alloy as the barrier. By changing the alloy composition, the band gap of the quaternary alloy absorber can be continuously adjusted with cutoff wavelength ranging from 4 microns down to the short wavelength infrared (SWIR). By carefully choosing the alloy composition of the barrier, a HOT-BIRD structure can be formed. With this method, a HOT-BIRD can be made with continuously tailorable cutoff wavelengths from 4 microns down to the SWIR. The HOT-BIRD detector technology is suitable for making very-large-format MWIR/SWIR focal plane arrays that can be operated by passive cooling from low Earth orbit. High-operating temperature infrared with reduced cooling requirement would benefit space missions in reduction of size, weight, and power, and an increase in mission lifetime.

  11. Towards standardized testing methodologies for optical properties of components in concentrating solar thermal power plants

    NASA Astrophysics Data System (ADS)

    Sallaberry, Fabienne; Fernández-García, Aránzazu; Lüpfert, Eckhard; Morales, Angel; Vicente, Gema San; Sutter, Florian

    2017-06-01

    Precise knowledge of the optical properties of the components used in the solar field of concentrating solar thermal power plants is primordial to ensure their optimum power production. Those properties are measured and evaluated by different techniques and equipment, in laboratory conditions and/or in the field. Standards for such measurements and international consensus for the appropriate techniques are in preparation. The reference materials used as a standard for the calibration of the equipment are under discussion. This paper summarizes current testing methodologies and guidelines for the characterization of optical properties of solar mirrors and absorbers.

  12. Hybrid nuclear reactor grey rod to obtain required reactivity worth

    DOEpatents

    Miller, John V.; Carlson, William R.; Yarbrough, Michael B.

    1991-01-01

    Hybrid nuclear reactor grey rods are described, wherein geometric combinations of relatively weak neutron absorber materials such as stainless steel, zirconium or INCONEL, and relatively strong neutron absorber materials, such as hafnium, silver-indium cadmium and boron carbide, are used to obtain the reactivity worths required to reach zero boron change load follow. One embodiment includes a grey rod which has combinations of weak and strong neutron absorber pellets in a stainless steel cladding. The respective pellets can be of differing heights. A second embodiment includes a grey rod with a relatively thick stainless steel cladding receiving relatively strong neutron absorber pellets only. A third embodiment includes annular relatively weak netron absorber pellets with a smaller diameter pellet of relatively strong absorber material contained within the aperture of each relatively weak absorber pellet. The fourth embodiment includes pellets made of a homogeneous alloy of hafnium and a relatively weak absorber material, with the percentage of hafnium chosen to obtain the desired reactivity worth.

  13. Shock-absorbing effect of shoe insert materials commonly used in management of lower extremity disorders.

    PubMed

    Shiba, N; Kitaoka, H B; Cahalan, T D; Chao, E Y

    1995-01-01

    The efficacy of 3 shock-absorbing materials was compared by determining impact characteristics with a drop test method and also by testing the effect of each material when used as a shoe insert in 16 asymptomatic subjects. Peak vertical ground reaction force (F1, F2, F3) and temporal force factors (T1, T2, T3) were obtained with a force plate at a high-frequency sampling rate. Impact force, impact time, impact slope, and impact energy were determined. A standard weight was dropped from 3 heights on each material covering the force plate while reduction of peak force was compared. Impact force was attenuated most effectively by Insert 3 (polymeric foam rubber) and averaged 11% less than that in shoes without inserts. Impact time was increased for all 3 inserts. Impact slope and impact energy were reduced significantly in Insert 3. There was a significant difference in peak vertical force F1 for all 3 inserts, in vertical force F2 for Insert 2 (viscoelastic polymeric material), and in vertical force F3 for Insert 2. Drop-test studies showed that at all ball heights, the highest mean peak force was observed consistently in Insert 2.

  14. Design optimization of a viscoelastic dynamic vibration absorber using a modified fixed-points theory.

    PubMed

    Wong, W O; Fan, R P; Cheng, F

    2018-02-01

    A viscoelastic dynamic vibration absorber (VDVA) is proposed for suppressing infrasonic vibrations of heavy structures because the traditional dynamic vibration absorber equipped with a viscous damper is not effective in suppressing low frequency vibrations. The proposed VDVA has an elastic spring and a viscoelastic damper with frequency dependent modulus and damping properties. The standard fixed-points theory cannot be applied to derive the optimum design parameters of the VDVA because both its stiffness and damping are frequency dependent. A modified fixed-points theory is therefore proposed to solve this problem. H ∞ design optimization of the proposed VDVA have been derived for the minimization of resonant vibration amplitude of a single degree-of-freedom system excited by harmonic forces or due to ground motions. The stiffness and damping of the proposed VDVA can be decoupled such that both of these two properties of the absorber can be tuned independently to their optimal values by following a specified procedure. The proposed VDVA with optimized design is tested numerically using two real commercial viscoelastic damping materials. It is found that the proposed viscoelastic absorber can provide much stronger vibration reduction effect than the conventional VDVA without the elastic spring.

  15. Smart skin spiral antenna with chiral absorber

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Varadan, Vasundara V.

    1995-05-01

    Recently there has been considerable interest toward designing 'smart skins' for aircraft. The smart skin is a composite layer which may contain conformal radars, conformal microstrip antennas or spiral antennas for electromagnetic applications. These embedded antennas will give rise to very low radar cross section (RCS) or can be completely 'hidden' to tracking radar. In addition, they can be used to detect, monitor or even jam other unwanted electromagnetic field signatures. This paper is designed to address some technical advances made to reduce the size of spiral antennas using tunable dielectric materials and chiral absorbers. The purpose is to design, develop and fabricate a thin, wideband, conformal spiral antenna architecture that is structurally integrable and which uses advanced Penn State dielectric and absorber materials to achieve wideband ground planes, and together with low RCS. Traditional practice has been to design radome and antenna as separate entities and then resolve any interface problems during an integration phase. A structurally integrable conformal antenna, however, demands that the functional components be highly integrated both conceptually and in practice. Our concept is to use the lower skin of the radome as a substrate on which the radiator can be made using standard photolithography, thick film or LTCC techniques.

  16. Container and method for absorbing and reducing hydrogen concentration

    DOEpatents

    Wicks, George G.; Lee, Myung W.; Heung, Leung K.

    2001-01-01

    A method for absorbing hydrogen from an enclosed environment comprising providing a vessel; providing a hydrogen storage composition in communication with a vessel, the hydrogen storage composition further comprising a matrix defining a pore size which permits the passage of hydrogen gas while blocking the passage of gaseous poisons; placing a material within the vessel, the material evolving hydrogen gas; sealing the vessel; and absorbing the hydrogen gas released into the vessel by the hydrogen storage composition. A container for absorbing evolved hydrogen gas comprising: a vessel having an interior and adapted for receiving materials which release hydrogen gas; a hydrogen absorbing composition in communication with the interior, the composition defining a matrix surrounding a hydrogen absorber, the matrix permitting the passage of hydrogen gas while excluding gaseous poisons; wherein, when the vessel is sealed, hydrogen gas, which is released into the vessel interior, is absorbed by the hydrogen absorbing composition.

  17. Boron cage compound materials and composites for shielding and absorbing neutrons

    DOEpatents

    Bowen, III, Daniel E; Eastwood, Eric A

    2014-03-04

    Boron cage compound-containing materials for shielding and absorbing neutrons. The materials include BCC-containing composites and compounds. BCC-containing compounds comprise a host polymer and a BCC attached thereto. BCC-containing composites comprise a mixture of a polymer matrix and a BCC filler. The BCC-containing materials can be used to form numerous articles of manufacture for shielding and absorbing neutrons.

  18. Basalt fiber reinforced porous aggregates-geopolymer based cellular material

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Xu, Jin-Yu; Li, Weimin

    2015-09-01

    Basalt fiber reinforced porous aggregates-geopolymer based cellular material (BFRPGCM) was prepared. The stress-strain curve has been worked out. The ideal energy-absorbing efficiency has been analyzed and the application prospect has been explored. The results show the following: fiber reinforced cellular material has successively sized pore structures; the stress-strain curve has two stages: elastic stage and yielding plateau stage; the greatest value of the ideal energy-absorbing efficiency of BFRPGCM is 89.11%, which suggests BFRPGCM has excellent energy-absorbing property. Thus, it can be seen that BFRPGCM is easy and simple to make, has high plasticity, low density and excellent energy-absorbing features. So, BFRPGCM is a promising energy-absorbing material used especially in civil defense engineering.

  19. Development of a primary standard for absorbed dose from unsealed radionuclide solutions

    NASA Astrophysics Data System (ADS)

    Billas, I.; Shipley, D.; Galer, S.; Bass, G.; Sander, T.; Fenwick, A.; Smyth, V.

    2016-12-01

    Currently, the determination of the internal absorbed dose to tissue from an administered radionuclide solution relies on Monte Carlo (MC) calculations based on published nuclear decay data, such as emission probabilities and energies. In order to validate these methods with measurements, it is necessary to achieve the required traceability of the internal absorbed dose measurements of a radionuclide solution to a primary standard of absorbed dose. The purpose of this work was to develop a suitable primary standard. A comparison between measurements and calculations of absorbed dose allows the validation of the internal radiation dose assessment methods. The absorbed dose from an yttrium-90 chloride (90YCl) solution was measured with an extrapolation chamber. A phantom was developed at the National Physical Laboratory (NPL), the UK’s National Measurement Institute, to position the extrapolation chamber as closely as possible to the surface of the solution. The performance of the extrapolation chamber was characterised and a full uncertainty budget for the absorbed dose determination was obtained. Absorbed dose to air in the collecting volume of the chamber was converted to absorbed dose at the centre of the radionuclide solution by applying a MC calculated correction factor. This allowed a direct comparison of the analytically calculated and experimentally determined absorbed dose of an 90YCl solution. The relative standard uncertainty in the measurement of absorbed dose at the centre of an 90YCl solution with the extrapolation chamber was found to be 1.6% (k  =  1). The calculated 90Y absorbed doses from published medical internal radiation dose (MIRD) and radiation dose assessment resource (RADAR) data agreed with measurements to within 1.5% and 1.4%, respectively. This study has shown that it is feasible to use an extrapolation chamber for performing primary standard absorbed dose measurements of an unsealed radionuclide solution. Internal radiation dose assessment methods based on MIRD and RADAR data for 90Y have been validated with experimental absorbed dose determination and they agree within the stated expanded uncertainty (k  =  2).

  20. Core-melt source reduction system

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-04-25

    A core-melt source reduction system for ending the progression of a molten core during a core-melt accident and resulting in a stable solid cool matrix. The system includes alternating layers of a core debris absorbing material and a barrier material. The core debris absorbing material serves to react with and absorb the molten core such that containment overpressurization and/or failure does not occur. The barrier material slows the progression of the molten core debris through the system such that the molten core has sufficient time to react with the core absorbing material. The system includes a provision for cooling the glass/molten core mass after the reaction such that a stable solid cool matrix results. 4 figs.

  1. Core-melt source reduction system

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    A core-melt source reduction system for ending the progression of a molten core during a core-melt accident and resulting in a stable solid cool matrix. The system includes alternating layers of a core debris absorbing material and a barrier material. The core debris absorbing material serves to react with and absorb the molten core such that containment overpressurization and/or failure does not occur. The barrier material slows the progression of the molten core debris through the system such that the molten core has sufficient time to react with the core absorbing material. The system includes a provision for cooling the glass/molten core mass after the reaction such that a stable solid cool matrix results.

  2. Investigation of the chamber correction factor (k(ch)) for the UK secondary standard ionization chamber (NE2561/NE2611) using medium-energy x-rays.

    PubMed

    Rosser, K E

    1998-11-01

    This paper evaluates the characteristics of ionization chambers for the measurement of absorbed dose to water for medium-energy x-rays. The values of the chamber correction factor, k(ch), used in the IPEMB code of practice for the UK secondary standard (NE2561/NE2611) ionization chamber are derived and their constituent factors examined. The comparison of the chambers' responses in air revealed that of the chambers tested only the NE2561, NE2571 and NE2505 exhibit a flat (within 5%) energy response in air. Under no circumstances should the NACP, Sanders electron chamber, or any chamber that has a wall made of high atomic number material, be used for medium-energy x-ray dosimetry. The measurements in water reveal that a chamber that has a substantial housing, such as the PTW Grenz chamber, should not be used to measure absorbed dose to water in this energy range. The value of k(ch) for an NE2561 chamber was determined by measuring the absorbed dose to water and comparing it with that for an NE2571 chamber, for which k(ch) data have been published. The chamber correction factor varies from 1.023 +/- 0.03 to 1.018 +/- 0.001 for x-ray beams with HVL between 0.15 and 4 mm Cu. The values agree with that for an NE2571 chamber within the experimental uncertainty. The corrections due to the stem, waterproof sleeve and replacement of the phantom material by the chamber for an NE2561 chamber are described.

  3. Composite solid-state scintillators for neutron detection

    DOEpatents

    Dai, Sheng; Im, Hee-Jung; Pawel, Michelle D.

    2006-09-12

    Applicant's present invention is a composite scintillator for neutron detection comprising a matrix material fabricated from an inorganic sol-gel precursor solution homogeneously doped with a liquid scintillating material and a neutron absorbing material. The neutron absorbing material yields at least one of an electron, a proton, a triton, an alpha particle or a fission fragment when the neutron absorbing material absorbs a neutron. The composite scintillator further comprises a liquid scintillating material in a self-assembled micelle formation homogeneously doped in the matrix material through the formation of surfactant-silica composites. The scintillating material is provided to scintillate when traversed by at least one of an electron, a proton, a triton, an alpha particle or a fission fragment. The scintillating material is configured such that the matrix material surrounds the micelle formation of the scintillating material. The composite scintillator is fabricated and applied as a thin film on substrate surfaces, a coating on optical fibers or as a glass material.

  4. Flat-Plate Solar-Collector Performance Evaluation with a Solar Simulator as a Basis for Collector Selection and Performance Prediction

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1975-01-01

    The use of a solar simulator for performance determination permits collector testing under standard conditions of wind, ambient temperature, flow rate and sun. The performance results determined with the simulator have been found to be in good agreement with outdoor performance results. The measured thermal efficiency and evaluation of 23 collectors are reported which differ according to absorber material (copper, aluminum, steel), absorber coating (nonselective black paint, selective copper oxide, selective black nickel, selective black chrome), type of glazing material (glass, Tedlar, Lexan, antireflection glass), the use of honeycomb material and the use of vacuum to prevent thermal convection losses. The collectors were given performance rankings based on noon-hour solar conditions and all-day solar conditions. The determination with the simulator of an all-day collector performance was made possible by tests at different incident angles. The solar performance rankings were made based on whether the collector is to be used for pool heating, hot water, absorption air conditioning, heating, or for a solar Rankine machine.

  5. cSRM 2035: a rare-earth oxide glass for the wavelength calibration of near-infrared dispersive and Fourier transform spectrometers

    NASA Astrophysics Data System (ADS)

    Choquette, Steven J.; Travis, John C.; Duewer, David L.

    1998-10-01

    The National Institute of Standards and Technology is developing an optical filter standard for calibration of the wavelength axis of near infrared (NIR) transmission spectrometers. A design goal for the initial candidate Standard Reference Material (cSRM) filter was to provide absorbance peaks evenly covering the spectral region between 800 nm to 1600 mm (12,000 cm-1 to 6,500 cm-1). The reproducibility of the peak location, for batch-certified filters, was to be better than 0.02 nm (approximately 0.1 cm-1). Glasses with 1 to 3 mole % Yb2O3, Sm2O3, and Nd2O3, incorporated into a commercial lanthanum oxide glass were evaluated for this proposed optical standard. An initial batch of cSRM 2035 filters was prepared based on studies of glasses made and evaluated in our laboratory. An interlaboratory comparison study was initiated in February 1997 to evaluate the utility of these filters for the chemical, pharmaceutical, instrumentation, and regulatory communities. Information concerning peak-picking algorithms, wavelength coverage, geometry preferences, and other parameters was solicited from the users. Based upon input from the participants of this interlaboratory study, we are making several changes to make SRM 2035 more useful to our customers. Two of these changes are: (1) incorporating Ho2O3 into the glass to introduce an absorbance peak at approximately 2000 nm (approximately 5000 cm-1) and (2) providing users with a standard center of gravity (COG) peak-picking algorithm to locate the absorbance peaks of the SRM filter precisely. Recent results have demonstrated that the COG method provides a 10 fold improvement in the precision of locating peaks compared with traditional peak-picking methods.

  6. Compact ion chamber based neutron detector

    DOEpatents

    Derzon, Mark S.; Galambos, Paul C.; Renzi, Ronald F.

    2015-10-27

    A directional neutron detector has an ion chamber formed in a dielectric material; a signal electrode and a ground electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; readout circuitry which is electrically coupled to the signal and ground electrodes; and a signal processor electrically coupled to the readout circuitry. The ion chamber has a pair of substantially planar electrode surfaces. The chamber pressure of the neutron absorbing material is selected such that the reaction particle ion trail length for neutrons absorbed by the neutron absorbing material is equal to or less than the distance between the electrode surfaces. The signal processor is adapted to determine a path angle for each absorbed neutron based on the rise time of the corresponding pulse in a time-varying detector signal.

  7. Development of Coatings for Radar Absorbing Materials at X-band

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Singh, Samarjit

    2018-03-01

    The present review gives a brief account on some of the technical features of radar absorbing materials (RAMs). The paper has been presented with a concentrated approach towards the material aspects for achieving enhanced radar absorption characteristics for its application as a promising candidate in stealth technology and electromagnetic interference (EMI) minimization problems. The effect of metal particles doping/dispersion in the ferrites and dielectrics has been discussed for obtaining tunable radar absorbing characteristics. A short theoretical overview on the development of absorber materials, implementation of genetic algorithm (GA) in multi-layering and frequency selective surfaces (FSSs) based multi-layer has also been presented for the development of radar absorbing coatings for achieving better absorption augmented with broadband features in order to counter the radar detection systems.

  8. Optimization on microwave absorbing properties of carbon nanotubes and magnetic oxide composite materials

    NASA Astrophysics Data System (ADS)

    Mingdong, Chen; Huangzhong, Yu; Xiaohua, Jie; Yigang, Lu

    2018-03-01

    Based on the physical principle of interaction between electromagnetic field and the electromagnetic medium, the relationship between microwave absorbing coefficient (MAC) and the electromagnetic parameters of materials was established. With the composite materials of nickel ferrite (NiFe2O4), carbon nanotubes (CNTs) and paraffin as an example, optimization on absorbing properties of CNTs/magnetic oxide composite materials was studied at the frequency range of 2-18 GHz, and a conclusion is drawn that the MAC is the biggest at the same frequency, when the CNTs is 10 wt% in the composite materials. Through study on the relationship between complex permeability and MAC, another interesting conclusion is drawn that MAC is obviously affected by the real part of complex permeability, and increasing real part of complex permeability is beneficial for improving absorbing properties. The conclusion of this paper can provide a useful reference for the optimization research on the microwave absorbing properties of CNTs/ferrite composite materials.

  9. Measurement of absorbed dose with a bone-equivalent extrapolation chamber.

    PubMed

    DeBlois, François; Abdel-Rahman, Wamied; Seuntjens, Jan P; Podgorsak, Ervin B

    2002-03-01

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to approximately 2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams.

  10. Study of sound-absorbing properties of glass-fiber reinforced materials used in engineering

    NASA Astrophysics Data System (ADS)

    Egorova, V. E.; Habibova, R. R.; Shafigullin, L. N.

    2017-09-01

    Modern engineering makes high demands to the noise level in the passenger compartment or cabin of KAMAZ. An effective means of dealing with noise is to use sound absorbing materials produced by the automotive industry. To increase sound-absorbing capacity of materials and structures using glass fibre reinforced polyurethane foams (PUF) obtained by the technology Fiber Composite Spraying.

  11. Diesel NO{sub x} reduction by plasma-regenerated absorbent beds

    DOEpatents

    Wallman, P.H.; Vogtlin, G.E.

    1998-02-10

    Reduction of NO{sub x} from diesel engine exhaust by use of plasma-regenerated absorbent beds is described. This involves a process for the reduction of NO{sub x} and particulates from diesel engines by first absorbing NO{sub x} onto a solid absorbent bed that simultaneously acts as a physical trap for the particulate matter, and second regenerating said solid absorbent by pulsed plasma decomposition of absorbed NO{sub x} followed by air oxidation of trapped particulate matter. The absorbent bed may utilize all metal oxides, but the capacity and the kinetics of absorption and desorption vary between different materials, and thus the composition of the absorbent bed is preferably a material which enables the combination of NO{sub x} absorption capability with catalytic activity for oxidation of hydrocarbons. Thus, naturally occurring or synthetically prepared materials may be utilized, particularly those having NO{sub x} absorption properties up to temperatures around 400 C which is in the area of diesel engine exhaust temperatures. 1 fig.

  12. Concentrating light in Cu(In,Ga)Se2 solar cells

    NASA Astrophysics Data System (ADS)

    Schmid, M.; Yin, G.; Song, M.; Duan, S.; Heidmann, B.; Sancho-Martinez, D.; Kämmer, S.; Köhler, T.; Manley, P.; Lux-Steiner, M. Ch.

    2016-09-01

    Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here we investigate light concentration for cost efficient thinfilm solar cells which show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe) which has a proven stabilized record efficiency of 22.6% and which - despite being a polycrystalline thin-film material - is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscale approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared to the large scale concentrators and promise compact high efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultra-thin absorbers for dielectric nanostructures) or horizontally (micro absorbers for concentrating lenses) and have significant potential for efficiency enhancement.

  13. Fluorinated tin oxide back contact for AZTSSe photovoltaic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gershon, Talia S.; Gunawan, Oki; Haight, Richard A.

    A photovoltaic device includes a substrate, a back contact comprising a stable low-work function material, a photovoltaic absorber material layer comprising Ag.sub.2ZnSn(S,Se).sub.4 (AZTSSe) on a side of the back contact opposite the substrate, wherein the back contact forms an Ohmic contact with the photovoltaic absorber material layer, a buffer layer or Schottky contact layer on a side of the absorber layer opposite the back contact, and a top electrode on a side of the buffer layer opposite the absorber layer.

  14. A black body absorber from vertically aligned single-walled carbon nanotubes

    PubMed Central

    Mizuno, Kohei; Ishii, Juntaro; Kishida, Hideo; Hayamizu, Yuhei; Yasuda, Satoshi; Futaba, Don N.; Yumura, Motoo; Hata, Kenji

    2009-01-01

    Among all known materials, we found that a forest of vertically aligned single-walled carbon nanotubes behaves most similarly to a black body, a theoretical material that absorbs all incident light. A requirement for an object to behave as a black body is to perfectly absorb light of all wavelengths. This important feature has not been observed for real materials because materials intrinsically have specific absorption bands because of their structure and composition. We found a material that can absorb light almost perfectly across a very wide spectral range (0.2–200 μm). We attribute this black body behavior to stem from the sparseness and imperfect alignment of the vertical single-walled carbon nanotubes. PMID:19339498

  15. Nanostructured materials for hydrogen storage

    DOEpatents

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  16. Airborne sound insulation evaluation and flanking path prediction of coupled room

    NASA Astrophysics Data System (ADS)

    Tassia, R. D.; Asmoro, W. A.; Arifianto, D.

    2016-11-01

    One of the parameters to review the acoustic comfort is based on the value of the insulation partition in the classroom. The insulation value can be expressed by the sound transmission loss which converted into a single value as weighted sound reduction index (Rw, DnTw) and also have an additional sound correction factor in low frequency (C, Ctr) .In this study, the measurements were performed in two positions at each point using BSWA microphone and dodecahedron speaker as the sound source. The results of field measurements indicate the acoustic insulation values (DnT w + C) is 19.6 dB. It is noted that the partition wall not according to the standard which the DnTw + C> 51 dB. Hence the partition wall need to be redesign to improve acoustic insulation in the classroom. The design used gypsum board, plasterboard, cement board, and PVC as the replacement material. Based on the results, all the material is simulated in accordance with established standards. Best insulation is cement board with the insulation value is 69dB, the thickness of 12.5 mm on each side and the absorber material is 50 mm. Many factors lead to increase the value of acoustic insulation, such as the thickness of the panel, the addition of absorber material, density, and Poisson's ratio of a material. The prediction of flanking path can be estimated from noise reduction values at each measurement point in the class room. Based on data obtained, there is no significant change in noise reduction from each point so that the pathway of flanking is not affect the sound transmission in the classroom.

  17. Mode trap for absorbing transverse modes of an accelerated electron beam

    DOEpatents

    Chojnacki, Eric P.

    1994-01-01

    A mode trap to trap and absorb transverse modes formed by a beam in a linear accelerator includes a waveguide having a multiplicity of electrically conductive (preferably copper) irises and rings, each iris and ring including an aperture, and the irises and rings being stacked in a side-by-side, alternating fashion such that the apertures of the irises and rings are concentrically aligned. An absorbing material layer such as a dielectric is embedded in each iris and ring, and this absorbing material layer encircles, but is circumferentially spaced from its respective aperture. Each iris and ring includes a plurality of circumferentially spaced slots around its aperture and extending radially out toward its absorbing material layer.

  18. Potential application of a homogeneous and anisotropic slab as an angle insensitive absorbing material

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Liu, Chang; Liu, Xiaoning; Niu, Tiaoming; Wang, Jing; Mei, Zhonglei; Qin, Jiayong

    2017-06-01

    In this paper, a flat and incident angle independence absorbing material is proposed and numerically verified in the optical spectrum. A homogeneous and anisotropic dielectric slab as a non-reflecting layer is first reviewed, and a feasible realization strategy of the slab is then given by using layered isotropic materials. When the loss components of the constitutive materials are not zero, the slab will work as an angle insensitive absorbing layer, and the absorption rate augments with increase of the losses. As the numerical verifications, the field distributions of a metallic cylinder and a triangular metallic object individually covered by the designed absorbing layer are demonstrated. The simulation results show that the designed absorbing layer can efficiently absorb the incident waves with the property of incident angle independence at the operation frequency. This homogeneous slab can be used in one and two dimensional situations for the realization of an invisibility cloak, a carpet cloak and even a skin cloak, if it is used to conformally cover target objects.

  19. Role of the calcaneal heel pad and polymeric shock absorbers in attenuation of heel strike impact.

    PubMed

    Noe, D A; Voto, S J; Hoffmann, M S; Askew, M J; Gradisar, I A

    1993-01-01

    The capacity of the calcaneal heel pad, with and without augmentation by a polymeric shock absorbing material (Sorbothane 0050), to attenuate heel strike impulses has been studied using five fresh human cadaveric lower leg specimens. The specimens, instrumented with an accelerometer, were suspended and impacted with a hammer; a steel rod was similarly suspended and impacted. The calcaneal heel pad attenuated the peak accelerations by 80%. Attenuations of up to 93% were achieved by the shock absorbing material when tested against the steel rod; however, when tested in series with the calcaneal heel pad, the reduction in peak acceleration due to the shock absorbing material dropped to 18%. Any evaluation of the effectiveness of shock absorbing shoe materials must take into account their mechanical interaction with the body.

  20. A direct reading exposure monitor for radiation processing

    NASA Astrophysics Data System (ADS)

    Kantz, A. D.; Humpherys, K. C.

    Various plastic films have been utilized to measure radiation fields. In general such films are rugged, easily handled, small enough to cause neligible perturbation on the radiation fields, and relatively inexpensive. The radiachromic materials have been shown to have advantages over other plastic fabrications in stability, reproducibility, equivalent response to electron and gamma ray processing fields, dose rate independence, and ready availability of calibration standards. Using a nylon matrix radiachromic detector, a system of direct read-out of absorbed dose has been developed to facilitate monitoring in the megarad region. When an exposed detector is inserted into the reader, the optical transmission signal is processed through an analog to digital converter. The digitized signal addresses a memory bank where the standard response curve is stored. The corresponding absorbed dose is displayed on a digital panel meter. The variation of relative sensitivity of detectors, the background of unirradiated detectors, environmental parameters, and the capacity of the memory bank are contributing factors to the total precision of the read-out system.

  1. Experimental and Numerical Characterization of Polymer Nanocomposites for Solid Rocket Motor Internal Insulation

    DTIC Science & Technology

    2009-09-30

    combustion chamber. Kevlar®-filled ethylene-propylene-diene rubber ( EPDM ) is the baseline insulation material for solid rocket motor cases. A novel...filled EPDM is the industry standard for this application. Since the elastic modulus of rubbers is low, they also act as absorbers during...Santoprene® thermoplastic rubber is already demonstrating their performance capability to replace EPDM in automotive weather seal applications [18]. An

  2. Method and apparatus for measuring properties of particle beams using thermo-resistive material properties

    DOEpatents

    Degtiarenko, Pavel V.; Dotson, Danny Wayne

    2007-10-09

    A beam position detector for measuring the properties of a charged particle beam, including the beam's position, size, shape, and intensity. One or more absorbers are constructed of thermo-resistive material and positioned to intercept and absorb a portion of the incoming beam power, thereby causing local heating of each absorber. The local temperature increase distribution across the absorber, or the distribution between different absorbers, will depend on the intensity, size, and position of the beam. The absorbers are constructed of a material having a strong dependence of electrical resistivity on temperature. The beam position detector has no moving parts in the vicinity of the beam and is especially suited to beam areas having high ionizing radiation dose rates or poor beam quality, including beams dispersed in the transverse direction and in their time radio frequency structure.

  3. An improved method for the determination of trace levels of arsenic and antimony in geological materials by automated hydride generation-atomic absorption spectroscopy

    USGS Publications Warehouse

    Crock, J.G.; Lichte, F.E.

    1982-01-01

    An improved, automated method for the determination of arsenic and antimony in geological materials is described. After digestion of the material in sulfuric, nitric, hydrofluoric and perchloric acids, a hydrochloric acid solution of the sample is automatically mixed with reducing agents, acidified with additional hydrochloric acid, and treated with a sodium tetrahydroborate solution to form arsine and stibine. The hydrides are decomposed in a heated quartz tube in the optical path of an atomic absorption spectrometer. The absorbance peak height for arsenic or antimony is measured. Interferences that exist are minimized to the point where most geological materials including coals, soils, coal ashes, rocks and sediments can be analyzed directly without use of standard additions. The relative standard deviation of the digestion and the instrumental procedure is less than 2% at the 50 ??g l-1 As or Sb level. The reagent-blank detection limit is 0.2 ??g l-1 As or Sb. ?? 1982.

  4. Sound-absorbing slabs and structures based on granular materials (bound and unbound). [energy absorbing efficiency of porous material

    NASA Technical Reports Server (NTRS)

    Petre-Lazar, S.; Popeea, G.

    1974-01-01

    Sound absorbing slabs and structures made up of bound or unbound granular materials are considered and how to manufacture these elements at the building site. The raw material is a single grain powder (sand, expanded blast furnace slag, etc.) that imparts to the end products an apparent porosity of 25-45% and an energy dissipation within the structure leading to absorption coefficients that can be compared with those of mineral wool and urethane.

  5. [Shock absorption of mouthguard materials--influence of temperature conditions and shore hardness on shock absorption].

    PubMed

    Tomita, Takashi; Tsukimura, Naoki; Ohno, Shigeru; Umekawa, Yoshitada; Sawano, Muneyuki; Fujimoto, Toshiki; Takamura, Masaaki; Majima, Aiko; Katakura, Yuusuke; Kurata, Akemi; Ohyama, Tetsuo; Ishigami, Tomohiko

    2006-04-01

    To consider changes in the physical properties of mouthguard materials with the change of temperature, shock-absorbing examination and Shore hardness measurement of existing MG materials and other elastic materials were carried out. Both examinations were done under two temperature conditions: at room temperature (25 degrees C) and simulated intraoral temperature (37 degrees C). In addition, a comparative study of the relation between Shore hardness and shock absorption of the materials was made. A self-made drop impact machine was used for the shock-absorbing examination. The thickness of a sample was assumed to be 3 mm. The loading was applied by dropping 3 kinds of steel ball, phi 10 mm (4.0 g), phi 15 mm (13.7 g), and phi 20 mm (32.6 g) from a height of 60 cm. The shock absorption of all materials was compared by the maximum impact force. Shore hardness was measured based on the JIS standard. The shock absorption of each material showed a different tendency depending on the loading condition. Furthermore, the shock absorption of the same material showed different results depending on the temperature condition. Shore hardness measurements tended to show low values with the condition of 37 degrees C for all materials. From the relation between shock absorption and Shore hardness, it was confirmed that there is a correlation between hardness and the maximum impact force in the materials that showed shock absorption by elastic deformation. Some materials showed high shock absorption compared with existing MG materials.

  6. Mode trap for absorbing transverse modes of an accelerated electron beam

    DOEpatents

    Chojnacki, E.P.

    1994-05-31

    A mode trap to trap and absorb transverse modes formed by a beam in a linear accelerator includes a waveguide having a multiplicity of electrically conductive (preferably copper) irises and rings, each iris and ring including an aperture, and the irises and rings being stacked in a side-by-side, alternating fashion such that the apertures of the irises and rings are concentrically aligned. An absorbing material layer such as a dielectric is embedded in each iris and ring, and this absorbing material layer encircles, but is circumferentially spaced from its respective aperture. Each iris and ring includes a plurality of circumferentially spaced slots around its aperture and extending radially out toward its absorbing material layer. 9 figs.

  7. Acoustic wave propagation in heterogeneous structures including experimental validation

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Dahl, Milo D.

    1989-01-01

    A finite element model was developed to solve for the acoustic pressure and energy fields in a heterogeneous suppressor. The derivations from the governing equations assumed that the material properties could vary with position resulting in a heterogeneous variable property two-dimensional wave equation. This eliminated the necessity of finding the boundary conditions between different materials. For a two-media region consisting of part air and part bulk absorber, a model was used to describe the bulk absorber properties in two directions. Complex metallic structures inside the air duct are simulated by simply changing element properties from air to the structural material in a pattern to describe the desired shapes. To verify the numerical theory, experiments were conducted without flow in a rectangular duct with a single folded cavity mounted above the duct and absorbing material mounted inside a cavity. Changes in a nearly plane wave sound field were measured on the wall opposite the absorbing cavity. Fairly good agreement was found in the standing wave pattern upstream of the absorber and in the decay of pressure level opposite the absorber, as a function of distance along the duct. The finite element model provides a convenient method for evaluating the acoustic properties of bulk absorbers.

  8. Microcapsule and methods of making and using microcapsules

    DOEpatents

    Okawa, David C.; Pastine, Stefan J.; Zettl, Alexander K.; Frechet, Jean M.J.

    2014-09-02

    An embodiment of a microcapsule includes a shell surrounding a space, a liquid within the shell, and a light absorbing material within the liquid. An embodiment of a method of making microcapsules includes forming a mixture of a light absorbing material and an organic solution. An emulsion of the mixture and an aqueous solution is then formed. A polymerization agent is added to the emulsion, which causes microcapsules to be formed. Each microcapsule includes a shell surrounding a space, a liquid within the shell, and light absorbing material within the liquid. An embodiment of a method of using microcapsules includes providing phototriggerable microcapsules within a bulk material. Each of the phototriggerable microcapsules includes a shell surrounding a space, a chemically reactive material within the shell, and a light absorbing material within the shell. At least some of the phototriggerable microcapsules are exposed to light, which causes the chemically reactive material to release from the shell and to come into contact with bulk material.

  9. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  10. Diesel NO.sub.x reduction by plasma-regenerated absorbend beds

    DOEpatents

    Wallman, P. Henrik; Vogtlin, George E.

    1998-01-01

    Reduction of NO.sub.x from diesel engine exhaust by use of plasma-regenerated absorbent beds. This involves a process for the reduction of NO.sub.x and particulates from diesel engines by first absorbing NO.sub.x onto a solid absorbent bed that simultaneously acts as a physical trap for the particulate matter, and second regenerating said solid absorbent by pulsed plasma decomposition of absorbed NO.sub.x followed by air oxidation of trapped particulate matter. The absorbent bed may utilize all metal oxides, but the capacity and the kinetics of absorption and desorption vary between different materials, and thus the composition of the absorbent bed is preferably a material which enables the combination of NO.sub.x absorption capability with catalytic activity for oxidation of hydrocarbons. Thus, naturally occurring or synthetically prepared materials may be utilized, particularly those having NO.sub.x absorption properties up to temperatures around 400.degree. C. which is in the area of diesel engine exhaust temperatures.

  11. Simplified method for creating a density-absorbed dose calibration curve for the low dose range from Gafchromic EBT3 film.

    PubMed

    Gotanda, Tatsuhiro; Katsuda, Toshizo; Gotanda, Rumi; Kuwano, Tadao; Akagawa, Takuya; Tanki, Nobuyoshi; Tabuchi, Akihiko; Shimono, Tetsunori; Kawaji, Yasuyuki

    2016-01-01

    Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were -32.336 and -33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range.

  12. Simplified method for creating a density-absorbed dose calibration curve for the low dose range from Gafchromic EBT3 film

    PubMed Central

    Gotanda, Tatsuhiro; Katsuda, Toshizo; Gotanda, Rumi; Kuwano, Tadao; Akagawa, Takuya; Tanki, Nobuyoshi; Tabuchi, Akihiko; Shimono, Tetsunori; Kawaji, Yasuyuki

    2016-01-01

    Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were −32.336 and −33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range. PMID:28144120

  13. Purifying Water by Imbibition

    NASA Technical Reports Server (NTRS)

    Lawton, E. A.

    1986-01-01

    Concept for purifying water uses absorbent material to remove organic substances. Entire bulk of material employed, not just surface. Proposed purification process uses inexpensive equipment and low energy. Material is methyl acrylate polymer. Material cheap and regenerated by rinsing with methanol or by allowing absorbed compounds to evaporate from it.

  14. The Development of a Beta-Gamma Personnel Dosimeter

    NASA Astrophysics Data System (ADS)

    Tsakeres, Frank Steven

    The assessment of absorbed dose in mixed beta and gamma radiation fields is an extremely complex task. For many years, the assessment of the absorbed dose to tissue from the weakly penetrating components of a radiation field (i.e., beta particles, electrons) has been largely ignored. Beta radiation fields are encountered routinely in a nuclear facility and may represent the major radiation component under certain accident or emergency conditions. Many attempts have been made to develop an accurate mixed field personnel dosimeter. However, all of these dosimeters have exhibited numerous response problems which have limited their usefulness for personnel dose assessment. Consequently, the determination of the absorbed dose at the epidermal depth (i.e., 7 mg/cm('2)) has been difficult to measure accurately. The objective of this research project was to design, build, and test a sensitive and accurate personnel dosimeter for mixed field applications. The selection of the various dosimeter elements were determined by evaluating several types of phosphors, filters, and backscatter materials. After evaluating the various response characteristics of the badge components, a prototype dosimeter, the CHEMM (CaF(,2):Dy Highly Efficient Multiple Element Multiple Filter) personnel dosimeter, was developed and tested at Georgia Tech, Emory University and the National Bureau of Standards. This dosimeter was comprised of four large CaF(,2):Dy (TLD-200) TLD's and a standard LiF (TLD-100) chip. The weakly penetrating and penetrating components of a radiation field were separated using a series of TLD/filter combinations and a new dose assessment algorithm. The large TLD-200 chips, along with a series of tissue-equivalent filters, were used to determine the absorbed dose due to the weakly penetrating radiation while a LiF/filter combination was used to measure the penetrating component. In addition, a new backscatter material was included in the badge design to better simulate a tissue-equivalent response. The CHEMM personnel dosimeter performance tests were conducted to simulate actual mixed radiation field environments. This dosimeter provided a high degree of sensitivity with accuracies well within the ANSI recommended performance standards for personnel dosimeters. In addition, it was concluded that the CHEMM dosimetry system provided a practical dosimeter alternative with a higher dose assessment accuracy and measurement sensitivity than the personnel dosimetry systems presently used in the nuclear power industry.

  15. Concentrating light in Cu(In,Ga)Se2 solar cells

    NASA Astrophysics Data System (ADS)

    Schmid, Martina; Yin, Guanchao; Song, Min; Duan, Shengkai; Heidmann, Berit; Sancho-Martinez, Diego; Kämmer, Steven; Köhler, Tristan; Manley, Phillip; Lux-Steiner, Martha Ch.

    2017-01-01

    Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here, we investigate the light concentration for cost-efficient thin-film solar cells that show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe), which has a proven stabilized record efficiency of 22.6% and which-despite being a polycrystalline thin-film material-is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus, when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscaled approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared with the large scale concentrators and promise compact high-efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultrathin absorbers for dielectric nanostructures) or horizontally (microabsorbers for concentrating lenses) and have significant potential for efficiency enhancement.

  16. Method and apparatus for determining the content and distribution of a thermal neutron absorbing material in an object

    DOEpatents

    Crane, Thomas W.

    1986-01-01

    The disclosure is directed to an apparatus and method for determining the content and distribution of a thermal neutron absorbing material within an object. Neutrons having an energy higher than thermal neutrons are generated and thermalized. The thermal neutrons are detected and counted. The object is placed between the neutron generator and the neutron detector. The reduction in the neutron flux corresponds to the amount of thermal neutron absorbing material in the object. The object is advanced past the neutron generator and neutron detector to obtain neutron flux data for each segment of the object. The object may comprise a space reactor heat pipe and the thermal neutron absorbing material may comprise lithium.

  17. Method and apparatus for determining the content and distribution of a thermal neutron absorbing material in an object

    DOEpatents

    Crane, T.W.

    1983-12-21

    The disclosure is directed to an apparatus and method for determining the content and distribution of a thermal neutron absorbing material within an object. Neutrons having an energy higher than thermal neutrons are generated and thermalized. The thermal neutrons are detected and counted. The object is placed between the neutron generator and the neutron detector. The reduction in the neutron flux corresponds to the amount of thermal neutron absorbing material in the object. The object is advanced past the neutron generator and neutron detector to obtain neutron flux data for each segment of the object. The object may comprise a space reactor heat pipe and the thermal neutron absorbing material may comprise lithium.

  18. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  19. Influence of the electromagnetic parameters on the surface wave attenuation in thin absorbing layers

    NASA Astrophysics Data System (ADS)

    Li, Yinrui; Li, Dongmeng; Wang, Xian; Nie, Yan; Gong, Rongzhou

    2018-05-01

    This paper describes the relationships between the surface wave attenuation properties and the electromagnetic parameters of radar absorbing materials (RAMs). In order to conveniently obtain the attenuation constant of TM surface waves over a wide frequency range, the simplified dispersion equations in thin absorbing materials were firstly deduced. The validity of the proposed method was proved by comparing with the classical dispersion equations. Subsequently, the attenuation constants were calculated separately for the absorbing layers with hypothetical relative permittivity and permeability. It is found that the surface wave attenuation properties can be strongly tuned by the permeability of RAM. Meanwhile, the permittivity should be appropriate so as to maintain high cutoff frequency. The present work provides specific methods and designs to improve the attenuation performances of radar absorbing materials.

  20. Absorbent product and articles made therefrom

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multilayer absorbent product for use in contact with the skin to absorb fluids is described. The product has a water pervious facing layer for contacting the skin, and a first fibrous wicking layer overlaying the water pervious layer. A first container section is defined by inner and outer layers of a water pervious wicking material in between a first absorbent mass and a second container section defined by inner and outer layers of a water pervious wicking material between what is disposed a second absorbent mass, and a liquid impermeable/gas permeable layer overlaying the second fibrous wicking layer.

  1. NASA experiments on the B-720 structure and seats

    NASA Astrophysics Data System (ADS)

    Alfaro-Bou, E.

    1986-01-01

    Two experiments onboard a remotely piloted transport aircraft that was crashed on landing are discussed. The structural experiment deals with the location and distribution of the instrumentation throughout the airplane structure. In the seat experiment, the development and testing of an energy absorbing seat are discussed. The objective of the structural experiment was to obtain a data base of structural crash loads for use in the advancement of crashworthy technology of materials (such as composites) in structural design and for use in the comparison between computer and experimental results. The objective of the seat experiment was to compare the performance of an energy absorbing transport seat and a standard seat when subjected to similar crash pulses. Details are given on the location of instrumentation, on the dynamic seat test pulse and headward acceleration limits.

  2. Harnessing structural darkness in the visible and infrared wavelengths for a new source of light.

    PubMed

    Huang, Jianfeng; Liu, Changxu; Zhu, Yihan; Masala, Silvia; Alarousu, Erkki; Han, Yu; Fratalocchi, Andrea

    2016-01-01

    Engineering broadband light absorbers is crucial to many applications, including energy-harvesting devices and optical interconnects. The performances of an ideal absorber are that of a black body, a dark material that absorbs radiation at all angles and polarizations. Despite advances in micrometre-thick films, the absorbers available to date are still far from an ideal black body. Here, we describe a disordered nanostructured material that shows an almost ideal black-body absorption of 98-99% between 400 and 1,400 nm that is insensitive to the angle and polarization of the incident light. The material comprises nanoparticles composed of a nanorod with a nanosphere of 30 nm diameter attached. When diluted into liquids, a small concentration of nanoparticles absorbs on average 26% more than carbon nanotubes, the darkest material available to date. By pumping a dye optical amplifier with nanosecond pulses of ∼100 mW power, we harness the structural darkness of the material and create a new type of light source, which generates monochromatic emission (∼5 nm wide) without the need for any resonance. This is achieved through the dynamics of light condensation in which all absorbed electromagnetic energy spontaneously generates single-colour energy pulses.

  3. Application of Internal Standard Method for Several 3d-Transition Metallic Elements in Flame Atomic Absorption Spectrometry Using a Multi-wavelength High-resolution Spectrometer.

    PubMed

    Toya, Yusuke; Itagaki, Toshiko; Wagatsuma, Kazuaki

    2017-01-01

    We investigated a simultaneous internal standard method in flame atomic absorption spectrometry (FAAS), in order to better the analytical precision of 3d-transition metals contained in steel materials. For this purpose, a new spectrometer system for FAAS, comprising a bright xenon lamp as the primary radiation source and a high-resolution Echelle monochromator, was employed to measure several absorption lines at a wavelength width of ca. 0.3 nm at the same time, which enables the absorbances of an analytical line and also an internal standard line to be estimated. In considering several criteria for selecting an internal standard element and the absorption line, it could be suggested that platinum-group elements: ruthenium, rhodium, or palladium, were suitable for an internal standard element to determine the 3d-transition metal elements, such as titanium, iron, and nickel, by measuring an appropriate pair of these absorption lines simultaneously. Several variances of the absorption signal, such as a variation in aspirated amounts of sample solution and a short-period drift of the primary light source, would be corrected and thus reduced, when the absorbance ratio of the analytical line to the internal standard line was measured. In Ti-Pd, Ni-Rh, and Fe-Ru systems chosen as typical test samples, the repeatability of the signal respnses was investigated with/without the internal standard method, resulting in better precision when the internal standard method was applied in the FAAS with a nitrous oxide-acetylene flame rather than an air-acetylene flame.

  4. Design on the wide band absorber with low density based on the particle distribution

    NASA Astrophysics Data System (ADS)

    Zheng, Dianliang; Liu, Ting; Liu, Longbin; Xu, Yonggang

    2018-04-01

    In order to widen the absorbing band, an equivalent gradient structure absorber was designed based on the particle distribution. Firstly, the electromagnetic parameter of the absorbent with uniform dispersion was tested using the vector network analyzer in 8-18 GHz. Three different equivalent materials of the spherical, square and hexagon empty shape were designed. The scattering parameters and the monostatic reflection loss (RL) of the periodic structural materials were simulated in the commercial software. Then the effective permittivity and the permeability was derived by the Nicolson-Ross-Weir algorithm and fitted by Maxwell-Garnett mixing rule. The results showed that the simulated reflectance and transmission parameters of equivalent composites with the different shapes were very close. The derived effective permittivity and permeability of the composite with different absorbent content was also close, and the average deviation was about 0.52 + j0.15 and 0.15 + j0.01 respectively. Finally, the wide band absorbing material was designed using the genetic algorithm. The optimized RL result showed that the absorbing composites with thickness 3 mm had an excellent absorbing property (RL <-10 dB) in 8-18 GHz, the equivalent absorber density could be decreased 30.7% compared with the uniform structure.

  5. Absorber Materials for Transition-Edge Sensor X-ray Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Brown, Ari-David; Bandler, Simon; Brekosky, Regis; Chervenak, James; Figueroa-Feliciano, Enectali; Finkbeiner, Fred; Sadleir, Jack; Iyomoto, Naoko; Kelley, Richard; Kilbourne, Caroline; hide

    2007-01-01

    Arrays of superconducting transition-edge sensors (TES) can provide high spatial and energy resolution necessary for x-ray astronomy. High quantum efficiency and uniformity of response can be achieved with a suitable absorber material, in which absorber x-ray stopping power, heat capacity, and thermal conductivity are relevant parameters. Here we compare these parameters for bismuth and gold. We have fabricated electroplated gold, electroplated gold/electroplated bismuth, and evaporated gold/evaporated bismuth 8x8 absorber arrays and find that a correlation exists between the residual resistance ratio (RRR) and thin film microstructure. This finding indicates that we can tailor absorber material conductivity via microstructure alteration, so as to permit absorber thermalization on timescales suitable for high energy resolution x-ray microcalorimetry. We show that by incorporating absorbers possessing large grain size, including electroplated gold and electroplated gold/electroplated bismuth, into our current Mo/Au TES, devices with tunable heat capacity and energy resolution of 2.3 eV (gold) and 2.1 eV (gold/bismuth) FWHM at 6 keV have been fabricated.

  6. Lanthanum hexaboride for solar energy applications.

    PubMed

    Sani, Elisa; Mercatelli, Luca; Meucci, Marco; Zoli, Luca; Sciti, Diletta

    2017-04-06

    We investigate the optical properties of LaB 6 - based materials, as possible candidates for solid absorbers in Concentrating Solar Power (CSP) systems. Bulk LaB 6 materials were thermally consolidated by hot pressing starting from commercial powders. To assess the solar absorbance and spectral selectivity properties, room-temperature hemispherical reflectance spectra were measured from the ultraviolet to the mid-infrared, considering different compositions, porosities and surface roughnesses. Thermal emittance at around 1100 K has been measured. Experimental results showed that LaB 6 can have a solar absorbance comparable to that of the most advanced solar absorber material in actual plants such as Silicon Carbide, with a higher spectral selectivity. Moreover, LaB 6 has also the appealing characteristics to be a thermionic material, so that it could act at the same time both as direct high-temperature solar absorber and as electron source, significantly reducing system complexity in future concentrating solar thermionic systems and bringing a real innovation in this field.

  7. Plasma-assisted microwave processing of materials

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin (Inventor); Jackson, Henry (Inventor); Ylin, Tzu-yuan (Inventor)

    1998-01-01

    A microwave plasma assisted method and system for heating and joining materials. The invention uses a microwave induced plasma to controllably preheat workpiece materials that are poorly microwave absorbing. The plasma preheats the workpiece to a temperature that improves the materials' ability to absorb microwave energy. The plasma is extinguished and microwave energy is able to volumetrically heat the workpiece. Localized heating of good microwave absorbing materials is done by shielding certain parts of the workpiece and igniting the plasma in the areas not shielded. Microwave induced plasma is also used to induce self-propagating high temperature synthesis (SHS) process for the joining of materials. Preferably, a microwave induced plasma preheats the material and then microwave energy ignites the center of the material, thereby causing a high temperature spherical wave front from the center outward.

  8. Air kerma and absorbed dose standards for reference dosimetry in brachytherapy

    PubMed Central

    2014-01-01

    This article reviews recent developments in primary standards for the calibration of brachytherapy sources, with an emphasis on the currently most common photon-emitting radionuclides. The introduction discusses the need for reference dosimetry in brachytherapy in general. The following section focuses on the three main quantities, i.e. reference air kerma rate, air kerma strength and absorbed dose rate to water, which are currently used for the specification of brachytherapy photon sources and which can be realized with primary standards from first principles. An overview of different air kerma and absorbed dose standards, which have been independently developed by various national metrology institutes over the past two decades, is given in the next two sections. Other dosimetry techniques for brachytherapy will also be discussed. The review closes with an outlook on a possible transition from air kerma to absorbed dose to water-based calibrations for brachytherapy sources in the future. PMID:24814696

  9. Determining the Absorbance Spectra of Photochromic Materials From Measured Spectrophotometer Data

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1998-01-01

    If a two-state photochromic material is optically bleached, the absorbance spectrum data measured by a spectrophotometer is in general comprised of components from both the ground state and the upper state. Under general conditions, it may be difficult to extract the actual upper state spectrum from the spectrum of the bleached material. A simple algorithm is presented here for the recovery of the pure absorbance spectra of the upper state of a material such as bacteriorhodopsin, given single wavelength bleaching illumination, steady-state conditions, and accurate knowledge of phototransition rates and thermal decay rates.

  10. Sucrose as a dosimetric material for photon and heavy particle radiation: A review

    NASA Astrophysics Data System (ADS)

    Karakirova, Yordanka; Yordanov, Nicola D.

    2015-05-01

    The application of high-energy radiation in many areas of human activity and its harmful effects on human health makes necessary knowledge of the radiation chemistry of various materials upon exposure to high-energy radiation. Among these materials, saccharides (particularly sucrose) maintain the greatest advantage for potential radiochemistry applications. Until now, radiation chemistry studies have been conducted primarily with γ-ray irradiation; however, in the past few years there has been increased interest in the fields of radiotherapy and radiochemistry on substances irradiated with heavy particles. To this end, this review discusses the possibilities of employing sucrose as a radiation-sensitive material for the determination of absorbed doses of high-energy radiation both for emergency situations and for dosimeters used in standard applications.

  11. The Molecular Effect of Diagnostic Absorbed Doses from 131I on Papillary Thyroid Cancer Cells In Vitro.

    PubMed

    Stasiołek, Mariusz; Adamczewski, Zbigniew; Śliwka, Przemysław W; Puła, Bartosz; Karwowski, Bolesław; Merecz-Sadowska, Anna; Dedecjus, Marek; Lewiński, Andrzej

    2017-06-15

    Diagnostic whole-body scan is a standard procedure in patients with thyroid cancer prior to the application of a therapeutic dose of 131 I. Unfortunately, administration of the radioisotope in a diagnostic dose may decrease further radioiodine uptake-the phenomenon called "thyroid stunning". We estimated radiation absorbed dose-dependent changes in genetic material, in particular in the sodium iodide symporter (NIS) gene promoter, and the NIS protein level in a K1 cell line derived from the metastasis of a human papillary thyroid carcinoma exposed to 131 I in culture. The different activities applied were calculated to result in absorbed doses of 5, 10 and 20 Gy. Radioiodine did not affect the expression of the NIS gene at the mRNA level, however, we observed significant changes in the NIS protein level in K1 cells. The decrease of the NIS protein level observed in the cells subjected to the lowest absorbed dose was paralleled by a significant increase in 8-oxo-dG concentrations ( p < 0.01) and followed by late activation of the DNA repair pathways. Our findings suggest that the impact of 131 I radiation on thyroid cells, in the range compared to doses absorbed during diagnostic procedures, is not linear and depends on various factors including the cellular components of thyroid pathology.

  12. A Review: Characteristics of Noise Absorption Material

    NASA Astrophysics Data System (ADS)

    Amares, S.; Sujatmika, E.; Hong, T. W.; Durairaj, R.; Hamid, H. S. H. B.

    2017-10-01

    Noise is always treated as a nuisance to human and even noise pollution appears in the environmental causing discomfort. This also concerns the engineering design that tends to cultivate this noise propagation. Solution such as using material to absorb the sound have been widely used. The fundamental of the sound absorbing propagation, sound absorbing characteristics and its factors are minimally debated. Furthermore, the method in order to pertain sound absorbing related to the sound absorption coefficient is also limited, as many studies only contributes in result basis and very little in literature aspect. This paper revolves in providing better insight on the importance of sound absorption and the materials factors in obtaining the sound absorption coefficient.

  13. Freeze-Dried Carbon Nanotube Aerogels for High-Frequency Absorber Applications.

    PubMed

    Anoshkin, Ilya V; Campion, James; Lioubtchenko, Dmitri V; Oberhammer, Joachim

    2018-06-13

    A novel technique for millimeter wave absorber material embedded in a metal waveguide is proposed. The absorber material is a highly porous carbon nanotube (CNT) aerogel prepared by a freeze-drying technique. CNT aerogel structures are shown to be good absorbers with a low reflection coefficient, less than -12 dB at 95 GHz. The reflection coefficient of the novel absorber is 3-4 times lower than that of commercial absorbers with identical geometry. Samples prepared by freeze-drying at -25 °C demonstrate resonance behavior, while those prepared at liquid nitrogen temperature (-196 °C) exhibit a significant decrease in reflection coefficient, with no resonant behavior. CNT absorbers of identical volume based on wet-phase drying preparation show significantly worse performance than the CNT aerogel absorbers prepared by freeze-drying. Treatment of the freeze-dried CNT aerogel with n- and p-dopants (monoethanolamine and iodine vapors, respectively) shows remarkable improvement in the performance of the waveguide embedded absorbers, reducing the reflection coefficient by 2 dB across the band.

  14. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets

    PubMed Central

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-01-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet–height and diameter– and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials. PMID:26354891

  15. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets

    NASA Astrophysics Data System (ADS)

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, Youngpak

    2015-09-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  16. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.

    PubMed

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-09-10

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  17. Evaluation of korzincalloy prepared by Hohman Plating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korinko, P. S.; Hollingshad, A. N.

    2017-07-17

    A commercial vendor, Hohman Plating performed contract engineering work to determine the feasibility of producing pin hole free KorZincAlloy bronze material used for zinc gettering. Samples were tested for Sn plating thickness, heat treatability, and chemistry prior to being subjected to a standardized zinc exposure. The samples absorbed zinc and were examined using visual and scanning electron microscopy. Hohman Plating successfully produced KZA that met the target composition, was pin hole free, and was an effective zinc getter.

  18. Acoustic behavior of a fibrous bulk material. [Kevlar 29 sound absorber

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.; Walker, B.

    1979-01-01

    A semiempirical model is presented describing the acoustic behavior of Kevlar 29, a bulk absorbing material. The model is based on an approximate solution to the one-dimensional equations representing conservation of fluctuating mass, momentum and energy. By treating the material as a momentum sink, theoretical expressions of the material complex propagation constants and characteristic impedance were derived in terms of a single constant. Evaluating the constant at a single frequency for a particular specimen, excellent agreement between prediction and measurement was achieved for a large range of sound frequencies and material porosities and thicknesses. Results show that Kevlar 29 absorbs sound efficiently even at low frequencies. This is explained in terms of a frequency dependent material phase speed.

  19. Multilayer composite material and method for evaporative cooling

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2002-01-01

    A multilayer composite material and method for evaporative cooling of a person employs an evaporative cooling liquid that changes phase from a liquid to a gaseous state to absorb thermal energy. The evaporative cooling liquid is absorbed into a superabsorbent material enclosed within the multilayer composite material. The multilayer composite material has a high percentage of the evaporative cooling liquid in the matrix. The cooling effect can be sustained for an extended period of time because of the high percentage of phase change liquid that can be absorbed into the superabsorbent. Such a composite can be used for cooling febrile patients by evaporative cooling as the evaporative cooling liquid in the matrix changes from a liquid to a gaseous state to absorb thermal energy. The composite can be made with a perforated barrier material around the outside to regulate the evaporation rate of the phase change liquid. Alternatively, the composite can be made with an imperveous barrier material or semipermeable membrane on one side to prevent the liquid from contacting the person's skin. The evaporative cooling liquid in the matrix can be recharged by soaking the material in the liquid. The multilayer composite material can be fashioned into blankets, garments and other articles.

  20. Neutron detector using sol-gel absorber

    DOEpatents

    Hiller, John M.; Wallace, Steven A.; Dai, Sheng

    1999-01-01

    An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.

  1. X-ray filter for x-ray powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and wallsmore » defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.« less

  2. New noninvasive approach assessing in vivo sun protection factor (SPF) using diffuse reflectance spectroscopy (DRS) and in vitro transmission.

    PubMed

    Ruvolo Junior, Eduardo; Kollias, Nikiforos; Cole, Curtis

    2014-08-01

    In the past 56 years, many different in vitro methodologies have been developed and published to assess the sun protection factor (SPF) of products, but there is no method that has 1:1 correlation with in vivo measurements. Spectroscopic techniques have been used to noninvasively assess the UVA protection factor with good correlation to in vivo UVA-PF methodologies. To assess the SPF of sunscreen product by diffuse reflectance spectroscopy (DRS) technique, it is necessary to also determine the absorbance spectrum of the test material in the UVB portion of the spectrum (290-320 nm). However, because of the high absorbance characteristics of the stratum corneum and epidermis, the human skin does not remit enough UVB radiation to be used to measure the absorption spectrum of the applied product on skin. In this work, we present a new method combining the evaluation of the absolute UVA absorption spectrum, as measured by DRS with the spectral absorbance 'shape' of the UVB absorbance of the test material as determined with current in vitro thin film spectroscopy. The measurement of the in vivo UVA absorption spectrum involves the assessment of the remitted intensity of monochromatic UVA radiation (320-400 nm) before and after a sunscreen product was applied on skin using a spectrofluorimeter Fluorolog 3, FL3-22 (Yvon Horiba, Edison, NJ, USA). The probe geometry assures that light scattering products as well as colored products may be correctly assessed. This methodology has been extensively tested, validated, and reported in the literature. The in vitro absorption spectrum of the sunscreen samples and polyvinyl chloride (PVC) films 'surrogate' sunscreen standards were measured using Labsphere® UV-2000S (Labsphere, North Sutton, NH, USA). Sunscreens samples were tested using PMMA Helioplates (Helioscience, Marseille, France) as substrates. The UVB absorbance spectrum (Labsphere) is 'attached' to the UVA absorbance spectrum (diffuse reflectance) with the UVB absorbance matched to the UVA absorbance at 340 nm to complete the full spectral absorbance from which an estimate the SPF of the product can be calculated. Seventeen test materials with known in vivo SPF values were tested. Two of the tested products were PVC sunscreen thin films with 10-15 micrometers thickness and were used to investigate the absorption spectrum of these films when applied on different reflectance surfaces. Similar to the human in vivo SPF test, the developed methodology suggests limiting the use on Fitzpatrick skin phototypes I to III. The correlation of this new method with in vivo clinical SPF values was 0.98 (r2) with a slope of 1.007. This new methodology provides a new approach to determine SPF values without the extensive UV irradiation procedures (and biological responses) currently used to establish sunscreen efficacy. Further work will be conducted to establish methods for evaluation of products that are not photostable. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Innovative Anti Crash Absorber for a Crashworthy Landing Gear

    NASA Astrophysics Data System (ADS)

    Guida, Michele; Marulo, Francesco; Montesarchio, Bruno; Bruno, Massimiliano

    2014-06-01

    This paper defines an innovative concept to anti-crash absorber in composite material to be integrated on the landing gear as an energy-absorbing device in crash conditions to absorb the impact energy. A composite cylinder tube in carbon fiber material is installed coaxially to the shock absorber cylinder and, in an emergency landing gear condition, collapses in order to enhance the energy absorption performance of the landing system. This mechanism has been developed as an alternative solution to a high-pressure chamber installed on the Agusta A129 CBT helicopter, which can be considered dangerous when the helicopter operates in hard and/or crash landing. The characteristics of the anti-crash device are presented and the structural layout of a crashworthy landing gear adopting the developed additional energy absorbing stage is outlined. Experimental and numerical results relevant to the material characterization and the force peaks evaluation of the system development are reported. The anti-crash prototype was designed, analysed, optimized, made and finally the potential performances of a landing gear with the additional anti-crash absorber system are tested by drop test and then correlated with a similar test without the anti-crash system, showing that appreciable energy absorbing capabilities and efficiencies can be obtained in crash conditions.

  4. Food-processes wastewaters treatment using food solid-waste materials as adsorbents or absorbents

    NASA Astrophysics Data System (ADS)

    Rapti, Ilaira; Georgopoulos, Stavros; Antonopoulou, Maria; Konstantinou, Ioannis; Papadaki, Maria

    2016-04-01

    The wastewaters generated by olive-mills during the production of olive oil, wastewaters from a dairy and a cow-farm unit and wastewaters from a small food factory have been treated by means of selected materials, either by-products of the same units, or other solid waste, as absorbents or adsorbents in order to identify the capacity of those materials to remove organic load and toxicity from the aforementioned wastewaters. The potential of both the materials used as absorbents as well as the treated wastewaters to be further used either as fertilizers or for agricultural irrigation purposes are examined. Dry olive leaves, sheep wool, rice husks, etc. were used either in a fixed-bed or in a stirred batch arrangemen,t employing different initial concentrations of the aforementioned wastewaters. The efficiency of removal was assessed using scpectrophotometric methods and allium test phytotoxicity measurements. In this presentation the response of each material employed is shown as a function of absorbent/adsorbent quantity and kind, treatment time and wastewater kind and initial organic load. Preliminary results on the potential uses of the adsorbents/absorbents and the treated wastewaters are also shown. Keywords: Olive-mill wastewaters, dairy farm wastewaters, olive leaves, zeolite, sheep wool

  5. Enhancement mechanism of the additional absorbent on the absorption of the absorbing composite using a type-based mixing rule

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Yuan, Liming; Zhang, Deyuan

    2016-04-01

    A silicone rubber composite filled with carbonyl iron particles and four different carbonous materials (carbon black, graphite, carbon fiber or multi-walled carbon nanotubes) was prepared using a two-roller mixture. The complex permittivity and permeability were measured using a vector network analyzer at the frequency of 2-18 GHz. Then a type-based mixing rule based on the dielectric absorbent and magnetic absorbent was proposed to reveal the enhancing mechanism on the permittivity and permeability. The enforcement effect lies in the decreased percolation threshold and the changing pending parameter as the carbonous materials were added. The reflection loss (RL) result showed the added carbonous materials enhanced the absorption in the lower frequency range, the RL decrement value being about 2 dB at 4-5 GHz with a thickness of 1 mm. All the added carbonous materials reinforced the shielding effectiveness (SE) of the composites. The maximum increment value of the SE was about 3.23 dB at 0.5 mm and 4.65 dB at 1 mm, respectively. The added carbonous materials could be effective additives for enforcing the absorption and shielding property of the absorbers.

  6. High Conduction Neutron Absorber to Simulate Fast Reactor Environment in an Existing Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillen, Donna; Greenwood, Lawrence R.; Parry, James

    2014-06-22

    A need was determined for a thermal neutron absorbing material that could be cooled in a gas reactor environment without using large amounts of a coolant that would thermalize the neutron flux. A new neutron absorbing material was developed that provided high conduction so a small amount of water would be sufficient for cooling thereby thermalizing the flux as little as possible. An irradiation experiment was performed to assess the effects of radiation and the performance of a new neutron absorbing material. Neutron fluence monitors were placed inside specially fabricated holders within a set of drop-in capsules and irradiated formore » up to four cycles in the Advanced Test Reactor. Following irradiation, the neutron fluence monitor wires were analyzed by gamma and x-ray spectrometry to determine the activities of the activation products. The adjusted neutron fluences were calculated and grouped into three bins – thermal, epithermal and fast to evaluate the spectral shift created by the new material. Fluence monitors were evaluated after four different irradiation periods to evaluate the effects of burn-up in the absorbing material. Additionally, activities of the three highest activity isotopes present in the specimens are given.« less

  7. Stability of an arch type shock absorber made of a rubber-like material

    NASA Astrophysics Data System (ADS)

    Kabrits, Sergey A.; Kolpak, Eugeny P.

    2018-05-01

    The paper considers the stability problem of an arch shock absorber made of a rubber-like material. As a model, the nonlinear theory of thin shells from elastomers K.F. Chernykh is used. The case of symmetrical and asymmetrical deformation of an arch shock absorber under symmetrical compression is investigated. The possibility of asymmetric bifurcation is evaluated depending on the boundary conditions.

  8. Radiation resistance of elastomeric O-rings in mixed neutron and gamma fields: Testing methodology and experimental results

    NASA Astrophysics Data System (ADS)

    Zenoni, A.; Bignotti, F.; Donzella, A.; Donzella, G.; Ferrari, M.; Pandini, S.; Andrighetto, A.; Ballan, M.; Corradetti, S.; Manzolaro, M.; Monetti, A.; Rossignoli, M.; Scarpa, D.; Alloni, D.; Prata, M.; Salvini, A.; Zelaschi, F.

    2017-11-01

    Materials and components employed in the presence of intense neutron and gamma fields are expected to absorb high dose levels that may induce deep modifications of their physical and mechanical properties, possibly causing loss of their function. A protocol for irradiating elastomeric materials in reactor mixed neutron and gamma fields and for testing the evolution of their main mechanical and physical properties with absorbed dose has been developed. Four elastomeric compounds used for vacuum O-rings, one fluoroelastomer polymer (FPM) based and three ethylene propylene diene monomer rubber (EPDM) based, presently available on the market have been selected for the test. One EPDM is rated as radiation resistant in gamma fields, while the other elastomers are general purpose products. Particular care has been devoted to dosimetry calculations, since absorbed dose in neutron fields, unlike pure gamma fields, is strongly dependent on the material composition and, in particular, on the hydrogen content. The products have been tested up to about 2 MGy absorbed dose. The FPM based elastomer, in spite of its lower dose absorption in fast neutron fields, features the largest variations of properties, with a dramatic increase in stiffness and brittleness. Out of the three EPDM based compounds, one shows large and rapid changes in the main mechanical properties, whereas the other two feature more stable behaviors. The performance of the EPDM rated as radiation resistant in pure gamma fields does not appear significantly better than that of the standard product. The predictive capability of the accelerated irradiation tests performed as well as the applicable concepts of threshold of radiation damage is discussed in view of the use of the examined products in the selective production of exotic species facility, now under construction at the Legnaro National Laboratories of the Italian Istituto Nazionale di Fisica Nucleare. It results that a careful account of dose rate effects and oxygen penetration in the material, both during test irradiations and in operating conditions, is needed to obtain reliable predictions.

  9. Radiation resistance of elastomeric O-rings in mixed neutron and gamma fields: Testing methodology and experimental results.

    PubMed

    Zenoni, A; Bignotti, F; Donzella, A; Donzella, G; Ferrari, M; Pandini, S; Andrighetto, A; Ballan, M; Corradetti, S; Manzolaro, M; Monetti, A; Rossignoli, M; Scarpa, D; Alloni, D; Prata, M; Salvini, A; Zelaschi, F

    2017-11-01

    Materials and components employed in the presence of intense neutron and gamma fields are expected to absorb high dose levels that may induce deep modifications of their physical and mechanical properties, possibly causing loss of their function. A protocol for irradiating elastomeric materials in reactor mixed neutron and gamma fields and for testing the evolution of their main mechanical and physical properties with absorbed dose has been developed. Four elastomeric compounds used for vacuum O-rings, one fluoroelastomer polymer (FPM) based and three ethylene propylene diene monomer rubber (EPDM) based, presently available on the market have been selected for the test. One EPDM is rated as radiation resistant in gamma fields, while the other elastomers are general purpose products. Particular care has been devoted to dosimetry calculations, since absorbed dose in neutron fields, unlike pure gamma fields, is strongly dependent on the material composition and, in particular, on the hydrogen content. The products have been tested up to about 2 MGy absorbed dose. The FPM based elastomer, in spite of its lower dose absorption in fast neutron fields, features the largest variations of properties, with a dramatic increase in stiffness and brittleness. Out of the three EPDM based compounds, one shows large and rapid changes in the main mechanical properties, whereas the other two feature more stable behaviors. The performance of the EPDM rated as radiation resistant in pure gamma fields does not appear significantly better than that of the standard product. The predictive capability of the accelerated irradiation tests performed as well as the applicable concepts of threshold of radiation damage is discussed in view of the use of the examined products in the selective production of exotic species facility, now under construction at the Legnaro National Laboratories of the Italian Istituto Nazionale di Fisica Nucleare. It results that a careful account of dose rate effects and oxygen penetration in the material, both during test irradiations and in operating conditions, is needed to obtain reliable predictions.

  10. 21 CFR 74.3106 - D&C Blue No. 6.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... material for coloring plain or chromic collagen absorbable sutures for general surgical use; (iii) Not to exceed 0.5 percent by weight of the suture material for coloring plain or chromic collagen absorbable...

  11. 21 CFR 74.3106 - D&C Blue No. 6.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... material for coloring plain or chromic collagen absorbable sutures for general surgical use; (iii) Not to exceed 0.5 percent by weight of the suture material for coloring plain or chromic collagen absorbable...

  12. 21 CFR 74.3106 - D&C Blue No. 6.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... material for coloring plain or chromic collagen absorbable sutures for general surgical use; (iii) Not to exceed 0.5 percent by weight of the suture material for coloring plain or chromic collagen absorbable...

  13. 21 CFR 74.3106 - D&C Blue No. 6.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... material for coloring plain or chromic collagen absorbable sutures for general surgical use; (iii) Not to exceed 0.5 percent by weight of the suture material for coloring plain or chromic collagen absorbable...

  14. 21 CFR 74.3106 - D&C Blue No. 6.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... material for coloring plain or chromic collagen absorbable sutures for general surgical use; (iii) Not to exceed 0.5 percent by weight of the suture material for coloring plain or chromic collagen absorbable...

  15. Liquid carbon dioxide absorbents, methods of using the same, and related system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Robert James; Soloveichik, Grigorii Lev; Rubinsztajn, Malgorzata Iwona

    A carbon dioxide absorbent composition is described, including (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO 2 or have a high-affinity for CO 2, and (ii) a hydroxy-containing solvent that is capable of dissolving both the silicon-based material and a reaction product of the silicon-based material and CO 2. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.

  16. Liquid carbon dioxide absorbents, methods of using the same, and related systems

    DOEpatents

    O'Brien, Michael Joseph; Perry, Robert James; Lam, Tunchiao Hubert; Soloveichik, Grigorii Lev; Kniajanski, Sergei; Lewis, Larry Neil; Rubinsztajn, Malgorzata Iwona; Hancu, Dan

    2016-09-13

    A carbon dioxide absorbent composition is described, including (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO.sub.2 or have a high-affinity for CO.sub.2; and (ii) a hydroxy-containing solvent that is capable of dissolving both the silicon-based material and a reaction product of the silicon-based material and CO.sub.2. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.

  17. Thermal tuning of infrared resonant absorbers based on hybrid gold-VO{sub 2} nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocer, Hasan; Department of Electrical Engineering, Turkish Military Academy, 06654 Ankara; Butun, Serkan

    2015-04-20

    Resonant absorbers based on plasmonic materials, metamaterials, and thin films enable spectrally selective absorption filters, where absorption is maximized at the resonance wavelength. By controlling the geometrical parameters of nano/microstructures and materials' refractive indices, resonant absorbers are designed to operate at wide range of wavelengths for applications including absorption filters, thermal emitters, thermophotovoltaic devices, and sensors. However, once resonant absorbers are fabricated, it is rather challenging to control and tune the spectral absorption response. Here, we propose and demonstrate thermally tunable infrared resonant absorbers using hybrid gold-vanadium dioxide (VO{sub 2}) nanostructure arrays. Absorption intensity is tuned from 90% to 20%more » and 96% to 32% using hybrid gold-VO{sub 2} nanowire and nanodisc arrays, respectively, by heating up the absorbers above the phase transition temperature of VO{sub 2} (68 °C). Phase change materials such as VO{sub 2} deliver useful means of altering optical properties as a function of temperature. Absorbers with tunable spectral response can find applications in sensor and detector applications, in which external stimulus such as heat, electrical signal, or light results in a change in the absorption spectrum and intensity.« less

  18. Absorber for microwave investigation in the open space

    NASA Astrophysics Data System (ADS)

    Kubacki, Roman; Smólski, Bogusław; Głuszewski, Wojciech; Przesmycki, Rafał; Rudyk, Karol

    2017-04-01

    In some circumstances there is a need to realize the Electromagnetic Compatibility (EMC) investigation not in the specialized anechoic chamber but in the open space. Typical absorbers used in anechoic chamber to reduce the reflected rays from walls and floor, such as ferrite plates and graphite cones, are not suitable in the open space. In the work the investigation of the flexible absorbing material intended to the liquidation of the radiation reflected from the ground has been presented. As an absorbing material the metallic-glass with graphite was elaborated. This material was additionally exposed to the ionizing radiation in the dose of 100 kGy in the radioactive gamma source. The permittivity, permeability as well as the shielding properties have been analyzed.

  19. X-ray wind tomography of IGR J17252-3616

    NASA Astrophysics Data System (ADS)

    Manousakis, Antonios; Walter, Roland

    IGR J17252-3616 is an heavily absorbed and eclipsing High Mass X-ray Binary with an ab-sorbing hydrogen column density >1023 cm-2 . We have observed it with XMM-Newton to understand the geometry of the absorbing material. Observations were scheduled in order to cover as many orbital phases as possible. Timing analysis is constraining the orbital solution and the physical parameters of the system. Spectral analysis reveals remarkable variations of the absorbing column density and of the Iron Kα fluorescence line around the eclipse. These variations allow to map the geometry of the absorbing and reflection material. Very large accretion structures could be imaged for the first time.

  20. Structures Flight Test Handbook

    DTIC Science & Technology

    1990-11-01

    landing gear and must absorb most of the shock of the landing impact (hydraulically or pneumatically) as well as provide a means of stopping the plane...amount of energy a material car. absorb elastically in a unit volume of the material. Strength - ability to withstand external loads without failure...Toughness - total energy absorbed before failure occurs. NOMENCLATURE A cross-sectional area DLL design limit load E Young’s Modulus e strain FEM

  1. Novel Ultraviolet Light Absorbing Polymers For Optical Applications

    NASA Astrophysics Data System (ADS)

    Doddi, Namassivaya; Yamada, Akira; Dunks, Gary B.

    1988-07-01

    Ultraviolet light absorbing monomers have been developed that can be copolymerized with acrylates. The composition of the resultant stable copolymers can be adjusted to totally block the transmission of light below about 430 nm. Fabrication of lenses from the materials is accomplished by lathe cutting and injection molding procedures. These ultraviolet light absorbing materials are non-mutagenic and non-toxic and are currently being used in intraocular lenses.

  2. Electronic Materials Based on Co0.5Zn0.5Fe2O4/Pb(Zr0.52Ti0.48)O3 Nanocomposites

    NASA Astrophysics Data System (ADS)

    Mandal, Avinandan; Das, Chapal Kumar

    2013-01-01

    The reduction of the radar cross-sectional area achieved in stealth technology has been a major challenge since the Second World War, being accomplished by covering the metallic surfaces of aircraft, ships, tanks, etc. with radar-absorbing materials. Nowadays, the development of lightweight microwave-absorbing materials with reduced thickness has a greater impact due to their excellent microwave-absorbing properties. In this study, the microwave-absorbing properties of nanocomposites based on Zn-substituted cobalt ferrite and lead zirconium titanate have been investigated in the X-band (8.2 GHz to 12.4 GHz) region. Zn-substituted cobalt ferrite (CZF) and lead zirconium titanate (PZT) nanoparticles were prepared by the coprecipitation and homogeneous precipitation method, respectively. Nanocomposites were developed by dispersing these nanoparticles with different compositions into an epoxy resin matrix. All the composite materials showed more than 90% microwave absorption in the X-band region. The nanocomposite containing CZF/PZT (3:1) with 2 mm thickness displayed maximum return loss of -47.87 dB at 12.23 GHz. The microwave absorbers based on epoxy resin polymeric matrix exhibited better absorbing properties when the dielectric contribution matched the magnetic contribution, and the loss mechanisms were mainly due to the dielectric loss.

  3. Method and apparatus for powering an electrodeless lamp with reduced radio frequency interference

    DOEpatents

    Simpson, James E.

    1999-01-01

    An electrodeless lamp waveguide structure includes tuned absorbers for spurious RF signals. A lamp waveguide with an integral frequency selective attenuation includes resonant absorbers positioned within the waveguide to absorb spurious out-of-band RF energy. The absorbers have a negligible effect on energy at the selected frequency used to excite plasma in the lamp. In a first embodiment, one or more thin slabs of lossy magnetic material are affixed to the sidewalls of the waveguide at approximately one quarter wavelength of the spurious signal from an end wall of the waveguide. The positioning of the lossy material optimizes absorption of power from the spurious signal. In a second embodiment, one or more thin slabs of lossy magnetic material are used in conjunction with band rejection waveguide filter elements. In a third embodiment, one or more microstrip filter elements are tuned to the frequency of the spurious signal and positioned within the waveguide to couple and absorb the spurious signal's energy. All three embodiments absorb negligible energy at the selected frequency and so do not significantly diminish the energy efficiency of the lamp.

  4. Method and apparatus for powering an electrodeless lamp with reduced radio frequency interference

    DOEpatents

    Simpson, J.E.

    1999-06-08

    An electrodeless lamp waveguide structure includes tuned absorbers for spurious RF signals. A lamp waveguide with an integral frequency selective attenuation includes resonant absorbers positioned within the waveguide to absorb spurious out-of-band RF energy. The absorbers have a negligible effect on energy at the selected frequency used to excite plasma in the lamp. In a first embodiment, one or more thin slabs of lossy magnetic material are affixed to the sidewalls of the waveguide at approximately one quarter wavelength of the spurious signal from an end wall of the waveguide. The positioning of the lossy material optimizes absorption of power from the spurious signal. In a second embodiment, one or more thin slabs of lossy magnetic material are used in conjunction with band rejection waveguide filter elements. In a third embodiment, one or more microstrip filter elements are tuned to the frequency of the spurious signal and positioned within the waveguide to couple and absorb the spurious signal's energy. All three embodiments absorb negligible energy at the selected frequency and so do not significantly diminish the energy efficiency of the lamp. 18 figs.

  5. Discrete Huygens’ modeling for the characterization of a sound absorbing medium

    NASA Astrophysics Data System (ADS)

    Chai, L.; Kagawa, Y.

    2007-07-01

    Based on the equivalence between the wave propagation in the electrical transmission-lines and acoustic tubes, the authors proposed the use of the transmission-line matrix modeling (TLM) for time-domain solution method of the sound field. TLM is known in electromagnetic engineering community, which is equivalent to the discrete Huygens' modeling. The wave propagation is simulated by tracing the sequences of the transmission and scattering of impulses. The theory and the demonstrated examples are presented in the references, in which a sound absorbing field was preliminarily considered to be a medium with simple acoustic resistance independent of frequency and the angle of incidence for the absorbing layer placed on the room wall surface. The present work is concerned with the time-domain response for the characterization of the sound absorbing materials. A lossy component with variable propagation velocity is introduced for sound absorbing materials to facilitate the energy consumption. The frequency characteristics of the absorption coefficient are also considered for the normal, oblique and random incidence. Some numerical demonstrations show that the present modeling provide a reasonable modeling of the homogeneous sound absorbing materials in time domain.

  6. Experimental observation of an extremely dark material made by a low-density nanotube array.

    PubMed

    Yang, Zu-Po; Ci, Lijie; Bur, James A; Lin, Shawn-Yu; Ajayan, Pulickel M

    2008-02-01

    An ideal black material absorbs light perfectly at all angles and over all wavelengths. Here, we show that low-density vertically aligned carbon nanotube arrays can be engineered to have an extremely low index of refraction, as predicted recently by theory [Garcia-Vidal, F. J.; Pitarke, J. M.; Pendry, J. B. Phys. Rev. Lett. 1997, 78, 4289-4292] and, combined with the nanoscale surface roughness of the arrays, can produce a near-perfect optical absorption material. An ultralow diffused reflectance of 1 x 10(-7) measured from such arrays is an order-of-magnitude lower compared to commercial low-reflectance standard carbon. The corresponding integrated total reflectance of 0.045% from the nanotube arrays is three times lower than the lowest-ever reported values of optical reflectance from any material, making it the darkest man-made material ever.

  7. Advanced Design and Optimization of High Performance Combatant Craft: Material Testing and Computational Tools

    DTIC Science & Technology

    2012-05-31

    inherently shock-absorbent, and more durable than conventional materials. Despite these initial demonstration successes, there are still barriers that need...to deliver boats that are stronger, lighter, inherently shock‐absorbent, and more durable than those manufactured with conventional materials...and more durable than conventional materials (e.g. aluminum). Further, prior research by the University of Maine, Virginia Tech, and others has

  8. Cost--utility analysis of a shock-absorbing floor intervention to prevent injuries from falls in hospital wards for older people.

    PubMed

    Latimer, Nicholas; Dixon, Simon; Drahota, Amy Kim; Severs, Martin

    2013-09-01

    hospital falls place a substantial burden on healthcare systems. There has been limited research into the use of hospital flooring as an intervention against fall-related injuries. to assess the cost-effectiveness of shock-absorbing flooring compared with standard hospital flooring in hospital wards for older people. a cost-utility analysis was undertaken drawing upon data collected in a pilot cluster randomised controlled trial and the wider literature. the trial included eight hospital sites across England. Four sites installed shock-absorbing flooring in one bay, and four maintained their standard flooring. falls and resulting injuries and treatment were reported by hospital staff. Data on destination of discharge were collected. Patients were followed up at 3 months and further resource use data were collected. Health-related quality of life was assessed, allowing quality-adjusted life years (QALYs) to be estimated. The incremental cost-effectiveness ratio of the shock-absorbing flooring was assessed compared with the standard hospital flooring. in the base case, the shock-absorbing flooring was cost saving, but generated QALY losses due to an increase in the faller rate reported in the intervention arm. Scenario analysis showed that if the shock-absorbing flooring does not increase the faller rate it is likely to represent a dominant economic strategy-generating cost savings and QALY gains. the shock-absorbing flooring intervention has the potential to be cost-effective but further research is required on whether the intervention flooring results in a higher faller rate than standard flooring.

  9. Design and Manufacture of Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2018-01-16

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  10. Graphene-Enhanced Thermal Interface Materials for Thermal Management of Solar Cells

    NASA Astrophysics Data System (ADS)

    Saadah, Mohammed Ahmed

    The interest to photovoltaic solar cells as a source of energy for a variety of applications has been rapidly increasing in recent years. Solar cells panels that employ optical concentrators can convert more than 30% of absorbed light into electricity. Most of the remaining 70% of absorbed energy is turned into heat inside the solar cell. The increase in the photovoltaic cell temperature negatively affects its power conversion efficiency and lifetime. In this dissertation research I investigated a feasibility of using graphene fillers in thermal interface materials for improving thermal management of multi-junction concentrator solar cells. Graphene and few-layer graphene fillers, produced by a scalable environmentally-friendly liquid-phase exfoliation technique, were incorporated into conventional thermal interface materials. Characteristics of the composites have been examined with Raman spectroscopy, optical microscopy and thermal conductivity measurements. Graphene-enhanced thermal interface materials have been applied between a solar cell and heat sink to improve heat dissipation. The performance of the single and multi-junction solar cells has been tested using an industry-standard solar simulator under the light concentration of up to 2000 suns. It was found that the application of graphene-enhanced thermal interface materials allows one to reduce the solar cell temperature and increase the open-circuit voltage. We demonstrated that the use of graphene helps in recovering significant amount of the power loss due to solar cell overheating. The obtained results are important for the development of new technologies for thermal management of concentrated and multi-junction photovoltaic solar cells.

  11. Thermally switchable meta-material absorber involving vanadium dioxide semiconductor-metal transition for thermo photovoltaic conversion

    NASA Astrophysics Data System (ADS)

    Bendelala, Fathi; Cheknane, Ali; Hilal, Hikmat S.

    2018-01-01

    A new switchable absorber design using meta-materials for thermo photovoltaic applications is proposed here. Conventional absorbents are normally non-adjustable with narrow band-widths and polarization-dependence. The present study describes an alternative infrared absorber structure with tunable characteristics. The absorber is based on VO2 which exhibits transition from semiconductor to metallic conductor by thermal effect. With this design, the results show that wide-band absorption can be achieved. The absorption bandwidth can be improved from 15.94 to 36.75 THz. With 40.42% relative shift in the peak frequency, a maximum absorption efficiency of 99% can be achieved. This structure design is polarization-independent of normal incident radiations, and may accommodate radiations from wide oblique angles. These new features make the new thermally adjustable absorber potentially useful in thermo-photovoltaic conversion devices.

  12. Resealable, optically accessible, PDMS-free fluidic platform for ex vivo interrogation of pancreatic islets.

    PubMed

    Lenguito, Giovanni; Chaimov, Deborah; Weitz, Jonathan R; Rodriguez-Diaz, Rayner; Rawal, Siddarth A K; Tamayo-Garcia, Alejandro; Caicedo, Alejandro; Stabler, Cherie L; Buchwald, Peter; Agarwal, Ashutosh

    2017-02-28

    We report the design and fabrication of a robust fluidic platform built out of inert plastic materials and micromachined features that promote optimized convective fluid transport. The platform is tested for perfusion interrogation of rodent and human pancreatic islets, dynamic secretion of hormones, concomitant live-cell imaging, and optogenetic stimulation of genetically engineered islets. A coupled quantitative fluid dynamics computational model of glucose stimulated insulin secretion and fluid dynamics was first utilized to design device geometries that are optimal for complete perfusion of three-dimensional islets, effective collection of secreted insulin, and minimization of system volumes and associated delays. Fluidic devices were then fabricated through rapid prototyping techniques, such as micromilling and laser engraving, as two interlocking parts from materials that are non-absorbent and inert. Finally, the assembly was tested for performance using both rodent and human islets with multiple assays conducted in parallel, such as dynamic perfusion, staining and optogenetics on standard microscopes, as well as for integration with commercial perfusion machines. The optimized design of convective fluid flows, use of bio-inert and non-absorbent materials, reversible assembly, manual access for loading and unloading of islets, and straightforward integration with commercial imaging and fluid handling systems proved to be critical for perfusion assay, and particularly suited for time-resolved optogenetics studies.

  13. Characterization and preparation of p(U-MMA-An) interpenetrating polymer network damping and absorbing material.

    PubMed

    Liu, Jun; Li, Qingshan; Zhuo, Yuguo; Hong, Wei; Lv, Wenfeng; Xing, Guangzhong

    2014-06-01

    P(U-MMA-ANI) interpenetrating polymer network (IPN) damping and absorbing material is successfully synthesized by PANI particles served as an absorbing agent with the microemulsion polymerization and P(U-MMA) foam IPN network structure for substrate materials with foaming way. P(U-MMA-ANI) IPN is characterized by the compression mechanical performance testing, TG-DSC, and DSC. The results verify that the P(U-MMA) IPN foam damping material has a good compressive strength and compaction cycle property, and the optimum content of PMMA was 40% (mass) with which the SEM graphs do not present the phase separation on the macro level between PMMA and PU, while the phase separation was observed on the micro level. The DTG curve indicates that because of the formation of P(U-MMA) IPN, the decomposition temperature of PMMA and the carbamate in PU increases, while that of the polyol segment in PU has almost no change. P(U-MMA-ANI) IPN foam damping and absorbing material is obtained by PANI particles served as absorbing agent in the form of filler, and PMMA in the form of micro area in substrate material. When the content of PANI was up to 2.0% (mass), the dissipation factor of composites increased, and with the increasing of frequency the dissipation factor increased in a straight line.

  14. Development of a Continuum Damage Mechanics Material Model of a Graphite-Kevlar(Registered Trademark) Hybrid Fabric for Simulating the Impact Response of Energy Absorbing Kevlar(Registered Trademark) Hybrid Fabric for Simulating the Impact Response of Energy Absorbing

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.

    2017-01-01

    This paper describes the development of input properties for a continuum damage mechanics based material model, Mat 58, within LS-DYNA(Registered Trademark) to simulate the response of a graphite-Kevlar(Registered Trademark) hybrid plain weave fabric. A limited set of material characterization tests were performed on the hybrid graphite-Kevlar(Registered Trademark) fabric. Simple finite element models were executed in LS-DYNA(Registered Trademark) to simulate the material characterization tests and to verify the Mat 58 material model. Once verified, the Mat 58 model was used in finite element models of two composite energy absorbers: a conical-shaped design, designated the "conusoid," fabricated of four layers of hybrid graphite-Kevlar(Registered Trademark) fabric; and, a sinusoidal-shaped foam sandwich design, designated the "sinusoid," fabricated of the same hybrid fabric face sheets with a foam core. Dynamic crush tests were performed on components of the two energy absorbers, which were designed to limit average vertical accelerations to 25- to 40-g, to minimize peak crush loads, and to generate relatively long crush stroke values under dynamic loading conditions. Finite element models of the two energy absorbers utilized the Mat 58 model that had been verified through material characterization testing. Excellent predictions of the dynamic crushing response were obtained.

  15. [Acoustic conditions in open plan offices - Pilot test results].

    PubMed

    Mikulski, Witold

    The main source of noise in open plan office are conversations. Office work standards in such premises are attained by applying specific acoustic adaptation. This article presents the results of pilot tests and acoustic evaluation of open space rooms. Acoustic properties of 6 open plan office rooms were the subject of the tests. Evaluation parameters, measurement methods and criterial values were adopted according to the following standards: PN-EN ISO 3382- 3:2012, PN-EN ISO 3382-2:2010, PN-B-02151-4:2015-06 and PN-B-02151-3:2015-10. The reverberation time was 0.33- 0.55 s (maximum permissible value in offices - 0.6 s; the criterion was met), sound absorption coefficient in relation to 1 m2 of the room's plan was 0.77-1.58 m2 (minimum permissible value - 1.1 m2; 2 out of 6 rooms met the criterion), distraction distance was 8.5-14 m (maximum permissible value - 5 m; none of the rooms met the criterion), A-weighted sound pressure level of speech at a distance of 4 m was 43.8-54.7 dB (maximum permissible value - 48 dB; 2 out of 6 rooms met the criterion), spatial decay rate of the speech was 1.8-6.3 dB (minimum permissible value - 7 dB; none of the rooms met the criterion). Standard acoustic treatment, containing sound absorbing suspended ceiling, sound absorbing materials on the walls, carpet flooring and sound absorbing workplace barriers, is not sufficient. These rooms require specific advanced acoustic solutions. Med Pr 2016;67(5):653-662. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  16. Integrated optical tamper sensor with planar waveguide

    DOEpatents

    Carson, Richard F.; Casalnuovo, Stephen A.

    1993-01-01

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  17. Integrated optical tamper sensor with planar waveguide

    DOEpatents

    Carson, R.F.; Casalnuovo, S.A.

    1993-01-05

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  18. Different CO2 absorbents-modified SBA-15 sorbent for highly selective CO2 capture

    NASA Astrophysics Data System (ADS)

    Liu, Xiuwu; Zhai, Xinru; Liu, Dongyang; Sun, Yan

    2017-05-01

    Different CO2 absorbents-modified SBA-15 materials are used as CO2 sorbent to improve the selectivity of CH4/CO2 separation. The SBA-15 sorbents modified by physical CO2 absorbents are very limited to increasing CO2 adsorption and present poor selectivity. However, the SBA-15 sorbents modified by chemical CO2 absorbents increase CO2 adsorption capacity obviously. The separation coefficients of CO2/CH4 increase in this case. The adsorption and regeneration properties of the SBA-15 sorbents modified by TEA, MDEA and DIPA have been compared. The SBA-15 modified by triethanolamine (TEA) presents better CO2/CH4 separation performance than the materials modified by other CO2 absorbents.

  19. Acoustic assessment of speech privacy curtains in two nursing units

    PubMed Central

    Pope, Diana S.; Miller-Klein, Erik T.

    2016-01-01

    Hospitals have complex soundscapes that create challenges to patient care. Extraneous noise and high reverberation rates impair speech intelligibility, which leads to raised voices. In an unintended spiral, the increasing noise may result in diminished speech privacy, as people speak loudly to be heard over the din. The products available to improve hospital soundscapes include construction materials that absorb sound (acoustic ceiling tiles, carpet, wall insulation) and reduce reverberation rates. Enhanced privacy curtains are now available and offer potential for a relatively simple way to improve speech privacy and speech intelligibility by absorbing sound at the hospital patient's bedside. Acoustic assessments were performed over 2 days on two nursing units with a similar design in the same hospital. One unit was built with the 1970s’ standard hospital construction and the other was newly refurbished (2013) with sound-absorbing features. In addition, we determined the effect of an enhanced privacy curtain versus standard privacy curtains using acoustic measures of speech privacy and speech intelligibility indexes. Privacy curtains provided auditory protection for the patients. In general, that protection was increased by the use of enhanced privacy curtains. On an average, the enhanced curtain improved sound absorption from 20% to 30%; however, there was considerable variability, depending on the configuration of the rooms tested. Enhanced privacy curtains provide measureable improvement to the acoustics of patient rooms but cannot overcome larger acoustic design issues. To shorten reverberation time, additional absorption, and compact and more fragmented nursing unit floor plate shapes should be considered. PMID:26780959

  20. Acoustic assessment of speech privacy curtains in two nursing units.

    PubMed

    Pope, Diana S; Miller-Klein, Erik T

    2016-01-01

    Hospitals have complex soundscapes that create challenges to patient care. Extraneous noise and high reverberation rates impair speech intelligibility, which leads to raised voices. In an unintended spiral, the increasing noise may result in diminished speech privacy, as people speak loudly to be heard over the din. The products available to improve hospital soundscapes include construction materials that absorb sound (acoustic ceiling tiles, carpet, wall insulation) and reduce reverberation rates. Enhanced privacy curtains are now available and offer potential for a relatively simple way to improve speech privacy and speech intelligibility by absorbing sound at the hospital patient's bedside. Acoustic assessments were performed over 2 days on two nursing units with a similar design in the same hospital. One unit was built with the 1970s' standard hospital construction and the other was newly refurbished (2013) with sound-absorbing features. In addition, we determined the effect of an enhanced privacy curtain versus standard privacy curtains using acoustic measures of speech privacy and speech intelligibility indexes. Privacy curtains provided auditory protection for the patients. In general, that protection was increased by the use of enhanced privacy curtains. On an average, the enhanced curtain improved sound absorption from 20% to 30%; however, there was considerable variability, depending on the configuration of the rooms tested. Enhanced privacy curtains provide measureable improvement to the acoustics of patient rooms but cannot overcome larger acoustic design issues. To shorten reverberation time, additional absorption, and compact and more fragmented nursing unit floor plate shapes should be considered.

  1. The design of broadband radar absorbing surfaces

    NASA Astrophysics Data System (ADS)

    Suk, Go H.

    1990-09-01

    There has been a growing and widespread interest in radar absorbing material technology. As the name implies, radar absorbing materials or RAM's are coatings whose electric and magnetic properties have been selected to allow the absorption of microwave energy at discrete or broadband frequencies. In military applications low radar cross section (RCS) of a vehicle may be required in order to escape detection while a covert mission is being carried on. These requirements have led to the very low observable or stealth technology that reduces the probability of detection of an aircraft. The design of radar absorbing materials is limited by constraints on the allowable volume and weight of the surface coating, and it is difficult to design a broadband radar absorbing structure in limited volume. This thesis investigates the use of lossy dielectric materials of high dielectric permittivity in multilayer composites for the production of low radar cross section (RCS). The analysis is done by computing the plane wave reflection coefficient at the exterior surface of the composite coating by means of a computer program which selects layer parameters which determine low reflection coefficients for electromagnetic radiation under constraint of limited layer thickness as well as maximum frequency bandwidth.

  2. Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials

    PubMed Central

    Zhong, Shuomin; He, Sailing

    2013-01-01

    We present a theory of perfect absorption in a bilayer model composed of a mu-near-zero (MNZ) metamaterial (MM) absorbing layer on a metallic substrate. Our analytical solutions reveal that a MM layer with a large purely imaginary permeability and a moderate permittivity backed by a metallic plane has a zero reflection at normal incidence when the thickness is ultrathin. The impedance-mismatched metamaterial absorber (MA) can be 77.3% thinner than conventional impedance-matched MAs with the same material loss in order to get the same absorption. A microwave absorber using double-layered spiral MMs with a thickness of only about one percent of the operating wavelength is designed and realized. An absorption efficiency above 93% at 1.74 GHz is demonstrated experimentally at illumination angles up to 60 degrees. Our absorber is 98% lighter than traditional microwave absorbers made of natural materials working at the same frequencies. PMID:23803861

  3. Atmospheric correction of SeaWiFS ocean color imagery in the presence of absorbing aerosols off the Indian coast using a neuro-variational method

    NASA Astrophysics Data System (ADS)

    Brajard, J.; Moulin, C.; Thiria, S.

    2008-10-01

    This paper presents a comparison of the atmospheric correction accuracy between the standard sea-viewing wide field-of-view sensor (SeaWiFS) algorithm and the NeuroVaria algorithm for the ocean off the Indian coast in March 1999. NeuroVaria is a general method developed to retrieve aerosol optical properties and water-leaving reflectances for all types of aerosols, including absorbing ones. It has been applied to SeaWiFS images of March 1999, during an episode of transport of absorbing aerosols coming from pollutant sources in India. Water-leaving reflectances and aerosol optical thickness estimated by the two methods were extracted along a transect across the aerosol plume for three days. The comparison showed that NeuroVaria allows the retrieval of oceanic properties in the presence of absorbing aerosols with a better spatial and temporal stability than the standard SeaWiFS algorithm. NeuroVaria was then applied to the available SeaWiFS images over a two-week period. NeuroVaria algorithm retrieves ocean products for a larger number of pixels than the standard one and eliminates most of the discontinuities and artifacts associated with the standard algorithm in presence of absorbing aerosols.

  4. The design and performance of the nano-carbon based double layers flexible coating for tunable and high-efficiency microwave absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Danfeng; Hao, Zhifeng; Qian, Yannan; Zeng, Bi; Zhu, Haiping; Wu, Qibai; Yan, Chengjie; Chen, Muyu

    2018-05-01

    Nanocarbon-based materials are outstanding microwave absorbers with good dielectric properties. In this study, double-layer silicone resin flexible absorbing coatings, composed of carbon-coated nickel nanoparticles (Ni@C) and carbon nanotubes (CNTs), with low loading and a total thickness of 2 mm, were prepared. The reflection loss (RL) of the double-layer absorbing coatings has measured for frequencies between 2 and 18 GHz using the Arch reflecting testing method. The effects of the thickness and electromagnetic parameters of each layer and of the layer sequence on the absorbing properties were investigated. It is found that the measured bandwidth (RL ≤ - 10 dB) of the optimum double-layer structure in our experiment range achieves 3.70 GHz. The results indicated that the double coating structure composed of different materials has greater synergistic absorption effect on impedance matching than that of same materials with different loading. The maximum RL of S1 (5 wt% CNTs)/S3 (60 wt% Ni@C) double-layer absorbing coating composed of different materials (S1 and S3) was larger than the one achieved using either S1 or S3 alone with the same thickness. This was because double-layer coating provided a suitable matching layer and improve the interfacial impedance. It was also shown that absorbing peak value and frequency position can be adjusted by double-layer coating structure.

  5. Nickel Nanoparticle Encapsulated in Few-Layer Nitrogen-Doped Graphene Supported by Nitrogen-Doped Graphite Sheets as a High-Performance Electromagnetic Wave Absorbing Material.

    PubMed

    Yuan, Haoran; Yan, Feng; Li, Chunyan; Zhu, Chunling; Zhang, Xitian; Chen, Yujin

    2018-01-10

    Herein we develop a facile strategy for fabricating nickel particle encapsulated in few-layer nitrogen-doped graphene supported by graphite carbon sheets as a high-performance electromagnetic wave (EMW) absorbing material. The obtained material exhibits sheetlike morphology with a lateral length ranging from a hundred nanometers to 2 μm and a thickness of about 23 nm. Nickel nanoparticles with a diameter of approximately 20 nm were encapsulated in about six layers of nitrogen-doped graphene. As applied for electromagnetic absorbing material, the heteronanostructures exhibit excellent electromagnetic wave absorption property, comparable to most EMW absorbing materials previously reported. Typically, the effective absorption bandwidth (the frequency region falls within the reflection loss below -10 dB) is up to 8.5 GHz at the thicknesses of 3.0 mm for the heteronanostructures with the optimized Ni content. Furthermore, two processes, carbonization at a high temperature and subsequent treatment in hot acid solution, were involved in the preparation of the heteronanostructures, and thus, mass production was achieved easily, facilitating their practical applications.

  6. Realizing thin electromagnetic absorbers for wide incidence angles from commercially available planar circuit materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, Brian B; Whites, Kieth W; Radway, Matthew J

    2009-01-01

    In this study, recent work on engineering R-card surface resistivity with printed metallic patterns is extended to the design of thin electromagnetic absorbers. Thin electromagnetic absorbers for wide incidence angles and both polarizations have recently been computationally verified by Luukkonen et al.. These absorbers are analytically modeled high-impedance surfaces with capacitive arrays of square patches implemented with relatively high dielectric constant and high loss substrate. However, the advantages provided by the accurate analytical model are largely negated by the need to obtain high dielectric constant material with accurately engineered loss. Fig. I(c) illustrates full-wave computational results for an absorber withoutmore » vias engineered as proposed by Luukkonen et al.. Unique values for the dielectric loss are required for different center frequencies. Parameters for the capacitive grid are D=5.0 mm and w=O.l mm for a center frequency of 3.36 GHz. The relative permittivity and thickness is 9.20(1-j0.234) and 1=3.048 mm. Consider a center frequency of5.81 GHz and again 1=3.048 mm, the required parameters for the capacitive grid are D=2.0 mm and w=0.2 mm where the required relative permittivity is now 9.20(1-j0.371) Admittedly, engineered dielectrics are themselves a historically interesting and fruitful research area which benefits today from advances in monolithic fabrication using direct-write of dielectrics with nanometer scale inclusions. However, our objective in the present study is to realize the advantages of the absorber proposed by Luukkonen et al. without resort to engineered lossy dielectrics. Specifically we are restricted to commercially available planer circuit materials without use of in-house direct-write technology or materials engineering capability. The materials considered here are TMM 10 laminate with (35 {mu}lm copper cladding with a complex permittivity 9.20-j0.0022) and Ohmegaply resistor conductor material (maximum 250 {Omega}/sq.). A thin electromagnetic absorber for incidence angles greater than 30deg. but less than 60deg. and both polarizations is computationally demonstrated. This absorber utilizes high-permittivity, low-loss microwave substrate in conjunction with an engineered lossy sheet impedance. The lossy sheet impedance is easily engineered with simple analytical approximations and can be manufactured from commercially available laminate materials on microwave substrate.« less

  7. Fluorescence enhancement and nonreciprocal transmission of light waves by nanomaterial interfaces

    NASA Astrophysics Data System (ADS)

    Nyman, M.; Shevchenko, A.; Kaivola, M.

    2017-11-01

    In an optically absorbing or amplifying linear medium, the energy flow density of interfering optical waves is in general periodically modulated in space. This makes the wave transmission through a material boundary, as described by the Fresnel transmission coefficients, nonreciprocal and apparently violating the energy conservation law. The modulation has been previously described in connection to ordinary homogeneous nonmagnetic materials. In this work, we extend the description to nanomaterials with designed structural units that can be magnetic at optical frequencies. We find that in such a "metamaterial" the modulation in energy flow can be used to enhance optical far-field emission in spite of the fact that the material is highly absorbing. We also demonstrate a nanomaterial design that absorbs light, but simultaneously eliminates the power flow modulation and returns the reciprocity, which is impossible to achieve with a nonmagnetic material. We anticipate that these unusual optical effects can be used to increase the efficiency of nanostructured light emitters and absorbers, such as light-emitting diodes and solar cells.

  8. Multiwavelength absorbance of filter deposits for determination of environmental tobacco smoke and black carbon

    NASA Astrophysics Data System (ADS)

    Lawless, Phil A.; Rodes, Charles E.; Ensor, David S.

    A multiwavelength optical absorption technique has been developed for Teflon filters used for personal exposure sampling with sufficient sensitivity to allow apportionments of environmental tobacco smoke and soot (black) carbon to be made. Measurements on blank filters show that the filter material itself contributes relatively little to the total absorbance and filters from the same lot have similar characteristics; this makes retrospective analysis of filters quite feasible. Using an integrating sphere radiometer and multiple wavelengths to provide specificity, the determination of tobacco smoke and carbon with reasonable accuracy is possible on filters not characterized before exposure. This technique provides a low cost, non-destructive exposure assessment alternative to both standard thermo-gravimetric elemental carbon evaluations on quartz filters and cotinine analyses from urine or saliva samples. The method allows the same sample filter to be used for assessment of mass, carbon, and tobacco smoke without affecting the deposit.

  9. Highly efficient removal of ammonia nitrogen from wastewater by dielectrophoresis-enhanced adsorption.

    PubMed

    Liu, Dongyang; Cui, Chenyang; Wu, Yanhong; Chen, Huiying; Geng, Junfeng; Xia, Jianxin

    2018-01-01

    A new approach, based on dielectrophoresis (DEP), was developed in this work to enhance traditional adsorption for the removal of ammonia nitrogen (NH 3 -N) from wastewater. The factors that affected the removal efficiency were systematically investigated, which allowed us to determine optimal operation parameters. With this new method we found that the removal efficiency was significantly improved from 66.7% by adsorption only to 95% by adsorption-DEP using titanium metal mesh as electrodes of the DEP and zeolite as the absorbent material. In addition, the dosage of the absorbent/zeolite and the processing time needed for the removal were greatly reduced after the introduction of DEP into the process. In addition, a very low discharge concentration (C, 1.5 mg/L) of NH 3 -N was achieved by the new method, which well met the discharge criterion of C < 8 mg/L (the emission standard of pollutants for rare earth industry in China).

  10. Snake velvet black: Hierarchical micro- and nanostructure enhances dark colouration in Bitis rhinoceros

    NASA Astrophysics Data System (ADS)

    Spinner, Marlene; Kovalev, Alexander; Gorb, Stanislav N.; Westhoff, Guido

    2013-05-01

    The West African Gaboon viper (Bitis rhinoceros) is a master of camouflage due to its colouration pattern. Its skin is geometrically patterned and features black spots that purport an exceptional spatial depth due to their velvety surface texture. Our study shades light on micromorphology, optical characteristics and principles behind such a velvet black appearance. We revealed a unique hierarchical pattern of leaf-like microstructures striated with nanoridges on the snake scales that coincides with the distribution of black colouration. Velvet black sites demonstrate four times lower reflectance and higher absorbance than other scales in the UV - near IR spectral range. The combination of surface structures impeding reflectance and absorbing dark pigments, deposited in the skin material, provides reflecting less than 11% of the light reflected by a polytetrafluoroethylene diffuse reflectance standard in any direction. A view-angle independent black structural colour in snakes is reported here for the first time.

  11. Snake velvet black: hierarchical micro- and nanostructure enhances dark colouration in Bitis rhinoceros.

    PubMed

    Spinner, Marlene; Kovalev, Alexander; Gorb, Stanislav N; Westhoff, Guido

    2013-01-01

    The West African Gaboon viper (Bitis rhinoceros) is a master of camouflage due to its colouration pattern. Its skin is geometrically patterned and features black spots that purport an exceptional spatial depth due to their velvety surface texture. Our study shades light on micromorphology, optical characteristics and principles behind such a velvet black appearance. We revealed a unique hierarchical pattern of leaf-like microstructures striated with nanoridges on the snake scales that coincides with the distribution of black colouration. Velvet black sites demonstrate four times lower reflectance and higher absorbance than other scales in the UV-near IR spectral range. The combination of surface structures impeding reflectance and absorbing dark pigments, deposited in the skin material, provides reflecting less than 11% of the light reflected by a polytetrafluoroethylene diffuse reflectance standard in any direction. A view-angle independent black structural colour in snakes is reported here for the first time.

  12. High throughput light absorber discovery, Part 2: Establishing structure–band gap energy relationships

    DOE PAGES

    Suram, Santosh K.; Newhouse, Paul F.; Zhou, Lan; ...

    2016-09-23

    Combinatorial materials science strategies have accelerated materials development in a variety of fields, and we extend these strategies to enable structure-property mapping for light absorber materials, particularly in high order composition spaces. High throughput optical spectroscopy and synchrotron X-ray diffraction are combined to identify the optical properties of Bi-V-Fe oxides, leading to the identification of Bi 4V 1.5Fe 0.5O 10.5 as a light absorber with direct band gap near 2.7 eV. Here, the strategic combination of experimental and data analysis techniques includes automated Tauc analysis to estimate band gap energies from the high throughput spectroscopy data, providing an automated platformmore » for identifying new optical materials.« less

  13. High throughput light absorber discovery, Part 2: Establishing structure–band gap energy relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suram, Santosh K.; Newhouse, Paul F.; Zhou, Lan

    Combinatorial materials science strategies have accelerated materials development in a variety of fields, and we extend these strategies to enable structure-property mapping for light absorber materials, particularly in high order composition spaces. High throughput optical spectroscopy and synchrotron X-ray diffraction are combined to identify the optical properties of Bi-V-Fe oxides, leading to the identification of Bi 4V 1.5Fe 0.5O 10.5 as a light absorber with direct band gap near 2.7 eV. Here, the strategic combination of experimental and data analysis techniques includes automated Tauc analysis to estimate band gap energies from the high throughput spectroscopy data, providing an automated platformmore » for identifying new optical materials.« less

  14. High Throughput Light Absorber Discovery, Part 2: Establishing Structure-Band Gap Energy Relationships.

    PubMed

    Suram, Santosh K; Newhouse, Paul F; Zhou, Lan; Van Campen, Douglas G; Mehta, Apurva; Gregoire, John M

    2016-11-14

    Combinatorial materials science strategies have accelerated materials development in a variety of fields, and we extend these strategies to enable structure-property mapping for light absorber materials, particularly in high order composition spaces. High throughput optical spectroscopy and synchrotron X-ray diffraction are combined to identify the optical properties of Bi-V-Fe oxides, leading to the identification of Bi 4 V 1.5 Fe 0.5 O 10.5 as a light absorber with direct band gap near 2.7 eV. The strategic combination of experimental and data analysis techniques includes automated Tauc analysis to estimate band gap energies from the high throughput spectroscopy data, providing an automated platform for identifying new optical materials.

  15. Investigating the binding properties of porous drug delivery systems using nuclear sensors (radiotracers) and positron annihilation lifetime spectroscopy--predicting conditions for optimum performance.

    PubMed

    Mume, Eskender; Lynch, Daniel E; Uedono, Akira; Smith, Suzanne V

    2011-06-21

    Understanding how the size, charge and number of available pores in porous material influences the uptake and release properties is important for optimising their design and ultimately their application. Unfortunately there are no standard methods for screening porous materials in solution and therefore formulations must be developed for each encapsulated agent. This study investigates the potential of a library of radiotracers (nuclear sensors) for assessing the binding properties of hollow silica shell materials. Uptake and release of Cu(2+) and Co(2+) and their respective complexes with polyazacarboxylate macrocycles (dota and teta) and a series of hexa aza cages (diamsar, sarar and bis-(p-aminobenzyl)-diamsar) from the hollow silica shells was monitored using their radioisotopic analogues. Coordination chemistry of the metal (M) species, subtle alterations in the molecular architecture of ligands (Ligand) and their resultant complexes (M-Ligand) were found to significantly influence their uptake over pH 3 to 9 at room temperature. Positively charged species were selectively and rapidly (within 10 min) absorbed at pH 7 to 9. Negatively charged species were preferentially absorbed at low pH (3 to 5). Rates of release varied for each nuclear sensor, and time to establish equilibrium varied from minutes to days. The subtle changes in design of the nuclear sensors proved to be a valuable tool for determining the binding properties of porous materials. The data support the development of a library of nuclear sensors for screening porous materials for use in optimising the design of porous materials and the potential of nuclear sensors for high through-put screening of materials.

  16. Superabsorbents in Personal Care Industry

    NASA Astrophysics Data System (ADS)

    Li, Yong

    1997-10-01

    Water swellable hydrogels, often called Superabsorbent Polymers, are used as a major component in many absorbent products such as baby diapers. The superabsorbents used in personal care industry are typically lightly crosslinked sodium polyacrylate polymers. The current annual worldwide production of the material is close to one million metric tons. These hydrogels can absorb water more than 100 times of their own weight. The absorbed liquid is tightly held inside the superabsorbent materials even against pressure. The balance of many different properties will be discussed.

  17. Failure mechanisms in energy-absorbing composite structures

    NASA Astrophysics Data System (ADS)

    Johnson, Alastair F.; David, Matthew

    2010-11-01

    Quasi-static tests are described for determination of the energy-absorption properties of composite crash energy-absorbing segment elements under axial loads. Detailed computer tomography scans of failed specimens were used to identify local compression crush failure mechanisms at the crush front. These mechanisms are important for selecting composite materials for energy-absorbing structures, such as helicopter and aircraft sub-floors. Finite element models of the failure processes are described that could be the basis for materials selection and future design procedures for crashworthy structures.

  18. Material Activation Benchmark Experiments at the NuMI Hadron Absorber Hall in Fermilab

    NASA Astrophysics Data System (ADS)

    Matsumura, H.; Matsuda, N.; Kasugai, Y.; Toyoda, A.; Yashima, H.; Sekimoto, S.; Iwase, H.; Oishi, K.; Sakamoto, Y.; Nakashima, H.; Leveling, A.; Boehnlein, D.; Lauten, G.; Mokhov, N.; Vaziri, K.

    2014-06-01

    In our previous study, double and mirror symmetric activation peaks found for Al and Au arranged spatially on the back of the Hadron absorber of the NuMI beamline in Fermilab were considerably higher than those expected purely from muon-induced reactions. From material activation bench-mark experiments, we conclude that this activation is due to hadrons with energy greater than 3 GeV that had passed downstream through small gaps in the hadron absorber.

  19. Generation of random microstructures and prediction of sound velocity and absorption for open foams with spherical pores.

    PubMed

    Zieliński, Tomasz G

    2015-04-01

    This paper proposes and discusses an approach for the design and quality inspection of the morphology dedicated for sound absorbing foams, using a relatively simple technique for a random generation of periodic microstructures representative for open-cell foams with spherical pores. The design is controlled by a few parameters, namely, the total open porosity and the average pore size, as well as the standard deviation of pore size. These design parameters are set up exactly and independently, however, the setting of the standard deviation of pore sizes requires some number of pores in the representative volume element (RVE); this number is a procedure parameter. Another pore structure parameter which may be indirectly affected is the average size of windows linking the pores, however, it is in fact weakly controlled by the maximal pore-penetration factor, and moreover, it depends on the porosity and pore size. The proposed methodology for testing microstructure-designs of sound absorbing porous media applies the multi-scale modeling where some important transport parameters-responsible for sound propagation in a porous medium-are calculated from microstructure using the generated RVE, in order to estimate the sound velocity and absorption of such a designed material.

  20. Absorbent properties of carboxymethylated fiber, hydroentangled nonwoven and regenerated cellulose: a comparative study

    USDA-ARS?s Scientific Manuscript database

    Commercially-available, bleached cotton fibers, rayon, and their hydroentangled counterparts were carboxymethylated to produce cellulosic products with increased absorbency. These cellulose materials were tested for absorbance, spectroscopic properties, degree of substitution and carding ability. Ca...

  1. Tech Transfer Webinar: Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2018-01-16

    A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  2. Modelling the cost-effectiveness of impact-absorbing flooring in Swedish residential care facilities.

    PubMed

    Ryen, Linda; Svensson, Mikael

    2016-06-01

    Fall-related injuries among the elderly, specifically hip fractures, cause significant morbidity and mortality as well as imposing a substantial financial cost on the health care system. Impact-absorbing flooring has been advocated as an effective method for preventing hip fractures resulting from falls. This study identifies the cost-effectiveness of impact-absorbing flooring compared to standard flooring in residential care facilities for the elderly in a Swedish setting. An incremental cost-effectiveness analysis was performed comparing impact-absorbing flooring to standard flooring using a Markov decision model. A societal perspective was adopted and incremental costs were compared to incremental gains in quality-adjusted life years (QALYs). Data on costs, probability transitions and health-related quality of life measures were retrieved from the published literature and from Swedish register data. Probabilistic sensitivity analysis was performed through a Monte Carlo simulation. The base-case analysis indicates that the impact-absorbing flooring reduces costs and increases QALYs. When allowing for uncertainty we find that 60% of the simulations indicate that impact-absorbing flooring is cost-saving compared to standard flooring and an additional 20% that it has a cost per QALY below a commonly used threshold value : Using a modelling approach, we find that impact-absorbing flooring is a dominant strategy at the societal level considering that it can save resources and improve health in a vulnerable population. © The Author 2015. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  3. Improving impact resistance of ceramic materials by energy absorbing surface layers

    NASA Technical Reports Server (NTRS)

    Kirchner, H. P.; Seretsky, J.

    1974-01-01

    Energy absorbing surface layers were used to improve the impact resistance of silicon nitride and silicon carbide ceramics. Low elastic modulus materials were used. In some cases, the low elastic modulus was achieved using materials that form localized microcracks as a result of thermal expansion anisotropy, thermal expansion differences between phases, or phase transformations. In other cases, semi-vitreous or vitreous materials were used. Substantial improvements in impact resistance were observed at room and elevated temperatures.

  4. Study on preparation and microwave absorption property of the core-nanoshell composite materials doped with La.

    PubMed

    Wei, Liqiu; Che, Ruxin; Jiang, Yijun; Yu, Bing

    2013-12-01

    Microwave absorbing material plays a great role in electromagnetic pollution controlling, electromagnetic interference shielding and stealth technology, etc. The core-nanoshell composite materials doped with La were prepared by a solid-state reaction method, which is applied to the electromagnetic wave absorption. The core is magnetic fly-ash hollow cenosphere, and the shell is the nanosized ferrite doped with La. The thermal decomposition process of the sample was investigated by thermogravimetry and differential thermal analysis. The morphology and components of the composite materials were investigated by the X-ray diffraction analysis, the microstructure was observed by scanning electron microscope and transmission electron microscope. The results of vibrating sample magnetometer analysis indicated that the exchange-coupling interaction happens between ferrite of magnetic fly-ash hollow cenosphere and nanosized ferrite coating, which caused outstanding magnetic properties. The microwave absorbing property of the sample was measured by reflectivity far field radar cross section of radar microwave absorbing material with vector network analyzer. The results indicated that the exchange-coupling interaction enhanced magnetic loss of composite materials. Therefore, in the frequency of 5 GHz, the reflection coefficient can achieve -24 dB. It is better than single material and is consistent with requirements of the microwave absorbing material at the low-frequency absorption. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  5. Evaluation of a lithium formate EPR dosimetry system for dose measurements around {sup 192}Ir brachytherapy sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonovic, Laura; Gustafsson, Haakan; Alm Carlsson, Gudrun

    2009-06-15

    A dosimetry system using lithium formate monohydrate (HCO{sub 2}Li{center_dot}H{sub 2}O) as detector material and electron paramagnetic resonance (EPR) spectroscopy for readout has been used to measure absorbed dose distributions around clinical {sup 192}Ir sources. Cylindrical tablets with diameter of 4.5 mm, height of 4.8 mm, and density of 1.26 g/cm{sup 3} were manufactured. Homogeneity test and calibration of the dosimeters were performed in a 6 MV photon beam. {sup 192}Ir irradiations were performed in a PMMA phantom using two different source models, the GammaMed Plus HDR and the microSelectron PDR-v1 model. Measured absorbed doses to water in the PMMA phantommore » were converted to the corresponding absorbed doses to water in water phantoms of dimensions used by the treatment planning systems (TPSs) using correction factors explicitly derived for this experiment. Experimentally determined absorbed doses agreed with the absorbed doses to water calculated by the TPS to within {+-}2.9%. Relative standard uncertainties in the experimentally determined absorbed doses were estimated to be within the range of 1.7%-1.3% depending on the radial distance from the source, the type of source (HDR or PDR), and the particular absorbed doses used. This work shows that a lithium formate dosimetry system is well suited for measurements of absorbed dose to water around clinical HDR and PDR {sup 192}Ir sources. Being less energy dependent than the commonly used thermoluminescent lithium fluoride (LiF) dosimeters, lithium formate monohydrate dosimeters are well suited to measure absorbed doses in situations where the energy dependence cannot easily be accounted for such as in multiple-source irradiations to verify treatment plans. Their wide dynamic range and linear dose response over the dose interval of 0.2-1000 Gy make them suitable for measurements on sources of the strengths used in clinical applications. The dosimeter size needs, however, to be reduced for application to single-source dosimetry.« less

  6. Absorptivity of semiconductors used in the production of solar cell panels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosyachenko, L. A., E-mail: lakos@chv.ukrpack.net; Grushko, E. V.; Mikityuk, T. I.

    The dependence of the absorptivity of semiconductors on the thickness of the absorbing layer is studied for crystalline silicon (c-Si), amorphous silicon (a-Si), cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS), and copper gallium diselenide (CuGaSe{sub 2}, CGS). The calculations are performed with consideration for the spectral distribution of AM1.5 standard solar radiation and the absorption coefficients of the materials. It is shown that, in the region of wavelengths {lambda} = {lambda}{sub g} = hc/E{sub g}, almost total absorption of the photons in AM1.5 solar radiation is attained in c-Si at the thickness d = 7-8 mm, in a-Simore » at d = 30-60 {mu}m, in CdTe at d = 20-30 {mu}m, and in CIS and CGS at d = 3-4 {mu}m. The results differ from previously reported data for these materials (especially for c-Si). In previous publications, the thickness needed for the semiconductor to absorb solar radiation completely was identified with the effective light penetration depth at a certain wavelength in the region of fundamental absorption for the semiconductor.« less

  7. 14 CFR 27.475 - Tires and shock absorbers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tires and shock absorbers. 27.475 Section 27.475 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.475 Tires and shock absorbers. Unless otherwise prescribed...

  8. 14 CFR 29.475 - Tires and shock absorbers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tires and shock absorbers. 29.475 Section 29.475 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 29.475 Tires and shock absorbers. Unless otherwise...

  9. Microwave impregnation of porous materials with thermal energy storage materials

    DOEpatents

    Benson, David K.; Burrows, Richard W.

    1993-01-01

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  10. Microwave impregnation of porous materials with thermal energy storage materials

    DOEpatents

    Benson, D.K.; Burrows, R.W.

    1993-04-13

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  11. Study on the characteristics of magneto-sensitive electromagnetic wave-absorbing properties of magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Yang, Pingan; Fu, Jie; Liu, Shuzhi; Qi, Song

    2016-08-01

    Magnetorheological (MR) materials are a class of materials whose mechanical and electrical properties can be reversible controlled by the magnetic field. In this study, we pioneered research on the effect of a uniform magnetic field with different strengths and directions on the microwave-absorbing properties of magnetorheological elastomers (MREs), in which the ferromagnetic particles are flower-like carbonyl iron powders (CIPs) prepared by an in situ reduction method. The electromagnetic (EM) absorbing properties of the composites have been analyzed by vector network analysis with the coaxial reflection/transmission technique. Under the magnetic field, the columnar or chainlike structures were formed, which allows EM waves to penetrate. Meanwhile, stronger Debye dipolar relaxation and attenuation constant have been obtained when changing the direction of the applied magnetic field. Compared with untreated MREs, not only have the minimum reflection loss (RL) and the effective absorption bandwidth (below -20 dB) greatly increased, the frequencies of the absorbing peaks shift about 15%. This suggests that MREs are a magnetic-field-sensitive electromagnetic wave-absorbing material and have great potential in applications such as in anti-radar camouflage, due to the fact that radar can continuously conduct detection at many electromagnetic frequencies, while the MR materials can adjust the microwave-absorption peak according to the radar frequency.

  12. Numerical analysis of radiation propagation in innovative volumetric receivers based on selective laser melting techniques

    NASA Astrophysics Data System (ADS)

    Alberti, Fabrizio; Santiago, Sergio; Roccabruna, Mattia; Luque, Salvador; Gonzalez-Aguilar, Jose; Crema, Luigi; Romero, Manuel

    2016-05-01

    Volumetric absorbers constitute one of the key elements in order to achieve high thermal conversion efficiencies in concentrating solar power plants. Regardless of the working fluid or thermodynamic cycle employed, design trends towards higher absorber output temperatures are widespread, which lead to the general need of components of high solar absorptance, high conduction within the receiver material, high internal convection, low radiative and convective heat losses and high mechanical durability. In this context, the use of advanced manufacturing techniques, such as selective laser melting, has allowed for the fabrication of intricate geometries that are capable of fulfilling the previous requirements. This paper presents a parametric design and analysis of the optical performance of volumetric absorbers of variable porosity conducted by means of detailed numerical ray tracing simulations. Sections of variable macroscopic porosity along the absorber depth were constructed by the fractal growth of single-cell structures. Measures of performance analyzed include optical reflection losses from the absorber front and rear faces, penetration of radiation inside the absorber volume, and radiation absorption as a function of absorber depth. The effects of engineering design parameters such as absorber length and wall thickness, material reflectance and porosity distribution on the optical performance of absorbers are discussed, and general design guidelines are given.

  13. Axial collapse characteristics of CFRP composites with stacking conditions under the hygrothermal

    NASA Astrophysics Data System (ADS)

    Yang, Yongjun; Choi, Juho; Hwang, Woochae; Son, Jaekyung; Kook, Hyun; Im, Kwanghee; Sim, Jaeki; Yang, Inyoung

    2012-04-01

    CFRP composite material has superior specific strength and rigidity compared to metallic material, and is widely adopted in the various fields. Exceptional corrosion resistance enables the acceptance in maritime structural members such as ship and oildrilling machineries. However, CFRP composite material has the weakness in hygrothermal environment and crash environment. Especially, moisture ingress into composite material under hygrothermal environment can change molecule arrangement and chemical properties. In addition, interface characteristics and component material properties can be degraded. An experimental investigation was carried out to study the crash evaluations of CFRP composites to dynamic crushing by impact loading. We have made a collapse experiment to research into the difference of absorbed energy and deformation mode between moisture absorbed specimen and non-moisture absorbed specimen. As a result, the effect of moisture absorption and impact loads of approximately 30~50% reduction in strength are shown.

  14. Axial collapse characteristics of CFRP composites with stacking conditions under the hygrothermal

    NASA Astrophysics Data System (ADS)

    Yang, Yongjun; Choi, Juho; Hwang, Woochae; Son, Jaekyung; Kook, Hyun; Im, Kwanghee; Sim, Jaeki; Yang, Inyoung

    2011-11-01

    CFRP composite material has superior specific strength and rigidity compared to metallic material, and is widely adopted in the various fields. Exceptional corrosion resistance enables the acceptance in maritime structural members such as ship and oildrilling machineries. However, CFRP composite material has the weakness in hygrothermal environment and crash environment. Especially, moisture ingress into composite material under hygrothermal environment can change molecule arrangement and chemical properties. In addition, interface characteristics and component material properties can be degraded. An experimental investigation was carried out to study the crash evaluations of CFRP composites to dynamic crushing by impact loading. We have made a collapse experiment to research into the difference of absorbed energy and deformation mode between moisture absorbed specimen and non-moisture absorbed specimen. As a result, the effect of moisture absorption and impact loads of approximately 30~50% reduction in strength are shown.

  15. Unglazed transpired solar collector having a low thermal-conductance absorber

    DOEpatents

    Christensen, Craig B.; Kutscher, Charles F.; Gawlik, Keith M.

    1997-01-01

    An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprising an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution.

  16. Unglazed transpired solar collector having a low thermal-conductance absorber

    DOEpatents

    Christensen, C.B.; Kutscher, C.F.; Gawlik, K.M.

    1997-12-02

    An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprises an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution. 3 figs.

  17. Enhanced microwave absorption properties of epoxy composites containing graphite nanosheets@Fe3O4 decorated comb-like MnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Su, Xiaogang; Wang, Jun; Zhang, Bin; Chen, Wei; Wu, Qilei; Dai, Wei; Zou, Yi

    2018-05-01

    Recently, owing to the radiation and interference from electromagnetic wave (EMW), the requirements of EMW absorbing materials have been increasing. Herein, a novel absorber composed of graphite nanosheets@Fe3O4 composites decorated comb-like MnO2 (GNFM) has been successfully synthesized via a facile two steps, characterized using x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, vibrating sample magnetometry (VSM) and vector network analyzer (VNA). The ternary composites with enhanced microwave absorption performance are due to the complementary effects of electroconductive material (graphite nanosheets), dielectric materials (MnO2) and magnetic material (Fe3O4 nanospheres). Hence, the maximum reflection loss of GNFM/epoxy composites is up to ‑31.7 dB at 5.85 GHz with absorbing thickness of 4.5 mm, and the efficient frequency bandwidth below ‑10 dB can reach up to 4.47 GHz (11.87–16.34 GHz) at matching thickness of 2 mm. The results demonstrate that GNFM could be regarded as a novel type of microwave absorbing material.

  18. Bamboo fiberboards and attapulgite : does it lead to an improvement of humidity control in buildings?

    NASA Astrophysics Data System (ADS)

    Nguyen, D. M.; Grillet, A. C.; Goldin, T.; Hanh Diep, T. M.; Woloszyn, M.

    2018-04-01

    In order to save energy used to heat or cool buildings and to improve the inhabitants comfort, control of humidity inside buildings must be improved. This can be done by using buffering materials able to absorb and release moisture when necessary. Natural fibers and mineral absorbent are good candidates to manufacture such materials. The aim of this research is to mix bamboo fibers with attapulgite to evaluate the influence of this mineral absorbent on the hygric behavior of the fiberboards. The hygric properties are slightly improved by the attapulgite and thus bamboo fiberboards can be used as building insulation materials able to participate to the indoor moisture control.

  19. REACTOR VIEWING APPARATUS

    DOEpatents

    Monk, G.S.

    1959-01-13

    An optical system is presented that is suitable for viewing objects in a region of relatively high radioactivity, or high neutron activity, such as a neutronic reactor. This optical system will absorb neutrons and gamma rays thereby protecting personnel fronm the harmful biological effects of such penetrating radiations. The optical system is comprised of a viewing tube having a lens at one end, a transparent solid member at the other end and a transparent aqueous liquid completely filling the tube between the ends. The lens is made of a polymerized organic material and the transparent solid member is made of a radiation absorbent material. A shield surrounds the tube betwcen the flanges and is made of a gamma ray absorbing material.

  20. Magnetic latch trigger for inherent shutdown assembly

    DOEpatents

    Sowa, Edmund S.

    1976-01-01

    An inherent shutdown assembly for a nuclear reactor is provided. A neutron absorber is held ready to be inserted into the reactor core by a magnetic latch. The latch includes a magnet whose lines of force are linked by a yoke of material whose Curie point is at the critical temperature of the reactor at which the neutron absorber is to be inserted into the reactor core. The yoke is in contact with the core coolant or fissionable material so that when the coolant or the fissionable material increase in temperature above the Curie point the yoke loses its magnetic susceptibility and the magnetic link is broken, thereby causing the absorber to be released into the reactor core.

  1. Lightweight flywheel containment

    DOEpatents

    Smith, James R.

    2001-01-01

    A lightweight flywheel containment composed of a combination of layers of various material which absorb the energy of a flywheel structural failure. The various layers of material act as a vacuum barrier, momentum spreader, energy absorber, and reaction plate. The flywheel containment structure has been experimentally demonstrated to contain carbon fiber fragments with a velocity of 1,000 m/s and has an aerial density of less than 6.5 g/square centimeters. The flywheel containment, may for example, be composed of an inner high toughness structural layer, and energy absorbing layer, and an outer support layer. Optionally, a layer of impedance matching material may be utilized intermediate the flywheel rotor and the inner high toughness layer.

  2. Lightweight flywheel containment

    DOEpatents

    Smith, James R.

    2004-06-29

    A lightweight flywheel containment composed of a combination of layers of various material which absorb the energy of a flywheel structural failure. The various layers of material act as a vacuum barrier, momentum spreader, energy absorber, and reaction plate. The flywheel containment structure has been experimentally demonstrated to contain carbon fiber fragments with a velocity of 1,000 m/s and has an aerial density of less than 6.5 g/square centimeters. The flywheel containment, may for example, be composed of an inner high toughness structural layer, and energy absorbing layer, and an outer support layer. Optionally, a layer of impedance matching material may be utilized intermediate the flywheel rotor and the inner high toughness layer.

  3. Evaluation of factors to convert absorbed dose calibrations from graphite to water for the NPL high-energy photon calibration service.

    PubMed

    Nutbrown, R F; Duane, S; Shipley, D R; Thomas, R A S

    2002-02-07

    The National Physical Laboratory (NPL) provides a high-energy photon calibration service using 4-19 MV x-rays and 60Co gamma-radiation for secondary standard dosemeters in terms of absorbed dose to water. The primary standard used for this service is a graphite calorimeter and so absorbed dose calibrations must be converted from graphite to water. The conversion factors currently in use were determined prior to the launch of this service in 1988. Since then, it has been found that the differences in inherent filtration between the NPL LINAC and typical clinical machines are large enough to affect absorbed dose calibrations and, since 1992, calibrations have been performed in heavily filtered qualities. The conversion factors for heavily filtered qualities were determined by interpolation and extrapolation of lightly filtered results as a function of tissue phantom ratio 20,10 (TPR20,10). This paper aims to evaluate these factors for all mega-voltage photon energies provided by the NPL LINAC for both lightly and heavily filtered qualities and for 60Co y-radiation in two ways. The first method involves the use of the photon fluence-scaling theorem. This states that if two blocks of different material are irradiated by the same photon beam, and if all dimensions are scaled in the inverse ratio of the electron densities of the two media, then, assuming that all photon interactions occur by Compton scatter the photon attenuation and scatter factors at corresponding scaled points of measurement in the phantom will be identical. The second method involves making in-phantom measurements of chamber response at a constant target-chamber distance. Monte Carlo techniques are then used to determine the corresponding dose to the medium in order to determine the chamber calibration factor directly. Values of the ratio of absorbed dose calibration factors in water and in graphite determined in these two ways agree with each other to within 0.2% (1sigma uncertainty). The best fit to both sets of results agrees with values determined in previous work to within 0.3% (1sigma uncertainty). It is found that the conversion factor is not sensitive to beam filtration.

  4. Laser-induced contamination control for high-power lasers in space-based LIDAR missions

    NASA Astrophysics Data System (ADS)

    Alves, Jorge; Pettazzi, Federico; Tighe, Adrian; Wernham, Denny

    2017-11-01

    In the framework of the ADM-Aeolus satellite mission, successful test campaigns have been performed in ESTEC's laser laboratory, and the efficiency of several mitigation techniques against Laser-Induced Contamination (LIC) have been demonstrated for the ALADIN laser. These techniques include the standard contamination control methods of materials identification with particular tendency to cause LIC, reduction of the outgassing of organic materials by vacuum bake-out and shielding of optical surfaces from the contamination sources. Also novel mitigation methods such as in-situ cleaning via partial pressures, or the usage of molecular absorbers were demonstrated. In this context, a number of highly sensitive optical measurement techniques have been developed and tested to detect and monitor LIC deposits at nanometre level.

  5. A study of the optimal transition temperatue of PCM (Phase Change Material) wallboard for solar energy storage

    NASA Astrophysics Data System (ADS)

    Drake, J. B.

    1987-09-01

    The performance of wallboard impregnated with phase change material (PCM) is considered. An ideal setting is assumed and several measures of performance discussed. With a definition of optimal performance given, the performance with respect to variation of transition temperature is studied. Results are based on computer simulations of PCM wallboard with a standard stud wall construction. The diurnal heat capacity was found to be to be overly sensitive to numerical errors for use in PCM applications. The other measures of performance, diurnal effectiveness, net collected to storage ratio, and absolute discharge flux, all indicate similar trends. It is shown that the optimal transition temperature of the PCM is strongly influenced by the amount of solar flux absorbed.

  6. On-Board Hydrogen Gas Production System For Stirling Engines

    DOEpatents

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  7. An antibacterial and absorbable silk-based fixation material with impressive mechanical properties and biocompatibility

    NASA Astrophysics Data System (ADS)

    Shi, Chenglong; Pu, Xiaobing; Zheng, Guan; Feng, Xinglong; Yang, Xuan; Zhang, Baoliang; Zhang, Yu; Yin, Qingshui; Xia, Hong

    2016-11-01

    Implant-associated infections and non-absorbing materials are two important reasons for a second surgical procedure to remove internal fixation devices after an orthopedic internal fixation surgery. The objective of this study was to produce an antibacterial and absorbable fixation screw by adding gentamicin to silk-based materials. The antibacterial activity was assessed against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in vitro by plate cultivation and scanning electron microscopy (SEM). We also investigated the properties, such as the mechanical features, swelling properties, biocompatibility and degradation, of gentamicin-loaded silk-based screws (GSS) in vitro. The GSS showed significant bactericidal effects against S. aureus and E. coli. The antibacterial activity remained high even after 4 weeks of immersion in protease solution. In addition, the GSS maintained the remarkable mechanical properties and excellent biocompatibility of pure silk-based screws (PSS). Interestingly, after gentamicin incorporation, the degradation rate and water-absorbing capacity increased and decreased, respectively. These GSS provide both impressive material properties and antibacterial activity and have great potential for use in orthopedic implants to reduce the incidence of second surgeries.

  8. Photoluminescence and Photoconductivity to Assess Maximum Open-Circuit Voltage and Carrier Transport in Hybrid Perovskites and Other Photovoltaic Materials.

    PubMed

    Braly, Ian L; Stoddard, Ryan J; Rajagopal, Adharsh; Jen, Alex K-Y; Hillhouse, Hugh W

    2018-06-06

    Photovoltaic (PV) device development is much more expensive and time consuming than the development of the absorber layer alone. This perspective focuses on two methods that can be used to rapidly assess and develop PV absorber materials independent of device development. The absorber material properties of quasi-Fermi level splitting and carrier diffusion length under steady effective one-Sun illumination are indicators of a material's ability to achieve high VOC and JSC. These two material properties can be rapidly and simultaneously assessed with steady-state absolute intensity photoluminescence and photoconductivity measurements. As a result, these methods are extremely useful for predicting the quality and stability of PV materials prior to PV device development. Here, we summarize the methods, discuss their strengths and weaknesses, and compare photoluminescence and photoconductivity results with device performance for four hybrid perovskite compositions of various bandgaps (1.35 to 1.82 eV), CISe, CIGSe, and CZTSe.

  9. Microstructure Analysis of Bismuth Absorbers for Transition-Edge Sensor X-ray Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Yan, Daikang; Divan, Ralu; Gades, Lisa M.; Kenesei, Peter; Madden, Timothy J.; Miceli, Antonino; Park, Jun-Sang; Patel, Umeshkumar M.; Quaranta, Orlando; Sharma, Hemant; Bennett, Douglas A.; Doriese, William B.; Fowler, Joseph W.; Gard, Johnathon D.; Hays-Wehle, James P.; Morgan, Kelsey M.; Schmidt, Daniel R.; Swetz, Daniel S.; Ullom, Joel N.

    2018-03-01

    Given its large X-ray stopping power and low specific heat capacity, bismuth (Bi) is a promising absorber material for X-ray microcalorimeters and has been used with transition-edge sensors (TESs) in the past. However, distinct X-ray spectral features have been observed in TESs with Bi absorbers deposited with different techniques. Evaporated Bi absorbers are widely reported to have non-Gaussian low-energy tails, while electroplated ones do not show this feature. In this study, we fabricated Bi absorbers with these two methods and performed microstructure analysis using scanning electron microscopy and X-ray diffraction microscopy. The two types of material showed the same crystallographic structure, but the grain size of the electroplated Bi was about 40 times larger than that of the evaporated Bi. This distinction in grain size is likely to be the cause of their different spectral responses.

  10. Eliminating the non-Gaussian spectral response of X-ray absorbers for transition-edge sensors

    NASA Astrophysics Data System (ADS)

    Yan, Daikang; Divan, Ralu; Gades, Lisa M.; Kenesei, Peter; Madden, Timothy J.; Miceli, Antonino; Park, Jun-Sang; Patel, Umeshkumar M.; Quaranta, Orlando; Sharma, Hemant; Bennett, Douglas A.; Doriese, William B.; Fowler, Joseph W.; Gard, Johnathon D.; Hays-Wehle, James P.; Morgan, Kelsey M.; Schmidt, Daniel R.; Swetz, Daniel S.; Ullom, Joel N.

    2017-11-01

    Transition-edge sensors (TESs) as microcalorimeters for high-energy-resolution X-ray spectroscopy are often fabricated with an absorber made of materials with high Z (for X-ray stopping power) and low heat capacity (for high resolving power). Bismuth represents one of the most compelling options. TESs with evaporated bismuth absorbers have shown spectra with undesirable and unexplained low-energy tails. We have developed TESs with electroplated bismuth absorbers over a gold layer that are not afflicted by this problem and that retain the other positive aspects of this material. To better understand these phenomena, we have studied a series of TESs with gold, gold/evaporated bismuth, and gold/electroplated bismuth absorbers, fabricated on the same die with identical thermal coupling. We show that the bismuth morphology is linked to the spectral response of X-ray TES microcalorimeters.

  11. Eliminating the non-Gaussian spectral response of X-ray absorbers for transition-edge sensors

    DOE PAGES

    Divan, Ralu; Gades, Lisa M.; Kenesei, Peter; ...

    2017-11-08

    Transition-edge sensors (TESs) as microcalorimeters for high-energy-resolution X-ray spectroscopy are often fabricated with an absorber made of materials with high Z (for X-ray stopping power) and low heat capacity (for high resolving power). Bismuth represents one of the most compelling options. TESs with evaporated bismuth absorbers have shown spectra with undesirable and unexplained low-energy tails. We have developed TESs with electroplated bismuth absorbers over a gold layer that are not afflicted by this problem and that retain the other positive aspects of this material. To better understand these phenomena, we have studied a series of TESs with gold, gold/evaporated bismuth,more » and gold/electroplated bismuth absorbers, fabricated on the same die with identical thermal coupling. Lastly, we show that the bismuth morphology is linked to the spectral response of X-ray TES microcalorimeters.« less

  12. Eliminating the non-Gaussian spectral response of X-ray absorbers for transition-edge sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divan, Ralu; Gades, Lisa M.; Kenesei, Peter

    Transition-edge sensors (TESs) as microcalorimeters for high-energy-resolution X-ray spectroscopy are often fabricated with an absorber made of materials with high Z (for X-ray stopping power) and low heat capacity (for high resolving power). Bismuth represents one of the most compelling options. TESs with evaporated bismuth absorbers have shown spectra with undesirable and unexplained low-energy tails. We have developed TESs with electroplated bismuth absorbers over a gold layer that are not afflicted by this problem and that retain the other positive aspects of this material. To better understand these phenomena, we have studied a series of TESs with gold, gold/evaporated bismuth,more » and gold/electroplated bismuth absorbers, fabricated on the same die with identical thermal coupling. Lastly, we show that the bismuth morphology is linked to the spectral response of X-ray TES microcalorimeters.« less

  13. Digital Alloy Absorber for Photodetectors

    NASA Technical Reports Server (NTRS)

    Hill, Cory J. (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2016-01-01

    In order to increase the spectral response range and improve the mobility of the photo-generated carriers (e.g. in an nBn photodetector), a digital alloy absorber may be employed by embedding one (or fraction thereof) to several monolayers of a semiconductor material (insert layers) periodically into a different host semiconductor material of the absorber layer. The semiconductor material of the insert layer and the host semiconductor materials may have lattice constants that are substantially mismatched. For example, this may performed by periodically embedding monolayers of InSb into an InAsSb host as the absorption region to extend the cutoff wavelength of InAsSb photodetectors, such as InAsSb based nBn devices. The described technique allows for simultaneous control of alloy composition and net strain, which are both key parameters for the photodetector operation.

  14. Translatory shock absorber for attitude sensors

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L.; Morgan, I. T., Jr.; Kirby, C. A. (Inventor)

    1976-01-01

    A translatory shock absorber is provided for mounting an attitude sensor thereon for isolating a sensor from translatory vibrations. The translatory shock absorber includes a hollow block structure formed as one piece to form a parallelogram. The absorber block structure includes a movable top plate for supporting the attitude sensor and a fixed base plate with opposed side plates interposed between. At the junctions of the side plates, and the base and top plates, there are provided grooves which act as flexible hinges for attenuating translatory vibrations. A damping material is supported on a pedestal which is carried on the base plate between the side plates thereof. The top of the damping material rests against the bottom surface of the top plate for eliminating the resonant peaks of vibration.

  15. Measurements of radioactivity and dose assessments in some building materials in Bitlis, Turkey.

    PubMed

    Kayakökü, Halime; Karatepe, Şule; Doğru, Mahmut

    2016-09-01

    In this study, samples of perlite, pumice and Ahlat stones (Ignimbrite) extracted from mines in Bitlis and samples of other building materials produced in facilities in Bitlis were collected and analyzed. Activity concentrations of (226)Ra, (232)Th and (40)K in samples of building materials were measured using NaI detector (NaI(Tl)) with an efficiency of 24%. The radon measurements of building material samples were determined using CR-39 nuclear track detectors. (226)Ra, (232)Th and (40)K radioactivity concentrations ranged from (29.6±5.9 to 228.2±38.1Bq/kg), (10.8±5.4 to 95.5±26.1Bq/kg) and (249.3±124.7 to 2580.1±266.9Bq/kg), respectively. Radon concentration, radium equivalent activities, absorbed dose rate, excess lifetime cancer risk and the values of hazard indices were calculated for the measured samples to assess the radiation hazards arising from using those materials in the construction of dwellings. Radon concentration ranged between 89.2±12.0Bq/m(3) and 1141.0±225.0Bq/m(3). It was determined that Raeq values of samples conformed to world standards except for perlite and single samples of brick and Ahlat stone. Calculated values of absorbed dose rate ranged from 81.3±20.5 to 420.6±42.8nGy/h. ELCR values ranged from (1.8±0.3)×10(-3) to (9.0±1.0)×10(-3). All samples had ELCR values higher than the world average. The values of Hin and Hex varied from 0.35±0.11 to 1.78±0.18 and from 0.37±0.09 to 1.17±0.13, respectively. The results were compared with standard radioactivity values determined by international organizations and with similar studies. There would be a radiation risk for people living in buildings made of perlite, Ahlat-1 and Brick-3. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Detailed faecal fat analysis using Fourier transform infrared spectroscopy: Exploring the possibilities.

    PubMed

    De Koninck, Anne-Sophie; Nys, Karen; Vandenheede, Brent; Van Biervliet, Stephanie; Speeckaert, Marijn M; Delanghe, Joris R

    2016-11-01

    Fourier transform infrared (FTIR) spectroscopic determination of faecal fat is a simple and elegant alternative for the classical Van De Kamer approach. Besides quantification of the total amount of fat, analysis of the lipase hydrolysis efficiency (fatty acid/triglyceride ratio), fatty acid chain length and trans-unsaturated fatty acids could provide a better monitoring of dietary treatment. Stool samples (26 routine samples and 36 cystic fibrosis patients) were analysed with the Perkin Elmer Spectrum Two® spectrometer (3500-450cm -1 ). Fatty acid/triglyceride ratio was calculated using the absorbance ratio at 2855:1746cm -1 . To estimate lipase hydrolysis efficiency, sample ratios were compared with the ratio of butter and pure free fatty acids. Mean fatty acid chain length was calculated using the absorbance ratio at 2855:1709cm -1 . The absorbance at 966cm -1 was used to trace the presence of trans-type unsaturated fatty acids. Butter showed a low fatty acid/triglyceride ratio (1.21) and pure free fatty acids a high fatty acid/triglyceride ratio (6.76). Mean fatty acid/triglyceride ratio of routine stool samples was 4.16±1.01. The applicability of fatty acid/triglyceride ratios was also tested in cystic fibrosis patients under treatment with a mean of 4.92±0.98. Relative absorbance contribution per carbon atom was 0.06 (ratio 1.06 for C18 standard, 0.91 for C16 standard). The mean ratio of the stool samples was 1.12 (mean acyl chain length of C19), with values ranging from 0.73 (C12) to 1.68 (C28). The presence of traceable amounts of trans-unsaturated fatty acids was also demonstrated. For the analysis of faecal material, FTIR provides unique information, difficult to obtain using other techniques. These findings offer perspectives for diet monitoring in patients with (non-)pancreatic malabsorption. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  17. Fabrication of High-Resolution Gamma-Ray Metallic Magnetic Calorimeters with Ag:Er Sensor and Thick Electroplated Absorbers

    NASA Astrophysics Data System (ADS)

    Hummatov, Ruslan; Hall, John A.; Kim, Geon-Bo; Friedrich, Stephan; Cantor, Robin; Boyd, S. T. P.

    2018-05-01

    We are developing metallic magnetic calorimeters for high-resolution gamma-ray spectroscopy for non-destructive assay of nuclear materials. Absorbers for these higher-energy photons can require substantial thickness to achieve adequate stopping power. We developed a new absorber fabrication process using dry-film photoresists to electroform cantilevered, thick absorbers. Gamma detectors with these absorbers have an energy resolution of 38 eV FWHM at 60 keV. In this report, we summarize modifications to STARCryo's "Delta 1000" process for our devices and describe the new absorber fabrication process.

  18. Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors

    DOE PAGES

    George, Nathan Michael; Terrani, Kurt A.; Powers, Jeffrey J.; ...

    2014-09-29

    A study analyzed the neutronics of alternate cladding materials in a pressurized water reactor (PWR) environment. Austenitic type 310 (310SS) and 304 stainless steels, ferritic Fe-20Cr-5Al (FeCrAl) and APMT™ alloys, and silicon carbide (SiC)-based materials were considered and compared with Zircaloy-4. SCALE 6.1 was used to analyze the associated neutronics penalty/advantage, changes in reactivity coefficients, and spectral variations once a transition in the cladding was made. In the cases examined, materials containing higher absorbing isotopes invoked a reduction in reactivity due to an increase in neutron absorption in the cladding. Higher absorbing materials produced a harder neutron spectrum in themore » fuel pellet, leading to a slight increase in plutonium production. A parametric study determined the geometric conditions required to match cycle length requirements for each alternate cladding material in a PWR. A method for estimating the end of cycle reactivity was implemented to compare each model to that of standard Zircaloy-4 cladding. By using a thinner cladding of 350 μm and keeping a constant outer diameter, austenitic stainless steels require an increase of no more than 0.5 wt% enriched 235U to match fuel cycle requirements, while the required increase for FeCrAl was about 0.1%. When modeling SiC (with slightly lower thermal absorption properties than that of Zircaloy), a standard cladding thickness could be implemented with marginally less enriched uranium (~0.1%). Moderator temperature and void coefficients were calculated throughout the depletion cycle. Nearly identical reactivity responses were found when coolant temperature and void properties were perturbed for each cladding material. By splitting the pellet into 10 equal areal sections, relative fission power as a function of radius was found to be similar for each cladding material. FeCrAl and 310SS cladding have a slightly higher fission power near the pellet’s periphery due to the harder neutron spectrum in the system, causing more 239Pu breeding. An economic assessment calculated the change in fuel pellet production costs for use of each cladding. Furthermore, implementing FeCrAl alloys would increase fuel pellet production costs about 15% because of increased 235U enrichment and the additional UO 2 pellet volume enabled by using thinner cladding.« less

  19. Radiation Sensitivity of Soluble Polysilane Derivatives: Science and Applications

    DTIC Science & Technology

    1988-08-01

    sigma bonded, all substituted silane polymers absorb strongly in the UV-visible region. Their absorption spectra depend to some extent on the nature...of the substituents. In this regard alkyl substituted, atatic, amphorous materials absorb from 300-325 nm with sterically bulky groups producing a...cases, the polysilane is the primary absorber of the incident radiation. Interestingly, when 3, which absorbs at -400 inm, was incorporated into a film

  20. Investigations on Absorber Materials at Cryogenic Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marhauser, Frank; Elliott, Thomas; Rimmer, Robert

    2009-05-01

    In the framework of the 12 GeV upgrade project for the Continuous Electron Beam Accelerator Facility (CEBAF) improvements are being made to refurbish cryomodules housing Thomas Jefferson National Accelerator Facility's (JLab) original 5-cell cavities. Recently we have started to look into a possible simplification of the existing Higher Order Mode (HOM) absorber design combined with the aim to find alternative material candidates. The absorbers are implemented in two HOM-waveguides immersed in the helium bath and operate at 2 K temperature. We have built a cryogenic setup to perform measurements on sample load materials to investigate their lossy characteristics and variationsmore » from room temperature down to 2 K. Initial results are presented in this paper.« less

  1. Report on objective ride quality evaluation

    NASA Technical Reports Server (NTRS)

    Wambold, J. C.; Park, W. H.

    1974-01-01

    The correlation of absorbed power as an objective ride measure to the subjective evaluation for the bus data was investigated. For some individual bus rides the correlations were poor, but when a sufficient number of rides was used to give reasonable sample base, an excellent correlation was obtained. The following logarithmical function was derived: S = 1.7245 1n (39.6849 AP), where S = one subjective rating of the ride; and AP = the absorbed power in watts. A six-degree-of-freedom method developed for aircraft data was completed. Preliminary correlation of absorbed power with ISO standards further enhances the bus ride and absorbed power correlation numbers since the AP's obtained are of the same order of magnitude for both correlations. While it would then appear that one could just use ISO standards, there is no way to add the effect of three degrees of freedom. The absorbed power provides a method of adding the effects due to the three major directions plus the pitch and roll.

  2. Energy absorption of composite material and structure

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1987-01-01

    Results are presented from a joint research program on helicopter crashworthiness conducted by the U.S. Army Aerostructures Directorate and NASA Langley. Through the ongoing research program an in-depth understanding has been developed on the cause/effect relationships between material and architectural variables and the energy-absorption capability of composite material and structure. Composite materials were found to be efficient energy absorbers. Graphite/epoxy subfloor structures were more efficient energy absorbers than comparable structures fabricated from Kevlar or aluminum. An accurate method of predicting the energy-absorption capability of beams was developed.

  3. Quantification of Material Fluorescence and Light Scattering Cross Sections Using Ratiometric Bandwidth-Varied Polarized Resonance Synchronous Spectroscopy.

    PubMed

    Xu, Joanna Xiuzhu; Hu, Juan; Zhang, Dongmao

    2018-05-25

    Presented herein is the ratiometric bandwidth-varied polarized resonance synchronous spectroscopy (BVPRS2) method for quantification of material optical activity spectra. These include the sample light absorption and scattering cross-section spectrum, the scattering depolarization spectrum, and the fluorescence emission cross-section and depolarization spectrum in the wavelength region where the sample both absorbs and emits. This ratiometric BVPRS2 spectroscopic method is a self-contained technique capable of quantitatively decoupling material fluorescence and light scattering signal contribution to its ratiometric BVPRS2 spectra through the linear curve-fitting of the ratiometric BVPRS2 signal as a function of the wavelength bandwidth used in the PRS2 measurements. Example applications of this new spectroscopic method are demonstrated with materials that can be approximated as pure scatterers, simultaneous photon absorbers/emitters, simultaneous photon absorbers/scatterers, and finally simultaneous photon absorbers/scatterers/emitters. Because the only instruments needed for this ratiometric BVPRS2 technique are the conventional UV-vis spectrophotometer and spectrofluorometer, this work should open doors for routine decomposition of material UV-vis extinction spectrum into its absorption and scattering component spectra. The methodology and insights provided in this work should be of broad significance to all chemical research that involves photon/matter interactions.

  4. Metrological approaches to organic chemical purity: primary reference materials for vitamin D metabolites.

    PubMed

    Nelson, Michael A; Bedner, Mary; Lang, Brian E; Toman, Blaza; Lippa, Katrice A

    2015-11-01

    Given the critical role of pure, organic compound primary reference standards used to characterize and certify chemical Certified Reference Materials (CRMs), it is essential that associated mass purity assessments be fit-for-purpose, represented by an appropriate uncertainty interval, and metrologically sound. The mass fraction purities (% g/g) of 25-hydroxyvitamin D (25(OH)D) reference standards used to produce and certify values for clinical vitamin D metabolite CRMs were investigated by multiple orthogonal quantitative measurement techniques. Quantitative (1)H-nuclear magnetic resonance spectroscopy (qNMR) was performed to establish traceability of these materials to the International System of Units (SI) and to directly assess the principal analyte species. The 25(OH)D standards contained volatile and water impurities, as well as structurally-related impurities that are difficult to observe by chromatographic methods or to distinguish from the principal 25(OH)D species by one-dimensional NMR. These impurities have the potential to introduce significant biases to purity investigations in which a limited number of measurands are quantified. Combining complementary information from multiple analytical methods, using both direct and indirect measurement techniques, enabled mitigation of these biases. Purities of 25(OH)D reference standards and associated uncertainties were determined using frequentist and Bayesian statistical models to combine data acquired via qNMR, liquid chromatography with UV absorbance and atmospheric pressure-chemical ionization mass spectrometric detection (LC-UV, LC-ACPI-MS), thermogravimetric analysis (TGA), and Karl Fischer (KF) titration.

  5. Comparison of absorbed-dose-to-water units for Co-60 and high-energy x-rays between PTB and LNE-LNHB

    NASA Astrophysics Data System (ADS)

    Delaunay, F.; Kapsch, R.-P.; Gouriou, J.; Illemann, J.; Krauss, A.; Le Roy, M.; Ostrowsky, A.; Sommier, L.; Vermesse, D.

    2012-10-01

    During the Euramet project JRP7 ‘External Beam Cancer Therapy’, PTB and LNE-LNHB used primary standards to determine the absorbed dose to water under IMRT conditions (in small fields). PTB used a water calorimeter to determine the absorbed-dose-to-water references in 6 MV and 10 MV beams for field sizes of 10 cm × 10 cm and 3 cm × 3 cm while LNE-LNHB used graphite calorimeters in 6 MV and 12 MV beams for field sizes of 10 cm × 10 cm, 4 cm × 4 cm and 2 cm × 2 cm. The purpose of this study is to compare PTB and LNE-LNHB new absorbed-dose-to-water references. LNE-LNHB sent an Exradin A1SL ionization chamber traceable to its primary standard to the PTB for calibration in 60Co and in linac beams and PTB sent a PTW 31010 ionization chamber traceable to its primary standard to LNE-LNHB for calibration in 60Co and in linac beams. Calculated Sw,air will be used as beam quality specifier for the ionization chamber comparison at different field sizes. The standard uncertainties (k = 1) of PTB and LNE-LNHB calibration coefficients lie respectively between 0.25% (60Co) and 0.40% (linac) and between 0.29% and 0.46%. PTB and LNE-LNHB absorbed-dose-to-water references developed for this project, based respectively on water calorimetry and on graphite calorimetry, agree within 1.5 standard deviations for field size of 10 cm × 10 cm down to 2 cm × 2 cm and for beams of 6 MV to 10 MV.

  6. Highly efficient special sound absorbing solutions

    NASA Technical Reports Server (NTRS)

    Ionescu, M.; Petre-Lazar, S.

    1974-01-01

    Highly efficient special sound absorbing structures with the following criteria are considered: (1) A distribution surface of the sound absorbing material greater than that of the building element on which the structure is placed; (2) The highest possible absorption coefficient in the widest possible frequency band; and (3) adaptability to different construction and aesthetic conditions.

  7. Knitted radar absorbing materials (RAM) based on nickel-cobalt magnetic materials

    NASA Astrophysics Data System (ADS)

    Teber, Ahmet; Unver, Ibrahim; Kavas, Huseyin; Aktas, Bekir; Bansal, Rajeev

    2016-05-01

    There has been a long-standing interest in the development of flexible, lightweight, thin, and reconfigurable radar absorbing materials (RAM) for military applications such as camouflaging ground-based hardware against airborne radar observation. The use of polymeric Polyacrylonitrile (PAN) fabrics as a host matrix for magnetic metal nano-particles (either at the yarn-stage or after weaving the fabric) for shielding and absorbing applications has been described in the literature. In our experimental investigation, the relative concentrations of Nickel and Cobalt as well as the coating time are varied with a view to optimizing the microwave absorption characteristics of the resulting PAN-based composite material in the radar-frequency bands (X, Ku, and K). It is found that the PAN samples with the shortest coating time have the best return losses (under -20 dB return loss over a moderate bandwidth).

  8. Nuclear reactor shutdown system

    DOEpatents

    Bhate, Suresh K.; Cooper, Martin H.; Riffe, Delmar R.; Kinney, Calvin L.

    1981-01-01

    An inherent shutdown system for a nuclear reactor having neutron absorbing rods affixed to an armature which is held in an upper position by a magnetic flux flowing through a Curie temperature material. The Curie temperature material is fixedly positioned about the exterior of an inner duct in an annular region through which reactor coolant flows. Elongated fuel rods extending from within the core upwardly toward the Curie temperature material are preferably disposed within the annular region. Upon abnormal conditions which result in high neutron flux and coolant temperature, the Curie material loses its magnetic permeability, breaking the magnetic flux path and allowing the armature and absorber rods to drop into the core, thus shutting down the fissioning reaction. The armature and absorber rods are retrieved by lowering the housing for the electromagnet forming coils which create a magnetic flux path which includes the inner duct wall. The coil housing then is raised, resetting the armature.

  9. A THz plasmonics perfect absorber and Fabry-Perot cavity mechanism (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhou, Jiangfeng; Bhattarai, Khagendra; Silva, Sinhara; Jeon, Jiyeon; Kim, Junoh; Lee, Sang Jun; Ku, Zahyun

    2016-10-01

    The plasmonic metamaterial perfect absorber (MPA) is a recently developed branch of metamaterial which exhibits nearly unity absorption within certain frequency range.[1-6] The optically thin MPA possesses characteristic features of angular-independence, high Q-factor and strong field localization that have inspired a wide range of applications including electromagnetic wave absorption,[3, 7, 8] spatial[6] and spectral[5] modulation of light,[9] selective thermal emission,[9] thermal detecting[10] and refractive index sensing for gas[11] and liquid[12, 13] targets. In this work, we demonstrate a MPA working at terahertz (THz) regime and characterize it using an ultrafast THz time-domain spectroscopy (THz-TDS). Our study reveal an ultra-thin Fabry-Perot cavity mechanism compared to the impedance matching mechanism widely adopted in previous study [1-6]. Our results also shows higher-order resonances when the cavities length increases. These higher order modes exhibits much larger Q-factor that can benefit potential sensing and imaging applications. [1] C. M. Watts, X. L. Liu, and W. J. Padilla, "Metamaterial Electromagnetic Wave Absorbers," Advanced Materials, vol. 24, pp. 98-120, Jun 19 2012. [2] M. Hedayati, F. Faupel, and M. Elbahri, "Review of Plasmonic Nanocomposite Metamaterial Absorber," Materials, vol. 7, pp. 1221-1248, 2014. [3] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, vol. 100, p. 207402, May 23 2008. [4] H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, et al., "Optically Modulated Multiband Terahertz Perfect Absorber," Advanced Optical Materials, vol. 2, pp. 1221-1226, 2014. [5] D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, "Four-Color Metamaterial Absorber THz Spatial Light Modulator," Advanced Optical Materials, vol. 1, pp. 905-909, 2013. [6] S. Savo, D. Shrekenhamer, and W. J. Padilla, "Liquid Crystal Metamaterial Absorber Spatial Light Modulator for THz Applications," Advanced Optical Materials, vol. 2, pp. 275-279, 2014. [7] H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optics Express, vol. 16, pp. 7181-7188, May 12 2008. [8] J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, "High performance optical absorber based on a plasmonic metamaterial," Applied Physics Letters, vol. 96, p. 251104, 2010. [9] X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, "Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters," Physical Review Letters, vol. 107, p. 045901, 07/18/ 2011. [10] T. Maier and H. Brückl, "Wavelength-tunable microbolometers with metamaterial absorbers," Optics Letters, vol. 34, pp. 3012-3014, 2009/10/01 2009. [11] A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, "Palladium-Based Plasmonic Perfect Absorber in the Visible Wavelength Range and Its Application to Hydrogen Sensing," Nano Letters, vol. 11, pp. 4366-4369, 2011/10/12 2011. [12] N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared Perfect Absorber and Its Application As Plasmonic Sensor," Nano Letters, vol. 10, pp. 2342-2348, Jul 2010. [13] G. H. Li, X. S. Chen, O. P. Li, C. X. Shao, Y. Jiang, L. J. Huang, et al., "A novel plasmonic resonance sensor based on an infrared perfect absorber," Journal of Physics D-Applied Physics, vol. 45, p. 205102, May 23 2012.

  10. Novel quad-band terahertz metamaterial absorber based on single pattern U-shaped resonator

    NASA Astrophysics Data System (ADS)

    Wang, Ben-Xin; Wang, Gui-Zhen

    2017-03-01

    A novel quad-band terahertz metamaterial absorber using four different modes of single pattern resonator is demonstrated. Four obvious frequencies with near-perfect absorption are realized. Near-field distributions of the four modes are provided to reveal the physical picture of the multiple-band absorption. Unlike most previous quad-band absorbers that typically require four or more patterns, the designed absorber has only one resonant structure, which is simpler than previous works. The presented quad-band absorber has potential applications in biological sensing, medical imaging, and material detection.

  11. Determination of β-Carotene in Supplements and Raw Materials by Reversed-Phase High Pressure Liquid Chromatography

    PubMed Central

    Szpylka, John; DeVries, Jonathan W.; Bhandari, S.; Bui, M.H.; Ji, D.; Konings, E.; Lewis, R.; Maas, P.; Parish, H.; Post, B.; Schierle, J.; Sullivan, D.; Taylor, A.; Wang, J.; Ware, G.; Woollard, D.; Wu, T.

    2008-01-01

    Twelve laboratories representing 4 countries participated in an interlaboratory study conducted to determine all-trans-β-carotene and total β-carotene in dietary supplements and raw materials. Thirteen samples were sent as blind duplicates to the collaborators. Results obtained from 11 laboratories are reported. For products composed as softgels and tablets that were analyzed for total β-carotene, the reproducibility relative standard deviation (RSDR) ranged from 3.35 to 23.09% and the HorRat values ranged from 1.06 to 3.72. For these products analyzed for trans β-carotene, the reproducibility relative standard deviation (RSDR) ranged from 4.28 to 22.76% and the HorRat values ranged from 0.92 to 3.37. The RSDr and HorRat values in the analysis of a beadlet raw material were substantial and it is believed that the variability within the material itself introduced significant variation in subsampling. The method uses high pressure liquid chromatography (LC) in the reversed-phase mode with visible light absorbance for detection and quantitation. If high levels of α-carotenes are present, a second LC system is used for additional separation and quantitation of the carotene species. It is recommended that the method be adopted as an AOAC Official Method. PMID:16385976

  12. Preparation and microwave absorption properties of honeycomb core structures coated with composite absorber

    NASA Astrophysics Data System (ADS)

    Luo, Hui; Chen, Fu; Wang, Fang; Wang, Xian; Dai, Weiyong; Hu, Sheng; Gong, Rongzhou

    2018-05-01

    Honeycomb structure coated with paraffin filled with composite of graphene and flaky carbonyl iron powder (FCIP) as lossy filler have been studied. The composite of graphene/FCIP with different weight ratio were synthesized via mechanical milling, the electromagnetic properties of the samples were measured by transmission/reflection method in the frequency range of 8-12 GHz. The microwave absorbing properties of the microwave absorbing honeycomb structure (MAHS) and microwave absorbing honeycomb sandwich structure (MAHSS) were studied based on the Finite Element Method with periodical boundary conditions. The matching layer on the top of the honeycomb sandwich structure can enhanced the microwave absorption properties. It was shown that a light weight and broadband MAHSS could be implemented with the use of the magnetic material and dielectric material.

  13. Experimental study on the cool storage performance of super absorbent polymers for cool storage clothes

    NASA Astrophysics Data System (ADS)

    Li, Shidong; Mo, Caisong; Wang, Junze; Zheng, Jingfu; Tian, Ruhong

    2017-11-01

    In this paper, a kind of cool storage clothes which can cool the human body in high temperature condition is put forward. super absorbent polymers was selected as a cold storage material, through at the normal and extreme environment simulation, the cold storage materials were prepared with different composition, and their performance was tested. Test results show that:under normal temperature conditions, the 1:50 concentration of super absorbent polymers continued to release the longest cooling time, compared with pure water, cooling time extended 43 minutes by about 30%; under the condition of 37°C, the 1:100 concentration of super absorbent polymers continued to release the longest cooling time, compared with pure water, cooling time extended 105 minutes by about 50%.

  14. Lightweight armor system

    DOEpatents

    Chu, Henry S; Langhorst, Benjamin R; Bakas, Michael P; Thinnes, Gary L

    2013-02-26

    The disclosure provides a shock absorbing layer comprised of one or more shock absorbing cells, where a shock absorbing cell is comprised of a cell interior volume containing a plurality of hydrogel particles and a free volume, and where the cell interior volume is surrounded by a containing layer. The containing layer has a permeability such that the hydrogel particles when swollen remain at least partially within the cell interior volume when subjected to a design shock pressure wave, allowing for force relaxation through hydrogel compression response. Additionally, the permeability allows for the flow of exuded free water, further dissipating wave energy. In an embodiment, a plurality of shock absorbing cells is combined with a penetration resistant material to mitigate the transmitted shock wave generated by an elastic precursor wave in the penetration resistant material.

  15. A wideband absorber for television studios

    NASA Astrophysics Data System (ADS)

    Baird, M. D. M.

    The acoustic treatment in BBC television has taken various forms to date, all of which have been relatively expensive, some of which provide inadequate absorption. An investigation has been conducted into the possibilities of producing a new type of wideband absorber which would be more economic, also taking installation time into account, than earlier designs. This Report describes the absorption coefficient measurements made on various combinations of materials, from which a wideband sound absorber has been developed. The absorber works efficiently between 50 Hz and 10 kHz, is simple and easy to construct using readily available materials, and is fire resistant. The design lends itself, if necessary, to on-site fine tuning, and savings in the region of 50 percent can be achieved in terms of cost and space with respect to previous designs.

  16. Low temperature selective absorber research

    NASA Astrophysics Data System (ADS)

    Herzenberg, S. A.; Silberglitt, R.

    1982-04-01

    Research carried out since 1979 on selective absorbers is surveyed, with particular attention given to the low-temperature coatings seen as promising for flat plate and evacuated tube applications. The most thoroughly investigated absorber is black chrome, which is highly selective and is the most durable low-temperature absorber. It is believed that other materials, because of their low cost and lower content of strategic materials, may eventually supplant black chrome. Among these candidates are chemically converted black nickel; anodically oxidized nickel, zinc, and copper composites; and nickel or other low-cost multilayer coatings. In reviewing medium and high-temperature research, black chrome, multilayer coatings and black cobalt are seen as best medium-temperature candidates. For high temperatures, an Al2O3/Pt-Al203 multilayer composite or the zirconium diboride coating is preferred.

  17. Utilizing strongly absorbing materials for low-loss surface-wave nonlinear optics

    NASA Astrophysics Data System (ADS)

    Grosse, Nicolai B.; Franz, Philipp; Heckmann, Jan; Pufahl, Karsten; Woggon, Ulrike

    2018-04-01

    Optical media endowed with large nonlinear susceptibilities are highly prized for their employment in frequency conversion and the generation of nonclassical states of light. Although the presence of an optical resonance can greatly increase the nonlinear response (e.g., in epsilon-near-zero materials), the non-negligible increase in linear absorption often precludes the application of such materials in nonlinear optics. Absorbing materials prepared as thin films, however, can support a low-loss surface wave: the long-range surface exciton polariton (LRSEP). Its propagation lifetime increases with greater intrinsic absorption and reduced film thickness, provided that the film is embedded in a transparent medium (symmetric cladding). We explore LRSEP propagation in a molybdenum film by way of a prism-coupling configuration. Our observations show that excitation of the LRSEP mode leads to a dramatic increase in the yield of second-harmonic generation. This implies that the LRSEP mode is an effective vehicle for utilizing the nonlinear response of absorbing materials.

  18. [Reaction of the fibrose eyeball covering upon the suture material synthetic and absorbable "Dexon". (Experimental study) (author's transl)].

    PubMed

    Olah, Z

    1979-11-01

    The present paper deals with the results of 20 eyes of experimentally operated laboratory animals, whose perforating wounds (of cornea and those of sclerocorneal region) have been suturated with a new type of absorbable synthetic suture material "Dexon" thickness being 6-0. The synthetic absorbable suture material "Dexon" is made of polyglycol acid, and it has been introduced to market by the firm Davis and Geck (U.S.A.). The inflammatory tissue reaction to the presence of the suture material "Dexon" is prominent and can by compared to the reaction to chromic resorbable suture materials (catgut or collagen). The suture material "Dexon" start to resorb in the course of the 2nd-3rd weeks after operation. The suture material "Dexon" can be used at an advantage in the operation where it is possible to cover the knots by a conjuctival lobe (in sclerocorneal region or in strabismus surgery) in this way the tendency to overgrowing of epithelial cells along the suture channels can be prevented. The "Dexon" material is sufficiently flexible and firm and has no antigenic properties, therefore it appears very prospective for ophthalmosurgery.

  19. Optical Features of Efficient Europium(III) Complexes with β-Diketonato and Auxiliary Ligands and Mechanistic Investigation of Energy Transfer Process.

    PubMed

    Bala, Manju; Kumar, Satish; Taxak, V B; Boora, Priti; Khatkar, S P

    2016-09-01

    Two new europium (III) complexes have been synthesized with 1,3-[bis(4-methoxyphenyl)]propane-1,3-dionato (HBMPD) as main ligand and 2,2'-bipyridyl (bipy) or 1,10-phenanthroline (phen) as an auxiliary ligand. The main ligand HBMPD has been synthesized by ecofriendly microwave approach and complexes by solution precipitation method. The resulting materials are characterized by IR, (1)H-NMR, elemental analysis, X-ray diffraction, UV-visible and TG-DTG techniques. The photoluminescence (PL) spectroscopy depicts the detail analysis of photophysical properties of the complexes, their results show that the ligand interact with Eu (III) ion which act as antenna and transfers the absorbed energy to the central europium(III) ion via sensitization process efficiently. As a consequence of this interaction, these materials exhibit excellent luminescent intensity, long decay time (τ), high quantum efficiency (η) and Judd-Ofelt intensity parameter (Ω2). The CIE coordinates fall under the deep red region, matching well with the NTSC (National Television Standard Committee) standard. Hence, these highly efficient optical materials can be used as a red component in organic light emitting diodes (OLEDs) and full color flat panel displays.

  20. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles.

    PubMed

    Neumann, Oara; Feronti, Curtis; Neumann, Albert D; Dong, Anjie; Schell, Kevin; Lu, Benjamin; Kim, Eric; Quinn, Mary; Thompson, Shea; Grady, Nathaniel; Nordlander, Peter; Oden, Maria; Halas, Naomi J

    2013-07-16

    The lack of readily available sterilization processes for medicine and dentistry practices in the developing world is a major risk factor for the propagation of disease. Modern medical facilities in the developed world often use autoclave systems to sterilize medical instruments and equipment and process waste that could contain harmful contagions. Here, we show the use of broadband light-absorbing nanoparticles as solar photothermal heaters, which generate high-temperature steam for a standalone, efficient solar autoclave useful for sanitation of instruments or materials in resource-limited, remote locations. Sterilization was verified using a standard Geobacillus stearothermophilus-based biological indicator.

  1. SU-F-19A-02: Comparison of Absorbed Dose to Water Standards for HDR Ir-192 Brachytherapy Between the LCR, Brazil and NRC, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salata, C; David, M; Almeida, C de

    2014-06-15

    Purpose: To compare absorbed dose to water standards for HDR brachytherapy dosimetry developed by the Radiological Science Laboratory of Rio de Janeiro State University (LCR) and the National Research Council, Canada (NRC). Methods: The two institutions have separately developed absorbed dose standards based on the Fricke dosimetry system. There are important differences between the two standards, including: preparation and read-out of the Fricke solution, irradiation geometry of the Fricke holder in relation to the Ir-192 source, and determination of the G-value to be used at Ir-192 energies. All measurements for both standards were made directly at the NRC laboratory (i.e.,more » no transfer instrument was used) using a single Ir-192 source (microSelectron v2). In addition, the NRC group has established a self-consistent method to determine the G-value for Ir-192, based on an interpolation between G-values obtained at Co-60 and 250kVp X-rays, and this measurement was repeated using the LCR Fricke solution to investigate possible systematic uncertainties. Results: G-values for Co-60 and 250 kVp x-rays, obtained using the LCR Fricke system, agreed with the NRC values within 0.5 % and 1 % respectively, indicating that the general assumption of universal G-values is appropriate in this case. The standard uncertainty in the determination of G for Ir-192 is estimated to be 0.6 %. For the comparison of absorbed dose measurements at the reference point for Ir-192 (1 cm depth in water, perpendicular to the seed long-axis), the ratio Dw(NRC)/Dw(LCR) was found to be 1.011 with a combined standard uncertainty of 1.7 %, k=1. Conclusion: The agreement in the absorbed dose to water values for the LCR and NRC systems is very encouraging. Combined with the lower uncertainty in this approach compared to the present air-kerma approach, these results reaffirm the use of Fricke solution as a potential primary standard for HDR Ir-192 brachytherapy.« less

  2. Gas occurrence property in shales of Tuha basin northwest china

    NASA Astrophysics Data System (ADS)

    Chen, Jinlong; Huang, Zhilong

    2017-04-01

    Pore of rock under formation condition must be fulfilled by gas, oil, or water, so the volume of water and gas is equation to porous volume in shale gas. The occurrences states of gas are free gas, solution gas, and absorbed gas. Field analysis is used to obtain total gas content by improved lost gas recover method. Free gas content acquired by pore proportion of gas, which use measured pore volume minus water and oil saturation, convert gas content of standard condition by state equation. Water saturation obtain from core water content, oil saturation obtain from extract carbohydrate. Solution gas need gas solubility in oil and water to calculate solution gas content in standard condition. Absorbed gas, introduce Absorbed Gas Saturation ɛ, which acquire from isothermal adsorption volume vs field analysis gas content in many basins of published paper, need isothermal adsorption and Absorbed Gas Saturation to obtain absorbed gas content. All of the data build connect with logging value by regression equation. The gas content is 0.92-1.53 m3/t from field analysis, evaluate gas content is 1.33 m3/t average, free gas proportion is about 47%, absorbed gas counter for 49%, and solution gas is average 4%.

  3. Helicopter crashworthiness research program

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.; Boitnott, Richard L.; Carden, Huey D.

    1988-01-01

    Results are presented from the U.S. Army-Aerostructures Directorate/NASA-Langley Research Center joint research program on helicopter crashworthiness. Through the on-going research program an in-depth understanding was developed on the cause/effect relationships between material and architectural variables and the energy-absorption capability of composite material and structure. Composite materials were found to be efficient energy absorbers. Graphite/epoxy subfloor structures were more efficient energy absorbers than comparable structures fabricated from Kevlar or aluminum. An accurate method predicting the energy-absorption capability of beams was developed.

  4. Metallic dielectric photonic crystals and methods of fabrication

    DOEpatents

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2017-12-05

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  5. (C6H13N)2BiI5: A One-Dimensional Lead-Free Perovskite-Derivative Photoconductive Light Absorber.

    PubMed

    Zhang, Weichuan; Tao, Kewen; Ji, Chengmin; Sun, Zhihua; Han, Shiguo; Zhang, Jing; Wu, Zhenyue; Luo, Junhua

    2018-04-16

    Lead-free organic-inorganic hybrid perovskites have recently attracted intense interest as environmentally friendly, low-cost, chemically stable light absorbers. Here, we reported a new one-dimensional (1D) zigzag chainlike light-absorbing hybrid material of (C 6 H 13 N) 2 BiI 5 , in which the corner-sharing octahedral bismuth halide chains are surrounded by organic cations of tetramethylpiperidinium. This unique zigzag 1D hybrid perovskite-derivative material shows a narrow direct band gap of 2.02 eV and long-lived photoluminescence, which is encouraging for optoelectronic applications. Importantly, it behaves as a typical semiconducting material and displays obvious photoresponse in the visible-light range. This work opens a potential pathway for the further application of 1D lead-free hybrids.

  6. Metallic dielectric photonic crystals and methods of fabrication

    DOEpatents

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2016-12-20

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  7. Thermal and chemical remediation of mixed wastes

    DOEpatents

    Nelson, Paul A.; Swift, William M.

    1997-01-01

    A process for treating organic waste materials without venting gaseous emissions to the atmosphere which includes oxidizing the organic waste materials at an elevated temperature not less than about 500.degree. C. with a gas having an oxygen content in the range of from about 20% to about 70% to produce an oxidation product containing CO.sub.2 gas. The gas is then filtered to remove particulates, and then contacted with an aqueous absorbent solution of alkali metal carbonates or alkanolamines to absorb a portion of the CO.sub.2 gas from the particulate-free oxidation product. The CO.sub.2 absorbent is thereafter separated for further processing. A process and system are also disclosed in which the waste materials are contacted with a reactive medium such as lime and product treatment as described.

  8. Application of ICP-OES to the determination of CuIn(1-x)Ga(x)Se2 thin films used as absorber materials in solar cell devices.

    PubMed

    Fernández-Martínez, Rodolfo; Caballero, Raquel; Guillén, Cecilia; Gutiérrez, María Teresa; Rucandio, María Isabel

    2005-05-01

    CuIn(1-x)Ga(x)Se2 [CIGS; x=Ga/(In+Ga)] thin films are among of the best candidates as absorber materials for solar cell applications. The material quality and main properties of the polycrystalline absorber layer are critically influenced by deviations in the stoichiometry, particularly in the Cu/(In+Ga) atomic ratio. In this work a simple, sensitive and accurate method has been developed for the quantitative determination of these thin films by inductively coupled plasma optical emission spectrometry (ICP-OES). The proposed method involves an acid digestion of the samples to achieve the complete solubilization of CIGS, followed by the analytical determination by ICP-OES. A digestion procedure with 50% HNO3 alone or in the presence of 10% HCl was performed to dissolve those thin films deposited on glass or Mo-coated glass substrates, respectively. Two analytical lines were selected for each element (Cu 324.754 and 327.396 nm, Ga 294.364 and 417.206 nm, In 303.936 and 325.609 nm, Se 196.090 and 203.985 nm, and Mo 202.030 and 379.825 nm) and a study of spectral interferences was performed which showed them to be suitable, since they offered a high sensitivity and no significant inter-element interferences were detected. Detection limits for all elements at the selected lines were found to be appropriate for this kind of application, and the relative standard deviations were lower than 1.5% for all elements with the exception of Se (about 5%). The Cu/(In+Ga) atomic ratios obtained from the application of this method to CIGS thin films were consistent with the study of the structural and morphological properties by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

  9. The improvement of a simple theoretical model for the prediction of the sound insulation of double leaf walls.

    PubMed

    Davy, John L

    2010-02-01

    This paper presents a revised theory for predicting the sound insulation of double leaf cavity walls that removes an approximation, which is usually made when deriving the sound insulation of a double leaf cavity wall above the critical frequencies of the wall leaves due to the airborne transmission across the wall cavity. This revised theory is also used as a correction below the critical frequencies of the wall leaves instead of a correction due to Sewell [(1970). J. Sound Vib. 12, 21-32]. It is found necessary to include the "stud" borne transmission of the window frames when modeling wide air gap double glazed windows. A minimum value of stud transmission is introduced for use with resilient connections such as steel studs. Empirical equations are derived for predicting the effective sound absorption coefficient of wall cavities without sound absorbing material. The theory is compared with experimental results for double glazed windows and gypsum plasterboard cavity walls with and without sound absorbing material in their cavities. The overall mean, standard deviation, maximum, and minimum of the differences between experiment and theory are -0.6 dB, 3.1 dB, 10.9 dB at 1250 Hz, and -14.9 dB at 160 Hz, respectively.

  10. Method and apparatus for component separation using microwave energy

    DOEpatents

    Morrow, Marvin S.; Schechter, Donald E.; Calhoun, Jr., Clyde L.

    2001-04-03

    A method for separating and recovering components includes the steps of providing at least a first component bonded to a second component by a microwave absorbent adhesive bonding material at a bonding area to form an assembly, the bonding material disposed between the components. Microwave energy is directly and selectively applied to the assembly so that substantially only the bonding material absorbs the microwave energy until the bonding material is at a debonding state. A separation force is applied while the bonding material is at the debonding state to permit disengaging and recovering the components. In addition, an apparatus for practicing the method includes holders for the components.

  11. Light-emitting device with organic electroluminescent material and photoluminescent materials

    DOEpatents

    McNulty, Thomas Francis; Duggal, Anil Raj; Turner, Larry Gene; Shiang, Joseph John

    2005-06-07

    A light-emitting device comprises a light-emitting member, which comprises two electrodes and an organic electroluminescent material disposed between the electrodes, and at least one organic photoluminescent ("PL") material. The light-emitting member emits light having a first spectrum in response to a voltage applied across the two electrodes. The organic PL material absorbs a portion of the light emitted by the light-emitting member and emits light having second spectrum different than the first spectrum. The light-emitting device can include an inorganic PL material that absorbs another portion of the light emitted from the light-emitting member and emits light having a third spectrum different than both the first and the second spectra.

  12. Reflection measurements of microwave absorbers

    NASA Astrophysics Data System (ADS)

    Baker, Dirk E.; van der Neut, Cornelis A.

    1988-12-01

    A swept-frequency interferometer is described for making rapid, real-time assessments of localized inhomogeneities in planar microwave absorber panels. An aperture-matched exponential horn is used to reduce residual reflections in the system to about -37 dB. This residual reflection is adequate for making comparative measurements on planar absorber panels whose reflectivities usually fall in the -15 to -25 dB range. Reflectivity measurements on a variety of planar absorber panels show that multilayer Jaumann absorbers have the greatest inhomogeneity, while honeycomb absorbers generally have excellent homogeneity within a sheet and from sheet to sheet. The test setup is also used to measure the center frequencies of resonant absorbers. With directional couplers and aperture-matched exponential horns, the technique can be easily applied in the standard 2 to 40 GHz waveguide bands.

  13. Materials for Consideration in Standardized Canister Design Activities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Charles R.; Ilgen, Anastasia Gennadyevna; Enos, David George

    2014-10-01

    This document identifies materials and material mitigation processes that might be used in new designs for standardized canisters for storage, transportation, and disposal of spent nuclear fuel. It also addresses potential corrosion issues with existing dual-purpose canisters (DPCs) that could be addressed in new canister designs. The major potential corrosion risk during storage is stress corrosion cracking of the weld regions on the 304 SS/316 SS canister shell due to deliquescence of chloride salts on the surface. Two approaches are proposed to alleviate this potential risk. First, the existing canister materials (304 and 316 SS) could be used, but themore » welds mitigated to relieve residual stresses and/or sensitization. Alternatively, more corrosion-resistant steels such as super-austenitic or duplex stainless steels, could be used. Experimental testing is needed to verify that these alternatives would successfully reduce the risk of stress corrosion cracking during fuel storage. For disposal in a geologic repository, the canister will be enclosed in a corrosion-resistant or corrosion-allowance overpack that will provide barrier capability and mechanical strength. The canister shell will no longer have a barrier function and its containment integrity can be ignored. The basket and neutron absorbers within the canister have the important role of limiting the possibility of post-closure criticality. The time period for corrosion is much longer in the post-closure period, and one major unanswered question is whether the basket materials will corrode slowly enough to maintain structural integrity for at least 10,000 years. Whereas there is extensive literature on stainless steels, this evaluation recommends testing of 304 and 316 SS, and more corrosion-resistant steels such as super-austenitic, duplex, and super-duplex stainless steels, at repository-relevant physical and chemical conditions. Both general and localized corrosion testing methods would be used to establish corrosion rates and component lifetimes. Finally, it is unlikely that the aluminum-based neutron absorber materials that are commonly used in existing DPCs would survive for 10,000 years in disposal environments, because the aluminum will act as a sacrificial anode for the steel. We recommend additional testing of borated and Gd-bearing stainless steels, to establish general and localized corrosion resistance in repository-relevant environmental conditions.« less

  14. Investigation into the energy-absorbing properties of multilayered circular thin-walled tube

    NASA Astrophysics Data System (ADS)

    Qi, Aidong; Liu, Chuanhua; Hu, Gongli; Gu, Hongjun

    2002-05-01

    With the rise in collision accident and the increase in requirement for resistance of blastproof structures in recent years, people attach much importance to the research and application of energy-absorbing device. In this paper the author calculates the specific strength, the specific hardness and ultimate internal force of a circular thin-walled tube by theoretic calculations, discusses the feasibility of using circular thin-walled tube as an energy-absorbing element, analyzes the energy-absorbing properties and the energy-absorbing mechanism through the energy-absorbing experiments using various materials and forms of arrangement, reaches the conclusion that the load-bearing capacity and energy-absorbing properties of multilayered tubes are superior to that of single tube, and puts forward the concept of 'grading tube'.

  15. A Triaxial Applicator for the Measurement of the Electromagnetic Properties of Materials

    PubMed Central

    2018-01-01

    The design, analysis, and fabrication of a prototype triaxial applicator is described. The applicator provides both reflected and transmitted signals that can be used to characterize the electromagnetic properties of materials in situ. A method for calibrating the probe is outlined and validated using simulated data. Fabrication of the probe is discussed, and measured data for typical absorbing materials and for the probe situated in air are presented. The simulations and measurements suggest that the probe should be useful for measuring the properties of common radar absorbing materials under usual in situ conditions. PMID:29382122

  16. Solar-collector materials exposure to the IPH site environment. Task 5.0

    NASA Astrophysics Data System (ADS)

    Morris, V. L.

    1982-07-01

    An environmental exposure test was conducted at a site which utilizes solar energy for enhanced oil recovery procedures. Two types of reflector materials were evaluated for survivability in this environment: second surface silvered glass and aluminized acrylic (FEK-244) on an aluminum substrate. Black chrome absorber material and low iron float glass were evaluated for thermal, photochemical and environmental degradation. The reflector specimens were monitored for decreases in specular and hemispherical reflectance due to soil buildup. The absorber material is evaluated for changes in solar absorptivity and emissivity and the glass cover plates is evaluated for changes in transmissivity.

  17. Superabsorbent Multilayer Fabric

    NASA Technical Reports Server (NTRS)

    Coreale, J. V.; Dawn, F. S.

    1982-01-01

    Material contains gel-forming polymer and copolymer that absorb from 70 to 200 times their weight of liquid. Superabsorbent Polymer and Copolymer form gels to bind and retain liquid in multiply fabric. Until reaction between liquid and absorbent masses forms gel, backing layer retains liquids within fabric; also allows material to "breathe." Possible applications include baby diapers, female hygiene napkins, and hospital bedpads. Might also have uses in improvement of dry soil.

  18. Sweat collection capsule

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Delaplaine, R. W. (Inventor)

    1980-01-01

    A sweat collection capsule permitting quantitative collection of sweat is described. The device consists of a frame held immobile on the skin, a closure secured to the frame and absorbent material located next to the skin in a cavity formed by the frame and the closure. The absorbent material may be removed from the device by removing the closure from the frame while the frame is held immobile on the skin.

  19. Can plant-based natural flax replace mineral-based basalt and synthetic E-glass for fibre reinforced polymer tubular energy absorbers? A comparative study on quasi-static axial crushing

    NASA Astrophysics Data System (ADS)

    Yan, Libo; Wang, Bo; Kasal, Bohumil

    2017-12-01

    Using plant-based natural fibres to substitute glass fibres as reinforcement of composite materials is of particular interest due to their economic, technical and environmental significance. One potential application of plant-based natural fibre reinforced polymer (FRP) composites is in automotive engineering as crushable energy absorbers. Current study experimentally investigated and compared the energy absorption efficiency of plant-based natural flax, mineral-based basalt and glass FRP composite tubular energy absorbers subjected to quasi-static axial crushing. The effects of number of flax fabric layer, the use of foam-filler and the type of fibre materials on the crashworthiness characteristics and energy absorption capacities were discussed. In addition, the failure mechanisms of the hollow and foam-filled flax, basalt and glass FRP tubes in quasi-static axial crushing were analysed and compared. The test results showed that the energy absorption capabilities of both hollow and foam-filled energy absorbers made of flax were superior to the corresponding energy absorbers made of basalt and were close to energy absorbers made of glass. This study therefore indicated that flax fibre has the great potential to be suitable replacement of basalt and glass fibres for crushable energy absorber application.

  20. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings

    NASA Astrophysics Data System (ADS)

    Li, Zhongyang; Palacios, Edgar; Butun, Serkan; Kocer, Hasan; Aydin, Koray

    2015-10-01

    Resonant absorbers based on nanostructured materials are promising for variety of applications including optical filters, thermophotovoltaics, thermal emitters, and hot-electron collection. One of the significant challenges for such micro/nanoscale featured medium or surface, however, is costly lithographic processes for structural patterning which restricted from industrial production of complex designs. Here, we demonstrate lithography-free, broadband, polarization-independent optical absorbers based on a three-layer ultrathin film composed of subwavelength chromium (Cr) and oxide film coatings. We have measured almost perfect absorption as high as 99.5% across the entire visible regime and beyond (400-800 nm). In addition to near-ideal absorption, our absorbers exhibit omnidirectional independence for incidence angle over ±60 degrees. Broadband absorbers introduced in this study perform better than nanostructured plasmonic absorber counterparts in terms of bandwidth, polarization and angle independence. Improvements of such “blackbody” samples based on uniform thin-film coatings is attributed to extremely low quality factor of asymmetric highly-lossy Fabry-Perot cavities. Such broadband absorber designs are ultrathin compared to carbon nanotube based black materials, and does not require lithographic processes. This demonstration redirects the broadband super absorber design to extreme simplicity, higher performance and cost effective manufacturing convenience for practical industrial production.

  1. Preparation of new diatomite-chitosan composite materials and their adsorption properties and mechanism of Hg(II).

    PubMed

    Fu, Yong; Xu, Xiaoxu; Huang, Yue; Hu, Jianshe; Chen, Qifan; Wu, Yaoqing

    2017-12-01

    A new composite absorbent with multifunctional and environmental-friendly structures was prepared using chitosan, diatomite and polyvinyl alcohol as the raw materials, and glutaraldehyde as a cross-linking agent. The structure and morphology of the composite absorbent, and its adsorption properties of Hg(II) in water were characterized with Fourier transform infrared (FT-IR) spectra, scanning electron microscope (SEM), X-ray diffraction (XRD), Brunauer Emmett Teller (BET) measurements and ultraviolet-visible (UV-Vis) spectra. The effect of the pH value and contact time on the removal rate and absorbance of Hg(II) was discussed. The adsorption kinetic model and static adsorption isotherm and regeneration of the obtained composite absorbent were investigated. The results indicated that the removal of Hg(II) on the composite absorbent followed a rapid adsorption for 50 min, and was close to the adsorption saturation after 1 h, which is in accord with the Langmuir adsorption isotherm model and the pseudo-second-order kinetic model. When the pH value, contact time and the mass of the composite absorbent was 3, 1 h and 100 mg, respectively, the removal rate of Hg(II) on the composite absorbent reached 77%, and the maximum adsorption capacity of Hg(II) reached 195.7 mg g -1 .

  2. Preparation of new diatomite–chitosan composite materials and their adsorption properties and mechanism of Hg(II)

    PubMed Central

    Fu, Yong; Xu, Xiaoxu; Huang, Yue; Hu, Jianshe; Chen, Qifan; Wu, Yaoqing

    2017-01-01

    A new composite absorbent with multifunctional and environmental-friendly structures was prepared using chitosan, diatomite and polyvinyl alcohol as the raw materials, and glutaraldehyde as a cross-linking agent. The structure and morphology of the composite absorbent, and its adsorption properties of Hg(II) in water were characterized with Fourier transform infrared (FT-IR) spectra, scanning electron microscope (SEM), X-ray diffraction (XRD), Brunauer Emmett Teller (BET) measurements and ultraviolet–visible (UV–Vis) spectra. The effect of the pH value and contact time on the removal rate and absorbance of Hg(II) was discussed. The adsorption kinetic model and static adsorption isotherm and regeneration of the obtained composite absorbent were investigated. The results indicated that the removal of Hg(II) on the composite absorbent followed a rapid adsorption for 50 min, and was close to the adsorption saturation after 1 h, which is in accord with the Langmuir adsorption isotherm model and the pseudo-second-order kinetic model. When the pH value, contact time and the mass of the composite absorbent was 3, 1 h and 100 mg, respectively, the removal rate of Hg(II) on the composite absorbent reached 77%, and the maximum adsorption capacity of Hg(II) reached 195.7 mg g−1. PMID:29308226

  3. Neutron reflectometry on highly absorbing films and its application to 10B4C-based neutron detectors

    PubMed Central

    Piscitelli, F.; Khaplanov, A.; Devishvili, A.; Schmidt, S.; Höglund, C.; Birch, J.; Dennison, A. J. C.; Gutfreund, P.; Hall-Wilton, R.; Van Esch, P.

    2016-01-01

    Neutron reflectometry is a powerful tool used for studies of surfaces and interfaces. The absorption in the typical studied materials is neglected and this technique is limited only to the reflectivity measurement. For strongly absorbing nuclei, the absorption can be directly measured by using the neutron-induced fluorescence technique which exploits the prompt particle emission of absorbing isotopes. This technique is emerging from soft matter and biology where highly absorbing nuclei, in very small quantities, are used as a label for buried layers. Nowadays, the importance of absorbing layers is rapidly increasing, partially because of their application in neutron detection; a field that has become more active also due to the 3He-shortage. We extend the neutron-induced fluorescence technique to the study of layers of highly absorbing materials, in particular 10B4C. The theory of neutron reflectometry is a commonly studied topic; however, when a strong absorption is present the subtle relationship between the reflection and the absorption of neutrons is not widely known. The theory for a general stack of absorbing layers has been developed and compared to measurements. We also report on the requirements that a 10B4C layer must fulfil in order to be employed as a converter in neutron detection. PMID:26997902

  4. Microstructures of superhydrophobic plant leaves - inspiration for efficient oil spill cleanup materials.

    PubMed

    Zeiger, Claudia; Rodrigues da Silva, Isabelle C; Mail, Matthias; Kavalenka, Maryna N; Barthlott, Wilhelm; Hölscher, Hendrik

    2016-08-16

    The cleanup of accidental oil spills in water is an enormous challenge; conventional oil sorbents absorb large amounts of water in addition to oil and other cleanup methods can cause secondary pollution. In contrast, fresh leaves of the aquatic ferns Salvinia are superhydrophobic and superoleophilic, and can selectively absorb oil while repelling water. These selective wetting properties are optimal for natural oil absorbent applications and bioinspired oil sorbent materials. In this paper we quantify the oil absorption capacity of four Salvinia species with different surface structures, water lettuce (Pistia stratiotes) and Lotus leaves (Nelumbo nucifera), and compare their absorption capacity to artificial oil sorbents. Interestingly, the oil absorption capacities of Salvinia molesta and Pistia stratiotes leaves are comparable to artificial oil sorbents. Therefore, these pantropical invasive plants, often considered pests, qualify as environmentally friendly materials for oil spill cleanup. Furthermore, we investigated the influence of oil density and viscosity on the oil absorption, and examine how the presence and morphology of trichomes affect the amount of oil absorbed by their surfaces. Specifically, the influence of hair length and shape is analyzed by comparing different hair types ranging from single trichomes of Salvinia cucullata to complex eggbeater-shaped trichomes of Salvinia molesta to establish a basis for improving artificial bioinspired oil absorbents.

  5. The mirage effect to probe the adsorption of organic molecules on the surface of the mass standards

    NASA Astrophysics Data System (ADS)

    Taillade, F.; Silva, M. Z.; Lepoutre, F.; Lecollinet, M.; Pinot, P.

    2000-05-01

    Among all the basic SI units, the mass unit is the only one to be defined in terms of a material standard: a prototype called K. All the industrial countries possess their own standards which were compared to the K during the last international comparison showing that unknown evolution occurs, but the adsorption-desorption of cleaning products plays a relatively important role. A few years ago, several laboratories in the U.S.A., Germany, and France reported interesting results of photothermal measurements to detect desorption at normal temperature and pressure (NTP). This paper presents a mirage set-up built to detect the film of condensable gasses on metallic surfaces at NTP conditions. In order to quantify these measurements, an inverse method has been developed to determine the adsorption isotherm involved in the physical process of adsorption-desorption and the linked parameters such as absorbability, type of adsorption, and differential heat of adsorption. The results will be discussed to imagine possible tracks to reduce the instabilities of the standards in the future and for possible new definitions of standards built with silicon.

  6. Lyophilization closures for protein based drugs.

    PubMed

    DeGrazio, F; Flynn, K

    1992-01-01

    Rubber stopper formulations which are currently used as lyophilization stoppers vary widely in their capacities to absorb and release moisture. Release of moisture from the stopper over the shelf life of the product may result in drug degradation for extremely low cake weight products. The degree to which rubber formulations absorb water is dependent upon the components of these formulations. Independently, polymers and fillers absorb water during autoclave cycles to varying levels depending upon such factors as the solubility, structure, possibility of chemical reactions and impurity levels of these materials. Once combined into a stopper formulation, the raw materials can react to form species which further promote absorption. Data is presented comparing the absorption characteristics of low versus high absorbent rubber formulations. The release of moisture from these formulas when stoppered on vials containing dry product is also discussed.

  7. NEUTRON SHIELDING STRUCTURE

    DOEpatents

    Mattingly, J.T.

    1962-09-25

    A lightweight neutron shielding structure comprises a honeycomb core which is filled with a neutron absorbing powder. The honeycomb core is faced with parallel planar facing sheets to form a lightweight rigid unit. Suitable absorber powders are selected from among the following: B, B/sub 4/C, B/sub 2/O/ sub 3/, CaB/sub 6/, Li/sub 2/CO3, LiOH, LiBO/sub 2/, Li/s ub 2/O. The facing sheets are constructed of a neutron moderating material, so that fast neutrons will be moderated while traversing the facing sheets, and ultimately be absorbed by the absorber powder in the honeycomb. Beryllium is a preferred moderator material for use in the facing sheets. The advantage of the structure is that it combines the rigidity and light weight of a honeycomb construction with the neutron absorption properties of boron and lithium. (AEC)

  8. Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces

    PubMed Central

    Petoukhoff, Christopher E.; O'Carroll, Deirdre M.

    2015-01-01

    Interactions between absorbers and plasmonic metasurfaces can give rise to unique optical properties not present for either of the individual materials and can influence the performance of a host of optical sensing and thin-film optoelectronic applications. Here we identify three distinct mode types of absorber-coated plasmonic metasurfaces: localized and propagating surface plasmons and a previously unidentified optical mode type called absorption-induced scattering. The extinction of the latter mode type can be tuned by controlling the morphology of the absorber coating and the spectral overlap of the absorber with the plasmonic modes. Furthermore, we show that surface plasmons are backscattered when the crystallinity of the absorber is low but are absorbed for more crystalline absorber coatings. This work furthers our understanding of light–matter interactions between absorbers and surface plasmons to enable practical optoelectronic applications of metasurfaces. PMID:26271900

  9. P-Compensated and P-Doped Superlattice Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Khoshakhlagh, Arezou (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2017-01-01

    Barrier infrared detectors configured to operate in the long-wave (LW) infrared regime are provided. The barrier infrared detector systems may be configured as pin, pbp, barrier and double heterostructrure infrared detectors incorporating optimized p-doped absorbers capable of taking advantage of high mobility (electron) minority carriers. The absorber may be a p-doped Ga-free InAs/InAsSb material. The p-doping may be accomplished by optimizing the Be doping levels used in the absorber material. The barrier infrared detectors may incorporate individual superlattice layers having narrower periodicity and optimization of Sb composition to achieve cutoff wavelengths of.about.10.mu.m.

  10. Numerical study for identification of influence of energy absorption and frontal crush for vehicle crashworthiness

    NASA Astrophysics Data System (ADS)

    Suman, Shwetabh; Shah, Haard; Susarla, Vaibhav; Ravi, K.

    2017-11-01

    According to the statistics it has been seen that everyday nearly 400 people are killed due to road accidents. Due to this it has become an important concern to concentrate on the safety of the passengers which can be done by improving the crashworthiness of the vehicle. During the impact, a large amount of energy is released which if not absorbed, will be transmitted to the passenger compartment. For the safety of the passenger this energy has to be absorbed. Front rail is one of the main energy absorbing components in the vehicle front structure. When it comes to the structure and material of the part or component of the vehicle that is to be designed for crash, it is done based on three parameters: Specific Energy of Absorption, Mass of the front rail and maximum crush force. In this work, we are considering different internal geometries with different materials to increase the energy absorbing capacity of the front rail. Based on the extensive analysis carried aluminium seizes to be the opt material for frontal crash.

  11. Multi-domain boundary element method for axi-symmetric layered linear acoustic systems

    NASA Astrophysics Data System (ADS)

    Reiter, Paul; Ziegelwanger, Harald

    2017-12-01

    Homogeneous porous materials like rock wool or synthetic foam are the main tool for acoustic absorption. The conventional absorbing structure for sound-proofing consists of one or multiple absorbers placed in front of a rigid wall, with or without air-gaps in between. Various models exist to describe these so called multi-layered acoustic systems mathematically for incoming plane waves. However, there is no efficient method to calculate the sound field in a half space above a multi layered acoustic system for an incoming spherical wave. In this work, an axi-symmetric multi-domain boundary element method (BEM) for absorbing multi layered acoustic systems and incoming spherical waves is introduced. In the proposed BEM formulation, a complex wave number is used to model absorbing materials as a fluid and a coordinate transformation is introduced which simplifies singular integrals of the conventional BEM to non-singular radial and angular integrals. The radial and angular part are integrated analytically and numerically, respectively. The output of the method can be interpreted as a numerical half space Green's function for grounds consisting of layered materials.

  12. Experimental investigations of the performance of a solar air collector with latent heat thermal storage integrated with the solar absorber

    NASA Astrophysics Data System (ADS)

    Charvat, P.; Pech, O.; Hejcik, J.

    2013-04-01

    The paper deals with experimental investigations of the performance of a solar air collector with latent heat thermal storage integrated with the solarabsorber. The main purpose of heat storage in solar thermal systems is to store heat when the supply of solar heat exceeds demand and release it when otherwise. A number of heat storage materials can be used for this purpose; the phase change materials among them. Short-term latent heat thermal storage integrated with the solar absorber can stabilize the air temperature at the outlet of the collector on cloudy days when solar radiation intensity incident on a solar collector fluctuates significantly. Two experimental front-and-back pass solar air collectors of the same dimensions have been built for the experimental investigations. One collector had a "conventional" solar absorber made of a metal sheet while the solar absorber of the other collector consisted of containers filled with organic phase change material. The experimental collectors were positioned side by side during the investigations to ensure the same operating conditions (incident solar radiation, outdoor temperature).

  13. Qualitative analysis of Pb liquid sample using laser-induced breakdown spectroscopy (LIBS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suyanto, Hery; Rupiasih, Ni Nyoman; Winardi, T. B.

    2013-09-03

    Qualitative analysis of liquid sample containing 1,000 ppm of Pb was performed by using LIBS technique. In order to avoid splashing off of the liquid sample during laser irradiation, a sample pretreatment was done, namely the liquid sample was absorbed by using commercial available stomach medicine. Two kinds of absorbent materials were chosen in this experiment, first containing 125 mg activated carbon and second 600 mg activated attapulgite. These absorbent materials were used since carbon sample gives better absorption of infrared laser irradiation used in this experiment. In order to characterize the absorption process, three treatments were conducted in thismore » experiment; first, without heating the sample but varying the absorption time before laser irradiation; second by varying the heating temperature after certain time of absorption process and third by varying the temperature only. The maximum emission intensity of Pb I 405.7 nm was found in the second treatment of heating the sample till 85°C after 30 minutes absorption of the liquid sample in both absorbent materials.« less

  14. Absorbent product to absorb fluids. [for collection of human wastes

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multi-layer absorbent product for use in contact with the skin to absorb fluids is discussed. The product utilizes a water pervious facing layer for contacting the skin, overlayed by a first fibrous wicking layer, the wicking layer preferably being of the one-way variety in which fluid or liquid is moved away from the facing layer. The product further includes a first container section defined by inner and outer layer of a water pervious wicking material between which is disposed a first absorbent mass. A second container section defined by inner and outer layers between which is disposed a second absorbent mass and a liquid impermeable/gas permeable layer. Spacesuit applications are discussed.

  15. Advanced gray rod control assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drudy, Keith J; Carlson, William R; Conner, Michael E

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber tomore » enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.« less

  16. Effectiveness of Synthetic Polyurethane Foam as a Nasal Packing Material in Endoscopic Endonasal Dacryocystorhinostomy.

    PubMed

    Lee, Joonsik; Lee, Hwa; Lee, Hyun Kyu; Chang, Minwook; Park, Minsoo; Baek, Sehyun

    2015-10-01

    To compare the effects of 2 nasal packing materials, synthetic polyurethane foam (absorbable) and expandable polyvinyl acetate (nonabsorbable), on the surgical success rate and postoperative complications after endoscopic endonasal dacryocystorhinostomy (EDCR). A retrospective medical review of 459 patients (580 eyes) who underwent EDCR for primary acquired nasolacrimal duct obstruction at Korea University Guro Hospitals from January 2009 to February 2014. Surgical success rate (anatomical, functional), postoperative complications (granuloma, synechia, bleeding, and infection) were compared between the 2 groups, absorbable (318 eyes) and nonabsorbable (262 eyes). The absorbable group showed better results in surgical success rate regarding anatomical (90.5% versus 76.3%, P = 0.00) and functional (89.3% versus 75.9%, P = 0.00). Granulomas developed less frequently in the absorbable group (24.5% versus 38.9%, P = 0.00). Also, bleeding and crust were less frequent in the absorbable group (P = 0.00). Infections were less frequent in the nonabsorbable group (1.52%) compared with the absorbable group (7.86%, P = 0.00). The rate of revision surgery was lower in the absorbable group (7.86% versus 20.9%, P = 0.00). As for the influence of secondary outcomes to the surgical success by multiple logistic regression, granulomas had the largest effect on surgical success either anatomical or functional (odds ratio = 82.393 to anatomical and 44.058 to functional). Synechia had the second largest effect on surgical success (odds ratio = 11.897 to anatomical and 9.605 to functional). The authors suggest that using a synthetic polyurethane foam as a nasal packing material is not only a surgical option, but also a crucial and essential procedure in EDCR.

  17. Analysis of total oil and fatty acids composition by near infrared reflectance spectroscopy in edible nuts

    NASA Astrophysics Data System (ADS)

    Kandala, Chari V.; Sundaram, Jaya

    2014-10-01

    Near Infrared (NIR) Reflectance spectroscopy has established itself as an important tool in quantifying water and oil present in various food materials. It is rapid and nondestructive, easier to use, and does not require processing the samples with corrosive chemicals that would render them non-edible. Earlier, the samples had to be ground into powder form before making any measurements. With the development of new soft ware packages, NIR techniques could now be used in the analysis of intact grain and nuts. While most of the commercial instruments presently available work well with small grain size materials such as wheat and corn, the method present here is suitable for large kernel size products such as shelled or in-shell peanuts. Absorbance spectra were collected from 400 nm to 2500 nm using a NIR instrument. Average values of total oil contents (TOC) of peanut samples were determined by standard extraction methods, and fatty acids were determined using gas chromatography. Partial least square (PLS) analysis was performed on the calibration set of absorption spectra, and models were developed for prediction of total oil and fatty acids. The best model was selected based on the coefficient of determination (R2), Standard error of prediction (SEP) and residual percent deviation (RPD) values. Peanut samples analyzed showed RPD values greater than 5.0 for both absorbance and reflectance models and thus could be used for quality control and analysis. Ability to rapidly and nondestructively measure the TOC, and analyze the fatty acid composition, will be immensely useful in peanut varietal improvement as well as in the grading process of grain and nuts.

  18. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 11: Commissioning of a system for the measurement of electron stopping powers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEwen, Malcolm; Roy, Timothy; Tessier, Frederic

    Purpose: To develop the techniques required to experimentally determine electron stopping powers for application in primary standards and dosimetry protocols. Method and Materials: A large-volume HPGe detector system (>80% efficiency) was commissioned for the measurement of high energy (5–35 MeV) electron beams. As a proof of principle the system was used with a Y-90/Sr-90 radioactive source. Thin plates of absorbing material (< 0.1 gcm-2) were then placed between the source and detector and the emerging electron spectrum was acquired. The full experimental geometry was modelled using the EGSnrc package to validate the detector design, optimize the experimental setup and comparemore » measured and calculated spectra. Results: The biggest challenge using a beta source was to identify a robust spectral parameter to determine for each measurement. An end-point-fitting routine was used to determine the maximum energy, Emax, of the beta spectrum for each absorber thickness t. The parameter dEmax/dt is related to the electron stopping power and the same routine was applied to both measured and simulated spectra. Although the standard uncertainty in dEmax/dt was of the order of 5 %, by taking the ratio of measured and Monte Carlo values for dEmax/dt the uncertainty of the fitting routine was eliminated and the uncertainty was reduced to less than 2 %. The agreement between measurement and simulation was within this uncertainty estimate. Conclusion: The investigation confirmed the experimental approach and demonstrated that EGSnrc could accurately determine correction factors that will be required for the final measurement setup in a linac beam.« less

  19. Precision Controlled Carbon Materials for Next-Generation Optoelectronic and Photonic Devices

    DTIC Science & Technology

    2018-01-08

    absorbers. Semiconducting nanotubes are strong, dye-like absorbers with bandgaps tunable to the ideal for single-junction solar PV ~1.3 eV or deeper...semiconducting carbon nanotube-based photovoltaic solar cells and photodetectors; (2) high-performance carbon nanotube electronics; (3) stretchable...photovoltaic solar cells and photodetectors Semiconducting carbon nanotubes are attractive absorbers for photovoltaic and photodetector devices. The

  20. Effect of Zn doping on the microwave absorption of BFO multiferroic materials

    NASA Astrophysics Data System (ADS)

    Bi, S.; Li, J.; Mei, B.; Su, X. J.; Ying, C. Z.; Li, P. H.

    2018-01-01

    The microwave absorbing materials were firstly used in the Second World War. And the BiFeO3 (BFO) based microwave absorbers have been widely applied into the microwave absorbing area due to its possession of excellent electromagnetic properties. Various methods have been conducted to improve the microwave absorption performance of the BFO based materials. In the work, the sol-gel method were used to prepare the BFO, and the Zn were doped into the BFO to prepare the Bi1-xZnxFeO3 nanoparticles. The X-ray diffraction, scanning electron microscope, and vector network analysis (VNA) were conducted to characterize the microstructure and electromagnetic properties of the as-prepared samples. The results indicate that the Bi1-xZnxFeO3 nanoparticles were successfully gained and the as-prepared samples possess excellent microwave absorption properties.

  1. Solar energy panel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyman, M.

    1980-03-04

    A light-weight, low-cost and high efficiency solar panel includes a light-weight rectangular wood frame which surrounds and houses a copper absorber plate. A pair of spaced glazings, formed from plastic film materials, are disposed above the absorber to define a pair of enclosed air spaces. The lower glazing is capable of withstanding high temperatures and the upper glazing material is capable of providing good weather resistance. The material of the upper glazing extends fully about the frame to protect the entire frame from weathering. Insulation is provided beneath the absorber plate. The frame rests on top of a bottom sheetmore » of insulative foam plastic which is wrapped in a plastic envelope. The surrounding film of the outer glazing is bonded securely to the envelope to encase the entire panel within a protective sealed envelope of weather-resistant plastic film.« less

  2. Thermal and chemical remediation of mixed wastes

    DOEpatents

    Nelson, P.A.; Swift, W.M.

    1997-12-16

    A process is described for treating organic waste materials without venting gaseous emissions to the atmosphere which includes oxidizing the organic waste materials at an elevated temperature not less than about 500 C with a gas having an oxygen content in the range of from about 20% to about 70% to produce an oxidation product containing CO{sub 2} gas. The gas is then filtered to remove particulates, and then contacted with an aqueous absorbent solution of alkali metal carbonates or alkanolamines to absorb a portion of the CO{sub 2} gas from the particulate-free oxidation product. The CO{sub 2} absorbent is thereafter separated for further processing. A process and system are also disclosed in which the waste materials are contacted with a reactive medium such as lime and product treatment as described. 8 figs.

  3. The advantages of absorbed-dose calibration factors.

    PubMed

    Rogers, D W

    1992-01-01

    A formalism for clinical external beam dosimetry based on use of ion chamber absorbed-dose calibration factors is outlined in the context and notation of the AAPM TG-21 protocol. It is shown that basing clinical dosimetry on absorbed-dose calibration factors ND leads to considerable simplification and reduced uncertainty in dose measurement. In keeping with a protocol which is used in Germany, a quantity kQ is defined which relates an absorbed-dose calibration factor in a beam of quality Q0 to that in a beam of quality Q. For 38 cylindrical ion chambers, two sets of values are presented for ND/NX and Ngas/ND and for kQ for photon beams with beam quality specified by the TPR20(10) ratio. One set is based on TG-21's protocol to allow the new formalism to be used while maintaining equivalence to the TG-21 protocol. To demonstrate the magnitude of the overall error in the TG-21 protocol, the other set uses corrected versions of the TG-21 equations and the more consistent physical data of the IAEA Code of Practice. Comparisons are made to procedures based on air-kerma or exposure calibration factors and it is shown that accuracy and simplicity are gained by avoiding the determination of Ngas from NX. It is also shown that the kQ approach simplifies the use of plastic phantoms in photon beams since kQ values change by less than 0.6% compared to those in water although an overall correction factor of 0.973 is needed to go from absorbed dose in water calibration factors to those in PMMA or polystyrene. Values of kQ calculated using the IAEA Code of Practice are presented but are shown to be anomalous because of the way the effective point of measurement changes for 60Co beams. In photon beams the major difference between the IAEA Code of Practice and the corrected AAPM TG-21 protocol is shown to be the Prepl correction factor. Calculated kQ curves and three parameter equations for them are presented for each wall material and are shown to represent accurately the kQ curve for all ion chambers in this study with a wall of that specified material and a thickness less than 0.25 g/cm2. Values of kQ can be measured using the primary standards for absorbed dose in photon beams.

  4. Monte Carlo modelling the dosimetric effects of electrode material on diamond detectors.

    PubMed

    Baluti, Florentina; Deloar, Hossain M; Lansley, Stuart P; Meyer, Juergen

    2015-03-01

    Diamond detectors for radiation dosimetry were modelled using the EGSnrc Monte Carlo code to investigate the influence of electrode material and detector orientation on the absorbed dose. The small dimensions of the electrode/diamond/electrode detector structure required very thin voxels and the use of non-standard DOSXYZnrc Monte Carlo model parameters. The interface phenomena was investigated by simulating a 6 MV beam and detectors with different electrode materials, namely Al, Ag, Cu and Au, with thickens of 0.1 µm for the electrodes and 0.1 mm for the diamond, in both perpendicular and parallel detector orientation with regards to the incident beam. The smallest perturbations were observed for the parallel detector orientation and Al electrodes (Z = 13). In summary, EGSnrc Monte Carlo code is well suited for modelling small detector geometries. The Monte Carlo model developed is a useful tool to investigate the dosimetric effects caused by different electrode materials. To minimise perturbations cause by the detector electrodes, it is recommended that the electrodes should be made from a low-atomic number material and placed parallel to the beam direction.

  5. Effective atomic numbers and electron density of dosimetric material

    PubMed Central

    Kaginelli, S. B.; Rajeshwari, T.; Sharanabasappa; Kerur, B. R.; Kumar, Anil S.

    2009-01-01

    A novel method for determination of mass attenuation coefficient of x-rays employing NaI (Tl) detector system and radioactive sources is described.in this paper. A rigid geometry arrangement and gating of the spectrometer at FWHM position and selection of absorber foils are all done following detailed investigation, to minimize the effect of small angle scattering and multiple scattering on the mass attenuation coefficient, μ/ρ, value. Firstly, for standardization purposes the mass attenuation coefficients of elemental foils such as Aluminum, Copper, Molybdenum, Tantalum and Lead are measured and then, this method is utilized for dosimetric interested material (sulfates). The experimental mass attenuation coefficient values are compared with the theoretical values to find good agreement between the theory and experiment within one to two per cent. The effective atomic numbers of the biological substitute material are calculated by sum rule and from the graph. The electron density of dosimetric material is calculated using the effective atomic number. The study has discussed in detail the attenuation coefficient, effective atomic number and electron density of dosimetric material/biological substitutes. PMID:20098566

  6. Intrascleral outflow after deep sclerectomy with absorbable and non-absorbable implants in the rabbit eye.

    PubMed

    Kałużny, Jakub J; Grzanka, Dariusz; Wiśniewska, Halina; Niewińska, Alicja; Kałużny, Bartłomiej J; Grzanka, Alina

    2012-10-01

    The purpose of the study is an analysis of intrascleral drainage vessels formed in rabbits' eyes after non-penetrating deep sclerectomy (NPDS) with absorbable and non-absorbable implants, and comparison to eyes in which surgery was performed without implanted material. NPDS was carried out in 12 rabbits, with implantation of non-absorbable methacrylic hydrogel (N=10 eyes) or absorbable cross-linked sodium hyaluronate (N=6 eyes), or without any implant (N=8 eyes). All the animals were euthanized 1 year after surgery. Twenty-one eyeballs were prepared for light microscopy and 3 were prepared for transmission electron microscope (TEM) analysis. Aqueous humour pathways were stained with ferritin in 6 eyeballs. By light microscopy, small vessels adjacent to the areas of scarring were the most common abnormality. Vessel density was significantly higher in operated sclera compared to normal, healthy tissue, regardless of the type of implant used. The average vessel densities were 2.18±1.48 vessels/mm2 in non-implanted sclera, 2.34±1.69 vessels/mm2 in eyes with absorbable implants, and 3.64±1.78 vessels/mm2 in eyes with non-absorbable implants. Analysis of iron distribution in ferritin-injected eyes showed a positive reaction inside new aqueous draining vessels in all groups. TEM analysis showed that the ultrastructure of new vessels matched the features of the small veins. Aqueous outflow after NPDS can be achieved through the newly formed network of small intrascleral veins. Use of non-absorbable implants significantly increases vessel density in the sclera adjacent to implanted material compared to eyes in which absorbable implants or no implants were used.

  7. In-vivo assessment of barbed suturing thread with regard to tissue reaction and material absorption in a rat model.

    PubMed

    Petrut, Bogdan; Hogea, Maximiliam; Fetica, Bogdan; Kozan, Andrei; Feflea, Dragos; Sererman, Gabriel; Goezen, Ali Serdar; Rassweiler, Jens

    2013-01-01

    The laparoscopic approach in urological surgery demands a high degree of skill in intracorporeal suturing and knot tying. In an effort to reduce the amount of time required to perform a suture, new materials have been developed that through selfanchorage distribute tension more evenly across the suture and also eliminate the need of knot tying. The goal of this study was to assess the in vivo tissue response to a novel material (V-Loc tm; Covidien) in comparison to established materials (Vicryl, PDS II), in the case of bladder suturing, in a rat model. The study included 48 male Wistar rats. All underwent a median abdominal incision, with a 1cm cystotomy, followed by a running suture. The suture material used was either V-Loc absorbable self anchoring thread, Vicryl threaded absorbable suture or monofilament absorbable suture. The abdominal cavity and the bladder suture were macroscopically evaluated at the rats' scheduled death at 3 and 6 weeks. The bladder wall was microscopically assessed by a pathologist, with regard to tissue reaction and suture material degradation. All rats survived the procedure, with the abdominal scar fully healed at week 2. There were no signs of infection or lithiasis during the observation. Macroscopically, at 3 weeks, the suture material was recognizable and visible in all cases, with special mention that the V-Loc thread was considerably more rigid, retaining its shape almost entirely, and provoked more adhesion of the surrounding tissue. At 6 weeks, the suture was indistinguishable in the bladder wall in the case of monofilament absorbable material, barely visible in the case of Vicryl, while the aspect of the V-Loc suture resembled the one at 3 weeks, with the material still clearly visible in the bladder wall, shape almost entirely maintained, and surrounding tissue adherence. Microscopically, at 3 weeks and 6 weeks, all bladder walls examined had regained their structure. At 3 weeks, the monofilament absorbable suture showed intense tissue reaction, with the material already in phagocytosis; at 6 weeks, no clear evidence of leftover material was observed. At 3 weeks, the Vicryl material showed moderate tissue reaction, with phagocytosis initiated between the strands of the material; at 6 weeks, the material was almost entirely absorbed, but with a clear leftover tissue reaction. In the case of the V-Loc suture, due to the hardness of the thread, the material itself could not be cut for analysis with the bladder wall, and the examination could only involve the bladder wall and marks of the thread. Thus, the tissue reaction was minimal, as was the presence of phagocytes at the suture site. The material showed little, if any, signs of absorption after 6 weeks. The materials tested all proved equally effective in suturing the bladder wall in a rat model. However, the novel barbed thread proved a consistently low in-vivo absorption rate, while maintaining its rigidity over time. More research is needed to assess the possible clinical implications of these findings.

  8. In-vivo assessment of barbed suturing thread with regard to tissue reaction and material absorption in a rat model

    PubMed Central

    PETRUT, BOGDAN; HOGEA, MAXIMILIAM; FETICA, BOGDAN; KOZAN, ANDREI; FEFLEA, DRAGOS; SERERMAN, GABRIEL; GOEZEN, ALI SERDAR; RASSWEILER, JENS

    2013-01-01

    Aim The laparoscopic approach in urological surgery demands a high degree of skill in intracorporeal suturing and knot tying. In an effort to reduce the amount of time required to perform a suture, new materials have been developed that through selfanchorage distribute tension more evenly across the suture and also eliminate the need of knot tying. The goal of this study was to assess the in vivo tissue response to a novel material (V-Loc tm; Covidien) in comparison to established materials (Vicryl, PDS II), in the case of bladder suturing, in a rat model. Methods The study included 48 male Wistar rats. All underwent a median abdominal incision, with a 1cm cystotomy, followed by a running suture. The suture material used was either V-Loc absorbable self anchoring thread, Vicryl threaded absorbable suture or monofilament absorbable suture. The abdominal cavity and the bladder suture were macroscopically evaluated at the rats’ scheduled death at 3 and 6 weeks. The bladder wall was microscopically assessed by a pathologist, with regard to tissue reaction and suture material degradation. Results All rats survived the procedure, with the abdominal scar fully healed at week 2. There were no signs of infection or lithiasis during the observation. Macroscopically, at 3 weeks, the suture material was recognizable and visible in all cases, with special mention that the V-Loc thread was considerably more rigid, retaining its shape almost entirely, and provoked more adhesion of the surrounding tissue. At 6 weeks, the suture was indistinguishable in the bladder wall in the case of monofilament absorbable material, barely visible in the case of Vicryl, while the aspect of the V-Loc suture resembled the one at 3 weeks, with the material still clearly visible in the bladder wall, shape almost entirely maintained, and surrounding tissue adherence. Microscopically, at 3 weeks and 6 weeks, all bladder walls examined had regained their structure. At 3 weeks, the monofilament absorbable suture showed intense tissue reaction, with the material already in phagocytosis; at 6 weeks, no clear evidence of leftover material was observed. At 3 weeks, the Vicryl material showed moderate tissue reaction, with phagocytosis initiated between the strands of the material; at 6 weeks, the material was almost entirely absorbed, but with a clear leftover tissue reaction. In the case of the V-Loc suture, due to the hardness of the thread, the material itself could not be cut for analysis with the bladder wall, and the examination could only involve the bladder wall and marks of the thread. Thus, the tissue reaction was minimal, as was the presence of phagocytes at the suture site. The material showed little, if any, signs of absorption after 6 weeks. Conclusion The materials tested all proved equally effective in suturing the bladder wall in a rat model. However, the novel barbed thread proved a consistently low in-vivo absorption rate, while maintaining its rigidity over time. More research is needed to assess the possible clinical implications of these findings. PMID:26527981

  9. Hybrid vapor phase-solution phase growth techniques for improved CZT(S,Se) photovoltaic device performance

    DOEpatents

    Chang, Liang-Yi; Gershon, Talia S.; Haight, Richard A.; Lee, Yun Seog

    2016-12-27

    A hybrid vapor phase-solution phase CZT(S,Se) growth technique is provided. In one aspect, a method of forming a kesterite absorber material on a substrate includes the steps of: depositing a layer of a first kesterite material on the substrate using a vapor phase deposition process, wherein the first kesterite material includes Cu, Zn, Sn, and at least one of S and Se; annealing the first kesterite material to crystallize the first kesterite material; and depositing a layer of a second kesterite material on a side of the first kesterite material opposite the substrate using a solution phase deposition process, wherein the second kesterite material includes Cu, Zn, Sn, and at least one of S and Se, wherein the first kesterite material and the second kesterite material form a multi-layer stack of the absorber material on the substrate. A photovoltaic device and method of formation thereof are also provided.

  10. [Plastics on the eye - plastics in the eye. Human-optic materials].

    PubMed

    Geyer, Otto-Christian; Schwabe, Peter; Wingler, Frank

    2002-01-01

    Materials of identical or similiar chemical classes are used for contact optics as well as for implantable intraocular devices. All of them derive from the chemistry of industrial product developments. Materials used in and on the eye should behave indifferent. They should not provoke any reaction in the eye and not themselves be altered by the biological surroundings. For materials used in the eye an especially high purity of the polymers utilized as well as a long term light stability is to be demanded. Optical properties like transparency have to be stable over extended time periods under normal light influence. The long time stability of UV-absorbing additives in the materials used has to be verified. All materials used for IOL's - with the exception of the homopolymer of methylmethacrylate - consist of polymer mixtures forming socalled interpenetrating networks which appear as an uniform material. For the manufacturing of intraocular lense materials standardized or unanimous producer prescriptions are not existing. Based on the different polymer formulations different aging and fatigue properties are the outcome. In addition only inadequate knowledge about the long term light stability of the incorporated UV blockers is submitted. Polymeric materials used for IOL's should be subjected in addition to the test methods listed in EN-ISO 11 979/5 to chemical, polymeranalytic and mechanical substance examinations. As a standard in such examinations a polymethylmethacrylate, free of methylacrylate is proposed. Examinations of each lot should be compulsory. Identification of all ingredients of the intraocular materials should be prescribed and labeled in line with the revelations of common medical drugs prescriptions. The relevations commit the medical doctor to inform his patient about possible side effects of the intraocular implants.

  11. Long-range parametric amplification of THz wave with absorption loss exceeding parametric gain.

    PubMed

    Wang, Tsong-Dong; Huang, Yen-Chieh; Chuang, Ming-Yun; Lin, Yen-Hou; Lee, Ching-Han; Lin, Yen-Yin; Lin, Fan-Yi; Kitaeva, Galiya Kh

    2013-01-28

    Optical parametric mixing is a popular scheme to generate an idler wave at THz frequencies, although the THz wave is often absorbing in the nonlinear optical material. It is widely suggested that the useful material length for co-directional parametric mixing with strong THz-wave absorption is comparable to the THz-wave absorption length in the material. Here we show that, even in the limit of the absorption loss exceeding parametric gain, the THz idler wave can grows monotonically from optical parametric amplification over a much longer distance in a nonlinear optical material until pump depletion. The coherent production of the non-absorbing signal wave can assist the growth of the highly absorbing idler wave. We also show that, for the case of an equal input pump and signal in difference frequency generation, the quick saturation of the THz idler wave predicted from a much simplified and yet popular plane-wave model fails when fast diffraction of the THz wave from the co-propagating optical mixing waves is considered.

  12. Hematite from Natural Iron Stones as Microwave Absorbing Material on X-Band Frequency Ranges

    NASA Astrophysics Data System (ADS)

    Zainuri, Mochamad

    2017-05-01

    This study has been investigated the effect of hematite as microwave absorbing materials (RAM) on X-Band frequency ranges. Hematite was succesfully processed by coprecipitation method and calcined at 500 °C for 5 hour. It was synthesized from natural iron stones from Tanah Laut, South Kalimantan, Indonesia. The products were characterized by X-ray diffraxtion (XRD), conductivity measurement, Vibrating Sample Magnetometer (VSM), and Vector Network Analyzer (VNA). The result was shown that hematite has conductivity value on (2.5-3).10-7 S/cm and be included as dielectric materials. The hysterisis curve was shown that hematite was a super paramagnetic materials. The product was mixed on paint with procentage 10% of total weight and coated on steel grade AH36 with spray methods. Then, the maximum of reflection loss on x - band’s frequency range (8,2-12,4) GHz was -7 dB on frequency of 10.5 GHz. It mean that almost 50% electromagnetic energy was absorbed by hematite.

  13. Standardization of the carbon-phenolic materials and processes. Vol. 1: Experimental studies

    NASA Technical Reports Server (NTRS)

    Hall, William B.

    1988-01-01

    Carbon-phenolic composite materials are used as ablative material in the solid rocket motor nozzle of the Space Shuttle. The nozzle is lined with carbon cloth-phenolic resin composites. The nominal effects of the completely consumed solid propellant on the carbon-phenolic material are given. The extreme heat and erosion of the burning propellant are controlled by the carbon-phenolic composite by ablation, the heat and mass transfer process in which a large amount of heat is absorbed by sacrificially removing material from the nozzle surface. Phenolic materials ablate with the initial formation of a char. The depth of the char is a function of the heat conduction coefficient of the composite. The char layer is a very poor heat conductor so it protects the underlying phenolic composite from the high heat of the burning propellant. The nozzle component ablative liners (carbon cloth-phenolic composites) are tape wrapped, hydroclave and/or autoclave cured, machined, and assembled. The tape consists of a prepreg broadcloth. The materials flow sheet for the nozzle ablative liners is shown. The prepreg is a three component system: phenolic resin, carbon cloth, and carbon filler. This is Volume 1 of two, Experimental Studies.

  14. 49 CFR 173.161 - Chemical kits and first aid kits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... requirements of subpart B of this part and may not exceed 30 kg (66 pounds) gross weight; (5) Except for Carbon... kits must include sufficient absorbent material to completely absorb the contents of any liquid...

  15. 49 CFR 173.161 - Chemical kits and first aid kits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... requirements of subpart B of this part and may not exceed 30 kg (66 pounds) gross weight; (5) Except for Carbon... kits must include sufficient absorbent material to completely absorb the contents of any liquid...

  16. 49 CFR 173.161 - Chemical kits and first aid kits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... requirements of subpart B of this part and may not exceed 30 kg (66 pounds) gross weight; (5) Except for Carbon... kits must include sufficient absorbent material to completely absorb the contents of any liquid...

  17. Stable fixation with absorbable sutures in craniofacial surgery.

    PubMed

    Linz, C; Kunz, F; Krauß, J; Böhm, H; Wirth, C; Hartmann, S; Wirbelauer, J; Schweitzer, T

    2016-05-01

    The present study analyses the exclusive use of absorbable suture material (Vicryl(®), Ethicon, Germany) in the fixation of transposed bone segments in craniofacial surgery without modification of the osteotomy design. Among 129 children up to 24 months of age, osteosynthesis was conducted exclusively with Vicryl(®) sutures. The stability of postoperative results was evaluated and possible foreign body reactions were examined within the framework of clinical and radiological routine checks. All examined children exhibited stable postoperative conditions while the length of hospital stay was not affected. X-ray examinations of the skull in two planes demonstrated good bony union in all cases. Relevant foreign body reactions were not observed. The exclusive application of absorbable suture material enables stable and cost effective osteosynthesis. Significant foreign body reactions were not observed. The exclusive use of absorbable sutures did not alter the osteotomy design. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  18. MOX fuel assembly design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reese, A.P.; Crowther, R.L. Jr.

    1992-02-18

    This patent describes improvement in a boiling water reactor core having a plurality of vertically upstanding fuel bundles; each fuel bundle containing longitudinally extending sealed rods with fissile material therein; the improvement comprises the fissile material including a mixture of uranium and recovered plutonium in rods of the fuel bundle at locations other than the corners of the fuel bundle; and, neutron absorbing material being located in rods of the fuel bundle at rod locations adjacent the corners of the fuel bundles whereby the neutron absorbing material has decreased shielding from the plutonium and maximum exposure to thermal neutrons formore » shaping the cold reactivity shutdown zone in the fuel bundle.« less

  19. Super water-absorbing new material from chitosan, EDTA and urea.

    PubMed

    Narayanan, Abathodharanan; Dhamodharan, Raghavachari

    2015-12-10

    A new, super water-absorbing, material is synthesized by the reaction between chitosan, EDTA and urea and named as CHEDUR. CHEDUR is probably formed through the crosslinking of chitosan molecules (CH) with the EDTA-urea (EDUR) adduct that is formed during the reaction. CHEDUR as well as the other products formed in control reactions are characterized extensively. CHEDUR exhibits a very high water uptake capacity when compared with chitosan, chitosan-EDTA adduct, as well as a commercial diaper material. A systematic study was done to find the optimum composition as well as reaction conditions for maximum water absorbing capacity. CHEDUR can play a vital role in applications that demand the rapid absorption and slow release of water such as agriculture, as a three in one new material for the slow release of urea, water and other metal ions that can be attached through the EDTA component. The other potential advantage of CHEDUR is that it can be expected to degrade in soil based on its chitosan backbone. The new material with rapid and high water uptake could also find potential applications as biodegradable active ingredient of the diaper material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Surface Composition and Physical Mixture State of the Regoliths of Outer Solar System Satellites: The Role of Scattering and Absorption by the non-Ice Components and Implications for Rayleigh Absorption and Rayleigh Scattering

    NASA Astrophysics Data System (ADS)

    Clark, R. N.; Perlman, Z. S.; Pearson, N.; Hendrix, A. R.; Cuzzi, J. N.; Cruikshank, D. P.; Bradley, E. T.; Filacchione, G.; Nicholson, P. D.; Hedman, M. M.; Brown, R. H.; Buratti, B. J.; Baines, K. H.; Sotin, C.; Nelson, R. M.

    2014-12-01

    Many outer Solar System satellites have surfaces dominated by water ice and a mysterious material(s) causing strong visible to ultraviolet absorption along with trace other compounds with infrared absorptions, including CO2 and organics. Various mechanisms have been proposed for the UV absorber, including tholins, iron oxides, and nano-sized metallic iron particles (e.g. see Clark et al., 2012, Icarus v218 p831, and references therein). We have constructed extensive laboratory analog measurements and radiative transfer modeling of the materials and scattering conditions that can contribute to the optical properties seen on outer Solar System satellites. We have successfully modeled Rayleigh absorption and Rayleigh scattering to produce spectral shapes typical of those seen in spectra of icy Solar System satellites, including those in the Saturn system observed with the Cassini UVIS and VIMS instruments. While it is easy to create these absorptions with radiative transfer modeling, it has been more difficult to do with laboratory analogs. We are finding that laboratory analogs refine and restricts the possible mixing states of the UV absorber in icy satellite surfaces. We have found that just because a particle is highly absorbing, as in metallic iron, if the particle is not embedded in another matrix, scattering will dominate over absorption and Rayleigh absorption will not be observed. Further, the closer the indices of refraction match between the absorbing particle and the matrix, there will be less scattering and more absorption will occur. But we have also found this to be true with other absorbing material, like Tholins. It is very difficult to obtain the very low reflectances observed in the UV in icy satellite spectra using traditional intimate mixtures, as scattering and first surface reflections contribute significantly to the reflectance. The solution, both from radiative transfer modeling and laboratory analogs point to embedded absorbing materials. For example, nano-phase metallic iron embedded in a less absorbing silicate matrix as meteoritic dust infall onto satellitesurfaces is one explanation. An alternative would be tholins embedded in the ice. Spectral features should be able to distinguish between these and other possibilities and will be explored.

  1. Fabrication of Organic Radar Absorbing Materials: A Report on the TIF Project

    DTIC Science & Technology

    2005-05-01

    thickness, permittivity and permeability. The ability to measure the permittivity and permeability is an essential requirement for designing an optimised...absorber. And good optimisations codes are required in order to achieve the best possible absorber designs . In this report, the results from a...through measurement of their conductivity and permittivity at microwave frequencies. Methods were then developed for optimising the design of

  2. Impact resistant battery enclosure systems

    DOEpatents

    Tsutsui, Waterloo; Feng, Yuezhong; Chen, Weinong Wayne; Siegmund, Thomas Heinrich

    2017-10-31

    Battery enclosure arrangements for a vehicular battery system. The arrangements, capable of impact resistance include plurality of battery cells and a plurality of kinetic energy absorbing elements. The arrangements further include a frame configured to encase the plurality of the kinetic energy absorbing elements and the battery cells. In some arrangements the frame and/or the kinetic energy absorbing elements can be made of topologically interlocked materials.

  3. Absorbent pads for Containment, Neutralization, and Clean-Up of Environmental Spills Containing Chemically-Reactive Agents

    NASA Technical Reports Server (NTRS)

    Davis, Dennis D. (Inventor)

    1997-01-01

    A pad for cleaning up liquid spills is described which contains a porous surface covering, and an absorbent interior containing chemically reactive reagents for neutralizing noxious chemicals within the spilled liquid. The porous surface and the absorbent component would normally consist of chemically resistant materials allowing tentative spill to pass. The absorbent interior which contains the neutralizing reagents can but is not required to be chemically resilient and conducts the liquid chemical spill towards the absorbent interior containing the chemically reactive reagents where the dangerous and undesirable chemicals within the chemical spill are then neutralized as well as removed from the premises.

  4. 10.4% Efficient triple organic solar cells containing near infrared absorbers

    NASA Astrophysics Data System (ADS)

    Meerheim, Rico; Körner, Christian; Oesen, Benjamin; Leo, Karl

    2016-03-01

    The efficiency of organic solar cells can be increased by serially stacked subcells with spectrally different absorber materials. For the triple junction devices presented here, we use the small molecule donor materials DCV5T-Me for the green region and Tol2-benz-bodipy or Ph2-benz-bodipy as near infrared absorbers. The broader spectral response allows an efficiency increase from a pure DCV5T-Me triple cell to a triple junction containing a Ph2-benz-bodipy subcell, reaching 10.4%. As often observed for organic photovoltaics, the efficiency is further increased at low light intensities to 11%, which allows improved energy harvesting under real outdoor conditions and better performance indoor.

  5. Design of a five-band terahertz perfect metamaterial absorber using two resonators

    NASA Astrophysics Data System (ADS)

    Meng, Tianhua; Hu, Dan; Zhu, Qiaofen

    2018-05-01

    We present a polarization-insensitive five-band terahertz perfect metamaterial absorber composed of two metallic circular rings and a metallic ground film separated by a dielectric layer. The calculated results show that the absorber has five distinctive absorption bands whose peaks are greater than 99% on average. The physical origin of the absorber originates from the combination of dipolar, hexapolar, and surface plasmon resonance of the patterned metallic structure, which is different from the work mechanism of previously reported absorbers. In addition, the influence of the structural parameters on the absorption spectra is analyzed to further confirm the origin of the five-band absorption peaks. The proposed absorber has potential applications in terahertz imaging, refractive index sensing, and material detecting.

  6. A study of the optimal transition temperature of PCM (phase change material) wallboard for solar energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, J.B.

    1987-09-01

    In this report, we consider the performance of wallboard impregnated with phase change material. An ideal setting is assumed and several measures of performance discussed. With a definition of optimal performance given, the performance with respect to variation of transition temperature is studied. Results are based on computer simulations of PCM wallboard with a standard stud wall construction. We find the diurnal heat capacity to be overly sensitive to numerical errors for use in PCM applications. The other measures of performance, diurnal effectiveness, net collected to storage ratio, and absolute discharge flux, all indicate similar trends. It is shown thatmore » the optimal transition temperature of the PCM is strongly influenced by amount of solar flux absorbed by the PCM. 6 refs., 5 figs., 5 tabs.« less

  7. Air slab-correction for Γ-ray attenuation measurements

    NASA Astrophysics Data System (ADS)

    Mann, Kulwinder Singh

    2017-12-01

    Gamma (γ)-ray shielding behaviour (GSB) of a material can be ascertained from its linear attenuation coefficient (μ, cm-1). Narrow-beam transmission geometry is required for μ-measurement. In such measurements, a thin slab of the material has to insert between point-isotropic γ-ray source and detector assembly. The accuracy in measurements requires that sample's optical thickness (OT) remain below 0.5 mean free path (mfp). Sometimes it is very difficult to produce thin slab of sample (absorber), on the other hand for thick absorber, i.e. OT >0.5 mfp, the influence of the air displaced by it cannot be ignored during μ-measurements. Thus, for a thick sample, correction factor has been suggested which compensates the air present in the transmission geometry. The correction factor has been named as an air slab-correction (ASC). Six samples of low-Z engineering materials (cement-black, clay, red-mud, lime-stone, cement-white and plaster-of-paris) have been selected for investigating the effect of ASC on μ-measurements at three γ-ray energies (661.66, 1173.24, 1332.50 keV). The measurements have been made using point-isotropic γ-ray sources (Cs-137 and Co-60), NaI(Tl) detector and multi-channel-analyser coupled with a personal computer. Theoretical values of μ have been computed using a GRIC2-toolkit (standardized computer programme). Elemental compositions of the samples were measured with Wavelength Dispersive X-ray Fluorescence (WDXRF) analyser. Inter-comparison of measured and computed μ-values, suggested that the application of ASC helps in precise μ-measurement for thick samples of low-Z materials. Thus, this hitherto widely ignored ASC factor is recommended to use in similar γ-ray measurements.

  8. Development of low-cost technology for the next generation of high efficiency solar cells composed of earth abundant elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Rakesh

    2014-09-28

    The development of renewable, affordable, and environmentally conscious means of generating energy on a global scale represents a grand challenge of our time. Due to the “permanence” of radiation from the sun, solar energy promises to remain a viable and sustainable power source far into the future. Established single-junction photovoltaic technologies achieve high power conversion efficiencies (pce) near 20% but require complicated manufacturing processes that prohibit the marriage of large-scale throughput (e.g. on the GW scale), profitability, and quality control. Our approach to this problem begins with the synthesis of nanocrystals of semiconductor materials comprising earth abundant elements and characterizedmore » by material and optoelectronic properties ideal for photovoltaic applications, namely Cu2ZnSn(S,Se)4 (CZTSSe). Once synthesized, such nanocrystals are formulated into an ink, coated onto substrates, and processed into completed solar cells in such a way that enables scale-up to high throughput, roll-to-roll manufacturing processes. This project aimed to address the major limitation to CZTSSe solar cell pce’s – the low open-circuit voltage (Voc) reported throughout literature for devices comprised of this material. Throughout the project significant advancements have been made in fundamental understanding of the CZTSSe material and device limitations associated with this material system. Additionally, notable improvements have been made to our nanocrystal based processing technique to alleviate performance limitations due to the identified device limitations. Notably, (1) significant improvements have been made in reducing intra- and inter-nanoparticle heterogeneity, (2) improvements in device performance have been realized with novel cation substitution in Ge-alloyed CZTGeSSe absorbers, (3) systematic analysis of absorber sintering has been conducted to optimize the selenization process for large grain CZTSSe absorbers, (4) novel electrical characterization analysis techniques have been developed to identify significant limitations to traditional electrical characterization of CZTSSe devices, and (5) the developed electrical analysis techniques have been used to identify the role that band gap and electrostatic potential fluctuations have in limiting device performance for this material system. The device modeling and characterization of CZTSSe undertaken with this project have significant implications for the CZTSSe research community, as the identified limitations due to potential fluctuations are expected to be a performance limitation to high-efficiency CZTSSe devices fabricated from all current processing techniques. Additionally, improvements realized through enhanced absorber processing conditions to minimize nanoparticle and large-grain absorber heterogeneity are suggested to be beneficial processing improvements which should be applied to CZTSSe devices fabricated from all processing techniques. Ultimately, our research has indicated that improved performance for CZTSSe will be achieved through novel absorber processing which minimizes defect formation, elemental losses, secondary phase formation, and compositional uniformity in CZTSSe absorbers; we believe this novel absorber processing can be achieved through nanocrystal based processing of CZTSSe which is an active area of research at the conclusion of this award. While significant fundamental understanding of CZTSSe and the performance limitations associated with this material system, as well as notable improvements in the processing of nanocrystal based CZTSSe absorbers, have been achieved under this project, the limitation of two years of research funding towards our goals prevents further significant advancements directly identified through pce. improvements relative to those reported herein. As the characterization and modeling subtask of this project has been the main driving force for understanding device limitations, the conclusions of this analysis have just recently been applied to the processing of nanocrystal based CZTSSe absorbers -- with notable success. We expect the notable fundamental understanding of device limitations and absorber sintering achieved under this project will lead to significant improvements in device performance for CZTSSe devices in the near future for devices fabricated from a variety of processing techniques« less

  9. Acute dermal toxicity and sensitization studies of novel nano-enhanced UV absorbers.

    PubMed

    Piasecka-Zelga, Joanna; Zelga, Piotr; Górnicz, Magdalena; Strzelczyk, Paweł; Sójka-Ledakowicz, Jadwiga

    2015-01-01

    Many employees working outside are exposed to the harmful effects of UV radiation. A growing problem is also sensitization to textile materials and allergic reactions to active compounds. Groups of inorganic UV blockers with nanoparticles may provide superior properties over organic UV absorbers with relatively less potential of provoking dermatitis. To assess acute dermal irritation and sensitization of nano UV absorbers. Five UV absorbers with nano-sized particles (Z11, TiO2 - SiO2 [TDPK], TK44, TK11, A8G) and 2 vehicles (paste-based on 10% PEG, and dispersion with 1% HEC) were tested. Acute dermal irritation was tested using group of 3 rabbits for each absorber. The sensitization study was carried out on groups of 15 guinea pigs for each tested textile with a UV absorber showing an Ultraviolet Protection Factor (UPF)>40. This research was designed according to OECD Test Guideline No. 404 and 406, and 21 rabbits and 60 guinea pigs were used in the study. In acute dermal irritation, Z11 and A8G modifiers and the analyzed paste gave results of 0.047 to 0.33 which classifies them as barely perceptible irritants, whereas the other analyzed modifiers and dispersion gave results of 0.00 and were classified as nonirritating. Only the textile with TK 11 did not have UPF>40. The analyzed barrier materials were classified as nonsenitizers (TDPK, A8G) or mild sensitizers (TK44, Z11). None of the analyzed materials or modifiers induced major skin reactions in animals. Therefore, they present low risk of provoking skin reactions in humans.

  10. Study of thermal effects and optical properties of an innovative absorber in integrated collector storage solar water heater

    NASA Astrophysics Data System (ADS)

    Taheri, Yaser; Alimardani, Kazem; Ziapour, Behrooz M.

    2015-10-01

    Solar passive water heaters are potential candidates for enhanced heat transfer. Solar water heaters with an integrated water tank and with the low temperature energy resource are used as the simplest and cheapest recipient devices of the solar energy for heating and supplying hot water in the buildings. The solar thermal performances of one primitive absorber were determined by using both the experimental and the simulation model of it. All materials applied for absorber such as the cover glass, the black colored sands and the V shaped galvanized plate were submerged into the water. The water storage tank was manufactured from galvanized sheet of 0.0015 m in thickness and the effective area of the collector was 0.67 m2. The absorber was installed on a compact solar water heater. The constructed flat-plate collectors were tested outdoors. However the simulation results showed that the absorbers operated near to the gray materials and all experimental results showed that the thermal efficiencies of the collector are over than 70 %.

  11. EPR/PTFE dosimetry for test reactor environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vehar, D.W.; Griffin, P.J.; Quirk, T.J.

    2011-07-01

    The use of Electron Paramagnetic Resonance (EPR) spectroscopy with materials such as alanine is well established as a technique for measurement of ionizing radiation absorbed dose in photon and electron fields such as Co-60, high-energy bremsstrahlung and electron-beam fields [1]. In fact, EPR/Alanine dosimetry has become a routine transfer standard for national standards bodies such as NIST and NPL. In 1992 the Radiation Metrology Laboratory (RML) at Sandia National Laboratories implemented EPR/Alanine capabilities for use in routine and calibration activities at its Co-60 and pulsed-power facilities. At that time it also investigated the usefulness of the system for measurement ofmore » absorbed dose in the mixed neutron/photon environments of reactors such as the Sandia Pulsed Reactor and the Annular Core Research Reactor used for hardness testing of electronics. The RML concluded that the neutron response of alanine was a sufficiently high fraction of the overall dosimeter response that the resulting uncertainties in the photon dose would be unacceptably large for silicon-device testing. However, it also suggested that non-hydrogenous materials such as polytetrafluoroethylene (PTFE) would exhibit smaller neutron response and might be useful in mixed environments. Preliminary research with PTFE in photon environments indicated considerable promise, but further development was not pursued at that time. Because of renewed interest in absorbed dose measurements that could better define the individual contributions of photon and neutron components to the overall dose delivered to a test object, the RML has re-initiated the development of an EPR/PTFE dosimetry system. This effort consists of three stages: 1) Identification of PTFE materials that may be suitable for dosimetry applications. It was speculated that the inconsistency of EPR signatures in the earlier samples may have been due to variability in PTFE manufacturing processes. 2) Characterization of dosimetry in photon-only environments. This is necessary to establish requirements for sample preparation, operating parameters and limitations for use in well-defined and predictable environments prior to deployment in the less well-defined mixed environments of test reactors. 3) Characterization of the EPR responses obtained with PTFE in mixed neutron/photon fields. This includes evaluation of the neutron and photon contributions to response, determination of applicable of neutron fluence and photon dose ranges. This paper presents a summary of the research, a description of the EPR/PTFE dosimetry system, and recommendations for preparation and fielding of the dosimetry in photon and mixed neutron/photon environments. (authors)« less

  12. National survey on the natural radioactivity and 222Rn exhalation rate of building materials in The Netherlands.

    PubMed

    de Jong, P; van Dijk, W; van der Graaf, E R; de Groot, T J H

    2006-09-01

    The present study reports on results of a nation-wide survey on the natural radioactivity concentrations and Rn exhalation rates of the prevailing building materials in the Netherlands. In total 100 samples were taken and analyzed for the activity concentrations of Ra, Ra, Th, and K and for their Rn exhalation rate. The sampled materials consisted of gypsum products, aerated concrete, sand-lime and clay bricks, mortars and concrete, representing about 95% of the stony building materials used in the construction of Dutch homes. The laboratory analyses were performed according to two well-documented standard procedures, the interlaboratory reproducibility of which is found to be within 5% on average. The highest radionuclide concentrations were found in a porous inner wall brick to which fly ash was added. The second highest were clay bricks with average Ra and Ra levels around 40 Bq kg. Concrete and mortar show the highest exhalation rates with a fairly broad range of 1 to 13 microBq (kg s). Low natural radioactivity levels are associated with either natural gypsum (products) or gypsum from flue gas desulphurization units, and low exhalation rates with clay bricks. To evaluate the radiological impact the radioactivity concentrations in each sample were combined into a so-called dose factor, representing the absorbed dose rate in a room with a floor, walls and ceiling of 20 cm of the material in question. For that purpose, calculations with the computer codes MCNP, Marmer and MicroShield on the specific absorbed dose rates were incorporated in the paper. The results of these codes corresponded within 6% and average values were calculated at 0.90, 1.10, and 0.080 nGy h per Bq kg for the U series, the Th series, and K, respectively. Model calculations on the external dose rate, based on the incidence of the various building materials in 1,336 living rooms, are in accordance with measured data.

  13. Establishment of new design criteria for GlidCop ® X-ray absorbers

    DOE PAGES

    Collins, Jeff T.; Nudell, Jeremy; Navrotski, Gary; ...

    2017-02-20

    Here, an engineering research program has been conducted at the Advanced Photon Source (APS) in order to determine the thermomechanical conditions that lead to crack formation in GlidCop ®, a material commonly used to fabricate X-ray absorbers at X-ray synchrotron facilities. This dispersion-strengthened copper alloy is a proprietary material and detailed technical data of interest to the synchrotron community is limited. The results from the research program have allowed new design criteria to be established for GlidCop ® X-ray absorbers based upon the thermomechanically induced fatigue behavior of the material. X-ray power from APS insertion devices was used to exposemore » 30 GlidCop ® samples to 10000 thermal loading cycles each under various beam power conditions, and all of the samples were metallurgically examined for crack presence/geometry. In addition, an independent testing facility was hired to measure temperature-dependent mechanical data and uniaxial mechanical fatigue data for numerous GlidCop ® samples. Data from these studies support finite element analysis (FEA) simulation and parametric models, allowing the development of a thermal fatigue model and the establishment of new design criteria so that the thermomechanically induced fatigue life of X-ray absorbers may be predicted. It is also demonstrated how the thermal fatigue model can be used as a tool to geometrically optimize X-ray absorber designs.« less

  14. Establishment of new design criteria for GlidCop ® X-ray absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Jeff T.; Nudell, Jeremy; Navrotski, Gary

    Here, an engineering research program has been conducted at the Advanced Photon Source (APS) in order to determine the thermomechanical conditions that lead to crack formation in GlidCop ®, a material commonly used to fabricate X-ray absorbers at X-ray synchrotron facilities. This dispersion-strengthened copper alloy is a proprietary material and detailed technical data of interest to the synchrotron community is limited. The results from the research program have allowed new design criteria to be established for GlidCop ® X-ray absorbers based upon the thermomechanically induced fatigue behavior of the material. X-ray power from APS insertion devices was used to exposemore » 30 GlidCop ® samples to 10000 thermal loading cycles each under various beam power conditions, and all of the samples were metallurgically examined for crack presence/geometry. In addition, an independent testing facility was hired to measure temperature-dependent mechanical data and uniaxial mechanical fatigue data for numerous GlidCop ® samples. Data from these studies support finite element analysis (FEA) simulation and parametric models, allowing the development of a thermal fatigue model and the establishment of new design criteria so that the thermomechanically induced fatigue life of X-ray absorbers may be predicted. It is also demonstrated how the thermal fatigue model can be used as a tool to geometrically optimize X-ray absorber designs.« less

  15. Discriminating electromagnetic radiation based on angle of incidence

    DOEpatents

    Hamam, Rafif E.; Bermel, Peter; Celanovic, Ivan; Soljacic, Marin; Yeng, Adrian Y. X.; Ghebrebrhan, Michael; Joannopoulos, John D.

    2015-06-16

    The present invention provides systems, articles, and methods for discriminating electromagnetic radiation based upon the angle of incidence of the electromagnetic radiation. In some cases, the materials and systems described herein can be capable of inhibiting reflection of electromagnetic radiation (e.g., the materials and systems can be capable of transmitting and/or absorbing electromagnetic radiation) within a given range of angles of incidence at a first incident surface, while substantially reflecting electromagnetic radiation outside the range of angles of incidence at a second incident surface (which can be the same as or different from the first incident surface). A photonic material comprising a plurality of periodically occurring separate domains can be used, in some cases, to selectively transmit and/or selectively absorb one portion of incoming electromagnetic radiation while reflecting another portion of incoming electromagnetic radiation, based upon the angle of incidence. In some embodiments, one domain of the photonic material can include an isotropic dielectric function, while another domain of the photonic material can include an anisotropic dielectric function. In some instances, one domain of the photonic material can include an isotropic magnetic permeability, while another domain of the photonic material can include an anisotropic magnetic permeability. In some embodiments, non-photonic materials (e.g., materials with relatively large scale features) can be used to selectively absorb incoming electromagnetic radiation based on angle of incidence.

  16. Apollo couch energy absorbers

    NASA Technical Reports Server (NTRS)

    Wesselski, C. J.; Drexel, R. E.

    1972-01-01

    Load attenuators for the Apollo spacecraft crew couch and its potential applications are described. Energy absorption is achieved through friction and cyclic deformation of material. In one concept, energy absorption is accomplished by rolling a compressed ring of metal between two surfaces. In another concept, energy is absorbed by forcing a plastically deformed washer along a rod. Among the design problems that had to be solved were material selection, fatigue life, ring slippage, lubrication, and friction loading.

  17. Optical supercavitation in soft matter.

    PubMed

    Conti, C; DelRe, E

    2010-09-10

    We investigate theoretically, numerically, and experimentally nonlinear optical waves in an absorbing out-of-equilibrium colloidal material at the gelification transition. At a sufficiently high optical intensity, absorption is frustrated and light propagates into the medium. The process is mediated by the formation of a matter-shock wave due to optically induced thermodiffusion and largely resembles the mechanism of hydrodynamical supercavitation, as it is accompanied by a dynamic phase-transition region between the beam and the absorbing material.

  18. Optical Supercavitation in Soft Matter

    NASA Astrophysics Data System (ADS)

    Conti, C.; Delre, E.

    2010-09-01

    We investigate theoretically, numerically, and experimentally nonlinear optical waves in an absorbing out-of-equilibrium colloidal material at the gelification transition. At a sufficiently high optical intensity, absorption is frustrated and light propagates into the medium. The process is mediated by the formation of a matter-shock wave due to optically induced thermodiffusion and largely resembles the mechanism of hydrodynamical supercavitation, as it is accompanied by a dynamic phase-transition region between the beam and the absorbing material.

  19. Material Model Evaluation of a Composite Honeycomb Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.

  20. Energy absorber uses expanded coiled tube

    NASA Technical Reports Server (NTRS)

    Johnson, E. F.

    1972-01-01

    Mechanical shock mitigating device, based on working material to its failure point, absorbs mechanical energy by bending or twisting tubing. It functions under axial or tangential loading, has no rebound, is area independent, and is easy and inexpensive to build.

  1. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    PubMed

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  2. An assessment of 25-hydroxyvitamin D measurements in comparability studies conducted by the Vitamin D Metabolites Quality Assurance Program.

    PubMed

    Bedner, Mary; Lippa, Katrice A; Tai, Susan S-C

    2013-11-15

    The National Institute of Standards and Technology (NIST), in collaboration with the National Institutes of Health Office of Dietary Supplements, established the first accuracy-based program for improving the comparability of vitamin D metabolite measurements, the Vitamin D Metabolites Quality Assurance Program. The study samples were human serum or plasma Standard Reference Materials (SRMs) with 25-hydroxyvitamin D values that were determined at NIST. Participants evaluated the materials using immunoassay (IA), liquid chromatography (LC) with mass spectrometric detection, and LC with ultraviolet absorbance detection. NIST evaluated the results for concordance within the participant community as well as trueness relative to the NIST value. For the study materials that contain mostly 25-hydroxyvitamin D3 (25(OH)D3),the coefficient of variation (CV) for the participant results was consistently in the range from 7% to 19%, and the median values were biased high relative to the NIST values. However, for materials that contain significant concentrations of both 25-hydroxyvitamin D2 (25(OH)D2) and 25(OH)D3, the median IA results were biased lower than both the LC and the NIST values, and the CV was as high as 28%. The first interlaboratory comparison results for SRM 972a Vitamin D Metabolites in Human Serum are also reported. Relatively large within-lab and between-lab variability hinders conclusive assessments of bias and accuracy. © 2013.

  3. Super-hydrophobic fluorine containing aerogels

    DOEpatents

    Coronado, Paul R [Livermore, CA; Poco, John F [Livermore, CA; Hrubesh, Lawrence W [Pleasanton, CA

    2007-05-01

    An aerogel material with surfaces containing fluorine atoms which exhibits exceptional hydrophobicity, or the ability to repel liquid water. Hydrophobic aerogels are efficient absorbers of solvents from water. Solvents miscible with water are separated from it because the solvents are more volatile than water and they enter the porous aerogel as a vapor across the liquid water/solid interface. Solvents that are immisicble with water are separated from it by selectively wetting the aerogel. The hydrophobic property is achieved by formulating the aerogel using fluorine containing molecules either directly by addition in the sol-gel process, or by treating a standard dried aerogel using the vapor of fluorine containing molecules.

  4. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles

    PubMed Central

    Neumann, Oara; Feronti, Curtis; Neumann, Albert D.; Dong, Anjie; Schell, Kevin; Lu, Benjamin; Kim, Eric; Quinn, Mary; Thompson, Shea; Grady, Nathaniel; Nordlander, Peter; Oden, Maria; Halas, Naomi J.

    2013-01-01

    The lack of readily available sterilization processes for medicine and dentistry practices in the developing world is a major risk factor for the propagation of disease. Modern medical facilities in the developed world often use autoclave systems to sterilize medical instruments and equipment and process waste that could contain harmful contagions. Here, we show the use of broadband light-absorbing nanoparticles as solar photothermal heaters, which generate high-temperature steam for a standalone, efficient solar autoclave useful for sanitation of instruments or materials in resource-limited, remote locations. Sterilization was verified using a standard Geobacillus stearothermophilus-based biological indicator. PMID:23836642

  5. Techno-Economic Analysis of Solar Water Heating Systems inTurkey.

    PubMed

    Ertekin, Can; Kulcu, Recep; Evrendilek, Fatih

    2008-02-25

    In this study, solar water heater was investigated using meteorological and geographical data of 129 sites over Turkey. Three different collector types were compared in terms of absorber material (copper, galvanized sheet and selective absorber). Energy requirement for water heating, collector performances, and economical indicators were calculated with formulations using observed data. Results showed that selective absorbers were most appropriate in terms of coverage rate of energy requirement for water-heating all over Turkey. The prices of selective, copper and galvanized absorber type's heating systems in Turkey were 740.49, 615.69 and 490.89 USD, respectively. While payback periods (PBPs) of the galvanized absorber were lower, net present values (NPVs) of the selective absorber were higher than the rest. Copper absorber type collectors did not appear to be appropriate based on economical indicators.

  6. Techno-Economic Analysis of Solar Water Heating Systems in Turkey

    PubMed Central

    Ertekin, Can; Kulcu, Recep; Evrendilek, Fatih

    2008-01-01

    In this study, solar water heater was investigated using meteorological and geographical data of 129 sites over Turkey. Three different collector types were compared in terms of absorber material (copper, galvanized sheet and selective absorber). Energy requirement for water heating, collector performances, and economical indicators were calculated with formulations using observed data. Results showed that selective absorbers were most appropriate in terms of coverage rate of energy requirement for water-heating all over Turkey. The prices of selective, copper and galvanized absorber type's heating systems in Turkey were 740.49, 615.69 and 490.89 USD, respectively. While payback periods (PBPs) of the galvanized absorber were lower, net present values (NPVs) of the selective absorber were higher than the rest. Copper absorber type collectors did not appear to be appropriate based on economical indicators. PMID:27879764

  7. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon.

    PubMed

    Qiu, Xu; Wang, Lixi; Zhu, Hongli; Guan, Yongkang; Zhang, Qitu

    2017-06-08

    Lightweight microwave absorbing materials have drawn tremendous attention. Herein, nano-porous biomass carbon materials have been prepared by carbonization with a subsequent potassium hydroxide activation of walnut shells and the microwave absorption properties have also been investigated. The obtained samples have large specific surface areas with numerous micropores and nanopores. The sample activated at 600 °C with a specific surface area of 736.2 m 2 g -1 exhibits the most enhanced microwave absorption performance. It has the maximum reflection loss of -42.4 dB at 8.88 GHz and the effective absorption bandwidth (reflection loss below -10 dB) is 1.76 GHz (from 8.08 GHz to 9.84 GHz), corresponding to a thickness of 2 mm. Additionally, the effective absorption bandwidth can reach 2.24 GHz (from 10.48 GHz to 12.72 GHz) when the absorber thickness is 1.5 mm. Three-dimensional porous architecture, interfacial polarization relaxation loss, and the dipolar relaxation loss make a great contribution to the excellent microwave absorption performance. In contrast, the non-activated sample with lower specific surface area (435.3 m 2 g -1 ) has poor microwave absorption performance due to a poor dielectric loss capacity. This comparison highlights the role of micropores and nanopores in improving the dielectric loss property of porous carbon materials. To sum up, porous biomass carbon has great potential to become lightweight microwave absorbers. Moreover, KOH is an efficient activation agent in the fabrication of carbonaceous materials.

  8. Mechanical Properties of the Surface Material of Comet 67P/Churyumov-Gerasimenko Measured By the Casse Instrument Onboard the Philae Lander

    NASA Astrophysics Data System (ADS)

    Knapmeyer, M.; Fischer, H. H.; Seidensticker, K. J.; Arnold, W.; Faber, C.; Möhlmann, D.; Thiel, K.

    2014-12-01

    Satellite remote sensing of ocean color is a critical tool for assessing the productivity of marine ecosystems and monitoring changes resulting from climatic or environmental influences. Yet water-leaving radiance comprises less than 10% of the signal measured from space, making correction for absorption and scattering by the intervening atmosphere imperative. Traditional ocean color retrieval algorithms utilize a standard set of aerosol models and the assumption of negligible water-leaving radiance in the near-infrared. Modern improvements have been developed to handle absorbing aerosols such as urban particulates in coastal areas and transported desert dust over the open ocean, where ocean fertilization can impact biological productivity at the base of the marine food chain. Even so, imperfect knowledge of the absorbing aerosol optical properties or their height distribution results in well-documented sources of error. In the UV, the problem of UV-enhanced absorption and nonsphericity of certain aerosol types are amplified due to the increased Rayleigh and aerosol optical depth, especially at off-nadir view angles. Multi-angle spectro-polarimetric measurements have been advocated as an additional tool to better understand and retrieve the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of the work to be described is the assessment of the effects of absorbing aerosol properties on water leaving radiance measurement uncertainty by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. The phase matrices for the spherical smoke particles were calculated using a standard Mie code, while those for non-spherical dust particles were calculated using the numerical approach described by Dubovik et al., 2006. A vector Markov Chain radiative transfer code including bio-optical models was used to evaluate TOA and water leaving radiances.

  9. Transmission loss of double panels filled with porogranular materials.

    PubMed

    Chazot, Jean-Daniel; Guyader, Jean-Louis

    2009-12-01

    Sound transmission through hollow structures found its interest in several industrial domains such as building acoustics, automotive industry, and aeronautics. However, in practice, hollow structures are often filled with porous materials to improve acoustic properties without adding an excessive mass. Recently a lot of interest arises for granular materials of low density that can be an alternative to standard absorbing materials. This paper aims to predict vibro-acoustic behavior of double panels filled with porogranular materials by using the patch-mobility method recently published. Biot's theory is a basic tool for the description of porous material but is quite difficult to use in practice, mostly because of the solid phase characterization. The original simplified Biot's model (fluid-fluid model) for porogranular material permitting a considerable reduction in data necessary for calculation has been recently published. The aim of the present paper is to propose a model to predict sound transmission through a double panel filled with a porogranular material. The method is an extension of a previous paper to take into account the porogranular material through fluid-fluid Biot's model. After a global overview of the method, the case of a double panel filled with expanded polystyrene beads is studied and a comparison with measurements is realized.

  10. Additive manufacturing of RF absorbers

    NASA Astrophysics Data System (ADS)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  11. Carbonyl iron powder surface modification of magnetorheological elastomers for vibration absorbing application

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Yu, Miao; Zhu, Mi; Qi, Song; Fu, Jie

    2016-11-01

    With excellent characteristic of magnetic-control stiffness, magnetorheological elastomer (MRE) is well suited as a spring element of vibration absorber. To improve the vibration attenuation performance of MRE vibration absorbers, this paper expects to improve the mechanical strength and reduce the loss factor of MRE by interface modification. The surface of carbonyl iron powder (CIP) was modified with silica coating by a simple and convenient approach. Several MRE samples, with different proportions of modified CIPs were fabricated under a constant magnetic field. The morphology and composition of modified CIP were characterized by scanning electron microscope and Fourier transform infrared spectra. The results indicated that the modified CIPs were coated with uniform and continuous silica, which can make a better combination between particle and matrix. The tensile strength, magnetorheological properties and the damping properties of the MRE samples were tested by material testing machine and rheometer. The experimental results demonstrated that the loss factor of the MRE which incorporated with modified CIPs decreased markedly, and the tensile strength of such material has been much improved, at the same time this kind of MRE kept high MR effect. It is expected that this MRE material will meet the requirements of vibration absorber.

  12. Mechanical and optical characterization of bio-nanocomposite from pineapple leaf fiber material for food packaging

    NASA Astrophysics Data System (ADS)

    Nikmatin, Siti; Rudwiyanti, Jerry R.; Prasetyo, Kurnia W.; Yedi, Dwi A.

    2015-01-01

    The utilization of Bio-nanocomposite material that was derived from pineapple leaf fiber as filler and tapioca starch with plasticizer glycerol as a matrix for food packaging can reduce the use of plastic that usually was made from petroleum materials. It is important to develop and producethis environmental friendly plastic because of limited availability of petroleum nowadays. The process of synthesize and characterization tapioca starch with the plasticizer glycerol bionanocomposites using print method had been conducted. There were 3 samples with different filler concentration variation; 3%, 4% and 5%.The results of mechanical test from each sample showed that bio-nanocomposite with 5% filler concentration was the optimum sample with 4.6320 MPa for tensile strength test and 24.87% for the elongation test. Based on the result of optical test for each sample was gained that along with the increasing of concentration filler would make the absorbance value of the sample became decreased, bio-nanocomposite with 5% filler concentration had several peaks with low absorbance values. The first peak was in 253 nm of wavelength regionwith absorbance of 0.131%, and the second peak was in 343 nmwavelength region and absorbance was 0.087%.

  13. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, D.C.

    1987-11-20

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compound of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved. 2 figs.

  14. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, Daniel C.

    1990-01-01

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  15. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, Daniel C.

    1990-02-06

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  16. Comparison of the calculated absorbed dose using the Cadplan™ treatment planning software and Tld-100 measurements in an Alderson-Rando phantom for a bronchogenic treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutiérrez Castillo, J. G., E-mail: jggc59@hotmail.com; Álvarez Romero, J. T., E-mail: trinidad.alvarez@inin.gob.mx, E-mail: fisarmandotorres@gmail.com, E-mail: victor.tovar@inin.gob.mx; Calderón, A. Torres, E-mail: trinidad.alvarez@inin.gob.mx, E-mail: fisarmandotorres@gmail.com, E-mail: victor.tovar@inin.gob.mx

    2014-11-07

    To verify the accuracy of the absorbed doses D calculated by a TPS Cadplan for a bronchogenic treatment (in an Alderson-Rando phantom) are chosen ten points with the following D's and localizations. Point 1, posterior position on the left edge with 136.4 Gy. Points: 2, 3 and 4 in the left lung with 104.9, 104.3 and 105.8 Gy, respectively; points 5 and 6 at the mediastinum with 192.4 and 173.5 Gy; points 7, 8 and 9 in the right lung with 105.8, 104.2 and 104.7 Gy, and 10 at posterior position on right edge with 143.7 Gy. IAEA type capsulesmore » with TLD 100 powder are placed, planned and irradiated. The evaluation of the absorbed dose is carried out a curve of calibration for the LiF response (nC) {sup vs} {sup DW}, to several cavity theories. The traceability for the DW is obtained with a secondary standard calibrated at the NRC (Canada). The dosimetric properties for the materials considered are determined from the Hounsfield numbers reported by the TPS. The stopping power ratios are calculated for nominal spectrum to 6 MV photons. The percent variations among the planned and determined D in all the cases they are < ± 3%.« less

  17. Development of a portable thermal neutron detector based on a boron rich heterodiode

    NASA Astrophysics Data System (ADS)

    Tomov, R.; Venn, R.; Owens, A.; Peacock, A.

    2008-10-01

    Results are presented on the development of a portable detector suitable for detection of individual thermal neutrons. The device is based on direct absorption of neutrons in an absorber film containing 10B. The resultant charge arising from the capture products is detected by a p-n junction partly formed from this absorber and internal to the device. When a small bias voltage is applied (typically a few volts) a current pulse is observed due to the movement of this charge in the electric field of the p-n junction. For each detected neutron the charge pulse height, rise time and time of detection are recorded. Device performance, in terms of efficiency and spectral response, is explored as a function of neutron absorber thickness, geometry and overall diode electrical characteristics and validated against neutron source measurements at the UK National Physical Laboratory (NPL). The diodes have a natural background suppression capability through traditional pulse height and pulse rise time discrimination. The manufacturing process permits fabrication of arrays of diodes, with typical areas of ~15 mm2, thus increasing the collecting area and the signal to noise ratio, albeit with increased readout complexity. The associated multi-channel readout electronics is standard, however, and commonly used in existing X-ray sensors. Simple portable sensors based on these heterodiodes are expected to have applications in the detection of nuclear materials in a variety of security related situations.

  18. Improved thermal storage material for portable life support systems

    NASA Technical Reports Server (NTRS)

    Kellner, J. D.

    1975-01-01

    The availability of thermal storage materials that have heat absorption capabilities substantially greater than water-ice in the same temperature range would permit significant improvements in performance of projected portable thermal storage cooling systems. A method for providing increased heat absorption by the combined use of the heat of solution of certain salts and the heat of fusion of water-ice was investigated. This work has indicated that a 30 percent solution of potassium bifluoride (KHF2) in water can absorb approximately 52 percent more heat than an equal weight of water-ice, and approximately 79 percent more heat than an equal volume of water-ice. The thermal storage material can be regenerated easily by freezing, however, a lower temperature must be used, 261 K as compared to 273 K for water-ice. This work was conducted by the United Aircraft Research Laboratories as part of a program at Hamilton Standard Division of United Aircraft Corporation under contract to NASA Ames Research Center.

  19. 14 CFR 27.475 - Tires and shock absorbers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tires and shock absorbers. 27.475 Section 27.475 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.475 Tires and shock...

  20. Solar concentrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melchior, B.

    1984-04-03

    A solar concentrator comprises a solid block of a transparent material having a planar incident surface positioned to receive solar rays and, opposite this surface, a curved reflective surface so that the material of the block completely fills the space between these surfaces. At the incident surface an absorber is provided and the curvature of the reflective surface is such that it is at least partly parabolical and adapted to reflect solar rays traversing the body through the body again to the absorber.

  1. ’Head-On’ Scattering of a Tubular Cylinder of Finite Length for Radar Target Identification Purposes

    DTIC Science & Technology

    1985-03-01

    environment. The anechoic chamber is enclosed with aluminium plates and internally lined with a radio frequency absorbing material. The absorbing material...provides the necessary attenuation to the reflections from the walls, floor and ceiling, and the aluminium surface provides protection against external...inch aluminium sphere is used. Some measurements are taken with a cylinder with fins attached .The description of the cylinder with fins is shown in

  2. Fluorescent refrigeration

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Buchwald, Melvin I.; Gosnell, Timothy R.

    1995-01-01

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement.

  3. Fluorescent refrigeration

    DOEpatents

    Epstein, R.I.; Edwards, B.C.; Buchwald, M.I.; Gosnell, T.R.

    1995-09-05

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement. 6 figs.

  4. Optical response of strongly absorbing inhomogeneous materials: Application to paper degradation

    NASA Astrophysics Data System (ADS)

    Missori, M.; Pulci, O.; Teodonio, L.; Violante, C.; Kupchak, I.; Bagniuk, J.; Łojewska, J.; Conte, A. Mosca

    2014-02-01

    In this paper, we present a new noninvasive and nondestructive approach to recover scattering and absorption coefficients from reflectance measurements of highly absorbing and optically inhomogeneous media. Our approach is based on the Yang and Miklavcic theoretical model of light propagation through turbid media, which is a generalization of the Kubelka-Munk theory, extended to accommodate optically thick samples. We show its applications to paper, a material primarily composed of a web of fibers of cellulose, whose optical properties are strongly governed by light scattering effects. Samples studied were ancient and industrial paper sheets, aged in different conditions and highly absorbing in the ultraviolet region. The recovered experimental absorptions of cellulose fibers have been compared to theoretical ab initio quantum-mechanical computational simulations carried out within time-dependent density functional theory. In this way, for each sample, we evaluate the absolute concentration of different kinds of oxidized groups formed upon aging and acting as chromophores causing paper discoloration. We found that the relative concentration of different chromophores in cellulose fibers depends on the aging temperature endured by samples. This clearly indicates that the oxidation of cellulose follows temperature-dependent reaction pathways. Our approach has a wide range of applications for cellulose-based materials, like paper, textiles, and other manufactured products of great industrial and cultural interest, and can potentially be extended to other strongly absorbing inhomogeneous materials.

  5. Application of Absorbable Hemostatic Materials Observed in Thyroid Operation

    NASA Astrophysics Data System (ADS)

    Li, Yan-Ming; Liang, Zhen-Zhen; Song, Yan

    2016-05-01

    To observe the application effects of the absorbable hemostatic materials in thyroid operation. Methods: From May 2014 to January 2015, 100 patients with thyroid surgery in our university affiliated hospital were selected as the research object. Randomly divided into experimental group and control group, 50 cases in each group. Application of absorbable hemostatic hemostatic materials in the experimental group during the operation, the control group using the traditional mechanical methods of hemostasis hemostasis to observe the operation time, bleeding volume, postoperative drainage volume, complications and hospital stay of the two groups. Results: The operation time, bleeding volume, postoperative drainage and hospital stay in the experimental group were significantly lower in the study group than in the control group, and the difference between the two groups was statistically significant (P< 0.05); The satisfaction of patients in the experimental group was significantly higher than that in the control group, the difference was statistically significant in the two groups (P < 0.05); There was no significant difference in the incidence of wound bleeding complications between the study group and the control group (P > 0.05). Conclusion: Absorbable hemostatic materials can effectively shorten the operation time, reduce intraoperative blood loss and postoperative drainage, reduce the length of hospital stay and improve the success rate of surgery and patient satisfaction, which is worthy to be popularized in clinical thyroid surgery.

  6. Solar sustained plasma/absorber conceptual design

    NASA Technical Reports Server (NTRS)

    Rodgers, R. J.; Krascella, N. L.; Kendall, J. S.

    1979-01-01

    A space power system concept was evaluated which uses concentrated solar energy to heat a working fluid to temperatures as high as 4000 K. The high temperature working fluid could be used for efficient electric power production in advanced thermal or magnetohydrodynamic conversion cycles. Energy absorber configurations utilizing particles or cesium vapor absorber material were investigaed. Results of detailed radiant heat transfer calculations indicated approximately 86 percent of the incident solar energy could be absorbed within a 12-cm-dia flowing stream of gas borne carbon particles. Calculated total energy absorption in the cesium vapor seeded absorber configuration ranged from 34 percent to 64 percent of the incident solar energy. Solar flux concentration ratios of between approximately 3000 and 10,000 will be required to sustain absorber temperatures in the range from 3000 K to 4000 K.

  7. Repair of orbital floor fractures with absorbable gelatin film.

    PubMed

    Mermer, R W; Orban, R E

    1995-01-01

    Many materials have been utilized for the repair of orbital floor fractures. Absorbable gelatin film is a bioabsorbable sheeting material that is manufactured from denatured collagen. This material is appropriate for the repair of smaller orbital floor defects (5 mm or less) and trapdoor-type fractures; it is used with larger defects as an interpositional graft material between the periorbital tissues and as an orbital floor reconstruction plate or mesh. Sixteen cases consisting of both types of defects were retrospectively examined clinically and radiographically. Satisfactory results were obtained in all of these cases, including no adverse ocular signs or implant rejection, good facial form, good function, and acceptable postoperative radiography results.

  8. KEY COMPARISON: Comparison of the standards for absorbed dose to water of the ENEA-INMRI (Italy) and the BIPM for 60Co γ rays

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Allisy-Roberts, P. J.; Burns, D. T.; Guerra, A. S.; Laitano, R. F.; Pimpinella, M.

    2010-01-01

    A comparison of the standards for absorbed dose to water of the Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti of the Ente per le Nuove Tecnologie, l'Energia e l'Ambiente, Italy (ENEA-INMRI), and of the Bureau International des Poids et Mesures (BIPM) has been made in 60Co gamma radiation under the auspices of the key comparison BIPM.RI(I)-K4. The comparison result, based on the calibration coefficients for three transfer standards and expressed as a ratio of the ENEA and the BIPM standards for absorbed dose to water, is 0.9999 (0.0044). The present 2007 result replaces the earlier ENEA value in this key comparison. The degrees of equivalence between the ENEA and the other participants in this comparison have been calculated and the results are given in the form of a matrix for the ten national metrology institutes (NMIs) that have published results in this ongoing comparison for absorbed dose to water. A graphical presentation is also given. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section I, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  9. Use of absorbent materials in on-line coupled reversed-phase liquid chromatography-gas chromatography via the through oven transfer adsorption desorption interface.

    PubMed

    Flores, Gema; Díaz-Plaza, Eva María; Cortés, Jose Manuel; Villén, Jesús; Herraiz, Marta

    2008-11-21

    The use of absorbents as retaining materials in the through oven transfer adsorption desorption interface (TOTAD) of an on-line coupled reversed-phase liquid chromatography-gas chromatography system (RPLC-GC) is proposed for the first time. A comparative study of an adsorbent (Tenax TA) and two absorbents, namely polydimethylsiloxane and poly(50% phenyl/50% methylsiloxane) is performed to establish the best experimental conditions for the automated and simultaneous determination of 15 organophosphorus and organochlorine pesticide residues in olive oil. The proposed method provides satisfactory repeatability (RSDs lower, in general, than 8.5%) and sensitivity (limits of detection ranging from 0.6 to 81.9 microg/L) for the investigated compounds.

  10. Dependence of lattice strain relaxation, absorbance, and sheet resistance on thickness in textured ZnO@B transparent conductive oxide for thin-film solar cell applications.

    PubMed

    Kou, Kuang-Yang; Huang, Yu-En; Chen, Chien-Hsun; Feng, Shih-Wei

    2016-01-01

    The interplay of surface texture, strain relaxation, absorbance, grain size, and sheet resistance in textured, boron-doped ZnO (ZnO@B), transparent conductive oxide (TCO) materials of different thicknesses used for thin film, solar cell applications is investigated. The residual strain induced by the lattice mismatch and the difference in the thermal expansion coefficient for thicker ZnO@B is relaxed, leading to an increased surface texture, stronger absorbance, larger grain size, and lower sheet resistance. These experimental results reveal the optical and material characteristics of the TCO layer, which could be useful for enhancing the performance of solar cells through an optimized TCO layer.

  11. Hot/Wet Open Hole Compression Strength of Carbon/Epoxy Laminates for Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    2009-01-01

    This Technical Memorandum examines the effects of heat and absorbed moisture on the open hole compression strength of carbon/epoxy laminates with the material and layup intended for the Ares I composite interstage. The knockdown due to temperature, amount of moisture absorbed, and the interaction between these two are examined. Results show that temperature is much more critical than the amount of moisture absorbed. The environmental knockdown factor was found to be low for this material and layup and thus obtaining a statistically significant number for this value needs to be weighed against a program s cost and schedule since basis values, damage tolerance, and safety factors all contribute much more to the overall knockdown factor.

  12. A Fluidically Tunable Metasurface Absorber for Flexible Large-Scale Wireless Ethanol Sensor Applications.

    PubMed

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-08-06

    In this paper, a novel flexible tunable metasurface absorber is proposed for large-scale remote ethanol sensor applications. The proposed metasurface absorber consists of periodic split-ring-cross resonators (SRCRs) and microfluidic channels. The SRCR patterns are inkjet-printed on paper using silver nanoparticle inks. The microfluidic channels are laser-etched on polydimethylsiloxane (PDMS) material. The proposed absorber can detect changes in the effective permittivity for different liquids. Therefore, the absorber can be used for a remote chemical sensor by detecting changes in the resonant frequencies. The performance of the proposed absorber is demonstrated with full-wave simulation and measurement results. The experimental results show the resonant frequency increases from 8.9 GHz to 10.04 GHz when the concentration of ethanol is changed from 0% to 100%. In addition, the proposed absorber shows linear frequency shift from 20% to 80% of the different concentrations of ethanol.

  13. High Operating Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Seibel, Alexander (Inventor); Bandara, Sumith Y. (Inventor); Gunapala, Sarath D. (Inventor)

    2015-01-01

    A barrier infrared detector with absorber materials having selectable cutoff wavelengths and its method of manufacture is described. A GaInAsSb absorber layer may be grown on a GaSb substrate layer formed by mixing GaSb and InAsSb by an absorber mixing ratio. A GaAlAsSb barrier layer may then be grown on the barrier layer formed by mixing GaSb and AlSbAs by a barrier mixing ratio. The absorber mixing ratio may be selected to adjust a band gap of the absorber layer and thereby determine a cutoff wavelength for the barrier infrared detector. The absorber mixing ratio may vary along an absorber layer growth direction. Various contact layer architectures may be used. In addition, a top contact layer may be isolated into an array of elements electrically isolated as individual functional detectors that may be used in a detector array, imaging array, or focal plane array.

  14. Sulfur oxide adsorbents and emissions control

    DOEpatents

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2006-12-26

    High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

  15. Fabrication of solution processed 3D nanostructured CuInGaS₂ thin film solar cells.

    PubMed

    Chu, Van Ben; Cho, Jin Woo; Park, Se Jin; Hwang, Yun Jeong; Park, Hoo Keun; Do, Young Rag; Min, Byoung Koun

    2014-03-28

    In this study we demonstrate the fabrication of CuInGaS₂ (CIGS) thin film solar cells with a three-dimensional (3D) nanostructure based on indium tin oxide (ITO) nanorod films and precursor solutions (Cu, In and Ga nitrates in alcohol). To obtain solution processed 3D nanostructured CIGS thin film solar cells, two different precursor solutions were applied to complete gap filling in ITO nanorods and achieve the desirable absorber film thickness. Specifically, a coating of precursor solution without polymer binder material was first applied to fill the gap between ITO nanorods followed by deposition of the second precursor solution in the presence of a binder to generate an absorber film thickness of ∼1.3 μm. A solar cell device with a (Al, Ni)/AZO/i-ZnO/CdS/CIGS/ITO nanorod/glass structure was constructed using the CIGS film, and the highest power conversion efficiency was measured to be ∼6.3% at standard irradiation conditions, which was 22.5% higher than the planar type of CIGS solar cell on ITO substrate fabricated using the same precursor solutions.

  16. Synthesis and characterization of antimicrobial nanosilver/diatomite nanocomposites and its water treatment application

    NASA Astrophysics Data System (ADS)

    Xia, Yijie; Jiang, Xiaoyu; Zhang, Jing; Lin, Ming; Tang, Xiaosheng; Zhang, Jie; Liu, Hongjun

    2017-02-01

    Nanotechnology for water disinfection application gains increasing attention. Diatomite is one kind of safe natural material, which has been widely used as absorbent, filtration agents, mineral fillers, especially in water treatment industry. Nanosilver/diatomite nanocomposites were developed in this publication with a facile, effective in-situ reduction method. The as-prepared nanosilver/diatomite nanocomposites demonstrated amazing antibacterial properties to gram-positive and gram-negative bacteria. The corresponding property has been characterized by UV-vis absorbance, Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) and X-ray Photoelectron Spectroscopy (XPS). Moreover, the detailed bacteria killing experiments further displayed that 0.5 g of the nanosilver diatomite could kill >99.999% of E. Coli within half an hour time. And the silver leaching test demonstrated that the concentrations of silver in the filtered water under varies pH environment were below the limit for silver level of WHO standard. Considering the low price of natural diatomite, it is believed that the nanosilver/diatomite nanocomposites have potential application in water purification industry due to its excellent antimicrobial property.

  17. A comparative study of smart spectrophotometric methods for simultaneous determination of a skeletal muscle relaxant and an analgesic in combined dosage form

    NASA Astrophysics Data System (ADS)

    Salem, Hesham; Mohamed, Dalia

    2015-04-01

    Six simple, specific, accurate and precise spectrophotometric methods were developed and validated for the simultaneous determination of the analgesic drug; paracetamol (PARA) and the skeletal muscle relaxant; dantrolene sodium (DANT). Three methods are manipulating ratio spectra namely; ratio difference (RD), ratio subtraction (RS) and mean centering (MC). The other three methods are utilizing the isoabsorptive point either at zero order namely; absorbance ratio (AR) and absorbance subtraction (AS) or at ratio spectrum namely; amplitude modulation (AM). The proposed spectrophotometric procedures do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined. The selectivity of the developed methods was investigated by analyzing laboratory prepared mixtures of the drugs and their combined dosage form. Standard deviation values are less than 1.5 in the assay of raw materials and capsules. The obtained results were statistically compared with each other and with those of reported spectrophotometric ones. The comparison showed that there is no significant difference between the proposed methods and the reported methods regarding both accuracy and precision.

  18. Synthesis and analysis of acou-physical properties of banana biocomposite

    NASA Astrophysics Data System (ADS)

    Mishra, S. P.; Bhanupriya; Nath, G.

    2018-02-01

    The sound absorbing materials have been developed using various natural fibres which are renewable, biodegradable, recyclable and economic in nature. After the cultivation of banana fruit as its stem which is fibrous in nature has no use, it may use in various scientific applications as like as the preparation of sound absorbing materials. The suitable and proper mixture of the epoxy resin with the banana fibre gives rise to formation of the biocomposite material which is mechanically firm and tough. The EDS and SEM analysis of the sample gives an idea about the formation of closed chain in between banana fibre and epoxy in the molecular level and porous quality. The thermal conductivity gradually decreases with the increase of particle concentration and the electrical conductivity increases in the order of 10-5 which demonstrates the insulating behaviour of the prepared sample. At the higher frequencies there is a reduction of dielectric constant due to the interfacial and orientation polarisation. The intensity of sound decreases in presence of the material and the absorption coefficient rise with increase of frequency. Thus the banana fibre biocomposite material can be used as a sound absorber which behaves as thermally and electrically insulator.

  19. Thin and Broadband Two-Layer Microwave Absorber in 4-12 GHz with Developed Flaky Cobalt Material

    NASA Astrophysics Data System (ADS)

    Gill, Neeraj; Singh, Jaydeep; Puthucheri, Smitha; Singh, Dharmendra

    2018-03-01

    Microwave absorbing materials (MAMs) in the frequency range of 2.0-18.0 GHz are essential for the stealth and communication applications. Researchers came up with effective MAMs for the higher frequency regions, i.e., 8.0-18.0 GHz, while absorbers with comparable properties in the lower frequency band are still not in the limelight. Designing a MAM for the lower frequency range is a critical task. It is known that the factors governing the absorption in this frequency predominantly depend on the permeability and conductivity of the material, whereas the shape anisotropy of the particles can initiate different absorption mechanisms like multiple internal reflections, phase cancellations, surface charge polarization and enhanced conductivity that can promote the microwave absorption towards lower frequencies. But the material alone may not serve the purpose of getting broad absorption bandwidth. With the effective use of advanced electromagnetic technique like multi-layering this problem may be solved. Therefore, in this paper, a material with shape anisotropy (cobalt flakes with high shape anisotropy) has been prepared and a two-layer structure is developed which gives the absorption bandwidth in 4.17-12.05 GHz at a coating thickness of 2.66 mm.

  20. Thin and Broadband Two-Layer Microwave Absorber in 4-12 GHz with Developed Flaky Cobalt Material

    NASA Astrophysics Data System (ADS)

    Gill, Neeraj; Singh, Jaydeep; Puthucheri, Smitha; Singh, Dharmendra

    2018-05-01

    Microwave absorbing materials (MAMs) in the frequency range of 2.0-18.0 GHz are essential for the stealth and communication applications. Researchers came up with effective MAMs for the higher frequency regions, i.e., 8.0-18.0 GHz, while absorbers with comparable properties in the lower frequency band are still not in the limelight. Designing a MAM for the lower frequency range is a critical task. It is known that the factors governing the absorption in this frequency predominantly depend on the permeability and conductivity of the material, whereas the shape anisotropy of the particles can initiate different absorption mechanisms like multiple internal reflections, phase cancellations, surface charge polarization and enhanced conductivity that can promote the microwave absorption towards lower frequencies. But the material alone may not serve the purpose of getting broad absorption bandwidth. With the effective use of advanced electromagnetic technique like multi-layering this problem may be solved. Therefore, in this paper, a material with shape anisotropy (cobalt flakes with high shape anisotropy) has been prepared and a two-layer structure is developed which gives the absorption bandwidth in 4.17-12.05 GHz at a coating thickness of 2.66 mm.

  1. Laser welding process in PP moulding parts: Evaluation of seam performance

    NASA Astrophysics Data System (ADS)

    Oliveira, N.; Pontes, A. J.

    2015-12-01

    The Polypropylene is one of the most versatile polymer materials used in the industry. Due to this versatility, it is possible to use it in different products. This material can also be mixed with several additives namely glass fiber, carbon nanotubes, etc. This compatibility with different additives allows also obtaining products with characteristics that goes from an impact absorber to an electricity conductor. When is necessary to join components in PP they could be welded through hot plate, ultrasonic weld and also by laser. This study had the objective of study the influence of several variables, capable of influence the final quality of the seam. In this case were studied variables of the injection molding process as mold temperature and cooling time. Was also studied laser welding variables and different materials. The results showed that the variables that have the most influence were mould temperature, laser velocity and laser diameter. The seams were analyzed using Optical Microscopy technique. The seams showed perfect contact between the materials analyzed, despite the high standard variation presented in the mechanical testes.

  2. The development of national quality performance standards for disposable absorbent products for adult incontinence.

    PubMed

    Muller, Nancy; McInnis, Elaine

    2013-09-01

    Disposable absorbent products are widely used in inpatient care settings and in the community to manage adult urinary and fecal incontinence, but few product standards exist to help guide their production or optimal use. Increasing costs and reduced revenues have caused a number of states to evaluate absorbent product use among persons who receive care at home with the assistance of the Medicaid Waiver Program, further increasing concerns about the lack of product performance standards. To address these issues, the National Association For Continence (NAFC) formed a council of experts and key stakeholders with the objective of establishing national, independent quality performance standards for disposable absorbent products provided by states to Waiver Program recipients. The Council consisted of representatives from five purposefully selected states, technical directors from six nonwoven product manufacturers, an officer of the nonwoven manufactures trade association, a delegate from an academic nursing program and professional societies, a family caregiver, and a patient representative. Following a consensus method and guidelines for use, nine specific recommendations were developed, posted for public comment, and further refined. Final recommendations for product performance assessment include: rewet rate (a measure of a product's ability to withstand multiple incontinent episodes between changes), rate of acquisition (a measure of the speed at which urine is drawn away from the skin by a product, product retention capacity (a measure of a product's capacity to hold fluid without rewetting the skin), sizing options, absorbency levels, product safety, closure technology, breathable zones (a measure of the air permeability across a textile-like fabric at a controlled differential pressure), and elasticity. The Council also set values for and recommended four quantifiable parameters, and the testing methodology associated with each, to help consumers and states evaluate absorbent products (medium adult size): Maximum Rewet Rate: <1.0-2.0 g for briefs and <0.5-1.0 g for underwear; Maximum Rate of Acquisition: <50-60 seconds for briefs and <35-45 seconds for underwear; Minimum Retention Capacity: >250 g for standard briefs or underwear and >400 g for premium briefs or underwear; and Breathability of Zones: Minimum of >100 cubic feet per minute. As these recommendations are implemented, research is needed to evaluate the impact on both cost and quality of care for further refinement and modifications, particularly as technology and knowledge is advanced.

  3. Ultra-thin and -broadband microwave magnetic absorber enhanced by phase gradient metasurface incorporation

    NASA Astrophysics Data System (ADS)

    Fan, Ya; Wang, Jiafu; Li, Yongfeng; Pang, Yongqiang; Zheng, Lin; Xiang, Jiayu; Zhang, Jieqiu; Qu, Shaobo

    2018-05-01

    Based on the effect of anomalous reflection and refraction caused by the circularly cross-polarized phase gradient metasurface (PGM), an ultra-thin and -broadband composite absorber composed of metasurface and conventional magnetic absorbing film is proposed and demonstrated in this paper. In the case of keeping nearly the same thickness of absorbing layer, the equivalent thickness of magnetic absorbing film is enlarged by the effect of anomalous reflection and refraction, resulting in the expansion and improvement of the absorbing bandwidth and efficiency in low microwave frequency. A biarc metallic sub-cell for circularly crossed polarization is adopted to form a broadband phase gradient, by the means of rotating the Pancharatnam–Berry phases. As indicated in the experimental results, the fabricated 3.6 mm-thick absorber can averagely absorb microwave energy with the specular reflection below  ‑10 dB in the frequency interval of 2–12 GHz, which shows a good match with simulated results. Due to ultra-thin thickness and ultra-wide operating bandwidth, the proposed application of PGM in absorbing can provide an alternative way to enhance the absorbing property of current absorbing materials.

  4. Acoustic properties and durability of liner materials at non-standard atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Gaeta, R. J., Jr.; Hsu, J. S.

    1994-01-01

    This report documents the results of an experimental study on how acoustic properties of certain absorbing liner materials are affected by nonstandard atmospheric conditions. This study was motivated by the need to assess risks associated with incorporating acoustic testing capability in wind tunnels with semicryogenic high Reynolds number aerodynamic and/or low pressure capabilities. The study consisted of three phases: 1) measurement of acoustic properties of selected liner materials at subatmospheric pressure conditions, 2) periodic cold soak and high pressure exposure of liner materials for 250 cycles, and 3) determination of the effect of periodic cold soak on the acoustic properties of the liner materials at subatmospheric conditions and the effect on mechanical resiliency. The selected liner materials were Pyrell foam, Fiberglass, and Kevlar. A vacuum facility was used to create the subatmospheric environment in which an impedance tube was placed to measure acoustic properties of the test materials. An automated cryogenic cooling system was used to simulate periodic cold soak and high pressure exposure. It was found that lower ambient pressure reduced the absorption effectiveness of the liner materials to varying degrees. Also no significant change in the acoustic properties occurred after the periodic cold soak. Furthermore, mechanical resiliency tests indicated no noticeable change.

  5. Influence of Fe3O4/Fe-phthalocyanine decorated graphene oxide on the microwave absorbing performance

    NASA Astrophysics Data System (ADS)

    Li, Jingwei; Wei, Junji; Pu, Zejun; Xu, Mingzhen; Jia, Kun; Liu, Xiaobo

    2016-02-01

    Novel graphene oxide@Fe3O4/iron phthalocyanine (GO@Fe3O4/FePc) hybrid materials were prepared through a facile one-step solvothermal method with graphene oxide (GO) sheets as template in ethylene glycol. The morphology and structure of the hybrid materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrophotometer (FTIR) and X-ray diffraction (XRD), respectively. The results indicated that the monodispersed Fe3O4/FePc hybrid microspheres were uniformly self-assembled along the surface of GO sheets through electrostatic attraction and the morphology can be tuned by controlling the amount of 4,4‧-bis(3,4-dicyanophenoxy)biphenyl (BPH). As the BPH content increases, magnetization measurement of the GO@Fe3O4/FePc hybrid materials showed that the coercivity increased, while saturation magnetizations decreased. Electromagnetic properties of the hybrid materials were measured in the range of 0.5-18.0 GHz. The microwave absorbing performance enhanced with the increase of BPH content and a maximum reflection loss of -27.92 dB was obtained at 10.8 GHz when the matching thickness was 2.5 mm. Therefore, the novel electromagnetic hybrid materials can be considered as potential materials in the microwave absorbing field.

  6. Effect of UV-C radiation and vapor released from a water hyacinth root absorbent containing bergamot oil to control mold on storage of brown rice.

    PubMed

    Songsamoe, Sumethee; Matan, Narumol; Matan, Nirundorn

    2016-03-01

    The aims of this study were to develop absorbent material from a water hyacinth root containing bergamot oil and to improve its antifungal activity by using ultraviolet C (UV-C) against the growth of A. flavus on the brown rice. Process optimization was studied by the immersion of a water hyacinth root into a water and bergamot oil (300, 500 and 700 μl ml(-1)). The root (absorbent material) was dried at 50, 70, and 90 °C for 10 min. Then, ultraviolet C (UV-C) was used for enhancing the antifungal activity of bergamot oil for 10, 15, and 20 min. The shelf-life of the brown rice with the absorbent after incubation at 25 ° C with 100 % RH for 12 weeks was also investigated. A microscope and a Fourier transform infrared spectroscopy (FTIR) were used to find out possible mode of action. Results indicated that the absorbent material produced from the water hyacinth root containing bergamot oil at 500 μl ml(-1) in the water solution, dried at 70 ° C and UV for 15 min showed the highest antifungal activity in a vapor phase against A. flavus on the brown rice. A microscopy investigation confirmed that the water hyacinth root could absorb bergamot oil from an outside water solution into root cells. Limonene in vapor phase was shown to be a stronger inhibitor than essential oil after UV-C radiation and should be the key factor in boosting bergamot oil antifungal activity. A vapor phase of bergamot oil could be released and inhibit natural mold on the surface of the brown rice for up to 12 weeks; without the absorbent, mold covered the brown rice in only 4 weeks.

  7. Absorbable synthetic versus catgut suture material for perineal repair

    PubMed Central

    Kettle, Christine

    2014-01-01

    Background Approximately 70% of women will experience some degree of perineal trauma following vaginal delivery and will require stitches. This may result in perineal pain and superficial dyspareunia. Objectives The objective of this review was to assess the effects of absorbable synthetic suture material as compared with catgut on the amount of short and long term pain experienced by mothers following perineal repair. Search strategy We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register. Selection criteria Randomised trials comparing absorbable synthetic (polyglycolic acid and polyglactin) with plain or chromic catgut suture for perineal repair in mothers after vaginal delivery. Data collection and analysis Trial quality was assessed independently by two reviewers. Data were extracted by one reviewer and checked by the second reviewer. Main results Eight trials were included. Compared with catgut, the polyglycolic acid and polyglactin groups were associated with less pain in first three days (odds ratio 0.62, 95% confidence interval 0.54 to 0.71). There was also less need for analgesia (odds ratio 0.63, 95% confidence interval 0.52 to 0.77) and less suture dehiscence (odds ratio 0.45, 95% confidence interval 0.29 to 0.70). There was no significant difference in long term pain (odds ratio 0.81, 95% confidence interval 0.61 to 1.08). Removal of suture material was significantly more common in the polyglycolic acid and polyglactin groups (odds ratio 2.01, 95% confidence interval 1.56 to 2.58). There was no difference in the amount of dyspareunia experienced by women. Authors’ conclusions Absorbable synthetic suture material (in the form of polyglycolic acid and polyglactin sutures) for perineal repair following childbirth appears to decrease women’s experience of short-term pain. The length of time taken for the synthetic material to be absorbed is of concern. A trial addressing the use of polyglactin has recently been completed and this has been included in this updated review. PMID:10796081

  8. Optimum Solar Conversion Cell Configurations

    NASA Technical Reports Server (NTRS)

    Chen, Bin (Inventor)

    2015-01-01

    Methods for maximizing a fraction of light energy absorbed in each of three classes of light concentrators (rectangular parallelepipeds, paraboloids and prisms) by choice of incident angle of radiation and of one or more geometrical or physical parameters (absorber thickness, paraboloid dimensions, location of paraboloid focus, prism angles, concentrator material, cladding, prism angles, etc.). Alternatively, the light energy absorbed plus the light energy that escapes through non-total internal reflection within the light concentrator can be minimized.

  9. Absorbent Pads for Containment, neutralization, and clean-up of environmental spills containing chemically-reactive agents

    NASA Technical Reports Server (NTRS)

    Davis, Dennis D. (Inventor)

    1996-01-01

    A pad for cleaning up liquid spills is described which contains a porous surface covering, and an absorbent interior containing chemically reactive reagents for neutralizing noxious chemicals within the spilled liquid. The porous surface and the absorbent component would normally consist of chemically resistant materials allowing tentative spill to pass. The absorbent interior which contains the neutralizing reagents can but is not required to be chemically resilient and conducts the liquid chemically reactive reagents where the dangerous and undesirable chemicals within the chemical spill are then neutralized as well as removed from the premises.

  10. Simulation of image detectors in radiology for determination of scatter-to-primary ratios using Monte Carlo radiation transport code MCNP/MCNPX.

    PubMed

    Smans, Kristien; Zoetelief, Johannes; Verbrugge, Beatrijs; Haeck, Wim; Struelens, Lara; Vanhavere, Filip; Bosmans, Hilde

    2010-05-01

    The purpose of this study was to compare and validate three methods to simulate radiographic image detectors with the Monte Carlo software MCNP/MCNPX in a time efficient way. The first detector model was the standard semideterministic radiography tally, which has been used in previous image simulation studies. Next to the radiography tally two alternative stochastic detector models were developed: A perfect energy integrating detector and a detector based on the energy absorbed in the detector material. Validation of three image detector models was performed by comparing calculated scatter-to-primary ratios (SPRs) with the published and experimentally acquired SPR values. For mammographic applications, SPRs computed with the radiography tally were up to 44% larger than the published results, while the SPRs computed with the perfect energy integrating detectors and the blur-free absorbed energy detector model were, on the average, 0.3% (ranging from -3% to 3%) and 0.4% (ranging from -5% to 5%) lower, respectively. For general radiography applications, the radiography tally overestimated the measured SPR by as much as 46%. The SPRs calculated with the perfect energy integrating detectors were, on the average, 4.7% (ranging from -5.3% to -4%) lower than the measured SPRs, whereas for the blur-free absorbed energy detector model, the calculated SPRs were, on the average, 1.3% (ranging from -0.1% to 2.4%) larger than the measured SPRs. For mammographic applications, both the perfect energy integrating detector model and the blur-free energy absorbing detector model can be used to simulate image detectors, whereas for conventional x-ray imaging using higher energies, the blur-free energy absorbing detector model is the most appropriate image detector model. The radiography tally overestimates the scattered part and should therefore not be used to simulate radiographic image detectors.

  11. Thermal mirror spectrometry: An experimental investigation of optical glasses

    NASA Astrophysics Data System (ADS)

    Zanuto, V. S.; Herculano, L. S.; Baesso, M. L.; Lukasievicz, G. V. B.; Jacinto, C.; Malacarne, L. C.; Astrath, N. G. C.

    2013-03-01

    The Thermal mirror technique relies on measuring laser-induced nanoscale surface deformation of a solid sample. The amplitude of the effect is directly dependent on the optical absorption and linear thermal expansion coefficients, and the time evolution depends on the heat diffusion properties of the sample. Measurement of transient signals provide direct access to thermal, optical and mechanical properties of the material. The theoretical models describing this effect can be formulated for very low optical absorbing and for absorbing materials. In addition, the theories describing the effect apply for semi-infinite and finite samples. In this work, we apply the Thermal mirror technique to measure physical properties of optical glasses. The semi-infinite and finite models are used to investigate very low optical absorbing glasses. The thickness limit for which the semi-infinite model retrieves the correct values of the thermal diffusivity and amplitude of the transient is obtained using the finite description. This procedure is also employed on absorbing glasses, and the semi-infinite Beer-Lambert law model is used to analyze the experimental data. The experimental data show the need to use the finite model for samples with very low bulk absorption coefficients and thicknesses L < 1.5 mm. This analysis helped to establish limit values of thickness for which the semi-infinite model for absorbing materials could be used, L > 1.0 mm in this case. In addition, the physical properties of the samples were calculated and absolute values derived.

  12. Multiobjective Topology Optimization of Energy Absorbing Materials

    DTIC Science & Technology

    2015-08-01

    absorbing liner for equestrian helmets. Part I: layered foam liner . Mater Des 30(9):3405–3413 Sethian J, Wiegmann A (2000) Structural boundary design via...Army Research Laboratory Wildman RA, Weile DS (2007) Geometry reconstruction of conduct- ing cylinders using genetic programming. IEEE Trans Antennas

  13. Removal of phenols from the water effluents of olive presses

    NASA Astrophysics Data System (ADS)

    Stamboliadis, Elias; Emejulu, Anthony; Pantelaki, Olga; Pentari, Despina; Petrakis, Evangelos

    2012-11-01

    The water effluents of olive presses contain a number of phenols that are hardly biodegradable and therefore constitute an environmental hazard, mainly in the Mediterranean countries. The present work presents the results obtained from the study of artificial solutions containing one kind of phenol, namely gallic acid that consists of the main type of phenols present. According to the experimental procedure, the phenol is removed from the water solution by absorption on different naturally occurring raw rock materials. The first material is caustic magnesia produced after the calcination of a magnesite sample from Macedonia, Greece, the second is a sample of sedimentary psammitic marl from the area of Chania, Crete, Greece, and the third solid absorbent is a bentonite sample from the island of Milos, Greece. According to the results obtained, magnesia seems to be by far the best absorbent, with an absorbing capacity of 3500 mg of phenol per gram, followed by the psammitic marl. The absorbing capacity of bentonite is almost negligible

  14. Practical method of CO.sub.2 sequestration

    DOEpatents

    Goswami, D Yogi [Gainesville, FL; Lee, Man Su [Houston, TX; Kothurkar, Nikhil K [Tampa, FL; Stefanakos, Elias K [Tampa, FL

    2011-03-01

    A process and device to capture of CO.sub.2 at its originating source, such as a power plant, is disclosed. Absorbent material is recharged by desorbing CO.sub.2, so that it may be sequestered or used in another application. Continual recharging results in loss of absorbent surface area, due to pore plugging and sintering of particles. Calcium oxide or calcium hydroxide was immobilized to a fibrous ceramic-based fabric substrate as a thin film and sintered, creating an absorbent material. The samples were characterized, showing continuous cyclic carbonation conversions between about 62% and 75% under mild calcination conditions at 750.degree. C. and no CO.sub.2 in N.sub.2. Under the more severe calcination condition at 850.degree. C. and 20 wt % CO.sub.2 in N.sub.2, yttria fabric was superior to alumina as a substrate for carbon dioxide capture and the reactivity of the calcium oxide absorbent immobilized to yttria was maintained at the same level in the 12 cycles.

  15. Low Cost High Performance Nanostructured Spectrally Selective Coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Sungho

    2017-04-05

    Sunlight absorbing coating is a key enabling technology to achieve high-temperature high-efficiency concentrating solar power operation. A high-performance solar absorbing material must simultaneously meet all the following three stringent requirements: high thermal efficiency (usually measured by figure of merit), high-temperature durability, and oxidation resistance. The objective of this research is to employ a highly scalable process to fabricate and coat black oxide nanoparticles onto solar absorber surface to achieve ultra-high thermal efficiency. Black oxide nanoparticles have been synthesized using a facile process and coated onto absorber metal surface. The material composition, size distribution and morphology of the nanoparticle are guidedmore » by numeric modeling. Optical and thermal properties have been both modeled and measured. High temperature durability has been achieved by using nanocomposites and high temperature annealing. Mechanical durability on thermal cycling have also been investigated and optimized. This technology is promising for commercial applications in next-generation high-temperature concentration solar power (CSP) plants.« less

  16. A Broadband Micro-Machined Far-Infrared Absorber

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Datesman, A. M.; Jhabvala, C. A.; Miller, K. H.; Quijada, M. A.

    2016-01-01

    The experimental investigation of a broadband far-infrared meta-material absorber is described. The observed absorptance is greater than 0.95 from 1 to 20 terahertz (300-15 microns) over a temperature range spanning 5-300 degrees Kelvin. The meta-material, realized from an array of tapers approximately 100 microns in length, is largely insensitive to the detailed geometry of these elements and is cryogenically compatible with silicon-based micro-machined technologies. The electromagnetic response is in general agreement with a physically motivated transmission line model.

  17. Numerical investigation of active porous composites with enhanced acoustic absorption

    NASA Astrophysics Data System (ADS)

    Zieliński, Tomasz G.

    2011-10-01

    The paper presents numerical analysis - involving an advanced multiphysics modeling - of the concept of active porous composite sound absorbers. Such absorbers should be made up of a layer or layers of poroelastic material (porous foams) with embedded elastic inclusions having active (piezoelectric) elements. The purpose of such active composite material is to significantly absorb the energy of acoustic waves in a wide frequency range, particularly, at lower frequencies. At the same time the total thickness of composite should be very moderate. The active parts of composites are used to adapt the absorbing properties of porous layers to different noise conditions by affecting the so-called solid-borne wave - originating mainly from the vibrations of elastic skeleton of porous medium - to counteract the fluid-borne wave - resulting mainly from the vibrations of air in the pores; both waves are strongly coupled, especially, at lower frequencies. In fact, since the traction between the air and the solid frame of porous medium is the main absorption mechanism, the elastic skeleton is actively vibrated in order to adapt and improve the dissipative interaction of the skeleton and air in the pores. Passive and active performance of such absorbers is analyzed to test the feasibility of this approach.

  18. Dual-energy computed tomography of the head: a phantom study assessing axial dose distribution, eye lens dose, and image noise level

    NASA Astrophysics Data System (ADS)

    Matsubara, Kosuke; Kawashima, Hiroki; Hamaguchi, Takashi; Takata, Tadanori; Kobayashi, Masanao; Ichikawa, Katsuhiro; Koshida, Kichiro

    2016-03-01

    The aim of this study was to propose a calibration method for small dosimeters to measure absorbed doses during dual- source dual-energy computed tomography (DECT) and to compare the axial dose distribution, eye lens dose, and image noise level between DE and standard, single-energy (SE) head CT angiography. Three DE (100/Sn140 kVp 80/Sn140 kVp, and 140/80 kVp) and one SE (120 kVp) acquisitions were performed using a second-generation dual-source CT device and a female head phantom, with an equivalent volumetric CT dose index. The axial absorbed dose distribution at the orbital level and the absorbed doses for the eye lens were measured using radiophotoluminescent glass dosimeters. CT attenuation numbers were obtained in the DE composite images and the SE images of the phantom at the orbital level. The doses absorbed at the orbital level and in the eye lens were lower and standard deviations for the CT attenuation numbers were slightly higher in the DE acquisitions than those in the SE acquisition. The anterior surface dose was especially higher in the SE acquisition than that in the DE acquisitions. Thus, DE head CT angiography can be performed with a radiation dose lower than that required for a standard SE head CT angiography, with a slight increase in the image noise level. The 100/Sn140 kVp acquisition revealed the most balanced axial dose distribution. In addition, our proposed method was effective for calibrating small dosimeters to measure absorbed doses in DECT.

  19. Multi-objective robust design of energy-absorbing components using coupled process-performance simulations

    NASA Astrophysics Data System (ADS)

    Najafi, Ali; Acar, Erdem; Rais-Rohani, Masoud

    2014-02-01

    The stochastic uncertainties associated with the material, process and product are represented and propagated to process and performance responses. A finite element-based sequential coupled process-performance framework is used to simulate the forming and energy absorption responses of a thin-walled tube in a manner that both material properties and component geometry can evolve from one stage to the next for better prediction of the structural performance measures. Metamodelling techniques are used to develop surrogate models for manufacturing and performance responses. One set of metamodels relates the responses to the random variables whereas the other relates the mean and standard deviation of the responses to the selected design variables. A multi-objective robust design optimization problem is formulated and solved to illustrate the methodology and the influence of uncertainties on manufacturability and energy absorption of a metallic double-hat tube. The results are compared with those of deterministic and augmented robust optimization problems.

  20. Liquid-chromatographic determination of cephalosporins and chloramphenicol in serum.

    PubMed

    Danzer, L A

    1983-05-01

    A "high-performance" liquid-chromatographic technique involving a radial compression module is used for measuring chloramphenicol and five cephalosporin antibiotics: cefotaxime, cefoxitin, cephapirin, and cefamandol. Serum proteins are precipitated with acetonitrile solution containing 4'-nitroacetanilide as the internal standard. The drugs are eluted with a mobile phase of methanol/acetate buffer (30/70 by vol), pH 5.5. Absorbance of the cephalosporins is monitored at 254 nm. Standard curves are linear to at least 100 mg/L. The absorbance of chloramphenicol is monitored at 254 nm and 280 nm, and its standard curve is linear to at least 50 mg/L. The elution times for various other drugs were also determined, to check for potential interferents.

  1. Polydimethylsiloxane (PDMS) modulates CD38 expression, absorbs retinoic acid and may perturb retinoid signalling.

    PubMed

    Futrega, Kathryn; Yu, Jianshi; Jones, Jace W; Kane, Maureen A; Lott, William B; Atkinson, Kerry; Doran, Michael R

    2016-04-21

    Polydimethylsiloxane (PDMS) is the most commonly used material in the manufacture of customized cell culture devices. While there is concern that uncured PDMS oligomers may leach into culture medium and/or hydrophobic molecules may be absorbed into PDMS structures, there is no consensus on how or if PDMS influences cell behaviour. We observed that human umbilical cord blood (CB)-derived CD34(+) cells expanded in standard culture medium on PDMS exhibit reduced CD38 surface expression, relative to cells cultured on tissue culture polystyrene (TCP). All-trans retinoic acid (ATRA) induces CD38 expression, and we reasoned that this hydrophobic molecule might be absorbed by PDMS. Through a series of experiments we demonstrated that ATRA-mediated CD38 expression was attenuated when cultures were maintained on PDMS. Medium pre-incubated on PDMS for extended durations resulted in a time-dependant reduction of ATRA in the medium and increasingly attenuated CD38 expression. This indicated a time-dependent absorption of ATRA into the PDMS. To better understand how PDMS might generally influence cell behaviour, Ingenuity Pathway Analysis (IPA) was used to identify potential upstream regulators. This analysis was performed for differentially expressed genes in primary cells including CD34(+) haematopoietic progenitor cells, mesenchymal stromal cells (MSC), and keratinocytes, and cell lines including prostate cancer epithelial cells (LNCaP), breast cancer epithelial cells (MCF-7), and myeloid leukaemia cells (KG1a). IPA predicted that the most likely common upstream regulator of perturbed pathways was ATRA. We demonstrate here that ATRA is absorbed by PDMS in a time-dependent manner and results in the concomitant reduced expression of CD38 on the cell surface of CB-derived CD34(+) cells.

  2. In vitro performance investigation of bioresorbable scaffolds - Standard tests for vascular stents and beyond.

    PubMed

    Schmidt, Wolfram; Behrens, Peter; Brandt-Wunderlich, Christoph; Siewert, Stefan; Grabow, Niels; Schmitz, Klaus-Peter

    2016-09-01

    Biodegradable polymers are the main materials for coronary scaffolds. Magnesium has been investigated as a potential alternative and was successfully tested in human clinical trials. However, it is still challenging to achieve mechanical parameters comparative to permanent bare metal (BMS) and drug-eluting stents (DES). As such, in vitro tests are required to assess mechanical parameters correlated to the safety and efficacy of the device. In vitro bench tests evaluate scaffold profiles, length, deliverability, expansion behavior including acute elastic and time-dependent recoil, bending stiffness and radial strength. The Absorb GT1 (Abbott Vascular, Temecula, CA), DESolve (Elixir Medical Corporation, Sunnyvale, CA) and the Magmaris (BIOTRONIK AG, Bülach, Switzerland) that was previously tested in the BIOSOLVE II study, were tested. Crimped profiles were 1.38±0.01mm (Absorb GT1), 1.39±0.01mm (DESolve) and 1.44±0.00mm (Magmaris) enabling 6F compatibility. Trackability was measured depending on stiffness and force transmission (pushability). Acute elastic recoil was measured at free expansion and within a mock vessel, respectively, yielding results of 5.86±0.76 and 5.22±0.38% (Absorb), 7.85±3.45 and 9.42±0.21% (DESolve) and 5.57±0.72 and 4.94±0.31% (Magmaris). Time-dependent recoil (after 1h) was observed for the Absorb and DESolve scaffolds but not for the Magmaris. The self-correcting wall apposition behavior of the DESolve did not prevent time-dependent recoil under vessel loading. The results of the suggested test methods allow assessment of technical feasibility based on objective mechanical data and highlight the main differences between polymeric and metallic bioresorbable scaffolds. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Effects of body and organ size on absorbed dose: there is no standard patient. [Radiation dose distribution in patients following radionuclide administration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, J.W.

    1976-01-01

    The problem of estimating the absorbed dose to organs and tissues of the human body due to the presence of a radiopharmaceutical in one or more organs is discussed. Complications are introduced by the fact that the body is not homogeneous and in many cases the organ shapes are not regular. Publications of the MIRD Committee have provided a direct means of estimating the absorbed dose (or absorbed fraction) for a number of radioisotopes. These estimates are based on Monte Carlo calculations for monoenergetic photons distributed uniformly in organs of an adult phantom. The medical physicist finds that his patientmore » does not resemble the adult phantom. In addition, the absorbed fractions for the adult are not reasonable values for the child. This paper examines how these absorbed fraction estimates apply to a nonstandard patient. (auth)« less

  4. Reflection and transmission for layered composite materials

    NASA Technical Reports Server (NTRS)

    Graglia, Roberto D.; Uslenghi, Piergiorgio L. E.

    1991-01-01

    A layered planar structure consisting of different bianisotropic materials separated by jump-immittance sheets is considered. Reflection and transmission coefficients are determined via a chain-matrix algorithm. Applications are important for radomes and radar-absorbing materials.

  5. Effect of Index of Refraction on Radiation Characteristics in a Heated Absorbing, Emitting, and Scattering Layer

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1992-01-01

    The effect of the index of refraction on the temperature distribution and radiative heat flux in semitransparent materials, such as some ceramics, is investigated analytically. In the case considered here, a plane layer of a ceramic material is subjected to external radiative heating incident on each of its surfaces; the material emits, absorbs, and isotropically scatters radiation. It is shown that, for radiative equilibrium in a gray layer with diffuse interfaces, the temperature distribution and radiative heat flux for any index of refraction can be obtained in a simple manner from the results for an index of refraction of unity.

  6. TiAlN/TiAlON/Si{sub 3}N{sub 4} tandem absorber for high temperature solar selective applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barshilia, Harish C.; Selvakumar, N.; Rajam, K. S.

    2006-11-06

    A tandem absorber of TiAlN/TiAlON/Si{sub 3}N{sub 4} is prepared using a magnetron sputtering process. The graded composition of the individual component layers of the tandem absorber produces a film with a refractive index increasing from the surface to the substrate, which exhibits a high absorptance (0.95) and a low emittance (0.07). The tandem absorber is stable in air up to 600 deg. C for 2 h, indicating its importance for high temperature solar selective applications. The thermal stability of the tandem absorber is attributed to high oxidation resistance and microstructural stability of the component materials at higher temperatures.

  7. Low RF Reflectivity Spacecraft Thermal Blanket by Using High-Impedance Surface Absorbers

    NASA Astrophysics Data System (ADS)

    Costa, F.; Monorchio, A.; Carrubba, E.; Zolesi, V.

    2012-05-01

    A technique for designing a low-RF reflectivity thermal blanket is presented. Multi-layer insulation (MLI) blankets are employed to stabilize the temperature on spacecraft unit but they can be responsible of passive intermodulation products and high-mutual coupling between antennas since they are realized with metallic materials. The possibility to replace the last inner layer of a MLI blanket with an ultra-thin absorbing layer made of high-impedance surface absorber is discussed.

  8. Popularity of suture materials among residents and faculty members of a postdoctoral periodontology program.

    PubMed

    Maksoud, Mohamed; Koo, Samuel; Barouch, Kasumi; Karimbux, Nadeem

    2014-02-01

    The aim of the present study was to determine the favoritism of suture materials among a group of clinicians at a teaching institution. The surveys included 11 absorbable and nine non-absorbable sutures. The surveyor was asked to select his or her suture preferences when it comes to using it in 13 different, commonly-performed surgical procedures. The surveys showed overall preferences for non-absorbable versus absorbable sutures. Chromic Gut with a 4-0 diameter thread reverse cutting FS2 needle was the most favored suture. For periodontal bone grafts and hard tissue ridge augmentation, polytetrafluoroethylene with a 4-0 thread and FS2 needle was preferred. For autogenous gingival grafts, gingival allografts, connective tissue grafts, frenectomy and frenoplasty, Chromic Gut with 5-0 diameter thread reverse cutting P3 needle was favored. For extraction socket preservation, soft tissue canine exposure, ridge augmentation, and dental implants, Chromic Gut with 4-0 diameter thread reverse cutting FS2 needle was preferred, and for sinus augmentation, Vicryl with a 4-0 diameter thread reverse cutting FS2 needle was favored. Absorbable sutures were preferred in the majority of periodontal procedures; however, non-absorbable sutures were favored in procedures that required longer healing or better stability of the flap edges in cases of periodontal and ridge augmentation. © 2013 Wiley Publishing Asia Pty Ltd.

  9. Wettability, water sorption and water solubility of seven silicone elastomers used for maxillofacial prostheses.

    PubMed

    Hulterström, Anna Karin; Berglund, Anders; Ruyter, I Eystein

    2008-01-01

    The wettability, water sorption and solubility of silicone elastomers used for maxillofacial prostheses were studied. The hypothesis was, that a material that has absorbed water would show an increase in the wettability and thus also the surface free energy of the material. Seven silicone elastomers, both addition- and condensation type polymers, were included. Five specimens of each material were subjected to treatment according to ISO standards 1567:1999 and 10477: 2004 for water sorption and solubility. The volumes of the specimens were measured according to Archimedes principle. The contact angle was measured with a contact angle goniometer at various stages of the sorption/solubility test. Wettability changed over the test period, but not according to theory. The addition type silicones showed little or no sorption and solubility, but two of the condensation type polymers tested had a significant sorption and solubility. This study showed that condensation type polymers may show too large volumetric changes when exposed to fluids, and therefore should no longer be used in prosthetic devices. The results of this study also suggests that it might be of interest to test sorption and solubility of materials that are to be implanted, since most of the materials had some solubility.

  10. High Precision Grids for Neutron, Hard X-Ray, and Gamma-Ray Imaging Systems

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor)

    2002-01-01

    Fourier telescopes permit observations over a very broad band of energy. They generally include synthetic spatial filtering structures, known as multilayer grids or grid pairs consisting of alternate layers of absorbing and transparent materials depending on whether neutrons or photons are being imaged. For hard x-rays and gamma rays high (absorbing) and low (transparent) atomic number elements, termed high-Z and low-Z materials may be used. Fabrication of these multilayer grid structures is not without its difficulties. Herein the alternate layers of the higher material and the lower material are inserted in a polyhedron, transparent to photons of interest, through an open face of the polyhedron. The inserted layers are then uniformly compressed to form a multilayer grid.

  11. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Gibbons, M. N.

    1982-01-01

    The data base for composite materials' properties as they are affected by the environments encountered in operating conditions, both in flight and at ground terminals is expanded. Absorbed moisture degrades the mechanical properties of graphite/epoxy laminates at elevated temperatures. Since airplane components are frequently exposed to atmospheric moisture, rain, and accumulated water, quantitative data are required to evaluate the amount of fluids absorbed under various environmental conditions and the subsequent effects on material properties. In addition, accelerated laboratory test techniques are developed are reliably capable of predicting long term behavior. An accelerated environmental exposure testing procedure is developed, and experimental results are correlated and compared with analytical results to establish the level of confidence for predicting composite material properties.

  12. ALON® Components With Tunable Dielectric Properties for High Power Accelerator Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, Lee M; Jha, Santosh K; Lobur, Nicole

    There are challenges in linear particle accelerators associated with the need to suppress “higher order modes” (HOMs). HOMs are detrimental to accelerator operation as they are a source of beam instability. The absorption/suppression of HOMs and dissipation of the energy of higher order modes is vital to the function of these accelerators. Surmet has identified ALON® Optical Ceramic (Aluminum Oxynitride), a hard, durable ceramic that is fabricated through conventional powder processing techniques, as a potential material for HOM absorber. In this Phase I program, Surmet has produced new ALON-composite HOM absorber materials that function at both ambient and cryogenic temperatures.more » The composite materials were developed and evaluated in collaboration with Thomas Jefferson National Labs. Success in this Phase I and the potential Phase II will demonstrate the utility of ALON composite components for RF absorbing applications and lay the groundwork for commercialization of such products, with applications in basic science, medical and digital electronics industries.« less

  13. A comparative study between different approaches to improve the RCS of a compact double-layer absorber

    NASA Astrophysics Data System (ADS)

    El-Hakim, H. A.; Mahmoud, K. R.

    2017-10-01

    In this paper, straightforward and efficient techniques have been addressed into double-layer structure to enlarge the operating bandwidth to include the X, Ku and K bands, in addition to increase the electromagnetic wave absorption for wide varieties of incident angles and both polarization types. To increase the band-stop resonating frequency up to 26 GHz, an additional layer of meta-surface, circuit analog radar absorber material (CAR), or a thin radar absorber material (RAM) layer is engineered. The synthesized layers are designed based on optimization process with genetic algorithm (GA) through numerical technique (Ansoft design software HFSS) for both transmission line (T.L) and the free space method to get optimal material properties suitable for the design. For different approaches, the designed structures achieved a reflectivity value less than -16 dB on average in the desired bandwidth from 8 to 26 GHz for TE/TM modes with incidence angle up to 50o.

  14. Preparation and characterization of functional material based on hybrid polymer composites

    NASA Astrophysics Data System (ADS)

    Agusu, La; Amiruddin; Taswito, Chen Chen; Herdianto; Zamrun, Muh.

    2016-08-01

    The microstructures and properties of hybrid polymer composites based on polyaniline (PANi)/γ-Fe2O3 nanoparticles/TiO2/carbon have been investigated for multifunctional applications such as heavy metal removal and initial study for radar absorbing material application. γ-Fe2O3 nanoparticles with spherical shape were synthetized by a coprecipitation method from iron sand. By activating the polyethylene glycol (PEG-400) coated carbon of coconut shell, the homogenous shape and size of carbon was achieved. Then, γ- Fe2O3, TiO2, and carbon were mixed with PANi by an in situ polymerization method at low temperature 0-5 oC. Characterization process involved XRD, SEM, FTIR, VSM, and DC conductivity measurements. For radar absorber application, the functionalized polymer composites showed good electrical conductivity 0.45 S/cm to absorb the incoming electromagnetic energy. An efficient and effective reduction of Pb2+ ion from the water has been achieved by using this material.

  15. High strain rate and quasi-static tensile behaviour of Ti-6Al-4V after cyclic damage

    NASA Astrophysics Data System (ADS)

    Galán López, J.; Verleysen, P.; Degrieck, J.

    2012-08-01

    It is common that energy absorbing structural elements are subjected to a number of loading cycles before a crash event. Several studies have shown that previous fatigue can significantly influence the tensile properties of some materials, and hence the behaviour of structural elements made of them. However, when the capacity of absorbing energy of engineering materials is determined, fresh material without any fatigue damage is most often used. This study investigates the effect of fatigue damage on the dynamic tensile properties of Ti-6Al-4V in thin-sheet form. Results are completed with tests at quasi-static strain rates and observations of the fracture surfaces, and compared with results obtained from other alloys and steel grades. The experiments show that the dynamic properties of Ti-6Al-4V are not affected by a number of fatigue loading cycles high enough to significantly reduce the energy absorbing capabilities of EDM machined samples.

  16. Polymers in solar energy utilization

    NASA Technical Reports Server (NTRS)

    Liang, R. H.; Coulter, D. R.; Dao, C.; Gupta, A.

    1983-01-01

    A laser photoacoustic technique (LPAT) has been verified for performing accelerated life testing of outdoor photooxidation of polymeric materials used in solar energy applications. Samples of the material under test are placed in a chamber with a sensitive microphone, then exposed to chopped laser radiation. The sample absorbs the light and converts it to heat by a nonradiative deexcitation process, thereby reducing pressure fluctuations within the cell. The acoustic signal detected by the microphone is directly proportional to the amount of light absorbed by the specimen. Tests were performed with samples of ethylene/methylacrylate copolymer (EMA) reprecipitated from hot cyclohexane, compressed, and molded into thin (25-50 microns) films. The films were exposed outdoors and sampled by LPAT weekly. The linearity of the light absorbed with respect to the acoustic signal was verified.Correlations were established between the photoacoustic behavior of the materials aged outdoors and the same kinds of samples cooled and heated in a controlled environment reactor. The reactor tests were validated for predicting outdoor exosures up to 55 days.

  17. The development of high resolution silicon x-ray microcalorimeters

    NASA Astrophysics Data System (ADS)

    Porter, F. S.; Kelley, R. L.; Kilbourne, C. A.

    2005-12-01

    Recently we have produced x-ray microcalorimeters with resolving powers approaching 2000 at 5.9 keV using a spare XRS microcalorimeter array. We attached 400 um square, 8 um thick HgTe absorbers using a variety of attachment methods to an XRS array and ran the detector array at temperatures between 40 and 60 mK. The best results were for absorbers attached using the standard XRS absorber-pixel thermal isolation scheme utilizing SU8 polymer tubes. In this scenario we achieved a resolution of 3.2 eV FWHM at 5.9 keV. Substituting a silicon spacer for the SU8 tubes also yielded sub-4eV results. In contrast, absorbers attached directly to the thermistor produced significant position dependence and thus degraded resolution. Finally, we tested standard 640um-square XRS detectors at reduced bias power at 50mK and achieved a resolution of 3.7eV, a 50% improvement over the XRS flight instrument. Implanted silicon microcalorimeters are a mature flight-qualified technology that still has a substantial phase space for future development. We will discuss these new high resolution results, the various absorber attachment schemes, planned future improvements, and, finally, their relevance to future high resolution x-ray spectrometers including Constellation-X.

  18. Enhanced vacuum laser-impulse coupling by volume absorption at infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Phipps, C. R., Jr.; Harrison, R. F.; Shimada, T.; York, G. W.; Turner, R. F.

    1990-03-01

    This paper reports measurements of vacuum laser impulse coupling coefficients as large as 90 dyne/W, obtained with single microsec-duration CO2 laser pulses incident on a volume-absorbing, cellulose-nitrate-based plastic. This result is the largest coupling coefficient yet reported at any wavelength for a simple, planar target in vacuum, and partly results from expenditure of internal chemical energy in this material. Enhanced coupling was also observed in several other target materials that are chemically passive, but absorb light in depth at 10- and 3-micron wavelengths. The physical distinctions are discussed between this important case and that of simple, planar surface absorbers (such as metals) which were studied in the same experimental series, in light of the predictions of a simple theoretical model.

  19. Process and Material Design for Micro-Encapsulated Ionic Liquids in Post-Combustion CO 2 Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Bo; Brennecke, Joan F; McCready, Mark

    Aprotic Heterocyclic Anion (AHA) Ionic Liquids (ILs) have been identified as promising new solvents for post-combustion carbon capture due to their high CO 2 uptake and the high tenability 1,2 of their binding energy with CO 2. Some of these compounds change phase (solid to liquid) on absorption of CO 2; these Phase Change ILs (PCILs)3 offer the additional advantage that part of the heat needed to desorb the CO2 from the absorbent is provided by the heat of fusion as the PCIL solidifies upon release of CO 2. However, the relatively high viscosity of AHA ILs and the occurrencemore » of a phase change in PCILs present challenges for conventional absorption equipment. To overcome these challenges we are pursuing the use of new technology to micro-encapsulate the AHA ILs and PCILs. Our partners at Lawrence Livermore National Laboratory have successfully demonstrated this technology in the application of post-combustion carbon capture with sodium and potassium carbonate solutions,4 and have recently shown the feasibility of micro-encapsulation of an AHA IL for carbon capture.5 The large effective surface area and high CO 2 permeability of the micro-capsules is expected to offset the drawback of the high IL viscosity and to provide for a more efficient and cost-effective mass transfer operation involving AHA ILs and PCILs. These opportunities, however, present us with both process and materials design questions. For example, what is the target CO 2 absorption strength (enthalpy of chemical absorption) for the tunable AHA IL? What is the target for micro-capsule diameter in order to obtain a high mass transfer rate and good fluidization performance? What are the appropriate temperatures and pressures for the absorber and stripper? In order to address these and other questions, we have developed a rate-based model of a post-combustion CO 2 capture process using micro-encapsulated ILs. As a performance baseline, we have also developed a rate-based model of a standard packed bed absorber using an un-encapsulated AHA IL absorbent. Using such models we can determine optimal CO 2 capture performance and investigate the sensitivity of the optimum with respect to the key thermo-physical and transport properties of the IL (e.g., CO 2 binding energy, viscosity, etc.) and the micro-capsules (e.g. diameter, CO 2 permeability, etc.). Results of these process and material design studies will be presented, and the performance of this novel micro-encapsulation technology will be assessed.« less

  20. Evaluation of an Energy Absorbing Truck Seat for Increased Protection from Landmine Blasts.

    DTIC Science & Technology

    1996-01-01

    acceleration (top curve, Figure 4) reveals the wire bending action of the passenger seat as it absorbs energy. No data from the standard (driver) seat...Vertical accelerations were limited by the wire bending action. 17 Passenger seat velocities 120894 Demo (8 Dec 94) - center blast, EA passenger seat

  1. 14 CFR 29.725 - Limit drop test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Landing Gear § 29.725 Limit drop test. The... energy absorbing devices or by the use of an effective mass. (c) Each landing gear unit must be tested in... to be absorbed by it. (d) When an effective mass is used in showing compliance with paragraph (b) of...

  2. Defined UV protection by apparel textiles.

    PubMed

    Hoffmann, K; Laperre, J; Avermaete, A; Altmeyer, P; Gambichler, T

    2001-08-01

    This article was written to update information on test methods and standards for determining the UV protection of apparel textiles and on factors affecting UV protective properties of fabrics, from dermatological and textile technological viewpoints. Articles from dermatological and textile technological journals published from 1990 to 2001 were identified from MEDLINE, Excerpta Medica/EMBASE, World Textiles, and Textile Technology Digest. Peer-reviewed dermatological articles, textile technological research articles, and normative publications were selected. Independent data extraction was performed by several observers. Spectrophotometry is the preferred method for determining UV protection factor of textile materials. Various textile qualities affect the UV protection factor of a finished garment; important elements are the fabric porosity, type, color, weight, and thickness. The application of UV absorbers in the yarns significantly improves the UV protection factor of a garment. With wear and use, several factors can alter the UV protective properties of a textile, including stretch, wetness, and degradation due to laundering. Standards in the field exist in Australia and Great Britain, and organizations such as the European Standardization Commission in Europe and the American Association of Textile Chemists and Colorists and the American Society for Testing and Materials in the United States are also establishing standards for the determination and labeling of sun protective clothing. Various textile qualities and conditions of wear and use affect UV protective properties of apparel textiles. The use of UV blocking fabrics can provide excellent protection against the hazards of sunlight; this is especially true for garments manufactured as UV protective clothing.

  3. Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles

    NASA Astrophysics Data System (ADS)

    Riley, Conor T.; Smalley, Joseph S. T.; Brodie, Jeffrey R. J.; Fainman, Yeshaiahu; Sirbuly, Donald J.; Liu, Zhaowei

    2017-02-01

    Broadband absorbers are essential components of many light detection, energy harvesting, and camouflage schemes. Current designs are either bulky or use planar films that cause problems in cracking and delamination during flexing or heating. In addition, transferring planar materials to flexible, thin, or low-cost substrates poses a significant challenge. On the other hand, particle-based materials are highly flexible and can be transferred and assembled onto a more desirable substrate but have not shown high performance as an absorber in a standalone system. Here, we introduce a class of particle absorbers called transferable hyperbolic metamaterial particles (THMMP) that display selective, omnidirectional, tunable, broadband absorption when closely packed. This is demonstrated with vertically aligned hyperbolic nanotube (HNT) arrays composed of alternating layers of aluminum-doped zinc oxide and zinc oxide. The broadband absorption measures >87% from 1,200 nm to over 2,200 nm with a maximum absorption of 98.1% at 1,550 nm and remains large for high angles. Furthermore, we show the advantages of particle-based absorbers by transferring the HNTs to a polymer substrate that shows excellent mechanical flexibility and visible transparency while maintaining near-perfect absorption in the telecommunications region. In addition, other material systems and geometries are proposed for a wider range of applications.

  4. Quantitative Analysis of Plutonium Content in Particles Collected from a Certified Reference Material by Total Nuclear Reaction Energy (Q Value) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Croce, M. P.; Hoover, A. S.; Rabin, M. W.; Bond, E. M.; Wolfsberg, L. E.; Schmidt, D. R.; Ullom, J. N.

    2016-08-01

    Microcalorimeters with embedded radioisotopes are an emerging category of sensor with advantages over existing methods for isotopic analysis of trace-level nuclear materials. For each nuclear decay, the energy of all decay products captured by the absorber (alpha particles, gamma rays, X-rays, electrons, daughter nuclei, etc.) is measured in one pulse. For alpha-decaying isotopes, this gives a measurement of the total nuclear reaction energy (Q value) and the spectra consist of well-separated, narrow peaks. We have demonstrated a simple mechanical alloying process to create an absorber structure consisting of a gold matrix with small inclusions of a radioactive sample. This absorber structure provides an optimized energy thermalization environment, resulting in high-resolution spectra with minimal tailing. We have applied this process to the analysis of particles collected from the surface of a plutonium metal certified reference material (CRM-126A from New Brunswick Laboratory) and demonstrated isotopic analysis by microcalorimeter Q value spectroscopy. Energy resolution from the Gaussian component of a Bortels function fit was 1.3 keV FWHM at 5244 keV. The collected particles were integrated directly into the detector absorber without any chemical processing. The ^{238}Pu/^{239}Pu and ^{240}Pu/^{239}Pu mass ratios were measured and the results confirmed against the certificate of analysis for the reference material. We also demonstrated inter-element analysis capability by measuring the ^{241}Am/^{239}Pu mass ratio.

  5. Granular biodurable nanomaterials: No convincing evidence for systemic toxicity.

    PubMed

    Moreno-Horn, Marcus; Gebel, Thomas

    2014-11-01

    Nanomaterials are usually defined by primary particle diameters ranging from 1 to 100 nm. The scope of this review is an evaluation of experimental animal studies dealing with the systemic levels and putative systemic effects induced by nanoparticles which can be characterized as being granular biodurable particles without known specific toxicity (GBP). Relevant examples of such materials comprise nanosized titanium dioxide (TiO2) and carbon black. The question was raised whether GBP nanomaterials systemically accumulate and may possess a relevant systemic toxicity. With few exceptions, the 56 publications reviewed were not performed using established standard protocols, for example, OECD guidelines but used non-standard study designs. The studies including kinetic investigations indicated that GBP nanomaterials were absorbed and systemically distributed to rather low portions only. There was no valid indication that GPB nanomaterials possess novel toxicological hazard properties. In addition, no convincing evidence for a relevant specific systemic toxicity of GBP nanomaterials could be identified. The minority of the papers reviewed (15/56) investigated both nanosized and microsized GBP materials in parallel. A relevant different translocation of GBP nanomaterials in contrast to GBP micromaterials was not observed in these studies. There was no evidence that GPB nanomaterials possess toxicological properties other than their micromaterial counterparts.

  6. Prediction of microwave absorption properties of tetrapod-needle zinc oxide whisker radar absorbing material without prior knowledge

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Chen; Wang, Jie; Liu, Jiang-Fan; Song, Zhong-Guo; Xi, Xiao-Li

    2017-07-01

    The radar absorbing material (RAM) containing a tetrapod-needle zinc oxide whisker (T-ZnOw) has been proved to have good efficiency of microwave absorption. However, the available theoretical models, which are intended to predict the microwave absorbing properties of such an interesting composite, still cannot work well without some prior knowledge, like the measured effective electromagnetic parameters of the prepared T-ZnOw composite. Hence, we propose a novel predictive method here to calculate the reflectivity of T-ZnOw RAM without prior knowledge. In this method, the absorbing ability of this kind of material is divided into three main aspects: the unstructured background, the conductive network, and the nanostructured particle. Then, the attenuation properties of these three parts are represented, respectively, by three different approaches: the equivalent spherical particle and the static strong fluctuation theory, the equivalent circuit model obtained from the complex impedance spectra technology, and the combination of four different microscopic electromagnetic responses. The operational calculation scheme can be obtained by integrating these three absorption effects into the existing theoretical attenuation model. The reasonable agreement between the theoretical and experimental data of a T-ZnON/SiO2 composite in the range of 8-14 GHz shows that the proposed scheme can predict the microwave absorption properties of the T-ZnOw RAM. Furthermore, a detailed analysis of these three mechanisms indicates that, on the one hand, the background plays a dominant role in determining the real part of the effective permittivity of the T-ZnOw composite while the network and the particle are the decisive factors of its material loss; on the other hand, an zero-phase impedance, i.e., a pure resistance, with appropriate resonance characteristic might be a rational physical description of the attenuation property of the conductive network, but it is difficult to realize such an impedance property by the traditional resistance and capacitance network. As a result, a series resonant circuit with a relatively low quality factor is introduced to approximate the material loss caused by the network. Finally, the different combinations of these three absorbing mechanisms are analyzed to further display their roles in the overall absorbing performance.

  7. Method for heat treating and sintering metal oxides with microwave radiation

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Meek, Thomas T.

    1989-01-01

    A method for microwave sintering materials, primarily metal oxides, is described. Metal oxides do not normally absorb microwave radiation at temperatures ranging from about room temperature to several hundred degrees centrigrade are sintered with microwave radiation without the use of the heretofore required sintering aids. This sintering is achieved by enclosing a compact of the oxide material in a housing or capsule formed of a oxide which has microwave coupling properties at room temprature up to at least the microwave coupling temperature of the oxide material forming the compact. The heating of the housing effects the initial heating of the oxide material forming the compact by heat transference and then functions as a thermal insulator for the encased oxide material after the oxide material reaches a sufficient temperature to adequately absorb or couple with microwave radiation for heating thereof to sintering temperature.

  8. The preparation and infrared radar stealth performance test of a new paraffin-based phase transition microcapsule

    NASA Astrophysics Data System (ADS)

    Chen, Yingming; Zhang, Honghong; Gao, Weiting; Chen, Yingmin; Wang, Yifan

    2018-04-01

    For the problems that the phase change material apply to infrared stealth exists easy to broken, hard to control temperature, narrow infrared channel and based on the basic principles of infrared stealth technology, this paper proposed a scheme of thermal infrared composite invisibility multi-layer wrapping, which based on two sides, one is to control the material surface temperature, another is to reduce its infrared emissivity and combine with visible light pigment and electromagnetic wave absorbing material, to realize the materials' wide band compatible stealth. First, choose urea formaldehyde resin and paraffin to prepare multiphase-change microcapsules, and then combine it with the ferroferric oxide absorbing material, zinc oxide visible light pigment, to make the stealth material of wide band. The experimental results show that the new phase change capsule can realize the function of temperature control and infrared stealth in a special temperature range.

  9. Polymers used to absorb fats and oils: A concept

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.

    1974-01-01

    One approach to problem of excessive oils and fats is to develop method by which oil is absorbed into solid mixture for elimination as solid waste. Materials proposed for these purposes are cross-linked (network) polymers that have high affinity for aliphatic substances, i. e., petroleum, animal, and vegetable oils.

  10. Shock absorbing mount for electrical components

    NASA Technical Reports Server (NTRS)

    Dillon, R. F., Jr.; Mayne, R. C. (Inventor)

    1975-01-01

    A shock mount for installing electrical components on circuit boards is described. The shock absorber is made of viscoelastic material which interconnects the electrical components. With this system, shocks imposed on one component of the circuit are not transmitted to other components. A diagram of a typical circuit is provided.

  11. The chemical composition of aerosols from wildland fire:Current state of the science and possible new directions.

    EPA Science Inventory

    Abundant evidence of the existence of a light-absorbing component of organic particles emitted by biomass combustion now exists in the scientific literature. The light absorbing properties of this material, commonly called "brown" carbon (BrC), make it a matter of int...

  12. An Assessment of 25-Hydroxyvitamin D Measurements in Comparability Studies Conducted by the Vitamin D Metabolites Quality Assurance Program

    PubMed Central

    Bedner, Mary; Lippa, Katrice A.; Tai, Susan S.-C.

    2013-01-01

    Background The National Institute of Standards and Technology (NIST), in collaboration with the National Institutes of Health Office of Dietary Supplements, established the first accuracy-based program for improving the comparability of vitamin D metabolite measurements, the Vitamin D Metabolites Quality Assurance Program. Methods Study samples were comprised of human serum or plasma Standard Reference Materials (SRMs) with 25-hydroxyvitamin D values that were determined at NIST. Participants evaluated the materials using immunoassay (IA), liquid chromatography (LC) with mass spectrometric detection, and LC with ultraviolet absorbance detection. NIST evaluated the results for concordance within the participant community as well as trueness relative to the NIST value. Results For the study materials that contain mostly 25-hydroxyvitamin D3 (25(OH)D3), the coefficient of variation (CV) for the participant results was consistently in the range from 7% to 19%, and the median values were biased high relative to the NIST values. However, for materials that contain significant concentrations of both 25-hydroxyvitamin D2 (25(OH)D2) and 25(OH)D3, the median IA results were biased lower than both the LC and the NIST values, and the CV was as high as 28%. The first interlaboratory comparison results for SRM 972a Vitamin D Metabolites in Human Serum are also reported. Conclusions Relatively large within-lab and between-lab variability hinders conclusive assessments of bias and accuracy. PMID:23978484

  13. Design and proof of concept of an innovative very high temperature ceramic solar absorber

    NASA Astrophysics Data System (ADS)

    Leray, Cédric; Ferriere, Alain; Toutant, Adrien; Olalde, Gabriel; Peroy, Jean-Yves; Chéreau, Patrick; Ferrato, Marc

    2017-06-01

    Hybrid solar gas-turbine (HSGT) is an attractive technology to foster market penetration of CSP. HSGT offers some major advantages like for example high solar-to-electric conversion efficiency, reduced water requirement and low capital cost. A very high temperature solar receiver is needed when elevated solar share is claimed. A few research works, as reported by Karni et al. [8] and by Buck et al. [1], have been dedicated to solar receiver technologies able to deliver pressurized air at temperature above 750°C. The present work focuses on research aiming at developing an efficient and reliable solar absorber able to provide pressurized air at temperature up to 1000°C and more. A surface absorber technology is selected and a modular design of receiver is proposed in which each absorber module is made of BOOSTEC® SiC ceramic (silicon carbide) as bulk material with straight air channels inside. Early stage experimental works done at CNRS/PROMES on lab-scale absorbers showed that the thermo-mechanical behavior of this material is a critical issue, resulting in elevated probability of failure under severe conditions like large temperature gradient or steep variation of solar flux density in situations of cloud covering. This paper reports on recent progress made at CNRS/PROMES to address this critical issue. The design of the absorber has been revised and optimized according to thermo-mechanical numerical simulations, and an experimental proof of concept has been done on a pilot-scale absorber module at Themis solar tower facility.

  14. Composition for radiation shielding

    DOEpatents

    Kronberg, J.W.

    1994-08-02

    A composition for use as a radiation shield is disclosed. The shield has a depleted uranium core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container. 2 figs.

  15. Composition for radiation shielding

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.

  16. Evaluating a novel application of optical fibre evanescent field absorbance: rapid measurement of red colour in winegrape homogenates

    NASA Astrophysics Data System (ADS)

    Lye, Peter G.; Bradbury, Ronald; Lamb, David W.

    Silica optical fibres were used to measure colour (mg anthocyanin/g fresh berry weight) in samples of red wine grape homogenates via optical Fibre Evanescent Field Absorbance (FEFA). Colour measurements from 126 samples of grape homogenate were compared against the standard industry spectrophotometric reference method that involves chemical extraction and subsequent optical absorption measurements of clarified samples at 520 nm. FEFA absorbance on homogenates at 520 nm (FEFA520h) was correlated with the industry reference method measurements of colour (R2 = 0.46, n = 126). Using a simple regression equation colour could be predicted with a standard error of cross-validation (SECV) of 0.21 mg/g, with a range of 0.6 to 2.2 mg anthocyanin/g and a standard deviation of 0.33 mg/g. With a Ratio of Performance Deviation (RPD) of 1.6, the technique when utilizing only a single detection wavelength, is not robust enough to apply in a diagnostic sense, however the results do demonstrate the potential of the FEFA method as a fast and low-cost assay of colour in homogenized samples.

  17. Selective solar absorber emittance measurement at elevated temperature

    NASA Astrophysics Data System (ADS)

    Giraud, Philémon; Braillon, Julien; Raccurt, Olivier

    2017-06-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The characterization of a material in such condition is complicated and requires advanced apparatuses, and different measurement methods exist for the determination of the two quantities of relevance regarding an absorber, which are its emittance and its solar absorbance. The objective is to develop new optical equipment for measure the emittance of this solar absorber at elevated temperature. In this paper, we present an optical bench developed for emittance measurement on absorbers is conditions of use. Results will be shown, with a discussion of some factors of influence over this measurement and how to control them.

  18. Structural and optical properties of copper-coated substrates for solar thermal absorbers

    NASA Astrophysics Data System (ADS)

    Pratesi, Stefano; De Lucia, Maurizio; Meucci, Marco; Sani, Elisa

    2016-10-01

    Spectral selectivity, i.e. merging a high absorbance at sunlight wavelengths to a low emittance at the wavelengths of thermal spectrum, is a key characteristics for materials to be used for solar thermal receivers. It is known that spectrally selective absorbers can raise the receiver efficiency for all solar thermal technologies. Tubular sunlight receivers for parabolic trough collector (PTC) systems can be improved by the use of spectrally selective coatings. Their absorbance is increased by deposing black films, while the thermal emittance is minimized by the use of properly-prepared substrates. In this work we describe the intermediate step in the fabrication of black-chrome coated solar absorbers, namely the fabrication and characterization of copper coatings on previously nickel-plated stainless steel substrates. We investigate the copper surface features and optical properties, correlating them to the coating thickness and to the deposition process, in the perspective to assess optimal conditions for solar absorber applications.

  19. Toward a comprehensive theory for the sweeping of trapped radiation by inert orbiting matter

    NASA Technical Reports Server (NTRS)

    Fillius, Walker

    1988-01-01

    There is a need to calculate loss rates when trapped Van Allen radiation encounters inert orbiting material such as planetary rings and satellites. An analytic expression for the probability of a hit in a bounce encounter is available for all cases where the absorber is spherical and the particles are gyrotropically distributed on a cylindrical flux tube. The hit probability is a function of the particle's pitch angle, the size of the absorber, and the distance between flux tube and absorber, when distances are scaled to the gyroradius of a particle moving perpendicular to the magnetic field. Using this expression, hit probabilities have been computed in drift encounters for all regimes of particle energies and absorber sizes. This technique generalizes the approach to sweeping lifetimes, and is particularly suitable for attacking the inverse problem, where one is given a sweeping signature and wants to deduce the properties of the absorber(s).

  20. A solar air collector with integrated latent heat thermal storage

    NASA Astrophysics Data System (ADS)

    Charvat, Pavel; Ostry, Milan; Mauder, Tomas; Klimes, Lubomir

    2012-04-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data).

  1. Materials for Low-Energy Neutron Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C., Jr.; Thibeault, Sheila A.

    2000-01-01

    Various candidate aircraft and spacecraft materials were analyzed and compared in a low-energy neutron environment using the Monte Carlo N-Particle (MCNP) transport code with an energy range up to 20 MeV. Some candidate materials have been tested in particle beams, and others seemed reasonable to analyze in this manner before deciding to test them. The two metal alloys analyzed are actual materials being designed into or used in aircraft and spacecraft today. This analysis shows that hydrogen-bearing materials have the best shielding characteristics over the metal alloys. It also shows that neutrons above 1 MeV are reflected out of the face of the slab better by larger quantities of carbon in the material. If a low-energy absorber is added to the material, fewer neutrons are transmitted through the material. Future analyses should focus on combinations of scatterers and absorbers to optimize these reaction channels and on the higher energy neutron component (above 50 MeV).

  2. Characteristics and issues of an EUVL mask applying phase-shifting thinner absorber for device fabrication

    NASA Astrophysics Data System (ADS)

    Seo, Hwan-Seok; Lee, Dong-Gun; Ahn, Byung-Sup; Han, Hakseung; Huh, Sungmin; Kang, In-Yong; Kim, Hoon; Kim, Dongwan; Kim, Seong-Sue; Cho, Han-Ku

    2009-03-01

    Phase-shifting EUVL masks applying thinner absorber are investigated to design optimum mask structure with less shadowing problems. Simulations using S-Litho show that H-V bias in Si capping structure is higher than that of Ru capping since the high n (= 0.999) of Si increases sensible absorber height. Phase differences obtained from the patterned masks using the EUV CSM are well-matched with the calculated values using the practical refractive index of absorber materials. Although the mask with 62.4-nm-thick absorber, among the in-house masks, shows the closest phase ΔΦ(= 176°) to the out-of-phase condition, higher NILS and contrast as well as lower H-V bias are obtained with 52.4-nm-thick absorber (ΔΦ = 151°) which has higher R/R0 ratio. MET results also show that lithography performances including MEEF, PW, and resist threshold (dose), are improved with thinner absorber structure. However, low OD in EUVL mask, especially in thinner absorber structure, results in light leakage from the neighboring exposure shots, and thus an appropriate light-shielding layer should be introduced.

  3. Development of novel two-photon absorbing chromophores

    NASA Astrophysics Data System (ADS)

    Rogers, Joy E.; Slagle, Jonathan E.; McLean, Daniel G.; Sutherland, Richard L.; Krein, Douglas M.; Cooper, Thomas M.; Brant, Mark; Heinrichs, James; Kannan, Ramamurthi; Tan, Loon-Seng; Urbas, Augustine M.; Fleitz, Paul A.

    2006-08-01

    There has been much interest in the development of two-photon absorbing materials and many efforts to understand the nonlinear absorption properties of these dyes but this area is still not well understood. A computational model has been developed in our lab to understand the nanosecond nonlinear absorption properties that incorporate all of the measured one-photon photophysical parameters of a class of materials called AFX. We have investigated the nonlinear and photophysical properties of the AFX chromophores including the two-photon absorption cross-section, the excited state cross-section, the intersystem crossing quantum yield, and the singlet and triplet excited state lifetimes using a variety of experimental techniques that include UV-visible, fluorescence and phosphorescence spectroscopy, time correlated single photon counting, ultrafast transient absorption, and nanosecond laser flash photolysis. The model accurately predicts the nanosecond nonlinear transmittance data using experimentally measured parameters. Much of the strong nonlinear absorption has been shown to be due to excited state absorption from both the singlet and triplet excited states. Based on this understanding of the nonlinear absorption and the importance of singlet and triplet excited states we have begun to develop new two-photon absorbing molecules within the AFX class as well as linked to other classes of nonlinear absorbing molecules. This opens up the possibilities of new materials with unique and interesting properties. Specifically we have been working on a new class of two-photon absorbing molecules linked to platinum poly-ynes. In the platinum poly-yne chromophores the photophysics are more complicated and we have just started to understand what drives both the linear and non-linear photophysical properties.

  4. Comparison of homeopathic globules prepared from high and ultra-high dilutions of various starting materials by ultraviolet light spectroscopy.

    PubMed

    Klein, Sabine D; Wolf, Ursula

    2016-02-01

    Homeopathic globules are commonly used in clinical practice, while research focuses on liquid potencies. Sequential dilution and succussion in their production process has been proposed to change the physico-chemical properties of the solvent(s). It has been reported that aqueous potencies of various starting materials showed significant differences in ultraviolet light transmission compared to controls and between different dilution levels. The aim of the present study was to repeat and expand these experiments to homeopathic globules. Globules were specially produced for this study by Spagyros AG (Gümligen, Switzerland) from 6 starting materials (Aconitum napellus, Atropa belladonna, phosphorus, sulfur, Apis mellifica, quartz) and for 6 dilution levels (6x, 12x, 30c, 200c, 200CF (centesimal discontinuous fluxion), 10,000CF). Native globules and globules impregnated with solvents were used as controls. Globules were dissolved in ultrapure water, and absorbance in the ultraviolet range was measured. The average absorbance from 200 to 340nm was calculated and corrected for differences between measurement days and instrumental drift. Statistically significant differences were found for A. napellus, sulfur, and A. mellifica when normalized average absorbance of the various dilution levels from the same starting material (including control and solvent control globules) was compared. Additionally, absorbance within dilution levels was compared among the various starting materials. Statistically significant differences were found among 30c, 200c and 200CF dilutions. This study has expanded previous findings from aqueous potencies to globules and may indicate that characteristics of aqueous high dilutions may be preserved and detectable in dissolved globules. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Advanced Design Heat PumpRadiator for EVA Suits

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Passow, Christian; Phillips, Scott; Trevino, Luis

    2009-01-01

    Absorption cooling using a LiCl/water heat pump can enable lightweight and effective thermal control for EVA suits without venting water to the environment. The key components in the system are an absorber/radiator that rejects heat to space and a flexible evaporation cooling garment that absorbs heat from the crew member. This paper describes progress in the design, development, and testing of the absorber/radiator and evaporation cooling garment. New design concepts and fabrication approaches will significantly reduce the mass of the absorber/radiator. We have also identified materials and demonstrated fabrication approaches for production of a flexible evaporation cooling garment. Data from tests of the absorber/radiator s modular components have validated the design models and allowed predictions of the size and weight of a complete system.

  6. Evaluation of four suture materials for surgical incision closure in Siberian sturgeon

    USGS Publications Warehouse

    Boone, S. Shaun; Hernandez, Sonia M.; Camus, Alvin C.; Peterson, Douglas C.; Jennings, Cecil A.; Shelton, James L.; Divers, Stephen J.

    2015-01-01

    The visual and microscopic tissue reactions to the absorbable monofilament Monocryl, absorbable monofilament triclosan-coated Monocryl-Plus, absorbable multifilament Vicryl, and nonabsorbable monofilament Prolene were evaluated for their use of surgical closure in Siberian Sturgeon Acipenser baerii. Postoperative assessments were conducted at 1, 2, 8, 12, and 26 and 55 weeks to visually evaluate the surgical incision for suture retention, incision healing, erythema, and swelling. Incisions were also assessed microscopically at 1, 2, and 8 weeks for necrosis, inflammation, hemorrhage, and fibroplasia. The results indicated that incisions closed with either Vicryl or Prolene suture materials were more likely to exhibit more erythema or incomplete healing compared with those closed with Monocryl or Monocryl-Plus. The surgical implantation of a transmitter in the coelomic cavity did not significantly affect the response variables among the four suture materials. Monocryl or Monocryl-Plus were equally effective and superior to other suture materials used for closing surgical incisions in Siberian Sturgeon or closely related species of sturgeon. Furthermore, Monocryl or Monocryl-Plus may decrease the risk of transmitter expulsion through the incision, as surgical wounds appear to heal faster and exhibit less erythema compared with those closed with Vicryl.

  7. A New Absorbable Synthetic Substitute With Biomimetic Design for Dural Tissue Repair.

    PubMed

    Shi, Zhidong; Xu, Tao; Yuan, Yuyu; Deng, Kunxue; Liu, Man; Ke, Yiquan; Luo, Chengyi; Yuan, Tun; Ayyad, Ali

    2016-04-01

    Dural repair products are evolving from animal tissue-derived materials to synthetic materials as well as from inert to absorbable features; most of them lack functional and structural characteristics compared with the natural dura mater. In the present study, we evaluated the properties and tissue repair performance of a new dural repair product with biomimetic design. The biomimetic patch exhibits unique three-dimensional nonwoven microfiber structure with good mechanical strength and biocompatibility. The animal study showed that the biomimetic patch and commercially synthetic material group presented new subdural regeneration at 90 days, with low level inflammatory response and minimal to no adhesion formation detected at each stage. In the biological material group, no new subdural regeneration was observed and severe adhesion between the implant and the cortex occurred at each stage. In clinical case study, there was no cerebrospinal fluid leakage, and all the postoperation observations were normal. The biomimetic structure and proper rate of degradation of the new absorbable dura substitute can guide the meaningful reconstruction of the dura mater, which may provide a novel approach for dural defect repair. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  8. Determination of ultraviolet filter activity on coconut oil cosmetic cream

    NASA Astrophysics Data System (ADS)

    Widiyati, Eni

    2017-08-01

    A research on determination of ultraviolet (UV) filter activity of cosmetic cream with coconut oil as raw material has been done. The cream was made by mixing the oil phase (coconut oil, stearic acid, lanolin and cetyl alcohol) at 70°C and the water phase (glycerin, aquadest and triethanolamine) at 70°C, while stirring until reached a temperature of 35°C. It was made also a cream with inorganic sunscreen TiO2 and organic sunscreen benzophenone-3 as a comparison. To study the UV filter activity, each cream was determined the UV absorption using UV spectrophotometer. The results show that cosmetic cream with coconut oil as raw material absorbs UV rays in the region of UV-C, whereas the cream with TiO2 absorbs the UV rays from UV-C to UV-A and cream with benzophenone-3 absorbs the UV rays from UV-B to UV-A region. This means that, the cosmetic cream with coconut oil as raw material has an activity as UV-C filter. If this cream is expected to have an activity as a sunscreen, it must be added an inorganic or organic sunscreen or a mixture of both as an active materials.

  9. Biofilm Formation on Different Materials Used in Oral Rehabilitation.

    PubMed

    Souza, Júlio C M; Mota, Raquel R C; Sordi, Mariane B; Passoni, Bernardo B; Benfatti, Cesar A M; Magini, Ricardo S

    2016-01-01

    The aim of this study was to evaluate the density and the morphological aspects of biofilms adhered to different materials applied in oral rehabilitation supported by dental implants. Sixty samples were divided into four groups: feldspar-based porcelain, CoCr alloy, commercially pure titanium grade IV and yttria-stabilized zirconia. Human saliva was diluted into BHI supplemented with sucrose to grow biofilms for 24 or 48 h. After this period, biofilm was removed by 1% protease treatment and then analyzed by spectrophotometry (absorbance), colony forming unit method (CFU.cm-2) and field-emission guns scanning electron microscopy (FEG-SEM). The highest values of absorbance and CFU.cm-2 were recorded on biofilms grown on CoCr alloys when compared to the other test materials for 24 or 48 h. Also, FEG-SEM images showed a high biofilm density on CoCr. There were no significant differences in absorbance and CFU.cm-2 between biofilms grown on zirconia, porcelain and titanium (p<0.05). Microbiological assays associated with microscopic analyses detected a higher accumulation of oral biofilms on CoCr-based materials than that on titanium or zirconia that are used for prosthetic structures.

  10. Field-Induced-Gap Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Elliott, C. Thomas

    1990-01-01

    Semimetals become semiconductors under applied magnetic fields. New detectors require less cooling equipment because they operate at temperatures higher than liquid-helium temperatures required by extrinsic-semiconductor detectors. Magnetic fields for detectors provided by electromagnets based on recently-discovered high-transition-temperature superconducting materials. Detector material has to be semiconductor, in which photon absorbed by exciting electron/hole pair across gap Eg of forbidden energies between valence and conduction energy bands. Magnetic- and compositional-tuning effects combined to obtain two-absorber detector having narrow passband. By variation of applied magnetic field, passband swept through spectrum of interest.

  11. Inhibition of linear absorption in opaque materials using phase-locked harmonic generation.

    PubMed

    Centini, Marco; Roppo, Vito; Fazio, Eugenio; Pettazzi, Federico; Sibilia, Concita; Haus, Joseph W; Foreman, John V; Akozbek, Neset; Bloemer, Mark J; Scalora, Michael

    2008-09-12

    We theoretically predict and experimentally demonstrate inhibition of linear absorption for phase and group velocity mismatched second- and third-harmonic generation in strongly absorbing materials, GaAs, in particular, at frequencies above the absorption edge. A 100-fs pump pulse tuned to 1300 nm generates 650 and 435 nm second- and third-harmonic pulses that propagate across a 450-microm-thick GaAs substrate without being absorbed. We attribute this to a phase-locking mechanism that causes the pump to trap the harmonics and to impress on them its dispersive properties.

  12. Method and apparatus for close packing of nuclear fuel assemblies

    DOEpatents

    Newman, Darrell F.

    1993-01-01

    The apparatus of the present invention is a plate of neutron absorbing material. The plate may have a releasable locking feature permitting the plate to be secured within a nuclear fuel assembly between nuclear fuel rods during storage or transportation then removed for further use or destruction. The method of the present invention has the step of placing a plate of neutron absorbing material between nuclear fuel rods within a nuclear fuel assembly, preferably between the two outermost columns of nuclear fuel rods. Additionally, the plate may be releasably locked in place.

  13. Method and apparatus for close packing of nuclear fuel assemblies

    DOEpatents

    Newman, D.F.

    1993-03-30

    The apparatus of the present invention is a plate of neutron absorbing material. The plate may have a releasable locking feature permitting the plate to be secured within a nuclear fuel assembly between nuclear fuel rods during storage or transportation then removed for further use or destruction. The method of the present invention has the step of placing a plate of neutron absorbing material between nuclear fuel rods within a nuclear fuel assembly, preferably between the two outermost columns of nuclear fuel rods. Additionally, the plate may be releasably locked in place.

  14. Near-infrared sensitization in dye-sensitized solar cells.

    PubMed

    Park, Jinhyung; Viscardi, Guido; Barolo, Claudia; Barbero, Nadia

    2013-01-01

    Dye-sensitized solar cells (DSCs) are a low cost and colorful promising alternative to standard silicon photovoltaic cells. Though many of the highest efficiencies have been associated with sensitizers absorbing only in the visible portion of the solar radiation, there is a growing interest for NIR sensitization. This paper reviews the efforts made so far to find sensitizers able to absorb efficiently in the far-red NIR region of solar light. Panchromatic sensitizers as well as dyes absorbing mainly in the 650-920 nm region have been considered.

  15. Comparison of in vivo eccentricity and symmetry indices between metallic stents and bioresorbable vascular scaffolds: insights from the ABSORB and SPIRIT trials.

    PubMed

    Brugaletta, Salvatore; Gomez-Lara, Josep; Diletti, Roberto; Farooq, Vasim; van Geuns, Robert Jan; de Bruyne, Bernard; Dudek, Dariusz; Garcia-Garcia, Hector M; Ormiston, John A; Serruys, Patrick W

    2012-02-01

    To compare the geometrical parameters of a bioresorbable vascular scaffold (BVS) with a standard metallic stent. The introduction of polymeric bioresorbable materials in the design of novel coronary scaffolds may affect some geometrical parameters, such as eccentricity and symmetry indices, previously introduced as IVUS criteria for optimal metallic stent deployment. From ABSORB Cohort A, ABSORB Cohort B, SPIRIT I, and SPIRIT II, all patients implanted with BVS 1.0, BVS 1.1, or XIENCE V, respectively and intravascular ultrasound analyses post-implantation were selected. The eccentricity index was calculated frame by frame and expressed as an average per device (minimum diameter/maximum diameter). The symmetry index of the device was reported as ([maximum diameter - minimum diameter]/maximum diameter). Six months major adverse cardiac events (MACE) were analyzed. A total of 242 patients were selected (BVS 1.0: n = 28, BVS 1.1: n = 94, XIENCE V: n = 120). The BVS exhibited a significantly lower eccentricity index (BVS 1.0: 0.83 ± 0.09; BVS 1.1: 0.85 ± 0.08; XIENCE V: 0.90 ± 0.06; P < 0.01) and a significantly higher symmetry index (BVS 1.0: 0.30 ± 0.07; BVS 1.1: 0.31 ± 0.06, XIENCE V 0.26 ± 0.07; P < 0.01) as compared to the XIENCE V. An inverse correlation was found between the symmetry and eccentricity indices for both (BVS r = -0.69, P < 0.01; XIENCE V r = -0.61, P < 0.01). No differences in MACE were detected between the groups according to their geometrical parameters. The introduction of a new polymeric material in the design of BVS resulted in a lower eccentricity index and a higher symmetry index as compared to metallic stents, without detectable impact in MACE, at 6 months. Copyright © 2011 Wiley Periodicals, Inc.

  16. Mapping quantum yield for (Fe-Zn-Sn-Ti)Ox photoabsorbers using a high throughput photoelectrochemical screening system.

    PubMed

    Xiang, Chengxiang; Haber, Joel; Marcin, Martin; Mitrovic, Slobodan; Jin, Jian; Gregoire, John M

    2014-03-10

    Combinatorial synthesis and screening of light absorbers are critical to material discoveries for photovoltaic and photoelectrochemical applications. One of the most effective ways to evaluate the energy-conversion properties of a semiconducting light absorber is to form an asymmetric junction and investigate the photogeneration, transport and recombination processes at the semiconductor interface. This standard photoelectrochemical measurement is readily made on a semiconductor sample with a back-side metallic contact (working electrode) and front-side solution contact. In a typical combinatorial material library, each sample shares a common back contact, requiring novel instrumentation to provide spatially resolved and thus sample-resolved measurements. We developed a multiplexing counter electrode with a thin layer assembly, in which a rectifying semiconductor/liquid junction was formed and the short-circuit photocurrent was measured under chopped illumination for each sample in a material library. The multiplexing counter electrode assembly demonstrated a photocurrent sensitivity of sub-10 μA cm(-2) with an external quantum yield sensitivity of 0.5% for each semiconductor sample under a monochromatic ultraviolet illumination source. The combination of cell architecture and multiplexing allows high-throughput modes of operation, including both fast-serial and parallel measurements. To demonstrate the performance of the instrument, the external quantum yields of 1819 different compositions from a pseudoquaternary metal oxide library, (Fe-Zn-Sn-Ti)Ox, at 385 nm were collected in scanning serial mode with a throughput of as fast as 1 s per sample. Preliminary screening results identified a promising ternary composition region centered at Fe0.894Sn0.103Ti0.0034Ox, with an external quantum yield of 6.7% at 385 nm.

  17. Radioactivity of peat mud used in therapy.

    PubMed

    Karpińska, Maria; Mnich, Krystian; Kapała, Jacek; Bielawska, Agnieszka; Kulesza, Grzegorz; Mnich, Stanisław

    2016-02-01

    The aim of the study was to determine the contents of natural and artificial isotopes in peat mud and to estimate the radiation dose absorbed via skin in patients during standard peat mud treatment. The analysis included 37 samples collected from 8 spas in Poland. The measurements of isotope concentration activity were conducted with the use of gamma spectrometry methods. The skin dose in a standard peat mud bath therapy is approximately 300 nSv. The effective dose of such therapy is considered to be 22 nSv. The doses absorbed during peat mud therapy are 5 orders of magnitude lower than effective annual dose absorbed from the natural radiation background by a statistical Pole (3.5 mSv). Neither therapeutic nor harmful effect is probable in case of such a small dose of ionising radiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Fiber optic gas sensor

    NASA Technical Reports Server (NTRS)

    Chen, Peng (Inventor); Buric, Michael P. (Inventor); Swinehart, Philip R. (Inventor); Maklad, Mokhtar S. (Inventor)

    2010-01-01

    A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.

  19. Drag Measurements of Porous Plate Acoustic Liners

    NASA Technical Reports Server (NTRS)

    Wolter, John D.

    2005-01-01

    This paper presents the results of direct drag measurements on a variety of porous plate acoustic liners. The existing literature describes numerous studies of drag on porous walls with injection or suction, but relatively few of drag on porous plates with neither injection nor suction. Furthermore, the porosity of the porous plate in existing studies is much lower than typically used in acoustic liners. In the present work, the acoustic liners consisted of a perforated face sheet covering a bulk acoustic absorber material. Factors that were varied in the experiment were hole diameter, hole pattern, face sheet thickness, bulk material type, and size of the gap (if any) between the face sheet and the absorber material.

  20. Improved solar heating systems

    DOEpatents

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  1. Solar heating system

    DOEpatents

    Schreyer, James M.; Dorsey, George F.

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  2. Radiation shielding composition

    DOEpatents

    Quapp, William J.; Lessing, Paul A.

    2000-12-26

    A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

  3. Radiation shielding composition

    DOEpatents

    Quapp, William J.; Lessing, Paul A.

    1998-01-01

    A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

  4. Pinning down high-performance Cu-chalcogenides as thin-film solar cell absorbers: A successive screening approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yubo; Zhang, Wenqing, E-mail: wqzhang@mail.sic.ac.cn, E-mail: pzhang3@buffalo.edu; State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050

    2016-05-21

    Photovoltaic performances of Cu-chalcogenides solar cells are strongly correlated with the absorber fundamental properties such as optimal bandgap, desired band alignment with window material, and high photon absorption ability. According to these criteria, we carry out a successive screening for 90 Cu-chalcogenides using efficient theoretical approaches. Besides the well-recognized CuInSe{sub 2} and Cu{sub 2}ZnSnSe{sub 4} materials, several novel candidates are identified to have optimal bandgaps of around 1.0–1.5 eV, spike-like band alignments with CdS window layer, sharp photon absorption edges, and high absorption coefficients. These new systems have great potential to be superior absorbers for photovolatic applications if their carrriermore » transport and defect properties are properly optimized.« less

  5. KEY COMPARISON: Comparison of the standards for absorbed dose to water of the VNIIFTRI, Russia and the BIPM in 60Co γ rays

    NASA Astrophysics Data System (ADS)

    Allisy-Roberts, P. J.; Kessler, C.; Burns, D. T.; Berlyand, V.; Berlyand, A.

    2010-01-01

    A new comparison of the standards for absorbed dose to water of the All-Russian Scientific Research Institute for Physical-Technical and Radiotechnical Measurements (VNIIFTRI), Russia and of the Bureau International des Poids et Mesures (BIPM) has been made in 60Co gamma radiation in 2009. The results show that the VNIIFTRI and the BIPM standards for absorbed dose to water are in agreement, yielding a mean ratio of 0.9976 for the calibration coefficients of the transfer chambers, the difference from unity being within the combined standard uncertainty (0.0043) for this result. This result is consistent with the earlier 2001 comparison result of 0.9967 (43). The updated degrees of equivalence for the VNIIFTRI are compared with those of the other national metrology institutes as presented in the BIPM key comparison database. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section I, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  6. Graphene Ink Laminate Structures on Poly(vinylidene difluoride) (PVDF) for Pyroelectric Thermal Energy Harvesting and Waste Heat Recovery.

    PubMed

    Zabek, Daniel; Seunarine, Kris; Spacie, Chris; Bowen, Chris

    2017-03-15

    Thermal energy can be effectively converted into electricity using pyroelectrics, which act as small scale power generator and energy harvesters providing nanowatts to milliwatts of electrical power. In this paper, a novel pyroelectric harvester based on free-standing poly(vinylidene difluoride) (PVDF) was manufactured that exploits the high thermal radiation absorbance of a screen printed graphene ink electrode structure to facilitate the conversion of the available thermal radiation energy into electrical energy. The use of interconnected graphene nanoplatelets (GNPs) as an electrode enable high thermal radiation absorbance and high electrical conductivity along with the ease of deposition using a screen print technique. For the asymmetric structure, the pyroelectric open-circuit voltage and closed-circuit current were measured, and the harvested electrical energy was stored in an external capacitor. For the graphene ink/PVDF/aluminum system the closed circuit pyroelectric current improves by 7.5 times, the open circuit voltage by 3.4 times, and the harvested energy by 25 times compared to a standard aluminum/PVDF/aluminum system electrode design, with a peak energy density of 1.13 μJ/cm 3 . For the pyroelectric device employed in this work, a complete manufacturing process and device characterization of these structures are reported along with the thermal conductivity of the graphene ink. The material combination presented here provides a new approach for delivering smart materials and structures, wireless technologies, and Internet of Things (IoT) devices.

  7. Design of thin InGaAsN(Sb) n-i-p junctions for use in four-junction concentrating photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Wilkins, Matthew M.; Gupta, James; Jaouad, Abdelatif; Bouzazi, Boussairi; Fafard, Simon; Boucherif, Abderraouf; Valdivia, Christopher E.; Arès, Richard; Aimez, Vincent; Schriemer, Henry P.; Hinzer, Karin

    2017-04-01

    Four-junction solar cells for space and terrestrial applications require a junction with a band gap of ˜1 eV for optimal performance. InGaAsN or InGaAsN(Sb) dilute nitride junctions have been demonstrated for this purpose, but in achieving the 14 mA/cm2 short-circuit current needed to match typical GaInP and GaAs junctions, the open-circuit voltage (VOC) and fill factor of these junctions are compromised. In multijunction devices incorporating materials with short diffusion lengths, we study the use of thin junctions to minimize sensitivity to varying material quality and ensure adequate transmission into lower junctions. An n-i-p device with 0.65-μm absorber thickness has sufficient short-circuit current, however, it relies less heavily on field-aided collection than a device with a 1-μm absorber. Our standard cell fabrication process, which includes a rapid thermal anneal of the contacts, yields a significant improvement in diffusion length and device performance. By optimizing a four-junction cell around a smaller 1-sun short-circuit current of 12.5 mA/cm2, we produced an InGaAsN(Sb) junction with open-circuit voltage of 0.44 V at 1000 suns (1 sun=100 mW/cm2), diode ideality factor of 1.4, and sufficient light transmission to allow >12.5 mA/cm2 in all four subcells.

  8. An Omnidirectional Polarization Detector Based on a Metamaterial Absorber

    PubMed Central

    Zhang, Binzhen; Zhang, Yong; Duan, Junping; Zhang, Wendong; Wang, Wanjun

    2016-01-01

    The theory, design, simulation, fabrication, and performance of an omnidirectional polarization detector (PD) with two resonances located in the X and Ka ranges based on a metamaterial absorber (MMA) are presented in this paper. The sandwich structure of PD is composed of 0.1 μm periodic “I” shaped patches on the metasurface, a dielectric of 200 μm FR-4 on the interlayer, and a 0.3 μm copper film on the substrate. PD absorptivity is first used to reflect and describe the polarization of the incident wave. The numerical results, derived from the standard full wave finite integration technology (FIT) of CST 2015, indicates that the designed PD shows polarization sensitivity at all incidence angles. The effects on absorptivity produced by the incidence angles, polarization angles, and materials are investigated. The amplitude of absorptivity change caused by polarization reaches 99.802%. A laser ablation process is adopted to prepare the designed PD on a FR-4 board coated with copper on the double plane with a thickness that was 1/93 and 1/48 of wavelength at a resonance frequency of 16.055 GHz and 30.9 GHz, respectively. The sample test results verify the designed PD excellent detectability on the polarization of the incident waves. The proposed PD, which greatly enriches the applications of metamaterials in bolometers, thermal images, stealth materials, microstructure measurements, and electromagnetic devices, is easy to mass produce and market because of its strong detectability, ultrathin thickness, effective cost, and convenient process. PMID:27455280

  9. Physicomechanical evaluation of polypropylene, polyester, and polytetrafluoroethylene meshes for inguinal hernia repair.

    PubMed

    Deeken, Corey R; Abdo, Michael S; Frisella, Margaret M; Matthews, Brent D

    2011-01-01

    For meshes to be used effectively for hernia repair, it is imperative that engineers and surgeons standardize the terminology and techniques related to physicomechanical evaluation of these materials. The objectives of this study were to propose standard techniques, perform physicomechanical testing, and classify materials commonly used for inguinal hernia repair. Nine meshes were evaluated: 4 polypropylene, 1 polyester, 1 polytetrafluoroethylene, and 3 partially absorbable. Physical properties were determined through image analysis, laser micrometry, and density measurements. Biomechanical properties were determined through suture retention, tear resistance, uniaxial, and ball burst testing with specimens tested in 2 different orientations. A 1-way ANOVA with Tukey's post-test or a t-test were performed, with p < 0.05. Significant differences were observed due to both mesh type and orientation. Areas of interstices ranged from 0.33 ± 0.01 mm² for ProLite (Atrium Medical Corp) and C-QUR Lite (Atrium Medical Corp) Large to 4.10 ± 0.06 mm² for ULTRAPRO (Ethicon), and filament diameters ranged from 99.00 ±8.1 μm for ProLite Ultra (Atrium Medical Corp) and C-QUR Lite Small to 338.8 ± 3.7 μm for Parietex Flat Sheet TEC (Covidien). These structural characteristics influenced biomechanical properties such as tear resistance and tensile strength. ProLite Ultra, C-QUR Lite Small, ULTRAPRO and INFINIT (WL Gore & Associates) did not resist tearing as effectively as the others. All meshes exhibited supraphysiologic burst strengths except INFINIT and ULTRAPRO. Significant differences exist between the physicomechanical properties of polypropylene, polyester, polytetrafluoroethylene, and partially absorbable mesh prostheses commonly used for inguinal hernia repair. Orientation of the mesh was also shown to be critical for the success of meshes, particularly those demonstrating anisotropy. Copyright © 2011 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  10. DESIGN NOTE: New apparatus for haze measurement for transparent media

    NASA Astrophysics Data System (ADS)

    Yu, H. L.; Hsiao, C. C.; Liu, W. C.

    2006-08-01

    Precise measurement of luminous transmittance and haze of transparent media is increasingly important to the LCD industry. Currently there are at least three documentary standards for measuring transmission haze. Unfortunately, none of those standard methods by itself can obtain the precise values for the diffuse transmittance (DT), total transmittance (TT) and haze. This note presents a new apparatus capable of precisely measuring all three variables simultaneously. Compared with current structures, the proposed design contains one more compensatory port. For optimal design, the light trap absorbs the beam completely, light scattered by the instrument is zero and the interior surface of the integrating sphere, baffle, as well as the reflectance standard, are of equal characteristic. The accurate values of the TT, DT and haze can be obtained using the new apparatus. Even if the design is not optimal, the measurement errors of the new apparatus are smaller than those of other methods especially for high sphere reflectance. Therefore, the sphere can be made of a high reflectance material for the new apparatus to increase the signal-to-noise ratio.

  11. Electromagnetic wave energy conversion research

    NASA Technical Reports Server (NTRS)

    Bailey, R. L.; Callahan, P. S.

    1975-01-01

    Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.

  12. Selection Metric for Photovoltaic Materials Screening Based on Detailed-Balance Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blank, Beatrix; Kirchartz, Thomas; Lany, Stephan

    The success of recently discovered absorber materials for photovoltaic applications has been generating increasing interest in systematic materials screening over the last years. However, the key for a successful materials screening is a suitable selection metric that goes beyond the Shockley-Queisser theory that determines the thermodynamic efficiency limit of an absorber material solely by its band-gap energy. Here, we develop a selection metric to quantify the potential photovoltaic efficiency of a material. Our approach is compatible with detailed balance and applicable in computational and experimental materials screening. We use the complex refractive index to calculate radiative and nonradiative efficiency limitsmore » and the respective optimal thickness in the high mobility limit. We also compare our model to the widely applied selection metric by Yu and Zunger [Phys. Rev. Lett. 108, 068701 (2012)] with respect to their dependence on thickness, internal luminescence quantum efficiency, and refractive index. Finally, the model is applied to complex refractive indices calculated via electronic structure theory.« less

  13. Selection Metric for Photovoltaic Materials Screening Based on Detailed-Balance Analysis

    DOE PAGES

    Blank, Beatrix; Kirchartz, Thomas; Lany, Stephan; ...

    2017-08-31

    The success of recently discovered absorber materials for photovoltaic applications has been generating increasing interest in systematic materials screening over the last years. However, the key for a successful materials screening is a suitable selection metric that goes beyond the Shockley-Queisser theory that determines the thermodynamic efficiency limit of an absorber material solely by its band-gap energy. Here, we develop a selection metric to quantify the potential photovoltaic efficiency of a material. Our approach is compatible with detailed balance and applicable in computational and experimental materials screening. We use the complex refractive index to calculate radiative and nonradiative efficiency limitsmore » and the respective optimal thickness in the high mobility limit. We also compare our model to the widely applied selection metric by Yu and Zunger [Phys. Rev. Lett. 108, 068701 (2012)] with respect to their dependence on thickness, internal luminescence quantum efficiency, and refractive index. Finally, the model is applied to complex refractive indices calculated via electronic structure theory.« less

  14. Peculiarities of light absorption by spherical microcapsules

    NASA Astrophysics Data System (ADS)

    Geints, Yurii E.; Panina, Ekaterina K.; Zemlyanov, Alexander A.

    2018-04-01

    Optical radiation absorption in the poly-layer spherical microparticles simulating the inorganic/organic polyshell absorbing microcapsules is considered. With the aim of the finite-difference time-domain technique, the spatial distribution of the absorbed light power in microcapsules of various sizes and internal structure is numerically calculated. For the purpose of light absorption enhancement, we have engineered the optimal structure of a capsule consisting of a strong-refracting transparent outer coating and an absorbing layer which covers a liquid core. The proposed microcapsule prototype provides for a manifold increase in the absorbed light power density in comparison with the usual single-layer absorbing capsule. We show that for light-wavelengths-scaled microcapsules it is optimal to use a material with the refractive index larger than two as an outer shell, for example, titanium dioxide (TiO2). The highest values of the absorbed power density can be obtained in microcapsules with absorbing shell thickness of approximately a tenth of a laser wavelength. When laser radiation is scattered by a dimer constituted by two identical absorbing microcapsules the absorbed power density can be maximized by the choosing of proper dimer spatial configuration. In the case of strongly absorbing particles, the absorption maximum corresponds to a shift of the capsules to a distance of about their diameter, and in the case of weakly absorbing particles the absorption is maximal when particles are in geometrical shades of each other.

  15. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1980-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  16. Burnable absorber arrangement for fuel bundle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.; Townsend, D.B.

    1986-12-16

    This patent describes a boiling water reactor core whose operation is characterized by a substantial proportion of steam voids with concomitantly reduced moderation toward the top of the core when the reactor is in its hot operating condition. The reduced moderation leads to slower burnup and greater conversion ratio in an upper core region so that when the reactor is in its cold shut down condition the resulting relatively increased moderation in the upper core region is accompanied by a reactivity profile that peaks in the upper core region. A fuel assembly is described comprising; a component of fissile materialmore » distributed over a substantial axial extent of the fuel assembly; and a component of neutron absorbing material having an axial distribution characterized by an enhancement in an axial zone of the fuel assembly, designated the cold shutdown control zone, corresponding to at least a portion of the axial region of the core when the cold shutdown reactivity peaks. The aggregate amount of neutron absorbing material in the cold shutdown zone of the fuel assembly is greater than the aggregate amount of neutron absorbing material in the axial zones of the fuel assembly immediately above and immediately below the cold shutdown control zone whereby the cold shutdown reactivity peak is reduced relative to the cold shutdown reactivity in the zones immediately above and immediately below the cold shutdown control zone. The cold shutdown zone has an axial extent measured from the bottom of the fuel assembly in the range between 68-88 percent of the height of the fissile material in the fuel assembly.« less

  17. Electromagnetic Wave Absorption Coating Material with Self-Healing Properties.

    PubMed

    Wang, Ya-Min; Pan, Min; Liang, Xiang-Yong; Li, Bang-Jing; Zhang, Sheng

    2017-12-01

    Electromagnetic wave absorption coatings can effectively minimize electromagnetic radiation and are widely used in the military and civil field. However, even small scratches on the coating can lead to a large decline of absorption ability and bring serious consequences. To enhance the lifetime of electromagnetic wave absorbing coating, a kind of self-healing electromagnetic wave absorbing coating is developed by introducing host-guest interactions between the absorbing fillers and polymer matrix. After being damaged, the cracks on this coating can be healed completely with the aid of small amounts of water. Simultaneously, the electromagnetic absorbing ability of the coating is restored along with the self-healing process. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Optimization of the acoustic absorption coefficients of certain functional absorbents

    NASA Technical Reports Server (NTRS)

    Pocsa, V.; Biborosch, L.; Veres, A.; Halpert, E.; Lorian, R.; Botos, T.

    1974-01-01

    The sound absorption coefficients of some functional absorbents (mineral wool plates) are determined by the reverberation chamber method. The influence of the angle of inclination of the sound absorbing material with respect to the surface to be treated is analyzed as well as the influence of the covering index, defined as the ratio of the designed area of a plate and the area of the treated surface belonging to another plate. As compared with the conventional method of applying sound-absorbing plates, the analyzed structures have a higher technological and economical efficiency. The optimum structure corresponds to an angle of inclination of 15 deg and a covering index of 0.8.

  19. A naked eye refractive index sensor with a visible multiple peak metamaterial absorber.

    PubMed

    Ma, Heli; Song, Kun; Zhou, Liang; Zhao, Xiaopeng

    2015-03-26

    We report a naked eye refractive index sensor with a visible metamaterial absorber. The visible metamaterial absorber consisting of a silver dendritic/dielectric/metal structure shows multiple absorption peaks. By incorporating a gain material (rhodamine B) into the dielectric layer, the maximal magnitude of the absorption peak can be improved by about 30%. As the metamaterial absorber is sensitive to the refractive index of glucose solutions, it can function as a sensor that quickly responds to variations of the refractive index of the liquid. Meanwhile, since the response is presented via color changes, it can be clearly observed by the naked eyes. Further experiments have confirmed that the sensor can be used repeatedly.

  20. A study of lateral fall-off (penumbra) optimisation for pencil beam scanning (PBS) proton therapy

    NASA Astrophysics Data System (ADS)

    Winterhalter, C.; Lomax, A.; Oxley, D.; Weber, D. C.; Safai, S.

    2018-01-01

    The lateral fall-off is crucial for sparing organs at risk in proton therapy. It is therefore of high importance to minimize the penumbra for pencil beam scanning (PBS). Three optimisation approaches are investigated: edge-collimated uniformly weighted spots (collimation), pencil beam optimisation of uncollimated pencil beams (edge-enhancement) and the optimisation of edge collimated pencil beams (collimated edge-enhancement). To deliver energies below 70 MeV, these strategies are evaluated in combination with the following pre-absorber methods: field specific fixed thickness pre-absorption (fixed), range specific, fixed thickness pre-absorption (automatic) and range specific, variable thickness pre-absorption (variable). All techniques are evaluated by Monte Carlo simulated square fields in a water tank. For a typical air gap of 10 cm, without pre-absorber collimation reduces the penumbra only for water equivalent ranges between 4-11 cm by up to 2.2 mm. The sharpest lateral fall-off is achieved through collimated edge-enhancement, which lowers the penumbra down to 2.8 mm. When using a pre-absorber, the sharpest fall-offs are obtained when combining collimated edge-enhancement with a variable pre-absorber. For edge-enhancement and large air gaps, it is crucial to minimize the amount of material in the beam. For small air gaps however, the superior phase space of higher energetic beams can be employed when more material is used. In conclusion, collimated edge-enhancement combined with the variable pre-absorber is the recommended setting to minimize the lateral penumbra for PBS. Without collimator, it would be favourable to use a variable pre-absorber for large air gaps and an automatic pre-absorber for small air gaps.

  1. Key comparison BIPM.RI(I)-K9 of the absorbed dose to water standards of the PTB, Germany and the BIPM in medium-energy x-rays

    NASA Astrophysics Data System (ADS)

    Burns, D. T.; Kessler, C.; Büermann, L.; Ketelhut, S.

    2018-01-01

    A key comparison has been made between the absorbed dose to water standards of the PTB, Germany and the BIPM in the medium-energy x-ray range. The results show the standards to be in general agreement at the level of the standard uncertainty of the comparison of 9 to 11 parts in 103. The results are combined with those of a EURAMET comparison and presented in terms of degrees of equivalence for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  2. Dielectric properties of biomass/biochar mixtures at microwave frequencies

    USDA-ARS?s Scientific Manuscript database

    Material dielectric properties are important for understanding their response to microwaves. Carbonaceous materials are considered good microwave absorbers and can be mixed with dry biomasses, which are otherwise low- loss materials, to improve the heating efficiency of biomass feedstocks. In this ...

  3. Laser and acoustic lens for lithotripsy

    DOEpatents

    Visuri, Steven R.; Makarewicz, Anthony J.; London, Richard A.; Benett, William J.; Krulevitch, Peter; Da Silva, Luiz B.

    2002-01-01

    An acoustic focusing device whose acoustic waves are generated by laser radiation through an optical fiber. The acoustic energy is capable of efficient destruction of renal and biliary calculi and deliverable to the site of the calculi via an endoscopic procedure. The device includes a transducer tip attached to the distal end of an optical fiber through which laser energy is directed. The transducer tip encapsulates an exogenous absorbing dye. Under proper irradiation conditions (high absorbed energy density, short pulse duration) a stress wave is produced via thermoelastic expansion of the absorber for the destruction of the calculi. The transducer tip can be configured into an acoustic lens such that the transmitted acoustic wave is shaped or focused. Also, compressive stress waves can be reflected off a high density/low density interface to invert the compressive wave into a tensile stress wave, and tensile stresses may be more effective in some instances in disrupting material as most materials are weaker in tension than compression. Estimations indicate that stress amplitudes provided by this device can be magnified more than 100 times, greatly improving the efficiency of optical energy for targeted material destruction.

  4. Trade-Offs in Thin Film Solar Cells with Layered Chalcostibite Photovoltaic Absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Adam W.; Baranowski, Lauryn L.; Peng, Haowei

    Discovery of novel semiconducting materials is needed for solar energy conversion and other optoelectronic applications. However, emerging low-dimensional solar absorbers often have unconventional crystal structures and unusual combinations of optical absorption and electrical transport properties, which considerably slows down the research and development progress. Here, the effect of stronger absorption and weaker carrier collection of 2D-like absorber materials are studied using a high-throughput combinatorial experimental approach, complemented by advanced characterization and computations. It is found that the photoexcited charge carrier collection in CuSbSe 2 solar cells is enhanced by drift in an electric field, addressing a different absorption/collection balance. Themore » resulting drift solar cells efficiency is <5% due to inherent J SC/ V OC trade-off, suggesting that improved carrier diffusion and better contacts are needed to further increase the CuSbSe 2 performance. Furthermore, this study also illustrates the advantages of high-throughput experimental methods for fast optimization of the optoelectronic devices based on emerging low-dimensional semiconductor materials.« less

  5. Towards All-Inorganic Transport Layers for Wide-Band-Gap Formamidinium Lead Bromide-Based Planar Photovoltaics

    DOE PAGES

    Subbiah, Anand S.; Mahuli, Neha; Agarwal, Sumanshu; ...

    2017-07-21

    Hybrid perovskite photovoltaic devices heavily rely on the use of organic (rather than inorganic) charge-transport layers on top of a perovskite absorber layer because of difficulties in depositing inorganic materials on top of these fragile absorber layers. However, in comparison to the unstable and expensive organic transport materials, inorganic charge-transport layers provide improved charge transport and stability to the device architecture. Here, we report photovoltaic devices using all-inorganic transport layers in a planar p-i-n junction device configuration using formamidinium lead tribromide (FAPbBr 3) as an absorber. Efficient planar devices are obtained through atomic layer deposition of nickel oxide and sputteredmore » zinc oxide as hole- and electron-transport materials, respectively. Using only inorganic charge-transport layers resulted in planar FAPbBr 3 devices with a power conversion efficiency of 6.75% at an open-circuit voltage of 1.23 V. In conclusion, the transition of planar FAPbBr 3 devices making from all-organic towards all-inorganic charge-transport layers is studied in detail.« less

  6. Study of physical and sound absorbing property of epoxy blended coir dust biocomposite

    NASA Astrophysics Data System (ADS)

    Nath, G.; Mishra, S. P.

    2016-09-01

    Reinforcement biocomposite has gained more attention recently due to its low cost, abundantly availability, low density, specific properties, easy method of separation, enhanced energy recovery, CO2 neutrality, biodegradability and recyclable in nature. As a waste product of coconut fruit, the coconut coir dust (CCD) obtained from the coconut husk. The biocomposite material prepared from the CCD modified with the proper blended solution with the help of ultrasonic technique. The study of adiabatic compressibility of acetone / water (70/30) worth its blending property for bleaching of CCD. The biocomposite material of CCD was prepared with epoxy resin. The different physical properties such as sound absorption coefficient, thermal conductivity and electrical conductivity were measured. The morphological study of biocomposite and measurement of sound absorption coefficient shows good evidence of sound absorbing characteristics of biocomposite of CCD. The sound absorption property of composite material shows a significant result where as the thermal conductivity and electrical conductivity executes a weak result. Thus biocomposite of CCD can acts as a good sound absorber and band conductor of heat and electric current.

  7. Trade-Offs in Thin Film Solar Cells with Layered Chalcostibite Photovoltaic Absorbers

    DOE PAGES

    Welch, Adam W.; Baranowski, Lauryn L.; Peng, Haowei; ...

    2017-01-25

    Discovery of novel semiconducting materials is needed for solar energy conversion and other optoelectronic applications. However, emerging low-dimensional solar absorbers often have unconventional crystal structures and unusual combinations of optical absorption and electrical transport properties, which considerably slows down the research and development progress. Here, the effect of stronger absorption and weaker carrier collection of 2D-like absorber materials are studied using a high-throughput combinatorial experimental approach, complemented by advanced characterization and computations. It is found that the photoexcited charge carrier collection in CuSbSe 2 solar cells is enhanced by drift in an electric field, addressing a different absorption/collection balance. Themore » resulting drift solar cells efficiency is <5% due to inherent J SC/ V OC trade-off, suggesting that improved carrier diffusion and better contacts are needed to further increase the CuSbSe 2 performance. Furthermore, this study also illustrates the advantages of high-throughput experimental methods for fast optimization of the optoelectronic devices based on emerging low-dimensional semiconductor materials.« less

  8. Towards All-Inorganic Transport Layers for Wide-Band-Gap Formamidinium Lead Bromide-Based Planar Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subbiah, Anand S.; Mahuli, Neha; Agarwal, Sumanshu

    Hybrid perovskite photovoltaic devices heavily rely on the use of organic (rather than inorganic) charge-transport layers on top of a perovskite absorber layer because of difficulties in depositing inorganic materials on top of these fragile absorber layers. However, in comparison to the unstable and expensive organic transport materials, inorganic charge-transport layers provide improved charge transport and stability to the device architecture. Here, we report photovoltaic devices using all-inorganic transport layers in a planar p-i-n junction device configuration using formamidinium lead tribromide (FAPbBr 3) as an absorber. Efficient planar devices are obtained through atomic layer deposition of nickel oxide and sputteredmore » zinc oxide as hole- and electron-transport materials, respectively. Using only inorganic charge-transport layers resulted in planar FAPbBr 3 devices with a power conversion efficiency of 6.75% at an open-circuit voltage of 1.23 V. In conclusion, the transition of planar FAPbBr 3 devices making from all-organic towards all-inorganic charge-transport layers is studied in detail.« less

  9. SU-F-T-06: Development of a Formalism for Practical Dose Measurements in Brachytherapy in the German Standard DIN 6803

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, F; Chofor, N; Schoenfeld, A

    2016-06-15

    Purpose: In the steep dose gradients in the vicinity of a radiation source and due to the properties of the changing photon spectra, dose measurements in Brachytherapy usually have large uncertainties. Working group DIN 6803-3 is presently discussing recommendations for practical brachytherapy dosimetry incorporating recent theoretical developments in the description of brachytherapy radiation fields as well as new detectors and phantom materials. The goal is to prepare methods and instruments to verify dose calculation algorithms and for clinical dose verification with reduced uncertainties. Methods: After analysis of the distance dependent spectral changes of the radiation field surrounding brachytherapy sources, themore » energy dependent response of typical brachytherapy detectors was examined with Monte Carlo simulations. A dosimetric formalism was developed allowing the correction of their energy dependence as function of source distance for a Co-60 calibrated detector. Water equivalent phantom materials were examined with Monte Carlo calculations for their influence on brachytherapy photon spectra and for their water equivalence in terms of generating equivalent distributions of photon spectra and absorbed dose to water. Results: The energy dependence of a detector in the vicinity of a brachytherapy source can be described by defining an energy correction factor kQ for brachytherapy in the same manner as in existing dosimetry protocols which incorporates volume averaging and radiation field distortion by the detector. Solid phantom materials were identified which allow precise positioning of a detector together with small correctable deviations from absorbed dose to water. Recommendations for the selection of detectors and phantom materials are being developed for different measurements in brachytherapy. Conclusion: The introduction of kQ for brachytherapy sources may allow more systematic and comparable dose measurements. In principle, the corrections can be verified or even determined by measurement in a water phantom and comparison with dose distributions calculated using the TG43 dosimetry formalism. Project is supported by DIN Deutsches Institut fuer Normung.« less

  10. How Does CIGS Performance Depend on Temperature at the Microscale?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuckelberger, Michael E.; Nietzold, Tara; West, Bradley M.

    Unveiling the correlation among electrical performance, elemental distribution, and defects at the microscale is crucial for the understanding and improvement of the overall solar cell performance. While this is true in general for solar cells with polycrystalline absorber layers, it is particularly critical for defect engineering of the complex quaternary CuIn xGa 1-xSe 2 (CIGS) material system. Studying these relationships under standard ambient conditions can provide important insights but does not provide input on the behavior of the cell under real operating conditions. In this contribution, we take a close look at the complex temperature dependence of defects and voltagemore » in CIGS at the microscale. We have developed correlative X-raymicroscopymethods and adapted them for temperature-dependent measurements of the locally generated voltage and elemental compositions at the microscale. We have applied these techniques to industrial CIGS solar cells covering temperatures from room temperature up to 100 degrees C. Finally, we find underperforming areas spanning multiple grains that do not correlate with the elemental distribution of major absorber constituents. However, we demonstrate that low-performing areas perform better at higher temperatures relative to the high-performing areas.« less

  11. How Does CIGS Performance Depend on Temperature at the Microscale?

    DOE PAGES

    Stuckelberger, Michael E.; Nietzold, Tara; West, Bradley M.; ...

    2017-11-03

    Unveiling the correlation among electrical performance, elemental distribution, and defects at the microscale is crucial for the understanding and improvement of the overall solar cell performance. While this is true in general for solar cells with polycrystalline absorber layers, it is particularly critical for defect engineering of the complex quaternary CuIn xGa 1-xSe 2 (CIGS) material system. Studying these relationships under standard ambient conditions can provide important insights but does not provide input on the behavior of the cell under real operating conditions. In this contribution, we take a close look at the complex temperature dependence of defects and voltagemore » in CIGS at the microscale. We have developed correlative X-raymicroscopymethods and adapted them for temperature-dependent measurements of the locally generated voltage and elemental compositions at the microscale. We have applied these techniques to industrial CIGS solar cells covering temperatures from room temperature up to 100 degrees C. Finally, we find underperforming areas spanning multiple grains that do not correlate with the elemental distribution of major absorber constituents. However, we demonstrate that low-performing areas perform better at higher temperatures relative to the high-performing areas.« less

  12. A comparative study of smart spectrophotometric methods for simultaneous determination of a skeletal muscle relaxant and an analgesic in combined dosage form.

    PubMed

    Salem, Hesham; Mohamed, Dalia

    2015-04-05

    Six simple, specific, accurate and precise spectrophotometric methods were developed and validated for the simultaneous determination of the analgesic drug; paracetamol (PARA) and the skeletal muscle relaxant; dantrolene sodium (DANT). Three methods are manipulating ratio spectra namely; ratio difference (RD), ratio subtraction (RS) and mean centering (MC). The other three methods are utilizing the isoabsorptive point either at zero order namely; absorbance ratio (AR) and absorbance subtraction (AS) or at ratio spectrum namely; amplitude modulation (AM). The proposed spectrophotometric procedures do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined. The selectivity of the developed methods was investigated by analyzing laboratory prepared mixtures of the drugs and their combined dosage form. Standard deviation values are less than 1.5 in the assay of raw materials and capsules. The obtained results were statistically compared with each other and with those of reported spectrophotometric ones. The comparison showed that there is no significant difference between the proposed methods and the reported methods regarding both accuracy and precision. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Ferroelectric BiFeO3 as an Oxide Dye in Highly Tunable Mesoporous All-Oxide Photovoltaic Heterojunctions.

    PubMed

    Wang, Lingfei; Ma, He; Chang, Lei; Ma, Chun; Yuan, Guoliang; Wang, Junling; Wu, Tom

    2017-01-01

    As potential photovoltaic materials, transition-metal oxides such as BiFeO 3 (BFO) are capable of absorbing a substantial portion of solar light and incorporating ferroic orders into solar cells with enhanced performance. But the photovoltaic application of BFO has been hindered by low energy-conversion efficiency due to poor carrier transport and collection. In this work, a new approach of utilizing BFO as a light-absorbing sensitizer is developed to interface with charge-transporting TiO 2 nanoparticles. This mesoporous all-oxide architecture, similar to that of dye-sensitized solar cells, can effectively facilitate the extraction of photocarriers. Under the standard AM1.5 (100 mW cm -2 ) irradiation, the optimized cell shows an open-circuit voltage of 0.67 V, which can be enhanced to 1.0 V by tailoring the bias history. A fill factor of 55% is achieved, which is much higher than those in previous reports on BFO-based photovoltaic devices. The results provide here a new viable approach toward developing highly tunable and stable photovoltaic devices based on ferroelectric transition-metal oxides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Uncertainty propagation for SPECT/CT-based renal dosimetry in 177Lu peptide receptor radionuclide therapy

    NASA Astrophysics Data System (ADS)

    Gustafsson, Johan; Brolin, Gustav; Cox, Maurice; Ljungberg, Michael; Johansson, Lena; Sjögreen Gleisner, Katarina

    2015-11-01

    A computer model of a patient-specific clinical 177Lu-DOTATATE therapy dosimetry system is constructed and used for investigating the variability of renal absorbed dose and biologically effective dose (BED) estimates. As patient models, three anthropomorphic computer phantoms coupled to a pharmacokinetic model of 177Lu-DOTATATE are used. Aspects included in the dosimetry-process model are the gamma-camera calibration via measurement of the system sensitivity, selection of imaging time points, generation of mass-density maps from CT, SPECT imaging, volume-of-interest delineation, calculation of absorbed-dose rate via a combination of local energy deposition for electrons and Monte Carlo simulations of photons, curve fitting and integration to absorbed dose and BED. By introducing variabilities in these steps the combined uncertainty in the output quantity is determined. The importance of different sources of uncertainty is assessed by observing the decrease in standard deviation when removing a particular source. The obtained absorbed dose and BED standard deviations are approximately 6% and slightly higher if considering the root mean square error. The most important sources of variability are the compensation for partial volume effects via a recovery coefficient and the gamma-camera calibration via the system sensitivity.

  15. Interfacial Engineering and Charge Carrier Dynamics in Extremely Thin Absorber Solar Cells

    NASA Astrophysics Data System (ADS)

    Edley, Michael

    Photovoltaic energy is a clean and renewable source of electricity; however, it faces resistance to widespread use due to cost. Nanostructuring decouples constraints related to light absorption and charge separation, potentially reducing cost by allowing a wider variety of processing techniques and materials to be used. However, the large interfacial areas also cause an increased dark current which negatively affects cell efficiency. This work focuses on extremely thin absorber (ETA) solar cells that used a ZnO nanowire array as a scaffold for an extremely thin CdSe absorber layer. Photoexcited electrons generated in the CdSe absorber are transferred to the ZnO layer, while photogenerated holes are transferred to the liquid electrolyte. The transfer of photoexcited carriers to their transport layer competes with bulk recombination in the absorber layer. After charge separation, transport of charge carriers to their respective contacts must occur faster than interfacial recombination for efficient collection. Charge separation and collection depend sensitively on the dimensions of the materials as well as their interfaces. We demonstrated that an optimal absorber thickness can balance light absorption and charge separation. By treating the ZnO/CdSe interface with a CdS buffer layer, we were able to improve the Voc and fill factor, increasing the ETA cell's efficiency from 0.53% to 1.34%, which is higher than that achievable using planar films of the same material. We have gained additional insight into designing ETA cells through the use of dynamic measurements. Ultrafast transient absorption spectroscopy revealed that characteristic times for electron injection from CdSe to ZnO are less than 1 ps. Electron injection is rapid compared to the 2 ns bulk lifetime in CdSe. Optoelectronic measurements such as transient photocurrent/photovoltage and electrochemical impedance spectroscopy were applied to study the processes of charge transport and interfacial recombination. With these techniques, the extension of the depletion layer from CdSe into ZnO was determined to be vital to suppression of interfacial recombination. However, depletion of the ZnO also restricted the effective diffusion core for electrons and slowed their transport. Thus, materials and geometries should be chosen to allow for a depletion layer that suppresses interfacial recombination without impeding electron transport to the point that it is detrimental to cell performance. Thin film solar cells are another promising technology that can reduce costs by relaxing material processing requirements. CuInxGa (1-x)Se (CIGS) is a well studied thin film solar cell material that has achieved good efficiencies of 22.6%. However, use of rare elements raise concerns over the use of CIGS for global power production. CuSbS2 shares chemistry with CuInSe2 and also presents desirable properties for thin film absorbers such as optimal band gap (1.5 eV), high absorption coefficient, and Earth-abundant and non-toxic elements. Despite the promise of CuSbS2, direct characterization of the material for solar cell application is scarce in the literature. CuSbS2 nanoplates were synthesized by a colloidal hot-injection method at 220 °C in oleylamine. The CuSbS2 platelets synthesized for 30 minutes had dimensions of 300 nm by 400 nm with a thickness of 50 nm and were capped with the insulating oleylamine synthesis ligand. The oleylamine synthesis ligand provides control over nanocrystal growth but is detrimental to intercrystal charge transport that is necessary for optoelectronic device applications. Solid-state and solution phase ligand exchange of oleylamine with S2- were used to fabricate mesoporous films of CuSbS2 nanoplates for application in solar cells. Exchange of the synthesis ligand with S2- resulted in a two order of magnitude increase in 4-point probe conductivity. Photoexcited carrier lifetimes of 1.4 ns were measured by time-resolved terahertz spectroscopy, indicating potential for CuSbS2 as a solar cell absorber material.

  16. Absorbed dose measurement in low temperature samples:. comparative methods using simulated material

    NASA Astrophysics Data System (ADS)

    Garcia, Ruth; Harris, Anthony; Winters, Martell; Howard, Betty; Mellor, Paul; Patil, Deepak; Meiner, Jason

    2004-09-01

    There is a growing need to reliably measure absorbed dose in low temperature samples, especially in the pharmaceutical and tissue banking industries. All dosimetry systems commonly used in the irradiation industry are temperature sensitive. Radiation of low temperature samples, such as those packaged with dry ice, must therefore take these dosimeter temperature effects into consideration. This paper will suggest a method to accurately deliver an absorbed radiation dose using dosimetry techniques designed to abrogate the skewing effects of low temperature environments on existing dosimetry systems.

  17. Damage tolerant light absorbing material

    DOEpatents

    Lauf, Robert J.; Hamby, Jr., Clyde; Akerman, M. Alfred; Seals, Roland D.

    1993-01-01

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000.degree. C. to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm.sup.3.

  18. Damage tolerant light absorbing material

    DOEpatents

    Lauf, R.J.; Hamby, C. Jr.; Akerman, M.A.; Seals, R.D.

    1993-09-07

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, is prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000 C to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm[sup 3]. 9 figures.

  19. Moore's curve structuring of ferromagnetic composite PE-NiFe absorbers

    NASA Astrophysics Data System (ADS)

    Fernez, N.; Arbaoui, Y.; Maalouf, A.; Chevalier, A.; Agaciak, P.; Burgnies, L.; Queffelec, P.; Laur, V.; Lheurette, É.

    2018-02-01

    A ferromagnetic material involving nickel-iron particles embedded in a polyethylene matrix is synthesized and electrically characterized between 1 and 12 GHz. These measurements show the combination of electric and magnetic activity along with significant loss terms. We take benefit of these properties for the design of broadband electromagnetic absorbers. To this aim, we use a fractal structuring based on Moore curves. The advantage of etching patterns over metallic ones is clearly evidenced, and several pattern absorbers identified by their Moore's order iteration are designed and analyzed under oblique incidence.

  20. Flexural creep behavior of epoxy/cotton composite materials before and after saline absorption for orthopedics applications

    NASA Astrophysics Data System (ADS)

    Kontaxis, L. C.; Georgali, A.; Portan, D. V.; Papanicolaou, G. C.

    2018-02-01

    In the present study, epoxy resin-non-woven cotton fibers fabric composite plates were manufactured by using the vacuum infusion technique. Next, flexural creep-recovery experiments were performed in order to study the viscoelastic behavior of both the neat resin and the composite material manufactured under both dry and wet conditions. A low cost, mechanically operated flexural creep testing machine was designed and manufactured according to ASTM standards, for providing an economical means of performing flexural creep experiments. Initially, specimens were immersed in physiological saline for different periods of time at constant temperature of 37°C and subsequently tested under flexural creep conditions in order to study the effect of saline absorption on the creep-recovery behavior of the composites. The specific environmental conditions were chosen such as to simulate the real conditions existed into the human body. The combined effect of applied stress, time of immersion, creep time and amount of saline absorbed on the overall flexural viscoelastic behavior of composites was studied. The maximum amount of saline absorbed by the composites was 3.2%, which is double the saline intake of pure resin. It is believed that the 1.5% extra saline was absorbed into the now formed interphase between the matrix and the hydrophobic cotton fibers. It was observed that the creep strain increases as the immersion time increases. This is believed to occur because of the cumulative effect of absorbed saline from the fibers, the matrix, as well as from the fiber-matrix interphase resulting in the fiber matrix debonding and easier relaxation of the macromolecules at higher moisture contents leading to larger deformations at longer times. However, it should be noted that the strain levels of the epoxy resin/cotton fibers fabric composites, never surpassed those of the pure resin, indicating that the fabric successfully reinforces the composite even under the immersion of the latter in saline. Finally, experimental results were fitted using Burger's model and a detailed analysis of the model and the variation of the four characteristic parameters describing the model with time of immersion is given. Several interesting results were derived which are useful for the future application of the cotton - epoxy composites in medical applications such as in orthopedics.

  1. Development of a hybrid chemical/mechanical heat pump

    NASA Technical Reports Server (NTRS)

    Grzyll, Lawrence R.; Silvestri, John J.; Scaringe, Robert P.

    1991-01-01

    The authors present the current development status of a hybrid chemical/mechanical heat pump for low-lift applications. The heat pump provides electronics cooling by evaporating a pure refrigerant from an absorbent/refrigerant mixture in a generator/cold plate. The current development focused on evaluation of absorbent/refrigerant pairs, corrosion testing, pump and compressor design, and electronic cold plate design. Two cycle configurations were considered. The first configuration utilized a standard mechanical compressor and pump. The second cycle configuration investigated pumps and compressors with non-moving parts. An innovative generator/cold plate design is also presented. The development to date shows that this cycle has about the same performance as standard vapor compression heat pumps with standard refrigerants but may have some performance and reliability advantages over vapor compression heat pumps.

  2. Simulation, fabrication and characterization of THz metamaterial absorbers.

    PubMed

    Grant, James P; McCrindle, Iain J H; Cumming, David R S

    2012-12-27

    Metamaterials (MM), artificial materials engineered to have properties that may not be found in nature, have been widely explored since the first theoretical(1) and experimental demonstration(2) of their unique properties. MMs can provide a highly controllable electromagnetic response, and to date have been demonstrated in every technologically relevant spectral range including the optical(3), near IR(4), mid IR(5) , THz(6) , mm-wave(7) , microwave(8) and radio(9) bands. Applications include perfect lenses(10), sensors(11), telecommunications(12), invisibility cloaks(13) and filters(14,15). We have recently developed single band(16), dual band(17) and broadband(18) THz metamaterial absorber devices capable of greater than 80% absorption at the resonance peak. The concept of a MM absorber is especially important at THz frequencies where it is difficult to find strong frequency selective THz absorbers(19). In our MM absorber the THz radiation is absorbed in a thickness of ~ λ/20, overcoming the thickness limitation of traditional quarter wavelength absorbers. MM absorbers naturally lend themselves to THz detection applications, such as thermal sensors, and if integrated with suitable THz sources (e.g. QCLs), could lead to compact, highly sensitive, low cost, real time THz imaging systems.

  3. Determination of Lateral Diffusivity in Single Pixel X-ray Absorbers with Implications for Position Dependent Excess Broadening

    NASA Technical Reports Server (NTRS)

    Saab, T.; Figueroa-Feliciano, E.; Iyomoto, N.; Bandler, S. R.; Chervenak, J.; Finkbeiner, F.; Kelley, R.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J.

    2005-01-01

    An ideal microcalorimeter is characterized by a constant energy resolution across the sensor's dynamic range. Any dependence of pulse shape on the position within the absorber where an event occurs leads to a degradation in resolution that is linear with event s energy (excess broadening). In this paper we present a numerical simulation that was developed to model the variation in pulse shape with position based on the thermal conductivity within the absorber and between the absorber, sensor, and heat bath, for arbitrarily shaped absorbers and sensors. All the parameters required for the simulation can be measured from actual devices. We describe how the thermal conductivity of the absorber material is determined by comparing the results of this model with data taken from a position sensitive detector in which any position dependent effect is purposely emphasized by making a long, narrow absorber that is read out by sensors on both end. Finally, we present the implications for excess broadening given the measured parameters of our X-ray microcalorimeters.

  4. Gentle arrester for moving bodies

    NASA Technical Reports Server (NTRS)

    Hull, R. A.

    1981-01-01

    Wire cable absorbs energy at constant rate with reduced shock and rebounding. Cable typically elongates to 90 percent of its potential, but is surrounded by braided sheath to absorb remaining energy should it break prematurely. Applications of arrester include passenger restraint in air and land vehicles, parachute risers, and ground snatch by aircraft. Possible cable material is type 302 stainless steel.

  5. Neutron Absorbing Alloys

    DOEpatents

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  6. How Transparent Oxides Gain Some Color: Discovery of a CeNiO3 Reduced Bandgap Phase As an Absorber for Photovoltaics.

    PubMed

    Barad, Hannah-Noa; Keller, David A; Rietwyk, Kevin J; Ginsburg, Adam; Tirosh, Shay; Meir, Simcha; Anderson, Assaf Y; Zaban, Arie

    2018-06-11

    In this work, we describe the formation of a reduced bandgap CeNiO 3 phase, which, to our knowledge, has not been previously reported, and we show how it is utilized as an absorber layer in a photovoltaic cell. The CeNiO 3 phase is prepared by a combinatorial materials science approach, where a library containing a continuous compositional spread of Ce x Ni 1- x O y is formed by pulsed laser deposition (PLD); a method that has not been used in the past to form Ce-Ni-O materials. The library displays a reduced bandgap throughout, calculated to be 1.48-1.77 eV, compared to the starting materials, CeO 2 and NiO, which each have a bandgap of ∼3.3 eV. The materials library is further analyzed by X-ray diffraction to determine a new crystalline phase. By searching and comparing to the Materials Project database, the reduced bandgap CeNiO 3 phase is realized. The CeNiO 3 reduced bandgap phase is implemented as the absorber layer in a solar cell and photovoltages up to 550 mV are achieved. The solar cells are also measured by surface photovoltage spectroscopy, which shows that the source of the photovoltaic activity is the reduced bandgap CeNiO 3 phase, making it a viable material for solar energy.

  7. Energy Absorption in Chopped Carbon Fiber Compression Molded Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starbuck, J.M.

    2001-07-20

    In passenger vehicles the ability to absorb energy due to impact and be survivable for the occupant is called the ''crashworthiness'' of the structure. To identify and quantify the energy absorbing mechanisms in candidate automotive composite materials, test methodologies were developed for conducting progressive crush tests on composite plate specimens. The test method development and experimental set-up focused on isolating the damage modes associated with the frond formation that occurs in dynamic testing of composite tubes. Quasi-static progressive crush tests were performed on composite plates manufactured from chopped carbon fiber with an epoxy resin system using compression molding techniques. Themore » carbon fiber was Toray T700 and the epoxy resin was YLA RS-35. The effect of various material and test parameters on energy absorption was evaluated by varying the following parameters during testing: fiber volume fraction, fiber length, fiber tow size, specimen width, profile radius, and profile constraint condition. It was demonstrated during testing that the use of a roller constraint directed the crushing process and the load deflection curves were similar to progressive crushing of tubes. Of all the parameters evaluated, the fiber length appeared to be the most critical material parameter, with shorter fibers having a higher specific energy absorption than longer fibers. The combination of material parameters that yielded the highest energy absorbing material was identified.« less

  8. Paper-Thin Plastic Film Soaks Up Sun to Create Solar Energy

    NASA Technical Reports Server (NTRS)

    2006-01-01

    A non-crystallized silicon known as amorphous silicon is the semiconductor material most frequently chosen for deposition, because it is a strong absorber of light. According to the U.S. Department of Energy, amorphous silicon absorbs solar radiation 40 times more efficiently than single-crystal silicon, and a thin film only about 1-micrometer (one one-millionth of a meter) thick containing amorphous silicon can absorb 90 percent of the usable light energy shining on it. Peak efficiency and significant reduction in the use of semiconductor and thin film materials translate directly into time and money savings for manufacturers. Thanks in part to NASA, thin film solar cells derived from amorphous silicon are gaining more and more attention in a market that has otherwise been dominated by mono- and poly-crystalline silicon cells for years. At Glenn Research Center, the Photovoltaic & Space Environments Branch conducts research focused on developing this type of thin film solar cell for space applications. Placing solar cells on thin film materials provides NASA with an attractively priced solution to fabricating other types of solar cells, given that thin film solar cells require significantly less semiconductor material to generate power. Using the super-lightweight solar materials also affords NASA the opportunity to cut down on payload weight during vehicle launches, as well as the weight of spacecraft being sent into orbit.

  9. Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage.

    PubMed

    Wang, Zhongyong; Tong, Zhen; Ye, Qinxian; Hu, Hang; Nie, Xiao; Yan, Chen; Shang, Wen; Song, Chengyi; Wu, Jianbo; Wang, Jun; Bao, Hua; Tao, Peng; Deng, Tao

    2017-11-14

    Currently, solar-thermal energy storage within phase-change materials relies on adding high thermal-conductivity fillers to improve the thermal-diffusion-based charging rate, which often leads to limited enhancement of charging speed and sacrificed energy storage capacity. Here we report the exploration of a magnetically enhanced photon-transport-based charging approach, which enables the dynamic tuning of the distribution of optical absorbers dispersed within phase-change materials, to simultaneously achieve fast charging rates, large phase-change enthalpy, and high solar-thermal energy conversion efficiency. Compared with conventional thermal charging, the optical charging strategy improves the charging rate by more than 270% and triples the amount of overall stored thermal energy. This superior performance results from the distinct step-by-step photon-transport charging mechanism and the increased latent heat storage through magnetic manipulation of the dynamic distribution of optical absorbers.

  10. Radiation shielding composition

    DOEpatents

    Quapp, W.J.; Lessing, P.A.

    1998-07-28

    A composition is disclosed for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm{sup 3} and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile. 5 figs.

  11. Carbon nanotube scaffolds with controlled porosity as electromagnetic absorbing materials in the gigahertz range.

    PubMed

    González, M; Crespo, M; Baselga, J; Pozuelo, J

    2016-05-19

    Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials.

  12. Robust and Low-Cost Flame-Treated Wood for High-Performance Solar Steam Generation.

    PubMed

    Xue, Guobin; Liu, Kang; Chen, Qian; Yang, Peihua; Li, Jia; Ding, Tianpeng; Duan, Jiangjiang; Qi, Bei; Zhou, Jun

    2017-05-03

    Solar-enabled steam generation has attracted increasing interest in recent years because of its potential applications in power generation, desalination, and wastewater treatment, among others. Recent studies have reported many strategies for promoting the efficiency of steam generation by employing absorbers based on carbon materials or plasmonic metal nanoparticles with well-defined pores. In this work, we report that natural wood can be utilized as an ideal solar absorber after a simple flame treatment. With ultrahigh solar absorbance (∼99%), low thermal conductivity (0.33 W m -1 K -1 ), and good hydrophilicity, the flame-treated wood can localize the solar heating at the evaporation surface and enable a solar-thermal efficiency of ∼72% under a solar intensity of 1 kW m -2 , and it thus represents a renewable, scalable, low-cost, and robust material for solar steam applications.

  13. Reversible Assembly of Graphitic Carbon Nitride 3D Network for Highly Selective Dyes Absorption and Regeneration.

    PubMed

    Zhang, Yuye; Zhou, Zhixin; Shen, Yanfei; Zhou, Qing; Wang, Jianhai; Liu, Anran; Liu, Songqin; Zhang, Yuanjian

    2016-09-27

    Responsive assembly of 2D materials is of great interest for a range of applications. In this work, interfacial functionalized carbon nitride (CN) nanofibers were synthesized by hydrolyzing bulk CN in sodium hydroxide solution. The reversible assemble and disassemble behavior of the as-prepared CN nanofibers was investigated by using CO2 as a trigger to form a hydrogel network at first. Compared to the most widespread absorbent materials such as active carbon, graphene and previously reported supramolecular gel, the proposed CN hydrogel not only exhibited a competitive absorbing capacity (maximum absorbing capacity of methylene blue up to 402 mg/g) but also overcame the typical deficiencies such as poor selectivity and high energy-consuming regeneration. This work would provide a strategy to construct a 3D CN network and open an avenue for developing smart assembly for potential applications ranging from environment to selective extraction.

  14. Barrier infrared detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Khoshakhlagh, Arezou (Inventor); Soibel, Alexander (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2012-01-01

    A superlattice-based infrared absorber and the matching electron-blocking and hole-blocking unipolar barriers, absorbers and barriers with graded band gaps, high-performance infrared detectors, and methods of manufacturing such devices are provided herein. The infrared absorber material is made from a superlattice (periodic structure) where each period consists of two or more layers of InAs, InSb, InSbAs, or InGaAs. The layer widths and alloy compositions are chosen to yield the desired energy band gap, absorption strength, and strain balance for the particular application. Furthermore, the periodicity of the superlattice can be "chirped" (varied) to create a material with a graded or varying energy band gap. The superlattice based barrier infrared detectors described and demonstrated herein have spectral ranges covering the entire 3-5 micron atmospheric transmission window, excellent dark current characteristics operating at least 150K, high yield, and have the potential for high-operability, high-uniformity focal plane arrays.

  15. Anomalous electronic heat capacity of copper nanowires at sub-Kelvin temperatures

    NASA Astrophysics Data System (ADS)

    Viisanen, K. L.; Pekola, J. P.

    2018-03-01

    We have measured the electronic heat capacity of thin film nanowires of copper and silver at temperatures 0.1-0.3 K; the films were deposited by standard electron-beam evaporation. The specific heat of the Ag films of sub-100-nm thickness agrees with the bulk value and the free-electron estimate, whereas that of similar Cu films exceeds the corresponding reference values by one order of magnitude. The origin of the anomalously high heat capacity of copper films remains unknown for the moment. Based on the small heat capacity at low temperatures and the possibility to devise a tunnel probe thermometer on it, metal films form a promising absorber material, e.g., for microwave photon calorimetry.

  16. Recent developments in luminescent solar concentrators

    NASA Astrophysics Data System (ADS)

    van Sark, W. G. J. H. M.

    2014-10-01

    High efficiency photovoltaic devices combine full solar spectrum absorption and effective generation and collection of charge carriers, while commercial success depends on cost effectiveness in manufacturing. Spectrum modification using down shifting has been demonstrated in luminescent solar concentrators (LSCs) since the 1970s, as a cheap alternative for standard c-Si technology. LSCs consist of a highly transparent plastic plate, in which luminescent species are dispersed, which absorb incident light and emit light at a red-shifted wavelength, with high quantum efficiency. Material issues have hampered efficiency improvements, in particular re-absorption of light emitted by luminescent species and stability of these species. In this contribution, approaches are reviewed on minimizing re-absorption, which should allow surpassing the 10% luminescent solar concentrator efficiency barrier.

  17. Materials Science | Concentrating Solar Power | NREL

    Science.gov Websites

    include higher-reflectivity mirrors, better thermal-absorbing receivers, and more corrosion-resistant electron-beam evaporation with ion-beam assist, plasma-enhanced chemical vapor deposition, and thermal Thermal Storage Materials Laboratory Our Thermal Storage Materials Laboratory supports NREL's research and

  18. Production of activated carbon by using pyrolysis process in an ammonia atmosphere

    NASA Astrophysics Data System (ADS)

    Indayaningsih, N.; Destyorini, F.; Purawiardi, R. I.; Insiyanda, D. R.; Widodo, H.

    2017-04-01

    Activated carbon is materials that have wide applications, including supercapacitor materials, absorbent in chemical industry, and absorbent material in the chemical industry. This study has carried out for the manufacturing of activated carbon from inexpensive materials through efficient processes. Carbon material was made from coconut fibers through pyrolysis process at temperature of 650, 700, 750 and 800°C. Aim of this study was to obtain carbon material that has a large surface area. Pyrolysis process is carried out in an inert atmosphere (N2 gas) at a temperature of 450°C for 30 minutes, followed by pyrolysis process in an ammonia atmosphere at 800°C for 2 hours. The pyrolysis results showed that the etching process in ammonia is occurred; as it obtained some greater surface area when compared with the pyrolisis process in an atmosphere by inert gas only. The resulted activated carbon also showed to have good properties in surface area and total pore volume.

  19. Uniform bulk material processing using multimode microwave radiation

    DOEpatents

    Varma, Ravi; Vaughn, Worth E.

    2000-01-01

    An apparatus for generating uniform heating in material contained in a cylindrical vessel is described. TE.sub.10 -mode microwave radiation is coupled into a cylindrical microwave transition such that microwave radiation having TE.sub.11 -, TE.sub.01 - and TM.sub.01 -cylindrical modes is excited therein. By adjusting the intensities of these modes, substantially uniform heating of materials contained in a cylindrical drum which is coupled to the microwave transition through a rotatable choke can be achieved. The use of a poor microwave absorbing insulating cylindrical insert, such as aluminum oxide, for separating the material in the container from the container walls and for providing a volume through which air is circulated is expected to maintain the container walls at room temperature. The use of layer of highly microwave absorbing material, such as SiC, inside of the insulating insert and facing the material to be heated is calculated to improve the heating pattern of the present apparatus.

  20. Broadband optical radiation detector

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Hong, S. D.; Moacanin, J. (Inventor)

    1981-01-01

    A method and apparatus for detecting optical radiation by optically monitoring temperature changes in a microvolume caused by absorption of the optical radiation to be detected is described. More specifically, a thermal lens forming material is provided which has first and second opposite, substantially parallel surfaces. A reflective coating is formed on the first surface, and a radiation absorbing coating is formed on the reflective coating. Chopped, incoming optical radiation to be detected is directed to irradiate a small portion of the radiation absorbing coating. Heat generated in this small area is conducted to the lens forming material through the reflective coating, thereby raising the temperature of a small portion of the lens forming material and causing a thermal lens to be formed therein.

Top