Science.gov

Sample records for absorbing column density

  1. ASCA observations of the warm absorber in MCG-6-30-15: The discovery of a change in column density

    NASA Technical Reports Server (NTRS)

    Fabian, Andrew C.; Kunieda, Hideyo; Inoue, Shigeru; Matsuoka, Masaru; Mihara, Tatehiro; Miyamoto, Sigenori; Otani, Chiko; Ricker, George; Tanaka, Yasuo; Yamauchi, Makoto

    1994-01-01

    We report the first X-ray observations of the Seyfert 1 galaxy MCG-6-30-15 obtained at medium spectral resolution. The partially-ionized, 'warm' absorber is resolved and shown to be due to O VII and O VIII. The main absorption edge agrees with that of O VII at the redshift of the galaxy to within 1%. The column density of the absorbing material is greater by a factor of 2 in the first of our two obsevations, which were 3 weeks apart, while the mean flux is slightly lower and the ionization parameter slightly higher. We also discuss the flourescent iron emssion line seen in the source, which is at 6.40 keV. The line is significantly broadened, with a Full Width at Half Maximum (FWHM) of about 0.4 keV.

  2. Fundamental research on oscillating water column wave power absorbers

    SciTech Connect

    Maeda, H.; Kato, W.; Kinoshita, T.; Masuda, K.

    1985-03-01

    An oscillating water column (OWC) wave power absorber is one of the most promising devices, as well as the Salter Duck and the Clam. This paper presents a simple prediction method, in which the equivalent floating body approximation is used, for absorbing wave power characteristics of an oscillating water column device. The effects of the compressibility of air and inertia of an air turbine and electric generator on absorbed wave power are obtained by using the equivalent electric circuit concept. Both the experimental and theoretical studies are carried out in this paper.

  3. Column density profiles of multiphase gaseous haloes

    NASA Astrophysics Data System (ADS)

    Liang, Cameron J.; Kravtsov, Andrey V.; Agertz, Oscar

    2016-05-01

    We analyse circumgalactic medium (CGM) in a suite of high-resolution cosmological re-simulations of a Milky Way size galaxy and show that CGM properties are quite sensitive to details of star formation-feedback loop modelling. The simulation that produces a realistic late-type galaxy, fails to reproduce existing observations of the CGM. In contrast, simulation that does not produce a realistic galaxy has the predicted CGM in better agreement with observations. This illustrates that properties of galaxies and properties of their CGM provide strong complementary constraints on the processes governing galaxy formation. Our simulations predict that column density profiles of ions are well described by an exponential function of projected distance d: N ∝ e^{-d/h_s}. Simulations thus indicate that the sharp drop in absorber detections at larger distances in observations does not correspond to a `boundary' of an ion, but reflects the underlying steep exponential column density profile. Furthermore, we find that ionization energy of ions is tightly correlated with the scaleheight hs: h_s ∝ E_ion^{0.74}. At z ≈ 0, warm gas traced by low-ionization species (e.g. Mg II and C IV) has hs ≈ 0.03 - 0.07Rvir, while higher ionization species (O VI and Ne VIII) have hs ≈ 0.32 - 0.45Rvir. Finally, the scaleheights of ions in our simulations evolve slower than the virial radius for z ≤ 2, but similarly to the halo scale radius, rs. Thus, we suggest that the column density profiles of galaxies at different redshifts should be scaled by rs rather than the halo virial radius.

  4. Density Gradient Columns for Chemical Displays.

    ERIC Educational Resources Information Center

    Guenther, William B.

    1986-01-01

    Procedures for preparing density gradient columns for chemical displays are presented. They include displays illustrating acid-base reactions, metal ion equilibria, and liquid density. The lifetime of these metastable displays is surprising, some lasting for months in display cabinets. (JN)

  5. ON THE ORIGIN OF THE HIGH COLUMN DENSITY TURNOVER IN THE H I COLUMN DENSITY DISTRIBUTION

    SciTech Connect

    Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2012-12-10

    We study the high column density regime of the H I column density distribution function and argue that there are two distinct features: a turnover at N{sub H{sub I}} Almost-Equal-To 10{sup 21} cm{sup -2}, which is present at both z = 0 and z Almost-Equal-To 3, and a lack of systems above N{sub H{sub I}} Almost-Equal-To 10{sup 22} cm{sup -2} at z = 0. Using observations of the column density distribution, we argue that the H I-H{sub 2} transition does not cause the turnover at N{sub H{sub I}} Almost-Equal-To 10{sup 21} cm{sup -2} but can plausibly explain the turnover at N{sub H{sub I}} {approx}> 10{sup 22} cm{sup -2}. We compute the H I column density distribution of individual galaxies in the THINGS sample and show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the H I map or to averaging in radial shells. Our results indicate that the similarity of H I column density distributions at z = 3 and 0 is due to the similarity of the maximum H I surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within giant molecular clouds cannot affect the damped Ly{alpha} column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over {approx} kpc scales with those estimated from quasar spectra that probe sub-pc scales due to the steep power spectrum of H I column density fluctuations observed in nearby galaxies.

  6. EVIDENCE OF CONTRIBUTION OF INTERVENING CLOUDS TO GAMMA-RAY BURST'S X-RAY COLUMN DENSITY

    SciTech Connect

    Wang, J.

    2013-10-20

    The origin of excess of X-ray column density with respect to optical extinction in gamma-ray bursts (GRBs) is still a puzzle. A proposed explanation of the excess is the photoelectric absorption due to the intervening clouds along a GRB's line of sight. Here, we test this scenario by using the intervening Mg II absorption as a tracer of the neutral hydrogen column density of the intervening clouds. We identify a connection between the large X-ray column density (and large column density ratio of log (N{sub H,X}/N{sub H{sub I}})∼0.5) and large neutral hydrogen column density probed by the Mg II doublet ratio (DR). In addition, GRBs with large X-ray column density (and large ratio of log (N{sub H,X}/N{sub H{sub I}})>0) tend to have multiple saturated intervening absorbers with DR < 1.2. These results therefore indicate an additional contribution from the intervening system to the observed X-ray column density in some GRBs, although the contribution from the host galaxy alone cannot be excluded based on this study.

  7. Group-delay diagnostic for measuring vapor column density

    SciTech Connect

    Crane, J.K.; Presta, R.W.; Christensen, J.J.; Cooke, J.D.; Shaw, M.J.; Johnson, M.A.; Paisner, J.A. )

    1991-10-20

    We describe a technique for determining {ital Nfl} by measuring the group-velocity delay of a probe laser beam propagating through a vapor. This diagnostic has wide dynamic range, is simple to implement, and can be used as a high-bandwidth vapor rate monitor. In addition, it can be used to measure column density, {ital Nl}, number density, {ital N}, oscillator strengths, {ital f}, or absorption cross sections, collisional line broadening, and vapor group-velocity delay.

  8. THE COLUMN DENSITY VARIANCE-M{sub s} RELATIONSHIP

    SciTech Connect

    Burkhart, Blakesley; Lazarian, A.

    2012-08-10

    Although there is a wealth of column density tracers for both the molecular and diffuse interstellar medium, there are few observational studies investigating the relationship between the density variance ({sigma}{sup 2}) and the sonic Mach number (M{sub s}). This is in part due to the fact that the {sigma}{sup 2}-M{sub s} relationship is derived, via MHD simulations, for the three-dimensional (3D) density variance only, which is not a direct observable. We investigate the utility of a 2D column density {sigma}{sub {Sigma}/{Sigma}0}{sup 2}-M{sub s} relationship using solenoidally driven isothermal MHD simulations and find that the best fit follows closely the form of the 3D density {sigma}{sub {rho}/{rho}0}{sup 2}-M{sub s} trend but includes a scaling parameter A such that {sigma}{sub ln({Sigma}/{Sigma}o)} = A x ln(1+b{sup 2} M{sub s}{sup 2}), where A = 0.11 and b = 1/3. This relation is consistent with the observational data reported for the Taurus and IC 5146 molecular clouds with b = 0.5 and A = 0.16, and b = 0.5 and A = 0.12, respectively. These results open up the possibility of using the 2D column density values of {sigma}{sup 2} for investigations of the relation between the sonic Mach number and the probability distribution function (PDF) variance in addition to existing PDF sonic Mach number relations.

  9. Estimated global nitrogen deposition using NO2 column density

    USGS Publications Warehouse

    Lu, Xuehe; Jiang, Hong; Zhang, Xiuying; Liu, Jinxun; Zhang, Zhen; Jin, Jiaxin; Wang, Ying; Xu, Jianhui; Cheng, Miaomiao

    2013-01-01

    Global nitrogen deposition has increased over the past 100 years. Monitoring and simulation studies of nitrogen deposition have evaluated nitrogen deposition at both the global and regional scale. With the development of remote-sensing instruments, tropospheric NO2 column density retrieved from Global Ozone Monitoring Experiment (GOME) and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) sensors now provides us with a new opportunity to understand changes in reactive nitrogen in the atmosphere. The concentration of NO2 in the atmosphere has a significant effect on atmospheric nitrogen deposition. According to the general nitrogen deposition calculation method, we use the principal component regression method to evaluate global nitrogen deposition based on global NO2 column density and meteorological data. From the accuracy of the simulation, about 70% of the land area of the Earth passed a significance test of regression. In addition, NO2 column density has a significant influence on regression results over 44% of global land. The simulated results show that global average nitrogen deposition was 0.34 g m−2 yr−1 from 1996 to 2009 and is increasing at about 1% per year. Our simulated results show that China, Europe, and the USA are the three hotspots of nitrogen deposition according to previous research findings. In this study, Southern Asia was found to be another hotspot of nitrogen deposition (about 1.58 g m−2 yr−1 and maintaining a high growth rate). As nitrogen deposition increases, the number of regions threatened by high nitrogen deposits is also increasing. With N emissions continuing to increase in the future, areas whose ecosystem is affected by high level nitrogen deposition will increase.

  10. Evolution of column density distributions within Orion A⋆

    NASA Astrophysics Data System (ADS)

    Stutz, A. M.; Kainulainen, J.

    2015-05-01

    We compare the structure of star-forming molecular clouds in different regions of Orion A to determine how the column density probability distribution function (N-PDF) varies with environmental conditions such as the fraction of young protostars. A correlation between the N-PDF slope and Class 0 protostar fraction has been previously observed in a low-mass star-formation region (Perseus); here we test whether a similar correlation is observed in a high-mass star-forming region. We used Herschel PACS and SPIRE cold dust emission observations to derive a column density map of Orion A. We used the Herschel Orion Protostar Survey catalog to accurately identify and classify the Orion A young stellar object content, including the cold and relatively short-lived Class 0 protostars (with a lifetime of ~0.14 Myr). We divided Orion A into eight independent regions of 0.25 square degrees (13.5 pc2); in each region we fit the N-PDF distribution with a power law, and we measured the fraction of Class 0 protostars. We used a maximum-likelihood method to measure the N-PDF power-law index without binning the column density data. We find that the Class 0 fraction is higher in regions with flatter column density distributions. We tested the effects of incompleteness, extinction-driven misclassification of Class 0 sources, resolution, and adopted pixel-scales. We show that these effects cannot account for the observed trend. Our observations demonstrate an association between the slope of the power-law N-PDF and the Class 0 fractions within Orion A. Various interpretations are discussed, including timescales based on the Class 0 protostar fraction assuming a constant star-formation rate. The observed relation suggests that the N-PDF can be related to an evolutionary state of the gas. If universal, such a relation permits evaluating the evolutionary state from the N-PDF power-law index at much greater distances than those accessible with protostar counts. Appendices are available in

  11. Topology in Synthetic Column Density Maps for Interstellar Turbulence

    NASA Astrophysics Data System (ADS)

    Putko, Joseph; Burkhart, B. K.; Lazarian, A.

    2013-01-01

    We show how the topology tool known as the genus statistic can be utilized to characterize magnetohydrodyanmic (MHD) turbulence in the ISM. The genus is measured with respect to a given density threshold and varying the threshold produces a genus curve, which can suggest an overall ‘‘meatball,’’ neutral, or ‘‘Swiss cheese’’ topology through its integral. We use synthetic column density maps made from three-dimensional 5123 compressible MHD isothermal simulations performed for different sonic and Alfvénic Mach numbers (Ms and MA respectively). We study eight different Ms values each with one sub- and one super-Alfvénic counterpart. We consider sight-lines both parallel (x) and perpendicular (y and z) to the mean magnetic field. We find that the genus integral shows a dependence on both Mach numbers, and this is still the case even after adding beam smoothing and Gaussian noise to the maps to mimic observational data. The genus integral increases with higher Ms values (but saturates after about Ms = 4) for all lines of sight. This is consistent with greater values of Ms resulting in stronger shocks, which results in a clumpier topology. We observe a larger genus integral for the sub-Alfvénic cases along the perpendicular lines of sight due to increased compression from the field lines and enhanced anisotropy. Application of the genus integral to column density maps should allow astronomers to infer the Mach numbers and thus learn about the environments of interstellar turbulence. This work was supported by the National Science Foundation’s REU program through NSF Award AST-1004881.

  12. 2004: Finite-Difference Time Domain Solution of Light Scattering by an Infinite Dielectric Column Immersed in an Absorbing Medium

    NASA Technical Reports Server (NTRS)

    Sun, W.; Loeb, N. G.; Tanev, S.; Videen, G.

    2004-01-01

    The two-dimensional (2-D) finite-difference time domain (FDTD) method is applied to calculate light scattering and absorption by an arbitrarily shaped infinite column embedded in an absorbing dielectric medium. A uniaxial perfectly matched layer (UPML) absorbing boundary condition (ABC) is used to truncate the computational domain. The single-scattering properties of the infinite column embedded in the absorbing medium, including scattering phase functions, extinction and absorption efficiencies, are derived using an area integration of the internal field. An exact solution for light scattering and absorption by a circular cylinder in an absorbing medium is used to examine the accuracy of the 2-D UPML FDTD code. With use of a cell size of 1/120 incident wavelength in the FDTD calculations, the errors in the extinction and absorption efficiencies and asymmetry factors from the 2-D UPML FDTD are generally smaller than approx .1%. The errors in the scattering phase functions are typically smaller than approx .4%. Using the 2-D UPML FDTD technique, light scattering and absorption by long noncircular columns embedded in absorbing media can be accurately solved.

  13. Broadband electromagnetic wave absorbers prepared by grading magnetic powder density

    NASA Astrophysics Data System (ADS)

    Itoh, Masahiro; Terada, Masao; Shogano, Fumiyoshi; Machida, Ken-ichi

    2010-09-01

    Resin compacts including iron-based magnetic powders were prepared using a centrifugal molding technique. Energy dispersive x-ray analyses demonstrated the formation of a concentration gradient of the magnetic powder in the resin compacts. The resultant concentration-graded resin compacts exhibited better broadband electromagnetic wave absorption than the homogeneous resin compacts prepared as a reference. This absorption ability was further enhanced by attaching a urethane foam plate to the absorber surface.

  14. Density measurement in air with saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1982-01-01

    Approaches which have the potential to make density measurements in a compressible flow, where one or more laser beams are used as probes, were investigated. Saturation in sulfur hexafluoride iodine and a crossed beam technique where one beam acts as a saturating beam and the other is at low intensity and acts as a probe beam are considered. It is shown that a balance between an increase in fluorescence intensity with increasing pressure from line broadening and the normal decrease in intensity with increasing pressure from quenching can be used to develop a linear relation between fluorescence intensity and number density and lead to a new density measurement scheme. The method is used to obtain a density image of the cross section of an iodine seeded underexpanded supersonic jet of nitrogen, by illuminating the cross section by a sheet of laser light.

  15. The dependence of gamma-ray burst X-ray column densities on the model for Galactic hydrogen

    NASA Astrophysics Data System (ADS)

    Arcodia, R.; Campana, S.; Salvaterra, R.

    2016-05-01

    We study the X-ray absorption of a complete sample of 99 bright Swift gamma-ray bursts (GRBs). In recent years, a strong correlation has been found between the intrinsic X-ray absorbing column density (NH(z)) and the redshift. This absorption excess in high-z GRBs is now thought to be due to the overlooked contribution of the absorption along the intergalactic medium (IGM), by means of both intervening objects and the diffuse warm-hot intergalactic medium along the line of sight. In this work we neglect the absorption along the IGM, because our purpose is to study the eventual effect of a radical change in the Galactic absorption model on the NH(z) distribution. Therefore, we derive the intrinsic absorbing column densities using two different Galactic absorption models: the Leiden Argentine Bonn HI survey and the more recent model that includes molecular hydrogen. We find that if, on the one hand, the new Galactic model considerably affects the single column density values, on the other hand, there is no drastic change in the distribution as a whole. It becomes clear that the contribution of Galactic column densities alone, no matter how improved, is not sufficient to change the observed general trend and it has to be considered as a second order correction. The cosmological increase of NH(z) as a function of redshift persists and, to explain the observed distribution, it is necessary to include the contribution of both the diffuse intergalactic medium and the intervening systems along the line of sight of the GRBs.

  16. NGC 1365: A low column density state unveiling a low ionization disk wind

    SciTech Connect

    Braito, V.; Reeves, J. N.; Gofford, J.; Nardini, E.; Porquet, D.; Risaliti, G.

    2014-11-01

    We present the time-resolved spectral analysis of the XMM-Newton data of NGC 1365 collected during one XMM-Newton observation, which caught this 'changing-look' active galactic nucleus in a high flux state characterized also by a low column density (N {sub H} ∼ 10{sup 22} cm{sup –2}) of the X-ray absorber. During this observation, the low-energy photoelectric cut-off is at about ∼1 keV and the primary continuum can be investigated with the XMM-Newton-RGS data, which show strong spectral variability that can be explained as a variable low N {sub H} that decreased from N {sub H} ∼ 10{sup 23} cm{sup –2} to 10{sup 22} cm{sup –2} in a 100 ks timescale. The spectral analysis of the last segment of the observation revealed the presence of several absorption features that can be associated with an ionized (log ξ ∼ 2 erg cm s{sup –1}) outflowing wind (v {sub out} ∼ 2000 km s{sup –1}). We detected for the first time a possible P-Cygni profile of the Mg XII Lyα line associated with this mildly ionized absorber indicative of a wide angle outflowing wind. We suggest that this wind is a low ionization zone of the highly ionized wind present in NGC 1365, which is responsible for the iron K absorption lines and is located within the variable X-ray absorber. At the end of the observation, we detected a strong absorption line at E ∼ 0.76 keV most likely associated with a lower ionization zone of the absorber (log ξ ∼ 0.2 erg cm s{sup –1}, N {sub H} ∼ 10{sup 22} cm{sup –2}), which suggests that the variable absorber in NGC 1365 could be a low ionization zone of the disk wind.

  17. The 3D heat flux density distribution on a novel parabolic trough wavy absorber

    NASA Astrophysics Data System (ADS)

    Demagh, Yassine; Kabar, Yassine; Bordja, Lyes; Noui, Samira

    2016-05-01

    The non-uniform concentrated solar flux distribution on the outer surface of the absorber pipe can lead to large circumferential gradient temperature and high concentrated temperature of the absorber pipe wall, which is one of the primary causes of parabolic trough solar receiver breakdown. In this study, a novel shape of the parabolic trough absorber pipe is proposed as a solution to well homogenize the solar flux distribution, as well as, the temperature in the absorber wall. The conventional straight absorber located along the focal line of the parabola is replaced by wavy one (invention patent by Y. Demagh [1]) for which the heat flux density distribution on the outer surface varies in both axial and azimuthal directions (3D) while it varies only in the azimuthal direction on the former (2D). As far as we know, there is not previous study which has used a longitudinally wavy pipe as an absorber into the parabolic trough collector unit.

  18. Density measurement in air with a saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1981-01-01

    Resonantly enhanced scattering from the iodine molecule is studied experimentally for the purpose of developing a scheme for the measurement of density in a gas dynamic flow. A study of the spectrum of iodine, the collection of saturation data in iodine, and the development of a mathematical model for correlating saturation effects were pursued for a mixture of 0.3 torr iodine in nitrogen and for mixture pressures up to one atmosphere. For the desired pressure range, saturation effects in iodine were found to be too small to be useful in allowing density measurements to be made. The effects of quenching can be reduced by detuning the exciting laser wavelength from the absorption line center of the iodine line used (resonant Raman scattering). The signal was found to be nearly independent of pressure, for pressures up to one atmosphere, when the excitation beam was detuned 6 GHz from line center for an isolated line in iodine. The signal amplitude was found to be nearly equal to the amplitude for fluorescence at atmospheric pressure, which indicates a density measurement scheme is possible.

  19. The column density distribution of hard X-ray radio galaxies

    NASA Astrophysics Data System (ADS)

    Panessa, F.; Bassani, L.; Landi, R.; Bazzano, A.; Dallacasa, D.; La Franca, F.; Malizia, A.; Venturi, T.; Ubertini, P.

    2016-09-01

    In order to investigate the role of absorption in active galactic nuclei (AGN) with jets, we have studied the column density distribution of a hard X-ray selected sample of radio galaxies, derived from the INTEGRAL/Imager on Board the Integral Satellite (IBIS) and Swift/The Burst Alert Telescope (BAT) AGN catalogues (˜7-10 per cent of the total AGN population). The 64 radio galaxies have a typical FR II radio morphology and are characterized by high 20-100 keV luminosities (from 1042 to 1046 erg s-1) and high Eddington ratios (log LBol/LEdd typically larger than ˜0.01). The observed fraction of absorbed AGN (NH > 1022 cm-2) is around 40 per cent among the total sample, and ˜75 per cent among type 2 AGN. The majority of obscured AGN are narrow-line objects, while unobscured AGN are broad-line objects, obeying to the zeroth-order predictions of unified models. A significant anti-correlation between the radio core dominance parameter and the X-ray column density is found. The observed fraction of Compton thick AGN is ˜2-3 per cent, in comparison with the 5-7 per cent found in radio-quiet hard X-ray selected AGN. We have estimated the absorption and Compton thick fractions in a hard X-ray sample containing both radio galaxies and non-radio galaxies and therefore affected by the same selection biases. No statistical significant difference was found in the absorption properties of radio galaxies and non-radio galaxies sample. In particular, the Compton thick objects are likely missing in both samples and the fraction of obscured radio galaxies appears to decrease with luminosity as observed in hard X-ray non-radio galaxies.

  20. Density measurement in air with a saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1982-01-01

    A method for making density measurements in a compressible flow by using off resonance laser induced fluorescence is studied. The seed molecule chosen for study is the iodine molecule which is excited with the 514.5 nm line of the argon ion laser whose output is frequency tuned, by as much as 3 GHz, relative to a strong iodine transition using an intracavity etalon. The theory which was developed to analyze the effect will be used in conjunction with two experiments being conducted to further study the method an acoustic resonance tube in which controlled perturbations about a uniform state are produced, and a small supersonic jet in which the conditions of the flow vary widely from point to point.

  1. The Bane of Column Density Analysis and What Good It Can Do for Us

    NASA Astrophysics Data System (ADS)

    How-Huan Chen, Hope; Goodman, Alyssa A.; Burkhart, Blakesley K.; Myers, Philip C.; Collins, David C.; Meisner, Aaron M.; Lee, Katherine I.

    2016-01-01

    Despite the fact that astronomers are inclined to apply statistical tools, from least-square fitting to machine learning, on the big, high-dimensional data, not enough care is often spent on examining the biases that could be introduced by sample selection and observation. The talk focuses on investigating arguably one of the most often applied statistical analyses in clouds and filaments recently--the probability distribution function (PDF) analysis of column density. We look at the correlation between column density PDF and various physical processes including turbulence and star formation as traced by young stellar objects and star forming cores, in both observation and simulation; as well as potential problems in statistically consistent fitting of column density distribution, validating correlation, biased sample selection, and projection effects. Our results show that 1) even though on large scale, the "width" of the column density PDF seems to correlate with turbulence, no clear correlation is found between column density PDF and turbulence in both simulation and observation, and 2) even previous works show that the index of the "power-law tail" correlates with the star formation activity, there is statistical ambiguity in the sampling of column density structures and associating point sources with any of these structures. We further analyze the hierachical structures of column density in molecular clouds and filaments, using the structure extraction algorithm, the dendrogram.

  2. Simultaneous retrieval of effective refractive index and density from size distribution and light scattering data: weakly absorbing aerosol

    NASA Astrophysics Data System (ADS)

    Kassianov, E.; Barnard, J.; Pekour, M.; Berg, L. K.; Shilling, J.; Flynn, C.; Mei, F.; Jefferson, A.

    2014-05-01

    We propose here a novel approach for retrieving in parallel the effective density and real refractive index of weakly absorbing aerosol from optical and size distribution measurements. Here we define "weakly absorbing" as aerosol single-scattering albedos that exceed 0.95 at 0.5 μm. The required optical measurements are the scattering coefficient and the hemispheric backscatter fraction, obtained in this work from an integrating nephelometer. The required size spectra come from a Scanning Mobility Particle Sizer and an Aerodynamic Particle Sizer. The performance of this approach is first evaluated using a sensitivity study with synthetically generated but measurement-related inputs. The sensitivity study reveals that the proposed approach is robust to random noise; additionally the uncertainties of the retrieval are almost linearly proportional to the measurement errors, and these uncertainties are smaller for the real refractive index than for the effective density. Next, actual measurements are used to evaluate our approach. These measurements include the optical, microphysical, and chemical properties of weakly absorbing aerosol which are representative of a variety of coastal summertime conditions observed during the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/). The evaluation includes calculating the root mean square error (RMSE) between the aerosol characteristics retrieved by our approach, and the same quantities calculated using the conventional volume mixing rule for chemical constituents. For dry conditions (defined in this work as relative humidity less than 55%) and sub-micron particles, a very good (RMSE ~ 3%) and reasonable (RMSE ~ 28%) agreement is obtained for the retrieved real refractive index (1.49 ± 0.02) and effective density (1.68 ± 0.21), respectively. Our approach permits discrimination between the retrieved aerosol characteristics of sub-micron and sub-10

  3. Isoelectric focusing of red blood cells in a density gradient stabilized column

    NASA Technical Reports Server (NTRS)

    Smolka, A. J. K.; Miller, T. Y.

    1980-01-01

    The effects of Ficoll and cell application pH on red blood cell electrophoretic mobility and focusing pH were investigated by focusing cells in a density gradient stabilized column. Sample loading, cell dispersion, column conductivity, resolution of separation, and the effect of Ampholines were examined.

  4. Dependence of interstellar depletion on hydrogen column density - Possibilities and implications

    NASA Technical Reports Server (NTRS)

    Tarafdar, S. P.; Prasad, S. S.; Huntress, W. T., Jr.

    1983-01-01

    A reexamination of the observed column densities of various elements in diffuse clouds suggests that almost all elements including oxygen, nitrogen, sulfur, and argon may be depleted with respect to hydrogen in interstellar clouds with large hydrogen column density. The amount of depletion varies from element to element and increases with increasing column density of hydrogen nuclei. This result is in qualitative agreement with the depletion of oxygen and sulfur independently inferred from the gas phase chemistry of sulfur in dense clouds. The rate of increase of depletion with hydrogen column density implied by the present study is large. It is possible that observational selection effects may have amplified the real dependence on N(H). A broad spectrum of C/O ratios ranging from values greater than unity to values less than unity appears possible for interstellar clouds, which would have the effect of a large variation in chemical composition from cloud to cloud.

  5. Retrieval of tropospheric column densities of NO2 from combined SCIAMACHY nadir/limb measurements

    NASA Astrophysics Data System (ADS)

    Beirle, S.; Kühl, S.; Puä·Ä«Te, J.; Wagner, T.

    2009-11-01

    The SCIAMACHY instrument onboard the ESA satellite ENVISAT allows the retrieval of column densities of various trace gases, among them NO2. As only instrument of its kind, SCIAMACHY measures in an alternating limb/nadir mode. The limb measurements allow a direct determination of stratospheric column densities, which are needed to extract tropospheric from the total column density measurements performed in (quasi simultaneous) nadir geometry. Here we discuss the potential and limitations of SCIAMACHY limb measurements for estimating stratospheric column densities of NO2 in comparison to a simple reference sector method, and the consequences for the resulting tropospheric column densities. A direct, absolute limb correction scheme improves spatial patterns of tropospheric NO2 column densities at high latitudes compared to the simple reference sector method. However, it results in artificial zonal stripes at low latitudes. Thus, also a relative limb correction scheme was defined, which turned out to successfully reduce stratospheric artefacts in the resulting tropospheric data product without introducing new ones. This relative limb correction scheme is rather simple, robust, and, in essence, based on measurements alone. The effect of the different stratospheric estimation schemes on tropospheric column densities is discussed with respect to zonal and temporal dependencies. In addition, error quantities are defined from the nadir/limb measurements which indicate remaining systematic errors as function of latitude and day. Our new suggested stratospheric estimation scheme, the relative limb correction, improves monthly mean tropospheric slant column densities significantly, e.g. from -1×1015 molec/cm2 (using a simple reference sector method) to ≈0 in the Atlantic ocean, and from +1×1015 molec/cm2 to ≈0 over Siberia, at 50° N in January.

  6. Electrostatic turbulence in the low-density plasma column

    NASA Astrophysics Data System (ADS)

    Ricci, Daria; Granucci, Gustavo; Garavaglia, Saul; Cremona, Anna; Minelli, Daniele; Mellera, Vittoria

    2010-11-01

    Electron plasma density fluctuations are observed in plasma when a radial pressure gradient excites drift waves. The linear machine GyM (R=0.125 m, L= 2.11 m, B<0.1T), operating at IFP-CNR since 2008, has started experiments aimed at characterizing drift waves excited in its non-uniform magnetized plasma. Two different plasma sources (magnetron 2.45 GHz or hot filament) have been used to sustain plasma with adjustable sections (1.5 cmdensity have been observed and characterized as a function of the injected RF power. The dynamic (frequency and amplitude) of such fluctuations has been related to the spontaneous radial electric field consequence of different electron density profiles. The results from the new probe array, recently implemented in GyM to provide a deeper study of the spatial distribution of turbulence, are shown.

  7. The reliability of observational measurements of column density probability distribution functions

    NASA Astrophysics Data System (ADS)

    Ossenkopf-Okada, V.; Csengeri, T.; Schneider, N.; Federrath, C.; Klessen, R. S.

    2016-05-01

    Context. Probability distribution functions (PDFs) of column densities are an established tool to characterize the evolutionary state of interstellar clouds. Aims: Using simulations, we show to what degree their determination is affected by noise, line-of-sight contamination, field selection, and the incomplete sampling in interferometric measurements. Methods: We solve the integrals that describe the convolution of a cloud PDF with contaminating sources such as noise and line-of-sight emission, and study the impact of missing information on the measured column density PDF. In this way we can quantify the effect of the different processes and propose ways to correct for their impact to recover the intrinsic PDF of the observed cloud. Results: The effect of observational noise can be easily estimated and corrected for if the root mean square (rms) of the noise is known. For σnoise values below 40% of the typical cloud column density, Npeak, this involves almost no degradation in the accuracy of the PDF parameters. For higher noise levels and narrow cloud PDFs the width of the PDF becomes increasingly uncertain. A contamination by turbulent foreground or background clouds can be removed as a constant shield if the peak of the contamination PDF falls at a lower column or is narrower than that of the observed cloud. Uncertainties in cloud boundary definition mainly affect the low-column density part of the PDF and the mean density. As long as more than 50% of a cloud is covered, the impact on the PDF parameters is negligible. In contrast, the incomplete sampling of the uv-plane in interferometric observations leads to uncorrectable PDF distortions in the maps produced. An extension of the capabilities of the Atacama Large Millimeter Array (ALMA) would allow us to recover the high-column density tail of the PDF, but we found no way to measure the intermediate- and low-column density part of the underlying cloud PDF in interferometric observations.

  8. Absorbance detector based on a deep UV light emitting diode for narrow-column HPLC.

    PubMed

    Bui, Duy Anh; Bomastyk, Benjamin; Hauser, Peter C

    2013-10-01

    A detector for miniaturized HPLC based on deep UV emitting diodes and UV photodiodes was constructed. The measurement is accomplished by the transverse passage of the radiation from the light-emitting diode (LED) through fused-silica tubing with an internal diameter of 250 μm. The optical cell allows flexible alignment of the LED, tubing, and photodiode for optimization of the light throughput and has an aperture to block stray light. A beam splitter was employed to direct part of the emitted light to a reference photodiode and the Lambert-Beer law was emulated with a log-ratio amplifier circuitry. The detector was tested with two LEDs with emission bands at 280 and 255 nm and showed noise levels as low as 0.25 and 0.22 mAU, respectively. The photometric device was employed successfully in separations using a column of 1 mm inner diameter in isocratic as well as gradient elution. Good linearities over three orders of magnitude in concentration were achieved, and the precision of the measurements was better than 1% in all cases. Detection down to the low micromolar range was possible. PMID:23893947

  9. Absorbance detector based on a deep UV light emitting diode for narrow-column HPLC.

    PubMed

    Bui, Duy Anh; Bomastyk, Benjamin; Hauser, Peter C

    2013-10-01

    A detector for miniaturized HPLC based on deep UV emitting diodes and UV photodiodes was constructed. The measurement is accomplished by the transverse passage of the radiation from the light-emitting diode (LED) through fused-silica tubing with an internal diameter of 250 μm. The optical cell allows flexible alignment of the LED, tubing, and photodiode for optimization of the light throughput and has an aperture to block stray light. A beam splitter was employed to direct part of the emitted light to a reference photodiode and the Lambert-Beer law was emulated with a log-ratio amplifier circuitry. The detector was tested with two LEDs with emission bands at 280 and 255 nm and showed noise levels as low as 0.25 and 0.22 mAU, respectively. The photometric device was employed successfully in separations using a column of 1 mm inner diameter in isocratic as well as gradient elution. Good linearities over three orders of magnitude in concentration were achieved, and the precision of the measurements was better than 1% in all cases. Detection down to the low micromolar range was possible.

  10. Galactic interstellar abundance surveys with IUE. II - The equivalent widths and column densities

    NASA Technical Reports Server (NTRS)

    Van Steenberg, Michael E.; Shull, J. Michael

    1988-01-01

    This paper continues a survey of interstellar densities, abundances, and cloud structure in the Galaxy, using the International Ultraviolet Explorer (IUE) satellite. Equivalent widths of 18 ultraviolet resonance transitions are presented and column densities for Si II, Mn II, Fe II, S II, and Zn II toward 261 early-type stars are derived. These equivalent widths and column densities agree within the stated errors of earlier Copernicus, BUSS, or IUE surveys of Mn II, Fe II, S II, and Zn II for 45 stars in common. The column densities are derived from single-component curves of growth with a common b-value based on that of Fe II and Si II.

  11. Simultaneous Retrieval of Effective Refractive Index and Density from Size Distribution and Light Scattering Data: Weakly-Absorbing Aerosol

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Shilling, John E.; Flynn, Connor J.; Mei, Fan; Jefferson, Anne

    2014-10-01

    We propose here a novel approach for retrieving in parallel the effective density and real refractive index of weakly absorbing aerosol from optical and size distribution measurements. Here we define “weakly absorbing” as aerosol single-scattering albedos that exceed 0.95 at 0.5 um.The required optical measurements are the scattering coefficient and the hemispheric backscatter fraction, obtained in this work from an integrating nephelometer. The required size spectra come from a Scanning Mobility Particle Sizer and an Aerodynamic Particle Sizer. The performance of this approach is first evaluated using a sensitivity study with synthetically generated but measurement-related inputs. The sensitivity study reveals that the proposed approach is robust to random noise; additionally the uncertainties of the retrieval are almost linearly proportional to the measurement errors, and these uncertainties are smaller for the real refractive index than for the effective density. Next, actual measurements are used to evaluate our approach. These measurements include the optical, microphysical, and chemical properties of weakly absorbing aerosol which are representative of a variety of coastal summertime conditions observed during the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/). The evaluation includes calculating the root mean square error (RMSE) between the aerosol characteristics retrieved by our approach, and the same quantities calculated using the conventional volume mixing rule for chemical constituents. For dry conditions (defined in this work as relative humidity less than 55%) and sub-micron particles, a very good (RMSE~3%) and reasonable (RMSE~28%) agreement is obtained for the retrieved real refractive index (1.49±0.02) and effective density (1.68±0.21), respectively. Our approach permits discrimination between the retrieved aerosol characteristics of sub-micron and sub-10micron particles. The evaluation results also reveal that the

  12. Inverse estimation of parameters for multidomain flow models in soil columns with different macropore densities.

    PubMed

    Arora, Bhavna; Mohanty, Binayak P; McGuire, Jennifer T

    2011-04-01

    Soil and crop management practices have been found to modify soil structure and alter macropore densities. An ability to accurately determine soil hydraulic parameters and their variation with changes in macropore density is crucial for assessing potential contamination from agricultural chemicals. This study investigates the consequences of using consistent matrix and macropore parameters in simulating preferential flow and bromide transport in soil columns with different macropore densities (no macropore, single macropore, and multiple macropores). As used herein, the term"macropore density" is intended to refer to the number of macropores per unit area. A comparison between continuum-scale models including single-porosity model (SPM), mobile-immobile model (MIM), and dual-permeability model (DPM) that employed these parameters is also conducted. Domain-specific parameters are obtained from inverse modeling of homogeneous (no macropore) and central macropore columns in a deterministic framework and are validated using forward modeling of both low-density (3 macropores) and high-density (19 macropores) multiple-macropore columns. Results indicate that these inversely modeled parameters are successful in describing preferential flow but not tracer transport in both multiple-macropore columns. We believe that lateral exchange between matrix and macropore domains needs better accounting to efficiently simulate preferential transport in the case of dense, closely spaced macropores. Increasing model complexity from SPM to MIM to DPM also improved predictions of preferential flow in the multiple-macropore columns but not in the single-macropore column. This suggests that the use of a more complex model with resolved domain-specific parameters is recommended with an increase in macropore density to generate forecasts with higher accuracy. PMID:24511165

  13. Interstellar C IV and Si IV column densities toward early-type stars

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Kondo, Y.; Mccluskey, G. E.

    1980-01-01

    Equivalent widths and deduced column densities of Si IV and C IV are examined for 18 early-type close binaries, and physical processes responsible for the origin of these ions in the interstellar medium are investigated. The available C IV/Si IV column density ratios typically lie within a narrow range from 0.8 to 4.5, and there is evidence that the column density of C IV is higher than that of N V along most lines of sight, suggesting that C IV is not formed in the same hot region as O VI. In addition, the existence of regions with a narrowly defined new temperature range around 50,000 deg K is indicated. The detection of the semitorrid gas of Bruhweiler, Kondo, and McCluskey (1978, 1979) is substantiated, and the relation of this gas to the observations of coronal gas in the galactic halo is discussed.

  14. Far-infrared Dust Temperatures and Column Densities of the MALT90 Molecular Clump Sample

    NASA Astrophysics Data System (ADS)

    Guzmán, Andrés E.; Sanhueza, Patricio; Contreras, Yanett; Smith, Howard A.; Jackson, James M.; Hoq, Sadia; Rathborne, Jill M.

    2015-12-01

    We present dust column densities and dust temperatures for ˜3000 young, high-mass molecular clumps from the Millimeter Astronomy Legacy Team 90 GHz survey, derived from adjusting single-temperature dust emission models to the far-infrared intensity maps measured between 160 and 870 μm from the Herschel/Herschel Infrared Galactic Plane Survey (Hi-Gal) and APEX/APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) surveys. We discuss the methodology employed in analyzing the data, calculating physical parameters, and estimating their uncertainties. The population average dust temperature of the clumps are 16.8 ± 0.2 K for the clumps that do not exhibit mid-infrared signatures of star formation (quiescent clumps), 18.6 ± 0.2 K for the clumps that display mid-infrared signatures of ongoing star formation but have not yet developed an H ii region (protostellar clumps), and 23.7 ± 0.2 and 28.1 ± 0.3 K for clumps associated with H ii and photo-dissociation regions, respectively. These four groups exhibit large overlaps in their temperature distributions, with dispersions ranging between 4 and 6 K. The median of the peak column densities of the protostellar clump population is 0.20 ± 0.02 g cm-2, which is about 50% higher compared to the median of the peak column densities associated with clumps in the other evolutionary stages. We compare the dust temperatures and column densities measured toward the center of the clumps with the mean values of each clump. We find that in the quiescent clumps, the dust temperature increases toward the outer regions and that these clumps are associated with the shallowest column density profiles. In contrast, molecular clumps in the protostellar or H ii region phase have dust temperature gradients more consistent with internal heating and are associated with steeper column density profiles compared with the quiescent clumps.

  15. Inverse estimation of parameters for multidomain flow models in soil columns with different macropore densities

    PubMed Central

    Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.

    2013-01-01

    Soil and crop management practices have been found to modify soil structure and alter macropore densities. An ability to accurately determine soil hydraulic parameters and their variation with changes in macropore density is crucial for assessing potential contamination from agricultural chemicals. This study investigates the consequences of using consistent matrix and macropore parameters in simulating preferential flow and bromide transport in soil columns with different macropore densities (no macropore, single macropore, and multiple macropores). As used herein, the term“macropore density” is intended to refer to the number of macropores per unit area. A comparison between continuum-scale models including single-porosity model (SPM), mobile-immobile model (MIM), and dual-permeability model (DPM) that employed these parameters is also conducted. Domain-specific parameters are obtained from inverse modeling of homogeneous (no macropore) and central macropore columns in a deterministic framework and are validated using forward modeling of both low-density (3 macropores) and high-density (19 macropores) multiple-macropore columns. Results indicate that these inversely modeled parameters are successful in describing preferential flow but not tracer transport in both multiple-macropore columns. We believe that lateral exchange between matrix and macropore domains needs better accounting to efficiently simulate preferential transport in the case of dense, closely spaced macropores. Increasing model complexity from SPM to MIM to DPM also improved predictions of preferential flow in the multiple-macropore columns but not in the single-macropore column. This suggests that the use of a more complex model with resolved domain-specific parameters is recommended with an increase in macropore density to generate forecasts with higher accuracy. PMID:24511165

  16. Simultaneous retrieval of effective refractive index and density from size distribution and light-scattering data: weakly absorbing aerosol

    NASA Astrophysics Data System (ADS)

    Kassianov, E.; Barnard, J.; Pekour, M.; Berg, L. K.; Shilling, J.; Flynn, C.; Mei, F.; Jefferson, A.

    2014-10-01

    We propose here a novel approach for retrieving in parallel the effective density and real refractive index of weakly absorbing aerosol from optical and size distribution measurements. Here we define "weakly absorbing" as aerosol single-scattering albedos that exceed 0.95 at 0.5 μm. The required optical measurements are the scattering coefficient and the hemispheric backscatter fraction, obtained in this work from an integrating nephelometer. The required size spectra come from mobility and aerodynamic particle size spectrometers commonly referred to as a scanning mobility particle sizer and an aerodynamic particle sizer. The performance of this approach is first evaluated using a sensitivity study with synthetically generated but measurement-related inputs. The sensitivity study reveals that the proposed approach is robust to random noise; additionally the uncertainties of the retrieval are almost linearly proportional to the measurement errors, and these uncertainties are smaller for the real refractive index than for the effective density. Next, actual measurements are used to evaluate our approach. These measurements include the optical, microphysical, and chemical properties of weakly absorbing aerosol which are representative of a variety of coastal summertime conditions observed during the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/). The evaluation includes calculating the root mean square error (RMSE) between the aerosol characteristics retrieved by our approach, and the same quantities calculated using the conventional volume mixing rule for chemical constituents. For dry conditions (defined in this work as relative humidity less than 55%) and sub-micron particles, a very good (RMSE ~ 3%) and reasonable (RMSE ~ 28%) agreement is obtained for the retrieved real refractive index (1.49 ± 0.02) and effective density (1.68 ± 0.21), respectively. Our approach permits discrimination between the

  17. THE COLUMN DENSITY VARIANCE IN TURBULENT INTERSTELLAR MEDIA: A FRACTAL MODEL APPROACH

    SciTech Connect

    Seon, Kwang-Il

    2012-12-20

    Fractional Brownian motion structures are used to investigate the dependency of column density variance ({sigma}{sup 2}{sub lnN}) in the turbulent interstellar medium on the variance of three-dimensional density ({sigma}{sup 2}{sub ln{rho}}) and the power-law slope of the density power spectrum. We provide quantitative expressions to infer the three-dimensional density variance, which is not directly observable, from the observable column density variance and spectral slope. We also investigate the relationship between the column density variance and sonic Mach number (M{sub s}) in the hydrodynamic (HD) regime by assuming the spectral slope and density variance to be functions of sonic Mach number, as obtained from the HD turbulence simulations. They are related by the expression {sigma}{sup 2}{sub lnN} = A{sigma}{sub ln{rho}} {sup 2} = Aln (1 + b {sup 2} M{sup 2}{sub s}), suggested by Burkhart and Lazarian for the magnetohydrodynamic case. The proportional constant A varies from Almost-Equal-To 0.2 to Almost-Equal-To 0.4 in the HD regime as the turbulence forcing parameter b increases from 1/3 (purely solenoidal forcing) to 1 (purely compressive forcing). It is also discussed that the parameter A is lowered in the presence of a magnetic field.

  18. Spatial and temporal variations in the column density distribution of comet Halley's CN coma

    NASA Technical Reports Server (NTRS)

    Schulz, Rita; Schlosser, W.; Meisser, W.; Koczet, P.; Celnik, W. E.

    1992-01-01

    Mean radial column density profiles of comet P/Halley's CN coma were derived by combining photographic and photoelectric observations. The shape of the profiles as well as their temporal variations were analyzed in detail and compared with the results of other CN observations of the comet.

  19. Estimation of high-resolution dust column density maps. Empirical model fits

    NASA Astrophysics Data System (ADS)

    Juvela, M.; Montillaud, J.

    2013-09-01

    Context. Sub-millimetre dust emission is an important tracer of column density N of dense interstellar clouds. One has to combine surface brightness information at different spatial resolutions, and specific methods are needed to derive N at a resolution higher than the lowest resolution of the observations. Some methods have been discussed in the literature, including a method (in the following, method B) that constructs the N estimate in stages, where the smallest spatial scales being derived only use the shortest wavelength maps. Aims: We propose simple model fitting as a flexible way to estimate high-resolution column density maps. Our goal is to evaluate the accuracy of this procedure and to determine whether it is a viable alternative for making these maps. Methods: The new method consists of model maps of column density (or intensity at a reference wavelength) and colour temperature. The model is fitted using Markov chain Monte Carlo methods, comparing model predictions with observations at their native resolution. We analyse simulated surface brightness maps and compare its accuracy with method B and the results that would be obtained using high-resolution observations without noise. Results: The new method is able to produce reliable column density estimates at a resolution significantly higher than the lowest resolution of the input maps. Compared to method B, it is relatively resilient against the effects of noise. The method is computationally more demanding, but is feasible even in the analysis of large Herschel maps. Conclusions: The proposed empirical modelling method E is demonstrated to be a good alternative for calculating high-resolution column density maps, even with considerable super-resolution. Both methods E and B include the potential for further improvements, e.g., in the form of better a priori constraints.

  20. TRACING H{sub 2} COLUMN DENSITY WITH ATOMIC CARBON (C I) AND CO ISOTOPOLOGS

    SciTech Connect

    Lo, N.; Bronfman, L.; Cunningham, M. R.; Jones, P. A.; Lowe, V.; Cortes, P. C.; Simon, R.; Fissel, L.; Novak, G.

    2014-12-20

    We present the first results of neutral carbon ([C I] {sup 3} P {sub 1}-{sup 3} P {sub 0} at 492 GHz) and carbon monoxide ({sup 13}CO, J = 1-0) mapping in the Vela Molecular Ridge cloud C (VMR-C) and the G333 giant molecular cloud complexes with the NANTEN2 and Mopra telescopes. For the four regions mapped in this work, we find that [C I] has very similar spectral emission profiles to {sup 13}CO, with comparable line widths. We find that [C I] has an opacity of 0.1-1.3 across the mapped region while the [C I]/{sup 13}CO peak brightness temperature ratio is between 0.2 and 0.8. The [C I] column density is an order of magnitude lower than that of {sup 13}CO. The H{sub 2} column density derived from [C I] is comparable to values obtained from {sup 12}CO. Our maps show that C I is preferentially detected in gas with low temperatures (below 20 K), which possibly explains the comparable H{sub 2} column density calculated from both tracers (both C I and {sup 12}CO underestimate column density), as a significant amount of the C I in the warmer gas is likely in the higher energy state transition ([C I] {sup 3} P {sub 2}-{sup 3} P {sub 1} at 810 GHz), and thus it is likely that observations of both the above [C I] transitions are needed in order to recover the total H{sub 2} column density.

  1. HIDEEP - an extragalactic blind survey for very low column-density neutral hydrogen

    NASA Astrophysics Data System (ADS)

    Minchin, R. F.; Disney, M. J.; Boyce, P. J.; de Blok, W. J. G.; Parker, Q. A.; Banks, G. D.; Freeman, K. C.; Garcia, D. A.; Gibson, B. K.; Grossi, M.; Haynes, R. F.; Knezek, P. M.; Lang, R. H.; Malin, D. F.; Price, R. M.; Stewart, I. M.; Wright, A. E.

    2003-12-01

    We have carried out an extremely long integration time (9000 s beam-1) 21-cm blind survey of 60 deg2 in Centaurus using the Parkes multibeam system. We find that the noise continues to fall as throughout, enabling us to reach an HI column-density limit of 4.2 × 1018 cm-2 for galaxies with a velocity width of 200 km s-1 in the central 32 deg2 region, making this the deepest survey to date in terms of column density sensitivity. The HI data are complemented by very deep optical observations from digital stacking of multi-exposure UK Schmidt Telescope R-band films, which reach an isophotal level of 26.5 R mag arcsec-2 (~=27.5 B mag arcsec-2). 173 HI sources have been found, 96 of which have been uniquely identified with optical counterparts in the overlap area. There is not a single source without an optical counterpart. Although we have not measured the column densities directly, we have inferred them from the optical sizes of their counterparts. All appear to have a column density of NHI= 1020.65+/-0.38. This is at least an order of magnitude above our sensitivity limit, with a scatter only marginally larger than the errors on NHI. This needs explaining. If confirmed it means that HI surveys will only find low surface brightness (LSB) galaxies with high MHI/LB. Gas-rich LSB galaxies with lower HI mass to light ratios do not exist. The paucity of low column-density galaxies also implies that no significant population will be missed by the all-sky HI surveys being carried out at Parkes and Jodrell Bank.

  2. Column densities resulting from shuttle sublimator/evaporator operation. [optical density of nozzle flow containing water vapor

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1973-01-01

    The proposed disposal of H2O from the shuttle fuel cell operation by ejecting it in vapor form through a supersonic nozzle at the rate of 100 lb/day has been investigated from the point of view of the possible interference to astronomical experiments. If the nozzle is located at the tail and directed along the shuttle longitudinal axis, the resulting column density will be less than 10 to th 12th power molecules/sq cm at viewing angles larger than 48 deg above the longitudinal axis. The molecules in the trail will diffuse rapidly. The column density contribution from molecules expelled on the previous orbit is 1.3 x 10 to the 8th power molecules/sq cm. This contribution diminishes by the inverse square root of the number of orbits since the molecules were expelled. The molecular backscatter from atmospheric molecules is also calculated. If the plume is directed into the flight path, the column density along a perpendicular is found to be 1.5 x 10 to the 11th power molecules/sq cm. The return flux is estimated to be of the order of 10 to the 12th power molecules/sq cm/sec at the stagnation point. With reasonable care in design of experiments to protect them from the backscatter flux of water molecules, the expulsion of 100 lb/day does not appear to create an insurmountable difficulty for the shuttle experiments.

  3. 13CO Bell Laboratories Survey: 13CO Column Density Distribution of the First Quadrant of the Galactic Plane

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Kim, H. G.; Stark, A. A.

    2000-05-01

    We present the distribution of 13CO column density of the first quadrant (l = 8 - 90) of the Galactic Plane using the 13CO Bell Laboratories Survey and UMass-Stony Brook 12CO Survey. We estimate the column density channel by channel (with a velocity step of 1 km/sec) with LTE assumption, generating the coumn density cube data for the first quadrant. Spatial resoultion is smoothed into 6 arcminute for whole direction. The highest column density is estimated to be 9.3x1016 cm-2 per channel, which is one of the densest part of the Galactic Ring region. Good correaltionship is found between 13CO integrated instensity and column density. We discuss some charateristics of the column density distribution. This work is supported by Creative Initiative Research Fund 99-NZ-01-01-A-31 of the Ministry of Science and Techonology, Republic of Korea.

  4. FAR-INFRARED DUST TEMPERATURES AND COLUMN DENSITIES OF THE MALT90 MOLECULAR CLUMP SAMPLE

    SciTech Connect

    Guzmán, Andrés E.; Smith, Howard A.; Sanhueza, Patricio; Contreras, Yanett; Rathborne, Jill M.; Jackson, James M.; Hoq, Sadia

    2015-12-20

    We present dust column densities and dust temperatures for ∼3000 young, high-mass molecular clumps from the Millimeter Astronomy Legacy Team 90 GHz survey, derived from adjusting single-temperature dust emission models to the far-infrared intensity maps measured between 160 and 870 μm from the Herschel/Herschel Infrared Galactic Plane Survey (Hi-Gal) and APEX/APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) surveys. We discuss the methodology employed in analyzing the data, calculating physical parameters, and estimating their uncertainties. The population average dust temperature of the clumps are 16.8 ± 0.2 K for the clumps that do not exhibit mid-infrared signatures of star formation (quiescent clumps), 18.6 ± 0.2 K for the clumps that display mid-infrared signatures of ongoing star formation but have not yet developed an H ii region (protostellar clumps), and 23.7 ± 0.2 and 28.1 ± 0.3 K for clumps associated with H ii and photo-dissociation regions, respectively. These four groups exhibit large overlaps in their temperature distributions, with dispersions ranging between 4 and 6 K. The median of the peak column densities of the protostellar clump population is 0.20 ± 0.02 g cm{sup −2}, which is about 50% higher compared to the median of the peak column densities associated with clumps in the other evolutionary stages. We compare the dust temperatures and column densities measured toward the center of the clumps with the mean values of each clump. We find that in the quiescent clumps, the dust temperature increases toward the outer regions and that these clumps are associated with the shallowest column density profiles. In contrast, molecular clumps in the protostellar or H ii region phase have dust temperature gradients more consistent with internal heating and are associated with steeper column density profiles compared with the quiescent clumps.

  5. Validation of Carbon Monoxide and Methane Vertical Column Densities Retrieved from SCIAMACHY Infrared Nadir Observations

    NASA Astrophysics Data System (ADS)

    Hochstaffl, Philipp; Hamidouche, Mourad; Schreier, Franz; Gimeno Garcia, Sebastian; Lichtenberg, Günter

    2016-04-01

    Carbon monoxide and methane are key species of Earth's atmosphere, highly relevant for climate and air quality. Accordingly, a large number of spaceborne sensors are observing these species in the microwave, thermal and near infrared. For the analysis of short wave infrared spectra measured by SCIAMACHY aboard the ENVISAT satellite and similar instrument(s) we had developed the Beer InfraRed Retrieval Algorithm: BIRRA is a separable least squares fit of the measured radiance with respect to molecular column densities and auxiliary parameters (optional: surface albedo, baseline, slit function width, and wavenumber shift). BIRRA has been implemented in the operational SCIAMACHY L1 to 2 processor for the retrieval of CO and CH4 from channel 8 (2.3 mue) and 6 (1.6 mue), respectively. Our tests are based on separate comparisons with existing space or ground-based measurements of carbon monoxide and methane column densities. In this poster intercomparisons of CO and CH4 columns estimated from SCIAMACHY with coincident and co-located retrievals provided by ground-based Fourier transform infrared spectroscopy are provided. More specifically, we have used data from several NDACC (Network for the Detection of Atmospheric Composition Change) and TCCON (Total Carbon Column Observing Network) stations. Our strategy for quality check of these products and the selection of specific geographical areas will be discussed.

  6. Photoionized Models of Active Galactic Nuclei : Computional Methods and the Problem of high Column Density Models

    NASA Astrophysics Data System (ADS)

    Collin-Souffrin, S.

    Collin-Souffrin and Dumont (1985) have developped a photoionized code using an exact transfer treatment of line and continuum radiation, particularly adapted to clouds of large column densities which are optically thick in the Balmer and Paschen continuum. With this code it is possible to compare various approximations used in previous works to exact computations, and to suggest the most valuable methods. The author gives a few examples of such comparisons.

  7. A minimum column density of 1 g cm(-2) for massive star formation.

    PubMed

    Krumholz, Mark R; McKee, Christopher F

    2008-02-28

    Massive stars are very rare, but their extreme luminosities make them both the only type of young star we can observe in distant galaxies and the dominant energy sources in the Universe today. They form rarely because efficient radiative cooling keeps most star--forming gas clouds close to isothermal as they collapse, and this favours fragmentation into stars of one solar mass or lower. Heating of a cloud by accreting low-mass stars within it can prevent fragmentation and allow formation of massive stars, but the necessary properties for a cloud to form massive stars-and therefore where massive stars form in a galaxy--have not yet been determined. Here we show that only clouds with column densities of at least 1 g cm(-2) can avoid fragmentation and form massive stars. This threshold, and the environmental variation of the stellar initial mass function that it implies, naturally explain the characteristic column densities associated with massive star clusters and the difference between the radial profiles of Halpha and ultraviolet emission in galactic disks. The existence of a threshold also implies that the initial mass function should show detectable variation with environment within the Galaxy, that the characteristic column densities of clusters containing massive stars should vary between galaxies, and that star formation rates in some galactic environments may have been systematically underestimated.

  8. Accounting for surface reflectance in the derivation of vertical column densities of NO2 from airborne imaging DOAS

    NASA Astrophysics Data System (ADS)

    Meier, Andreas Carlos; Schönhardt, Anja; Richter, Andreas; Bösch, Tim; Seyler, André; Constantin, Daniel Eduard; Shaiganfar, Reza; Merlaud, Alexis; Ruhtz, Thomas; Wagner, Thomas; van Roozendael, Michel; Burrows, John. P.

    2016-04-01

    Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In the late summers of 2014 and 2015, two extensive measurement campaigns were conducted in Romania by several European research institutes, with financial support from ESA. The AROMAT / AROMAT-2 campaigns (Airborne ROmanian Measurements of Aerosols and Trace gases) were dedicated to measurements of air quality parameters utilizing newly developed instrumentation at state-of-the-art. The experiences gained will help to calibrate and validate the measurements taken by the upcoming Sentinel-S5p mission scheduled for launch in 2016. The IUP Bremen contributed to these campaigns with its airborne imaging DOAS (Differential Optical Absorption Spectroscopy) instrument AirMAP (Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution). AirMAP allows retrieving spatial distributions of trace gas columns densities in a stripe below the aircraft. The measurements have a high spatial resolution of approximately 30 x 80 m2 (along x across track) at a typical flight altitude of 3000 m. Supported by the instrumental setup and the large swath, gapless maps of trace gas distributions above a large city, like Bucharest or Berlin, can be acquired within a time window of approximately two hours. These properties make AirMAP a valuable tool for the validation of trace gas measurements from space. DOAS retrievals yield the density of absorbers integrated along the light path of the measurement. The light path is altered with a changing surface reflectance, leading to enhanced / reduced slant column densities of NO2 depending on surface properties. This effect must be considered in

  9. Calibrating column density tracers with gamma-ray observations of the ρ Ophiuchi molecular cloud

    NASA Astrophysics Data System (ADS)

    Abrahams, Ryan; Teachey, Alex; Paglione, Timothy

    2016-01-01

    Likelihood analyses of gamma-ray counts maps require modeling a variety of presumed emission sources including their spatial extents and spectral shapes. The differences between the observed counts maps and these models often result in significant, spatially coherent residuals. These residuals are distinct from the "dark gas", and persist despite accounting for other gas phases using dust maps or various measures. Given the goal to understand the underlying cosmic ray (CR) density, spectrum, and its spatial variation through the Galactic disk, the distribution and column density of the gas with which the CRs interact must be sensitively constrained. We present a study of the gamma-ray emission from the ρ Ophiuchi molecular cloud seen by Fermi, and compare this emission to a number of column density tracers, including near IR stellar extinction and dust emission. This nearby molecular cloud exhibits a broad dynamic range in extinction, notably atypical dust properties, and a number of embedded B stars which heat the dust and may also act as local CR sources

  10. Total column density variations of ozone (O3) in presence of different types of clouds

    NASA Astrophysics Data System (ADS)

    Meena, G. S.

    2010-06-01

    The zenith sky scattered light spectra were carried out using zenith sky UV-visible spectrometer in clear and cloudy sky conditions during May-November 2000 over the tropical station Pune (18°32'N, 73°51'E). These scattered spectra are obtained in the spectral range 462-498 nm between 75° and 92° solar zenith angles (SZAs). The slant column densities (SCDs) as well as total column densities (TCDs) of NO2, O3, H2O and O4 are derived with different SZAs in clear and cloudy sky conditions. The large enhancements and reductions in TCDs of the above gases are observed in thick cumulonimbus (Cb) clouds and thin high cirrus (Ci) clouds, respectively, compared to clear sky conditions. The enhancements in TCDs of O3 appear to be due to photon diffusion, multiple Mie-scattering and multiple reflections between layered clouds or isolated patches of optically thick clouds. The reductions in TCDs due to optically thin clouds are noticed during the above period. The variations in TCDs of O3 measured under cloudy sky are discussed with total cloud cover (octas) of different types of clouds such as low clouds ( C L ), medium clouds ( C M ) and high clouds ( C H ) during May-November 2000. The variations in TCDs of O3 measured in cloudy sky conditions are found to be well matched with cloud sensitive parameter colour index (CI) and found to be in good correlation. The TCDcloudy are derived using airmass factors (AMFs) computed without considering cloud cover and CI in radiative transfer (RT) model, whereas TCDmodel are derived using AMFs computed with considering cloud cover, cloud height and CI in RT model. The TCDmodel is the column density of illuminated cloudy effect. A good agreement is observed between TCDmodel, TCDDob and TCDGOME.

  11. Analysis of Mexico City urban air pollution using nitrogen dioxide column density measurements from UV/Visible spectroscopy

    NASA Astrophysics Data System (ADS)

    Garcia Payne, D. G.; Grutter, M.; Melamed, M. L.

    2010-12-01

    The differential optical absorption spectroscopy method (DOAS) was used to get column densities of nitrogen dioxide (NO2) from the analysis of zenith sky UV/visible spectra. Since the optical path length provides critical information in interpreting NO2 column densities, in conjunction with NO2 column densities, the oxygen dimer (O4) column density was retrieved to give insight into the optical path length. We report observations of year round NO2 and O4 column densities (from august 2009 to september 2010) from which the mean seasonal levels and the daily evolution, as well as the occurrence of elevated pollution episodes are examined. Surface nitric oxide (NO) and NO2 from the local monitoring network, as well as wind data and the vertical aerosol density from continuous Lidar measurements are used in the analysis to investigate specific events in the context of local emissions from vehicular traffic, photochemical production and transport from industrial emissions. The NO2 column density measurements will enhance the understanding Mexico City urban air pollution. Recent research has begun to unravel the complexity of the air pollution problem in Mexico City and its effects not only locally but on a regional and global scale as well.

  12. [MAX-DOAS measurements of NO2 column densities and vertical distribution at Ny-Alesund, Arctic during summer].

    PubMed

    Luo, Yu-Han; Sun, Li-Guang; Liu, Wen-Qing; Xie, Pin-Hua; Si, Fu-Qi; Zhou, Hai-Jin

    2012-09-01

    The multi-axis differential optical absorption spectroscopy (MAX-DOAS), one of the remote sensing techniques for trace gases measurements, is sensitive to the lower atmosphere by eliminating the influence of stratosphere retrieved from zenith-sky spectroscopy. Ground-based MAX-DOAS measurements were carried out to observe NO2 at Ny-Alesund, Arctic from 5th Jul to 1st Aug 2011. The differential slant column densities (DSCDs) of NO2 at four off-axis angles showed typical pattern of tropospheric absorbers. Based on the assumption that NO2 was well mixed in 0-1 km of the troposphere, the mean mixing ratio of NO2 during the measurement period was 1.023E11 molec x cm(-3). The fluctuation of NO2 might be related to the fossil fuel combustions and the photochemical reactions. The vertical distribution of NO2 at 0-3 km showed that NO2 was mainly originated from boundary layer of sea surface. PMID:23240391

  13. Understanding star formation in molecular clouds. I. Effects of line-of-sight contamination on the column density structure

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Ossenkopf, V.; Csengeri, T.; Klessen, R. S.; Federrath, C.; Tremblin, P.; Girichidis, P.; Bontemps, S.; André, Ph.

    2015-03-01

    Column-density maps of molecular clouds are one of the most important observables in the context of molecular cloud- and star-formation (SF) studies. With the Herschel satellite it is now possible to precisely determine the column density from dust emission, which is the best tracer of the bulk of material in molecular clouds. However, line-of-sight (LOS) contamination from fore- or background clouds can lead to overestimating the dust emission of molecular clouds, in particular for distant clouds. This implies values that are too high for column density and mass, which can potentially lead to an incorrect physical interpretation of the column density probability distribution function (PDF). In this paper, we use observations and simulations to demonstrate how LOS contamination affects the PDF. We apply a first-order approximation (removing a constant level) to the molecular clouds of Auriga and Maddalena (low-mass star-forming), and Carina and NGC 3603 (both high-mass SF regions). In perfect agreement with the simulations, we find that the PDFs become broader, the peak shifts to lower column densities, and the power-law tail of the PDF for higher column densities flattens after correction. All corrected PDFs have a lognormal part for low column densities with a peak at Av ~ 2 mag, a deviation point (DP) from the lognormal at Av(DP) ~ 4-5 mag, and a power-law tail for higher column densities. Assuming an equivalent spherical density distribution ρ ∝ r- α, the slopes of the power-law tails correspond to αPDF = 1.8, 1.75, and 2.5 for Auriga, Carina, and NGC 3603. These numbers agree within the uncertainties with the values of α ≈ 1.5,1.8, and 2.5 determined from the slope γ (with α = 1-γ) obtained from the radial column density profiles (N ∝ rγ). While α ~ 1.5-2 is consistent with a structure dominated by collapse (local free-fall collapse of individual cores and clumps and global collapse), the higher value of α > 2 for NGC 3603 requires a physical

  14. Revising the slant column density retrieval of nitrogen dioxide observed by the Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Marchenko, S.; Krotkov, N. A.; Lamsal, L. N.; Celarier, E. A.; Swartz, W. H.; Bucsela, E. J.

    2015-06-01

    Nitrogen dioxide retrievals from the Aura/Ozone Monitoring Instrument (OMI) have been used extensively over the past decade, particularly in the study of tropospheric air quality. Recent comparisons of OMI NO2 with independent data sets and models suggested that the OMI values of slant column density (SCD) and stratospheric vertical column density (VCD) in both the NASA OMNO2 and Royal Netherlands Meteorological Institute DOMINO products are too large, by around 10-40%. We describe a substantially revised spectral fitting algorithm, optimized for the OMI visible light spectrometer channel. The most important changes comprise a flexible adjustment of the instrumental wavelength shifts combined with iterative removal of the ring spectral features; the multistep removal of instrumental noise; iterative, sequential estimates of SCDs of the trace gases in the 402-465 nm range. These changes reduce OMI SCD(NO2) by 10-35%, bringing them much closer to SCDs retrieved from independent measurements and models. The revised SCDs, submitted to the stratosphere-troposphere separation algorithm, give tropospheric VCDs ˜10-15% smaller in polluted regions, and up to ˜30% smaller in unpolluted areas. Although the revised algorithm has been optimized specifically for the OMI NO2 retrieval, our approach could be more broadly applicable.

  15. The structure of galactic HI in directions of low total column density

    NASA Technical Reports Server (NTRS)

    Lockman, F. J.; Jahoda, K.; Mccammon, D.

    1985-01-01

    A detailed 21 cm study of areas of that have the smallest known amount of HI in the northern sky was performed. These observations were corrected for stray radiation. The region of main interest, around alpha = 10(h)45(m), delta = 57 deg 20', has a minimium N(HI) of 4.5 x 10 to the 19th power/sq cm. Spectra taken at 21' resolution over a field 4 x 3 deg in this direction show up to four HI line components. Two, near 0 and -50 km/s, are ubiquitous. There is also a narrow component at -10 km/s attributable to a diffuse cloud covering half of the field, and scattered patches of HI at v -100 km/s. the low and intermediate velocity components have a broad line width and are so smoothly distributed across the region that it is unlikely that they contain significant unresolved angular structure. Eight other low column density directions were also observed. Their spectra typically have several components, but the total column density is always 7 x 10 to the 19th power/sq cm and changes smoothly along a 2 deg strip. Half of the directions show narrow lines arising from weak diffuse HI clouds that contain 0.5 to 3.0 x 10 to the 19th power/sq cm.

  16. Inhomogeneous radiation degradation in polymers studied with a density gradient column

    NASA Astrophysics Data System (ADS)

    Gillen, K. T.; Clough, R. L.

    Radiation dose-rate effects are known to exist in many polymers and are typically caused by oxidation reactions. Since the buildup of oxidation products often leads to an increase in polymer density, a density gradient column was used in a novel way to study the mechanisms responsible for dose-rate effects in a commercial ethylene propylene rubber (EPR) electrical cable insulation material. After various aging conditions, density profiles of samples were obtained by measuring the density of small pieces cut successively from the outside to the inside of the approximately 1-mm thick insulation. By monitoring density profiles as a function of dose rate and total radiation dose, two inhomogeneous mechanisms were found to be responsible for the observed dose-rate effects in this EPR material. At high dose rates, oxygen-diffusion-limited degradation was identified, as evidenced by a density profile which showed increased density near the air-exposed surfaces of the insulation but little change in density in the interior of the sample. As the dose rate was lowered, the oxidation region spread inward until it encompassed the entire sample at dose rates below about 100 krad/hr. The second mechanism, responsible for continuing the dose-rate effects at lower dose rates, appears to involve copper-catalyzed oxidation. This mechanism is often found to be significant in thermal aging studies; evidence that it may also be significant under room-temperature, radiation-aging conditions came from the density profile results, which revealed large increases in density as the inside of the insulation (near the tinned-copper conductor) was approached. For the same total radiation dose, this increase became larger as the dose rate was lowered. Preliminary chemical analysis profiling techniques indicate significantly enhanced copper and tin concentrations as the inside of the insulation is approached, even for insulation stripped from the metallic conductor before aging. This implies that

  17. DUST SCATTERING IN TURBULENT MEDIA: CORRELATION BETWEEN THE SCATTERED LIGHT AND DUST COLUMN DENSITY

    SciTech Connect

    Seon, Kwang-Il; Witt, Adolf N.

    2013-12-01

    Radiative transfer models in a spherical, turbulent interstellar medium (ISM), in which the photon source is situated at the center, are calculated to investigate the correlation between the scattered light and the dust column density. The medium is modeled using fractional Brownian motion structures that are appropriate for turbulent ISM. The correlation plot between the scattered light and optical depth shows substantial scatter and deviation from simple proportionality. It was also found that the overall density contrast is smoothed out in scattered light. In other words, there is an enhancement of the dust-scattered flux in low-density regions, while the scattered flux is suppressed in high-density regions. The correlation becomes less significant as the scattering becomes closer to being isotropic and the medium becomes more turbulent. Therefore, the scattered light observed in near-infrared wavelengths would show much weaker correlation than the observations in optical and ultraviolet wavelengths. We also find that the correlation plot between scattered lights at two different wavelengths shows a tighter correlation than that of the scattered light versus the optical depth.

  18. Radiation Damped Profiles of Extremely High Column Density Neutral Hydrogen : Implications of Cosmic Reionization

    NASA Astrophysics Data System (ADS)

    Bach, Kiehunn

    2016-09-01

    Incorporating the time-dependent second-order perturbation theory for the Lyman scattering cross-section, we investigate the intergalactic absorption profiles of extremely high column density systems near the end of cosmic reionization. Assuming a representative set of the redshift distribution of neutral hydrogen, we quantitatively examined the impact of inhomogeneous density on the intrinsic absorption profiles. The cumulative absorption by neutral patches in the line-of-sight mainly affects the far off-center region of the red damping wing, but the effect is not significant. The shape of the line-center can be modified by the near-zone distribution due to high opacities of the near-resonance scattering. On the other hand, the HWHM (half width at half maximum) as an effective line-width is relatively less sensitive to the local inhomogeneity. Specifically, when the two local damping wings of Lyα and Lyβ are close in spectra of the strongly damped systems, accurate profiles of both lines are required. In the case of N HI ≲ 1021 cm-2, the two-level approximation is marginally applicable for the damping wing fit within 5 - 7% errors. However, as the local column density reaches N HI ˜ 1022.3 cm-2, this classical approximation yields a relative error of a 10% overestimation in the red wing and a 20% underestimation in the blue wing of Lyα. If severe extinction by the Lyα forests is carefully subtracted, the intrinsic absorption profile will provide a better constraint on the local ionized states. For practical applications, an analytic fitting function for the Lyβ scattering is derived.

  19. The Carina Nebula and Gum 31 molecular complex - I. Molecular gas distribution, column densities, and dust temperatures

    NASA Astrophysics Data System (ADS)

    Rebolledo, David; Burton, Michael; Green, Anne; Braiding, Catherine; Molinari, Sergio; Wong, Graeme; Blackwell, Rebecca; Elia, Davide; Schisano, Eugenio

    2016-03-01

    We report high-resolution observations of the 12CO(1-0) and 13CO(1-0) molecular lines in the Carina Nebula and the Gum 31 region obtained with the 22-m Mopra telescope as part of The Mopra Southern Galactic Plane CO Survey. We cover 8 deg2 from l = 285° to 290°, and from b = -1.5° to +0.5°. The molecular gas column density distributions from both tracers have a similar range of values. By fitting a grey-body function to the observed infrared spectral energy distribution from Herschel maps, we derive gas column densities and dust temperatures. The gas column density has values in the range from 6.3 × 1020 to 1.4 × 1023 cm-2, while the dust temperature has values in the range from 17 to 43 K. The gas column density derived from the dust emission is approximately described by a lognormal function for a limited range of column densities. A high-column-density tail is clearly evident for the gas column density distribution, which appears to be a common feature in regions with active star formation. There are regional variations in the fraction of the mass recovered by the CO emission lines with respect to the total mass traced by the dust emission. These variations may be related to changes in the radiation field strength, variation of the atomic to molecular gas fraction across the observed region, differences in the CO molecule abundance with respect to H2, and evolutionary stage differences of the molecular clouds that compose the Carina Nebula-Gum 31 complex.

  20. Intercomparison of Near Infrared SCIAMACHY and Thermal Infrared Nadir Vertical Column Densities

    NASA Astrophysics Data System (ADS)

    Schreier, Franz; Gimeno-Garcia, Sebastian; Lichtenberg, Gunter; Hess, Michael

    2010-12-01

    Nadir infrared (IR) sounding can be used to derive information on trace gases relevant for climate and air quality. For vertical column density retrievals using SCIAMACHY near IR nadir observations, the BIRRA (Beer InfraRed Retrieval Algorithm) code has recently been implemented in the operational level 1 - 2 processor. For analysis of thermal IR nadir observations of AIRS, GOSAT, IASI, or TES, a closely related code CERVISA (Column EstimatoR Vertical Infrared Sounding of the Atmosphere) has been developed. Both codes share a large portion of modules, e.g., for line-by-line absorption and the nonlinear least squares solver. The essential difference is the part of the forward model devoted to radiative transfer through the atmosphere, i.e., Beer's law for the near IR versus Schwarzschild's equation for the thermal IR. For the ongoing validation of the BIRRA carbon monoxide CO and methane CH4 products inter-comparisons with thermal IR sounding data are performed. CERVISA retrieval results are compared both to the operational products of the IR sounder considered and to SCIAMACHY products retrieved with BIRRA.

  1. NO2 Total and Tropospheric Vertical Column Densities from OMI on EOS Aura: Update

    NASA Technical Reports Server (NTRS)

    Gleason, J.F.; Bucsela, E.J.; Celarier, E.A.; Veefkind, J.P.; Kim, S.W.; Frost, G.F.

    2009-01-01

    The Ozone Monitoring Instrument (OMI), which is on the EOS AURA satellite, retrieves vertical column densities (VCDs) of NO2, along with those of several other trace gases. The relatively high spatial resolution and daily global coverage of the instrument make it particularly well-suited to monitoring tropospheric pollution at scales on the order of 20 km. The OMI NO2 algorithm distinguishes polluted regions from background stratospheric NO2 using a separation algorithm that relies on the smoothly varying stratospheric NO2 and estimations of both stratospheric and tropospheric air mass factors (AMFs). Version 1 of OMI NO2 data has been released for public use. An overview of OMI NO2 data, some recent results and a description of the improvements for version 2 of the algorithm will be presented.

  2. Retrieval of tropospheric column densities of NO2 from combined SCIAMACHY nadir/limb measurements

    NASA Astrophysics Data System (ADS)

    Beirle, S.; Kühl, S.; Puä·Ä«Te, J.; Wagner, T.

    2010-02-01

    The SCIAMACHY instrument onboard the ESA satellite ENVISAT allows measurements of various atmospheric trace gases, such as NO2. A unique feature of SCIAMACHY is that measurements are made alternately in limb and nadir mode. The limb measurements provide an opportunity for directly determining stratospheric column densities (CDs), which are needed to extract tropospheric CDs from the total CD measurements performed in (quasi simultaneous) nadir geometry. Here we discuss the potential and limitations of SCIAMACHY limb measurements for estimating stratospheric CDs of NO2 in comparison to a simple reference sector method, and the consequences for the resulting tropospheric CDs. A direct, absolute limb correction scheme is presented that improves spatial patterns of tropospheric NO2 column densities at high latitudes, but results in artificial zonal stripes at low latitudes. Subsequently, a relative limb correction scheme is introduced that successfully reduces stratospheric artefacts in the tropospheric data product without introducing new ones. This relative limb correction scheme is rather simple, robust, and, in essence, based on measurements alone. The effects of the different stratospheric estimation schemes on tropospheric CDs are discussed with respect to zonal and temporal dependencies. In addition, we define error quantities from the nadir/limb measurements that indicate remaining systematic errors as a function of latitude and day. Our new suggested stratospheric estimation scheme, the relative limb correction, improves mean tropospheric slant CDs significantly, e.g. from -1×1015 molec/cm2 (using a reference sector method) to ≍0 in the Atlantic ocean, and from +1×1015 molec/cm2 to ≍0 over Siberia, at 50° N in January 2003-2008.

  3. Accurate measurement of the H I column density from H I 21 cm absorption-emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Chengalur, Jayaram N.; Kanekar, Nissim; Roy, Nirupam

    2013-07-01

    We present a detailed study of an estimator of the H I column density, based on a combination of H I 21 cm absorption and H I 21cm emission spectroscopy. This `isothermal' estimate is given by NHI, ISO = 1.823 × 1018 ∫ [τtot × TB / [ 1 - e-τtot]dV, where τtot is the total H I 21cm optical depth along the sightline and TB is the measured brightness temperature. We have used a Monte Carlo simulation to quantify the accuracy of the isothermal estimate by comparing the derived NHI, ISO with the true H I column density NHI. The simulation was carried out for a wide range of sightlines, including gas in different temperature phases and random locations along the path. We find that the results are statistically insensitive to the assumed gas temperature distribution and the positions of different phases along the line of sight. The median value of the ratio of the true H I column density to the isothermal estimate, NHI/NHI, ISO, is within a factor of 2 of unity while the 68.2 per cent confidence intervals are within a factor of ≈3 of unity, out to high H I column densities, ≤5 × 1023 cm-2 per 1 km s-1 channel, and high total optical depths, ≤1000. The isothermal estimator thus provides a significantly better measure of the H I column density than other methods, within a factor of a few of the true value even at the highest columns, and should allow us to directly probe the existence of high H I column density gas in the Milky Way.

  4. [The retrieval of ozone column densities by passive differential optical absorption spectroscopy during summer at Zhongshan Station, Antarctic].

    PubMed

    Luo, Yu-Han; Liu, Wen-Qing; Bian, Lin-Gen; Lu, Chang-Gui; Xie, Pin-Hua; Si, Fu-Qi; Sun, Li-Guang

    2011-02-01

    Daily ozone column densities were monitored by Passive DOAS (differential optical absorption spectroscopy) from December 10th, 2008 to Feb 19th, 2009 at Zhongshan Station, Antarctic (69 degrees 22'24" S, 76 degrees 22'14" E). Considering the absorption of O3, OClO, NO2, O4, BrO and the Ring effect, ozone slant column densities were retrieved using the zenith scattered sunlight as the light source. The results showed that there was no obvious "ozone hole" during the monitoring period, but ozone VCD (vertical column density) had greatly changed within short time scale, especially in middle December and early February. The analysis of passive DOAS and Brewer measurements of ozone VCD showed good agreement with the correlative coefficient of 0.863, while satellite board OMI measurements with the correlative coefficient of 0.840, which confirmed the validity of the monitoring of Passive DOAS. PMID:21510403

  5. Impact of Spectroscopic Line Parameters on Carbon Monoxide Column Density Retrievals from Shortwave Infrared Nadir Observations

    NASA Astrophysics Data System (ADS)

    Schmidt, Denise; Gimeno Garcia, Sebastian; Schreier, Franz; Lichtenberg, Gunter

    2015-06-01

    Among the various input data required for the retrieval of atmospheric state parameters from infrared remote sensing observations molecular spectroscopy line data have a central role, because their quality is critical for the quality of the final product. Here we discuss the impact of the line parameters on vertical column densities (VCD) estimated from short wave infrared nadir observations. Using BIRRA (the Beer InfraRed Retrieval Algorithm) comprising a line-by-line radiative transfer code (forward model) and a separable nonlinear least squares solver for inversion we retrieve carbon monoxide from observations of SCIAMACHY aboard Envisat. Retrievals using recent versions of HITRAN und GEISA have been performed and the results are compared in terms of residual norms, molecular density scaling factors, their corresponding errors, and the final VCD product. The retrievals turn out to be quite similar for all three databases, so a definite recommendation in favor of one of these databases is difficult for the considered spectral range around 2:3 μm . Nevertheless, HITRAN 2012 appears to be advantageous when evaluating the different quality criteria.

  6. Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities at surface monitoring sites

    NASA Astrophysics Data System (ADS)

    Kobayashi, N.; Inoue, G.; Kawasaki, M.; Yoshioka, H.; Minomura, M.; Murata, I.; Nagahama, T.; Matsumi, Y.; Ibuki, T.

    2010-04-01

    Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities were developed in two independent systems: one utilizing a grating-based desktop optical spectrum analyzer (OSA) with a resolution enough to resolve rotational lines of CO2 and CH4 in the region of 1565-1585 and 1674-1682 nm, respectively; the other is an application of an optical fiber Fabry-Perot interferometer (FFPI) to the CO2 column density. Direct sunlight was collimated via a small telescope installed on a portable sun tracker and then transmitted through an optical fiber into the OSA or the FFPI for optical analysis. The near infrared spectra of the OSA were retrieved by a least squares spectral fitting algorithm. The CO2 and CH4 column densities deduced were in excellent agreement with those measured by a Fourier transform spectrometer with high resolution. The rovibronic lines in the wavelength region of 1570-1575 nm were analyzed by the FFPI. The I0 and I values in the Beer-Lambert law equation to obtain CO2 column density were deduced by modulating temperature of the FFPI, which offered column CO2 with the statistical error less than 0.2% for six hours measurement.

  7. Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities at surface monitoring sites

    NASA Astrophysics Data System (ADS)

    Kobayashi, N.; Inoue, G.; Kawasaki, M.; Yoshioka, H.; Minomura, M.; Murata, I.; Nagahama, T.; Matsumi, Y.; Tanaka, T.; Morino, I.; Ibuki, T.

    2010-08-01

    Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities were developed in two independent systems: one utilizing a grating-based desktop optical spectrum analyzer (OSA) with a resolution enough to resolve rotational lines of CO2 and CH4 in the regions of 1565-1585 and 1674-1682 nm, respectively; the other is an application of an optical fiber Fabry-Perot interferometer (FFPI) to obtain the CO2 column density. Direct sunlight was collimated via a small telescope installed on a portable sun tracker and then transmitted through an optical fiber into the OSA or the FFPI for optical analysis. The near infrared spectra of the OSA were retrieved by a least squares spectral fitting algorithm. The CO2 and CH4 column densities deduced were in excellent agreement with those measured by a Fourier transform spectrometer with high resolution. The rovibronic lines in the wavelength region of 1570-1575 nm were analyzed by the FFPI. The I0 and I values in the Beer-Lambert law equation to obtain CO2 column density were deduced by modulating temperature of the FFPI, which offered column CO2 with the statistical error less than 0.2% for six hours measurement.

  8. Non-adiabatic current densities, transitions, and power absorbed by a molecule in a time-dependent electromagnetic field

    NASA Astrophysics Data System (ADS)

    Mandal, Anirban; Hunt, Katharine L. C.

    2015-07-01

    The energy of a molecule subject to a time-dependent perturbation separates completely into adiabatic and non-adiabatic terms, where the adiabatic term reflects the adjustment of the ground state to the perturbation, while the non-adiabatic term accounts for the transition energy [A. Mandal and K. L. C. Hunt, J. Chem. Phys. 137, 164109 (2012)]. For a molecule perturbed by a time-dependent electromagnetic field, in this work, we show that the expectation value of the power absorbed by the molecule is equal to the time rate of change of the non-adiabatic term in the energy. The non-adiabatic term is given by the transition probability to an excited state k, multiplied by the transition energy from the ground state to k, and then summed over the excited states. The expectation value of the power absorbed by the molecule is derived from the integral over space of the scalar product of the applied electric field and the non-adiabatic current density induced in the molecule by the field. No net power is absorbed due to the action of the applied electric field on the adiabatic current density. The work done on the molecule by the applied field is the time integral of the power absorbed. The result established here shows that work done on the molecule by the applied field changes the populations of the molecular states.

  9. Isolation of Plasmodium berghei ookinetes in culture using Nycodenz density gradient columns and magnetic isolation.

    PubMed

    Carter, Victoria; Cable, Hazel C; Underhill, B Ann; Williams, Jackie; Hurd, Hilary

    2003-11-01

    BACKGROUND: Large scale in vitro production of the mosquito stages of malaria parasites remains elusive, with only limited success for complete sporogonic development and only one report of development through to infective sporozoites. The initial step in this process is the production, in vitro, of ookinetes from gametocytaemic blood. Methods for isolation of these ookinetes from blood cells have been described; however, in addition to yield often being low, processing time and potential for contamination by erythrocytes remain high. METHODS: This study compares two procedures for retaining mature ookinetes from blood stage cultures, whilst removing red blood cells and other contaminants prior to further culture of the parasite. The well established method of isolation on Nycodenz cushions is compared with a novel method utilizing the innate magnetic properties of the haem pigment crystals found in the cytoplasm of ookinetes. RESULTS: Yield and viability of ookinetes were similar with both isolation methods. However, in our hands magnetic isolation produced a cleaner ookinete preparation much more quickly. Moreover, decreasing the flow rate through the magnetic column could further enhance the yield. CONCLUSION: We recommend the enrichment of an ookinete preparation prior to further culture being performed using the magnetic properties of Plasmodium berghei ookinetes as an alternative to their density. The former technique is faster, removes more erythrocytes, but day-to-day costs are greater.

  10. Sulfur dioxide (SO2) vertical column density measurements by Pandora spectrometer over the Canadian oil sands

    NASA Astrophysics Data System (ADS)

    Fioletov, Vitali E.; McLinden, Chris A.; Cede, Alexander; Davies, Jonathan; Mihele, Cristian; Netcheva, Stoyka; Li, Shao-Meng; O'Brien, Jason

    2016-07-01

    Vertical column densities (VCDs) of SO2 retrieved by a Pandora spectral sun photometer at Fort McKay, Alberta, Canada, from 2013 to 2015 were analysed. The Fort McKay site is located in the Canadian oil sands region, approximately 20 km north of two major SO2 sources (upgraders), with total emission of about 45 kt yr-1. Elevated SO2 VCD values were frequently recorded by the instrument, with the highest values of about 9 Dobson Units (DU; DU = 2.69 × 1016 molecules cm-2). Comparisons with co-located in situ measurements demonstrated that there was a very good correlation between VCDs and surface concentrations in some cases, while in other cases, elevated VCDs did not correspond to high surface concentrations, suggesting the plume was above the ground. Elevated VCDs and surface concentrations were observed when the wind direction was from south to southeast, i.e. from the direction of the two local SO2 sources. The precision of the SO2 measurements, estimated from parallel measurements by two Pandora instruments at Toronto, is 0.17 DU. The total uncertainty of Pandora SO2 VCD, estimated using measurements when the wind direction was away from the sources, is less than 0.26 DU (1σ). Comparisons with integrated SO2 profiles from concurrent aircraft measurements support these estimates.

  11. Improved retrieval of nitrogen dioxide (NO2) column densities by means of MKIV Brewer spectrophotometers

    NASA Astrophysics Data System (ADS)

    Diémoz, H.; Siani, A. M.; Redondas, A.; Savastiouk, V.; McElroy, C. T.

    2014-07-01

    A new algorithm to retrieve nitrogen dioxide (NO2) column densities using MKIV Brewer spectrophotometers is described. The method includes several improvements, such as a more recent spectroscopic dataset, the reduction of the measurement noise and interferences by other atmospheric species and instrumental settings, and a better determination of the air mass enhancement factors. The technique was tested during an ad-hoc calibration campaign at the high-altitude site of Izaña (Tenerife, Spain) and provided results compatible to those obtained from a spectrometer associated to the Network for the Detection of Atmospheric Composition Change (NDACC), with deviations of less than 0.02 DU. To determine the extraterrestrial constant, an easily implementable generalisation of the standard Langley technique was developed which takes into account the daytime linear drift of nitrogen dioxide due to the photochemistry. Estimates obtained from different observation geometries, by collecting the light from either the sun or the zenith sky, were found to be comparable within the measurement uncertainty. The latter was thoroughly determined by using a Monte Carlo technique. Finally, a method to retrieve additional products such as the degree of linear polarisation of the zenith sky and the oxygen dimer optical depth is presented. The new algorithm is backward-compatible, thus allowing for the reprocessing of historical datasets.

  12. Near infrared nadir sounding of vertical column densities: methodology and application to SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Gimeno García, S.; Schreier, F.; Lichtenberg, G.; Slijkhuis, S.

    2011-06-01

    Nadir observations with the shortwave infrared channels of SCIAMACHY onboard the ENVISAT satellite can be used to derive information on atmospheric gases such as CO, CH4, N2O, CO2, and H2O. For the operational level 1b-2 processing of SCIAMACHY data a new retrieval code BIRRA (Beer InfraRed Retrieval Algorithm) has been developed: BIRRA performs a nonlinear least squares fit of the measured radiance, where molecular concentration vertical profiles are scaled to fit the observed data. Here we present the forward modeling (radiative transfer) and inversion (least squares optimization) fundamentals of the code along with the further processing steps required to generate higher level products such as global distributions and time series. Moreover, various aspects of level 1 (observed spectra) and auxiliary input data relevant for successful retrievals are discussed. BIRRA is currently used for operational analysis of carbon monoxide vertical column densities from SCIAMACHY channel 8 observations, and is being prepared for methane retrievals using channel 6 spectra. A set of representative CO retrievals and first CH4 results are presented to demonstrate BIRRA's capabilities.

  13. Near infrared nadir retrieval of vertical column densities: methodology and application to SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Gimeno García, S.; Schreier, F.; Lichtenberg, G.; Slijkhuis, S.

    2011-12-01

    Nadir observations with the shortwave infrared channels of SCIAMACHY on-board the ENVISAT satellite can be used to derive information on atmospheric gases such as CO, CH4, N2O, CO2, and H2O. For the operational level 1b-2 processing of SCIAMACHY data, a new retrieval code BIRRA (Beer InfraRed Retrieval Algorithm) has been developed. BIRRA performs a nonlinear or separable least squares fit (with bound constraints optional) of the measured radiance, where molecular concentration vertical profiles are scaled to fit the observed data. Here we present the forward modeling (radiative transfer) and inversion (least squares optimization) fundamentals of the code along with the further processing steps required to generate higher level products such as global distributions and time series. Moreover, various aspects of level 1 (observed spectra) and auxiliary input data relevant for successful retrievals are discussed. BIRRA is currently used for operational analysis of carbon monoxide vertical column densities from SCIAMACHY channel 8 observations, and is being prepared for methane retrievals using channel 6 spectra. A set of representative CO retrievals and first CH4 results are presented to demonstrate BIRRA's capabilities.

  14. Comet P/Giacobini-Zinner electron and H2O(+) column densities from ICE and ground-based observations

    NASA Technical Reports Server (NTRS)

    Meyer-Vernet, N.; Steinberg, J. L.; Strauss, Michael A.; Spinrad, H.; Mccarthy, Patrick J.

    1987-01-01

    An H2O(+) spatial mission profile, extracted from an optical CCD spectrogram obtained during the ICE/Giacobini-Zinner encounter, is compared to the electron-density profile that was deduced from in situ measurements by the radio experiment aboard ICE. The electron column density along a line of sight has two components, one from the spherically symmetric coma, and the second from a thin plasma sheet, whenever it is along the line of sight. The deduced electron column-density profile agrees well with the observed H2O(+) emission profile. It is concluded that the electrons and the H2O(+) ions are distributed similarly 9600 km tailward from the cometary nucleus, that the ratio of number densities of H2O(+) ions to electrons is about 1/4 at this point, and that the width of the plasma sheet is about 16,000 km.

  15. Herschel-Planck dust optical depth and column density maps. II. Perseus

    NASA Astrophysics Data System (ADS)

    Zari, Eleonora; Lombardi, Marco; Alves, João; Lada, Charles J.; Bouy, Hervé

    2016-03-01

    We present optical depth and temperature maps of the Perseus molecular cloud, obtained combining dust emission data from the Herschel and Planck satellites and 2MASS/NIR dust extinction maps. The maps have a resolution of 36 arcsec in the Herschel regions, and of 5 arcmin elsewhere. The dynamic range of the optical depth map ranges from 1 × 10-2 mag up to 20 mag in the equivalent K-band extinction. We also evaluate the ratio between the 2.2 μm extinction coefficient and the 850 μm opacity. The value we obtain is close to the one found in the Orion B molecular cloud. We show that the cumulative and the differential area function of the data (which is proportional to the probability distribution function of the cloud column density) follow power laws with an index of respectively ≃-2, and ≃-3. We use WISE data to improve current YSO catalogs based mostly on Spitzer data and we build an up-to-date selection of Class I/0 objects. Using this selection, we evaluate the local Schmidt law, ΣYSO ∝ Σgasβ, showing that β = 2.4 ± 0.6. Finally, we show that the area-extinction relation is important for determining the star-formation rate in the cloud, which is in agreement with other recent works. The optical depth and temperature maps (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A106

  16. VizieR Online Data Catalog: EBHIS spectra and HI column density maps (Winkel+, 2016)

    NASA Astrophysics Data System (ADS)

    Winkel, B.; Kerp, J.; Floeer, L.; Kalberla, P. M. W.; Ben Bekhti, N.; Keller, R.; Lenz, D.

    2015-11-01

    The EBHIS 1st data release comprises 21-cm neutral atomic hydrogen data of the Milky Way (-600km/scolumn density distribution, both, in a (1) HealPIX-grid binary table (nside=1024, Galactic coordinates, Ring indexing scheme) (2) Standard FITS 2D image in ZEA-projection (zenith equal area). (6 data files).

  17. Utilization of O4 slant column density to derive aerosol layer height from a spaceborne UV-visible hyperspectral sensor: sensitivity and case study

    NASA Astrophysics Data System (ADS)

    Park, S. S.; Kim, J.; Lee, H.; Torres, O.; Lee, K.-M.; Lee, S. D.

    2015-03-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using simulated radiances by a radiative transfer model, Linearized Discrete Ordinate Radiative Transfer (LIDORT), and Differential Optical Absorption Spectroscopy (DOAS) technique. The sensitivities of the O4 SCDs to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4 SCD at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 414 m (16.5%), 564 m (22.4%), and 1343 m (52.5%) for absorbing, dust, and non-absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution type. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). The retrieved aerosol effective heights are lower by approximately 300 m (27 %) compared to those obtained from the ground-based LIDAR measurements.

  18. OClO slant column densities derived from GOMOS averaged transmittance measurements

    NASA Astrophysics Data System (ADS)

    Tétard, C.; Fussen, D.; Vanhellemont, F.; Bingen, C.; Dekemper, E.; Mateshvili, N.; Pieroux, D.; Robert, C.; Kyrölä, E.; Tamminen, J.; Sofieva, V.; Hauchecorne, A.; Dalaudier, F.; Bertaux, J.-L.; Fanton d'Andon, O.; Barrot, G.; Blanot, L.; Dehn, A.; Saavedra de Miguel, L.

    2013-11-01

    The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument on board the European platform ENVISAT (ENVironment SATellite) was dedicated to the study of the of Earth's atmosphere using the stellar occultation technique. The spectral range of the GOMOS spectrometer extends from the UV (ultra violet) to the near infrared, allowing for the retrieval of species such as O3, NO2, NO3, H2O, O2, air density, aerosol extinction and OClO. Nevertheless, OClO cannot be retrieved using a single GOMOS measurement because of the weak signal-to-noise ratio and the small optical thickness associated with this molecule. We present here the method used to detect this molecule by using several GOMOS measurements. It is based on a two-step approach. First, several co-located measurements are combined in a statistical way to build an averaged measurement with a higher signal-to-noise ratio; then, a differential optical absorption spectroscopy (DOAS) method is applied to retrieve OClO slant column densities (SCD). The statistics of the sets of GOMOS measurements used to build the averaged measurement and the spectral window selection are analyzed. The obtained retrievals are compared to results from two balloon-borne instruments. It appears that the inter-comparisons of OClO are generally satisfying (relative differences are about 15-60%). Two nighttime climatologies of OClO based on GOMOS averaged measurements are presented. The first depicts annual global pictures of OClO from 2003 to 2011. From this climatology, the presence of an OClO SCD peak in the equatorial region at about 35 km is confirmed and strong OClO SCD in both polar regions are observed (more than 1016 cm-2 in the Antarctic region and slightly less in the Arctic region), a sign of chlorine activation. The second climatology is a monthly time series. It clearly shows the chlorine activation of the lower stratosphere during winter. Moreover the equatorial OClO SCD peak is observed during all years without any

  19. OMI NO2 column densities over North American urban cities: the effect of satellite footprint resolution

    NASA Astrophysics Data System (ADS)

    Kim, H. C.; Lee, P.; Judd, L.; Pan, L.; Lefer, B.

    2015-10-01

    Nitrogen dioxide vertical column density (NO2 VCD) measurements via satellite are compared with a fine-scale regional chemistry transport model, using a new approach that considers varying satellite footprint sizes. Space-borne NO2 VCD measurement has been used as a proxy for surface nitrogen oxide (NOx) emission, especially for anthropogenic urban emission, so accurate comparison of satellite and modeled NO2 VCD is important in determining the future direction of NOx emission policy. The National Aeronautics and Space Administration Ozone Monitoring Instrument (OMI) NO2 VCD measurements, retrieved by the Royal Netherlands Meteorological Institute (KNMI), are compared with a 12 km Community Multi-scale Air Quality (CMAQ) simulation from the National Oceanic and Atmospheric Administration. We found that OMI footprint pixel sizes are too coarse to resolve urban NO2 plumes, resulting in a possible underestimation in the urban core and overestimation outside. In order to quantify this effect of resolution geometry, we have made two estimates. First, we constructed pseudo-OMI data using fine-scale outputs of the model simulation. Assuming the fine-scale model output is a true measurement, we then collected real OMI footprint coverages and performed conservative spatial regridding to generate a set of fake OMI pixels out of fine-scale model outputs. When compared to the original data, the pseudo-OMI data clearly showed smoothed signals over urban locations, resulting in roughly 20-30 % underestimation over major cities. Second, we further conducted conservative downscaling of OMI NO2 VCD using spatial information from the fine-scale model to adjust the spatial distribution, and also applied Averaging Kernel (AK) information to adjust the vertical structure. Four-way comparisons were conducted between OMI with and without downscaling and CMAQ with and without AK information. Results show that OMI and CMAQ NO2 VCDs show the best agreement when both downscaling and AK

  20. OMI NO2 column densities over North American urban cities: the effect of satellite footprint resolution

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Cheol; Lee, Pius; Judd, Laura; Pan, Li; Lefer, Barry

    2016-03-01

    Nitrogen dioxide vertical column density (NO2 VCD) measurements via satellite are compared with a fine-scale regional chemistry transport model, using a new approach that considers varying satellite footprint sizes. Space-borne NO2 VCD measurement has been used as a proxy for surface nitrogen oxide (NOx) emission, especially for anthropogenic urban emission, so accurate comparison of satellite and modeled NO2 VCD is important in determining the future direction of NOx emission policy. The NASA Ozone Monitoring Instrument (OMI) NO2 VCD measurements, retrieved by the Royal Netherlands Meteorological Institute (KNMI), are compared with a 12 km Community Multi-scale Air Quality (CMAQ) simulation from the National Oceanic and Atmospheric Administration. We found that the OMI footprint-pixel sizes are too coarse to resolve urban NO2 plumes, resulting in a possible underestimation in the urban core and overestimation outside. In order to quantify this effect of resolution geometry, we have made two estimates. First, we constructed pseudo-OMI data using fine-scale outputs of the model simulation. Assuming the fine-scale model output is a true measurement, we then collected real OMI footprint coverages and performed conservative spatial regridding to generate a set of fake OMI pixels out of fine-scale model outputs. When compared to the original data, the pseudo-OMI data clearly showed smoothed signals over urban locations, resulting in roughly 20-30 % underestimation over major cities. Second, we further conducted conservative downscaling of OMI NO2 VCDs using spatial information from the fine-scale model to adjust the spatial distribution, and also applied averaging kernel (AK) information to adjust the vertical structure. Four-way comparisons were conducted between OMI with and without downscaling and CMAQ with and without AK information. Results show that OMI and CMAQ NO2 VCDs show the best agreement when both downscaling and AK methods are applied, with the correlation

  1. Green bank telescope observations of low column density H I around NGC 2997 and NGC 6946

    SciTech Connect

    Pisano, D. J.

    2014-03-01

    Observations of ongoing H I accretion in nearby galaxies have only identified about 10% of the fuel necessary to sustain star formation in these galaxies. Most of these observations have been conducted using interferometers and may have missed lower column density, diffuse, H I gas that may trace the missing 90% of gas. Such gas may represent the so-called cold flows predicted by current theories of galaxy formation to have never been heated above the virial temperature of the dark matter halo. As a first attempt to identify such cold flows around nearby galaxies and complete the census of H I down to N {sub H} {sub I} ∼ 10{sup 18} cm{sup –2}, I used the Robert C. Byrd Green Bank Telescope (GBT) to map the circumgalactic (r ≲ 100-200 kpc) H I environment around NGC 2997 and NGC 6946. The resulting GBT observations cover a 4 deg{sup 2} area around each galaxy with a 5σ detection limit of N{sub H} {sub I} ∼ 10{sup 18} cm{sup –2} over a 20 km s{sup –1} line width. This project complements absorption line studies, which are well-suited to the regime of lower N{sub H} {sub I}. Around NGC 2997, the GBT H I data reveal an extended H I disk and all of its surrounding gas-rich satellite galaxies, but no filamentary features. Furthermore, the H I mass as measured with the GBT is only 7% higher than past interferometric measurements. After correcting for resolution differences, the H I extent of the galaxy is 23% larger at the N{sub H} {sub I} = 1.2 × 10{sup 18} cm{sup –2} level as measured by the GBT. On the other hand, the H I observations of NGC 6946 reveal a filamentary feature apparently connecting NGC 6946 with its nearest companions. This H I filament has N{sub H} {sub I} ∼ 5 × 10{sup 18} cm{sup –2} and an FWHM of 55 ± 5 km s{sup –1} and was invisible in past interferometer observations. The properties of this filament are broadly consistent with being a cold flow or debris from a past tidal interaction between NGC 6946 and its satellites.

  2. Observational discrimination between modes of shock propagation in interstellar clouds: Predictions of CH+ and SH+ column densities in diffuse clouds

    NASA Technical Reports Server (NTRS)

    Flower, D. R.; Desforets, G. P.; Roueff, E.; Hartquist, T. W.

    1986-01-01

    Considerable effort in recent years has been devoted to the study of shocks in the diffuse interstellar medium. This work has been motivated partly by the observations of rotationally excited states of H2, and partly by the realization that species such as CH(+), OH and H2O might be formed preferentially in hot, post-shock gas. The problem of CH(+) and the difficulties encountered when trying to explain the high column densities, observed along lines of sight to certain hot stars, have been reviewed earlier. The importance of a transverse magnetic field on the structure of an interstellar shock was also demonstrated earlier. Transverse magnetic fields above a critical strength give rise to an acceleration zone or precursor, in which the parameters on the flow vary continuously. Chemical reactions, which change the degree of ionization of the gas, also modify the structure of the shock considerably. Recent work has shown that large column densities of CH(+) can be produced in magnetohydrodynamic shock models. Shock speeds U sub s approx. = 10 km/s and initial magnetic field strengths of a few micro G are sufficient to produce ion-neutral drift velocities which can drive the endothermic C(+)(H2,H)CH(+) reaction. It was also shown that single-fluid hydrodynamic models do not generate sufficiently large column densities of CH(+) unless unacceptably high shock velocities (u sub s approx. 20 km/s) are assumed in the models. Thus, the observed column densities of CH(+) provide a constraint on the mode of shock propagation in diffuse clouds. More precisely, they determine a lower limit to the ion-neutral drift velocity.

  3. A Herschel-SPIRE survey of the Mon R2 giant molecular cloud: analysis of the gas column density probability density function

    NASA Astrophysics Data System (ADS)

    Pokhrel, R.; Gutermuth, R.; Ali, B.; Megeath, T.; Pipher, J.; Myers, P.; Fischer, W. J.; Henning, T.; Wolk, S. J.; Allen, L.; Tobin, J. J.

    2016-09-01

    We present a far-IR survey of the entire Mon R2 giant molecular cloud (GMC) with Herschel-Spectral and Photometric Imaging REceiver cross-calibrated with Planck-High Frequency Instrument data. We fit the spectral energy distributions of each pixel with a greybody function and an optimal beta value of 1.8. We find that mid-range column densities obtained from far-IR dust emission and near-IR extinction are consistent. For the entire GMC, we find that the column density histogram, or column density probability distribution function (N-PDF), is lognormal below ˜1021 cm-2. Above this value, the distribution takes a power law form with an index of -2.15. We analyse the gas geometry, N-PDF shape, and young stellar object (YSO) content of a selection of subregions in the cloud. We find no regions with pure lognormal N-PDFs. The regions with a combination of lognormal and one power-law N-PDF have a YSO cluster and a corresponding centrally concentrated gas clump. The regions with a combination of lognormal and two power-law N-PDF have significant numbers of typically younger YSOs but no prominent YSO cluster. These regions are composed of an aggregate of closely spaced gas filaments with no concentrated dense gas clump. We find that for our fixed scale regions, the YSO count roughly correlates with the N-PDF power-law index. The correlation appears steeper for single power-law regions relative to two power-law regions with a high column density cut-off, as a greater dense gas mass fraction is achieved in the former. A stronger correlation is found between embedded YSO count and the dense gas mass among our regions.

  4. Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Soo; Kim, Seon-Tae; Ahn, Joon-Mo; Kim, Keun-Hong

    2004-04-01

    Conductive and magnetic microspheres are fabricated by plating of Co-Fe alloy thin films on hollow ceramic microspheres of low density for the application to lightweight microwave absorbers. Metal plating was carried out in a two-step electroless plating process (pre-treatment of sensitizing and subsequent plating). Uniform coating of the film with about 2 μm thickness was identified by SEM. High-frequency magnetic and microwave absorbing properties were determined in the rubber composites containing the metal-coated microspheres. Due to the conductive and ferromagnetic behavior of the Co-Fe thin films, high dielectric constant and magnetic loss can be obtained in the microwave frequencies. In particular, the magnetic loss increases with Fe content in the alloy films and its frequency dispersion can be explained by ferromagnetic resonance theory. Due to the electromagnetic properties, high absorption rate and thin matching thickness are predicted in the composite layers containing the metal-coated microspheres of low density (about 0.8 g/cc) for the electromagnetic radiation in microwave frequencies.

  5. Interaction of laser radiation with a low-density structured absorber

    NASA Astrophysics Data System (ADS)

    Rozanov, V. B.; Barishpol'tsev, D. V.; Vergunova, G. A.; Demchenko, N. N.; Ivanov, E. M.; Aristova, E. N.; Zmitrenko, N. V.; Limpouch, I.; Ulschmidt, I.

    2016-02-01

    A theoretical model is proposed for computing simulations of laser radiation interaction with inhomogeneous foam materials doped with heavy elements and undoped materials. The model satisfactorily describes many experiments on the interaction of the first and third harmonics of a 200 J pulsed PALS iodine laser with low-density porous cellulose triacetate targets. The model can be used to analyze experimental data and estimate the reality of experimental results.

  6. Modelling potential photovoltaic absorbers Cu3MCh4(M = V, Nb, Ta; Ch = S, Se, Te) using density functional theory.

    PubMed

    Kehoe, Aoife B; Scanlon, David O; Watson, Graeme W

    2016-05-01

    The geometric and electronic properties of a series of potential photovoltaic materials, the sulvanite structured Cu3MCh4(M = V, Nb, Ta; Ch = S, Se, Te), have been computationally examined using both PBEsol+U and HSE06 methods to assess the materials' suitability for solar cell application and to compare the predictions of the two theoretical approaches. The lattice parameters, electronic density of states, and band gaps of the compounds have been calculated to ascertain the experimental agreement obtained by each method and to determine if any of the systems have an optical band gap appropriate for photovoltaic absorber materials. The PBEsol+U results are shown to achieve better agreement with experiment than HSE06 in terms of both lattice constants and band gaps, demonstrating that higher level theoretical methods do not automatically result in a greater level of accuracy than their computationally less expensive counterparts. The PBEsol+U calculated optical band gaps of five materials suggest potential suitability as photovoltaic absorbers, with values of 1.72 eV, 1.49 eV, 1.19 eV, 1.46 eV, and 1.69 eV for Cu3VS4, Cu3VSe4, Cu3VTe4, Cu3NbTe4, and Cu3TaTe4, respectively, although it should be noted that all fundamental band gaps are indirect in nature, which could lower the open-circuit voltage and hence the efficiency of prospective devices.

  7. Utilization of O4 slant column density to derive aerosol layer height from a space-borne UV-visible hyperspectral sensor: sensitivity and case study

    NASA Astrophysics Data System (ADS)

    Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok

    2016-02-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 1040 molecules2 cm-5, to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 % of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

  8. Utilization of O4 Slant Column Density to Derive Aerosol Layer Height from a Space-Borne UV-Visible Hyperspectral Sensor: Sensitivity and Case Study

    NASA Technical Reports Server (NTRS)

    Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok

    2016-01-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(sup 40) molecules (sup 2) per centimeters(sup -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nanometers, the O4 absorption band at 477 nanometers is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nanometers is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 meters for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 percent of retrieved aerosol effective heights are within the error range of 1 kilometer compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

  9. Can formaldehyde column densities be used to estimate near-surface ozone in urban areas?

    NASA Astrophysics Data System (ADS)

    Schroeder, Jason

    2016-04-01

    Understanding pollutant exposure for populations in urban areas requires air quality monitoring at a finer scale than can be reasonably provided by surface networks. Satellite measurements of short-lived trace gases could potentially help shape our understanding of the distribution of near-surface ozone throughout entire regions, thus aiding the development of more effective mitigation strategies. In this work, the extensive vertical profiling performed by aircraft in support of NASA's DISCOVER-AQ field campaign is used to examine the relationship between formaldehyde column measurements and near-surface ozone. At large spatial and temporal scales, a fairly strong relationship exists between column formaldehyde and near-surface ozone, but this relationship often weakens at smaller spatial and temporal scales. The cause of these small-scale discrepancies was determined to be an artifact of the difference in lifetimes between ozone and formaldehyde. While ozone has a long lifetime (multiple days) and tends to accumulate throughout the day, formaldehyde has a very short lifetime (a couple hours) and tends to reflect the local hydrocarbon oxidation environment. In Maryland, where biogenic emissions dominate the hydrocarbon mix, a stronger correlation between ozone and formaldehyde was seen than in Texas, where anthropogenic emissions dominated the hydrocarbon mix. This is because in Maryland, while ozone was accumulating throughout the day, formaldehyde was also increasing in conjunction with changes in biogenic emissions. When data are segregated spatially and averaged over the duration of each campaign, a clear trend can be seen between column formaldehyde and surface ozone measurements. While not useful for day-to-day monitoring, this could be useful for long-term exposure estimates and could help facilitate the re-distribution of surface monitoring sites.

  10. Ozone column density determination from direct irradiance measurements in the ultraviolet performed by a four-channel precision filter radiometer.

    PubMed

    Ingold, T; Mätzler, C; Wehrli, C; Heimo, A; Kämpfer, N; Philipona, R

    2001-04-20

    Ultraviolet light was measured at four channels (305, 311, 318, and 332 nm) with a precision filter radiometer (UV-PFR) at Arosa, Switzerland (46.78 degrees , 9.68 degrees , 1850 m above sea level), within the instrument trial phase of a cooperative venture of the Swiss Meteorological Institute (MeteoSwiss) and the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center. We retrieved ozone-column density data from these direct relative irradiance measurements by adapting the Dobson standard method for all possible single-difference wavelength pairs and one double-difference pair (305/311 and 305/318) under conditions of cloud-free sky and of thin clouds (cloud optical depth <2.5 at 500 nm). All UV-PFR retrievals exhibited excellent agreement with those of collocated Dobson and Brewer spectrophotometers for data obtained during two months in 1999. Combining the results of the error analysis and the findings of the validation, we propose to retrieve ozone-column density by using the 305/311 single difference pair and the double-difference pair. Furthermore, combining both retrievals by building the ratio of ozone-column density yields information that is relevant to data quality control. Estimates of the 305/311 pair agree with measurements by the Dobson and Brewer instruments within 1% for both the mean and the standard deviation of the differences. For the double pair these values are in a range up to 1.6%. However, this pair is less sensitive to model errors. The retrieval performance is also consistent with satellite-based data from the Earth Probe Total Ozone Mapping Spectrometer (EP-TOMS) and the Global Ozone Monitoring Experiment instrument (GOME).

  11. BAL PHOSPHORUS ABUNDANCE AND EVIDENCE FOR IMMENSE IONIC COLUMN DENSITIES IN QUASAR OUTFLOWS: VLT/X-SHOOTER OBSERVATIONS OF QUASAR SDSS J1512+1119

    SciTech Connect

    Borguet, Benoit C. J.; Edmonds, Doug; Arav, Nahum; Chamberlain, Carter; Benn, Chris

    2012-10-10

    We present spectroscopic analysis of the broad absorption line (BAL) outflow in quasar SDSS J1512+1119. In particular, we focus our attention on a kinematic component in which we identify P V and S IV/S IV* absorption troughs. The shape of the unblended phosphorus doublet troughs and the three S IV/S IV* troughs allow us to obtain reliable column density measurements for these two ions. Photoionization modeling using these column densities and those of He I* constrain the abundance of phosphorus to the range of 0.5-4 times the solar value. The total column density, ionization parameter, and metallicity inferred from the P V and S IV column densities lead to large optical depth values for the common transition observed in BAL outflows. We show that the true C IV optical depth is {approx}1000 times greater in the core of the absorption profile than the value deduced from its apparent optical depth.

  12. Column Number Density Expressions Through M = 0 and M = 1 Point Source Plumes Along Any Straight Path

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2016-01-01

    Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M = 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plume's axis. For sonic plumes this ratio is reduced to about 4/3. For high Mach number cases the maximum CND will be found along the axial centerline path. Keywords: column number density, plume flows, outgassing, free molecule flow.

  13. The Effect of Noise in Dust Emission Maps on the Derivation of Column Density, Temperature, and Emissivity Spectral Index

    NASA Astrophysics Data System (ADS)

    Schnee, S.; Kauffmann, J.; Goodman, A.; Bertoldi, F.

    2007-03-01

    We have mapped the central 10'×10' of the dense core TMC-1C at 450, 850, and 1200 μm using SCUBA on the James Clerk Maxwell Telescope and MAMBO on the IRAM 30 m telescope. We show that although one can, in principle, use images at these wavelengths to map the emissivity spectral index, temperature, and column density independently, noise and calibration errors would have to be less than ~2% to accurately derive these three quantities from a set of three emission maps. Because our data are not this free of errors, we use our emission maps to fit the dust temperature and column density assuming a constant value of the emissivity spectral index and explore the effects of noise on the derived physical parameters. We find that the derived extinction values for TMC-1C are large for a starless core (~80 mag AV) and the derived temperatures are low (~6 K) in the densest regions of the core, using our derived value of β=1.8.

  14. Modelling potential photovoltaic absorbers Cu3MCh4(M = V, Nb, Ta; Ch = S, Se, Te) using density functional theory.

    PubMed

    Kehoe, Aoife B; Scanlon, David O; Watson, Graeme W

    2016-05-01

    The geometric and electronic properties of a series of potential photovoltaic materials, the sulvanite structured Cu3MCh4(M = V, Nb, Ta; Ch = S, Se, Te), have been computationally examined using both PBEsol+U and HSE06 methods to assess the materials' suitability for solar cell application and to compare the predictions of the two theoretical approaches. The lattice parameters, electronic density of states, and band gaps of the compounds have been calculated to ascertain the experimental agreement obtained by each method and to determine if any of the systems have an optical band gap appropriate for photovoltaic absorber materials. The PBEsol+U results are shown to achieve better agreement with experiment than HSE06 in terms of both lattice constants and band gaps, demonstrating that higher level theoretical methods do not automatically result in a greater level of accuracy than their computationally less expensive counterparts. The PBEsol+U calculated optical band gaps of five materials suggest potential suitability as photovoltaic absorbers, with values of 1.72 eV, 1.49 eV, 1.19 eV, 1.46 eV, and 1.69 eV for Cu3VS4, Cu3VSe4, Cu3VTe4, Cu3NbTe4, and Cu3TaTe4, respectively, although it should be noted that all fundamental band gaps are indirect in nature, which could lower the open-circuit voltage and hence the efficiency of prospective devices. PMID:27033972

  15. Age changes in the bone density and structure of the lumbar vertebral column.

    PubMed Central

    Twomey, L; Taylor, J; Furniss, B

    1983-01-01

    Old age is associated with a decline in bone density in lumbar vertebral bodies in both sexes, although the rate and amount of the decline is greatest in females. The bone translucency index method, described in this study, is a sensitive method of estimating bone density. The primary reason for this decline is the significant decrease in the number of transverse trabeculae of lumbar vertebrae in old age. It is postulated that the increase in vertebral end plate concavity and the increased horizontal dimensions of lumbar vertebral bodies in old age follows as a direct consequence of the selective loss of the transverse trabeculae. Images Fig. 2 PMID:6833115

  16. Image of Fomalhaut Dust Ring at 350 Microns: The Relative Column Density Map Shows Pericenter-Apocenter Asymmetry

    NASA Technical Reports Server (NTRS)

    Marsh, K. A.; Velusamy, T.; Dowell, C. D.; Grogan, K.; Beichman, C. A.

    2005-01-01

    We have imaged the circumstellar disk of Fomalhaut at 350 mm wavelength, using SHARC II (Submillimeter High Angular Resolution Camera II) at the Caltech Submillimeter Observatory. The spatial resolution of the raw images (9") has been enhanced by a factor of 3 using the HiRes deconvolution procedure. We find that at this wavelength and signal-to-noise ratio (approx.12), the observed morphology is that of a simple inclined ring (i approx. 70 deg), with little or no other apparent structure--this is the first observation that shows clearly the ring morphology of the disk. We have combined our 350 mm data with Spitzer Space Telescope images at 24, 70, and 160 mm in order to estimate the two-dimensional spatial variation of relative column density ("tau map") using our DISKFIT procedure. The tau map is based on the following physical assumptions: (1) the wavelength variation of opacity is the same throughout the disk, (2) the radial variation of dust temperature is dictated by the energy balance of individual grains in the stellar radiation field, and (3) the vertical scale height of the disk follows a power-law radial variation. The results confirm the ringlike morphology but also show that the geometric center is displaced from the star by about 8 AU and that the ring has an apocentric enhancement of approximately 14% in integrated column density. If we interpret the displacement in terms of elliptical orbital motion due to gravitational perturbation by an unseen planet, then the implied forced eccentricity is 0.06; dynamical modeling then predicts an apocentric density enhancement consistent with that inferred from the tau map.

  17. Efficiency gain limits of the parallel segmented inlet and outlet flow concept in analytical liquid chromatography columns suffering from radial transcolumn packing density gradients.

    PubMed

    Broeckhoven, Ken; Desmet, Gert

    2012-10-01

    The maximal gain in efficiency that can be expected from the use of the segmented column end fittings that were recently introduced to alleviate the effect of transcolumn packing density gradients has been quantified and generalized using numerical computations of the band broadening process. It was found that, for an unretained compound in a column with a parabolic packing density gradient, the use of a segmented inlet or a segmented outlet allows to eliminate about 60-100% of the plate height contribution (H(tc)) originating from a parabolic transcolumn velocity gradient in a d(c)=4.6 mm column. In a d(c)=2.1 mm column, these percentages change from 10 to 100%. Using a combined segmented in- and outlet, H(tc) can be reduced by about 90-100% (d(c)=4.6 mm column) or 20-100% (d(c)=2.1 mm column). The strong variation of these gain percentages is due to fact that they depend very strongly on the column length and the flow rate. Dimensionless graphs have been established that allow to directly quantify the effect for each specific case. It was also found that, in agreement with one's physical intuition, trans-column velocity profiles that are more flat in the central region benefit more from the concept than sharp, parabolic-like profiles. The gain margins furthermore tend to become smaller with increasing retention and increasing diffusion coefficient.

  18. HS 1603+3820 and its Warm Absorber

    NASA Astrophysics Data System (ADS)

    Nikołajuk, M.; Różańska, A.; Czerny, B.; Dobrzycki, A.

    2009-07-01

    We use photoionization codes CLOUDY and TITAN to obtain physical conditions in the absorbing medium close to the nucleus of a distant quasar (z = 2.54) HS 1603+3820. We found that the total column density of this Warm Absorber is 2 x 1022 cm-2. Due to the softness of the quasars spectrum the modelling allowed us also to determine uniquely the volume hydrogen density of this warm gas (n = 1010 cm-3) which combined with the other quasar parameters leads to a distance determination to the Warm Absorber from the central source which is ~ 1.5 x 1016 cm.

  19. Pressure, temperature and density drops along supercritical fluid chromatography columns in different thermal environments. III. Mixtures of carbon dioxide and methanol as the mobile phase.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2014-01-01

    The pressure, temperature and density drops along SFC columns eluted with a CO2/methanol mobile phase were measured and compared with theoretical values. For columns packed with 3- and 5-μm particles the pressure and temperature drops were measured using a mobile phase of 95% CO2 and 5% methanol at a flow rate of 5mL/min, at temperatures from 20 to 100°C, and outlet pressures from 80 to 300bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath, either bare or covered with foam insulation. The experimental measurements were compared to theoretical results obtained by numerical simulation. For the convective air condition at outlet pressures above 100bar the average difference between the experimental and calculated temperature drops and pressure drops were 0.1°C and 0.7% for the bare 3-μm column, respectively, and were 0.6°C and 4.1% for the insulated column. The observed temperature drops for the insulated columns are consistent with those predicted by the Joule-Thomson coefficients for isenthalpic expansion. The dependence of the temperature and the pressure drops on the Joule-Thomson coefficient and kinematic viscosity are described for carbon dioxide mobile phases containing up to 20% methanol.

  20. New developments in the analysis of column-collapse pyroclastic density currents through numerical simulations of multiphase flows

    NASA Astrophysics Data System (ADS)

    Lepore, S.; Scarpati, C.

    2012-06-01

    A granular multiphase model has been used to evaluate the action of differently sized particles on the dynamics of fountains and associated pyroclastic density currents. The model takes into account the overall disequilibrium conditions between a gas phase and several solid phases, each characterized by its own physical properties. The dynamics of the granular flows (fountains and pyroclastic density currents) has been simulated by adopting a Reynolds-averaged Navier-Stokes model for describing the turbulence effects. Numerical simulations have been carried out by using different values for the eruptive column temperature at the vent, solid particle frictional concentration, turbulent kinetic energy, and dissipation. The results obtained provide evidence of the multiphase nature of the model and describe several disequilibrium effects. The low concentration (≤5 × 10-4) zones lie in the upper part of the granular flow, above the fountain, and above the tail and body of pyroclastic density current as thermal plumes. The high concentration zones, on the contrary, lie in the fountain and at the base of the current. Hence, pyroclastic density currents are assimilated to granular flows constituted by a low concentration suspension flowing above a high concentration basal layer (boundary layer), from the proximal regions to the distal ones. Interactions among the solid particles in the boundary layer of the granular flow are controlled by collisions between particles, whereas the dispersal of particles in the suspension is determined by the dragging of the gas phase. The simulations describe well the dynamics of a tractive boundary layer leading to the formation of stratified facies during Strombolian to Plinian eruptions.

  1. The effect of high column density systems on the measurement of the Lyman-α forest correlation function

    SciTech Connect

    Font-Ribera, Andreu; Miralda-Escudé, Jordi E-mail: miralda@icc.ub.edu

    2012-07-01

    We present a study of the effect of High Column Density (HCD) systems on the Lyα forest correlation function on large scales. We study the effect both numerically, by inserting HCD systems on mock spectra for a specific model, and analytically, in the context of two-point correlations and linear theory. We show that the presence of HCDs substantially contributes to the noise of the correlation function measurement, and systematically alters the measured redshift-space correlation function of the Lyα forest, increasing the value of the density bias factor and decreasing the redshift distortion parameter β{sub α} of the Lyα forest. We provide simple formulae for corrections on these derived parameters, as a function of the mean effective optical depth and bias factor of the host halos of the HCDs, and discuss the conditions under which these expressions should be valid. In practice, precise corrections to the measured parameters of the Lyα forest correlation for the HCD effects are more complex than the simple analytical approximations we present, owing to non-linear effects of the damped wings of the HCD systems and the presence of three-point terms. However, we conclude that an accurate correction for these HCD effects can be obtained numerically and calibrated with observations of the HCD-Lyα cross-correlation. We also discuss an analogous formalism to treat and correct for the contaminating effect of metal lines overlapping the Lyα forest spectra.

  2. Column Number Density Expressions Through M = 0 and M = 1 Point Source Plumes Along Any Straight Path

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael S.

    2016-01-01

    Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plumes axis. For sonic plumes this ratio is reduced to about 43. For high Mach number cases the maximum CND will be found along the axial centerline path.

  3. Tropospheric Nitrogen Dioxide Column Density Trends Seen from the 10-year Record of OMI Measurements over East Asia

    NASA Astrophysics Data System (ADS)

    Irie, H.; Muto, T.; Itahashi, S.; Kurokawa, J. I.

    2015-12-01

    The Ozone Monitoring Instrument (OMI) aboard the Aura satellite recorded the 10-year (2005-2014) of tropospheric nitrogen dioxide (NO2) vertical column density (VCD) data. The data set taken over East Asia was analyzed to estimate linear trends on national and grid bases for two periods of 2005-2011 and 2011-2014. The most striking features are leveling-off or decreasing trends seen in NO2 VCDs over China for 2011-2014 after continuous increases for 2005-2011. In particular, a significant reduction by ~14% occurred from 2013 through 2014, attaining to the level of 2009. The grid-basis trend analysis implies that the turnaround seen in the trends occurred on a province or larger spatial scale and was likely due mainly to the technical improvement such as the widespread use of de-NOx units. Another prominent features are seen in Japan, where NO2 VCDs decreased at a rate of ~4% per year from 2005 to 2011. The rate was almost unchanged between the two periods 2005-2011 and 2011-2014, while the significant power substitution of thermal power generation for the nuclear power generation took place in Japan after 2011, when a massive earthquake occurred off the Pacific coast of northern Japan. This reflects a less contribution of NOx emissions from the power plant sector than that from the transport sector in the Pacific Belt Zone lying over metropolitan areas.

  4. Model for increased efficiency of CIGS solar cells by a stepped distribution of carrier density and Ga in the absorber layer

    NASA Astrophysics Data System (ADS)

    Sharbati, Samaneh; Keshmiri, Sayyed-Hossein

    2013-08-01

    In this paper, several structures for multilayer Cu (In1- x Ga x ) Se2 (CIGS) thin film solar cells are proposed to achieve high conversion efficiency. All of the modeling and simulations were based on the actual data of experimentally produced CIGS cells reported in the literature. In standard CIGS cells with a single absorber layer, the effects of acceptor density and Ga content on device performance were studied, and then optimized for maximum conversion efficiency. The same procedure was performed for cells with two and three sectioned CIGS absorber layers in which Cu and/or Ga contents were varied within each consecutive section. This produces an internal additional electric field within the absorber layer, which resulted in an increase in carrier collection for longer wavelength photons, and hence, improvement in the conversion efficiency of the cell. An increase of approximately 3% in efficiency is predicted for cells with two layer absorbers. For multilayer cells in which Cu and Ga distribution were stepped simultaneously, the improvement could be approximately 3.5%. This improvement is due to; enhanced carrier collection for longer-wavelength photons, and reduced recombination at the heterojunction and back regions of the cell. These results are confirmed by the physics of the cells.

  5. Two new methods used to simulate the circumferential solar flux density concentrated on the absorber of a parabolic trough solar collector

    NASA Astrophysics Data System (ADS)

    Guo, Minghuan; Wang, Zhifeng; Sun, Feihu

    2016-05-01

    The optical efficiencies of a solar trough concentrator are important to the whole thermal performance of the solar collector, and the outer surface of the tube absorber is a key interface of energy flux. So it is necessary to simulate and analyze the concentrated solar flux density distributions on the tube absorber of a parabolic trough solar collector for various sun beam incident angles, with main optical errors considered. Since the solar trough concentrators are linear focusing, it is much of interest to investigate the solar flux density distribution on the cross-section profile of the tube absorber, rather than the flux density distribution along the focal line direction. Although a few integral approaches based on the "solar cone" concept were developed to compute the concentrated flux density for some simple trough concentrator geometries, all those integral approaches needed special integration routines, meanwhile, the optical parameters and geometrical properties of collectors also couldn't be changed conveniently. Flexible Monte Carlo ray trace (MCRT) methods are widely used to simulate the more accurate concentrated flux density distribution for compound parabolic solar trough concentrators, while generally they are quite time consuming. In this paper, we first mainly introduce a new backward ray tracing (BRT) method combined with the lumped effective solar cone, to simulate the cross-section flux density on the region of interest of the tube absorber. For BRT, bundles of rays are launched at absorber-surface points of interest, directly go through the glass cover of the absorber, strike on the uniformly sampled mirror segment centers in the close-related surface region of the parabolic reflector, and then direct to the effective solar cone around the incident sun beam direction after the virtual backward reflection. All the optical errors are convoluted into the effective solar cone. The brightness distribution of the effective solar cone is supposed

  6. Si IV Column Densities Predicted from Non-equilibrium Ionization Simulations of Turbulent Mixing Layers and High-velocity Clouds

    NASA Astrophysics Data System (ADS)

    Kwak, Kyujin; Shelton, Robin L.; Henley, David B.

    2015-10-01

    We present predictions of the Si iv ions in turbulent mixing layers (TMLs) between hot and cool gas and in cool high-velocity clouds (HVCs) that travel through a hot halo, complementing the C iv, N v, and O vi predictions in Kwak & Shelton, Kwak et al., and Henley et al. We find that the Si iv ions are most abundant in regions where the hot and cool gases first begin to mix or where the mixed gas has cooled significantly. The predicted column densities of high velocity Si iv and the predicted ratios of Si iv to C iv and O vi found on individual sightlines in our HVC simulations are in good agreement with observations of high velocity gas. Low velocity Si iv is also seen in the simulations, as a result of decelerated gas in the case of the HVC simulations and when looking along directions that pass perpendicular to the direction of motion in the TML simulations. The ratios of low velocity Si iv to C iv and O vi in the TML simulations are in good agreement with those recorded for Milky Way halo gas, while the ratio of Si iv to O vi from the decelerated gas in the HVC simulations is lower than that observed at normal velocity in the Milky Way halo. We attribute the shortfall of normal velocity Si iv to not having modeled the effects of photoionization and, following Henley et al., consider a composite model that includes decelerated HVC gas, supernova remnants, galactic fountain gas, and the effect of photoionization.

  7. THE NATURE OF DAMPED LYMAN-α AND Mg II ABSORBERS EXPLORED THROUGH THEIR DUST CONTENTS

    SciTech Connect

    Fukugita, Masataka; Ménard, Brice

    2015-02-01

    We estimate the abundance of dust in damped Lyman-α absorbers (DLAs) by statistically measuring the excess reddening they induce on their background quasars. We detect systematic reddening behind DLAs consistent with the SMC-type reddening curve and inconsistent with the Milky Way type. We find that the derived dust-to-gas ratio is, on average, inversely proportional to the column density of neutral hydrogen, implying that the amount of dust is constant, regardless of the column density of hydrogen. It means that the average metallicity is inversely proportional to the column density of hydrogen, unless the average dust-to-metal ratio varies with the hydrogen column density. This indicates that the prime origin of metals seen in DLAs is not by in situ star formation, with which Z∼N{sub H} {sub I}{sup +0.4} is expected from the empirical star formation law, contrary to our observation. We interpret the metals observed in absorbers to be deposited dominantly from nearby galaxies by galactic winds ubiquitous in intergalactic space. When extrapolating the relation between dust-to-gas ratio and H I column density to lower column density, we find a value that is consistent with what is observed for Mg II absorbers.

  8. VizieR Online Data Catalog: HI4PI spectra and column density maps (HI4PI team+, 2016)

    NASA Astrophysics Data System (ADS)

    Hi4PI Collaboration; Ben Bekhti, N.; Floeer, L.; Keller, R.; Kerp, J.; Lenz, D.; Winkel, B.; Bailin, J.; Calabretta, M. R.; Dedes, L.; Ford, H. A.; Gibson, B. K.; Haud, U.; Janowiecki, S.; Kalberla, P. M. W.; Lockman, F. J.; McClure-Griffiths, N. M.; Murphy, T.; Nakanishi, H.; Pisano, D. J.; Staveley-Smith, L.

    2016-09-01

    The HI4PI data release comprises 21-cm neutral atomic hydrogen data of the Milky Way (-600km/s0°; -470km/scolumn density distribution, both, in a (1) HealPIX-grid binary table (nside=1024, Galactic coordinates, Ring indexing scheme), and (2) Standard FITS 2D images in four map projections, AIT, CAR, MOL, and SFL. Various velocity intervals were applied to calculate NHI. Equatorial and Galactic coordinate systems are provided. (16 data files).

  9. Trend analysis of satellite-observed tropospheric NO2 vertical column densities over East Asia for 2005-2014

    NASA Astrophysics Data System (ADS)

    Muto, T.; Irie, H.; Itahashi, S.

    2015-12-01

    Nitrogen dioxide (NO2) plays a central role in the troposphere as a toxic substance for the respiratory system and a precursor for ozone and aerosols. Furthermore, the OH concentration is dependent on the NO2 concentration. While trend analysis for tropospheric NO2 concentrations in several specific regions all over the world was made in literature for period until 2011, the latest trends after 2011 have not been reported yet. The time period after 2011 is of interest, because it corresponds to the 12th 5-year-plan regulating NOx emissions in China and the period with the power substitution of thermal power generation for the nuclear power generation in Japan. In this study, we first compared satellite-observed tropospheric NO2 VCDs (Vertical Column Densities) with those observed by ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instruments installed at Chiba University in order to clarify whether or not there is degradation in OMI and GOME-2 NO2 VCDs data after 2011. We concluded that there is no significant degradation in OMI and GOME-2 data, since the comparison results are similar to those reported by previous validation studies. Based on the results, tropospheric NO2 VCD trends over Central Eastern China (CEC; 30-40°N, 110.0-123.0°E) and Japan (JPN; 33.5-37.0°N, 133.0-141.0°E) regions were estimated using the regression analysis for annual mean values. Although an increase in NO2 VCDs occurred at a rate of 6%(8%) per year in OMI (GOME-2) data from 2005(2007) to 2011 over CEC, we found a decrease at a rate of 10%(11%) per year from 2011 to 2014. This reduction may be a result from the regulation of NOx emissions from coal fired power generation, iron foundry, cement plant, etc., and installation of the denitrification units during the period of 12th 5-year-plan. For JPN, both OMI and GOME-2 data sets showed that the NO2 VCDs decreased at a rate of 4% per year before 2011. The decreasing trends continued until 2014, with a

  10. The HRS GTO program to study the neutral hydrogen column density and D/H ratio in the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.; Landsman, W. B.; Heap, S. R.; Savage, B. D.; Smith, A. M.; Brandt, J. C.

    1986-01-01

    Theoretical line profiles are presented that demonstrate why 100,000 spectral resolution and high S/N are needed to derive accurate column densities from spectral lines that lie close to the flat part of the curve of growth and may contain multiple velocity components. The aim of the Space Telescope high-resolution-spectrograph observing program is to obtain column densities in the hydrogen and deuterium Lyman alpha lines along a variety of lines of sight within and extending beyond the local cloudlet, in which the sun is located near an edge. The broad chromospheric Lyman alpha emission lines of late-type stars are used as background sources against which to measure the interstellar absorption features. Profiles of interstellar absorption features in Mg II and Fe II lines will be obtained to derive the broadening parameter and/or identify possible multiple velocity components in the lines of sight.

  11. On the suitability of ultrathin detectors for absorbed dose assessment in the presence of high-density heterogeneities

    SciTech Connect

    Bueno, M. Duch, M. A.; Carrasco, P.; Jornet, N.; Muñoz-Montplet, C.

    2014-08-15

    Purpose: The aim of this study was to evaluate the suitability of several detectors for the determination of absorbed dose in bone. Methods: Three types of ultrathin LiF-based thermoluminescent dosimeters (TLDs)—two LiF:Mg,Cu,P-based (MCP-Ns and TLD-2000F) and a{sup 7}Li-enriched LiF:Mg,Ti-based (MTS-7s)—as well as EBT2 Gafchromic films were used to measure percentage depth-dose distributions (PDDs) in a water-equivalent phantom with a bone-equivalent heterogeneity for 6 and 18 MV and a set of field sizes ranging from 5×5 cm{sup 2} to 20×20 cm{sup 2}. MCP-Ns, TLD-2000F, MTS-7s, and EBT2 have active layers of 50, 20, 50, and 30 μm, respectively. Monte Carlo (MC) dose calculations (PENELOPE code) were used as the reference and helped to understand the experimental results and to evaluate the potential perturbation of the fluence in bone caused by the presence of the detectors. The energy dependence and linearity of the TLDs’ response was evaluated. Results: TLDs exhibited flat energy responses (within 2.5%) and linearity with dose (within 1.1%) within the range of interest for the selected beams. The results revealed that all considered detectors perturb the electron fluence with respect to the energy inside the bone-equivalent material. MCP-Ns and MTS-7s underestimated the absorbed dose in bone by 4%–5%. EBT2 exhibited comparable accuracy to MTS-7s and MCP-Ns. TLD-2000F was able to determine the dose within 2% accuracy. No dependence on the beam energy or field size was observed. The MC calculations showed that a50 μm thick detector can provide reliable dose estimations in bone regardless of whether it is made of LiF, water or EBT’s active layer material. Conclusions: TLD-2000F was found to be suitable for providing reliable absorbed dose measurements in the presence of bone for high-energy x-ray beams.

  12. AN EXPLANATION FOR THE DIFFERENT X-RAY TO OPTICAL COLUMN DENSITIES IN THE ENVIRONMENTS OF GAMMA RAY BURSTS: A PROGENITOR EMBEDDED IN A DENSE MEDIUM

    SciTech Connect

    Krongold, Yair; Prochaska, J. Xavier

    2013-09-10

    We study the {approx}> 10 ratios in the X-ray to optical column densities inferred from afterglow spectra of gamma ray bursts (GRBs) due to gas surrounding their progenitors. We present time-evolving photoionization calculations for these afterglows and explore different conditions of their environment. We find that homogenous models of the environment (constant density) predict X-ray columns similar to those found in the optical spectra, with the bulk of the opacity being produced by neutral material at large distances from the burst. This result is independent of gas density or metallicity. Only models assuming a progenitor immersed in a dense ({approx}10{sup 2-4} cm{sup -3}) cloud of gas (with radius {approx}10 pc), with a strong, declining gradient of density for the surrounding interstellar medium (ISM) are able to account for the large X-ray to optical column density ratios. However, to avoid an unphysical correlation between the size of this cloud and the size of the ionization front produced by the GRB, the models also require that the circumburst medium is already ionized prior to the burst. The inferred cloud masses are {approx}< 10{sup 6} M{sub Sun }, even if low metallicities in the medium are assumed (Z {approx} 0.1 Z{sub Sun }). These cloud properties are consistent with those found in giant molecular clouds and our results support a scenario in which the progenitors reside within intense star formation regions of galaxies. Finally, we show that modeling over large samples of GRB afterglows may offer strong constraints on the range of properties in these clouds, and the host galaxy ISM.

  13. A fast tree-based method for estimating column densities in adaptive mesh refinement codes. Influence of UV radiation field on the structure of molecular clouds

    NASA Astrophysics Data System (ADS)

    Valdivia, Valeska; Hennebelle, Patrick

    2014-11-01

    Context. Ultraviolet radiation plays a crucial role in molecular clouds. Radiation and matter are tightly coupled and their interplay influences the physical and chemical properties of gas. In particular, modeling the radiation propagation requires calculating column densities, which can be numerically expensive in high-resolution multidimensional simulations. Aims: Developing fast methods for estimating column densities is mandatory if we are interested in the dynamical influence of the radiative transfer. In particular, we focus on the effect of the UV screening on the dynamics and on the statistical properties of molecular clouds. Methods: We have developed a tree-based method for a fast estimate of column densities, implemented in the adaptive mesh refinement code RAMSES. We performed numerical simulations using this method in order to analyze the influence of the screening on the clump formation. Results: We find that the accuracy for the extinction of the tree-based method is better than 10%, while the relative error for the column density can be much more. We describe the implementation of a method based on precalculating the geometrical terms that noticeably reduces the calculation time. To study the influence of the screening on the statistical properties of molecular clouds we present the probability distribution function of gas and the associated temperature per density bin and the mass spectra for different density thresholds. Conclusions: The tree-based method is fast and accurate enough to be used during numerical simulations since no communication is needed between CPUs when using a fully threaded tree. It is then suitable to parallel computing. We show that the screening for far UV radiation mainly affects the dense gas, thereby favoring low temperatures and affecting the fragmentation. We show that when we include the screening, more structures are formed with higher densities in comparison to the case that does not include this effect. We

  14. Nuclear reactor control column

    DOEpatents

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  15. Comet P/Giacobini-Zinner electron and H2O column densities from ICE and ground-based observations

    NASA Technical Reports Server (NTRS)

    Meyer-Vernet, N.; Strauss, Michael A.; Steinberg, J. L.; Spinrad, Hyron; Mccarthy, Patrick J.

    1986-01-01

    An H2O(+) emission profile extracted from an optical CCD spectrogram obtained during the ICE/Giacobini-Zinner encounter is compared to the electron density profile deduced from in-situ measurements by the ratio experiment aboard ICE. It is concluded that the electrons and the H2O(+) ions are distributed similarly 9600 km tailward from the cometary nucleus; that the ratio of number densities of H2O(+) ions to electrons is 1/4 at this point; and that the width of the plasma sheet is 16,000 km.

  16. Highly ionised absorbers at high redshift

    NASA Astrophysics Data System (ADS)

    Bergeron, Jacqueline; Herbert-Fort, Stéphane

    2005-03-01

    We build a sample of O VI absorption systems in the redshift range 2.0 ≲ z ≲ 2.6 using high spectral resolution data of ten quasars from the VLT-UVES large programme. We investigate the existence of a metal-rich O VI population and define observational criteria for this class of absorbers under the assumption of photoionisation. The low temperatures of nearly half of all O VI absorbers, implied by their line widths, are too low for collisional ionisation to be a dominant process. We estimate the oxygen abundance under the assumption of photoionisation; a striking result is the bimodal distribution of [o/h] with median values close to 0.01 and 0.5 solar for the metal-poor and metal-rich populations, respectively. Using the line widths to fix the temperature or assuming a constant, low gas density does not drastically change the metallicities of the metal-rich population. We present the first estimate of the O VI column density distribution. Assuming a single power-law distribution, f(n) ∝ n-α, yields α ˜ 1.7 and a normalisation of f(n) =2.3× 10-13 at log n(O VI) ˜ 13.5, both with a ˜30% uncertainty. The value of α is similar to that found for C IV surveys, whereas the normalisation factor is about ten times higher. We use f(n) to derive the number density per unit z and cosmic density ωb(O VI), selecting a limited column density range not strongly affected by incompleteness or sample variance. Comparing our results with those obtained at z˜0.1 for a similar range of column densities implies some decline of dn/dz with z. The cosmic O VI density derived from f(n), ωb(O VI)≈ (3.5± 3.20.9) × 10-7, is 2.3 times higher than the value estimated using the observed O VI sample (of which the metal-rich population contributes ˜35%), easing the problem of missing metals at high z (˜ 1/4 of the produced metals) but not solving it. We find that the majori ty of the metal-rich absorbers are located within ˜ 450 km s-1 of strong Ly-α lines and show that

  17. Modelling potential photovoltaic absorbers Cu3 MCh 4 (M  =  V, Nb, Ta; Ch  =  S, Se, Te) using density functional theory

    NASA Astrophysics Data System (ADS)

    Kehoe, Aoife B.; Scanlon, David O.; Watson, Graeme W.

    2016-05-01

    The geometric and electronic properties of a series of potential photovoltaic materials, the sulvanite structured \\text{C}{{\\text{u}}3}MC{{h}4} (M  =  V, Nb, Ta; Ch  =  S, Se, Te), have been computationally examined using both PBEsol+U and HSE06 methods to assess the materials’ suitability for solar cell application and to compare the predictions of the two theoretical approaches. The lattice parameters, electronic density of states, and band gaps of the compounds have been calculated to ascertain the experimental agreement obtained by each method and to determine if any of the systems have an optical band gap appropriate for photovoltaic absorber materials. The PBEsol+U results are shown to achieve better agreement with experiment than HSE06 in terms of both lattice constants and band gaps, demonstrating that higher level theoretical methods do not automatically result in a greater level of accuracy than their computationally less expensive counterparts. The PBEsol+U calculated optical band gaps of five materials suggest potential suitability as photovoltaic absorbers, with values of 1.72 eV, 1.49 eV, 1.19 eV, 1.46 eV, and 1.69 eV for Cu3VS4, Cu3VSe4, Cu3VTe4, Cu3NbTe4, and Cu3TaTe4, respectively, although it should be noted that all fundamental band gaps are indirect in nature, which could lower the open-circuit voltage and hence the efficiency of prospective devices.

  18. The thermal instability of the warm absorber in NGC 3783

    NASA Astrophysics Data System (ADS)

    Goosmann, R. W.; Holczer, T.; Mouchet, M.; Dumont, A.-M.; Behar, E.; Godet, O.; Gonçalves, A. C.; Kaspi, S.

    2016-05-01

    Context. The X-ray absorption spectra of active galactic nuclei frequently show evidence of winds with velocities in the order of 103 km s-1 extending up to 104 km s-1 in the case of ultra-fast outflows. At moderate velocities, these winds are often spectroscopically explained by assuming a number of absorbing clouds along the line of sight. In some cases it was shown that the absorbing clouds are in pressure equilibrium with each other. Aims: We assume a photo-ionized medium with a uniform total (gas+radiation) pressure. The irradiation causes the wind to be radiation pressure compressed (RPC). We attempt to reproduce the observed spectral continuum shape, ionic column densities, and X-ray absorption measure distribution (AMD) of the extensively observed warm absorber in the Seyfert galaxy NGC 3783. Methods: We compare the observational characteristics derived from the 900 ks Chandra observation to radiative transfer computations in pressure equilibrium using the radiative transfer code titan. We explore different values of the ionization parameter ξ of the incident flux and adjust the hydrogen-equivalent column density, NH0, of the warm absorber to match the observed soft X-ray continuum. From the resulting models we derive the column densities for a broad range of ionic species of iron and neon and a theoretical AMD that we compare to the observations. Results: We find an extension of the degeneracy between ξ and NH0 for the constant pressure models previously discussed for NGC 3783. Including the ionic column densities of iron and neon in the comparison between observations and data we conclude that a range of ionization parameters between 4000 and 8000 erg cm s-1 is preferred. For the first time, we present theoretical AMDs for a constant pressure wind in NGC 3783 that correctly reproduces the observed level and is in approximate agreement with the observational appearance of an instability region. Conclusions: Using a variety of observational indicators, we

  19. Balloon-Borne Submillimeter Polarimetry of the Vela C Molecular Cloud: Systematic Dependence of Polarization Fraction on Column Density and Local Polarization-Angle Dispersion

    NASA Astrophysics Data System (ADS)

    Fissel, Laura M.; Ade, Peter A. R.; Angilè, Francesco E.; Ashton, Peter; Benton, Steven J.; Devlin, Mark J.; Dober, Bradley; Fukui, Yasuo; Galitzki, Nicholas; Gandilo, Natalie N.; Klein, Jeffrey; Korotkov, Andrei L.; Li, Zhi-Yun; Martin, Peter G.; Matthews, Tristan G.; Moncelsi, Lorenzo; Nakamura, Fumitaka; Netterfield, Calvin B.; Novak, Giles; Pascale, Enzo; Poidevin, Frédérick; Santos, Fabio P.; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Diego Soler, Juan; Thomas, Nicholas E.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2016-06-01

    We present results for Vela C obtained during the 2012 flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry. We mapped polarized intensity across almost the entire extent of this giant molecular cloud, in bands centered at 250, 350, and 500 μm. In this initial paper, we show our 500 μm data smoothed to a resolution of 2.‧5 (approximately 0.5 pc). We show that the mean level of the fractional polarization p and most of its spatial variations can be accounted for using an empirical three-parameter power-law fit, p \\propto {{\\boldsymbol{N}}}-0.45 {{\\boldsymbol{S}}}-0.60, where N is the hydrogen column density and S is the polarization-angle dispersion on 0.5 pc scales. The decrease of p with increasing S is expected because changes in the magnetic field direction within the cloud volume sampled by each measurement will lead to cancellation of polarization signals. The decrease of p with increasing N might be caused by the same effect, if magnetic field disorder increases for high column density sightlines. Alternatively, the intrinsic polarization efficiency of the dust grain population might be lower for material along higher density sightlines. We find no significant correlation between N and S. Comparison of observed submillimeter polarization maps with synthetic polarization maps derived from numerical simulations provides a promising method for testing star formation theories. Realistic simulations should allow for the possibility of variable intrinsic polarization efficiency. The measured levels of correlation among p, N, and S provide points of comparison between observations and simulations.

  20. Experimental results for propagation of diffuse photon-density waves up to 1 GHz in a tissue-like medium containing an absorbing edge

    NASA Astrophysics Data System (ADS)

    Netz, U. J.; Hielscher, A. H.; Scheel, A. K.; Beuthan, J.

    2006-05-01

    Optical imaging in the near-infrared (NIR) region provides the possibility to detect and determine pathological changes in human tissue without the drawback of ionizing radiation and with little technical and financial effort. Especially in rheumatoid arthritis, imaging by optical tomography to detect early inflammations in joints has the potential to become a supportive tool to common imaging modalities. One way to enhance the resolution and specificity of optical tissue characterization is to use the frequency domain instead of DC intensity measurement. Intensity modulation of a light source leads to propagation of diffuse photon-density waves (PDW) through the tissue. In this study, we report basic experimental results on tissuelike phantoms to determine the optimal parameters for PDW-transillumination of finger joints. We used PDW with modulation frequencies from 100 MHz up to 1 GHz to scan across a tissuelike phantom containing an absorbing plane bounded by an edge. The geometrical extents of the phantoms are similar to human finger joints. We measure the transmitted PDW and show that amplitude and phase behaves at the edge as expected according to theoretical predictions. An increasing modulation frequency leads to increasing slope of the amplitude decay at the edge but decreasing signal-to-noise ratio. Even at 1 GHz, the edge is detectable.

  1. From slant column densities to trace gas profiles: Post processing data from the new MAX-DOAS network in Mexico City

    NASA Astrophysics Data System (ADS)

    Friedrich, M. M.; Stremme, W.; Rivera, C. I.; Arellano, E. J.; Grutter, M.

    2014-12-01

    The new MAX-DOAS network in Mexico City provides results of O4, HCHO and NO2 slant column densities (SCD). Here, we present a new numerical code developed to retrieve gas profiles of NO2 and HCHO using radiative transfer simulations. We present first results of such profiles from the MAX-DOAS station located at UNAM campus. The code works in two steps: First, the O4 slant column density information is used to retrieve an aerosol profile. As an a-priori aerosol profile, we use averaged ceilometer data measured at UNAM and scaled to the total optical depth provided by the Aeronet data base. In the second step, the retrieved aerosol profile information is used together with the trace gas (HCHO or NO2) SCDs to retrieve the trace gas profiles. The inversion is based on a gauss-newton iteration scheme and uses constrained least square fitting with either optimal estimation or Tihkonov regularization. For the latter, the regulation matrix is currently constructed from the discrete first derivative operator. The forward model uses the radiative transfer code VLIDORT. The inputs to VLIDORT are calculated using temperature and pressure information from daily radiosounde measurements and aerosol single scattering optical depths and asymmetry factors from the Aeronet data base for Mexico City. For the gas absorption cross sections we use the same values as were used for the SCD calculation from the recorded spectra using QDOAS. Besides demonstrating the functionality of the algorithm showing profile retrievals of simulated SCDs with added random noise, we present HCHO and NO2 profiles retrieved from SCDs calculated from the MAX-DOAS measurements at UNAM campus at selected days.

  2. Synthetic observations of molecular clouds in a galactic centre environment - I. Studying maps of column density and integrated intensity

    NASA Astrophysics Data System (ADS)

    Bertram, Erik; Glover, Simon C. O.; Clark, Paul C.; Ragan, Sarah E.; Klessen, Ralf S.

    2016-02-01

    We run numerical simulations of molecular clouds, adopting properties similar to those found in the central molecular zone (CMZ) of the Milky Way. For this, we employ the moving mesh code AREPO and perform simulations which account for a simplified treatment of time-dependent chemistry and the non-isothermal nature of gas and dust. We perform simulations using an initial density of n0 = 103 cm-3 and a mass of 1.3 × 105 M⊙. Furthermore, we vary the virial parameter, defined as the ratio of kinetic and potential energy, α = Ekin/|Epot|, by adjusting the velocity dispersion. We set it to α = 0.5, 2.0 and 8.0, in order to analyse the impact of the kinetic energy on our results. We account for the extreme conditions in the CMZ and increase both the interstellar radiation field (ISRF) and the cosmic ray flux (CRF) by a factor of 1000 compared to the values found in the solar neighbourhood. We use the radiative transfer code RADMC-3D to compute synthetic images in various diagnostic lines. These are [C II] at 158 μm, [O I] (145 μm), [O I] (63 μm), 12CO (J = 1 → 0) and 13CO (J = 1 → 0) at 2600 and 2720 μm, respectively. When α is large, the turbulence disperses much of the gas in the cloud, reducing its mean density and allowing the ISRF to penetrate more deeply into the cloud's interior. This significantly alters the chemical composition of the cloud, leading to the dissociation of a significant amount of the molecular gas. On the other hand, when α is small, the cloud remains compact, allowing more of the molecular gas to survive. We show that in each case the atomic tracers accurately reflect most of the physical properties of both the H2 and the total gas of the cloud and that they provide a useful alternative to molecular lines when studying the interstellar medium in the CMZ.

  3. Tropospheric NO2 column densities over oases of the Taklamakan desert (NW-China): satellite DOAS observations and ground based Multi Axis DOAS measurements

    NASA Astrophysics Data System (ADS)

    Qi, Y.; Meixner, F.; Wu, Z.; Beirle, S.; Wagner, T.; Andreae, M.; Mamtimin, B.

    2012-04-01

    We report about a study on the potential role of biogenic nitric oxide (NO) emissions from soil for the tropospheric nitrogen dioxide (NO2) column density over typical, intensively used agro-ecosystems of NW-China. For that, we used (a) tropospheric NO2 column data measured from both, satellite (SCIAMACHY) and ground based (MAX-DOAS) platforms, and (b) statistical data of agricultural management as well as observed meteorological data to estimate biogenic NO soil emissions, fast near-surface conversion of NO to NO2, and the vertical dispersion of NO2. We have chosen three very remote oases (Milan, Ruoqiang, Waxxari) on the southern fringe of the Taklamakan desert in the extremely arid region of northwest China (Xinjiang Uyghur Autonomous Region). These target oases are isolated from each other as well as from other potential NO2 sources (100-150 km). Therefore, the oases can be considered as typical areal sources of predominantly soil biogenic NO. Moreover, their areal extension is pretty comparable to the typical pixel size of satellite retrievals. For the period 2003-2010, we used monthly mean tropospheric NO2 vertical column densities (VCDs, in molecules cm-2) based on data of the SCIAMACHY satellite. With regard to the satellite observations, the three selected oases can truly be considered as tropospheric NO2 hotspots in the "middle of nothing" (desert). VCDs of NO2 were always higher during growing seasons. In the growing seasons of the last 5 years, tropospheric VCDs of NO2 increased with the annual enlargement of sown and irrigated areas and obligatory strong application of fertilizers. Furthermore, we performed ground-based MAXDOAS measurements in and around Milan oasis (39.26°N, 88.91°E) in May and June 2011. On a few occasions, we measured VCDs of NO2 simultaneously upwind and downwind of Milan oasis applying two MAXDOAS instruments. VCDs of NO2 were generally observed to be significantly higher at the downwind site. This again proved that the oasis

  4. Antioxidant capacity of oat (Avena sativa L.) extracts. 1. Inhibition of low-density lipoprotein oxidation and oxygen radical absorbance capacity.

    PubMed

    Handelman, G J; Cao, G; Walter, M F; Nightingale, Z D; Paul, G L; Prior, R L; Blumberg, J B

    1999-12-01

    Milled oat groat pearlings, trichomes, flour, and bran were extracted with methanol and the fractions tested in vitro for antioxidant capacity against low-density lipoprotein (LDL) oxidation and R-phycoerythrin protein oxidation in the oxygen radical absorbance capacity (ORAC) assay. The oxidative reactions were generated by 2,2'-azobis(2-amidinopropane) HCl (AAPH) or Cu(2+) in the LDL assay and by AAPH or Cu(2+) + H(2)O(2) in the ORAC assay and calibrated against a Trolox standard to calculate Trolox equivalents (1 Trolox equivalent = 1 TE = activity of 1 micromol of Trolox). The antioxidant capacity of the oat fractions was generally consistent with a potency rank of pearlings (2.89-8.58 TE/g) > flour (1.00-3.54 TE/g) > trichome (1.74 TE/g) = bran (1.02-1.62 TE/g) in both LDL and ORAC assays regardless of the free radical generator employed. A portion of the oat antioxidant constituents may be heat labile as the greatest activity was found among non-steam-treated pearlings. The contribution of oat tocols from the fractions accounted for <5% of the measured antioxidant capacity. AAPH-initiated oxidation of LDL was inhibited by the oat fractions in a dose-dependent manner, although complete suppression was not achieved with the highest doses tested. In contrast, Cu(2+)-initiated oxidation of LDL stimulated peroxide formation with low oat concentrations but completely inhibited oxidation with higher doses. Thus, oats possess antioxidant capacity most of which is likely derived from polar phenolic compounds in the aleurone. PMID:10606548

  5. Sound Absorbers

    NASA Astrophysics Data System (ADS)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  6. The dependence of C IV broad absorption line properties on accompanying Si IV and Al III absorption: relating quasar-wind ionization levels, kinematics, and column densities

    SciTech Connect

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.; Trump, J. R.; Hall, P. B.; Anderson, S. F.; Hamann, F.; Myers, Adam D.; Pâris, I.; Petitjean, P.; Ross, Nicholas P.; Shen, Yue; York, Don

    2014-08-20

    We consider how the profile and multi-year variability properties of a large sample of C IV Broad Absorption Line (BAL) troughs change when BALs from Si IV and/or Al III are present at corresponding velocities, indicating that the line of sight intercepts at least some lower ionization gas. We derive a number of observational results for C IV BALs separated according to the presence or absence of accompanying lower ionization transitions, including measurements of composite profile shapes, equivalent width (EW), characteristic velocities, composite variation profiles, and EW variability. We also measure the correlations between EW and fractional-EW variability for C IV, Si IV, and Al III. Our measurements reveal the basic correlated changes between ionization level, kinematics, and column density expected in accretion-disk wind models; e.g., lines of sight including lower ionization material generally show deeper and broader C IV troughs that have smaller minimum velocities and that are less variable. Many C IV BALs with no accompanying Si IV or Al III BALs may have only mild or no saturation.

  7. Intercomparison of NO2 Slant Column Densities and Vertical Profiles Inferred from Balloon-borne Measurements of Solar Absorption Spectra in the IR and UV/vis

    NASA Astrophysics Data System (ADS)

    Butz, A.; Boesch, H.; Camy-Peyret, C.; Dorf, M.; Dufour, G.; Payan, S.; Weidner, F.; Pfeilsticker, K.

    2003-04-01

    During a series of LPMA/DOAS (Laboratoire de Physique Moléculaire et Applications/Differential Optical Absorption Spectroscopy) stratospheric balloon flights direct solar spectra in the UV/vis and near IR were simultaneously measured by the onboard installed Fourier Transform (LPMA) and two channel grating spectrometer (DOAS). The measurements were conducted in spring and summer at high and midlatitudes during ascent of the balloon into the stratosphere (30 - 40 km) and solar occultation at balloon float altitude. Here we present a direct intercomparison of the NO_2 slant column densities (SCDs) and vertical profiles retrieved from UV/vis-DOAS and IR-LPMA measurements for a wide range of geophysical conditions (ambient pressure and temperature and solar illumination). The comparison study thus allows us to verify the applied retrieval procedures, i.e., the underlying spectroscopic dataset as well as the inversion algorithms. First intercomparison studies showed a sizeable discrepancy between NO_2 inferred by LPMA in the IR and DOAS in the visible spectral range indicating deficiencies in the spectral retrieval techniques. After introducing a temperature correction scheme for the DOAS retrieval and a new LPMA MULTIFIT procedure which minimizes the correlations of the fitting parameters by performing the inversion simultaneously in several micro-windows, a reasonably good agreement between NO_2 inferred from both instruments is found.

  8. On Lunar Exospheric Column Densities and Solar Wind Access Beyond the Terminator from ROSAT Soft X-Ray Observations of Solar Wind Charge Exchange

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Snowden, S. L.; Sarantos, M.; Benna, M.; Carter, J. A.; Cravens, T. E.; Farrell, W. M.; Fatemi, S.; Hills, H. Kent; Hodges, R. R.; Holmstrom, M.; Kuntz, K. D.; Porter, F. Scott; Read, A.; Robertson, I. P.; Sembay, S. F.; Sibeck, D. G.; Stubbs, T. J.; Travnicek, P.; Walsh, B. M.

    2014-01-01

    We analyze the Rontgen satellite (ROSAT) position sensitive proportional counter soft X-ray image of the Moon taken on 29 June 1990 by examining the radial profile of the surface brightness in three wedges: two 19 deg wedges (one north and one south) 13-32 deg off the terminator toward the dark side and one wedge 38 deg wide centered on the antisolar direction. The radial profiles of both the north and the south wedges show significant limb brightening that is absent in the 38 deg wide antisolar wedge. An analysis of the soft X-ray intensity increase associated with the limb brightening shows that its magnitude is consistent with that expected due to solar wind charge exchange (SWCX) with the tenuous lunar atmosphere based on lunar exospheric models and hybrid simulation results of solar wind access beyond the terminator. Soft X-ray imaging thus can independently infer the total lunar limb column density including all species, a property that before now has not been measured, and provide a large-scale picture of the solar wind-lunar interaction. Because the SWCX signal appears to be dominated by exospheric species arising from solar wind implantation, this technique can also determine how the exosphere varies with solar wind conditions. Now, along with Mars, Venus, and Earth, the Moon represents another solar system body at which SWCX has been observed.

  9. The Multi-Layer Variable Absorbers in NGC 1365 Revealed by XMM-Newton and NuSTAR

    NASA Technical Reports Server (NTRS)

    Rivers, E.; Risaliti, G.; Walton, D. J.; Harrison, F.; Arevalo, P.; Baur, F. E.; Boggs, S. E.; Brenneman, L. W.; Brightman, M.; Zhang, W. W.

    2015-01-01

    Between 2012 July and 2013 February, NuSTAR and XMM-Newton performed four long-look joint observations of the type 1.8 Seyfert, NGC 1365. We have analyzed the variable absorption seen in these observations in order to characterize the geometry of the absorbing material. Two of the observations caught NGC 1365 in an unusually low absorption state, revealing complexity in the multi-layer absorber that had previously been hidden. We find the need for three distinct zones of neutral absorption in addition to the two zones of ionized absorption and the Compton-thick torus previously seen in this source. The most prominent absorber is likely associated with broad-line region clouds with column densities of around approximately 10 (sup 23) per square centimeter and a highly clumpy nature as evidenced by an occultation event in 2013 February. We also find evidence of a patchy absorber with a variable column around approximately 10 (sup 22) per square centimeter and a line-of-sight covering fraction of 0.3-0.9, which responds directly to the intrinsic source flux, possibly due to a wind geometry. A full-covering, constant absorber with a low column density of approximately 1 by 10 (sup 22) per square centimeter is also present, though the location of this low density haze is unknown.

  10. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  11. Similar synapse density in layer IV columns of the primary somatosensory cortex of transgenic mice with different brain size: implications for mechanisms underlying the differential allocation of cortical space.

    PubMed

    Gutiérrez-Ospina, Gabriel; Uribe-Querol, Eileen; Sánchez, Norma; Geovannini, Helga; Padilla, Patricia; Hernández-Echeagaray, Elizabeth

    2004-01-01

    The relative dimension of the areas constituting the cerebral cortex differs greatly in the brains of different mammalian species. The mechanisms by which such an evolutionary remodeling has occurred is not well understood. To begin exploring possible mechanisms, we took advantage of a transgenic mouse model in which the area of the primary somatosensory cortex (S1) shifts, to some extent independent from the area of the cortex as a whole, as a result of differences in the availability of insulin-like growth factor I (IGF-I). Electron microscopy estimations of synapse density in D3 and C3 cortical columns of the S1 layer IV revealed that this parameter was similar among wild type and transgenic mice with higher and lower availability of IGF-I. Because D3 and C3 columns were larger and smaller than normal in mice with higher and lower IGF-I availability, the total number of synapses contained in the average area of D3 and C3 columns increased and decreased, respectively. No differences in the number and overall arrangement of S1 columns were observed among animal groups. These results suggest that: 1) synapse density is a constant factor within the S1 cortical column structure; 2) the mechanisms and factors regulating cell number and synaptogenesis are affected as columns and cortical areas modify their relative dimensions; 3) altered availability of neurotrophic factors might be associated with changes in areal dimensions; and 4) changes in cortical areal dimensions within single lineages might result from the addition of minicolumns to preexisting columns.

  12. MAX-DOAS measurements and satellite validation of tropospheric NO2 and SO2 vertical column densities at a rural site of North China

    NASA Astrophysics Data System (ADS)

    Jin, Junli; Ma, Jianzhong; Lin, Weili; Zhao, Huarong; Shaiganfar, Reza; Beirle, Steffen; Wagner, Thomas

    2016-05-01

    North China (NC), namely Huabei in Chinese, is one of the most severely polluted regions in China, and the air pollution issues in this region have received a worldwide attention. We performed ground-based Multi Axis Differential Absorption Spectroscopy (MAX-DOAS) measurements at Gucheng, (39°08‧N, 115°40‧E), a rural site of North China about 110 km southwest of Beijing, from September 2008 to September 2010. The tropospheric vertical column densities (VCDs) of NO2 and SO2 were retrieved using the so-called geometric approximation. The results show that the tropospheric NO2 and SO2 VCDs over NC have nearly the same seasonal variation pattern, with the maximum in winter and minimum in summer, while their diurnal variations are different. We also compared the tropospheric NO2 and SO2 VCDs from our MAX-DOAS measurements with several products of corresponding OMI (Ozone Monitoring Instrument) satellite observations. While in summer good agreement is found, the satellite observations systematically underestimate the tropospheric NO2 in winter over the polluted rural area of NC, probably mostly due to the so called aerosol shielding effect. In contrast, for SO2 no such clear conclusion can be drawn, probably owing to the larger uncertainties from MAX-DOAS and in particular satellite retrievals. This indicates that improvements of the retrieval algorithm for MAX-DOAS and off-line corrections of satellite measurements for the tropospheric SO2 VCDs should be given more emphasis in the future.

  13. Column Store for GWAC: A High-cadence, High-density, Large-scale Astronomical Light Curve Pipeline and Distributed Shared-nothing Database

    NASA Astrophysics Data System (ADS)

    Wan, Meng; Wu, Chao; Wang, Jing; Qiu, Yulei; Xin, Liping; Mullender, Sjoerd; Mühleisen, Hannes; Scheers, Bart; Zhang, Ying; Nes, Niels; Kersten, Martin; Huang, Yongpan; Deng, Jinsong; Wei, Jianyan

    2016-11-01

    The ground-based wide-angle camera array (GWAC), a part of the SVOM space mission, will search for various types of optical transients by continuously imaging a field of view (FOV) of 5000 degrees2 every 15 s. Each exposure consists of 36 × 4k × 4k pixels, typically resulting in 36 × ∼175,600 extracted sources. For a modern time-domain astronomy project like GWAC, which produces massive amounts of data with a high cadence, it is challenging to search for short timescale transients in both real-time and archived data, and to build long-term light curves for variable sources. Here, we develop a high-cadence, high-density light curve pipeline (HCHDLP) to process the GWAC data in real-time, and design a distributed shared-nothing database to manage the massive amount of archived data which will be used to generate a source catalog with more than 100 billion records during 10 years of operation. First, we develop HCHDLP based on the column-store DBMS of MonetDB, taking advantage of MonetDB’s high performance when applied to massive data processing. To realize the real-time functionality of HCHDLP, we optimize the pipeline in its source association function, including both time and space complexity from outside the database (SQL semantic) and inside (RANGE-JOIN implementation), as well as in its strategy of building complex light curves. The optimized source association function is accelerated by three orders of magnitude. Second, we build a distributed database using a two-level time partitioning strategy via the MERGE TABLE and REMOTE TABLE technology of MonetDB. Intensive tests validate that our database architecture is able to achieve both linear scalability in response time and concurrent access by multiple users. In summary, our studies provide guidance for a solution to GWAC in real-time data processing and management of massive data.

  14. Satellite-observed NO2, SO2, and HCHO Vertical Column Densities in East Asia: Recent Changes and Comparisons with Regional Model

    NASA Astrophysics Data System (ADS)

    Kim, H. C.; Lee, P.; Kim, S.; Mok, J.; Yoo, H. L.; Bae, C.; Kim, B. U.; Lim, Y. K.; Woo, J. H.; Park, R.

    2015-12-01

    This study reports the recent changes in tropospheric NO2, SO2, and HCHO vertical column densities (VCD) in East Asia observed from multiple satellites, highlighting especially the annual trend changes of NO2 and SO2 over Beijing-Tianjin-Hebei (BTH) region of China since 2010. Tropospheric VCD data from Global Ozone Monitoring Experiment (GOME), SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), Ozone Monitoring Instrument (OMI) and GOME-2, retrieved from the Royal Netherlands Meteorological Institute (KNMI) and OMI National Aeronautics and Space Administration (NASA) standard products, are utilized to investigate the annual trends of NO2, SO2, and HCHO VCDs from 2001 to 2015. They are also compared with simulations from Community Multi-scale Air Quality Model (CMAQ) based forecast system by the Integrated Multi-scale Air Quality System for Korea (IMAQS-K) of Ajou University. Until 2011, the changes in NO2 VCD over East Asian countries agree well with the findings of previous research, including the impact of the economic downturn during 2008-2009 and the subsequent quick recovery in China. After peaking in 2011, the NO2 VCD observations from active instruments (OMI and GOME-2) over China started to show a slower decreasing trend, mostly led by the rapid changes in the BTH region in northern China. On the other hand, SO2 started to decline earlier, from 2007, but inclined back from 2010 to 2012, and then back to declining trend since 2012. While satellite observations show dramatic recent changes, the model could not reproduce those changes mostly due to its use of fixed emission inventory. We conclude that rapid update of latest emission inventory is necessary for an accurate forecast of regional air quality in east Asia, especially for upcoming international sports events in PyeongChang (Korea), Tokyo (Japan) and Beijing (China) in 2018, 2020 and 2022, respectively.

  15. A SAMPLE OF INTERMEDIATE-MASS STAR-FORMING REGIONS: MAKING STARS AT MASS COLUMN DENSITIES <1 g cm{sup -2}

    SciTech Connect

    Arvidsson, K.; Kerton, C. R.; Alexander, M. J.; Kobulnicky, H. A.; Uzpen, B. E-mail: kerton@iastate.ed E-mail: chipk@uwyo.ed E-mail: buzpen@itt-tech.ed

    2010-08-15

    In an effort to understand the factors that govern the transition from low- to high-mass star formation, for the first time we identify a sample of intermediate-mass star-forming regions (IM SFRs) where stars up to (but not exceeding) {approx}8 M{sub sun} are being produced. We use IRAS colors and Spitzer Space Telescope mid-IR images, in conjunction with millimeter continuum and {sup 13}CO maps, to compile a sample of 50 IM SFRs in the inner Galaxy. These are likely to be precursors to Herbig AeBe stars and their associated clusters of low-mass stars. IM SFRs constitute embedded clusters at an early evolutionary stage akin to compact H II regions, but they lack the massive ionizing central star(s). The photodissociation regions that demarcate IM SFRs have typical diameters of {approx}1 pc and luminosities of {approx}10{sup 4} L{sub sun}, making them an order of magnitude less luminous than (ultra-)compact H II regions. IM SFRs coincide with molecular clumps of mass {approx}10{sup 3} M{sub sun} which, in turn, lie within larger molecular clouds spanning the lower end of the giant molecular cloud mass range, 10{sup 4}-10{sup 5} M{sub sun}. The IR luminosity and associated molecular mass of IM SFRs are correlated, consistent with the known luminosity-mass relationship of compact H II regions. Peak mass column densities within IM SFRs are {approx}0.1-0.5 g cm{sup -2}, a factor of several lower than ultra-compact H II regions, supporting the proposition that there is a threshold for massive star formation at {approx}1 g cm{sup -2}.

  16. Inter-Comparison of Nitrogen Dioxide Column Densities Retrieved by Ground-Based Max-Doas Under Different Instrumental Conditions Over Mainz

    NASA Astrophysics Data System (ADS)

    Bruchkouski, I.; Dziomin, V.; Ortega, I.; Volkamer, R.; Krasouski, A.

    2013-12-01

    This study is dedicated to the instrumental differences between ground-based MAX-DOAS measurement devices. Our MAX-DOAS instrument, which has been developed at the National Ozone Monitoring Research & Education Center of the Belarusian State University for the purpose of nitrogen dioxide and other atmospheric trace gases monitoring over Belarus, features a rotating mirror and a telescope directly connected to the spectrometer with a two-dimensional CCD detector. Using a mirror instead of an optical fibre makes it possible to change the field of view of the telescope, and the whole instrument is rather compact and all its components are placed outdoors in the open air. However, this makes it quite difficult to ensure a top-quality thermostabilization. In the course of the MAX-DOAS campaign, which took place in the Max Planck Institute for Chemistry in Mainz, Germany in summer of 2013, we had a great opportunity to compare our instrument with other devices of different types. In the present study we make a comparison of nitrogen dioxide slant column densities (SCDs) during several days obtained by our instrument with that measured by the device from the Department of Chemistry and Biochemistry, University of Colorado (Boulder), which has a thermostabilization level of about 0.01 degrees Celsius. We investigate the influence of the spectrometer parts thermostabilization on nitrogen dioxide SCDs retrieval. Furthermore, it was possible to modify the telescope field of view for our instrument from 0.005 to 1.3 degrees, so we performed nitrogen dioxide SCDs retrieval for different fields of view at the same angle of elevation. We analyze these measurement results and obtain an optimal field of view with the aim to achieve the highest possible signal to noise ratio.

  17. MAX-DOAS measurements and satellite validation of tropospheric NO2 and SO2 vertical column densities at a rural site of North China

    NASA Astrophysics Data System (ADS)

    Jin, Junli; Ma, Jianzhong; Lin, Weili; Zhao, Huarong; Shaiganfar, Reza; Beirle, Steffen; Wagner, Thomas

    2016-05-01

    North China (NC), namely Huabei in Chinese, is one of the most severely polluted regions in China, and the air pollution issues in this region have received a worldwide attention. We performed ground-based Multi Axis Differential Absorption Spectroscopy (MAX-DOAS) measurements at Gucheng, (39°08‧N, 115°40‧E), a rural site of North China about 110 km southwest of Beijing, from September 2008 to September 2010. The tropospheric vertical column densities (VCDs) of NO2 and SO2 were retrieved using the so-called geometric approximation. The results show that the tropospheric NO2 and SO2 VCDs over NC have nearly the same seasonal variation pattern, with the maximum in winter and minimum in summer, while their diurnal variations are different. We also compared the tropospheric NO2 and SO2 VCDs from our MAX-DOAS measurements with several products of corresponding OMI (Ozone Monitoring Instrument) satellite observations. While in summer good agreement is found, the satellite observations systematically underestimate the tropospheric NO2 in winter over the polluted rural area of NC, probably mostly due to the so called aerosol shielding effect. In contrast, for SO2 no such clear conclusion can be drawn, probably owing to the larger uncertainties from MAX-DOAS and in particular satellite retrievals. This indicates that improvements of the retrieval algorithm for MAX-DOAS and off-line corrections of satellite measurements for the tropospheric SO2 VCDs should be given more emphasis in the future.

  18. Relationship Between Column-Density and Surface Mixing Ratio: Statistical Analysis of O3 and NO2 Data from the July 2011 Maryland DISCOVER-AQ Mission

    NASA Technical Reports Server (NTRS)

    Flynn, Clare; Pickering, Kenneth E.; Crawford, James H.; Lamsol, Lok; Krotkov, Nickolay; Herman, Jay; Weinheimer, Andrew; Chen, Gao; Liu, Xiong; Szykman, James; Tsay, Si-Chee; Loughner, Christipher

    2014-01-01

    To investigate the ability of column (or partial column) information to represent surface air quality, results of linear regression analyses between surface mixing ratio data and column abundances for O3 and NO2 are presented for the July 2011 Maryland deployment of the DISCOVER-AQ mission. Data collected by the P-3B aircraft, ground-based Pandora spectrometers, Aura/OMI satellite instrument, and simulations for July 2011 from the CMAQ air quality model during this deployment provide a large and varied data set, allowing this problem to be approached from multiple perspectives. O3 columns typically exhibited a statistically significant and high degree of correlation with surface data (R(sup 2) > 0.64) in the P- 3B data set, a moderate degree of correlation (0.16 < R(sup 2) < 0.64) in the CMAQ data set, and a low degree of correlation (R(sup 2) < 0.16) in the Pandora and OMI data sets. NO2 columns typically exhibited a low to moderate degree of correlation with surface data in each data set. The results of linear regression analyses for O3 exhibited smaller errors relative to the observations than NO2 regressions. These results suggest that O3 partial column observations from future satellite instruments with sufficient sensitivity to the lower troposphere can be meaningful for surface air quality analysis.

  19. Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.

    2013-04-01

    We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.

  20. Fast ionized X-ray absorbers in AGNs

    NASA Astrophysics Data System (ADS)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2016-05-01

    We investigate the physics of the X-ray ionized absorbers often identified as warm absorbers (WAs) and ultra-fast outflows (UFOs) in Seyfert AGNs from spectroscopic studies in the context of magnetically-driven accretion-disk wind scenario. Launched and accelerated by the action of a global magnetic field anchored to an underlying accretion disk around a black hole, outflowing plasma is irradiated and ionized by an AGN radiation field characterized by its spectral energy density (SED). By numerically solving the Grad-Shafranov equation in the magnetohydrodynamic (MHD) framework, the physical property of the magnetized disk-wind is determined by a wind parameter set, which is then incorporated into radiative transfer calculations with xstar photoionization code under heating-cooling equilibrium state to compute the absorber's properties such as column density N_H, line-of-sight (LoS) velocity v, ionization parameter ξ, among others. Assuming that the wind density scales as n ∝ r-1, we calculate theoretical absorption measure distribution (AMD) for various ions seen in AGNs as well as line spectra especially for the Fe Kα absorption feature by focusing on a bright quasar PG 1211+143 as a case study and show the model's plausibility. In this note we demonstrate that the proposed MHD-driven disk-wind scenario is not only consistent with the observed X-ray data, but also help better constrain the underlying nature of the AGN environment in a close proximity to a central engine.

  1. Modelling the role of electron attachment rates on column density ratios for C n H‑/C n H (n=4,6,8) in dense molecular clouds

    NASA Astrophysics Data System (ADS)

    Gianturco, F. A.; Grassi, T.; Wester, R.

    2016-10-01

    The fairly recent detection of a variety of anions in the interstellar molecular clouds have underlined the importance of realistically modelling the processes governing their abundance. To pursue this task, our earlier calculations for the radiative electron attachment (REA) rates for C4H‑, C6H‑, and C8H‑ are employed in the present work, within a broad network of other concurrent reactions, to generate the corresponding column density ratios of anion/neutral (A/N) relative abundances. The latter are then compared with those obtained in recent years from observational measurements. The calculations involved the time-dependent solutions of a large network of chemical processes over an extended time interval and included a series of runs in which the values of REA rates were repeatedly scaled over several orders of magnitude. Macroscopic parameters for the Clouds’ modelling were also varied to cover a broad range of physical environments. It was found that, within the range and quality of the processes included in the present network,and selected from state-of-the-art astrophysical databases, the REA values required to match the observed A/N ratios needed to be reduced by orders of magnitude for C4H‑ case, while the same rates for C6H‑ and C8H‑ only needed to be scaled by much smaller factors. The results suggest that the generally proposed formation of interstellar anions by REA mechanism is overestimated by current models for the C4H‑ case, for which is likely to be an inefficient path to formation. This path is thus providing a rather marginal contribution to the observed abundances of C4H‑, the latter being more likely to originate from other chemical processes in the network, as we discuss in some detail in the present work. Possible physical reasons for the much smaller differences against observations found instead for the values of the (A/N) ratios in two other, longer members of the series are put forward and analysed within the

  2. PULSE COLUMN

    DOEpatents

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  3. Correlation Analysis of Column-Density Data with Surface Mixing Ratios for o3 and NO2 during Discover-Aq

    NASA Astrophysics Data System (ADS)

    Flynn, C.; Pickering, K. E.; Lamsal, L. N.; Krotkov, N. A.; Herman, J. R.; Weinheimer, A. J.; Chen, G.; Liu, X.; Tsay, S.; Loughner, C. P.; Szykman, J.

    2012-12-01

    The first deployment of the Earth Venture -1 DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project was conducted during July 2011 in the Baltimore-Washington region. In-situ sampling of trace gases was performed by the P-3B aircraft over fourteen flight days, allowing profiles of O3 and NO2 to be obtained over surface air quality monitoring sites. Surface-level volume mixing ratio data were made available for these monitoring sites by the Maryland Department of the Environment (MDE) and Environmental Protection Agency (EPA). These sites were also equipped with the ground-based Pandora UV/Vis spectrometers, observing O3 and NO2 column amounts. Satellite observations for tropospheric O3 and NO2 from Aura/OMI were also provided for the deployment period. A correlation analysis was performed between the available tropospheric column amounts of O3 and NO2 (from integration of in-situ P-3B data, from Pandora spectrometers, and from Aura/OMI) and the surface mixing ratio data for each site. A simulation of O3 and NO2 during July 2011 was performed after the end of the deployment with CMAQ v5.0 for a range of horizontal resolutions. A correlation analysis was also performed between model column amounts and model surface-level mixing ratio values. The values of the correlation coefficients obtained for the model are generally larger than those obtained for the observations, indicating that the model surface is more connected to the overlying column than was seen in the observations. However, both the model columns and the P-3B columns demonstrate larger correlation with surface mixing ratios for O3 than NO2, yielding a high degree of correlation between the O3 columns and surface values. These results suggest that ozone observations from future satellite instruments with sufficient sensitivity to the lower troposphere can be meaningful for surface air quality analysis.

  4. High steady-state column density of I((2)P3/2) atoms from I2 photodissociation at 532 nm: Towards parity non-conservation measurements.

    PubMed

    Katsoprinakis, G E; Chatzidrosos, G; Kypriotakis, J A; Stratakis, E; Rakitzis, T P

    2016-09-15

    Steady-state column densities of 10(17) cm(-2) of I((2)P3/2) atoms are produced from photodissociation of I2 vapour at 290.5 K using 5 W of 532 nm laser light. Recombination of the I((2)P3/2) atoms at the cell walls is minimized by coating the cell surface with a hydrophobic silane (dimethyldichlorosilane/DMDCS). Operation at room temperature, and at an I2 vapour pressure of ~0.2 mbar, without using a buffer gas, allows relatively low Lorentz and Doppler widths of ~2π × 1.5 (FWHM) and ~2π × 150 (HW at 1/e(2)) Mrad/s, respectively, at the M1 transition of atomic iodine at 1315 nm. These high column densities and low linewidths are favorable for parity nonconservation optical rotation measurements near this M1 transition. Furthermore, as the cell is completely sealed, this method of production of high-density (127)I((2)P3/2) atoms is also compatible with using iodine radioisotopes, such as for the production of high-density (129)I((2)P3/2).

  5. High steady-state column density of I(2P3/2) atoms from I2 photodissociation at 532 nm: Towards parity non-conservation measurements

    PubMed Central

    Katsoprinakis, G. E.; Chatzidrosos, G.; Kypriotakis, J. A.; Stratakis, E.; Rakitzis, T. P.

    2016-01-01

    Steady-state column densities of 1017 cm−2 of I(2P3/2) atoms are produced from photodissociation of I2 vapour at 290.5 K using 5 W of 532 nm laser light. Recombination of the I(2P3/2) atoms at the cell walls is minimized by coating the cell surface with a hydrophobic silane (dimethyldichlorosilane/DMDCS). Operation at room temperature, and at an I2 vapour pressure of ~0.2 mbar, without using a buffer gas, allows relatively low Lorentz and Doppler widths of ~2π × 1.5 (FWHM) and ~2π × 150 (HW at 1/e2) Mrad/s, respectively, at the M1 transition of atomic iodine at 1315 nm. These high column densities and low linewidths are favorable for parity nonconservation optical rotation measurements near this M1 transition. Furthermore, as the cell is completely sealed, this method of production of high-density 127I(2P3/2) atoms is also compatible with using iodine radioisotopes, such as for the production of high-density 129I(2P3/2). PMID:27629914

  6. High steady-state column density of I(2P3/2) atoms from I2 photodissociation at 532 nm: Towards parity non-conservation measurements

    NASA Astrophysics Data System (ADS)

    Katsoprinakis, G. E.; Chatzidrosos, G.; Kypriotakis, J. A.; Stratakis, E.; Rakitzis, T. P.

    2016-09-01

    Steady-state column densities of 1017 cm‑2 of I(2P3/2) atoms are produced from photodissociation of I2 vapour at 290.5 K using 5 W of 532 nm laser light. Recombination of the I(2P3/2) atoms at the cell walls is minimized by coating the cell surface with a hydrophobic silane (dimethyldichlorosilane/DMDCS). Operation at room temperature, and at an I2 vapour pressure of ~0.2 mbar, without using a buffer gas, allows relatively low Lorentz and Doppler widths of ~2π × 1.5 (FWHM) and ~2π × 150 (HW at 1/e2) Mrad/s, respectively, at the M1 transition of atomic iodine at 1315 nm. These high column densities and low linewidths are favorable for parity nonconservation optical rotation measurements near this M1 transition. Furthermore, as the cell is completely sealed, this method of production of high-density 127I(2P3/2) atoms is also compatible with using iodine radioisotopes, such as for the production of high-density 129I(2P3/2).

  7. High steady-state column density of I((2)P3/2) atoms from I2 photodissociation at 532 nm: Towards parity non-conservation measurements.

    PubMed

    Katsoprinakis, G E; Chatzidrosos, G; Kypriotakis, J A; Stratakis, E; Rakitzis, T P

    2016-01-01

    Steady-state column densities of 10(17) cm(-2) of I((2)P3/2) atoms are produced from photodissociation of I2 vapour at 290.5 K using 5 W of 532 nm laser light. Recombination of the I((2)P3/2) atoms at the cell walls is minimized by coating the cell surface with a hydrophobic silane (dimethyldichlorosilane/DMDCS). Operation at room temperature, and at an I2 vapour pressure of ~0.2 mbar, without using a buffer gas, allows relatively low Lorentz and Doppler widths of ~2π × 1.5 (FWHM) and ~2π × 150 (HW at 1/e(2)) Mrad/s, respectively, at the M1 transition of atomic iodine at 1315 nm. These high column densities and low linewidths are favorable for parity nonconservation optical rotation measurements near this M1 transition. Furthermore, as the cell is completely sealed, this method of production of high-density (127)I((2)P3/2) atoms is also compatible with using iodine radioisotopes, such as for the production of high-density (129)I((2)P3/2). PMID:27629914

  8. Column internals

    SciTech Connect

    Bravo, J.L.

    1998-02-01

    In the fields of distillation, absorption, stripping and extraction, theory and technology go hand in hand. The thermodynamic principles of phase equilibrium and the concepts of mass transfer and fluid flow are of primary importance in all of these operations. The engineer must understand these phenomena to select equipment effectively. This article discusses the latest in commercial technology in column internals for gas-liquid and liquid-liquid contacting. The principles of operation are explained vis-a-vis the characteristics of the applications in which they are used. The focus is on moderate-to-large columns for refining and chemical applications. Guidelines for selecting the most appropriate type of device are presented, and examples of typical applications are described.

  9. A Deep Search For Faint Galaxies Associated With Very Low-redshift C IV Absorbers. II. Program Design, Absorption-line Measurements, and Absorber Statistics

    NASA Astrophysics Data System (ADS)

    Burchett, Joseph N.; Tripp, Todd M.; Prochaska, J. Xavier; Werk, Jessica K.; Tumlinson, Jason; O'Meara, John M.; Bordoloi, Rongmon; Katz, Neal; Willmer, C. N. A.

    2015-12-01

    To investigate the evolution of metal-enriched gas over recent cosmic epochs as well as to characterize the diffuse, ionized, metal-enriched circumgalactic medium, we have conducted a blind survey for C iv absorption systems in 89 QSO sightlines observed with the Hubble Space Telescope Cosmic Origins Spectrograph. We have identified 42 absorbers at z < 0.16, comprising the largest uniform blind sample size to date in this redshift range. Our measurements indicate an increasing C iv absorber number density per comoving path length (d{N}/{dX}= 7.5 ± 1.1) and modestly increasing mass density relative to the critical density of the universe (ΩC iv = 10.0 ± 1.5 × 10-8) from z ˜ 1.5 to the present epoch, consistent with predictions from cosmological hydrodynamical simulations. Furthermore, the data support a functional form for the column density distribution function that deviates from a single power law, also consistent with independent theoretical predictions. As the data also probe heavy element ions in addition to C iv at the same redshifts, we identify, measure, and search for correlations between column densities of these species where components appear to be aligned in velocity. Among these ion-ion correlations, we find evidence for tight correlations between C ii and Si ii, C ii and Si iii, and C iv and Si iv, suggesting that these pairs of species arise in similar ionization conditions. However, the evidence for correlations decreases as the difference in ionization potential increases. Finally, when controlling for observational bias, we find only marginal evidence for a correlation (86.8% likelihood) between the Doppler line width b(C iv) and column density N(C iv).

  10. Damage tolerant light absorbing material

    DOEpatents

    Lauf, Robert J.; Hamby, Jr., Clyde; Akerman, M. Alfred; Seals, Roland D.

    1993-01-01

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000.degree. C. to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm.sup.3.

  11. Damage tolerant light absorbing material

    DOEpatents

    Lauf, R.J.; Hamby, C. Jr.; Akerman, M.A.; Seals, R.D.

    1993-09-07

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, is prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000 C to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm[sup 3]. 9 figures.

  12. Simultaneous UV and X-ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I: Physical Conditions in the UV Absorbers

    NASA Technical Reports Server (NTRS)

    Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K. C.; Brinkman, A. C.; Dunn, J. P.; George, I. M.; Liedahl, D. A.; Paerels, F. B. S.

    2003-01-01

    We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, which we obtained with the Space Telescope Imaging Spectrograph at high spectral resolution, in conjunction with simultaneous Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner, high-ionization narrow-line region (NLR). We find nonunity covering factors in the cores of several kinematic components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9 over the full-covering case; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous N V and C IV columns for component 1 (at -1040 km/s), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim based on nonsimultaneous observations. We find that models of the absorbers based on solar abundances severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include either enhanced nitrogen (twice solar) or dust, with strong depletion of carbon in either case, are successful in matching all of the observed ionic columns. These models result in substantially lower ionization parameters and total column densities compared to dust-free solar-abundance models, and produce little O VII or O VIII, indicating that none of the UV absorbers are X-ray warm absorbers.

  13. Damped Lyman α absorbers as a probe of stellar feedback

    NASA Astrophysics Data System (ADS)

    Bird, Simeon; Vogelsberger, Mark; Haehnelt, Martin; Sijacki, Debora; Genel, Shy; Torrey, Paul; Springel, Volker; Hernquist, Lars

    2014-12-01

    We examine the abundance, clustering and metallicity of Damped Lyman α Absorbers (DLAs) in a suite of hydrodynamic cosmological simulations using the moving mesh code AREPO. We incorporate models of supernova and AGN feedback, as well as molecular hydrogen formation. We compare our simulations to the column density distribution function at z = 3, the total DLA abundance at z = 2-4, the measured DLA bias at z = 2.3 and the DLA metallicity distribution at z = 2-4. Our preferred models produce populations of DLAs in good agreement with most of these observations. The exception is the DLA abundance at z < 3, which we show requires stronger feedback in 1011-12 h-1 M⊙ mass haloes. While the DLA population probes a wide range of halo masses, we find the cross-section is dominated by haloes of mass 1010-1011 h-1 M⊙ and virial velocities 50-100 km s-1. The simulated DLA population has a linear theory bias of 1.7, whereas the observations require 2.17 ± 0.2. We show, however, that non-linear growth increases the bias in our simulations to 2.3 at k = 1 h Mpc-1, the smallest scale observed. The scale-dependence of the bias is, however, very different in the simulations compared against the observations. We show that, of the observations we consider, the DLA abundance and column density function provide the strongest constraints on the feedback model.

  14. Calculating the Muon Cooling within a MICE Solid and LiquidAbsorber

    SciTech Connect

    Yang, Stephanie Q.; Green, Michael A.; Virostek, Steve P.

    2006-06-10

    The key elements of the Muon Ionization Cooling Experiment (MICE) cooling channel are the absorbers that are a part of the MICE absorber focus coil modules (AFC modules). The boundaries of room temperature solid absorbers are well defined. The density of most solid absorber materials is also well understood. The properties of solid absorber are most certainly understood to 0.3 percent. The MICE liquid absorbers are different in that their dimensions are a function of the absorber temperature and the fluid pressure within the absorber. The second element in the liquid absorber is the variability of the liquid density with temperature and pressure. While one can determine the absorber boundary within 0.3 percent, the determination of the liquid density within 0.3 percent is more difficult (particularly with liquid helium in the absorber). This report presents a method of calculating absorber boundary and the cooling performance of the MICE absorbers as a function of fluid temperature and pressure.

  15. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  16. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  17. AN X-RAY WHIM METAL ABSORBER FROM A Mpc-SCALE EMPTY REGION OF SPACE

    SciTech Connect

    Zappacosta, L.; Nicastro, F.; Krongold, Y.; Maiolino, R.

    2012-07-10

    We report a detection of an absorption line at {approx}44.8 A in a >500 ks Chandra HRC-S/LETG X-ray grating spectrum of the blazar H 2356-309. This line can be identified as intervening C V-K{alpha} absorption, at z Almost-Equal-To 0.112, produced by a warm (log T = 5.1 K) intergalactic absorber. The feature is significant at a 2.9{sigma} level (accounting for the number of independent redshift trials). We estimate an equivalent hydrogen column density of log N{sub H} 19.05(Z/Z{sub Sun }){sup -1} cm{sup -2}. Unlike other previously reported FUV/X-ray metal detections of warm-hot intergalactic medium (WHIM), this C V absorber lies in a region with locally low galaxy density, at {approx}2.2 Mpc from the closest galaxy at that redshift, and therefore is unlikely to be associated with an extended galactic halo. We instead tentatively identify this absorber with an intervening WHIM filament possibly permeating a large-scale, 30 Mpc extended, structure of galaxies whose redshift centroid, within a cylinder of 7.5 Mpc radius centered on the line of sight to H 2356-309, is marginally consistent (at a 1.8{sigma} level) with the redshift of the absorber.

  18. Modelling Absorbent Phenomena of Absorbent Structure

    NASA Astrophysics Data System (ADS)

    Sayeb, S.; Ladhari, N.; Ben Hassen, M.; Sakli, F.

    Absorption, retention and strike through time, as evaluating criteria of absorbent structures quality were studied. Determination of influent parameters on these criteria were realized by using the design method of experimental sets. In this study, the studied parameters are: Super absorbent polymer (SAP)/fluff ratio, compression and the porosity of the non woven used as a cover stock. Absorption capacity and retention are mostly influenced by SAP/fluff ratio. However, strike through time is affected by compression. Thus, a modelling of these characteristics in function of the important parameter was established.

  19. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  20. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  1. Fast Ionized X-ray Absorbers in AGNs

    NASA Astrophysics Data System (ADS)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2015-07-01

    We present a study of X-ray ionization of MHD accretion-disk wind models in an effort to explain the highly-ionized ultra-fast outflows (UFOs) identified as X-ray absorbers recently detected in various sub-classes of Seyfert AGNs. Our primary focus is to show that magnetically-driven outflows are physically plausible candidates to account for the AGN X-ray spectroscopic observations. We calculate its X-ray ionization and the ensuing X-ray absorption line spectra in comparison with an XXM-Newton/EPIC spectrum of the narrow-line Seyfert AGN, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log(xi[erg cm/s]) = 5-6 and a hydrogen-equivalent column density on the order of 1e23 cm-2, outflowing at a sub-relativistic velocity of v/c = 0.1-0.2. The best-fit model favors its radial location at R = 200 Rs (Rs is the Schwarzschild radius), with a disk inner truncation radius at Rt = 30Rs. The overall K-shell feature in data is suggested to be dominated by Fe XXV with very little contribution from Fe XXVI and weakly-ionized iron, which is in a good agreement with a series of earlier analysis of the UFOs in various AGNs including PG 1211+143.

  2. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  3. New concepts for the comparison of tropospheric NO2 column densities derived from car-MAX-DOAS observations, OMI satellite observations and the regional model CHIMERE during two MEGAPOLI campaigns in Paris 2009/10

    NASA Astrophysics Data System (ADS)

    Shaiganfar, R.; Beirle, S.; Petetin, H.; Zhang, Q.; Beekmann, M.; Wagner, T.

    2015-07-01

    We compare tropospheric column densities (vertically integrated concentrations) of NO2 from three data sets for the metropolitan area of Paris during two extensive measurement campaigns (25 days in summer 2009 and 29 days in winter 2010) within the European research project MEGAPOLI. The selected data sets comprise a regional chemical transport model (CHIMERE) as well as two observational data sets: ground-based mobile Multi-AXis-Differential Optical Absorption Spectroscopy (car-MAX-DOAS) measurements and satellite measurements from the Ozone Monitoring Instrument (OMI). On most days, car-MAX-DOAS measurements were carried out along large circles (diameter ~ 35 km) around Paris. The car-MAX-DOAS results are compared to coincident data from CHIMERE and OMI. All three data sets have their specific strengths and weaknesses, especially with respect to their spatiotemporal resolution and coverage as well as their uncertainties. Thus we compare them in two different ways: first, we simply consider the original data sets. Second, we compare modified versions making synergistic use of the complementary information from different data sets. For example, profile information from the regional model is used to improve the satellite data, observations of the horizontal trace gas distribution are used to adjust the respective spatial patterns of the model simulations, or the model is used as a transfer tool to bridge the spatial scales between car-MAX-DOAS and satellite observations. Using the modified versions of the data sets, the comparison results substantially improve compared to the original versions. In general, good agreement between the data sets is found outside the emission plume, but inside the emission plumes the tropospheric NO2 vertical column densities (VCDs). are systematically underestimated by the CHIMERE model and the satellite observations (compared to the car-MAX-DOAS observations). One major result from our study is that for satellite validation close to

  4. Absorbing Outflows in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, Smita

    2002-01-01

    The goal of this program was a comprehensive multiwavelength study of absorption phenomena in active galactic nuclei (AGN). These include a variety of associated absorption systems: X-ray warm absorbers, X-ray cold absorbers. UV absorbers with high ionization lines, MgII absorbers, red quasars and BALQSOs. The aim is to determine the physical conditions in the absorbing outflows, study their inter-relations and their role in AGN. We designed several observing programs to achieve this goal: X-ray spectroscopy, UV spectroscopy, FLAY spectroscopy and X-ray imaging. We were very successful towards achieving the goal over the five year period as shown through following observing programs and papers. Copies of a few papers are attached with this report.

  5. Absorption features in the quasar HS 1603 + 3820 II. Distance to the absorber obtained from photoionisation modelling

    NASA Astrophysics Data System (ADS)

    Różańska, A.; Nikołajuk, M.; Czerny, B.; Dobrzycki, A.; Hryniewicz, K.; Bechtold, J.; Ebeling, H.

    2014-04-01

    We present the photoionisation modelling of the intrinsic absorber in the bright quasar HS 1603 + 3820. We constructed the broad-band spectral energy distribution using the optical/UV/X-ray observations from different instruments as inputs for the photoionisation calculations. The spectra from the Keck telescope show extremely high CIV to HI ratios, for the first absorber in system A, named A1. This value, together with high column density of CIV ion, place strong constraints on the photoionisation model. We used two photoionisation codes to derive the hydrogen number density at the cloud illuminated surface. By estimating bolometric luminosity of HS 1603 + 3820 using the typical formula for quasars, we calculated the distance to A1. We could find one photoionization solution, by assuming either a constant density cloud (which was modelled using CLOUDY), or a stratified cloud (which was modelled using TITAN), as well as the solar abundances. This model explained both the ionic column density of CIV and the high CIV to HI ratio. The location of A1 is 0.1 pc, and it is situated even closer to the nucleus than the possible location of the Broad Line Region in this object. The upper limit of the distance is sensitive to the adopted covering factor and the carbon abundance. Photoionisation modelling always prefers dense clouds with the number density n0 = 1010 - 1012 cm-3, which explains intrinsic absorption in HS 1603 + 3820. This number density is of the same order as that in the disk atmosphere at the implied distance of A1. Therefore, our results show that the disk wind that escapes from the outermost accretion disk atmosphere can build up dense absorber in quasars.

  6. Internal absorber solar collector

    DOEpatents

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  7. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  8. The Nature of the UV/X-ray Absorber In PG 2302+029

    NASA Technical Reports Server (NTRS)

    Sabra, Bassem M.; Hamann, Fred; Jannuzi, Buell T.; George, Ian M.; Shields, Joseph C.

    2003-01-01

    We present Chandra X-ray observations of the radio-quiet QSO PG 2302+029. This quasar has a rare system of ultra-high velocity (-56,000 km s(exp -1) UV absorption lines that form in an outflow from the active nucleus. The Chandra data indicate that soft X-ray absorption is also present. We perform a joint UV and X-ray analysis, using photoionization calculations, to determine the nature of the absorbing gas. The UV and X-ray datasets were not obtained simultaneously. Nonetheless, our analysis suggests that the X-ray absorption occurs at high velocities in the same general region as the UV absorber. There are not enough constraints to rule out multi-zone models. In fact, the distinct broad and narrow UV line profiles clearly indicate that multiple zones are present. Our preferred estimates of the ionization and total column density in the X-ray absorber (logU = 1.6, N(sub eta) = 10(exp 22.4) cm (exp -2) over predict the O VI lambda lambda1032,1038 absorption unless the X-ray absorber is also outflowing at approximately 56,000 km s(exp-l), but they over predict the Ne VIII lambda lambda 770,780 absorption at all velocities. If we assume that the X-ray absorbing gas is outflowing at the same velocity of the UV-absorbing wind and that the wind is radiatively accelerated, then the outflow must be launched at a radius of less than or equal to 10(exp 15) cm from the central continuum source. The smallness of this radius casts doubts on the assumption of radiative acceleration.

  9. Determination of neutron absorbed doses in lithium aluminates.

    PubMed

    Delfín Loya, A; Carrera, L M; Ureña-Núñez, F; Palacios, O; Bosch, P

    2003-04-01

    Lithium-based ceramics have been proposed as tritium breeders for fusion reactors. The lithium aluminate (gamma phase) seems to be thermally and structurally stable, the damages produced by neutron irradiation depend on the absorbed dose. A method based on the measurement of neutron activation of foils through neutron capture has been developed to obtain the neutron absorbed dose in lithium aluminates irradiated in the thermal column facility and in the fixed irradiation system of a Triga Mark III Nuclear Reactor. PMID:12672632

  10. Starch columns: Analog model for basalt columns

    NASA Astrophysics Data System (ADS)

    Müller, Gerhard

    1998-07-01

    Desiccation of starch-water mixtures produces tensile-crack patterns which appear to be interesting, but largely unknown study objects for fracture mechanics, structural geology, and volcanology. This paper concentrates on columnar jointing and on columns in starch. Starch columns have polygonal cross sections and are very similar to basalt columns. They are produced by lamp drying starch specimens with dimensions of several centimeters and have diameters in the millimeter range. The columns develop behind a crack front which propagates from the surface into the interior. The experiments, supported by X ray tomograms, show that polygonal regularity of the crack pattern is not present at the surface but develops during penetration. This transition is steered by a minimum-fracture-energy principle. The analogy between basalt cooling and starch desiccation is far reaching: water concentration in starch is analogous to temperature in basalt, both quantities obey diffusion equations, water loss is equivalent to heat loss, the resulting contraction stresses have similar dependences on depth and time, and in both cases the material strength is exceeded. The starch experiments show that column diameters are controlled by the depth gradient of water concentration at the crack front. High (low) gradients are connected with thin (thick) columns. By analogy, a similar relation with the temperature gradient exists for basalt columns. The (normalized) starch gradients are about 3 orders of magnitude larger than the (normalized) gradients in basalt. This explains why starch columns are much thinner than basalt columns. The gradients are so different, because the crack front speeds differ by a factor of about 10: after 3 days the speed is about 10 mm/d in starch but about 100 mm/d in basalt [Peck, 1978]. The speed difference, in turn, results from the difference of the diffusion constants: the hydraulic diffusivity of starch is 2 orders of magnitude lower than the thermal

  11. A Detailed Spatial Study of HI and OVI Absorbing Gas Around Galaxies

    NASA Astrophysics Data System (ADS)

    Mathes, Nigel; Churchill, C. W.; Kacprzak, G.; Nielsen, N. M.; Charlton, J. C.; Muzahid, S.

    2014-01-01

    Neutral hydrogen probed by the Lyα transition in quasar absorption spectra traces the circumgalactic and intergalactic medium (CGM and IGM) of distant galaxies. The exact phase and composition of the gas associated with each region along with the spatial boundary separating the two has yet to be specifically characterized. To probe this region, we present a sample of 17 isolated galaxies with high resolution Hubble Space Telescope images and spectra lying within 400 kpc of a quasar line of sight between redshfits 0.1 < z < 0.7. We model each associated absorption system using a Voigt Profile fitting method for Lyα, Lyβ and OVI, which yields column densities, Doppler b parameters, and velocities for each cloud. We also model each galaxy to obtain its orientation on the sky and employ Halo Abundance Matching to determine the galaxy mass and virial radius. In contrast to previous studies using MgII absorbers, we find a near uniform distribution of absorbing gas clouds at all projected angles around the galaxies. We also find Lyα absorbing clouds out to impact parameters of 300 kpc and OVI absorbers out to 250 kpc. Together, this implies an extended, warm gas halo surrounding the galaxies in our sample. To better characterize these halos and to study the boundary between the CGM and IGM, we explore column densities and kinematics at different impact parameters. We find all Lyα systems with column densities higher than the sample average (logN(HI) > 15 cm-2) are located within the virial radius of their associated galaxies. We also find that kinematically unbound clouds are more likely to be found outside the virial radius (46% of clouds outside the virial radius have velocities in excess of the galaxy escape velocity, whereas only 10% of clouds within the virial radius have velocities high enough to escape). No such boundary exists when considering only physical impact parameters. We observe a distinct physical difference between gas inside and outside of a galaxy

  12. A logNHI = 22.6 Damped Lyα Absorber in a Dark Gamma-Ray Burst: The Environment of GRB 050401

    NASA Astrophysics Data System (ADS)

    Watson, D.; Fynbo, J. P. U.; Ledoux, C.; Vreeswijk, P.; Hjorth, J.; Smette, A.; Andersen, A. C.; Aoki, K.; Augusteijn, T.; Beardmore, A. P.; Bersier, D.; Castro Cerón, J. M.; D'Avanzo, P.; Diaz-Fraile, D.; Gorosabel, J.; Hirst, P.; Jakobsson, P.; Jensen, B. L.; Kawai, N.; Kosugi, G.; Laursen, P.; Levan, A.; Masegosa, J.; Näränen, J.; Page, K. L.; Pedersen, K.; Pozanenko, A.; Reeves, J. N.; Rumyantsev, V.; Shahbaz, T.; Sharapov, D.; Sollerman, J.; Starling, R. L. C.; Tanvir, N.; Torstensson, K.; Wiersema, K.

    2006-12-01

    The optical afterglow spectrum of GRB 050401 (at z=2.8992+/-0.0004) shows the presence of a damped Lyα absorber (DLA), with logNHI=22.6+/-0.3. This is the highest column density ever observed in a DLA and is about 5 times larger than the strongest DLA detected so far in any QSO spectrum. From the optical spectrum, we also find a very large Zn column density, implying an abundance of [Zn/H]=-1.0+/-0.4. These large columns are supported by the early X-ray spectrum from Swift XRT, which shows a column density (in excess of Galactic) of logNH=22.21+0.06-0.08 assuming solar abundances (at z=2.9). The comparison of this X-ray column density, which is dominated by absorption due to α-chain elements, and the H I column density derived from the Lyα absorption line allows us to derive a metallicity for the absorbing matter of [α/H]=-0.4+/-0.3. The optical spectrum is reddened and can be well reproduced with a power law with SMC extinction, where AV=0.62+/-0.06. But the total optical extinction can also be constrained independent of the shape of the extinction curve: from the optical to X-ray spectral energy distribution, we find 0.5<~AV<~4.5. However, even this upper limit, independent of the shape of the extinction curve, is still well below the dust column that is inferred from the X-ray column density, i.e., AV=9.1+1.4-1.5. This discrepancy might be explained by a small dust content with high metallicity (low dust-to-metals ratio). ``Gray'' extinction cannot explain the discrepancy, since we are comparing the metallicity to a measurement of the total extinction (without reference to the reddening). Little dust with high metallicity may be produced by sublimation of dust grains or may naturally exist in systems younger than a few hundred megayears. Based in part on observations made at the European Southern Observatory, Paranal, Chile under program 075.D-0270, with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland

  13. HST/COS observations of a new population of associated QSO absorbers

    NASA Astrophysics Data System (ADS)

    Muzahid, S.; Srianand, R.; Arav, N.; Savage, B. D.; Narayanan, A.

    2013-05-01

    We present a sample of new population of associated absorbers, detected through Ne VIII λλ770, 780 absorption, in the Hubble Space Telescope (HST)/Cosmic Origins Spectrograph (COS) spectra of intermediate-redshift (0.45 < z < 1.21) quasars (QSOs). Our sample comprised of total 12 associated Ne VIII systems detected towards eight lines of sight (none of them are radio bright). The incidence rate of these absorbers is found to be 40 per cent. Majority of the Ne VIII systems at small ejection velocities (vej) show complete coverage of the background source, but systems with higher vej show lower covering fractions (i.e. fc ≤ 0.8) and systematically higher values of N({Ne VIII}). We detect Mg X λλ609, 624 absorption in seven out of the eight Ne VIII systems where the expected wavelength range is covered by our spectra and is free of any strong blending. We report the detections of Na IX λλ681, 694 absorption, for the first time, in three highest ejection velocity (e.g. |vej| ≳ 7000 km s-1) systems in our sample. All these systems show very high N({Ne VIII}) (i.e. >1015.6 cm-2), high ionization parameter (i.e. log U ≳ 0.5), high metallicity (i.e. Z ≳ Z⊙) and ionization-potential-dependent fc values. The observed column density ratios of different ions are reproduced by multiphase photoionization (PI) and/or collisional ionization (CI) equilibrium models. While solar abundance ratios are adequate in CIE, enhancement of Na relative to Mg is required in PI models to explain our observations. The column density ratios of highly ionized species (i.e. O VI, Ne VIII, Mg X, etc.) show a very narrow spread. Moreover, the measured N({Ne VIII})/N({O VI}) ratio in the associated absorbers is similar to what is seen in the intervening absorbers. All these suggest a narrow range of ionization parameter in the case of PI or a narrow temperature range (i.e. T ˜ 105.9±0.1 K) in the case of CIE models. The present data do not distinguish between these two alternatives

  14. Column Liquid Chromatography.

    ERIC Educational Resources Information Center

    Majors, Ronald E.; And Others

    1984-01-01

    Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…

  15. Unidirectional perfect absorber

    PubMed Central

    Jin, L.; Wang, P.; Song, Z.

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  16. Unidirectional perfect absorber

    NASA Astrophysics Data System (ADS)

    Jin, L.; Wang, P.; Song, Z.

    2016-09-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  17. Unidirectional perfect absorber.

    PubMed

    Jin, L; Wang, P; Song, Z

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  18. Mechanical energy absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J. (Inventor)

    1993-01-01

    An energy absorbing system for controlling the force where a moving object engages a stationary stop and where the system utilized telescopic tubular members, energy absorbing diaphragm elements, force regulating disc springs, and a return spring to return the telescoping member to its start position after stroking is presented. The energy absorbing system has frusto-conical diaphragm elements frictionally engaging the shaft and are opposed by a force regulating set of disc springs. In principle, this force feedback mechanism serves to keep the stroking load at a reasonable level even if the friction coefficient increases greatly. This force feedback device also serves to desensitize the singular and combined effects of manufacturing tolerances, sliding surface wear, temperature changes, dynamic effects, and lubricity.

  19. Unidirectional perfect absorber.

    PubMed

    Jin, L; Wang, P; Song, Z

    2016-09-12

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  20. Discovery of a Ly-alpha galaxy near a damped Ly-alpha absorber at z = 2.3

    NASA Technical Reports Server (NTRS)

    Lowenthal, James D.; Hogan, Craig J.; Green, Richard F.; Caulet, Adeline; Woodgate, Bruce E.; Brown, Larry; Foltz, Craig B.

    1991-01-01

    The detection of a galaxy associated with the damped Ly-alpha absorbing cloud seen at z = 2.309 toward the QSO PHL 957 is reported. In addition to a strong but narrow Ly-alpha emission line and weaker C IV and He II lines, the object shows continuum at V about 24, with a slope rising slightly toward the red. This is similar to what is seen in high-redshift radio galaxies, but this galaxy does not correspond to any known radio source. The detected emission lines and continuum are most easily interpreted as light from hot, recently formed stars, implying a sizable star formation rate and a scarcity of dust. The spatial correlation of the absorbing cloud and the companion galaxy supports the interpretation of damped Ly-alpha clouds as objects fundamentally different from the lower column density Ly-alpha forest clouds, which show weak or no clustering.

  1. Inelastic column behavior

    NASA Technical Reports Server (NTRS)

    Duberg, John E; Wilder, Thomas W , III

    1952-01-01

    The significant findings of a theoretical study of column behavior in the plastic stress range are presented. When the behavior of a straight column is regarded as the limiting behavior of an imperfect column as the initial imperfection (lack of straightness) approaches zero, the departure from the straight configuration occurs at the tangent-modulus load. Without such a concept of the behavior of a straight column, one is led to the unrealistic conclusion that lateral deflection of the column can begin at any load between the tangent-modulus value and the Euler load, based on the original elastic modulus. A family of curves showing load against lateral deflection is presented for idealized h-section columns of various lengths and of various materials that have a systematic variation of their stress-strain curves.

  2. A pair of O VI and broad Ly α absorbers probing warm gas in a galaxy group environment at z ˜ 0.4

    NASA Astrophysics Data System (ADS)

    Pachat, Sachin; Narayanan, Anand; Muzahid, Sowgat; Khaire, Vikram; Srianand, Raghunathan; Wakker, Bart P.; Savage, Blair D.

    2016-05-01

    We report the detection of two O VI absorbers at z = 0.416 14 and 0.419 50 (|Δv| = 710 km s-1), towards SBS 0957+599. Both absorbers are multiphase systems tracing substantial reservoirs of warm baryons. The low- and intermediate-ionization metals in the z = 0.416 14 absorber are consistent with an origin in photoionized gas. O VI has a velocity structure different from other metal species. Ly α shows the presence of a broad feature. The linewidths for O VI and the broad Ly α suggest T = 7.1 × 105 K. This warm medium is probing a baryonic column, which is an order of magnitude more than the total hydrogen in the cooler photoionized gas. The second absorber is detected only in H I and O VI. Here a temperature of 4.6 × 104 K supports O VI originating in a low-density photoionized gas. A broad component is seen in Ly α, offset from O VI. The temperature in the broad Ly α is T ≲ 2.1 × 105 K. The absorbers reside in a galaxy overdensity region with seven spectroscopically identified galaxies within ˜10 Mpc and Δv ˜ 1000 km s-1 of the z = 0.416 14 absorber, and two galaxies inside a similar separation from the z = 0.419 50 absorber. The distribution of galaxies relative to the absorbers suggests that the line of sight could be intercepting a large-scale filament connecting galaxy groups, or the extended halo of a sub-L* galaxy. Though kinematically proximate, the two absorbers reaffirm the diversity in the physical conditions of low red-shift O VI systems and the galactic environments they inhabit.

  3. Microwaves Scattering by Underdense Inhomogeneous Plasma Column

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Ouyang, Jiting

    2016-03-01

    The scattering characteristics of microwaves (MWs) by an underdense inhomogeneous plasma column have been investigated. The plasma column is generated by hollow cathode discharge (HCD) in a glass tube filled with low pressure argon. The plasma density in the column can be varied by adjusting the discharge current. The scattering power of X-band MWs by the column is measured at different discharge currents and receiving angles. The results show that the column can affect the properties of scattering wave significantly regardless of its plasma frequency much lower than the incident wave frequency. The power peak of the scattering wave shifts away from 0° to about ±15° direction. The finite-different time-domain (FDTD) method is employed to analyze the wave scattering by plasma column with different electron density distributions. The reflected MW power from a metal plate located behind the column is also measured to investigate the scattering effect on reducing MW reflectivity of a metal target. This study is expected to deepen the understanding of plasma-electromagnetic wave interaction and expand the applications concerning plasma antenna and plasma stealth.

  4. Neutron Absorbing Alloys

    DOEpatents

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  5. Solar concentrator/absorber

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  6. Distillation Column Modeling Tools

    SciTech Connect

    2001-09-01

    Advanced Computational and Experimental Techniques will Optimize Distillation Column Operation. Distillation is a low thermal efficiency unit operation that currently consumes 4.8 quadrillion BTUs of energy...

  7. A HIGH RESOLUTION VIEW OF THE WARM ABSORBER IN THE QUASAR MR 2251-178

    SciTech Connect

    Reeves, J. N.; Gofford, J.; Nardini, E.; Porquet, D.; Braito, V.; Turner, T. J.; Crenshaw, D. M.; Kraemer, S. B.

    2013-10-20

    High resolution X-ray spectroscopy of the warm absorber in a nearby quasar, MR 2251-178 (z = 0.06398), is presented. The observations were carried out in 2011 using the Chandra High Energy Transmission Grating (HETG) and the XMM-Newton Reflection Grating Spectrometer, with net exposure times of approximately 400 ks each. A multitude of absorption lines from C to Fe are detected, revealing at least three warm absorbing components ranging in ionization parameter from log (ξ/erg cm s{sup –1}) = 1-3 with outflow velocities ∼< 500 km s{sup –1}. The lowest ionization absorber appears to vary between the Chandra and XMM-Newton observations, which implies a radial distance of between 9 and 17 pc from the black hole. Several broad soft X-ray emission lines are strongly detected, most notably from He-like oxygen, with FWHM velocity widths of up to 10,000 km s{sup –1}, consistent with an origin from broad-line region (BLR) clouds. In addition to the warm absorber, gas partially covering the line of sight to the quasar appears to be present, with a typical column density of N{sub H} = 10{sup 23} cm{sup –2}. We suggest that the partial covering absorber may arise from the same BLR clouds responsible for the broad soft X-ray emission lines. Finally, the presence of a highly ionized outflow in the iron K band from both the 2002 and 2011 Chandra HETG observations appears to be confirmed, which has an outflow velocity of –15600 ± 2400 km s{sup –1}. However, a partial covering origin for the iron K absorption cannot be excluded, resulting from low ionization material with little or no outflow velocity.

  8. New concepts for the comparison of tropospheric NO2 column densities derived from car-MAX-DOAS observations, OMI satellite observations and the regional model CHIMERE during two MEGAPOLI campaigns in Paris 2009/10

    NASA Astrophysics Data System (ADS)

    Shaiganfar, R.; Beirle, S.; Petetin, H.; Zhang, Q.; Beekmann, M.; Wagner, T.

    2015-03-01

    We compare tropospheric column densities (vertically integrated concentrations) of NO2 from three data sets for the metropolitan area of Paris during two extensive measurement campaigns (25 days in summer 2009 and 29 days in winter 2010) within the European research project MEGAPOLI. The selected data sets comprise a regional chemical transport model (CHIMERE) as well as two observational data sets: ground based mobile Multi-AXis-Differential Optical Absorption Spectroscopy (car-MAX-DOAS) measurements and satellite measurements from the Ozone Monitoring Instrument (OMI). On most days, car-MAX-DOAS measurements were carried out along large circles (diameter ~35 km) around Paris. The car-MAX-DOAS results are compared to coincident data from CHIMERE and OMI. All three data sets have their specific strengths and weaknesses, especially with respect to their spatio-temporal resolution and coverage as well as their uncertainties. Thus we compare them in two different ways: first, we simply consider the original data sets. Second, we compare modified versions making synergistic use of the complementary information from different data sets. For example, profile information from the regional model is used to improve the satellite data, observations of the horizontal trace gas distribution are used to adjust the respective spatial patterns of the model simulations, or the model is used as a transfer tool to bridge the spatial scales between car-MAX-DOAS and satellite observations. Using the modified versions of the data sets, the comparison results substantially improve compared to the original versions. In general, good agreement between the data sets is found outside the emission plume, but inside the emission plumes the tropospheric NO2 VCDs are systematically underestimated by the CHIMERE model and the satellite observations (compared to the car-MAX-DOAS observations). One major result from our study is that for satellite validation close to strong emission sources (like

  9. The XMM-Newton Bright Survey sample of absorbed quasars: X-ray and accretion properties

    NASA Astrophysics Data System (ADS)

    Ballo, L.; Severgnini, P.; Della Ceca, R.; Caccianiga, A.; Vignali, C.; Carrera, F. J.; Corral, A.; Mateos, S.

    2014-11-01

    Although absorbed quasars are extremely important for our understanding of the energetics of the Universe, the main physical parameters of their central engines are still poorly known. In this work, we present and study a complete sample of 14 quasars (QSOs) that are absorbed in the X-rays (column density NH > 4 × 1021 cm-2 and X-ray luminosity L 2-10 keV > 1044 ergs-1; XQSO2) belonging to the XMM-Newton Bright Serendipitous Survey (XBS). From the analysis of their ultraviolet-to-mid-infrared spectral energy distribution, we can separate the nuclear emission from the host galaxy contribution, obtaining a measurement of the fundamental nuclear parameters, like the mass of the central supermassive black hole and the value of Eddington ratio, λ Edd. Comparing the properties of XQSO2s with those previously obtained for the X-ray unabsorbed QSOs in the XBS, we do not find any evidence that the two samples are drawn from different populations. In particular, the two samples span the same range in Eddington ratios, up to λ Edd ˜ 0.5; this implies that our XQSO2s populate the `forbidden region' in the so-called `effective Eddington limit paradigm'. A combination of low grain abundance, presence of stars inwards of the absorber, and/or anisotropy of the disc emission can explain this result.

  10. A partial eclipse of the heart: the absorbed X-ray low state in Mrk 1048

    NASA Astrophysics Data System (ADS)

    Parker, M. L.; Schartel, N.; Komossa, S.; Grupe, D.; Santos-Lleó, M.; Fabian, A. C.; Mathur, S.

    2014-11-01

    We present two new XMM-Newton observations of an unprecedented low-flux state in the Seyfert 1 Mrk 1048 (NGC 985), taken in 2013. The X-ray flux below 1 keV drops by a factor of 4-5, whereas the spectrum above 5 keV is essentially unchanged. This points towards an absorption origin for the low state, and we confirm this with spectral fitting, finding that the spectral differences can be well modelled by the addition of a partial covering neutral absorber, with a column density of ˜3 × 1022 cm-2 and a covering fraction of ˜0.6. The optical and UV fluxes are not affected, and indeed are marginally brighter in the more recent observations, suggesting that only the inner regions of the disc are affected by the absorption event. This indicates either that the absorption is due to a cloud passing over the inner disc, obscuring the X-ray source but leaving the outer disc untouched, or that the absorber is dust-free so the UV continuum is unaffected. We use arguments based on the duration of the event and the physical properties of the absorber to constrain its size and location, and conclude that it is most likely a small cloud at ˜1018 cm from the source.

  11. Inflatable Column Structure

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1985-01-01

    Lightweight structural member easy to store. Billowing between circumferential loops of fiber inflated column becomes series of cells. Each fiber subjected to same tension along entire length (though tension is different in different fibers). Member is called "isotensoid" column. Serves as jack for automobiles or structures during repairs. Also used as support for temporary bleachers or swimming pools.

  12. Glass-silicon column

    DOEpatents

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  13. Metasurface Broadband Solar Absorber

    PubMed Central

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  14. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  15. Metasurface Broadband Solar Absorber

    DOE PAGES

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributionsmore » to elucidate how the absorption occurs within the metasurface structure.« less

  16. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  17. Absorbed dose water calorimeter

    SciTech Connect

    Domen, S.R.

    1982-01-26

    An absorbed dose water calorimeter that takes advantage of the low thermal diffusivity of water and the water-imperviousness of polyethylene film. An ultra-small bead thermistor is sandwiched between two thin polyethylene films stretched between insulative supports in a water bath. The polyethylene films insulate the thermistor and its leads, the leads being run out from between the films in insulated sleeving and then to junctions to form a wheatstone bridge circuit. Convection barriers may be provided to reduce the effects of convection from the point of measurement. Controlled heating of different levels in the water bath is accomplished by electrical heater circuits provided for controlling temperature drift and providing adiabatic operation of the calorimeter. The absorbed dose is determined from the known specific heat of water and the measured temperature change.

  18. Velocity resolved [C ii], [C i], and CO observations of the N159 star-forming region in the Large Magellanic Cloud: a complex velocity structure and variation of the column densities

    NASA Astrophysics Data System (ADS)

    Okada, Yoko; Requena-Torres, Miguel Angel; Güsten, Rolf; Stutzki, Jürgen; Wiesemeyer, Helmut; Pütz, Patrick; Ricken, Oliver

    2015-08-01

    particular between the different species. At most positions the [C ii] emission line profile is substantially wider than that of CO and [C i]. We estimated the fraction of the [C ii] integrated line emission that cannot be fitted by the CO line profile to be 20% around the CO cores, and up to 50% at the area between the cores, indicating a gas component that has a much larger velocity dispersion than the ones probed by the CO and [C i] emission. We derived the relative contribution from C+, C, and CO to the column density in each velocity bin. The result clearly shows that the contribution from C+ dominates the velocity range far from the velocities traced by the dense molecular gas. Spatially, the region located between the CO cores of N159 W and E has a higher fraction of C+ over the whole velocity range. We estimate the contribution of the ionized gas to the [C ii] emission using the ratio to the [N ii] emission, and find that the ionized gas contributes ≤19% to the [C ii] emission at its peak position, and ≤15% over the whole observed region. Using the integrated line intensities, we present the spatial distribution of I[CII]/IFIR. Conclusions: This study demonstrates that the [C ii] emission in the LMC N159 region shows significantly different velocity profiles from that of CO and [C i] emissions, emphasizing the importance of velocity resolved observations in order to distinguish different cloud components.

  19. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  20. Diagnostic beam absorber in Mu2e beam line

    SciTech Connect

    Rakhno, Igor; /Fermilab

    2011-03-01

    Star density, hadron flux, and residual dose distributions are calculated around the {mu}2e diagnostic beam absorber. Corresponding surface and ground water activation, and air activation are presented as well.

  1. Distillation Column Flooding Predictor

    SciTech Connect

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  2. An extremely wideband and lightweight metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Shen, Yang; Pei, Zhibin; Pang, Yongqiang; Wang, Jiafu; Zhang, Anxue; Qu, Shaobo

    2015-06-01

    This paper presents a three-dimensional microwave metamaterial absorber based on the stand-up resistive film patch array. The absorber has wideband absorption, lightweight, and polarization-independent properties. Our design comes from the array of unidirectional stand-up resistive film patches backed by a metallic plane, which can excite multiple standing wave modes. By rolling the resistive film patches as a square enclosure, we obtain the polarization-independent property. Due to the multiple standing wave modes, the most incident energy is dissipated by the resistive film patches, and thus, the ultra-wideband absorption can be achieved by overlapping all the absorption modes at different frequencies. Both the simulated and experimental results show that the absorber possesses a fractional bandwidth of 148.2% with the absorption above 90% in the frequency range from 3.9 to 26.2 GHz. Moreover, the proposed absorber is extremely lightweight. The areal density of the fabricated sample is about 0.062 g/cm2, which is approximately equivalent to that of eight stacked standard A4 office papers. It is expected that our proposed absorber may find potential applications such as electromagnetic interference and stealth technologies.

  3. Absorber for terahertz radiation management

    DOEpatents

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  4. The accretion column of AE Aqr

    NASA Astrophysics Data System (ADS)

    Rodrigues, Claudia; Costa, D. Joaquim; Luna, Gerardo; Lima, Isabel J.; Silva, Karleyne M. G.; De Araujo, Jose Carlos N.; Coelho, Jaziel

    2016-07-01

    AE Aqr is a magnetic cataclysmic variable, whose white dwarf rotates at the very fast rate of 33 s modulating the flux from high-energies to optical wavelengths. There are many studies of the origin of its emission, which consider emission from a rotating magnetic field or from an accretion column. Recently, MAGIC observations have discarded AE Aqr emission in very high energy gamma-rays discarding non-thermal emission. Furthermore, soft and hard X-ray data from Swift and NuSTAR were fitted using thermal models. Here we present the modelling of AE Aqr X-ray spectra and light curve considering the emission of a magnetic accretion column using the Cyclops code. The model takes into consideration the 3D geometry of the system, allowing to properly represent the white-dwarf auto eclipse, the pre-shock column absorption, and the varying density and temperature of a tall accretion column.

  5. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  6. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  7. Underwater acoustic omnidirectional absorber

    NASA Astrophysics Data System (ADS)

    Naify, Christina J.; Martin, Theodore P.; Layman, Christopher N.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.

    2014-02-01

    Gradient index media, which are designed by varying local element properties in given geometry, have been utilized to manipulate acoustic waves for a variety of devices. This study presents a cylindrical, two-dimensional acoustic "black hole" design that functions as an omnidirectional absorber for underwater applications. The design features a metamaterial shell that focuses acoustic energy into the shell's core. Multiple scattering theory was used to design layers of rubber cylinders with varying filling fractions to produce a linearly graded sound speed profile through the structure. Measured pressure intensity agreed with predicted results over a range of frequencies within the homogenization limit.

  8. Solar radiation absorbing material

    DOEpatents

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  9. Microminiature gas chromatographic column

    NASA Technical Reports Server (NTRS)

    Donaldson, R. W., Jr.

    1972-01-01

    Techniques commonly used for fabrication of integrated circuits are utilized to produce long capillary tubes for microminiature chromatographs. Method involves bonding of flat silicon plate to top of spirally grooved silicon chip to close groove and form capillary column.

  10. Distillation Column Flooding Predictor

    SciTech Connect

    2002-02-01

    This factsheet describes a research project whose goal is to develop the flooding predictor, an advanced process control strategy, into a universally useable tool that will maximize the separation yield of a distillation column.

  11. GRB 070125 and the environments of spectral-line poor afterglow absorbers

    NASA Astrophysics Data System (ADS)

    De Cia, A.; Starling, R. L. C.; Wiersema, K.; van der Horst, A. J.; Vreeswijk, P. M.; Björnsson, G.; de Ugarte Postigo, A.; Jakobsson, P.; Levan, A. J.; Rol, E.; Schulze, S.; Tanvir, N. R.

    2011-11-01

    GRB 070125 is among the most energetic bursts detected and the most extensively observed so far. Nevertheless, unresolved issues are still open in the literature on the physics of the afterglow and on the gamma-ray burst (GRB) environment. In particular, GRB 070125 was claimed to have exploded in a galactic halo environment, based on the uniqueness of the optical spectrum and the non-detection of an underlying host galaxy. In this work we collect all publicly available data and address these issues by modelling the near-infrared to X-ray spectral energy distribution (SED) and studying the high signal-to-noise ratio Very Large Telescope/FOcal Reducer/low dispersion Spectrograph afterglow spectrum in comparison with a larger sample of GRB absorbers. The SED reveals a synchrotron cooling break in the ultraviolet, low equivalent hydrogen column density and little reddening caused by a Large Magellanic Cloud type or Small Magellanic Cloud type extinction curve. From the weak Mg II absorption at z= 1.5477 in the spectrum, we derived log N(Mg II) = 12.96+0.13- 0.18 and upper limits on the ionic column density of several metals. These suggest that the GRB absorber is most likely a Lyman limit system with a 0.03 < Z < 1.3 Z⊙ metallicity. The comparison with other GRB absorbers places GRB 070125 at the low end of the absorption-line equivalent width distribution, confirming that weak spectral features and spectral-line poor absorbers are not so uncommon in afterglow spectra. Moreover, we show that the effect of photoionization on the gas surrounding the GRB, combined with a low N(H I) along a short segment of the line of sight within the host galaxy, can explain the lack of spectral features in GRB 070125. Finally, the non-detection of an underlying galaxy is consistent with a faint GRB host galaxy, well within the GRB host brightness distribution. Thus, the possibility that GRB 070125 is simply located in the outskirts of a gas-rich, massive star-forming region inside its

  12. Towards Atomic Column-by-Column Spectroscopy

    SciTech Connect

    Pennycook, S.J.; Rafferty, B.

    1998-09-06

    The optical arrangement of the scanning transmission electron microscope (STEM) is ideally suited for performing analysis of individual atomic columns in materials. Using the incoherent Z-contrast image as a reference, and arranging incoherent conditions also for the spectroscopy, a precise correspondence is ensured between features in the inelastic image and elastic signals. In this way the exact probe position needed to maximise the inelastic signal from a selected column can be located and monitored during the analysis using the much higher intensity elastic signal. Although object functions for EELS are typically less than 1 {Angstrom} full width at half maximum, this is still an order of magnitude larger than the corresponding object functions for elastic (or diffuse) scattering used to form the Z-contrast image. Therefore the analysis is performed with an effective probe that is significantly broader than that used for the reference Z-contrast image. For a 2.2 {Angstrom} probe the effective probe is of the order of 2.5 {Angstrom}, while for a 1.3 {Angstrom} probe the effective probe is 1.6 {Angstrom}. Such increases in effective probe size can significantly reduce or even eliminate contrast between atomic columns that are visible in the image. However, this is only true if we consider circular collector apertures. Calculations based upon the theory of Maslen and Rossouw (Maslen and Rossouw 1984; Rossouw and Maslen 1984) show that employing an annular aperture can reduce the FWHM of the inelastic object function down to values close 0.1 {Angstrom}. With practical aperture sizes it should be possible to achieve this increased spatial resolution without loosing too much signal.

  13. Evidence for a Circum-Nuclear and Ionised Absorber in the X-ray Obscured Broad Line Radio Galaxy 3C 445

    NASA Technical Reports Server (NTRS)

    Braito, V.; Reeves, J. N.; Sambruna, R. M.; Gofford, J.

    2012-01-01

    Here we present the results of a Suzaku observation of the Broad Line Radio Galaxy 3C 445. We confirm the results obtained with the previous X-ray observations which unveiled the presence of several soft X-ray emission lines and an overall X-ray emission which strongly resembles a typical Seyfert 2 despite of the optical classification as an unobscured AGN. The broad band spectrum allowed us to measure for the first time the amount of reflection (R approximately 0.9) which together with the relatively strong neutral Fe Ka emission line (EW approximately 100 eV) strongly supports a scenario where a Compton-thick mirror is present. The primary X ray continuum is strongly obscured by an absorber with a column density of NH = 2 - 3 x 10(exp 23) per square centimeter. Two possible scenarios are proposed for the absorber: a neutral partial covering or a mildly ionised absorber with an ionisation parameter log xi approximately 1.0 erg centimeter per second. A comparison with the past and more recent X-ray observations of 3C 445 performed with XMM-Newton and Chandra is presented, which provided tentative evidence that the ionised and outflowing absorber varied. We argue that the absorber is probably associated with an equatorial diskwind located within the parsec scale molecular torus.

  14. Warm Absorber Diagnostics of AGN Dynamics

    NASA Astrophysics Data System (ADS)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  15. Liquid Cryogen Absorber for MICE

    SciTech Connect

    Baynham, D.E.; Bish, P.; Bradshaw, T.W.; Cummings, M.A.; Green,M.A.; Ishimoto, S.; Ivaniouchenkov, I.; Lau, W.; Yang, S.Q.; Zisman, M.S.

    2005-08-20

    The Muon Ionization Cooling Experiment (MICE) will test ionization cooling of muons. In order to have effective ionization cooling, one must use an absorber that is made from a low-z material. The most effective low z materials for ionization cooling are hydrogen, helium, lithium hydride, lithium and beryllium, in that order. In order to measure the effect of material on cooling, several absorber materials must be used. This report describes a liquid-hydrogen absorber that is within a pair of superconducting focusing solenoids. The absorber must also be suitable for use with liquid helium. The following absorber components are discussed in this report; the absorber body, its heat exchanger, the hydrogen system, and the hydrogen safety. Absorber cooling and the thin windows are not discussed here.

  16. A high-redshift quasar absorber without C IV. A galactic outflow caught in the act?

    NASA Astrophysics Data System (ADS)

    Fox, Anne; Richter, Philipp

    2016-04-01

    We present a detailed analysis of a very unusual sub-damped Lyman α (sub-DLA) system at redshift z = 2.304 towards the quasar Q 0453-423, based on high signal-to-noise (S/N), high-resolution spectral data obtained with VLT/UVES. With a neutral hydrogen column density of log N(H i) = 19.23 and a metallicity of -1.61 as indicated by [O i/H i] the sub-DLA mimics the properties of many other optically thick absorbers at this redshift. A very unusual feature of this system is, however, the lack of any C iv absorption at the redshift of the neutral hydrogen absorption, although the relevant spectral region is free of line blends and has very high S/N. Instead, we find high-ion absorption from C iv and O vi in another metal absorber at a velocity more than 220 km s-1 redwards of the neutral gas component. We explore the physical conditions in the two different absorption systems using Cloudy photoionisation models. We find that the weakly ionised absorber is dense and metal-poor while the highly ionised system is thin and more metal-rich. The absorber pair towards Q 0453-423 mimics the expected features of a galactic outflow with highly ionised material that moves away with high radial velocities from a (proto)galactic gas disk in which star-formation takes place. We discuss our findings in the context of C iv absorption line statistics at high redshift and compare our results to recent galactic-wind and outflow models.

  17. Dual broadband metamaterial absorber.

    PubMed

    Kim, Young Ju; Yoo, Young Joon; Kim, Ki Won; Rhee, Joo Yull; Kim, Yong Hwan; Lee, YoungPak

    2015-02-23

    We propose polarization-independent and dual-broadband metamaterial absorbers at microwave frequencies. This is a periodic meta-atom array consisting of metal-dielectric-multilayer truncated cones. We demonstrate not only one broadband absorption from the fundamental magnetic resonances but additional broadband absorption in high-frequency range using the third-harmonic resonance, by both simulation and experiment. In simulation, the absorption was over 90% in 3.93-6.05 GHz, and 11.64-14.55 GHz. The corresponding experimental absorption bands over 90% were 3.88-6.08 GHz, 9.95-10.46 GHz and 11.86-13.84 GHz, respectively. The origin of absorption bands was elucidated. Furthermore, it is independent of polarization angle owing to the multilayered circular structures. The design is scalable to smaller size for the infrared and the visible ranges.

  18. Absorber coatings' degradation

    SciTech Connect

    Moore, S.W.

    1984-01-01

    This report is intended to document some of the Los Alamos efforts that have been carried out under the Department of Energy (DOE) Active Heating and Cooling Materials Reliability, Maintainability, and Exposure Testing program. Funding for these activities is obtained directly from DOE although they represent a variety of projects and coordination with other agencies. Major limitations to the use of solar energy are the uncertain reliability and lifetimes of solar systems. This program is aimed at determining material operating limitations, durabilities, and failure modes such that materials improvements can be made and lifetimes can be extended. Although many active and passive materials and systems are being studied at Los Alamos, this paper will concentrate on absorber coatings and degradation of these coatings.

  19. Eruption column physics

    SciTech Connect

    Valentine, G.A.

    1997-03-01

    In this paper the author focuses on the fluid dynamics of large-scale eruption columns. The dynamics of these columns are rooted in multiphase flow phenomena, so a major part of the paper sets up a foundation on that topic that allows one to quickly assess the inherent assumptions made in various theoretical and experimental approaches. The first part is centered on a set of complex differential equations that describe eruption columns, but the focus is on a general understanding of important physical processes rather than on the mathematics. The author discusses briefly the relative merits and weaknesses of different approaches, emphasizing that the largest advances in understanding are made by combining them. He then focuses on dynamics of steady eruption columns and then on transient phenomena. Finally he briefly reviews the effects of varying behavior of the ambient medium through which an eruption column moves. These final sections will emphasize concepts and a qualitative understanding of eruption dynamics. This paper relies on principles of continuum mechanics and transport processes but does not go into detail on the development of those principles. 36 refs., 36 figs., 3 tabs.

  20. BROAD H I ABSORBERS AS METALLICITY-INDEPENDENT TRACERS OF THE WARM-HOT INTERGALACTIC MEDIUM

    SciTech Connect

    Danforth, Charles W.; Stocke, John T.; Shull, J. Michael E-mail: john.stocke@colorado.ed

    2010-02-10

    Thermally broadened Lyalpha absorbers (BLAs) offer an alternative method to highly ionized metal lines for tracing the warm-hot intergalactic medium (WHIM) at T>10{sup 5} K. However, observing BLAs requires data of high quality and accurate continuum definition to detect the low-contrast features, and a good knowledge of the velocity structure to differentiate multiple blended components from a single broad line. Even for well-characterized absorption profiles, disentangling the thermal line width from the various thermal and non-thermal contributors to the observed line width is ambiguous. We compile a catalog of reliable BLA candidates along seven active galactic nucleus sight lines from a larger set of Lyalpha absorbers observed by the Space Telescope Imaging Spectrograph on the Hubble Space Telescope (HST). We compare our measurements based on independent reduction and analysis of the data to those published by other research groups. We examine the detailed structure of each absorber and determine a reliable line width and column density. Purported BLAs are grouped into probable (15), possible (48), and non-BLA (56) categories. Combining the first two categories, we infer a line frequency (dN/dz){sub BLA}=18+-11, comparable to observed O VI absorbers, also thought to trace the WHIM. We discuss the overlap between BLA and O VI absorbers (20%-40%) and the distribution of BLAs in relation to nearby galaxies (O VI detections in BLAs are found closer to galaxies than O VI nondetections). We assume that the line width determined through a multi-line curve of growth (COG) is a close approximation to the thermal line width. Based on 164 measured COG H I line measurements, we statistically correct the observed line widths via a Monte Carlo simulation. Gas temperature and neutral fraction f{sub H{sub I}} are inferred from these statistically corrected line widths and lead to a distribution of total hydrogen columns. Summing the total column density over the total

  1. A field operational test on valve-regulated lead-acid absorbent-glass-mat batteries in micro-hybrid electric vehicles. Part I. Results based on kernel density estimation

    NASA Astrophysics Data System (ADS)

    Schaeck, S.; Karspeck, T.; Ott, C.; Weckler, M.; Stoermer, A. O.

    2011-03-01

    In March 2007 the BMW Group has launched the micro-hybrid functions brake energy regeneration (BER) and automatic start and stop function (ASSF). Valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology are applied in vehicles with micro-hybrid power system (MHPS). In both part I and part II of this publication vehicles with MHPS and AGM batteries are subject to a field operational test (FOT). Test vehicles with conventional power system (CPS) and flooded batteries were used as a reference. In the FOT sample batteries were mounted several times and electrically tested in the laboratory intermediately. Vehicle- and battery-related diagnosis data were read out for each test run and were matched with laboratory data in a data base. The FOT data were analyzed by the use of two-dimensional, nonparametric kernel estimation for clear data presentation. The data show that capacity loss in the MHPS is comparable to the CPS. However, the influence of mileage performance, which cannot be separated, suggests that battery stress is enhanced in the MHPS although a battery refresh function is applied. Anyway, the FOT demonstrates the unsuitability of flooded batteries for the MHPS because of high early capacity loss due to acid stratification and because of vanishing cranking performance due to increasing internal resistance. Furthermore, the lack of dynamic charge acceptance for high energy regeneration efficiency is illustrated. Under the presented FOT conditions charge acceptance of lead-acid (LA) batteries decreases to less than one third for about half of the sample batteries compared to new battery condition. In part II of this publication FOT data are presented by multiple regression analysis (Schaeck et al., submitted for publication [1]).

  2. Broadband patterned magnetic microwave absorber

    SciTech Connect

    Li, Wei; Wu, Tianlong; Wang, Wei; Guan, Jianguo; Zhai, Pengcheng

    2014-07-28

    It is a tough task to greatly improve the working bandwidth for the traditional flat microwave absorbers because of the restriction of available material parameters. In this work, a simple patterning method is proposed to drastically broaden the absorption bandwidth of a conventional magnetic absorber. As a demonstration, an ultra-broadband microwave absorber with more than 90% absorption in the frequency range of 4–40 GHz is designed and experimentally realized, which has a thin thickness of 3.7 mm and a light weight equivalent to a 2-mm-thick flat absorber. In such a patterned absorber, the broadband strong absorption is mainly originated from the simultaneous incorporation of multiple λ/4 resonances and edge diffraction effects. This work provides a facile route to greatly extend the microwave absorption bandwidth for the currently available absorbing materials.

  3. Liquid Hydrogen Absorber for MICE

    SciTech Connect

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  4. Plants absorb heavy metals

    SciTech Connect

    Parry, J.

    1995-02-01

    Decontamination of heavy metals-polluted soils remains one of the most intractable problems of cleanup technology. Currently available techniques include extraction of the metals by physical and chemical means, such as acid leaching and electroosmosis, or immobilization by vitrification. There are presently no techniques for cleanup which are low cost and retain soil fertility after metals removal. But a solution to the problem could be on the horizon. A small but growing number of plants native to metalliferous soils are known to be capable of accumulating extremely high concentrations of metals in their aboveground portions. These hyperaccumulators, as they are called, contain up to 1,000 times larger metal concentrations in their aboveground parts than normal species. Their distribution is global, including many different families of flowering plants of varying growth forms, from herbaceous plants to trees. Hyperaccumulators absorb metals they do not need for their own nutrition. The metals are accumulated in the leaf and stem vacuoles, and to a lesser extent in the roots.

  5. Columns in Clay

    ERIC Educational Resources Information Center

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  6. A Column Dispersion Experiment.

    ERIC Educational Resources Information Center

    Corapcioglu, M. Y.; Koroglu, F.

    1982-01-01

    Crushed glass and a Rhodamine B solution are used in a one-dimensional optically scanned column experiment to study the dispersion phenomenon in porous media. Results indicate that the described model gave satisfactory results and that the dispersion process in this experiment is basically convective. (DC)

  7. Mini-columns for Conducting Breakthrough Experiments. Design and Construction

    SciTech Connect

    Dittrich, Timothy M.; Reimus, Paul William; Ware, Stuart Douglas

    2015-06-11

    Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or Kd values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.

  8. Techniques for measuring intercepted and absorbed PAR in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.

    1984-01-01

    The quantity of radiation potentially available for photosynthesis that is captured by the crop is best described as absorbed photosynthetically active radiation (PAR). Absorbed PAR (APAR) is the difference between descending and ascending fluxes. The four components of APAR were measured above and within two planting densities of corn (Zea mays L.) and several methods of measuring and estimating APAR were examined. A line quantum sensor that spatially averages the photosynthetic photon flux density provided a rapid and portable method of measuring APAR. PAR reflectance from the soil (Typic Argiaquoll) surface decreased from 10% to less than 1% of the incoming PAR as the canopy cover increased. PAR reflectance from the canopy decreased to less than 3% at maximum vegetative cover. Intercepted PAR (1 - transmitted PAR) generally overestimated absorbed PAR by less than 4% throughout most of the growing season. Thus intercepted PAR appears to be a reasonable estimate of absorbed PAR.

  9. Density Gradients in Chemistry Teaching

    ERIC Educational Resources Information Center

    Miller, P. J.

    1972-01-01

    Outlines experiments in which a density gradient might be used to advantage. A density gradient consists of a column of liquid, the composition and density of which varies along its length. The procedure can be used in analysis of solutions and mixtures and in density measures of solids. (Author/TS)

  10. Conditions in the z = 0.692 absorber toward 3CR 286

    NASA Technical Reports Server (NTRS)

    Cohen, Ross D.; Barlow, Thomas A.; Beaver, E. A.; Junkkarinen, Vesa T.; Lyons, Ronald W.; Smith, Harding E.

    1994-01-01

    We present Hubble Space Telescope/Faint Object Spectrograph (HST/FOS) ultraviolet and ground-based optical spectra of the z = 0.692 21 cm absorption system in the quasi-stellar object (QSO) 3CR 286. The strength of the damped Lyman-alpha absorption implies an H I column density, N(H I) approximately 2 x 10(exp 21)/sq cm. We derive a high spin temperature for the H I gas, T(sub s) greater than or approximately equal to 10(exp 3) K, as has been found for other high-redshift 21 cm absorbing systems; at least 80% of the H I is hotter than 1200 K. Curve-of-growth analysis yields Mg(+) and Fe(+) abundances which are approximately 1-2 dex below solar values; the Ca(+) abundance is even lower implying some depletion onto dust grains. The H2 fraction is not high. We speculate that the high inferred T(sub s) for the gas may reflect continuing active star formation at the 5-8 Gyr look-back time to the absorbing galaxy.

  11. Leaf absorbance and photosynthesis

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  12. Hydraulic shock absorber

    SciTech Connect

    Tanaka, T.

    1987-03-03

    This patent describes a hydraulic shock absorber including a piston reciprocating in a cylinder, a piston upper chamber and a piston lower chamber which are oil-tightly separated by the piston, piston ports formed through the piston in a circle for communicating the piston upper chamber with the piston lower chamber, and return ports formed outside of the piston ports in a circle for communicating the piston upper chamber with the piston lower chamber. It also includes a sheet ring-like non-return valve provided above the piston and fitted to a piston rod, valve holes formed through the non-return valve in opposed relation with the piston ports. A ring-like non-return valve stopper fixed to the piston rod on an upper side of the non-return valve with a small spaced defined between the non-return valve and the non-return valve stopper, and a spring is interposed between the non-return valve and the non-return valve stopper for normally urging the non-return valve to an upper surface of the piston. Movement of the piston to the piston upper chamber allows oil to flow from the piston upper chamber through the piston ports to the piston lower chamber, while the return ports are closed by the non-return valve to generate a vibration damping force by resistance upon pass of the oil through the piston parts. The improvement described here comprises a groove formed in an upper surface of the piston facing the non-return valve and aligned with the valve holes, the groove being in the circle where the piston ports lie and being in communication with the piston ports.

  13. Metal-shearing energy absorber

    NASA Technical Reports Server (NTRS)

    Fay, R. J.; Wittrock, E. P.

    1971-01-01

    Device, consisting of tongue of thin aluminum alloy strip, pull tab, slotted steel plate which serves as cutter, and steel buckle, absorbs mechanical energy when its ends are subjected to tensile loading. Device is applicable as auxiliary shock absorbing anchor for automobile and airplane safety belts.

  14. The broadband dynamic vibration absorber

    NASA Astrophysics Data System (ADS)

    Hunt, J. B.; Nissen, J.-C.

    1982-08-01

    The limited effectiveness of the linear passive dynamic vibration absorber is described. This is followed by an analysis producing the response of a primary system when a non-linear softening Belleville spring is used in the absorber. It is shown that the suppression bandwidth can be doubled by this means.

  15. 11. TIMBER COLUMN AND CAST IRON COLUMN CAP IN FIFTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. TIMBER COLUMN AND CAST IRON COLUMN CAP IN FIFTH FLOOR WAREHOUSE SPACE. VIEW TO SOUTHWEST. - Commercial & Industrial Buildings, Becker-Hazelton Company Warehouse, 280 Iowa Street, Dubuque, Dubuque County, IA

  16. Successfully downsize trayed columns

    SciTech Connect

    Sloley, A.W.; Fleming, B. )

    1994-03-01

    Techniques for the design and sizing of new trayed distillation columns are abundant in the literature. So, too, are the guidelines for modifying towers for operation beyond their original design range. Reducing capacity of distillation trays merits at least as much consideration. Indeed, lack of knowledge and experience in this area causes many tower failures and misdesigned columns. In this article, the authors present some practical design considerations, based on field experience, for tower trays operating at loadings dramatically lower than normal for a particular design. General considerations cover liquid and vapor hydraulics and flow behavior. Case studies are included for there typical units: a refinery vacuum crude still, a petrochemical superfractionator, and a steam stripper.

  17. Tuned vibration absorbers with nonlinear viscous damping for damped structures under random load

    NASA Astrophysics Data System (ADS)

    Shum, K. M.

    2015-06-01

    The classical problem for the application of a tuned vibration absorber is to minimize the response of a structural system, such as displacement, velocity, acceleration or to maximize the energy dissipated by tuned vibration absorber. The development of explicit optimal absorber parameters is challenging for a damped structural system since the fixed points no longer exist in the frequency response curve. This paper aims at deriving a set of simple design formula of tuned vibration absorber with nonlinear viscous damping based on the frequency tuning for harmonic load for a damped structural system under white noise excitation. The vibration absorbers being considered include tuned mass damper (TMD) and liquid column vibration absorber (LCVA). Simple approximate expression for the standard deviation velocity response of tuned vibration absorber for damped primary structure is also derived in this study to facilitate the estimation of the damping coefficient of TMD with nonlinear viscous damping and the head loss coefficient of LCVA. The derived results indicate that the higher the structural inherent damping the smaller the supplementary damping provided by a tuned vibration absorber. Furthermore, the optimal damping of tuned vibration absorber is shown to be independent of structural damping when it is tuned using the frequency tuning for harmonic load. Finally, the derived closed-form expressions are demonstrated to be capable of predicting the optimal parameters of tuned vibration absorbers with sufficient accuracy for preliminary design of tuned vibration absorbers with nonlinear viscous damping for a damped primary structure.

  18. Postglacial inception of the modern-AMOC based on proxy-reconstructions for 1 ka-time slices of paleo-sea surface conditions and paleo-density gradients in the upper water column

    NASA Astrophysics Data System (ADS)

    Hillaire-Marcel, Claude; de Vernal, Anne; Fréchette, Bianca

    2013-04-01

    The post-glacial evolution of paleo-sea surface conditions (winter vs summer SST and SSS; sea-ice cover) has been reconstructed for 19 sites of the northern North Atlantic and 9 Arctic sites, in 1 ka-time slices and from the Younger Dryas (YD) to 6 ka BP, based on estimates from the modern analogue technique applied to dinocyst assemblages. This information has also be used to calibrate potential density vs calcite-18O relationships, for 11 sites of the northern North Atlantic, thus allowing us to estimate the evolution of density gradients between the photic zone (as recorded by dinocysts) and the underlying pycnocline with the intermediate water layer, as recorded by 18O-data in the mesopelagic foraminifer Neogloboquadrina pachyderma. Paleo-sea surface conditions point to the persistence of strong E-W and S-N salinity and temperature gradients throughout the interval, but with large difference in the amplitude and timing for the local attainment of the so-called "Holocene optimum". Paleo-density gradients, south of the Denmark-Strait-Iceland-Faroe sills, also illustrate a strong E-W difference, with the persistence of low-density surface waters in the west, but a relatively narrow range of density values in the subsurface water layer. These paleodensity gradients also indicate that conditions suitable for intermediate- to deep-water production were restricted to the sector west of 45°W. In this area, some sporadic winter production of intermediate/deep waters might have occurred during the pre-8 ka interval possibly in relation with brine distillation from sea ice, but pervasive convection occurred later, as illustrated by higher-resolution paleo-density records from the Labrador Sea.

  19. Absorbent product to absorb fluids. [for collection of human wastes

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multi-layer absorbent product for use in contact with the skin to absorb fluids is discussed. The product utilizes a water pervious facing layer for contacting the skin, overlayed by a first fibrous wicking layer, the wicking layer preferably being of the one-way variety in which fluid or liquid is moved away from the facing layer. The product further includes a first container section defined by inner and outer layer of a water pervious wicking material between which is disposed a first absorbent mass. A second container section defined by inner and outer layers between which is disposed a second absorbent mass and a liquid impermeable/gas permeable layer. Spacesuit applications are discussed.

  20. On the origin of the warm-hot absorbers in the Milky Way's halo

    NASA Astrophysics Data System (ADS)

    Marasco, A.; Marinacci, F.; Fraternali, F.

    2013-08-01

    Disc galaxies like the Milky Way are expected to be surrounded by massive coronae of hot plasma that may contain a significant fraction of the so-called missing baryons. We investigate whether the local (|vLSR| < 400 km s-1) warm-hot absorption features observed towards extra-Galactic sources or halo stars are consistent with being produced by the cooling of the Milky Way's corona. In our scheme, cooling occurs at the interface between the disc and the corona and it is triggered by positive supernova feedback. We combine hydrodynamical simulations with a dynamical 3D model of the galactic fountain to predict the all-sky distribution of this cooling material, and we compare it with the observed distribution of detections for different `warm' (Si III, Si IV, C II, C IV) and `hot' (O VI) ionized species. The model reproduces the position-velocity distribution and the column densities of the vast majority of warm absorbers and about half of O VI absorbers. We conclude that the warm-hot gas responsible for most of the detections lies within a few kiloparsec from the Galactic plane, where high-metallicity material from the disc mixes efficiently with the hot corona. This process provides an accretion of a few M⊙ yr- 1 of fresh gas that can easily feed the star formation in the disc of the Galaxy. The remaining O VI detections are likely to be a different population of absorbers, located in the outskirts of the Galactic corona and/or in the circumgalactic medium of nearby galaxies.

  1. Self-Regulating Shock Absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J.

    1995-01-01

    Mechanical shock absorber keeps frictional damping force within tolerable limit. Its damping force does not increase with coefficient of friction between energy-absorbing components; rather, frictional damping force varies only slightly. Relatively insensitive to manufacturing variations and environmental conditions altering friction. Does not exhibit high breakaway friction and consequent sharp increase followed by sharp decrease in damping force at beginning of stroking. Damping force in absorber does not vary appreciably with speed of stroking. In addition, not vulnerable to leakage of hydraulic fluid.

  2. Acoustical model of a Shoddy fibre absorber

    NASA Astrophysics Data System (ADS)

    Manning, John Peter

    Shoddy fibres or "Shoddies" are a mixture of post-consumer and post-industrial fibres diverted from textile waste streams and recycled into their raw fibre form. They have found widespread use as a raw material for manufacturing sound absorbers that include, but are not limited to: automotive, architectural and home appliance applications. The purpose of this project is to develop a simple acoustic model to describe the acoustic behaviour of sound absorbers composed primarily of Shoddy fibres. The model requires knowledge of the material's bulk density only. To date, these materials have not been the focus of much published research and acoustical designers must rely on models that were developed for other materials or are overly complex. For modelling purposes, an equivalent fluid approach is chosen to balance complexity and accuracy. In deriving the proposed model, several popular equivalent fluid models are selected and the required input parameters for each model identified. The models are: the model of Delaney and Bazley, two models by Miki, the model of Johnson in conjunction with the model of Champoux and Allard and the model of Johnson in conjunction with the model of Lafarge. Characterization testing is carried out on sets of Shoddy absorbers produced using three different manufacturing methods. The measured properties are open porosity, tortuosity, airflow resistivity, the viscous and thermal characteristic lengths and the static thermal permeability. Empirical relationships between model parameters and bulk density are then derived and used to populate the selected models. This yields several 'simplified' models with bulk density as the only parameter. The most accurate model is then selected by comparing each model's prediction to the results of normal incidence sound absorption tests. The model of Johnson-Lafarge populated with the empirical relations is the most accurate model over the range of frequencies considered (approx. 300 Hz - 4000 Hz

  3. The impact of different physical processes on the statistics of Lyman-limit and damped Lyman α absorbers

    NASA Astrophysics Data System (ADS)

    Altay, Gabriel; Theuns, Tom; Schaye, Joop; Booth, C. M.; Dalla Vecchia, Claudio

    2013-12-01

    We compute the z = 3 neutral hydrogen column density distribution function f(NHI) for 19 simulations drawn from the Overwhelmingly Large Simulations project using a post-processing correction for self-shielding calculated with full radiative transfer of the ionizing background radiation. We investigate how different physical processes and parameters affect the abundance of Lyman-limit systems (LLSs) and damped Lyman α absorbers including: (i) metal-line cooling; (ii) the efficiency of feedback from supernovae and active galactic nuclei; (iii) the effective equation of state for the interstellar medium; (iv) cosmological parameters; (v) the assumed star formation law and (vi) the timing of hydrogen reionization. We find that the normalization and slope, D = d log _{10} f /d log _{10} N_{H I}, of f(NHI) in the LLS regime are robust to changes in these physical processes. Among physically plausible models, f(NHI) varies by less than 0.2 dex and D varies by less than 0.18 for LLSs. This is primarily due to the fact that these uncertain physical processes mostly affect star-forming gas which contributes less than 10 per cent to f(NHI) in the LLS column density range. At higher column densities, variations in f(NHI) become larger (approximately 0.5 dex at f(NHI) = 1022 cm-2 and 1.0 dex at f(NHI) = 1022 cm-2) and molecular hydrogen formation also becomes important. Many of these changes can be explained in the context of self-regulated star formation in which the amount of star-forming gas in a galaxy will adjust such that outflows driven by feedback balance inflows due to accretion. Tools to reproduce all figures in this work can be found at the following url: https://bitbucket.org/galtay/hi-cddf-owls-1

  4. Column test-rig facility for column scanning studies

    NASA Astrophysics Data System (ADS)

    Zain, Rasif M.; Roslan, Y.

    2010-03-01

    Distillation columns are considered as one of the most critical components in oil and gas plants. The plant performance depends on the ability of these columns to function as intended. Defective columns may lead to serious consequences to the plant operation, and hence the quality of product. In order to perform any inspection techniques to distillation column for NDT practitioner, the best facility was designed when the adjustable defeats of distillation column test rig has been developed. The paper discussed the development and the function of this facility.

  5. Column test-rig facility for column scanning studies

    NASA Astrophysics Data System (ADS)

    Zain, Rasif M.; Roslan, Y.

    2009-12-01

    Distillation columns are considered as one of the most critical components in oil and gas plants. The plant performance depends on the ability of these columns to function as intended. Defective columns may lead to serious consequences to the plant operation, and hence the quality of product. In order to perform any inspection techniques to distillation column for NDT practitioner, the best facility was designed when the adjustable defeats of distillation column test rig has been developed. The paper discussed the development and the function of this facility.

  6. Microscopic modeling of nitride intersubband absorbance

    NASA Astrophysics Data System (ADS)

    Montano, Ines; Allerman, A. A.; Wierer, J. J.; Moseley, M.; Skogen, E. J.; Tauke-Pedretti, A.; Vawter, G. A.

    III-nitride intersubband structures have recently attracted much interest because of their potential for a wide variety of applications ranging from electro-optical modulators to terahertz quantum cascade lasers. To overcome present simulation limitations we have developed a microscopic absorbance simulator for nitride intersubband devices. Our simulator calculates the band structure of nitride intersubband systems using a fully coupled 8x8 k.p Hamiltonian and determines the material response of a single period in a density-matrix-formalism by solving the Heisenberg equation including many-body and dephasing contributions. After calculating the polarization due to intersubband transitions in a single period, the resulting absorbance of a superlattice structure including radiative coupling between the different periods is determined using a non-local Green's-function formalism. As a result our simulator allows us to predict intersubband absorbance of superlattice structures with microscopically determined lineshapes and linewidths accounting for both many-body and correlation contributions. This work is funded by Sandia National Laboratories Laboratory Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin.

  7. Molecules and metals in the distant universe: Sub-mm and optical spectroscopy of quasar absorbers

    NASA Astrophysics Data System (ADS)

    Morrison, Sean Stephen

    In order to gain a complete understanding of galaxy formation and evolution, knowledge of the atomic and molecular gas in the interstellar medium (ISM) is required. Absorption-line spectroscopy of quasars offer a powerful and luminosity independent probe of gas to high redshifts. The sub-Damped Lyman-alpha systems (sub-DLAs; 19.0 < log NHI < 20.3), and Damped Lyman-alpha systems (DLAs; 20.3 < log NHI), are the highest neutral hydrogen column density quasar absorbers contain most of the neutral gas available for star formation in the high-redshift Universe. This thesis presents photometric measurements of 10 quasars absorbers with redshifts 0.652 < zabs < 3.104 taken with the Spectral and Photometric Imaging Receiver (SPIRE) on Herschel. Of these 10 objects, 3 showed fluxes > 1 Jy. In addition spectra for 5 other quasars with DLAs (0.524 < zabs < 1.173) were taken with SPIRE and Heterodyne Instrument for the far-infrared (HIFI) on Herschel. These observations, in the far-IR and sub-mm bands, were optimized for detection of molecular lines of CO, 13CO, C 18O, H2O, HCO, and the forbidden transitions of [C II] and [N II]. Two targets, the DLA towards PKS0420-014 at z = 0.633 and the DLA towards AO0235+164 at z = 0.524, had a tentative detection of C18O, and another, the DLA towards TXS0827+243 at z = 0.52476, had a tentative detection of HCO. There were a number of other 3 sigma limits, with at least one limit for each of the 5 systems. In addition to the DLAs, 2 super-DLAs (with z = 2.5036 and z = 2.045) were observed using the echellette mode on Keck Echellette Spectrograph and Imager (ESI). These observations, in the optical and ultraviolet wavelengths, were optimized to detect metal lines. Both absorbers show remarkably similar metallicities of ~ -1.3 to ~ -1.4 dex and comparable, definitive depletion levels, as judged from [Fe/Zn] and [Ni/Zn]. One of the absorbers shows supersolar [S/Zn] and [Si/Zn]. Using potential detections of weak Ly-alpha emission at the

  8. High heat-load absorbers for the APS storage ring

    SciTech Connect

    Sharma, S.; Rotela, E.; Barcikowski, A.

    2000-07-21

    The power density of the dipole x-rays in the 7-GeV APS storage ring is 261 watts/mrad at 300 mA of beam current. An array of absorbers is used in the ring to shield its vacuum chambers and diagnostics components in the path of these intense x-rays. This paper describes some of the unique absorber designs that were developed to handle the requirements of high power density and UHV compatibility with no water-to-vacuum joints.

  9. Genetic effects induced by neutrons in Drosophila melanogaster I. Determination of absorbed dose.

    PubMed

    Delfin, A; Paredes, L C; Zambrano, F; Guzmán-Rincón, J; Ureña-Nuñez, F

    2001-12-01

    A method to obtain the absorbed dose in Drosophila melanogaster irradiated in the thermal column facility of the Triga Mark III Reactor has been developed. The method is based on the measurements of neutron activation of gold foils produced by neutron capture to obtain the neutron fluxes. These fluxes, combined with the calculations of kinetic energy released per unit mass, enables one to obtain the absorbed doses in Drosophila melanogaster. PMID:11761104

  10. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, William H.

    1984-01-01

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system.

  11. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, W.H.

    1984-10-16

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system. 9 figs.

  12. Synthesis and applications of monolithic HPLC columns

    NASA Astrophysics Data System (ADS)

    Liang, Chengdu

    Silica and carbon monolithic columns were synthesized and modified for liquid chromatography applications. Column configurations and cladding techniques were investigated in detail. Three novel approaches have been developed for the synthesis of bimodal porous rods. Out of these three methods, gel-casting was adopted for the synthesis of silica monoliths with ordered mesopores and uniform macropores; the use of colloidal templates and dual phase separation has been successfully implemented for the synthesis of carbon monoliths with well-controlled meso- and macro- porosities. The formation of mesopores in carbon materials has been further studied in the microphase separation of block copolymers. Electrochemical modification of carbon monoliths was discovered to be an efficient method for converting covalently bonded functionalities to carbon monoliths. N,N'-diethylaminobenzene has been attached to carbon surface for the separation of proteins and protein digests. The performances of carbon-based monolithic columns were studied intensely through frontal analysis and Van Deemter plot. Temperature and pressure effects were also investigated in carbon-based columns. The density of bonding on the modified carbon monoliths was characterized by thermogravimetric analysis.

  13. Observations of Outflowing Ultraviolet Absorbers in NGC 4051 with the Cosmic Origins Spectrograph

    NASA Astrophysics Data System (ADS)

    Kraemer, S. B.; Crenshaw, D. M.; Dunn, J. P.; Turner, T. J.; Lobban, A. P.; Miller, L.; Reeves, J. N.; Fischer, T. C.; Braito, V.

    2012-06-01

    We present new Hubble Space Telescope (HST)/Cosmic Origins Spectrograph (COS) observations of the narrow-line Seyfert 1 galaxy NGC 4051. These data were obtained as part of a coordinated observing program including X-ray observations with the Chandra/High Energy Transmission Grating (HETG) spectrometer and Suzaku. We detected nine kinematic components of UV absorption, which were previously identified using the HST/Space Telescope Imaging Spectrograph (STIS). None of the absorption components showed evidence for changes in column density or profile within the ~10 yr between the STIS and COS observations, which we interpret as evidence of (1) saturation, for the stronger components, or (2) very low densities, i.e., n H < 1 cm-3, for the weaker components. After applying a +200 km s-1 offset to the HETG spectrum, we found that the radial velocities of the UV absorbers lay within the O VII profile. Based on photoionization models, we suggest that, while UV components 2, 5, and 7 produce significant O VII absorption, the bulk of the X-ray absorption detected in the HETG analysis occurs in more highly ionized gas. Moreover, the mass-loss rate is dominated by high-ionization gas which lacks a significant UV footprint. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with proposal 11834.

  14. OBSERVATIONS OF OUTFLOWING ULTRAVIOLET ABSORBERS IN NGC 4051 WITH THE COSMIC ORIGINS SPECTROGRAPH

    SciTech Connect

    Kraemer, S. B.; Crenshaw, D. M.; Fischer, T. C.; Dunn, J. P.; Turner, T. J.; Lobban, A. P.; Reeves, J. N.; Miller, L.; Braito, V.

    2012-06-01

    We present new Hubble Space Telescope (HST)/Cosmic Origins Spectrograph (COS) observations of the narrow-line Seyfert 1 galaxy NGC 4051. These data were obtained as part of a coordinated observing program including X-ray observations with the Chandra/High Energy Transmission Grating (HETG) spectrometer and Suzaku. We detected nine kinematic components of UV absorption, which were previously identified using the HST/Space Telescope Imaging Spectrograph (STIS). None of the absorption components showed evidence for changes in column density or profile within the {approx}10 yr between the STIS and COS observations, which we interpret as evidence of (1) saturation, for the stronger components, or (2) very low densities, i.e., n{sub H} < 1 cm{sup -3}, for the weaker components. After applying a +200 km s{sup -1} offset to the HETG spectrum, we found that the radial velocities of the UV absorbers lay within the O VII profile. Based on photoionization models, we suggest that, while UV components 2, 5, and 7 produce significant O VII absorption, the bulk of the X-ray absorption detected in the HETG analysis occurs in more highly ionized gas. Moreover, the mass-loss rate is dominated by high-ionization gas which lacks a significant UV footprint.

  15. Carbon Absorber Retrofit Equipment (CARE)

    SciTech Connect

    Klein, Eric

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  16. Mushroom plasmonic metamaterial infrared absorbers

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinpei; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-01

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF2 etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  17. Additive manufacturing of RF absorbers

    NASA Astrophysics Data System (ADS)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  18. Mushroom plasmonic metamaterial infrared absorbers

    SciTech Connect

    Ogawa, Shinpei Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-26

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF{sub 2} etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  19. Nonventing, Regenerable, Lightweight Heat Absorber

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo

    2008-01-01

    A lightweight, regenerable heat absorber (RHA), developed for rejecting metabolic heat from a space suit, may also be useful on Earth for short-term cooling of heavy protective garments. Unlike prior space-suit-cooling systems, a system that includes this RHA does not vent water. The closed system contains water reservoirs, tubes through which water is circulated to absorb heat, an evaporator, and an absorber/radiator. The radiator includes a solution of LiCl contained in a porous material in titanium tubes. The evaporator cools water that circulates through a liquid-cooled garment. Water vapor produced in the evaporator enters the radiator tubes where it is absorbed into the LiCl solution, releasing heat. Much of the heat of absorption is rejected to the environment via the radiator. After use, the RHA is regenerated by heating it to a temperature of 100 C for about 2 hours to drive the absorbed water back to the evaporator. A system including a prototype of the RHA was found to be capable of maintaining a temperature of 20 C while removing heat at a rate of 200 W for 6 hours.

  20. SPIRAL CONTACTOR FOR SOLVENT EXTRACTION COLUMN

    DOEpatents

    Cooley, C.R.

    1961-06-13

    The patented extraction apparatus includes a column, perforated plates extending across the column, liquid pulse means connected to the column, and an imperforate spiral ribbon along the length of the column.

  1. Why Hexagonal Basalt Columns?

    PubMed

    Hofmann, Martin; Anderssohn, Robert; Bahr, Hans-Achim; Weiß, Hans-Jürgen; Nellesen, Jens

    2015-10-01

    Basalt columns with their preferably hexagonal cross sections are a fascinating example of pattern formation by crack propagation. Junctions of three propagating crack faces rearrange such that the initial right angles between them tend to approach 120°, which enables the cracks to form a pattern of regular hexagons. To promote understanding of the path on which the ideal configuration can be reached, two periodically repeatable models are presented here involving linear elastic fracture mechanics and applying the principle of maximum energy release rate. They describe the evolution of the crack pattern as a transition from rectangular start configuration to the hexagonal pattern. This is done analytically and by means of three-dimensional finite element simulation. The latter technique reproduces the curved crack path involved in this transition.

  2. Why Hexagonal Basalt Columns?

    PubMed

    Hofmann, Martin; Anderssohn, Robert; Bahr, Hans-Achim; Weiß, Hans-Jürgen; Nellesen, Jens

    2015-10-01

    Basalt columns with their preferably hexagonal cross sections are a fascinating example of pattern formation by crack propagation. Junctions of three propagating crack faces rearrange such that the initial right angles between them tend to approach 120°, which enables the cracks to form a pattern of regular hexagons. To promote understanding of the path on which the ideal configuration can be reached, two periodically repeatable models are presented here involving linear elastic fracture mechanics and applying the principle of maximum energy release rate. They describe the evolution of the crack pattern as a transition from rectangular start configuration to the hexagonal pattern. This is done analytically and by means of three-dimensional finite element simulation. The latter technique reproduces the curved crack path involved in this transition. PMID:26550724

  3. Mitigation of Liquefaction in Sandy Soils Using Stone Columns

    NASA Astrophysics Data System (ADS)

    Selcuk, Levent; Kayabalı, Kamil

    2010-05-01

    Soil liquefaction is one of the leading causes of earthquake-induced damage to structures. Soil improvement methods provide effective solutions to reduce the risk of soil liquefaction. Thus, soil ground treatments are applied using various techniques. However, except for a few ground treatment methods, they generally require a high cost and a lot of time. Especially in order to prevent the risk of soil liquefaction, stone columns conctructed by vibro-systems (vibro-compaction, vibro-replacement) are one of the traditional geotechnical methods. The construction of stone columns not only enhances the ability of clean sand to drain excess pore water during an earthquake, but also increases the relative density of the soil. Thus, this application prevents the development of the excess pore water pressure in sand during earthquakes and keeps the pore pressure ratio below a certain value. This paper presents the stone column methods used against soil liquefaction in detail. At this stage, (a) the performances of the stone columns were investigated in different spacing and diameters of columns during past earthquakes, (b) recent studies about design and field applications of stone columns were presented, and (c) a new design method considering the relative density of soil and the capacity of drenage of columns were explained in sandy soil. Furthermore, with this new method, earthquake performances of the stone columns constructed at different areas were investigated before the 1989 Loma Prieta and the 1994 Northbridge earthquakes, as case histories of field applications, and design charts were compiled for suitable spacing and diameters of stone columns with consideration to the different sandy soil parameters and earhquake conditions. Key Words: Soil improvement, stone column, excess pore water pressure

  4. Probing the circumgalactic medium at high-redshift using composite BOSS spectra of strong Lyman α forest absorbers

    NASA Astrophysics Data System (ADS)

    Pieri, Matthew M.; Mortonson, Michael J.; Frank, Stephan; Crighton, Neil; Weinberg, David H.; Lee, Khee-Gan; Noterdaeme, Pasquier; Bailey, Stephen; Busca, Nicolas; Ge, Jian; Kirkby, David; Lundgren, Britt; Mathur, Smita; Pâris, Isabelle; Palanque-Delabrouille, Nathalie; Petitjean, Patrick; Rich, James; Ross, Nicholas P.; Schneider, Donald P.; York, Donald G.

    2014-06-01

    We present composite spectra constructed from a sample of 242 150 Lyman α (Lyα) forest absorbers at redshifts 2.4 < z < 3.1 identified in quasar spectra from the Baryon Oscillation Spectroscopic Survey (BOSS) as part of Data Release 9 of the Sloan Digital Sky Survey III. We select forest absorbers by their flux in bins 138 km s-1 wide (approximately the size of the BOSS resolution element). We split these absorbers into five samples spanning the range of flux -0.05 ≤ F < 0.45. Tests on a smaller set of high-resolution spectra show that our three strongest absorption samples would probe circumgalactic regions (projected separation <300 proper kpc and |Δv| < 300 km s-1) in about 60 per cent of cases for very high signal-to-noise ratio. Within this subset, weakening Lyα absorption is associated with decreasing purity of circumgalactic selection once BOSS noise is included. Our weaker two Lyα absorption samples are dominated by the intergalactic medium. We present composite spectra of these samples and a catalogue of measured absorption features from H I and 13 metal ionization species, all of which we make available to the community. We compare measurements of seven Lyman series transitions in our composite spectra to single line models and obtain further constraints from their associated excess Lyman limit opacity. This analysis provides results consistent with column densities over the range 14.4 ≲ log (N_{H I}) ≲ 16.45. We compare our measurements of metal absorption to a variety of simple single-line, single-phase models for a preliminary interpretation. Our results imply clumping on scales down to ˜30 pc and near-solar metallicities in the circumgalactic samples, while high-ionization metal absorption consistent with typical IGM densities and metallicities is visible in all samples.

  5. Buckling of a holey column.

    PubMed

    Pihler-Puzović, D; Hazel, A L; Mullin, T

    2016-09-14

    We report the results from a combined experimental and numerical investigation of buckling in a novel variant of an elastic column under axial load. We find that including a regular line of centred holes in the column can prevent conventional, global, lateral buckling. Instead, the local microstructure introduced by the holes allows the column to buckle in an entirely different, internal, mode in which the holes are compressed in alternate directions, but the column maintains the lateral reflection symmetry about its centreline. The internal buckling mode can be accommodated within a smaller external space than the global one; and it is the preferred buckling mode over an intermediate range of column lengths for sufficiently large holes. For very short or sufficiently long columns a modification of the classical, global, lateral buckling is dominant. PMID:27501288

  6. Algebraic instability of hollow electron columns and cylindrical vortices

    SciTech Connect

    Smith, R.A. ); Rosenbluth, M.N. )

    1990-02-05

    An axisymmetric, amgnetically confined electron column, in which the {bold E}{times}{bold B} rotation frequency is not a monotone function of radius, is linearly unstable to two-dimensional, electrostatic disturbances with azimuthal mode number {ital l}=1. The perturbation density is asymptotically proportional to {radical}{ital t} and may be described as a shift of the core of the column. A particle-in-cell simulation indicates that harmonics grow rapidly and that there are secondary instabilities. An identical instability arises in hollow circular vortex columns in an inviscid, incompressible neutral fluid.

  7. Waveform-Dependent Absorbing Metasurfaces

    NASA Astrophysics Data System (ADS)

    Wakatsuchi, Hiroki; Kim, Sanghoon; Rushton, Jeremiah J.; Sievenpiper, Daniel F.

    2013-12-01

    We present the first use of a waveform-dependent absorbing metasurface for high-power pulsed surface currents. The new type of nonlinear metasurface, composed of circuit elements including diodes, is capable of storing high-power pulse energy to dissipate it between pulses, while allowing propagation of small signals. Interestingly, the absorbing performance varies for high-power pulses but not for high-power continuous waves (CW’s), since the capacitors used are fully charged up. Thus, the waveform dependence enables us to distinguish various signal types (i.e., CW or pulse) even at the same frequency, which potentially creates new kinds of microwave technologies and applications.

  8. Compact electron beam focusing column

    SciTech Connect

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-07-13

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2-D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  9. 45. MAIN MEETING ROOM COLUMNS. Ends of gallery columns identified ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. MAIN MEETING ROOM COLUMNS. Ends of gallery columns identified at the time of removal for transfer to the George School for re-erection. The stamp reads, 'REMOVED FROM 12th ST. MTG HSE PHILA 1972'. - Twelfth Street Meeting House, 20 South Twelfth Street, Philadelphia, Philadelphia County, PA

  10. Oil and fat absorbing polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A method is described for forming a solid network polymer having a minimal amount of crosslinking for use in absorbing fats and oils. The polymer remains solid at a swelling ratio in oil or fat of at least ten and provides an oil absorption greater than 900 weight percent.

  11. Counterflow absorber for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    An air-cooled, vertical tube absorber for an absorption refrigeration system is disclosed. Strong absorbent solution is supplied to the top of the absorber and refrigerant vapor is supplied to the bottom of the absorber to create a direct counterflow of refrigerant vapor and absorbent solution in the absorber. The refrigeration system is designed so that the volume flow rate of refrigerant vapor in the tubes of the absorber is sufficient to create a substantially direct counterflow along the entire length of each tube in the absorber. This provides several advantages for the absorber such as higher efficiency and improved heat transfer characteristics, and allows improved purging of non-condensibles from the absorber.

  12. Dorsal column stimulator applications

    PubMed Central

    Yampolsky, Claudio; Hem, Santiago; Bendersky, Damián

    2012-01-01

    Background: Spinal cord stimulation (SCS) has been used to treat neuropathic pain since 1967. Following that, technological progress, among other advances, helped SCS become an effective tool to reduce pain. Methods: This article is a non-systematic review of the mechanism of action, indications, results, programming parameters, complications, and cost-effectiveness of SCS. Results: In spite of the existence of several studies that try to prove the mechanism of action of SCS, it still remains unknown. The mechanism of action of SCS would be based on the antidromic activation of the dorsal column fibers, which activate the inhibitory interneurons within the dorsal horn. At present, the indications of SCS are being revised constantly, while new applications are being proposed and researched worldwide. Failed back surgery syndrome (FBSS) is the most common indication for SCS, whereas, the complex regional pain syndrome (CRPS) is the second one. Also, this technique is useful in patients with refractory angina and critical limb ischemia, in whom surgical or endovascular treatment cannot be performed. Further indications may be phantom limb pain, chronic intractable pain located in the head, face, neck, or upper extremities, spinal lumbar stenosis in patients who are not surgical candidates, and others. Conclusion: Spinal cord stimulation is a useful tool for neuromodulation, if an accurate patient selection is carried out prior, which should include a trial period. Undoubtedly, this proper selection and a better knowledge of its underlying mechanisms of action, will allow this cutting edge technique to be more acceptable among pain physicians. PMID:23230533

  13. An Undergraduate Column Chromatography Experiment.

    ERIC Educational Resources Information Center

    Danot, M.; And Others

    1984-01-01

    Background information, list of materials needed, and procedures used are provided for an experiment designed to introduce undergraduate students to the theoretical and technical aspects of column chromatography. The experiment can also be shortened to serve as a demonstration of the column chromatography technique. (JN)

  14. Miniature Distillation Column for Producing LOX From Air

    NASA Technical Reports Server (NTRS)

    Rozzi, Jay C.

    2006-01-01

    The figure shows components of a distillation column intended for use as part of a system that produces high-purity liquid oxygen (LOX) from air by distillation. (The column could be easily modified to produce high-purity liquid nitrogen.) Whereas typical industrial distillation columns for producing high-purity liquid oxygen and/or nitrogen are hundreds of feet tall, this distillation column is less than 3 ft (less than about 0.9 m) tall. This column was developed to trickle-charge a LOX-based emergency oxygen system (EOS) for a large commercial aircraft. A description of the industrial production of liquid oxygen and liquid nitrogen by distillation is prerequisite to a meaningful description of the present miniaturized distillation column. Typically, such industrial production takes place in a chemical processing plant in which large quantities of high-pressure air are expanded in a turboexpander to (1) recover a portion of the electrical power required to compress the air and (2) partially liquefy the air. The resulting two-phase flow of air is sent to the middle of a distillation column. The liquid phase is oxygen-rich, and its oxygen purity increases as it flows down the column. The vapor phase is nitrogen-rich and its nitrogen purity increases as it flows up the column. A heater or heat exchanger, commonly denoted a reboiler, is at the bottom of the column. The reboiler is so named because its role is to reboil some of the liquid oxygen collected at the bottom of the column to provide a flow of oxygen-rich vapor. As the oxygen-rich vapor flows up the column, it absorbs the nitrogen in the down-flowing liquid by mass transfer. Once the vapor leaves the lower portion of the column, it interacts with down-flowing nitrogen liquid that has been condensed in a heat exchanger, commonly denoted a condenser, at the top of the column. Liquid oxygen and liquid nitrogen products are obtained by draining some of the purified product at the bottom and top of the column

  15. Analyze distillation columns with thermodynamics

    SciTech Connect

    Ognisty, T.P. )

    1995-02-01

    In a distillation column, heat supplies the work for separating the components of a feed stream into products. Distillation columns consume some 95% of the total energy used in separations. This amounts to roughly 3% of the energy consumed in the US. Since distillation is so energy intensive and requires significant capital outlays, an endless quest to improve the economics has continued since the beginning of the industry. By analyzing the thermodynamics of a distillation column, an engineer can quantify the thermodynamic efficiency of the process, identify the regions where energy can be better utilized, and define the minimum targets for energy consumption. This article reviews the principles of distillation column thermodynamics and outlines the analysis of lost work profiles and column heat profiles. It then illustrates these concepts through three examples.

  16. THE TWO-PHASE, TWO-VELOCITY IONIZED ABSORBER IN THE SEYFERT 1 GALAXY NGC 5548

    SciTech Connect

    Andrade-Velazquez, Mercedes; Krongold, Yair; Binette, Luc; Jimenez-Bailon, Elena; Elvis, Martin; Nicastro, Fabrizio; Brickhouse, Nancy; Mathur, Smita

    2010-03-10

    -phase medium. This is the first time that different outflow velocity systems have been modeled independently in the X-ray band for this source. The kinematic components and column densities found from the X-rays are in agreement with the main kinematic components found in the UV absorber. This supports the idea that the UV and X-ray absorbing gas is part of the same phenomenon. NGC 5548 can now be seen to fit in a pattern established for other WAs: two or three discrete phases in pressure equilibrium. There are no remaining cases of a well-studied WA in which a model consisting of a multi-phase medium is not viable.

  17. Single-phase Stefan problem in selectively absorbing medium

    NASA Astrophysics Data System (ADS)

    Sleptsov, S. D.; Rubtsov, N. A.; Savvinova, N. A.

    2016-01-01

    The thermal state of a translucent selectively absorbing medium was studied by the methods of numerical simulation at different values of the optical properties of boundaries and heat transfer from the left surface in approximation of one-phase Stefan problem. The temperature fields and densities of resultant radiation fluxes as well as the thermal state of the left boundary and dynamics of layer reduction in the melting process were analyzed. The processes of phase transition in a flat layer of selective and gray absorbing media and emitting media were compared, and their fundamental differences were shown.

  18. Soil column leaching of pesticides.

    PubMed

    Katagi, Toshiyuki

    2013-01-01

    In this review, I address the practical and theoretical aspects of pesticide soil mobility.I also address the methods used to measure mobility, and the factors that influence it, and I summarize the data that have been published on the column leaching of pesticides.Pesticides that enter the unsaturated soil profile are transported downwards by the water flux, and are adsorbed, desorbed, and/or degraded as they pass through the soil. The rate of passage of a pesticide through the soil depends on the properties of the pesticide, the properties of the soil and the prevailing environmental conditions.Because large amounts of many different pesticides are used around the world, they and their degradates may sometimes contaminate groundwater at unacceptable levels.It is for this reason that assessing the transport behavior and soil mobility of pesticides before they are sold into commerce is important and is one indispensable element that regulators use to assess probable pesticide safety. Both elementary soil column leaching and sophisticated outdoor lysimeter studies are performed to measure the leaching potential for pesticides; the latter approach more reliably reflects probable field behavior, but the former is useful to initially profile a pesticide for soil mobility potential.Soil is physically heterogeneous. The structure of soil varies both vertically and laterally, and this variability affects the complex flow of water through the soil profile, making it difficult to predict with accuracy. In addition, macropores exist in soils and further add to the complexity of how water flow occurs. The degree to which soil is tilled, the density of vegetation on the surface, and the type and amounts of organic soil amendments that are added to soil further affect the movement rate of water through soil, the character of soil adsorption sites and the microbial populations that exist in the soil. Parameters that most influence the rate of pesticide mobility in soil are

  19. Mush Column Magma Chambers

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  20. Microcellular ceramic foams for radar absorbing structures

    SciTech Connect

    Huling, J.; Phillips, D.

    1996-09-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project is to develop a lightweight, semi-structural, radar-absorbing ceramic foam that can be incorporated into aircraft exhaust systems to replace many of the currently used dense ceramic parts and thereby improve the radar cross section. Although the conventional processes for producing ceramic foams have not been able to provide materials that meet the design specifications for high strength at low density, we have developed and demonstrated a novel sol-gel emulsion process for preparing microcellular ceramic foams in which compositional and microstructural control is expected to provide the requisite high-temperature radar-absorption, strength-to-weight ratio, and thermal insulative properties.

  1. Digital Alloy Absorber for Photodetectors

    NASA Technical Reports Server (NTRS)

    Hill, Cory J. (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2016-01-01

    In order to increase the spectral response range and improve the mobility of the photo-generated carriers (e.g. in an nBn photodetector), a digital alloy absorber may be employed by embedding one (or fraction thereof) to several monolayers of a semiconductor material (insert layers) periodically into a different host semiconductor material of the absorber layer. The semiconductor material of the insert layer and the host semiconductor materials may have lattice constants that are substantially mismatched. For example, this may performed by periodically embedding monolayers of InSb into an InAsSb host as the absorption region to extend the cutoff wavelength of InAsSb photodetectors, such as InAsSb based nBn devices. The described technique allows for simultaneous control of alloy composition and net strain, which are both key parameters for the photodetector operation.

  2. Microbial activity in weathering columns.

    PubMed

    García, C; Ballester, A; González, F; Blázquez, M L

    2007-03-22

    The aim of the present work was to evaluate the metabolic activity of the microbial population associated with a pyritic tailing after a column-weathering test. For this purpose, a column 150cm high and 15cm diameter was used. The solid was a tailing with 63.4% pyrite and with minor amounts of Cu, Pb and Zn sulfides (1.4, 0.5 and 0.8%, respectively). The column model was the habitual one for weathering tests: distilled water was added at the top of the column; the water flowed down through tailings and finally was collected at the bottom for chemical and microbiological analysis. Weathering was maintained for 36 weeks. The results showed a significant presence of microbial life that was distributed selectively over the column: sulfur- and iron-oxidizing aerobic bacteria were in the more oxygenated zone; anaerobic sulfur-reducing bacteria were isolated from the samples taken from the anoxic part of the column. Activity testing showed that (oxidizing and reducing) bacteria populations were active at the end of the weathering test. The quality of the water draining from the column was thus the final product of biological oxidation and reduction promoted by the bacteria consortia.

  3. Employing anatomical knowledge in vertebral column labeling

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Summers, Ronald M.

    2009-02-01

    The spinal column constitutes the central axis of human torso and is often used by radiologists to reference the location of organs in the chest and abdomen. However, visually identifying and labeling vertebrae is not trivial and can be timeconsuming. This paper presents an approach to automatically label vertebrae based on two pieces of anatomical knowledge: one vertebra has at most two attached ribs, and ribs are attached only to thoracic vertebrae. The spinal column is first extracted by a hybrid method using the watershed algorithm, directed acyclic graph search and a four-part vertebra model. Then curved reformations in sagittal and coronal directions are computed and aggregated intensity profiles along the spinal cord are analyzed to partition the spinal column into vertebrae. After that, candidates for rib bones are detected using features such as location, orientation, shape, size and density. Then a correspondence matrix is established to match ribs and vertebrae. The last vertebra (from thoracic to lumbar) with attached ribs is identified and labeled as T12. The rest of vertebrae are labeled accordingly. The method was tested on 50 CT scans and successfully labeled 48 of them. The two failed cases were mainly due to rudimentary ribs.

  4. Dynamics of a Tapped Granular Column

    NASA Astrophysics Data System (ADS)

    Rosato, Anthony; Blackmore, Denis; Zuo, Luo; Hao, Wu; Horntrop, David

    2015-11-01

    We consider the behavior of a column of spheres subjected to a time-dependent vertical taps. Of interest are various dynamical properties, such as the motion of its mass center, its response to taps of different intensities and forms, and the effect of system size and material properties. The interplay between diverse time and length scales are the key contributors to the column's evolving dynamics. Soft sphere discrete element simulations were conducted over a very wide parameter space to obtain a portrait of column behavior as embodied by the collective dynamics of the mass center motion. Results compared favorably with a derived reduced-order paradigm of the mass center motion (surprisingly analogous to that for a single bouncing ball on an oscillating plate) with respect to dynamical regimes and their transitions. A continuum model obtained from a system of Newtonian equations, as a locally averaged limit in the transport mode along trajectories is described, and a numerical solution protocol for a one-dimensional system is outlined. Typical trajectories and density evolution profiles are shown. We conclude with a discussion of our investigations to relate predictions of the continuum and reduced dynamical systems models with discrete simulations.

  5. Post column derivatisation analyses review. Is post-column derivatisation incompatible with modern HPLC columns?

    PubMed

    Jones, Andrew; Pravadali-Cekic, Sercan; Dennis, Gary R; Shalliker, R Andrew

    2015-08-19

    Post Column derivatisation (PCD) coupled with high performance liquid chromatography or ultra-high performance liquid chromatography is a powerful tool in the modern analytical laboratory, or at least it should be. One drawback with PCD techniques is the extra post-column dead volume due to reaction coils used to enable adequate reaction time and the mixing of reagents which causes peak broadening, hence a loss of separation power. This loss of efficiency is counter-productive to modern HPLC technologies, -such as UHPLC. We reviewed 87 PCD methods published from 2009 to 2014. We restricted our review to methods published between 2009 and 2014, because we were interested in the uptake of PCD methods in UHPLC environments. Our review focused on a range of system parameters including: column dimensions, stationary phase and particle size, as well as the geometry of the reaction loop. The most commonly used column in the methods investigated was not in fact a modern UHPLC version with sub-2-micron, (or even sub-3-micron) particles, but rather, work-house columns, such as, 250 × 4.6 mm i.d. columns packed with 5 μm C18 particles. Reaction loops were varied, even within the same type of analysis, but the majority of methods employed loop systems with volumes greater than 500 μL. A second part of this review illustrated briefly the effect of dead volume on column performance. The experiment evaluated the change in resolution and separation efficiency of some weak to moderately retained solutes on a 250 × 4.6 mm i.d. column packed with 5 μm particles. The data showed that reaction loops beyond 100 μL resulted in a very serious loss of performance. Our study concluded that practitioners of PCD methods largely avoid the use of UHPLC-type column formats, so yes, very much, PCD is incompatible with the modern HPLC column. PMID:26343427

  6. Energy-Absorbing, Lightweight Wheels

    NASA Technical Reports Server (NTRS)

    Waydo, Peter

    2003-01-01

    Improved energy-absorbing wheels are under development for use on special-purpose vehicles that must traverse rough terrain under conditions (e.g., extreme cold) in which rubber pneumatic tires would fail. The designs of these wheels differ from those of prior non-pneumatic energy-absorbing wheels in ways that result in lighter weights and more effective reduction of stresses generated by ground/wheel contact forces. These wheels could be made of metals and/or composite materials to withstand the expected extreme operating conditions. As shown in the figure, a wheel according to this concept would include an isogrid tire connected to a hub via spring rods. The isogrid tire would be a stiff, lightweight structure typically made of aluminum. The isogrid aspect of the structure would both impart stiffness and act as a traction surface. The hub would be a thin-walled body of revolution having a simple or compound conical or other shape chosen for structural efficiency. The spring rods would absorb energy and partially isolate the hub and the supported vehicle from impact loads. The general spring-rod configuration shown in the figure was chosen because it would distribute contact and impact loads nearly evenly around the periphery of the hub, thereby helping to protect the hub against damage that would otherwise be caused by large loads concentrated onto small portions of the hub.

  7. Optimal design of thermally coupled distillation columns

    SciTech Connect

    Duennebier, G.; Pantelides, C.C.

    1999-01-01

    This paper considers the optimal design of thermally coupled distillation columns and dividing wall columns using detailed column models and mathematical optimization. The column model used is capable of describing both conventional and thermally coupled columns, which allows comparisons of different structural alternatives to be made. Possible savings in both operating and capital costs of up to 30% are illustrated using two case studies.

  8. Self-Consistent Monte Carlo Simulations of Positive Column Discharges

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; Kortshagen, U.

    1998-10-01

    In recent years it has become widely recognized that electron distribution functions in atomic gas positive column discharges are best described as non local over most of the range of R× N (column radius × gas density) where positive columns are stable. The use of an efficient Monte Carlo code with a radial potential expansion in powers of r^2 and with judiciously chosen constraints on the potential near the axis and wall now provides fully self-consistent kinetic solutions using only small computers. A set of solutions at smaller R× N and lower currents are presented which exhibit the classic negative dynamic resistance of the positive column at low currents. The negative dynamic resistance is due to a non-negligible Debye length and is sometimes described as a transition from free to ambipolar diffusion. This phenomenon is sensitive to radial variations of key parameters in the positive column and thus kinetic theory simulations are likely to provide a more realistic description than classic isothermal fluid models of the positive column. Comparisons of kinetic theory simulations to various fluid models of the positive column continue to provide new insight on this `corner stone' problem of Gaseous Electronics.

  9. Calculation of dehydration absorbers based on improved phase equilibrium data

    SciTech Connect

    Oi, L.E.

    1999-07-01

    Dehydration using triethylene glycol (TEG) as an absorbent, is a standard process for natural gas treating. New and more accurate TEG/water equilibrium data have been measured between 1980 and 1990. However, this has not influenced much on the design methods of dehydration absorbers. Inaccurate equilibrium data have been extensively used in design calculations. When using data from a common source like Worley, an overall bubble cap tray efficiency between 25--40% has normally been recommended. This has resulted in a quite satisfactory and consistent design method. It is obvious that newer equilibrium data (Herskowitz, Parrish, Bestani) are more accurate. However, to achieve an improved design method, column efficiencies consistent with the new equilibrium data must be recommended. New equilibrium data have been correlated to an activity coefficient model for the liquid phase and combined with an equation of state for the gas phase. Performance data from the North Sea offshore platform Gullfaks C (drying 4--5 MMscmd) have been measured. The bubble cap column has been simulated, and the tray efficiency has been adjusted to fit the performance data. Tray efficiencies calculated with new equilibrium data are higher than 50%. Calculated tray efficiency values are dependent on the equilibrium data used. There are still uncertainties in equilibrium data for the TEC/water/natural gas system. When using accurate equilibrium data, an overall bubble cap tray efficiency of 40--50% and a Murphree efficiency of 55--70% can be expected at normal absorption conditions.

  10. Automated hydrophobic interaction chromatography column selection for use in protein purification.

    PubMed

    Murphy, Patrick J M; Stone, Orrin J; Anderson, Michelle E

    2011-01-01

    In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinity, and ion exchange), hydrophobic interaction chromatography (HIC) commonly requires experimental determination (referred to as screening or "scouting") in order to select the most suitable chromatographic medium for purifying a given protein (1). The method presented here describes an automated approach to scouting for an optimal HIC media to be used in protein purification. HIC separates proteins and other biomolecules from a crude lysate based on differences in hydrophobicity. Similar to affinity chromatography (AC) and ion exchange chromatography (IEX), HIC is capable of concentrating the protein of interest as it progresses through the chromatographic process. Proteins best suited for purification by HIC include those with hydrophobic surface regions and able to withstand exposure to salt concentrations in excess of 2 M ammonium sulfate ((NH(4;))(2;)SO(4;)). HIC is often chosen as a purification method for proteins lacking an affinity tag, and thus unsuitable for AC, and when IEX fails to provide adequate purification. Hydrophobic moieties on the protein surface temporarily bind to a nonpolar ligand coupled to an inert, immobile matrix. The interaction between protein and ligand are highly dependent on the salt concentration of the buffer flowing through the chromatography column, with high ionic concentrations strengthening the protein-ligand interaction and making the protein immobile (i.e. bound inside the column) (2). As salt concentrations decrease, the protein-ligand interaction dissipates, the protein again becomes mobile and elutes from the column. Several HIC media are commercially available in pre-packed columns, each containing one of several hydrophobic ligands (e.g. S-butyl, butyl, octyl, and phenyl) cross-linked at varying densities to agarose beads of a specific diameter (3). Automated column scouting allows for an efficient approach for determining

  11. A technique using a stellar spectrographic plate to measure terrestrial ozone column depth

    SciTech Connect

    Wong, A.Y.

    1995-08-01

    This thesis examines the feasibility of a technique to extract ozone column depths from photographic stellar spectra in the 5000--7000 Angstrom spectral region. A stellar spectrographic plate is measured to yield the relative intensity distribution of a star`s radiation after transmission through the earth`s atmosphere. The amount of stellar radiation absorbed by the ozone Chappuis band is proportional to the ozone column depth. The measured column depth is within 10% the mean monthly value for latitude 36{degree}N, however the uncertainty is too large to make the measurement useful. This thesis shows that a 10% improvement to the photographic sensitivity uncertainty can decrease the column depth uncertainty to a level acceptable for climatic study use. This technique offers the possibility of measuring past ozone column depths.

  12. Self-regenerating column chromatography

    DOEpatents

    Park, Woo K.

    1995-05-30

    The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.

  13. Warm Absorbers in the ROSAT Spectra of Quasars

    NASA Technical Reports Server (NTRS)

    Fiore, Fabrizio

    1998-01-01

    We present two ROSAT PSPC observations of the radio-loud, lobe-dominated quasar 3C 351, which shows an 'ionized absorber' in its X-ray spectrum. The factor 1.7 change in flux in the approx. 2 years between the observations allows a test of of models for this ionized absorber. The absorption feature at approx. 0.7 keV (quasar frame) is present in both spectra but with a lower optical depth when the source intensity - and hence the ionizing flux at the absorber - is higher, in accordance with a simple, single-zone, equilibrium photoionization model. Detailed modeling confirms this agreement quantitatively. The maximum response time of 2 years allows us to limit the gas density: n(sub e) greater than 2 x 10(exp 4)cm(exp -3); and the distance of the ionized gas from the central source R less than 19 pc. This produces a strong test for a photoionized absorber in 3C 351: a factor 2 flux change in approx. 1 week in this source must show non-equilibrium effects in the ionized absorber.

  14. Dose consequence analysis for transporting Plutonium Recycle Test Reactor (PRTR) rupture loop ion exchange columns

    SciTech Connect

    Goldberg, H.J., Westinghouse Hanford

    1996-07-03

    Ion exchange columns from the 309 Plutonium Recycle Test Reactor rupture loop must be shipped to the solid waste burial ground. The enclosed calculational note documents the calculations used to calculate the absorbed doses expected in the case of a postulated accident.

  15. THE TEMPERATURE-DENSITY RELATION IN THE INTERGALACTIC MEDIUM AT REDSHIFT (z) = 2.4

    SciTech Connect

    Rudie, Gwen C.; Steidel, Charles C.; Pettini, Max

    2012-10-01

    We present new measurements of the temperature-density (T-{rho}) relation for neutral hydrogen in the 2.0 < z < 2.8 intergalactic medium (IGM) using a sample of {approx}6000 individual H I absorbers fitted with Voigt profiles constrained in all cases by multiple Lyman series transitions. We find model-independent evidence for a positive correlation between the column density of H I (N{sub HI}) and the minimum observed velocity width of absorbers (b{sub min}). With minimal interpretation, this implies that the T-{rho} relation in the IGM is not 'inverted', contrary to many recent studies. Fitting b{sub min} as a function of N{sub HI} results in line-width-column-density dependence of the form b{sub min} = b{sub 0}(N{sub HI}/N{sub HI,0}){sup {Gamma}-1} with a minimum line width at mean density ({rho}/{rho}-bar = 1, N{sub HI,0} = 10{sup 13.6} cm{sup -2}) of b{sub 0} = 17.9 {+-} 0.2 km s{sup -1} and a power-law index of ({Gamma} - 1) = 0.15 {+-} 0.02. Using analytic arguments, these measurements imply an 'equation of state' for the IGM at (z) = 2.4 of the form T=T{sub 0} ({rho}/{rho}-bar){sup {gamma}-1} with a temperature at mean density of T{sub 0} = [1.94 {+-} 0.05] Multiplication-Sign 10{sup 4} K and a power-law index ({gamma} - 1) = 0.46 {+-} 0.05.

  16. LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Thornton, J.D.

    1957-12-31

    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  17. The O VI Absorbers toward PG 0953+415: High-Metallicity, Cosmic-Web Gas Far from Luminous Galaxies

    NASA Astrophysics Data System (ADS)

    Tripp, Todd M.; Aracil, Bastien; Bowen, David V.; Jenkins, Edward B.

    2006-06-01

    The spectrum of the low-redshift QSO PG 0953+415 (zQSO=0.234) shows two strong, intervening O VI absorption systems. To study the nature of these absorbers, we have used the Gemini Multi-Object Spectrograph to conduct a deep spectroscopic galaxy redshift survey in the 5'×5' field centered on the QSO. This survey is fully complete for r'<19.7 and is 73% complete for r'<21.0. We find three galaxies at the redshift of the higher z O VI system (zabs=0.14232), including a galaxy at projected distance ρ=155 h-170 kpc. We find no galaxies in the Gemini field at the redshift of the lower z O VI absorber (zabs=0.06807), which indicates that the nearest galaxy is more than 195 h-170 kpc away or has L<0.04L*. Previous shallower surveys covering a larger field have shown that the zabs=0.06807 O VI absorber is affiliated with a group or filament of galaxies, but the nearest known galaxy has ρ=736 h-170 kpc. The zabs=0.06807 absorber is notable for several reasons. The absorption profiles reveal simple kinematics indicative of quiescent material. The H I line widths and good alignment of the H I and metal lines favor photoionization, and moreover, the column density ratios imply a high metallicity: [M/H]=-0.3+/-0.12. The zabs=0.14232 O VI system is more complex and less constrained but also indicates a relatively high metallicity. Using galaxy redshifts from the Sloan Digital Sky Survey, we show that both of the PG 0953+415 O VI absorbers are located in large-scale filaments of the cosmic web. Evidently, some regions of the web filaments are highly metal enriched. We discuss the origin of the high-metallicity gas and suggest that the enrichment might have occurred long ago (at high z). Based on observations with (1) the NASA/ESA Hubble Space Telescope (HST), obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555 (2) the NASA-CNES-ESA Far Ultraviolet

  18. Field Results from Three Campaigns to Validate the Performance of the Miniaturized Laser Heterodyne Radiometer (Mini-LHR) for Measuring Carbon Dioxide and Methane in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Miller, J. Houston; Clarke, Greg B.; Melroy, Hilary; Ott, Lesley; Steel, Emily Wilson

    2014-01-01

    In a collaboration between NASA GSFC and GWU, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrallyresolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. In the last year, the instrument was deployed for field measurements at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument has been observed. In the latest work the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. An overview of the measurement campaigns and the data retrieval algorithm for the calculation of column concentrations will be presented. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. For temperature, pressure, and humidity profiles with altitude we use the Modern-Era Retrospective Analysis for Research and Applications (MERRA) data. Spectral simulation is accomplished by integrating short-path segments along the trajectory using the SpecSyn spectral simulation suite developed at GW. Column concentrations are extracted by minimizing residuals between observed and modeled spectrum using the Nelder-Mead simplex algorithm. We will also present an assessment of uncertainty in the reported concentrations from assumptions made in the meteorological data, LHR instrument and tracker noise, and radio

  19. Keck and VLT Observations of Super-Damped Lyman-Alpha Absorbers at z 2- 2.5: Constraints on Chemical Compositions and Physical Conditions

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varsha P.; Som, Debopam; Morrison, Sean; Péroux, Celine; Quiret, Samuel; York, Donald G.

    2015-12-01

    We report Keck/Echellette Spectrograph and Imager and Very Large Telescope/Ultraviolet-Visual Echelle Spectrograph observations of three super-damped Lyα quasar absorbers with H i column densities log NH i ≥ 21.7 at redshifts 2 ≲ z ≲ 2.5. All three absorbers show similar metallicities (˜-1.3 to -1.5 dex), and dust depletion of Fe, Ni, and Mn. Two of the absorbers show supersolar [S/Zn] and [Si/Zn]. We combine our results with those for other damped Lyα a absorbers (DLAs) to examine trends between NH i, metallicity, and dust depletion. A larger fraction of the super-DLAs lie close to or above the line [X/H] = 20.59 - log NH i in the metallicity versus NH i plot, compared to the less gas-rich DLAs, suggesting that super-DLAs are more likely to be rich in molecules. Unfortunately, our data for Q0230-0334 and Q0743+1421 do not cover H2 absorption lines. For Q1418+0718, some H2 lines are covered, but not detected. CO is not detected in any of our absorbers. For DLAs with log NH i < 21.7, we confirm strong correlation between metallicity and Fe depletion, and find a correlation between metallicity and Si depletion. For super-DLAs, these correlations are weaker or absent. The absorbers toward Q0230-0334 and Q1418+0718 show potential detections of weak Lyα emission, implying star formation rates of ˜1.6 and ˜0.7 M⊙ yr-1, respectively (ignoring dust extinction). Upper limits on the electron densities from C ii*/C ii or Si ii*/Si ii are low, but are higher than the median values in less gas-rich DLAs. Finally, systems with log NH i > 21.7 may have somewhat narrower velocity dispersions Δv90 than the less gas-rich DLAs, and may arise in cooler and/or less turbulent gas. Includes observations collected during program ESO 93.A-0422 at the European Southern Observatory (ESO) Very Large Telescope (VLT) with the Ultraviolet-Visual Echelle Spectrograph (UVES) on the 8.2 m telescopes operated at the Paranal Observatory, Chile. Some of the data presented herein were

  20. KECK AND VLT OBSERVATIONS OF SUPER-DAMPED Lyα ABSORBERS AT z ∼ 2–2.5: CONSTRAINTS ON CHEMICAL COMPOSITIONS AND PHYSICAL CONDITIONS

    SciTech Connect

    Kulkarni, Varsha P.; Som, Debopam; Morrison, Sean; Péroux, Celine; Quiret, Samuel; York, Donald G.

    2015-12-10

    We report Keck/Echellette Spectrograph and Imager and Very Large Telescope/Ultraviolet-Visual Echelle Spectrograph observations of three super-damped Lyα quasar absorbers with H i column densities log N{sub H} {sub i} ≥ 21.7 at redshifts 2 ≲ z ≲ 2.5. All three absorbers show similar metallicities (∼−1.3 to −1.5 dex), and dust depletion of Fe, Ni, and Mn. Two of the absorbers show supersolar [S/Zn] and [Si/Zn]. We combine our results with those for other damped Lyα a absorbers (DLAs) to examine trends between N{sub H} {sub i}, metallicity, and dust depletion. A larger fraction of the super-DLAs lie close to or above the line [X/H] = 20.59 − log N{sub H} {sub i} in the metallicity versus N{sub H} {sub i} plot, compared to the less gas-rich DLAs, suggesting that super-DLAs are more likely to be rich in molecules. Unfortunately, our data for Q0230−0334 and Q0743+1421 do not cover H{sub 2} absorption lines. For Q1418+0718, some H{sub 2} lines are covered, but not detected. CO is not detected in any of our absorbers. For DLAs with log N{sub H} {sub i} < 21.7, we confirm strong correlation between metallicity and Fe depletion, and find a correlation between metallicity and Si depletion. For super-DLAs, these correlations are weaker or absent. The absorbers toward Q0230−0334 and Q1418+0718 show potential detections of weak Lyα emission, implying star formation rates of ∼1.6 and ∼0.7 M{sub ⊙} yr{sup −1}, respectively (ignoring dust extinction). Upper limits on the electron densities from C ii*/C ii or Si ii*/Si ii are low, but are higher than the median values in less gas-rich DLAs. Finally, systems with log N{sub H} {sub i} > 21.7 may have somewhat narrower velocity dispersions Δv{sub 90} than the less gas-rich DLAs, and may arise in cooler and/or less turbulent gas.

  1. Improving the laboratory monitoring of absorbent oil

    SciTech Connect

    V.S. Shved; S.S. Sychev; I.V. Safina; S.A. Klykov

    2009-05-15

    The performance of absorbent coal tar oil is analyzed as a function of the constituent and group composition. The qualitative and quantitative composition of the oil that ensures the required absorbent properties is determined. Operative monitoring may be based on absorbent characteristics that permit regulation of the beginning and end of regeneration.

  2. Porcelain enamel neutron absorbing material

    SciTech Connect

    Iverson, Daniel C.

    1990-01-01

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  3. Porcelain enamel neutron absorbing material

    SciTech Connect

    Iverson, Daniel C.

    1990-02-06

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  4. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, D.C.

    1987-11-20

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compound of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved. 2 figs.

  5. Chemical abundances and ionization in sub-Damped Lyman-alpha absorbers at z < 1.5

    NASA Astrophysics Data System (ADS)

    Meiring, Joseph D.

    2008-06-01

    The chemical composition of galaxies provide important clues into galaxy formation and evolution. Quasar (QSO) absorption line systems offer a unique window into the high redshift Universe and the properties of normal galaxies at high redshift. QSO absorbers have long been used to study distant galaxies and the intergalactic medium (IGM). The Damped Lyman-a systems (DLAs), with neutral Hydrogen column densities of log N H I > 20.3, and sub-Damped Lyman-a systems (sub-DLAs) with 19.0 < log N H I < 20.3 contain the majority of the neutral gas in the Universe at high redshift, probe metallicities over ~90% of the cosmic history, and are believed to be the progenitors of modern day galaxies. Models of the chemical evolution of galaxies predict that the mean metallicity of galaxies should reach a solar value by z ~ 0 due to the ongoing cycles of star formation which enrich the galaxy with heavy elements. The DLA systems which have been the preferred class of absorbers for these investigations however appear to be metal poor at all redshifts, and show little evolution in their metallicity, contradicting the models of chemical evolution, the "missing metals problem". We have amassed a sample of 32 sub-DLAs and 3 DLAS at z abs < 1.5 using the 6.5m Magellan II telescope with the MIKE spectrograph, and the 8.2m VLT-Kueyen telescope with the UVES spectrograph to study the properties of these systems and determine their metal content. We have measured the absorption lines of multiple lines in these systems and determined column densities and abundances. We have also created grids of photoionization models using CLOUDY to determine the effects of ionization in these systems. Although the gas is largely ionized, the abundances appear not to require significant ionization corrections. We find that the sub-DLAs, especially at low z are more metal rich than the DLA systems, with [Zn/H] subDLA = -0.30 ± 0.15 and [Zn/H] DLA = -0.94 ± 0.11. These systems appear to contain ~ 40 - 75

  6. BNCT microdosimetry at the tapiro reactor thermal column.

    PubMed

    De Nardo, L; Seravalli, E; Rosi, G; Esposito, J; Colautti, P; Conte, V; Tornielli, G

    2004-01-01

    A thermal column is available for dosimetric and radiobiological studies by the fast reactor TAPIRO, located at the ENEA research centre Casaccia. The TAPIRO neutron field has been studied (in the frame of LNL BNCT project) with a tissue-equivalent proportional counter, which has worked alternatively with an ordinary tissue-equivalent cathode and with a boron-enriched cathode. Measurements have been performed with polyethylene caps of different thickness. Both the absorbed dose and the microdosimetric-calculated biological effective dose show a maximum at approximately 0.5 mg cm(-2) of depth. The different dose components have been calculated and the results are discussed.

  7. The Double Absorbing Boundary method

    NASA Astrophysics Data System (ADS)

    Hagstrom, Thomas; Givoli, Dan; Rabinovich, Daniel; Bielak, Jacobo

    2014-02-01

    A new approach is devised for solving wave problems in unbounded domains. It has common features to each of two types of existing techniques: local high-order Absorbing Boundary Conditions (ABC) and Perfectly Matched Layers (PML). However, it is different from both and enjoys relative advantages with respect to both. The new method, called the Double Absorbing Boundary (DAB) method, is based on truncating the unbounded domain to produce a finite computational domain Ω, and on applying a local high-order ABC on two parallel artificial boundaries, which are a small distance apart, and thus form a thin non-reflecting layer. Auxiliary variables are defined on the two boundaries and inside the layer bounded by them, and participate in the numerical scheme. The DAB method is first introduced in general terms, using the 2D scalar time-dependent wave equation as a model. Then it is applied to the 1D Klein-Gordon equation, using finite difference discretization in space and time, and to the 2D wave equation in a wave guide, using finite element discretization in space and dissipative time stepping. The computational aspects of the method are discussed, and numerical experiments demonstrate its performance.

  8. A polarization-independent broadband terahertz absorber

    SciTech Connect

    Shi, Cheng; Zang, XiaoFei E-mail: ymzhu@usst.edu.cn; Wang, YiQiao; Chen, Lin; Cai, Bin; Zhu, YiMing E-mail: ymzhu@usst.edu.cn

    2014-07-21

    A highly efficient broadband terahertz absorber is designed, fabricated, and experimentally as well as theoretically evaluated. The absorber comprises a heavily doped silicon substrate and a well-designed two-dimensional grating. Due to the destructive interference of waves and diffraction, the absorber can achieve over 95% absorption in a broad frequency range from 1 to 2 THz and for angles of incidence from 0° to 60°. Such a terahertz absorber is also polarization-independent due to its symmetrical structure. This omnidirectional and broadband absorber have potential applications in anti-reflection coatings, imaging systems, and so on.

  9. Vadose Zone Soil Moisture Wicking Using Super Absorbent Polymers

    SciTech Connect

    Oostrom, Martinus; Smoot, Katherine V.; Wietsma, Thomas W.; Truex, Michael J.; Benecke, Mark W.; Chronister, Glen B.

    2012-11-19

    Super-absorbent polymers (SAPs) have the potential to remove water and associated contaminants from unsaturated sediments in the field. Column and flow cell experiment were conducted to test the ability of four types of SAPs to remove water from unsaturated porous media. Column experiments, with emplacement of a layer of polymer on top of unsaturated porous media, showed the ability of the SAPs to extract up to 80% of the initially emplaced water against gravity into the sorbent over periods up to four weeks. In column experiments where the sorbent was emplaced between layers of unsaturated porous media, gel formation was observed at both the sorbent-porous medium interfaces. The extraction percentages over four weeks of contact time were similar for both column configurations and no obvious differences were observed for the four tested SAPs. Two different flow cells were used to test the wicking behavior of SAPs in two dimensions using three configurations. The largest removal percentages occurred for the horizontal sorbent layer configuration which has the largest sorbent-porous medium interfacial area. In a larger flow cell, a woven nylon “sock” was packed with sorbent and subsequently placed between perforated metal plates, mimicking a well configuration. After one week of contact time the sock was removed and replaced by a fresh sock. The results of this experiment showed that the sorbent was able to continuously extract water from the porous media, although the rate decreased over time. The declining yield during both periods is associated with the sharp reduction in water saturation and relative permeability near the sorbent. It was also observed that the capillary pressure continued to increase over the total contact time of 14 days, indicating that the sorbent remained active over that period. This work has demonstrated the potential of soil moisture wicking using SAPs at the proof-of-principle level.

  10. Density of intercalated graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Slabe, Melissa E.

    1990-01-01

    The density of Amoco P-55, P-75, P-100, and P-120 pitch-based graphite fibers and their intercalation compounds with bromine, iodine monochloride, and copper (II) chloride have been measured using a density gradient column. The distribution of densities within a fiber type is found to be a sensitive indicator of the quality of the intercalation reaction. In all cases the density was found to increase, indicating that the mass added to the graphite is dominant over fiber expansion. Density increases are small (less than 10 percent) giving credence to a model of the intercalated graphite fibers which have regions which are intercalated and regions which are not.

  11. Density of intercalated graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Slabe, Melissa E.

    1989-01-01

    The density of Amoco P-55, P-75, P-100, and P-120 pitch-based graphite fibers and their intercalation compounds with bromine, iodine monochloride, and copper (II) chloride have been measured using a density gradient column. The distribution of densities within a fiber type is found to be a sensitive indicator of the quality of the intercalation reaction. In all cases the density was found to increase, indicating that the mass added to the graphite is dominant over fiber expansion. Density increases are small (less than 10 percent) giving credence to a model of the intercalated graphite fibers which have regions which are intercalated and regions which are not.

  12. FRACTIONATING COLUMN PRODUCT COLLECTOR CONTROL

    DOEpatents

    Paxson, G.D. Jr.

    1964-03-10

    Means for detecting minute fluid products from a chemical separation column and for advancing a collector tube rack in order to automatically separate and collect successive fractionated products are described. A charge is imposed on the forming drops at the column orifice to create an electric field as the drop falls in the vicinity of a sensing plate. The field is detected by an electrometer tube coupled to the plate causing an output signal to actuate rotation of a collector turntable rack, thereby positioning new collectors under the orifice. The invention provides reliable automatic collection independent of drop size, rate of fall, or chemical composition. (AEC)

  13. HST/COS detection of a Ne VIII absorber towards PG 1407+265: an unambiguous tracer of collisionally ionized hot gas?

    NASA Astrophysics Data System (ADS)

    Hussain, T.; Muzahid, S.; Narayanan, A.; Srianand, R.; Wakker, B. P.; Charlton, J. C.; Pathak, A.

    2015-01-01

    We report the detection of Ne VIII in a zabs = 0.599 61 absorber towards the QSO PG1407+265 (zem= 0.94). Besides Ne VIII, absorption from H I Lyman series lines (H I λ1025-λ915), several other low (C II, N II, O II and S II), intermediate (C III, N III, N IV, O III, S IV and S V) and high (S VI, O VI and Ne VIII) ionization metal lines are detected. Disparity in the absorption line kinematics between different ions implies that the absorbing gas comprises of multiple ionization phases. The low and the intermediate ions (except S V) trace a compact (˜410 pc), metal-rich (Z ˜ Z⊙) and overdense (log nH ˜ -2.6) photoionized region that sustained star formation for a prolonged period. The high ions, Ne VIII and O VI, can be explained as arising in a low density (-5.3 ≤ log nH ≤ -5.0), metal-rich (Z ≳ Z⊙) and diffuse (˜180 kpc) photoionized gas. The S V, S VI and C IV [detected in the Faint Object Spectrograph (FOS) spectrum] require an intermediate photoionization phase with -4.2 < log nH < -3.5. Alternatively, a pure collisional ionization model, as used to explain the previous known Ne VIII absorbers, with 5.65 < log T < 5.72, can reproduce the S VI, O VI and Ne VIII column densities simultaneously in a single phase. However, even such models require an intermediate phase to reproduce any observable S V and/or C IV. Therefore, we conclude that when multiple phases are present, the presence of Ne VIII is not necessarily an unambiguous indication of collisionally ionized hot gas.

  14. Pulsed airborne lidar measurements of atmospheric CO2 column absorption

    NASA Astrophysics Data System (ADS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Kawa, S. Randoph; Biraud, Sebastien

    2010-11-01

    ABSTRACT We report initial measurements of atmospheric CO2 column density using a pulsed airborne lidar operating at 1572 nm. It uses a lidar measurement technique being developed at NASA Goddard Space Flight Center as a candidate for the CO2 measurement in the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission. The pulsed multiple-wavelength lidar approach offers several new capabilities with respect to passive spectrometer and other lidar techniques for high-precision CO2 column density measurements. We developed an airborne lidar using a fibre laser transmitter and photon counting detector, and conducted initial measurements of the CO2 column absorption during flights over Oklahoma in December 2008. The results show clear CO2 line shape and absorption signals. These follow the expected changes with aircraft altitude from 1.5 to 7.1 km, and are in good agreement with column number density estimates calculated from nearly coincident airborne in-situ measurements.

  15. Removal of persistent organic pollutants from micro-polluted drinking water by triolein embedded absorbent.

    PubMed

    Liu, Huijuan; Ru, Jia; Qu, Jiuhui; Dai, Ruihua; Wang, Zijian; Hu, Chun

    2009-06-01

    A new biomimetic absorbent, cellulose acetate (CA) embedded with triolein (CA-triolein), was prepared and applied for the removal of persistent organic pollutants (POPs) from micro-polluted aqueous solution. The comparison of CA-triolein, CA and granular activated carbon (GAC) for dieldrin removal was investigated. Results showed that CA-triolein absorbent gave a lowest residual concentration after 24 h although GAC had high removal rate in the first 4 h adsorption. Then the removal efficiency of mixed POPs (e.g. aldrin, dieldrin, endrin and heptachlor epoxide), absorption isotherm, absorbent regeneration and initial column experiments of CA-triolein were studied in detail. The linear absorption isotherm and the independent absorption in binary isotherm indicated that the selected POPs are mainly absorbed onto CA-triolein absorbent by a partition mechanism. The absorption constant, K, was closely related to the hydrophobic property of the compound. Thermodynamic calculations showed that the absorption was spontaneous, with a high affinity and the absorption was an endothermic reaction. Rinsing with hexane the CA-triolein absorbent can be regenerated after absorption of POPs. No significant decrease in the dieldrin removal efficiency was observed even when the absorption-regeneration process was repeated for five times. The results of initial column experiments showed that the CA-triolein absorbent did not reach the breakthrough point at a breakthrough empty-bed volume (BV) of 3200 when the influent concentration was 1-1.5 microg/L and the empty-bed contact time (EBCT) was 20 min. PMID:19246190

  16. Suspension of Drops of a Liquid in a Column of Water.

    ERIC Educational Resources Information Center

    Ahmad, Jamil

    1995-01-01

    Describes a demonstration which creates the illusion of violating Archimedes Principle. The procedure involves two liquids with identical densities and produces drops of one liquid suspended in the middle of a column of the second liquid. (DDR)

  17. Constraining MHD Disk-Winds with X-ray Absorbers

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Tombesi, F.; Shrader, C. R.; Kazanas, D.; Contopoulos, J.; Behar, E.

    2014-01-01

    From the state-of-the-art spectroscopic observations of active galactic nuclei (AGNs) the robust features of absorption lines (e.g. most notably by H/He-like ions), called warm absorbers (WAs), have been often detected in soft X-rays (< 2 keV). While the identified WAs are often mildly blueshifted to yield line-of-sight velocities up to ~100-3,000 km/sec in typical X-ray-bright Seyfert 1 AGNs, a fraction of Seyfert galaxies such as PG 1211+143 exhibits even faster absorbers (v/ 0.1-0.2) called ultra-fast outflows (UFOs) whose physical condition is much more extreme compared with the WAs. Motivated by these recent X-ray data we show that the magnetically- driven accretion-disk wind model is a plausible scenario to explain the characteristic property of these X-ray absorbers. As a preliminary case study we demonstrate that the wind model parameters (e.g. viewing angle and wind density) can be constrained by data from PG 1211+143 at a statistically significant level with chi-squared spectral analysis. Our wind models can thus be implemented into the standard analysis package, XSPEC, as a table spectrum model for general analysis of X-ray absorbers.

  18. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  19. Melanin pigmented solar absorbing surfaces

    SciTech Connect

    Gallas, J.M.; Eisner, M.

    1980-01-01

    Selectivity enhancement is shown to result for melanin, a black biopolymer pigment, for sufficiently low sample density. The effect is proposed to follow from a consideration of the evanescent waves associated with the total internal reflection phenomenon. A relationship is discussed among powder density, pH and the paramagnetic properties of melanin; this relationship is shown to be consistent with, and offer support to an amino-acid side group proposed earlier as part of the melanin structure. A brief discussion is also presented on the optical properties of melanin and the relative importance of quinhydrone, a change transfer complex believed to exist in the polymeric structure of melanin.

  20. The HI Environment of Nearby Lyman-alpha Absorbers

    NASA Technical Reports Server (NTRS)

    VanGorkom, J. H.; Carilli, C. L.; Stocke, John T.; Perlman, Eric S.; Shull, J. Michael

    1996-01-01

    total, we detected H I emission from five galaxies, of which two were previously uncataloged and one did not have a known redshift. No H I emission was detected from the vicinity of the two absorbers, which are located in a void and a region of very low galaxy density; but the limits are somewhat less stringent than for the other sight lines. These results are similar to what has been found in optically unbiased H I surveys. Thus, presence of Ly-alpha absorbers does not significantly alter the H I detection rate in their environment.

  1. Does One Know the Properties of a MICE Solid or Liquid Absorber toBetter than 0.3 Percent?

    SciTech Connect

    Green, Michael A.; Yang, Stephanie Q.

    2006-02-20

    This report discusses the report discusses whether the MICE absorbers can be characterized to {+-}0.3 percent, so that one predict absorber ionization cooling within the absorber. This report shows that most solid absorbers can be characterized to much better than {+-}0.3 percent. The two issues that dominate the characterization of the liquid cryogen absorbers are the dimensions of the liquid in the vessel and the density of the cryogenic liquid. The thickness of the window also plays a role. This report will show that a liquid hydrogen absorber can be characterized to better than {+-}0.3 percent, but a liquid helium absorber cannot be characterized to better and {+-}1 percent.

  2. TPX/TFTR Neutral Beam energy absorbers

    SciTech Connect

    Dahlgren, F.; Wright, K.; Kamperschroer, J.; Grisham, L.; Lontai, L.; Peters, C.; VonHalle, A.

    1993-11-01

    The present beam energy absorbing surfaces on the TFTR Neutral Beams such as Ion Dumps, Calorimeters, beam defining apertures, and scrapers, are simple water cooled copper plates which wee designed to absorb (via their thermal inertia) the incident beam power for two seconds with a five minute coal down interval between pulses. These components are not capable of absorbing the anticipated beam power loading for 1000 second TPX pulses and will have to be replaced with an actively cooled design. While several actively cooled energy absorbing designs were considered,, the hypervapotron elements currently being used on the JET beamlines were chosen due to their lower cooling water demands and reliable performance on JET.

  3. Absorbent product and articles made therefrom

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multilayer absorbent product for use in contact with the skin to absorb fluids is described. The product has a water pervious facing layer for contacting the skin, and a first fibrous wicking layer overlaying the water pervious layer. A first container section is defined by inner and outer layers of a water pervious wicking material in between a first absorbent mass and a second container section defined by inner and outer layers of a water pervious wicking material between what is disposed a second absorbent mass, and a liquid impermeable/gas permeable layer overlaying the second fibrous wicking layer.

  4. Advanced Reflector and Absorber Materials (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities in the area of advanced reflector and absorber materials: evaluating performance, determining degradation rates and lifetime, and developing new coatings.

  5. Light scattering by absorbing hexagonal ice crystals in cirrus clouds.

    PubMed

    Zhang, J; Xu, L

    1995-09-01

    An improved ray-optics theory for single scattering and polarization of hexagonal columns and plates randomly oriented in space has been developed by considering absorption and by using the Chebyshev solution for diffraction integrals. The vector-tracing method and statistics technique of random sampling are employed. The equivalent forms of Snell's law and Fresnel formulas for absorbing ice crystals are derived, and two equivalent optical constants, m' and m″, are obtained. Comparison is made of the computed results of our model and the Takano and Liou model for asymmetry factors, single-scattering albedos, and scattering phase matrix elements. Some characteristics of our model are discussed, and these analyses demonstrate that our ray-optics model is practical and much improved.

  6. A Flexible Moisture Content Probe for Unsaturated Soil Column Experiments

    SciTech Connect

    E. D. Mattson; K. E. Baker; C. D. Palmer; J. M Svoboda

    2006-05-01

    A commercially available soil moisture capacitance probe was modified by replacing rigid electrode traces with non-intrusive, flexible circuit board trace electrodes that can be attached to the interior of soil column walls. This new design minimizes soil packing difficulties and potential bias in flow pathways commonly associated with rigid probe installations in column experiments. Testing showed that the modified probe design provides reproducible output independent of sample bulk density. The electrical conductivity of the pore-water solution, however, affects the probe response. For cases where the specific conductance of the pore-water solution is constant, the probe can be calibrated. The flexible electrodes offer a simple means of minimizing sensor intrusion into laboratory soil columns while providing reproducible voltage output that is a function of moisture content.

  7. Device for absorbing mechanical shock

    DOEpatents

    Newlon, Charles E.

    1980-01-01

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  8. Device for absorbing mechanical shock

    DOEpatents

    Newlon, C.E.

    1979-08-29

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  9. Saturated external kink instability of a laboratory plasma column

    NASA Astrophysics Data System (ADS)

    Sears, J.; Intrator, T. P.; Wurden, G.; Weber, T. E.; Daughton, W.; Klarenbeek, J.; Gao, K.

    2012-10-01

    A column of plasma generated in a longitudinal magnetic field in the Reconnection Scaling Experiment suffers from a catastrophic external kink instability when sufficient current density is driven along its length. At slightly lower current density but still above the Kruskal-Shafranov stability limit, we observe the amplitude of the kink to saturate at a, where a is the radius of the current distribution, and the column to gyrate at a steady rate for many periods. We evaluate how saturation of the kink mode is influenced by axial flow and shear therein, by rotation and Coriolis force, and by kinetic effects beyond the fluid regime. The plasma column of length l = 0.48 m has electron temperature Te = 10 eV and density ne = 1e19 m-3. The background axial field is B = 0.01 T, and the saturated steady state occurs for current I = 300 A. We measure the vector magnetic field and the plasma temperature and density in a cubic volume measuring 0.1 m on a side with resolution on the order of the electron skin depth. From these measurements we derive the flow. We present also results of a 2D numerical model simulated with the VPIC code. Study of the saturated kink mode in laboratory plasma may offer clues to the long lifetime of astrophysical jets.

  10. [Shaping of electron radiation fields using homogeneous absorbent materials].

    PubMed

    Eichhorn, M; Reis, A; Kraft, M

    1990-01-01

    Proof of shielding and forming by absorbers was done in water phantom dosimetrically. Alterations of isodose course were measured in dependence of primary energy, as well as of thickness and density of the absorber materials. Piacryl or aluminium are not suitable for forming of irregular electron fields. They only effect a reduction of therapeutic range. For primary energies of 10.0 less than or equal to MeV less than or equal to E0- less than or equal to 20.0 MeV lead rubber and wood metal are to recommended in a thickness of less than or equal to 10 mm or less than or equal to 8 mm respectively.

  11. Graphene-enabled electrically switchable radar-absorbing surfaces.

    PubMed

    Balci, Osman; Polat, Emre O; Kakenov, Nurbek; Kocabas, Coskun

    2015-01-01

    Radar-absorbing materials are used in stealth technologies for concealment of an object from radar detection. Resistive and/or magnetic composite materials are used to reduce the backscattered microwave signals. Inability to control electrical properties of these materials, however, hinders the realization of active camouflage systems. Here, using large-area graphene electrodes, we demonstrate active surfaces that enable electrical control of reflection, transmission and absorption of microwaves. Instead of tuning bulk material property, our strategy relies on electrostatic tuning of the charge density on an atomically thin electrode, which operates as a tunable metal in microwave frequencies. Notably, we report large-area adaptive radar-absorbing surfaces with tunable reflection suppression ratio up to 50 dB with operation voltages <5 V. Using the developed surfaces, we demonstrate various device architectures including pixelated and curved surfaces. Our results provide a significant step in realization of active camouflage systems in microwave frequencies. PMID:25791719

  12. Graphene-enabled electrically switchable radar-absorbing surfaces.

    PubMed

    Balci, Osman; Polat, Emre O; Kakenov, Nurbek; Kocabas, Coskun

    2015-03-20

    Radar-absorbing materials are used in stealth technologies for concealment of an object from radar detection. Resistive and/or magnetic composite materials are used to reduce the backscattered microwave signals. Inability to control electrical properties of these materials, however, hinders the realization of active camouflage systems. Here, using large-area graphene electrodes, we demonstrate active surfaces that enable electrical control of reflection, transmission and absorption of microwaves. Instead of tuning bulk material property, our strategy relies on electrostatic tuning of the charge density on an atomically thin electrode, which operates as a tunable metal in microwave frequencies. Notably, we report large-area adaptive radar-absorbing surfaces with tunable reflection suppression ratio up to 50 dB with operation voltages <5 V. Using the developed surfaces, we demonstrate various device architectures including pixelated and curved surfaces. Our results provide a significant step in realization of active camouflage systems in microwave frequencies.

  13. Hysteresis of transient populations in absorbing-state systems

    NASA Astrophysics Data System (ADS)

    Kapitanchuk, Oleksiy L.; Marchenko, Oleksij M.; Teslenko, Victor I.

    2016-06-01

    A nonequilibrium density matrix theory is used in order to explicitly describe the hysteresis interrelation between populations of nonstationary states in an absorbing multi-stage chain system in the one-particle approximation. As an illustrative example, we restrict ourselves to consideration of the 3-stage absorbing case for which we identify three types of the hysteresis; that is, the causal time dependent hysteresis with leaf-like and triangle-like closed loops, the hidden hysteresis with broken-line loops and the true hysteresis with open loops. Furthermore, we observe a common critical threshold for the hysteresis types and ascertain a reciprocal correspondence of this threshold as between the types as well with the experiment.

  14. Graphene-enabled electrically switchable radar-absorbing surfaces

    NASA Astrophysics Data System (ADS)

    Balci, Osman; Polat, Emre O.; Kakenov, Nurbek; Kocabas, Coskun

    2015-03-01

    Radar-absorbing materials are used in stealth technologies for concealment of an object from radar detection. Resistive and/or magnetic composite materials are used to reduce the backscattered microwave signals. Inability to control electrical properties of these materials, however, hinders the realization of active camouflage systems. Here, using large-area graphene electrodes, we demonstrate active surfaces that enable electrical control of reflection, transmission and absorption of microwaves. Instead of tuning bulk material property, our strategy relies on electrostatic tuning of the charge density on an atomically thin electrode, which operates as a tunable metal in microwave frequencies. Notably, we report large-area adaptive radar-absorbing surfaces with tunable reflection suppression ratio up to 50 dB with operation voltages <5 V. Using the developed surfaces, we demonstrate various device architectures including pixelated and curved surfaces. Our results provide a significant step in realization of active camouflage systems in microwave frequencies.

  15. Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint

    SciTech Connect

    Li, Y.; Yu, Y. H.

    2012-05-01

    During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.

  16. [Simultaneous determination of 9 ultraviolet absorbers in cosmetics by high-performance liquid chromatography].

    PubMed

    Ikarashi, Yoshiaki; Yamada, Mai; Uchino, Tadashi; Tokunaga, Hiroshi

    2007-01-01

    Simultaneous determination for 9 ultraviolet absorbers those set a limit to the amount in cosmetics was performed. Ultraviolet absorbers were extracted from cosmetics with tetrahydrofuran (THF) by ultrasonication. After centrifugation, the supernatant was collected, and the sample solution was injected into the HPLC. Separation was archived using an ODS column with the mixture of THF and water as the mobile phase. Detection wavelength was set at 310 nm. The linearity was obtained between the peak areas and the concentrations of each ultraviolet absorber in the range of 5 - 100 microg/ml. In 70 commercial cosmetic products, such as sunscreen, face powder, foundation, massage cream, moisture lotion, lip balm and essence, 2-ethylhexyl-p-methoxycinnamate (EMC), 2-hydroxy-4-methoxybenzophenone (HMB), 4-tert-butyl-4'-methoxydibenzoylmethane (BMB) and 2-ethylhexyl salicylate (ES) were detected.

  17. A Reanalysis of XMM-Newton Data of the Classical Nova V2491 Cyg Using Hot Collisionally Ionized Absorber Model

    NASA Astrophysics Data System (ADS)

    Gamsizkan, Cigdem; Balman, Solen

    2016-07-01

    We present a reanalysis of a selection of archival XMM-Newton RGS (Reflection Grating Spectrometer) data of the classical nova; V2491 Cyg obtained on 2008 May 20.6 and May 30.3. Our aim is to model the complex absorption features in the high resolution spectra assuming these can be due to different components of absorption from warm photo-ionized or hot collisionally ionized plasma originating from the wind/ejecta along with the features of the stellar emission. Here, we focus on absorption from a hot collisionally ionized plasma model. We utilise SRON software SPEX version 2.05.04 for the analysis and use a blackbody (BB) plus collisional ionization equilibrium (CIE) model for the continuum, modified by a collisionally ionized hot absorber (HOT) along with interstellar gas and dust absorption. We consider that the hot collisonally ionized plasma absorption is effective only on the BB emission whereas the cold interstellar gas and dust absorption modifies both BB and CIE emission. Our fits model the ionized absorption features simultaneously and show that hot collisionally ionized absorption model improves the fits upon warm photo-ionized absorption models considerably. We find that the X-ray spectrum shows deep and complex absorption features blue shifted by 2630-3700 km/s consistent with ejecta/wind speeds. We derive C, N, O abundances of V2491 Cyg which shows a typical signature of H-burning with a nitrogen and oxygen overabundance (ratio to solar abundance) of N ≃ 6, O ≃ 38, and carbon depletion of C ≃ 0.4. Our fits yield two collisonally ionized hot plasma absorption components with temperatures T_1≃1.1-2.7, T_{2}≃0.6-0.9 keV and rms velocities σ_{v1}˜850, σ_{v2}˜55 km/s. The different temperatures, column densities and corresponding rms velocities of the absorbers may indicate the existence of high and low density regions with less and high strongly ionized material in the ejecta/wind that might cause the complex absorbed spectra of V2491 Cyg.

  18. Ablation loading of solid target through foam absorber on ABC laser at ENEA-Frascati

    NASA Astrophysics Data System (ADS)

    De Angelis, R.; Consoli, F.; Gus'kov, S. Yu.; Rupasov, A. A.; Andreoli, P.; Cristofari, G.; Di Giorgio, G.; Giulietti, D.; Cantono, G.; Kalal, M.

    2016-03-01

    This work reports an experimental characterization of the efficiency of energy transmission of porous laser absorbers as a function of their density and thickness. In this campaign the foams were deposited on different metal substrates, which finally absorbed the energy deposited by the laser on the bulk of the porous material. The dimensions of the craters produced on the substrate can be related to the energy transmitted through the foams.

  19. Beam Studies with Electron Columns

    SciTech Connect

    Shiltsev, V.; Valishev, A.; Kuznetsov, G.; Kamerdzhiev, V.; Romanov, A.; /Novosibirsk, IYF

    2009-04-01

    We report preliminary results of experimental studies of 'electron columns' in the Tevatron and in a specialized test setup. In the Tevatron, a beam of 150 GeV protons ionizes residual gas and ionization electrons are stored in an electrostatic trap immersed into strong longitudinal magnetic field. Shifts of proton betatron frequencies are observed. In the test setup, we observe effects pointing to accumulation and escape of ionization electrons.

  20. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  1. Comments on liquid hydrogen absorbers for MICE

    SciTech Connect

    Green, Michael A.

    2003-02-01

    This report describes the heat transfer problems associatedwith a liquid hydrogen absorber for the MICE experiment. This reportdescribes a technique for modeling heat transfer from the outside world,to the abosrber case and in its vacuum vessel, to the hydrogen and theninto helium gas at 14 K. Also presented are the equation for freeconvection cooling of the liquid hydrogen in the absorber.

  2. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  3. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  4. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  5. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  6. Structured Metal Film as Perfect Absorber

    NASA Astrophysics Data System (ADS)

    Xiong, Xiang; Jiang, Shang-Chi; Peng, Ru-Wen; Wang, Mu

    2014-03-01

    With standing U-shaped resonators, fish-spear-like resonator has been designed for the first time as the building block to assemble perfect absorbers. The samples have been fabricated with two-photon polymerization process and FTIR measurement results support the effectiveness of the perfect absorber design. In such a structure the polarization-dependent resonance occurs between the tines of the spears instead of the conventional design where the resonance occurs between the metallic layers separated by a dielectric interlayer. The incident light neither transmits nor reflects back which results in unit absorbance. The power of light is trapped between the tines of spears and finally be absorbed. The whole structure is covered with a continuous metallic layer with good thermo-conductance, which provides an excellent approach to deal with heat dissipation, is enlightening in exploring metamaterial absorbers.

  7. Fluorine-Free Oil Absorbents Made from Cellulose Nanofibril Aerogels.

    PubMed

    Mulyadi, Arie; Zhang, Zhe; Deng, Yulin

    2016-02-01

    Aerogels based on cellulose nanofibrils (CNFs) have been of great interest as absorbents due to their high absorption capacity, low density, biodegradability, and large surface area. Hydrophobic aerogels have been designed to give excellent oil absorption tendency from water. Herein, we present an in situ method for CNF surface modification and hydrophobic aerogel preparation. Neither solvent exchange nor fluorine chemical is used in aerogel preparations. The as-prepared hydrophobic aerogels exhibit low density (23.2 mg/cm(-3)), high porosity (98.5%), good flexibility, and solvent-induced shape recovery property. Successful surface modification was confirmed through field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and water contact angle measurements. The hydrophobic aerogels show high absorption capacities for various oils, depending on liquid density, up to 47× their original weight but with low water uptake (<0.5 g/g aerogel). PMID:26761377

  8. Simultaneous Ultraviolet and X-Ray Observations of Seyfert Galaxy NGC 4151. I. Physical Conditions in the X-Ray Absorbers

    NASA Astrophysics Data System (ADS)

    Kraemer, S. B.; George, I. M.; Crenshaw, D. M.; Gabel, J. R.; Turner, T. J.; Gull, T. R.; Hutchings, J. B.; Kriss, G. A.; Mushotzky, R. F.; Netzer, H.; Peterson, B. M.; Behar, Ehud

    2005-11-01

    We present a detailed analysis of the intrinsic X-ray absorption in the Seyfert 1 galaxy NGC 4151 using Chandra High Energy Transmission Grating Spectrometer data obtained in 2002 May as part of a program that included simultaneous ultraviolet (UV) spectra using the Hubble Space Telescope Space Telescope Imaging Spectrograph and the Far Ultraviolet Spectrographic Explorer. Previous studies, most recently using Advanced Satellite for Cosmology and Astrophysics (ASCA) spectra, revealed a large (>1022 cm-2) column of intervening gas, which has varied both in ionization state and total column density. NGC 4151 was in a relatively low flux state during the observations reported here (~25% of its historic maximum), although roughly 2.5 times as bright in the 2-10 keV band as during a Chandra observation in 2000. At both epochs, the soft X-ray band was dominated by emission lines, which show no discernible variation in flux between the two observations. The 2002 Chandra data show the presence of a very highly ionized absorber, in the form of H-like and He-like Mg, Si, and S lines, as well as lower ionization gas via the presence of inner-shell absorption lines from lower ionization species of these elements. The latter accounts for both the bulk of the soft X-ray absorption and the high covering factor UV absorption lines of O VI, C IV, and N V with outflow velocities ~500 km s-1. The presence of high-ionization gas, which is not easily detected at low resolution (e.g., with ASCA), appears common among Seyfert galaxies. Since this gas is too highly ionized to be radiatively accelerated in sources such as NGC 4151, which is radiating at a small fraction of its Eddington Luminosity, it may be key to understanding the dynamics of mass outflow. We find that the deeper broadband absorption detected in the 2000 Chandra data is the result of both (1) lower ionization of the intervening gas due to the lower ionizing flux and (2) a factor of ~3 higher column density of the lower

  9. GIANT METREWAVE RADIO TELESCOPE DETECTION OF TWO NEW H I 21 cm ABSORBERS AT z ≈ 2

    SciTech Connect

    Kanekar, N.

    2014-12-20

    I report the detection of H I 21 cm absorption in two high column density damped Lyα absorbers (DLAs) at z ≈ 2 using new wide-band 250-500 MHz receivers on board the Giant Metrewave Radio Telescope. The integrated H I 21 cm optical depths are 0.85 ± 0.16 km s{sup –1} (TXS1755+578) and 2.95 ± 0.15 km s{sup –1} (TXS1850+402). For the z = 1.9698 DLA toward TXS1755+578, the difference in H I 21 cm and C I profiles and the weakness of the radio core suggest that the H I 21cm absorption arises toward radio components in the jet, and that the optical and radio sightlines are not the same. This precludes an estimate of the DLA spin temperature. For the z = 1.9888 DLA toward TXS1850+402, the absorber covering factor is likely to be close to unity, as the background source is extremely compact, with the entire 5 GHz emission arising from a region of ≤ 1.4 mas in size. This yields a DLA spin temperature of T{sub s} = (372 ± 18) × (f/1.0) K, lower than typical T{sub s} values in high-z DLAs. This low spin temperature and the relatively high metallicity of the z = 1.9888 DLA ([Zn/H] =(– 0.68 ± 0.04)) are consistent with the anti-correlation between metallicity and spin temperature that has been found earlier in damped Lyα systems.

  10. Temperature programmable microfabricated gas chromatography column

    DOEpatents

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2003-12-23

    A temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by the integration of a resistive heating element and temperature sensing on the microfabricated column. Additionally, means are provided to thermally isolate the heated column from their surroundings. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.

  11. 29 CFR 1926.755 - Column anchorage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) General requirements for erection stability. (1) All columns shall be anchored by a minimum of 4 anchor rods (anchor bolts). (2) Each column anchor rod (anchor bolt) assembly, including the column-to-base... of anchor rods (anchor bolts). (1) Anchor rods (anchor bolts) shall not be repaired, replaced...

  12. 29 CFR 1926.755 - Column anchorage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Column anchorage. 1926.755 Section 1926.755 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.755 Column anchorage. (a) General requirements for erection stability. (1) All columns shall be anchored by a minimum of 4...

  13. Thin film absorber for a solar collector

    DOEpatents

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  14. Simultaneous FUSE, HST, and Chandra Observations or Intrinsic Absorbers in NGC 7469 and MRK 279

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Technical Monitor); Kriss, Gerard A.

    2004-01-01

    We obtained FUSE observations of NGC 7469 on 2002 Dec 13 & 14. The two exposures totaled only 7 ks. The observations only have good data in one channel, LiF1, due to channel alignment problems. These observations were obtained simultaneously with high-quality HST/STIS and Chandra HETG spectra. The previously known O VI absorption lines in the FUSE spectrum are detected at good signal to noise ratio, and a wide array of other intrinsic absorption lines are visible in the X-ray spectrum and in the STIS spectrum. Compared to prior FUSE observations, the continuum flux for this observation was 50% lower. We see the effects of this in the lowest-velocity O VI absorber, which we associate with the X-ray absorbing gas also detected in this object. This O VI absorber has only a 50% covering fraction, consistent with its covering only the continuum in this source, and its strength and inferred column density increased as the continuum flux of NGC 7469 decreased. This is consistent with the recombination expected from photoionization models of the highly ionized gas. We obtained FUSE observations of Mrk 279 on 2002 May 18. As for NGC 7469, channel alignment problems led to good data being present only in LiFl. While we obtained a much longer integration on the target than planned (47.4 ks vs. 31 ks requested), the UV flux was down a factor of 10 or more from previous HST and FUSE observations, and our wavelength coverage was restricted due to the channel alignment problems. These data still cover the important O VI emission line and absorption lines in Mrk 279. The FUSE flux also agrees well with the simultaneous HST STIS data, which have good signal to noise. We have also analyzed FUSE observations made at three earlier epochs. We detect the Fe K-alpha emission line in the Chandra spectrum, and its flux is consistent with the low X-ray continuum flux level of Mrk 279 at the time of the observation. Because of low signal-to-noise ratios (S/N) in the Chandra spectrum, no O

  15. Ultraviolet absorbance screening for DNAPL site compliance

    SciTech Connect

    Misquitta, N.; Foster, D.; Coll, F.; Brourman, M.

    1997-12-31

    The UV Absorbance Effectiveness Demonstration was developed to evaluate the feasibility of using UV absorbance as a surrogate for oil & grease methods of measuring the concentration of coal tar-related constituents in groundwater. Since the current oil & grease method via Freon{reg_sign} extraction is being phased out, a new alternative oil & grease method using a hexane extraction will be introduced in the near future. A secondary objective of this evaluation was to compare the two oil & grease methods, as they relate to facility groundwater, in order to demonstrate the overall robustness of UV absorbance as a surrogate for oil & grease analysis, regardless of the method of extraction.

  16. Bond integrity of microwave absorbers for CEBAF

    SciTech Connect

    A. Ananda; Y. Verma; B.T. Smith; P.H. Johnson; I.E. Campisi; K.E. Finger

    1992-10-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) uses superconducting niobium cavities. Specially developed microwave absorbing ceramics are used in the cavities to absorb the higher order mode power. The ceramic absorbers are brazed to copper mounts. The structural integrity and the thermal contact of the braze joints are essential. The ultrasonic reflection signal from the various bonds is evaluated to locate voids and partial braze surfaces. The acoustic wave properties of the four components of the structure are used as input to an ultrasonic transmission line model which is compared to the experimental data. There is good correlation between the ultrasonic reflection data and destructive testing of the bonds.

  17. Warm Absorbers in X-rays (WAX), a comprehensive high resolution grating spectral study of a sample of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Laha, S.; Guainazzi, M.; Dewangan, G.; Chakravorty, S.; Kembhavi, A.

    2014-07-01

    We present results from a homogeneous analysis of the broadband 0.3-10 keV CCD resolution as well as of soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. We could put a strict lower limit on the detection fraction of 50%. We find a gap in the distribution of the ionisation parameter in the range 0.5absorber flow is probably constituted by a clumpy distribution of discrete clouds. The distribution of the WA column densities for the sources with broad Fe K-alpha lines are similar to those sources which do not have broadened emission lines. Therefore the detected broad Fe K lines are bonafide and not artefacts of ionised absorption in the soft X-rays. The WA parameters show no correlation among themselves, except for one case. The shallow slope of the logξ versus logv_{out} linear regression (0.12± 0.03) is inconsistent with the scaling laws predicted by radiation or magneto-hydrodynamic-driven winds. Our results suggest also that WA and Ultra Fast Outflows (UFOs) do not represent extreme manifestation of the same astrophysical system.

  18. Absorbing metasurface created by diffractionless disordered arrays of nanoantennas

    SciTech Connect

    Chevalier, Paul; Bouchon, Patrick Jaeck, Julien; Lauwick, Diane; Kattnig, Alain; Bardou, Nathalie; Pardo, Fabrice; Haïdar, Riad

    2015-12-21

    We study disordered arrays of metal-insulator-metal nanoantenna in order to create a diffractionless metasurface able to absorb light in the 3–5 μm spectral range. This study is conducted with angle-resolved reflectivity measurements obtained with a Fourier transform infrared spectrometer. A first design is based on a perturbation of a periodic arrangement, leading to a significant reduction of the radiative losses. Then, a random assembly of nanoantennas is built following a Poisson-disk distribution of given density, in order to obtain a nearly perfect cluttered assembly with optical properties of a homogeneous material.

  19. Volcanoes in the Classroom: Simulating an Eruption Column

    NASA Astrophysics Data System (ADS)

    Harpp, K. S.; Geist, D. J.; Koleszar, A. M.

    2005-12-01

    Few students have the opportunity to witness volcanic eruptions first hand. Analog models of eruptive processes provide ways for students to apply basic physical principles when field observations are not feasible. We describe a safe simulation of violent volcanic explosions, one that can be carried out simply and easily as a demonstration for specialized volcanology classes, introductory classes, and science outreach programs. Volcanic eruptions are fundamentally gas-driven phenomena. Depressurization of volatiles dissolved in magma during ascent is the driving force behind most explosive eruptions. We have developed a demonstration whereby the instructor can initiate a gas-driven eruption, which produces a dramatic but safe explosion and eruptive column. First, one pours liquid nitrogen into a weighted, plastic soda bottle, which is then sealed and placed into a trashcan filled with water. As the liquid nitrogen boils, the pressure inside the bottle increases until the seal fails, resulting in an explosion. The expansive force propels a column of water vertically, to 10 or more meters. Students can operate the demonstration themselves and carry out a sequence of self-designed variations, changing the vent size and viscosity of the "magma", for instance. They can also vary the material used as "tephra", studying the effects of projectile density, column height, and wind direction on tephra distribution. The physical measurements that students collect, such as column height and tephra radius, can be used as the basis for problem sets that explore the dynamics of eruption columns. Possible calculations include ejection velocity, the pressure needed to propel the water column, and average vesicularity of the "magma". Students can then compare their results to observations from real volcanic eruptions. We find this to be an exceedingly effective demonstration of gas-driven liquid explosions and one that is safe if done properly. [NOTE: Please do NOT attempt this

  20. Graphene-enabled electrically switchable radar absorbing surfaces

    NASA Astrophysics Data System (ADS)

    Balci, Osman; Polat, Emre Ozan; Kakenov, Nurbek; Kocabas, Coskun

    2015-03-01

    Radar absorbing materials are used in stealth technologies for concealment of an object from radar detection. Resistive and/or magnetic composite materials are used to reduce the backscattered microwave signals. Inability to control electrical properties of these materials however, hinders the realization of active camouflage systems which require adaptive surfaces operating in microwave frequencies. Here, using large-area graphene electrodes, we demonstrate a new class of active surfaces which enables unprecedented ability to control reflection, transmission and absorption of microwaves by electrical means. Instead of tuning bulk material property, our strategy relies on electrostatic tuning of the charge density on an atomically thin electrode which operates as a tunable metal in microwave frequencies. Notably, we fabricated large area adaptive radar absorbing surfaces with tunable reflection suppression ratio up to 50 dB with operation voltages less than 5 V. These electrically switchable radar absorbing surfaces provide a significant step in realization of active camouflage systems and adaptive cloaking in microwave frequencies, which cannot be realized by conventional materials.

  1. Neutron absorbing coating for nuclear criticality control

    DOEpatents

    Mizia, Ronald E.; Wright, Richard N.; Swank, William D.; Lister, Tedd E.; Pinhero, Patrick J.

    2007-10-23

    A neutron absorbing coating for use on a substrate, and which provides nuclear criticality control is described and which includes a nickel, chromium, molybdenum, and gadolinium alloy having less than about 5% boron, by weight.

  2. Energy absorber uses expanded coiled tube

    NASA Technical Reports Server (NTRS)

    Johnson, E. F.

    1972-01-01

    Mechanical shock mitigating device, based on working material to its failure point, absorbs mechanical energy by bending or twisting tubing. It functions under axial or tangential loading, has no rebound, is area independent, and is easy and inexpensive to build.

  3. Attenuation of external Bremsstrahlung in metallic absorbers

    SciTech Connect

    Dhaliwal, A.S.; Powar, M.S.; Singh, M. )

    1990-12-01

    In this paper attenuation of bremsstrahlung from {sup 147}Pm and {sup 170}Tm beta emitters has been studied in aluminum, copper, tin, and lead metallic absorbers. Bremsstrahlung spectra and mass attenuation coefficients for monoenergetic gamma rays are used to calculate theoretical attenuation curves. Magnetic deflection and beta stopping techniques are used to measure the integral bremsstrahlung intensities above 30 keV in different target thicknesses. Comparison of measured and calculated attenuation curves shows a good agreement for various absorbers, thus providing a test of this technique, which may be useful in understanding bremsstrahlung intensity buildup and in the design of optimum shielding for bremsstrahlung sources. It is found that the absorption of bremsstrahlung in metallic absorbers does not obey an exponential law and that absorbers act as energy filters.

  4. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Milbourne, M.

    2005-01-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. The objective of this task is to quantify lifetimes through measurement of the optical and mechanical stability of candidate polymeric glazing and absorber materials. Polycarbonate sheet glazings, as proposed by two industry partners, have been tested for resistance to UV radiation with three complementary methods. Incorporation of a specific 2-mil thick UV-absorbing screening layer results in glazing lifetimes of at least 15 years; improved screens promise even longer lifetimes. Proposed absorber materials were tested for creep and embrittlement under high temperature, and appear adequate for planned ICS absorbers.

  5. Porous absorber for solar air heaters

    SciTech Connect

    Finch, J.A.

    1980-09-10

    A general discussion of the factors affecting solar collector performance is presented. Bench scale tests done to try to determine the heat transfer characteristics of various screen materials are explained. The design, performance, and evaluation of a crude collector with a simple screen stack absorber is treated. The more sophisticated absorber concept, and its first experimental approximation is examined. A short summary of future plans for the collector concept is included. (MHR)

  6. Taming electromagnetic metamaterials for isotropic perfect absorbers

    NASA Astrophysics Data System (ADS)

    Anh, Doan Tung; Viet, Do Thanh; Trang, Pham Thi; Thang, Nguyen Manh; Quy, Ho Quang; Hieu, Nguyen Van; Lam, Vu Dinh; Tung, Nguyen Thanh

    2015-07-01

    Conventional metamaterial absorbers, which consist of a dielectric spacer sandwiched between metamaterial resonators and a metallic ground plane, have been inherently anisotropic. In this paper, we present an alternative approach for isotropic perfect absorbers using symmetric metamaterial structures. We show that by systematically manipulating the electrically and magnetically induced losses, one can achieve a desired absorption without breaking the structural homogeneity. Finite integration simulations and standard retrieval method are performed to elaborate on our idea.

  7. Structured metal film as a perfect absorber.

    PubMed

    Xiong, Xiang; Jiang, Shang-Chi; Hu, Yu-Hui; Peng, Ru-Wen; Wang, Mu

    2013-08-01

    A new type of absorber, a four-tined fish-spear-like resonator (FFR), constructed by the two-photon polymerization process, is reported. An absorbance of more than 90% is experimentally realized and the resonance occurs in the space between the tines. Since a continuous layer of metallic thin film covers the structure, it is perfectly thermo- and electroconductive, which is the mostly desired feature for many applications. PMID:23661582

  8. Perfect terahertz absorber using fishnet based metafilm

    SciTech Connect

    Azad, Abul Kalam; Shchegolkov, Dmitry Yu; Chen, Houtong; Taylor, Antoinette; Smirnova, E I; O' Hara, John F

    2009-01-01

    We present a perfect terahertz (THz) absorber working for a broad-angle of incidence. The two fold symmetry of rectangular fishnet structure allows either complete absorption or mirror like reflection depending on the polarization of incident the THz beam. Metamaterials enable the ability to control the electromagnetic wave in a unique fashion by designing the permittivity or permeability of composite materials with desired values. Although the initial idea of metamaterials was to obtain a negative index medium, however, the evolution of metamaterials (MMs) offers a variety of practically applicable devices for controlling electromagnetic wave such as tunable filters, modulators, phase shifters, compact antenna, absorbers, etc. Terahertz regime, a crucial domain of the electromagnetic wave, is suffering from the scarcity of the efficient devices and might take the advantage of metamaterials. Here, we demonstrate design, fabrication, and characterization of a terahertz absorber based on a simple fishnet metallic film separated from a ground mirror plane by a dielectric spacer. Such absorbers are in particular important for bolometric terahertz detectors, high sensitivity imaging, and terahertz anechoic chambers. Recently, split-ring-resonators (SRR) have been employed for metamaterial-based absorbers at microwave and THz frequencies. The experimental demonstration reveals that such absorbers have absorptivity close to unity at resonance frequencies. However, the downside of these designs is that they all employ resonators of rather complicated shape with many fine parts and so they are not easy to fabricate and are sensitive to distortions.

  9. Radar Absorbing Materials for Cube Stealth Satellite

    NASA Astrophysics Data System (ADS)

    Micheli, D.; Pastore, R.; Vricella, A.; Marchetti, M.

    A Cube Stealth Satellite is proposed for potential applications in defense system. Particularly, the faces of the satellite exposed to the Earth are made of nanostructured materials able to absorb radar surveillance electromagnetic waves, conferring stealth capability to the cube satellite. Microwave absorbing and shielding material tiles are proposed using composite materials consisting in epoxy-resin and carbon nanotubes filler. The electric permittivity of the composite nanostructured materials is measured and discussed. Such data are used by the modeling algorithm to design the microwave absorbing and the shielding faces of the cube satellite. The electromagnetic modeling takes into account for several incidence angles (0-80°), extended frequency band (2-18 GHz), and for the minimization of the electromagnetic reflection coefficient. The evolutionary algorithm used for microwave layered microwave absorber modeling is the recently developed Winning Particle Optimization. The mathematical model of the absorbing structure is finally experimentally validated by comparing the electromagnetic simulation to the measurement of the manufactured radar absorber tile. Nanostructured composite materials manufacturing process and electromagnetic reflection measurements methods are described. Finally, a finite element method analysis of the electromagnetic scattering by cube stealth satellite is performed.

  10. Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection.

    PubMed

    Liu, Jing; Sun, Yuze; Howard, Daniel J; Frye-Mason, Greg; Thompson, Aaron K; Ja, Shiou-Jyh; Wang, Siao-Kwan; Bai, Mengjun; Taub, Haskell; Almasri, Mahmoud; Fan, Xudong

    2010-06-01

    We developed and characterized a Fabry-Pérot (FP) sensor module based micro gas chromatography (microGC) detector for multipoint on-column detection. The FP sensor was fabricated by depositing a thin layer of metal and a layer of gas-sensitive polymer consecutively on the endface of an optical fiber, which formed the FP cavity. Light partially reflected from the metal layer and the polymer-air interface generated an interference spectrum, which shifted as the polymer layer absorbed the gas analyte. The FP sensor module was then assembled by inserting the FP sensor into a hole drilled in the wall of a fused-silica capillary, which can be easily connected to the conventional gas chromatography (GC) column through a universal quick seal column connector, thus enabling on-column real-time detection. We characterized the FP sensor module based microGC detector. Sensitive detection of various gas analytes was achieved with subnanogram detection limits. The rapid separation capability of the FP sensor module assembled with both single- and tandem-column systems was demonstrated, in which gas analytes having a wide range of polarities and volatilities were well-resolved. The tandem-column system obtained increased sensitivity and selectivity by employing two FP sensor modules coated with different polymers, showing great system versatility. PMID:20441156

  11. Suppression of mechanical vibrations in a building-like structure using a passive/active autoparametric absorber

    NASA Astrophysics Data System (ADS)

    Abundis-Fong, H. F.; Silva-Navarro, G.

    2014-03-01

    An experimental investigation is carried out on a system consisting of a primary structure coupled with a passive/active autoparametric vibration absorber. The primary structure consists of a building-like mechanical structure, it has three rigid floors connected by flexible columns made from aluminium strips, while the absorber consists of a cantilever beam with a PZT patch actuator actively controlled through an acquisition card. The whole system, which is a coupled non-linear oscillator, is subjected to sinusoidal excitation obtained from an electromechanical shaker in the neighborhood of internal resonances. The natural frequency of the absorber is tuned to be one-half of any of the natural frequencies of the main system. With the addition of a PZT actuator, the autoparametric vibration absorber is made active, thus enabling the possibility to control the effective stiffness associated to the passive absorber and, as a consequence, the implementation of an active vibration control scheme able to preserve, as possible, the autoparametric interaction as well as to compensate varying excitation frequencies. This active vibration absorber employs feedback information from an accelerometer on the primary structure, an accelerometer on the tip of the beam absorber and a strain gage on the base of the beam, feedforward information from the excitation force and on-line computations from the nonlinear approximate frequency response, parameterized in terms of a proportional gain provided by a voltage input to the PZT actuator, thus providing a mechanism to asymptotically track an optimal, robust and stable attenuation solution on the primary system.

  12. Oscillating water column structural model

    SciTech Connect

    Copeland, Guild; Bull, Diana L; Jepsen, Richard Alan; Gordon, Margaret Ellen

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

  13. Scattering of electromagnetic waves from a magnetized plasma column at oblique incidence

    SciTech Connect

    Ghaffari-Oskooei, Sara S.; Aghamir, Farzin M.

    2015-07-14

    Scattering of electromagnetic waves from a magnetized plasma column is investigated using Maxwell's equations and applying boundary conditions. Backscattering cross section is evaluated by analytic solution of electric fields inside and outside of plasma column. Plots of backscattering cross section versus frequency, for the range up to J band, reveal two main peaks and two sidebands. Effects of plasma density and radius, as main parameters determining the characteristics of plasma column, on backscattering are discussed. Furthermore, the effect of electromagnetic wave incidence angle on backscattering of plasma column is included in the analysis. The influence of wave incidence angle and frequency, as well as, plasma density and radius on scattering pattern, which is an indicator of the distribution of scattered power in different azimuthal angles, is discussed.

  14. A NEW RECIPE FOR OBTAINING CENTRAL VOLUME DENSITIES OF PRESTELLAR CORES FROM SIZE MEASUREMENTS

    SciTech Connect

    Tassis, Konstantinos; Yorke, Harold W.

    2011-07-10

    We propose a simple analytical method for estimating the central volume density of prestellar molecular cloud cores from their column density profiles. Prestellar cores feature a flat central part of the column density and volume density profiles of the same size indicating the existence of a uniform-density inner region. The size of this region is set by the thermal pressure force which depends only on the central volume density and temperature of the core, and can provide a direct measurement of the central volume density. Thus, a simple length measurement can immediately yield a central density estimate independent of any dynamical model for the core and without the need for fitting. Using the radius at which the column density is 90% of the central value as an estimate of the size of the flat inner part of the column density profile yields an estimate of the central volume density within a factor of two for well-resolved cores.

  15. An overview of the development, testing, and application of composite absorbers

    SciTech Connect

    Sebesta, F.; John, J.

    1995-02-01

    Although inorganic exchangers offer many advantages for removing selected elements from radioactive waste streams, few of these materials are suitable for use in packed-bed columns. We review various adaptations of inorganic exchangers for use in columns, which include granular forms of the intrinsic absorbers, absorber compounds supported on other materials, and composite absorbers that use organic or inorganic binders. An organic binding polymer of polyacrylonitrile (PAN), developed at the Czech Technical University, has been demonstrated to offer advantages. We describe general methods for preparing inorganic exchange materials, which then are incorporated into PAN-based composites. Such PAN composites have been used to remove selected radionuclides from a variety of liquid waste streams. Sixteen different PAN composites were prepared for testing at Los Alamos National Laboratory (LANL) as part of an evaluation of potential partitioning agents for remediating the liquid waste in underground storage tanks at the Hanford site near Richland, Washington. Our collaboration with LANL is expected to continue for another 2 years.

  16. On the definition of absorbed dose

    NASA Astrophysics Data System (ADS)

    Grusell, Erik

    2015-02-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before.

  17. Algorithm for NO2 Vertical Column Retrieval from the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Bucsela, Eric J.; Celarier, Edward A.; Wenig, Mark O.; Gleason, James F.; Veefkind, J. Pepijn; Boersma, K. Folkert; Brinksma, Ellen J.

    2006-01-01

    We describe the operational algorithm for the retrieval of stratospheric, tropospheric, and total column densities of nitrogen dioxide NO2 from earthshine radiances measured by the Ozone Monitoring Instrument (OMI), aboard the EOS-Aura satellite. The algorithm uses the DOAS method for the retrieval of slant column NO densities. Air mass factors (AMFs) calculated from a stratospheric NO2 profile are used to make initial estimates of the vertical column density. Using data collected over a 24-h period, a smooth estimate of the global stratospheric field is constructed. Where the initial vertical column densities exceed the estimated stratospheric field, we infer the presence of tropospheric NO2, and recalculate the vertical column density (VCD) using an AMF calculated from an assumed tropospheric NO2 profile. The parameters that control the operational algorithm were selected with the aid of a set of data assembled from stratospheric and tropospheric chemical transport models. We apply the optimized algorithm to OMI data and present global maps of NO2 VCDs for the first time.

  18. Warm absorbers in X-rays (WAX), a comprehensive high-resolution grating spectral study of a sample of Seyfert Galaxies - II. Warm absorber dynamics and feedback to galaxies

    NASA Astrophysics Data System (ADS)

    Laha, Sibasish; Guainazzi, Matteo; Chakravorty, Susmita; Dewangan, Gulab C.; Kembhavi, Ajit K.

    2016-04-01

    This paper is a sequel to the extensive study of warm absorber (WA) in X-rays carried out using high-resolution grating spectral data from XMM-Newton satellite (WAX-I). Here we discuss the global dynamical properties as well as the energetics of the WA components detected in the WAX sample. The slope of WA density profile (n ∝ r-α) estimated from the linear regression slope of ionization parameter ξ and column density NH in the WAX sample is α = 1.236 ± 0.034. We find that the WA clouds possibly originate as a result of photoionized evaporation from the inner edge of the torus (torus wind). They can also originate in the cooling front of the shock generated by faster accretion disc outflows, the ultrafast outflows, impinging on to the interstellar medium or the torus. The acceleration mechanism for the WA is complex and neither radiatively driven wind nor MHD-driven wind scenario alone can describe the outflow acceleration. However, we find that radiative forces play a significant role in accelerating the WA through the soft X-ray absorption lines, and also with dust opacity. Given the large uncertainties in the distance and volume filling factor estimates of the WA, we conclude that the kinetic luminosity ĖK of WA may sometimes be large enough to yield significant feedback to the host galaxy. We find that the lowest ionization states carry the maximum mass outflow, and the sources with higher Fe M UTA absorption (15-17 Å) have more mass outflow rates.

  19. Method of absorbance correction in a spectroscopic heating value sensor

    SciTech Connect

    Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

    2013-09-17

    A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

  20. Characterization of polyacrylamide based monolithic columns.

    PubMed

    Plieva, Fatima M; Andersson, Jonatan; Galaev, Igor Yu; Mattiasson, Bo

    2004-07-01

    Supermacroporous monolithic polyacrylamide (pAAm)-based columns have been prepared by radical cryo-copolymerization (copolymerization in the moderately frozen system) of acrylamide with functional co-monomer, allyl glycidyl ether (AGE), and cross-linker N,N'-methylene-bis-acrylamide (MBAAm) directly in glass columns (ID 10 mm). The monolithic columns have uniform supermacroporous sponge-like structure with interconnected supermacropores of pore size 5-100 microm. The monoliths can be dried and stored in the dry state. High mechanical stability of the monoliths allowed sterilization by autoclaving. Column-to-column reproducibility of pAAm-monoliths was demonstrated on 5 monolithic columns from different batches prepared under the same cryostructuration conditions.

  1. Characterization of polyacrylamide based monolithic columns.

    PubMed

    Plieva, Fatima M; Andersson, Jonatan; Galaev, Igor Yu; Mattiasson, Bo

    2004-07-01

    Supermacroporous monolithic polyacrylamide (pAAm)-based columns have been prepared by radical cryo-copolymerization (copolymerization in the moderately frozen system) of acrylamide with functional co-monomer, allyl glycidyl ether (AGE), and cross-linker N,N'-methylene-bis-acrylamide (MBAAm) directly in glass columns (ID 10 mm). The monolithic columns have uniform supermacroporous sponge-like structure with interconnected supermacropores of pore size 5-100 microm. The monoliths can be dried and stored in the dry state. High mechanical stability of the monoliths allowed sterilization by autoclaving. Column-to-column reproducibility of pAAm-monoliths was demonstrated on 5 monolithic columns from different batches prepared under the same cryostructuration conditions. PMID:15354560

  2. REDISTRIBUTOR FOR LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Bradley, J.G.

    1957-10-29

    An improved baffle plate construction to intimately mix immiscible liquid solvents for solvent extraction processes in a liquid-liquid pulse column is described. To prevent the light and heavy liquids from forming separate continuous homogeneous vertical channels through sections of the column, a baffle having radially placed rectangular louvers with deflection plates opening upon alternate sides of the baffle is placed in the column, normal to the axis. This improvement substantially completely reduces strippiig losses due to poor mixing.

  3. Distillation of light hydrocarbons in packed columns

    SciTech Connect

    Strigle, R.F.

    1985-04-01

    Newly developed design procedures have led to a wider acceptance of packed columns for distillation operations, especially those operating at atmospheric or higher pressures. Based on these new design methods, modern IMTP packing has been used in a wide variety of services to revamp over 300 distillation columns previously equipped with trays. A few of these columns are listed. These revamps were justified by capacity increase and by greater product recovery. In addition, energy savings were realized from reduction of reflux ratio.

  4. A polarization insensitive and broadband metamaterial absorber based on three-dimensional structure

    NASA Astrophysics Data System (ADS)

    Tang, Jingyao; Xiao, Zhongyin; Xu, Kaikai; Liu, Dejun

    2016-08-01

    In this paper, we propose a three-dimensional metamaterial absorber based on tailored resistive film patch array. The numerical results show that a broadband abs orption more than 90% can be achieved from 58.6 to 91.4 GHz for either transverse electric or magnetic polarization wave at normal incidence. And the E-field, surface current and power loss density distributions in the absorber are investigated to explain the physical mechanism of high absorption. In addition, the absorption efficiency of oblique incidence is also elucidated. According to the analysis of the E-field and power loss density distributions, we explain the absorption differences between TE and TM mode at oblique incidence. The proposed metamaterial absorber will pave the way for practical applications, such as sensing, imaging and stealth technology. Importantly, the design idea has the ability to be extended to terahertz, infrared and optical region.

  5. Impact of annealing on electrical properties of Cu2ZnSnSe4 absorber layers

    NASA Astrophysics Data System (ADS)

    Weiss, Thomas Paul; Redinger, Alex; Rey, Germain; Schwarz, Torsten; Spies, Maria; Cojocura-Mirédin, Oana; Choi, P.-P.; Siebentritt, Susanne

    2016-07-01

    Reported growth processes for kesterite absorber layers generally rely on a sequential process including a final high temperature annealing step. However, the impact and details for this annealing process vary among literature reports and little is known on its impact on electrical properties of the absorber. We used kesterite absorber layers prepared by a high temperature co-evaporation process to explicitly study the impact of two different annealing processes. From electrical characterization it is found that the annealing process incorporates a detrimental deep defect distribution. On the other hand, the doping density could be reduced leading to a better collection and a higher short circuit current density. The activation energy of the doping acceptor was studied with admittance spectroscopy and showed Meyer-Neldel behaviour. This indicates that the entropy significantly contributes to the activation energy.

  6. Ultrathin flexible dual band terahertz absorber

    NASA Astrophysics Data System (ADS)

    Shan, Yan; Chen, Lin; Shi, Cheng; Cheng, Zhaoxiang; Zang, Xiaofei; Xu, Boqing; Zhu, Yiming

    2015-09-01

    We propose an ultrathin and flexible dual band absorber operated at terahertz frequencies based on metamaterial. The metamaterial structure consists of periodical split ring resonators with two asymmetric gaps and a metallic ground plane, separated by a thin-flexible dielectric spacer. Particularly, the dielectric spacer is a free-standing polyimide film with thickness of 25 μm, resulting in highly flexible for our absorber and making it promising for non-planar applications such as micro-bolometers and stealth aircraft. Experimental results show that the absorber has two resonant absorption frequencies (0.41 THz and 0.75 THz) with absorption rates 92.2% and 97.4%, respectively. The resonances at the absorption frequencies come from normal dipole resonance and high-order dipole resonance which is inaccessible in the symmetrical structure. Multiple reflection interference theory is used to analyze the mechanism of the absorber and the results are in good agreement with simulated and experimental results. Furthermore, the absorption properties are studied under various spacer thicknesses. This kind of metamaterial absorber is insensitive to polarization, has high absorption rates (over 90%) with wide incident angles range from 0° to 45° and the absorption rates are also above 90% when wrapping it to a curved surface.

  7. Ultraviolet radiation absorbing compounds in marine organisms

    SciTech Connect

    Chalker, B.E.; Dunlap, W.C. )

    1990-01-09

    Studies on the biological effects of solar ultraviolet radiations are becoming increasingly common, in part due to recent interest in the Antarctic ozone hole and in the perceived potential for global climate change. Marine organisms possess many strategies for ameliorating the potentially damaging effects of UV-B (280-320 nm) and the shorter wavelengths of UV-A (320-400nm). One mechanism is the synthesis of bioaccumulation of ultraviolet radiation absorbing compounds. Several investigators have noted the presence of absorbing compounds in spectrophotometer scans of extracts from a variety of marine organisms, particularly algae and coelenterates containing endosymbiotic algae. The absorbing compounds are often mycosporine-like amino acids. Thirteen mycosporine-like amino acids have already been described, and several others have recently been detected. Although, the mycosporine-like amino acids are widely distributed. these compounds are by no means the only type of UV-B absorbing compounds which has been identified. Coumarins from green algae, quinones from sponges, and indoles from a variety of sources are laternative examples which are documented in the natural products literature. When the biological impact of solar ultraviolet radiation is assessed, adequate attention must be devoted to the process of photoadaptation, including the accumulation of ultraviolet radiation absorbing compounds.

  8. Oxygen absorbers in food preservation: a review.

    PubMed

    Cichello, Simon Angelo

    2015-04-01

    The preservation of packaged food against oxidative degradation is essential to establish and improve food shelf life, customer acceptability, and increase food security. Oxygen absorbers have an important role in the removal of dissolved oxygen, preserving the colour, texture and aroma of different food products, and importantly inhibition of food spoilage microbes. Active packaging technology in food preservation has improved over decades mostly due to the sealing of foods in oxygen impermeable package material and the quality of oxygen absorber. Ferrous iron oxides are the most reliable and commonly used oxygen absorbers within the food industry. Oxygen absorbers have been transformed from sachets of dried iron-powder to simple self-adhesive patches to accommodate any custom size, capacity and application. Oxygen concentration can be effectively lowered to 100 ppm, with applications spanning a wide range of food products and beverages across the world (i.e. bread, meat, fish, fruit, and cheese). Newer molecules that preserve packaged food materials from all forms of degradation are being developed, however oxygen absorbers remain a staple product for the preservation of food and pharmaceutical products to reduce food wastage in developed nations and increased food security in the developing & third world. PMID:25829570

  9. Ultra-broadband infrared metasurface absorber.

    PubMed

    Guo, Wenliang; Liu, Yuexia; Han, Tiancheng

    2016-09-01

    By using sub-wavelength resonators, metamaterial absorber shows great potential in many scientific and technical applications due to its perfect absorption characteristics. For most practical applications, the absorption bandwidth is one of the most important performance metrics. In this paper, we demonstrate the design of an ultra-broadband infrared absorber based on metasurface. Compared with the prior work [Opt. Express22(S7), A1713-A1724 (2014)], the proposed absorber shows more than twice the absorption bandwidth. The simulated total absorption exceeds 90% from 7.8 to 12.1 um and the full width at half maximum is 50% (from 7.5 to 12.5 μm), which is achieved by using a single layer of metasurface. Further study demonstrates that the absorption bandwidth can be greatly expanded by using two layers of metasurface, i.e. dual-layered absorber. The total absorption of the dual-layered absorber exceeds 80% from 5.2 to 13.7 um and the full width at half maximum is 95% (from 5.1 to 14.1 μm), much greater than those previously reported for infrared spectrum. The absorption decreases with fluctuations as the incident angle increases but remains quasi-constant up to relatively large angles. PMID:27607662

  10. Solar absorber material reflectivity measurements at temperature

    SciTech Connect

    Bonometti, J.A.; Hawk, C.W.

    1999-07-01

    Assessment of absorber shell material properties at high operating temperatures is essential to the full understanding of the solar energy absorption process in a solar thermal rocket. A review of these properties, their application and a new experimental methodology to measure them at high temperatures is presented. The direct application for the research is absorber cavity development for a Solar Thermal Upper Stage (STUS). High temperature measurements, greater than 1,000 Kelvin, are difficult to obtain for incident radiation upon a solid surface that forms an absorber cavity in a solar thermal engine. The basic material properties determine the amount of solar energy that is absorbed, transmitted or reflected and are dependent upon the material's temperature. This investigation developed a new approach to evaluate the material properties (i.e., reflectivity, absorptive) of the absorber wall and experimentally determined them for rhenium and niobium sample coupons. The secular reflectivity was measured both at room temperature and at temperatures near 1,000 Kelvin over a range of angles from 0 to 90 degrees. The same experimental measurements were used to calculate the total reflectivity of the sample by integrating the recorded intensities over a hemisphere. The test methodology used the incident solar energy as the heating source while directly measuring the reflected light (an integrated value over all visible wavelengths). Temperature dependence on total reflectivity was found to follow an inverse power function of the material's temperature.

  11. Oxygen absorbers in food preservation: a review.

    PubMed

    Cichello, Simon Angelo

    2015-04-01

    The preservation of packaged food against oxidative degradation is essential to establish and improve food shelf life, customer acceptability, and increase food security. Oxygen absorbers have an important role in the removal of dissolved oxygen, preserving the colour, texture and aroma of different food products, and importantly inhibition of food spoilage microbes. Active packaging technology in food preservation has improved over decades mostly due to the sealing of foods in oxygen impermeable package material and the quality of oxygen absorber. Ferrous iron oxides are the most reliable and commonly used oxygen absorbers within the food industry. Oxygen absorbers have been transformed from sachets of dried iron-powder to simple self-adhesive patches to accommodate any custom size, capacity and application. Oxygen concentration can be effectively lowered to 100 ppm, with applications spanning a wide range of food products and beverages across the world (i.e. bread, meat, fish, fruit, and cheese). Newer molecules that preserve packaged food materials from all forms of degradation are being developed, however oxygen absorbers remain a staple product for the preservation of food and pharmaceutical products to reduce food wastage in developed nations and increased food security in the developing & third world.

  12. Stabilizing a laboratory plasma column beyond the external kink limit

    NASA Astrophysics Data System (ADS)

    Sears, J.; Intrator, T.; Weber, T.; Daughton, W. S.; Klarenbeek, J.; Gao, K.

    2012-12-01

    Astrophysical jets emanating from galaxies appear to outlive the current driven kink instability that would be expected from their axial current and magnetic field. Study of a similar saturated kink mode in laboratory plasma may offer clues to the long lifetime of the astrophysical structures. A column of plasma generated in a longitudinal magnetic field in the Reconnection Scaling Experiment suffers from a catastrophic external kink instability when sufficient current density is driven along its length. At slightly lower current density but still above the Kruskal-Shafranov stability limit, we observe the amplitude of the kink to saturate at ≈ ph{a}, where ph{a} is the radius of the current distribution, and the column to gyrate at a steady rate for many periods. We evaluate how saturation of the kink mode is influenced by axial flow and shear therein, by rotation and Coriolis force, and by kinetic effects beyond the fluid regime. The plasma column of length l = 0.48 m has electron temperature Te = 10 eV and density ne = 1e19 m-3. The background axial field is B = 0.01 T, and the saturated steady state occurs for current I = 300 A. We measure the vector magnetic field and the plasma temperature and density in a cubic volume measuring 0.1 m on a side with resolution on the order of the electron skin depth. We present also results of a 2D numerical model simulated with the VPIC code. *Supported by DOE Office of Fusion Energy Sciences under LANS contract DE-AC52-06NA25369, NASA Geospace NNHIOA044I, Basic

  13. Interstitial gas effect on vibrated granular columns

    NASA Astrophysics Data System (ADS)

    Pastenes, Javier C.; Géminard, Jean-Christophe; Melo, Francisco

    2014-06-01

    Vibrated granular materials have been intensively used to investigate particle segregation, convection, and heaping. We report on the behavior of a column of heavy grains bouncing on an oscillating solid surface. Measurements indicate that, for weak effects of the interstitial gas, the temporal variations of the pressure at the base of the column are satisfactorily described by considering that the column, despite the observed dilation, behaves like a porous solid. In addition, direct observation of the column dynamics shows that the grains of the upper and lower surfaces are in free fall in the gravitational field and that the dilation is due to a small delay between their takeoff times.

  14. Full-scale engine tests of bulk absorber acoustic inlet treatment

    NASA Technical Reports Server (NTRS)

    Heidelberg, L. J.; Homyak, L.

    1979-01-01

    Three different densities of Kevlar bulk absorber fan inlet treatment were tested on a YF 102 turbofan engine. This bulk absorber material may have potential for flight application. Far-field noise measurements were made and the attenuation properties of the three treatment densities were compared. In addition the best bulk treatment was compared to the best single degree of freedom, SDOF (honeycomb and perforated cover sheet) treatment from another investigation. Although the density was varied over a large range, (3 to 1) the effect on attenuation was small. The highest density treatment, 11.8 lb/cu ft, had a somewhat broader attenuation bandwidth. The comparison of the best bulk and SDOF treatments showed the bulk to have a greater attenuation bandwidth. At the design frequency both types of treatment had almost equal performance.

  15. Full-scale engine tests of bulk absorber acoustic inlet treatment

    NASA Technical Reports Server (NTRS)

    Heidelberg, L. J.; Homyak, L.

    1979-01-01

    Three different densities of Keviar bulk absorber fan inlet treatment were tested on a YF 102 turbofan engine. This bulk absorber material may have potential for flight application. Farfield noise measurements were made and the attenuation properties of the three treatment densities were compared. In addition, the best bulk treatment was compared to the best single degree of freedom, SDOF (honeycomb and perforated cover sheet) treatment from another investigation. Although the density was varied over a large range, (3 to 1) the effect on attenuation was small. The highest density treatment, 11.8 lb/cubic ft., had a somewhat broader attenuation bandwidth. The comparison of the best bulk and SDOF treatments showed the bulk to have a much greater attenuation bandwidth. At the design frequency both types of treatment had almost equal performance.

  16. Sustenance of inhomogeneous electron temperature in a magnetized plasma column

    SciTech Connect

    Karkari, S. K. Mishra, S. K.; Kaw, P. K.

    2015-09-15

    This paper presents the equilibrium properties of a magnetized plasma column sustained by direct-current (dc) operated hollow cathode discharge in conjunction with a conducting end-plate, acting as the anode. The survey of radial plasma characteristics, performed in argon plasma, shows hotter plasma in the periphery as compared to the central plasma region; whereas the plasma density peaks at the center. The off-centered peak in radial temperature is attributed due to inhomogeneous power deposition in the discharge volume in conjunction with short-circuiting effect by the conducting end plate. A theoretical model based on particle flux and energy balance is given to explain the observed characteristics of the plasma column.

  17. Hydrodynamics of a packed countercurrent column for the gas extraction

    SciTech Connect

    Stockfleth, R.; Brunner, G.

    1999-10-01

    The hydraulic capacity of a countercurrent column with gauze packing was examined at pressures between 8 and 30 MPa and temperatures between 313 and 373 K. The systems used were water + carbon dioxide, aqueous surfactant solution + carbon dioxide, and Toco, a substance whose physical properties are roughly similar to those of {alpha}-Tocopherol + carbon dioxide. A distinctive change in the flooding mechanisms from liquid layer flooding to bubble column flooding was observed. The different liquids, water and Toco, showed the same flooding behavior, indicating that the influence of the density on the flooding behavior prevails over the influence of any other physical property of the liquid. The foamability of the surfactant solution decreased significantly with increasing pressure--its influence on the flooding behavior could not be proved. The liquid holdup ranged between 2% and 6%. The dry pressure drop adhered to the Ergun equation.

  18. Multigroup representation of fusion product orbits in a plasma column

    SciTech Connect

    Willenberg, H.J.

    1980-03-01

    A method is derived for describing the time-depending behavior of ..cap alpha.. particles produced in a radially nonuniform slender plasma column as a distribution function among the possible orbits. A multigroup numerical approximation is introduced to analyze the development of the distribution function and its moments. Results are presented of calculations of the time-dependent ..cap alpha..-particle energy spectrum and radial density, energy, and electron heating profiles in plasma columns with radii comparable to the ..cap alpha.. Larmor radius. This technique allows calculation of the ..cap alpha.. particle history at much more rapid rates than allowed by Monte Carlo technuques: The characteristic time scale is the ..cap alpha..-electron slowing-down time rather than the cyclotron period.

  19. Effect of column dimension on observed column efficiency in very high pressure liquid chromatography.

    PubMed

    Wu, Naijun; Bradley, Ashley C

    2012-10-26

    The effect of extra-column volume on observed linear velocity was investigated for columns of various internal diameters in very high pressure liquid chromatography. The results showed that the observed linear velocities were approximately 4.5, 9.5, 16.8, and 39.5% lower than the linear velocities corrected for the extra-column volume contribution for 4.6, 3.0, 2.1, and 1.0mm internal diameter columns, respectively. An empirical relationship between extra-column band broadening and extra-column volume was obtained using 50 cm long tubings of various internal diameters. The peak variance from the extra-column volume is near linearly proportional to the square of the extra-column volume for tubings with 0.0635-0.178 mm (0.025-0.07 in.) i.d. using a 50/50 acetonitrile/water mobile phase at flow rates greater than 0.3 mL/min. The effect of column internal diameter and column length on observed efficiency was studied using 50mm columns with four different column internal diameters and 2.1mm i.d columns with three different lengths. The results showed that the observed column efficiencies for 3.0, 2.1, and 1.0mm internal diameter columns were 18, 33, and 73% lower than that for a 4.6mm internal diameter column for benzophenone (k=5.5), respectively. An approximate 20% decrease in theoretical plate number was observed for propiophenone (k=3.3) using a 50 mm × 2.1 mm column packed with 1.7 μm particles compared to a 150 mm × 2.1 mm column packed with 5.0 μm particles, while the former column provided 9 fold faster separation. It is the column to extra column volume ratio instead of absolute extra-column volume that determines the degree of extra-column band-broadening in VHPLC.

  20. Circular polarization sensitive absorbers based on graphene

    PubMed Central

    Yang, Kunpeng; Wang, Min; Pu, Mingbo; Wu, Xiaoyu; Gao, Hui; Hu, Chenggang; Luo, Xiangang

    2016-01-01

    It is well known that the polarization of a linearly polarized (LP) light would rotate after passing through a single layer graphene under the bias of a perpendicular magnetostatic field. Here we show that a corresponding phase shift could be expected for circularly polarized (CP) light, which can be engineered to design the circular polarization sensitive devices. We theoretically validate that an ultrathin graphene-based absorber with the thickness about λ/76 can be obtained, which shows efficient absorption >90% within incident angles of ±80°. The angle-independent phase shift produced by the graphene is responsible for the nearly omnidirectional absorber. Furthermore, a broadband absorber in frequencies ranging from 2.343 to 5.885 THz with absorption over 90% is designed by engineering the dispersion of graphene. PMID:27034257

  1. Ferrite HOM Absorber for the RHIC ERL

    SciTech Connect

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  2. Absorber Materials at Room and Cryogenic Temperatures

    SciTech Connect

    F. Marhauser, T.S. Elliott, A.T. Wu, E.P. Chojnacki, E. Savrun

    2011-09-01

    We recently reported on investigations of RF absorber materials at cryogenic temperatures conducted at Jefferson Laboratory (JLab). The work was initiated to find a replacement material for the 2 Kelvin low power waveguide Higher Order Mode (HOM) absorbers employed within the original cavity cryomodules of the Continuous Electron Beam Accelerator Facility (CEBAF). This effort eventually led to suitable candidates as reported in this paper. Furthermore, though constrained by small funds for labor and resources, we have analyzed a variety of lossy ceramic materials, several of which could be usable as HOM absorbers for both normal conducting and superconducting RF structures, e.g. as loads in cavity waveguides and beam tubes either at room or cryogenic temperatures and, depending on cooling measures, low to high operational power levels.

  3. Optical analysis of solar energy tubular absorbers.

    PubMed

    Saltiel, C; Sokolov, M

    1982-11-15

    The energy absorbed by a solar energy tubular receiver element for a single incident ray is derived. Two types of receiver elements were analyzed: (1) an inner tube with an absorbing coating surrounded by a semitransparent cover tube, and (2) a semitransparent inner tube filled with an absorbing fluid surrounded by a semitransparent cover tube. The formation of ray cascades in the semitransparent tubes is considered. A numerical simulation to investigate the influence of the angle of incidence, sizing, thickness, and coefficient of extinction of the tubes was performed. A comparison was made between receiver elements with and without cover tubes. Ray tracing analyses in which rays were followed within the tubular receiver element as well as throughout the rest of the collector were performed for parabolic and circular trough concentrating collectors.

  4. Absorber topography dependence of phase edge effects

    NASA Astrophysics Data System (ADS)

    Shanker, Aamod; Sczyrba, Martin; Connolly, Brid; Waller, Laura; Neureuther, Andy

    2015-10-01

    Mask topography contributes to phase at the wafer plane, even for OMOG binary masks currently in use at the 22nm node in deep UV (193nm) lithography. Here, numerical experiments with rigorous FDTD simulation are used to study the impact of mask 3D effects on aerial imaging, by varying the height of the absorber stack and its sidewall angle. Using a thin mask boundary layer model to fit to rigorous simulations it is seen that increasing the absorber thickness, and hence the phase through the middle of a feature (bulk phase) monotonically changes the wafer-plane phase. Absorber height also influences best focus, revealed by an up/down shift in the Bossung plot (linewidth vs. defocus). Bossung plot tilt, however, responsible for process window variability at the wafer, is insensitive to changes in the absorber height (and hence also the bulk phase). It is seen to depend instead on EM edge diffraction from the thick mask edge (edge phase), but stays constant for variations in mask thickness within a 10% range. Both bulk phase and edge phase are also independent of sidewall angle fluctuation, which is seen to linearly affect the CD at the wafer, but does not alter wafer phase or the defocus process window. Notably, as mask topography varies, the effect of edge phase can be replicated by a thin mask model with 8nm wide boundary layers, irrespective of absorber height or sidewall angle. The conclusions are validated with measurements on phase shifting masks having different topographic parameters, confirming the strong dependence of phase variations at the wafer on bulk phase of the mask absorber.

  5. Precise dispersion equations of absorbing filter glasses

    NASA Astrophysics Data System (ADS)

    Reichel, S.; Biertümpfel, Ralf

    2014-05-01

    The refractive indices versus wavelength of optical transparent glasses are measured at a few wavelengths only. In order to calculate the refractive index at any wavelength, a so-called Sellmeier series is used as an approximation of the wavelength dependent refractive index. Such a Sellmeier representation assumes an absorbing free (= loss less) material. In optical transparent glasses this assumption is valid since the absorption of such transparent glasses is very low. However, optical filter glasses have often a rather high absorbance in certain regions of the spectrum. The exact description of the wavelength dependent function of the refractive index is essential for an optimized design for sophisticated optical applications. Digital cameras use an IR cut filter to ensure good color rendition and image quality. In order to reduce ghost images by reflections and to be nearly angle independent absorbing filter glass is used, e.g. blue glass BG60 from SCHOTT. Nowadays digital cameras improve their performance and so the IR cut filter needs to be improved and thus the accurate knowledge of the refractive index (dispersion) of the used glasses must be known. But absorbing filter glass is not loss less as needed for a Sellmeier representation. In addition it is very difficult to measure it in the absorption region of the filter glass. We have focused a lot of effort on measuring the refractive index at specific wavelength for absorbing filter glass - even in the absorption region. It will be described how to do such a measurement. In addition we estimate the use of a Sellmeier representation for filter glasses. It turns out that in most cases a Sellmeier representation can be used even for absorbing filter glasses. Finally Sellmeier coefficients for the approximation of the refractive index will be given for different filter glasses.

  6. Emitter/absorber interface of CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Song, Tao; Kanevce, Ana; Sites, James R.

    2016-06-01

    The performance of CdTe solar cells can be very sensitive to the emitter/absorber interface, especially for high-efficiency cells with high bulk lifetime. Performance losses from acceptor-type interface defects can be significant when interface defect states are located near mid-gap energies. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e., defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV ≤ ΔEC ≤ 0.3 eV) can help maintain good cell efficiency in spite of high interface defect density, much like with Cu(In,Ga)Se2 (CIGS) cells. The basic principle is that positive ΔEC, often referred to as a "spike," creates an absorber inversion and hence a large hole barrier adjacent to the interface. As a result, the electron-hole recombination is suppressed due to an insufficient hole supply at the interface. A large spike (ΔEC ≥ 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a "cliff" (ΔEC < 0 eV) allows high hole concentration in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. Another way to mitigate performance losses due to interface defects is to use a thin and highly doped emitter, which can invert the absorber and form a large hole barrier at the interface. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. The ΔEC of other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ΔEC. These materials are predicted to yield higher voltages and would therefore be

  7. Engineering reverse saturable absorbers for desired wavelengths

    NASA Astrophysics Data System (ADS)

    Band, Yehuda B.; Scharf, Benjamin

    1986-06-01

    A variety of applications exist for reverse saturable absorbers (RSAs) in laser science (RSAs are substances whose excited-state absorption cross section is larger than their ground-state absorption cross section at a given wavelength and possess a number of other properties). We propose an approach to designing RSAs at a desired wavelength by construction of dimers of dye molecules which absorb near the wavelength of interest. The dimer ground-state absorption is to a state in which the excitation is spread over both monomeric units and the excited-state absorption commences from this state to the doubly excited electronic state in which both monomeric units are excited.

  8. Spin Particle in an Absorbing Environment

    NASA Astrophysics Data System (ADS)

    Amooshahi, M.

    2015-10-01

    The quantum dynamics of a localized spin Particle interacting with an absorbing environment is investigated. The quantum Langevin-Schrödinger equation for spin is obtained. The susceptibility function of the environment is calculated in terms of the coupling function of the spin and the environment. it is shown that the susceptibility function satisfies the Kramers-Kronig relations. Spontaneous emission and the shift frequency of the spin is obtained in terms of the imaginary part of the susceptibility function in frequency domain. Some transition probabilities between the spin states are calculated when the absorbing environment is in the thermal state.

  9. OSCEE fan exhaust bulk absorber treatment evaluation

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Samanich, N. E.

    1980-01-01

    The acoustic suppression capability of bulk absorber material designed for use in the fan exhaust duct walls of the quiet clean short haul experiment engine (OCSEE UTW) was evaluated. The acoustic suppression to the original design for the engine fan duct which consisted of phased single degree-of-freedom wall treatment was tested with a splitter and also with the splitter removed. Peak suppression was about as predicted with the bulk absorber configuration, however, the broadband characteristics were not attained. Post test inspection revealed surface oil contamination on the bulk material which could have caused the loss in bandwidth suppression.

  10. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Lindquist, C.; Milbourne, M.

    2005-11-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. We have begun evaluation of several new UV-screened polycarbonate sheet glazing constructions. This has involved interactions with several major polymer industry companies to obtain improved candidate samples. Proposed absorber materials were tested for UV resistance, and appear adequate for unglazed ICS absorbers.

  11. The C IV Mass Density of the Universe at Redshift 5(exp 1)

    NASA Technical Reports Server (NTRS)

    Pettini, Max; Madau, Piero; Bolte, Michael; Prochaska, Jason X.; Ellison, Sara L.; Fan, Xiao-Hui

    2003-01-01

    In order to search for metals in the Ly alpha forest at redshifts z(sub abs) > 4, we have obtained spectra of high signal-to-noise ratio and moderately high resolution of three QSOs at z(sub em) > 5.4 discovered by the Sloan Digital Sky Survey. These data allow us to probe to metal enrichment of the intergalactic medium at early times with higher sensitivity than previous studies. We find 16 C IV absorption systems with column densities logN(C IV) = 12.50-13.98 over a total redshift path Delta X = 3.29. In the redshift interval z = 4.5-5.0, where our statistics are most reliable, we deduce a comoving mass density of C(3+) ions Omega(sub C IV) = (4.3 +/- 2.5) x 10(exp -8) (90% confidence limits) for absorption systems with log N(C IV) > or = 13.0 (for an Einstein-de Sitter cosmology with h = 0.65). This value of Omega(sub C IV) is entirely consistent with those measured at z < 4; we confirm the earlier finding by Songaila that neither the column density distribution of C IV absorbers nor its integral show significant redshift evolution over a period of time that stretches from approx. 1.25 to approx. 4.5 Gyr after the big bang. This somewhat surprising conclusion may be an indication that the intergalactic medium was enriched in metals at z >> 5, perhaps by the sources responsible for its reionization. Alternatively, the C IV systems we see may be associated with outflows from massive star-forming galaxies at later times, while the truly intergalactic metals may reside in regions of the Ly alpha forest of lower density than those probed up to now.

  12. Competing Atmospheric and Surface-Driven Impacts of Absorbing Aerosols on the East Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Persad, G.; Paynter, D.; Ming, Y.; Ramaswamy, V.

    2015-12-01

    Absorbing aerosols, by attenuating shortwave radiation within the atmosphere and reemitting it as longwave radiation, redistribute energy both vertically within the surface-atmosphere column and horizontally between polluted and unpolluted regions. East Asia has the largest concentrations of anthropogenic absorbing aerosols globally, and these, along with the region's scattering aerosols, have both reduced the amount of solar radiation reaching the Earth's surface regionally ("solar dimming") and increased shortwave absorption within the atmosphere, particularly during the peak months of the East Asian Summer Monsoon (EASM). We here analyze how atmospheric absorption and surface solar dimming compete in driving the response of EASM circulation to anthropogenic absorbing aerosols, which dominates, and why—issues of particular importance for predicting how the EASM will respond to projected changes in absorbing and scattering aerosol emissions in the future. We probe these questions in a state-of-the-art general circulation model (GCM) using a combination of realistic and idealized aerosol perturbations that allow us to analyze the relative influence of absorbing aerosols' atmospheric and surface-driven impacts on EASM circulation. In combination, our results make clear that, although absorption-driven dimming has a less detrimental effect on EASM circulation than purely scattering-driven dimming, aerosol absorption is still a net impairment to EASM strength when both its atmospheric and surface effects are considered. Because atmospheric heating is not efficiently conveyed to the surface, the surface dimming and associated cooling from even a pure absorber is sufficient to counteract its atmospheric heating, resulting in a net reduction in EASM strength. These findings elevate the current understanding of the impacts of aerosol absorption on the EASM, improving our ability to diagnose EASM responses to current and future regional changes in aerosol emissions.

  13. Optimal operation of multivessel batch distillation columns

    SciTech Connect

    Furlonge, H.I.; Pantelides, C.C.; Soerensen, E.

    1999-04-01

    Increased interest in unconventional batch distillation column configurations offers new opportunities for increasing the flexibility and energy efficiency of batch distillation. One configuration of particular interest is the multivessel column, which can be viewed as a generalization of all previously studied batch column configurations. A detailed dynamic model was used for comparing various optimal operating policies for a batch distillation column with two intermediate vessels. A wide variety of degrees of freedom including reflux ratios, product withdrawal rates, heat input to the reboiler, and initial feed distribution were considered. A mixture consisting of methanol, ethanol, n-propanol and n-butanol was studied using an objective function relating to the economics of the column operation. Optimizing the initial distribution of the feed among the vessels improved column performance significantly. For some separations, withdrawing product from the vessels into accumulators was better than total reflux operation in terms of energy consumption. Open-loop optimal operation was also compared to a recently proposed feedback control strategy where the controller parameters are optimized. The energy consumption of a regular column was about twice that of a multivessel column having the same number of stages.

  14. Circulation in gas-slurry column reactors

    SciTech Connect

    Clark, N.; Kuhlman, J.; Celik, I.; Gross, R.; Nebiolo, E.; Wang, Yi-Zun.

    1990-08-15

    Circulation in bubble columns, such as those used in fischer-tropsch synthesis, detracts from their performance in that gas is carried on average more rapidly through the column, and the residence time distribution of the gas in the column is widened. Both of these factors influence mass-transfer operations in bubble columns. Circulation prediction and measurement has been undertaken using probes, one-dimensional models, laser Doppler velocimetry, and numerical modeling. Local void fraction was measured using resistance probes and a newly developed approach to determining air/water threshold voltage for the probe. A tall column of eight inch diameter was constructed of Plexiglas and the distributor plate was manufactured to distribute air evenly through the base of the column. Data were gathered throughout the volume at three different gas throughputs. Bubble velocities proved difficult to measure using twin probes with cross-correlation because of radial bubble movement. A series of three-dimensional mean and RMS bubble and liquid velocity measurements were also obtained for a turbulent flow in a laboratory model of a bubble column. These measurements have been made using a three-component laser Doppler velocimeter (LDV), to determine velocity distributions non-intrusively. Finally, the gas-liquid flow inside a vertically situated circular isothermal column reactor was simulated numerically. 74 refs., 170 figs., 5 tabs.

  15. Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas

    DOEpatents

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2012-11-06

    Disclosed are apparatus and method to treat large amounts of flue gas from a pulverized coal combustion power plant. The flue gas is contacted with solid sorbents to selectively absorb CO.sub.2, which is then released as a nearly pure CO.sub.2 gas stream upon regeneration at higher temperature. The method is capable of handling the necessary sorbent circulation rates of tens of millions of lbs/hr to separate CO.sub.2 from a power plant's flue gas stream. Because pressurizing large amounts of flue gas is cost prohibitive, the method of this invention minimizes the overall pressure drop in the absorption section to less than 25 inches of water column. The internal circulation of sorbent within the absorber assembly in the proposed method not only minimizes temperature increases in the absorber to less than 25.degree. F., but also increases the CO.sub.2 concentration in the sorbent to near saturation levels. Saturating the sorbent with CO.sub.2 in the absorber section minimizes the heat energy needed for sorbent regeneration. The commercial embodiments of the proposed method can be optimized for sorbents with slower or faster absorption kinetics, low or high heat release rates, low or high saturation capacities and slower or faster regeneration kinetics.

  16. Density Visualization

    ERIC Educational Resources Information Center

    Keiter, Richard L.; Puzey, Whitney L.; Blitz, Erin A.

    2006-01-01

    Metal rods of high purity for many elements are now commercially available and may be used to construct a display of relative densities. We have constructed a display with nine metal rods (Mg, Al, Ti, V, Fe, Cu, Ag, Pb, and W) of equal mass whose densities vary from 1.74 to 19.3 g cm[superscript -3]. The relative densities of the metals may be…

  17. Modeling of column apparatuses: A review

    SciTech Connect

    Doichinova, M. E-mail: petyabs@yahoo.com; Popova-Krumova, P. E-mail: petyabs@yahoo.com

    2013-12-18

    This paper presents a review of the modeling method on the base of the physical approximations of the mechanics of continua, which have been developed for processes in column apparatuses. This method includes diffusion type of model for modeling of mass transfer with chemical reaction in column apparatuses with and without circulation zones. The diffusion type of model is used for modeling of scale effect in column apparatuses too. The study concluded that the proposal method is possibility for investigation the influence of radial non uniformity of the velocity distribution on the process efficiency, influence of zones breadths on the mass transfer efficiency in the column. The method of the column apparatuses modeling can be used for modeling of physical and chemical absorption, chemical adsorption, homogeneous and heterogeneous (catalytic) chemical reactions, airlift reactors for chemical and photochemical reactions.

  18. A Unified View of X-ray Absorbers in AGNs and XRBs with MHD Winds

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris R.; Tombesi, Francesco; Behar, Ehud; Contopoulos, John

    2016-01-01

    The presence of UV and X-ray absorbers (aka. warm absorbers or WAs) has been long known for decades from extensive spectroscopic studies across diverse AGN populations such as nearby Seyfert galaxies and distant quasars. Furthermore, another class of seemingly distinct type of absorbers, ultra-fast outflows or UFOs, is becoming increasingly known today. Nonetheless, a physical identification of such absorbers, such as geometrical property and physical conditions, is very elusive to date despite the recent state-of-the-art observations. We develop a coherent scenario in which the detected absorbers are driven primarily (if not exclusively) by the action of global magnetic fields originating from a black hole accretion disk. In the context of MHD disk-wind of density profile of n~1/r, it is found that the properties of the observed WAs/UFOs are successfully described assuming a characteristic SED. As a case study, we analyze PG1211+143 and GRO J1655-40 to demonstrate that our wind model can systematically unify apparently diverse absorbers in both AGNs and XRBs in terms of explaining their global behavior as well as individual spectral lines.

  19. Origami-inspired metamaterial absorbers for improving the larger-incident angle absorption

    NASA Astrophysics Data System (ADS)

    Shen, Yang; Pang, Yongqiang; Wang, Jiafu; Ma, Hua; Pei, Zhibin; Qu, Shaobo

    2015-11-01

    When a folded resistive patch array stands up on a metallic plane, it can exhibit more outstanding absorption performance. Our theoretical investigations and simulations demonstrated that the folded resistive patch arrays can enhance the absorption bandwidth progressively with the increase of the incident angle for the oblique transverse magnetic incidence, which is contrary to the conventional resistive frequency selective surface absorber. On illumination, we achieved a 3D structure metamaterial absorber with the folded resistive patches. The proposed absorber is obtained from the inspiration of the origami, and it has broadband and lager-incident angle absorption. Both the simulations and the measurements indicate that the proposed absorber achieves the larger-incident angle absorption until 75° in the frequency band of 3.6-11.4 GHz. In addition, the absorber is extremely lightweight. The areal density of the fabricated sample is about 0.023 g cm-2. Due to the broadband and lager-incident angle absorption, it is expected that the absorbers may find potential applications such as stealth technologies and electromagnetic interference.

  20. The Cooling of a Liquid Absorber using a Small Cooler

    SciTech Connect

    Baynham, D.E.; Bradshaw, T.W.; Green, M.A.; Ishimoto, S.; Liggins, N.

    2005-08-24

    This report discusses the use of small cryogenic coolers for cooling the Muon Ionization Cooling Experiment (MICE) liquid cryogen absorbers. Since the absorber must be able contain liquid helium as well liquid hydrogen, the characteristics of the available 4.2 K coolers are used here. The issues associated with connecting two-stage coolers to liquid absorbers are discussed. The projected heat flows into an absorber and the cool-down of the absorbers using the cooler are presented. The warm-up of the absorber is discussed. Special hydrogen safety issues that may result from the use of a cooler on the absorbers are also discussed.

  1. Ocean mediation of tropospheric response to reflecting and absorbing aerosols

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Xie, S. P.

    2015-12-01

    Radiative forcing by reflecting (e.g., sulfate, SO4) and absorbing (e.g., black carbon, BC) aerosols is distinct: the former cools the planet by reducing solar radiation at the top of the atmosphere and the surface, without largely affecting the atmospheric column, while the latter heats the atmosphere directly. Despite the fundamental difference in forcing, here we show that the structure of the tropospheric response is remarkably similar between the two types of aerosols, featuring a deep vertical structure of temperature change (of opposite sign) at the Northern Hemisphere (NH) mid-latitudes. The deep temperature structure is anchored by the slow response of the ocean, as a large meridional sea surface temperature (SST) gradient drives an anomalous inter-hemispheric Hadley circulation in the tropics and induces atmospheric eddy adjustments at the NH mid-latitudes. The tropospheric warming in response to projected future decline in reflecting aerosols poses additional threats to the stability of mountain glaciers in the NH. Additionally, robust tropospheric response is unique to aerosol forcing and absent in the CO2 response, which can be exploited for climate change attribution.

  2. Integrated tuned vibration absorbers: a theoretical study.

    PubMed

    Gardonio, Paolo; Zilletti, Michele

    2013-11-01

    This article presents a simulation study on two integrated tuned vibration absorbers (TVAs) designed to control the global flexural vibration of lightly damped thin structures subject to broad frequency band disturbances. The first one consists of a single axial switching TVA composed by a seismic mass mounted on variable axial spring and damper elements so that the characteristic damping and natural frequency of the absorber can be switched iteratively to control the resonant response of three flexural modes of the hosting structure. The second one consists of a single three-axes TVA composed by a seismic mass mounted on axial and rotational springs and dampers, which are arranged in such a way that the suspended mass is characterized by uncoupled heave and pitch-rolling vibrations. In this case the three damping and natural frequency parameters of the absorber are tuned separately to control three flexural modes of the hosting structure. The simulation study shows that the proposed single-unit absorbers produce, respectively, 5.3 and 8.7 dB reductions of the global flexural vibration of a rectangular plate between 20 and 120 Hz.

  3. Tunable metamaterial dual-band terahertz absorber

    NASA Astrophysics Data System (ADS)

    Luo, C. Y.; Li, Z. Z.; Guo, Z. H.; Yue, J.; Luo, Q.; Yao, G.; Ji, J.; Rao, Y. K.; Li, R. K.; Li, D.; Wang, H. X.; Yao, J. Q.; Ling, F. R.

    2015-11-01

    We report a design of a temperature controlled tunable dual band terahertz absorber. The compact single unit cell consists of two nested closed square ring resonators and a layer metallic separated by a substrate strontium titanate (STO) dielectric layer. It is found that the absorber has two distinctive absorption peaks at frequencies 0.096 THz and 0.137 THz, whose peaks are attained 97% and 75%. Cooling the absorber from 400 K to 250 K causes about 25% and 27% shift compared to the resonance frequency of room temperature, when we cooling the temperature to 150 K, we could attained both the two tunabilities exceeding 53%. The frequency tunability is owing to the variation of the dielectric constant of the low-temperature co-fired ceramic (LTCC) substrate. The mechanism of the dual band absorber is attributed to the overlapping of dual resonance frequencies, and could be demonstrated by the distributions of the electric field. The method opens up avenues for designing tunable terahertz devices in detection, imaging, and stealth technology.

  4. Composition for absorbing hydrogen from gas mixtures

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Lee, Myung W.

    1999-01-01

    A hydrogen storage composition is provided which defines a physical sol-gel matrix having an average pore size of less than 3.5 angstroms which effectively excludes gaseous metal hydride poisons while permitting hydrogen gas to enter. The composition is useful for separating hydrogen gas from diverse gas streams which may have contaminants that would otherwise render the hydrogen absorbing material inactive.

  5. Moving core beam energy absorber and converter

    DOEpatents

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  6. Optimization of ramified absorber networks doing desalination.

    PubMed

    Singleton, Martin S; Heiss, Gregor; Hübler, Alfred

    2011-01-01

    An iterated function system is used to generate fractal-like ramified graph networks of absorbers, which are optimized for desalination performance. The diffusion equation is solved for the boundary case of constant pressure difference at the absorbers and a constant ambient salt concentration far from the absorbers, while constraining both the total length of the network and the total area of the absorbers to be constant as functions of generation G. A linearized form of the solution was put in dimensionless form which depends only on a dimensionless membrane resistance, a dimensionless inverse svelteness ratio, and G. For each of the first nine generations G=2,…,10, the optimal graph shapes were obtained. Total water production rate increases parabolically as a function of generation, with a maximum at G=7. Total water production rate is shown to be approximately linearly related to the power consumed, for a fixed generation. Branching ratios which are optimal for desalination asymptote decreasingly to r=0.510 for large G, while branching angles which are optimal for desalination asymptote decreasingly to 1.17 radians. Asymmetric graphs were found to be less efficient for desalination than symmetric graphs. The geometry which is optimal for desalination does not depend strongly on the dimensionless parameters, but the optimal water production does. The optimal generation was found to increase with the inverse svelteness ratio.

  7. Estimating the radiation absorbed by a human

    NASA Astrophysics Data System (ADS)

    Kenny, Natasha A.; Warland, Jon S.; Brown, Robert D.; Gillespie, Terry G.

    2008-07-01

    The complexities of the interactions between long- and short-wave radiation fluxes and the human body make it inherently difficult to estimate precisely the total radiation absorbed ( R) by a human in an outdoor environment. The purpose of this project was to assess and compare three methods to estimate the radiation absorbed by a human in an outdoor environment, and to compare the impact of applying various skin and clothing albedos ( α h ) on R. Field tests were conducted under both clear and overcast skies to evaluate the performance of applying a cylindrical radiation thermometer (CRT), net radiometer, and a theoretical estimation model to predict R. Three albedos were evaluated: light ( α h = 0.57), medium ( α h = 0.37), and dark ( α h = 0.21). During the sampling periods, the range of error between the methods used to estimate the radiation absorbed by a cylindrical body under clear and overcast skies ranged from 3 to 8%. Clothing and skin albedo had a substantial impact on R, with the mean change in R between the darkest and lightest albedos ranging from 115 to 157 W m - 2 over the sampling period. Radiation is one of the most important variables to consider in outdoor thermal comfort research, as R is often the largest contributor to the human energy balance equation. The methods outlined and assessed in this study can be conveniently applied to provide reliable estimates of the radiation absorbed by a human in an outdoor environment.

  8. Aldehyde-containing urea-absorbing polysaccharides

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Hsu, G. C.; Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A novel aldehyde containing polymer (ACP) is prepared by reaction of a polysaccharide with periodate to introduce aldehyde groups onto the C2 - C3 carbon atoms. By introduction of ether and ester groups onto the pendant primary hydroxyl solubility characteristics are modified. The ACP is utilized to absorb nitrogen bases such as urea in vitro or in vivo.

  9. Shock absorber protects motive components against overloads

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Shock absorber with an output shaft, hollow gear, and a pair of springs forming a resilient driving connection between shaft and gear, operates when abnormally high torques are applied. This simple durable frictional device is valuable in rotating mechanisms subject to sudden overloads.

  10. Absorbed fractions for electrons in ellipsoidal volumes.

    PubMed

    Amato, E; Lizio, D; Baldari, S

    2011-01-21

    We applied a Monte Carlo simulation in Geant4 in order to calculate the absorbed fractions for monoenergetic electrons in the energy interval between 10 keV and 2 MeV, uniformly distributed in ellipsoids made from soft tissue. For each volume, we simulated a spherical shape, four oblate and four prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a 'generalized radius' was found, and the dependence of the fit parameters from electron energy is discussed and fitted by proper parametric functions. With the proposed formulation, the absorbed fraction for electrons in the 10-2000 keV energy range can be calculated for all volumes and for every ellipsoidal shape of practical interest. This method can be directly applied to evaluation of the absorbed fraction from the radionuclide emission of monoenergetic electrons, such as Auger or conversion electrons. The average deposited energy per disintegration in the case of extended beta spectra can be evaluated through integration. Two examples of application to a pure beta emitter such as (90)Y and to (131)I, whose emission include monoenergetic and beta electrons plus gamma photons, are presented. This approach represent a generalization of our previous studies, allowing a comprehensive treatment of absorbed fractions from electron and photon sources uniformly distributed in ellipsoidal volumes of any ellipticity and volume, in the whole range of practical interest for internal dosimetry in nuclear medicine applications, as well as in radiological protection estimations of doses from an internal contamination.

  11. Debuncher Microwave Absorber Tests of January 1992

    SciTech Connect

    Fullett, Ken

    1992-01-01

    This paper describes the tests performed on the microwave absorbers placed in the Debuncher to replace the existing microwave cutoffs. The purpose of the microwave cutoffs is to reduce the transmission of microwave energy through the beam pipe. The old microwave cutoffs consisted of a stainless steel beam pipe of approximately 2.8 inches inside diameter into which a glass tube with an inside diameter of 1.835 inches was placed. The glass tube was coated with a thin coat of microwave absorbing material on its outside. Three of these cutoffs were installed in the Debuncher at locations D6Q5, D1Q7, and D4Q10 (see Figure 1). However, the glass tube was removed from the cutoff at D4Q10 leaving only the metal beam pipe. Please note that there was not an old style microwave cutoff installed at location D2Q09. It was felt that the glass tube cutoff was an aperture restriction in the Debuncher with its small (1.8 inch) inside diameter. It was decided that new cutoffs would be needed that would increase the aperture. The new microwave absorbers consist of a four inch stainless steel beam pipe into which eleven dielectric cores are inserted separated by aluminum spacers. The spacing allows adjustment of the frequency response of the absorber assembly. The inside diameter is 3 inches thus providing an increase of 1.2 inches over the old cutoffs. The new absorbers will be installed at four locations as shown in Figure 1.

  12. Absorbed fractions for electrons in ellipsoidal volumes

    NASA Astrophysics Data System (ADS)

    Amato, E.; Lizio, D.; Baldari, S.

    2011-01-01

    We applied a Monte Carlo simulation in Geant4 in order to calculate the absorbed fractions for monoenergetic electrons in the energy interval between 10 keV and 2 MeV, uniformly distributed in ellipsoids made from soft tissue. For each volume, we simulated a spherical shape, four oblate and four prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a 'generalized radius' was found, and the dependence of the fit parameters from electron energy is discussed and fitted by proper parametric functions. With the proposed formulation, the absorbed fraction for electrons in the 10-2000 keV energy range can be calculated for all volumes and for every ellipsoidal shape of practical interest. This method can be directly applied to evaluation of the absorbed fraction from the radionuclide emission of monoenergetic electrons, such as Auger or conversion electrons. The average deposited energy per disintegration in the case of extended beta spectra can be evaluated through integration. Two examples of application to a pure beta emitter such as 90Y and to 131I, whose emission include monoenergetic and beta electrons plus gamma photons, are presented. This approach represent a generalization of our previous studies, allowing a comprehensive treatment of absorbed fractions from electron and photon sources uniformly distributed in ellipsoidal volumes of any ellipticity and volume, in the whole range of practical interest for internal dosimetry in nuclear medicine applications, as well as in radiological protection estimations of doses from an internal contamination.

  13. Neutron absorbers and methods of forming at least a portion of a neutron absorber

    SciTech Connect

    Guillen, Donna P; Porter, Douglas L; Swank, W David; Erickson, Arnold W

    2014-12-02

    Methods of forming at least a portion of a neutron absorber include combining a first material and a second material to form a compound, reducing the compound into a plurality of particles, mixing the plurality of particles with a third material, and pressing the mixture of the plurality of particles and the third material. One or more components of neutron absorbers may be formed by such methods. Neutron absorbers may include a composite material including an intermetallic compound comprising hafnium aluminide and a matrix material comprising pure aluminum.

  14. Solid state saturable absorbers for Q-switching at 1 and 1.3μm: investigation and modeling

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Arátor, Pavel; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav; Kokta, Milan R.

    2008-02-01

    Yttrium and Lutecium garnets (YAG and LuAG) doped by Chromium or Vanadium ions (Cr 4+ or V 3+) were investigated as saturable absorbers potentially useful for passive Q-switching at wavelengths 1 μm and/or 1.3 μm. For comparison also color center saturable absorber LiF:F - II and Cobalt doped spinel (Co:MALO) were studied. Firstly, low power absorption spectra were recorded for all samples. Next, absorbers transmission in dependence on incident energy/power density was measured using the z-scan method. Crystals Cr:YAG, Cr:LuAG, V:YAG, and LiF:F - II were tested at wavelength 1064 nm. Therefore Alexandrite laser pumped Q-switched Nd:YAG laser was used as a radiation source (pulse length 6.9 ns, energy up to 1.5 mJ). Crystals V:YAG, V:LuAG, and Co:MALO were tested at wavelength 1338 nm. So diode pumped Nd:YAG/V:YAG microchip laser was used as a radiation source (pulse length 6.2 ns, energy up to 0.1 mJ). Using measured data fitting, and by their comparison with numerical model of a "thick" saturable absorber transmission for Q-switched Gaussian laser beam, following parameters were estimated: saturable absorber initial transmission T 0, saturation energy density w s, ground state absorption cross-section σ GSA, saturated absorber transmission T s, excited state absorption cross-section σ ESA, ratio γ = σ GSA/σ ESA, and absorbing ions density. For V:YAG crystal, a polarization dependence of T s was also investigated. With the help of rate equation numerical solution, an impact of saturable absorber parameters on generated Q-switched pulse properties was studied in plane wave approximation. Selected saturable absorbers were also investigated as a Q-switch and results were compared with the model.

  15. Strontium-89 therapy: measurement of absorbed dose to skeletal metastases.

    PubMed

    Blake, G M; Zivanovic, M A; Blaquiere, R M; Fine, D R; McEwan, A J; Ackery, D M

    1988-04-01

    We report measurements of absorbed dose to vertebral metastases in ten patients referred for 89Sr therapy for disseminated prostatic carcinoma. Patients received a tracer dose of 85Sr at the time of 89Sr treatment and metastatic strontium retention was monitored scintigraphically for 6 mo. Metastatic 85Sr activity corrected for tissue attenuation was measured using the conjugate view principle, with special care taken to eliminate errors due to the selection of the metastatic region of interest. Metastatic volume was determined from high resolution CT images, and density inferred from Hounsfield number using the QCT bone mineral calibration of Genant and Cann. The mean absorbed dose was 850 rad/mCi (23 cGy/MBq) with a range from 220-2260 rad/mCi (6 to 61 cGy/MBq). The wide range found was consistent with the variation expected to arise due to differences in strontium renal plasma clearance (range 0.1-11.81/day) and extent of skeletal metastatic disease (varying from two small metastases to a superscan on [99mTc]MDP images) among the patients studied. PMID:3351609

  16. Highly efficient capillary columns packed with superficially porous particles via sequential column packing.

    PubMed

    Treadway, James W; Wyndham, Kevin D; Jorgenson, James W

    2015-11-27

    Highly efficient capillary columns packed with superficially porous particles were created for use in ultrahigh pressure liquid chromatography. Superficially porous particles around 1.5μm in diameter were packed into fused silica capillary columns with 30, 50, and 75μm internal diameters. To create the columns, several capillary columns were serially packed from the same slurry, with packing progress plots being generated to follow the packing of each column. Characterization of these columns using hydroquinone yielded calculated minimum reduced plate heights as low as 1.24 for the most efficient 30μm internal diameter column, corresponding to over 500,000plates/m. At least one highly efficient column (minimum reduced plate height less than 2) was created for all three of the investigated column inner diameters, with the smallest diameter columns having the highest efficiency. This study proves that highly efficient capillary columns can be created using superficially porous particles and shows the efficiency potential of these particles.

  17. A metamaterial absorber for the terahertz regime: design, fabrication and characterization.

    PubMed

    Tao, Hu; Landy, Nathan I; Bingham, Christopher M; Zhang, Xin; Averitt, Richard D; Padilla, Willie J

    2008-05-12

    We present a metamaterial that acts as a strongly resonant absorber at terahertz frequencies. Our design consists of a bilayer unit cell which allows for maximization of the absorption through independent tuning of the electrical permittivity and magnetic permeability. An experimental absorptivity of 70% at 1.3 terahertz is demonstrated. We utilize only a single unit cell in the propagation direction, thus achieving an absorption coefficient alpha = 2000 cm(-1). These metamaterials are promising candidates as absorbing elements for thermally based THz imaging, due to their relatively low volume, low density, and narrow band response. PMID:18545422

  18. A metamaterial absorber for the terahertz regime: design, fabrication and characterization.

    PubMed

    Tao, Hu; Landy, Nathan I; Bingham, Christopher M; Zhang, Xin; Averitt, Richard D; Padilla, Willie J

    2008-05-12

    We present a metamaterial that acts as a strongly resonant absorber at terahertz frequencies. Our design consists of a bilayer unit cell which allows for maximization of the absorption through independent tuning of the electrical permittivity and magnetic permeability. An experimental absorptivity of 70% at 1.3 terahertz is demonstrated. We utilize only a single unit cell in the propagation direction, thus achieving an absorption coefficient alpha = 2000 cm(-1). These metamaterials are promising candidates as absorbing elements for thermally based THz imaging, due to their relatively low volume, low density, and narrow band response.

  19. Propagation of detonation wave in hydrogen-air mixture in channels with sound-absorbing surfaces

    NASA Astrophysics Data System (ADS)

    Bivol, G. Yu.; Golovastov, S. V.; Golub, V. V.

    2015-12-01

    The possibility of using sound-absorbing surfaces for attenuating the intensity of detonation waves propagating in hydrogen-air mixtures has been experimentally studied in a cylindrical detonation tube open at one end, with an explosive initiated by spark discharge at the closed end. Sound-absorbing elements were made of an acoustic-grade foamed rubber with density of 0.035 g/cm3 containing open pores with an average diameter of 0.5 mm. The degree of attenuation of the detonation wave front velocity was determined as dependent on the volume fraction of hydrogen in the gas mixture.

  20. Mechanical interactions of UIS support columns. [LMFBR

    SciTech Connect

    Kennedy, J.M.; Belytschko, T.B.

    1983-01-01

    Code development involving above-core structures (ACS) has recently focused on modeling the complexities of mechanical interactions in the ACS support columns which play a very important role in their behavior. These developments are directed toward two considerations: (1) the prediction of the forces exerted by the column in a hypothetical core-disruptive accident (HCDA) in order that the motion of the ACS can be predicted in a coupled fluid-structure analysis, (2) the calculation of the strains and deformations of the support columns so that situations which lead to complete failure can be identified. Finite element capabilities have been developed to handle various types of plant design for the analysis of coupled hydrodynamics and structural response. Beam elements, which previously represented the support columns were able to account for geometric nonlinearities and material nonlinearities, however, changes in the column cross section were not treated. Therefore, one of the aims of this study was to examine the effect of the change in cross section on the behavior of the support columns. A second effect which has been studied is the behavior of support columns consisting of two concentric cylinders.

  1. Compact sieve-tray distillation column for ammonia-water absorption heat pump: Part 1 -- Design methodology

    SciTech Connect

    Anand, G.; Erickson, D.C.

    1999-07-01

    The distillation column is a key component of ammonia-water absorption units including advanced generator-absorber heat exchange (GAX) cycle heat pumps. The design of the distillation column is critical to unit performance, size, and cost. The distillation column can be designed with random packing, structured packing, or various tray configurations. A sieve-tray distillation column is the least complicated tray design and is less costly than high-efficiency packing. Substantial literature is available on sieve tray design and performance. However, most of the correlations and design recommendations were developed for large industrial hydrocarbon systems and are generally not directly applicable to the compact ammonia-water column discussed here. The correlations were reviewed and modified as appropriate for this application, and a sieve-tray design model was developed. This paper presents the sieve-tray design methodology for highly compact ammonia-water columns. A conceptual design of the distillation column for an 8 ton vapor exchange (VX) GAX heat pump is presented, illustrating relevant design parameters and trends. The design process revealed several issues that have to be investigated experimentally to design the final optimized rectifier. Validation of flooding and weeping limits and tray/point efficiencies are of primary importance.

  2. Bismuth X-ray absorber studies for TES microcalorimeters

    NASA Astrophysics Data System (ADS)

    Sadleir, J. E.; Bandler, S. R.; Brekosky, R. P.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Iyomoto, N.; Kelley, R. L.; Kilbourne, C. A.; King, J. M.; Porter, F. S.; Robinson, I. K.; Saab, T.; Talley, D. J.

    2006-04-01

    Bismuth's large atomic number and low carrier density makes it an attractive X-ray absorber material for microcalorimeters. Bismuth's long fermi wavelength and long mean free paths have motivated much interest in the fabrication of high quality bismuth films to study quantum size effects. Despite such incentives, fabrication of high quality bismuth films has proven difficult, and measured properties of such films are highly variable in the literature. Implementing a bismuth deposition process for TES (superconducting Transition Edge Sensor) device fabrication presents additional challenges particularly at interfaces due to the inherent granularity and surface roughness of its films, its low melting point, and its tendency to diffuse and form undesired intermetallic phases. We report observations of Bi-Cu and Bi-Au diffusion in our devices correlating with large shifts in Tc (superconducting transition temperature). Using SEM and in situ R vs T annealing experiments we have been able to study these diffusion processes and identify their activation temperatures.

  3. Radiative transfer effects on reflected shock waves. II - Absorbing gas.

    NASA Technical Reports Server (NTRS)

    Su, F. Y.; Olfe, D. B.

    1972-01-01

    Radiative cooling effects behind a reflected shock wave are calculated for an absorbing-emitting gas by means of an expansion procedure in the small density ratio across the shock front. For a gray gas shock layer with an optical thickness of order unity or less the absorption integral is simplified by use of the local temperature approximation, whereas for larger optical thicknesses a Rosseland diffusion type of solution is matched with the local temperature approximation solution. The calculations show that the shock wave will attenuate at first and then accelerate to a constant velocity. Under appropriate conditions the gas enthalpy near the wall may increase at intermediate times before ultimately decreasing to zero. A two-band absorption model yields end-wall radiant-heat fluxes which agree well with available shock-tube measurements.

  4. Diffusion in the presence of scale-free absorbing boundaries.

    PubMed

    Alfasi, Nir; Kantor, Yacov

    2015-04-01

    Scale-free surfaces, such as cones, remain unchanged under a simultaneous expansion of all coordinates by the same factor. Probability density of a particle diffusing near such absorbing surface at large time approaches a simple form that incorporates power-law dependencies on time and distance from a special point, such as apex of the cone, which are characterized by a single exponent η. The same exponent is used to describe the number of spatial conformations of long ideal polymer attached to the special point of a repulsive surface of the same geometry and can be used in calculation of entropic forces between such polymers and surfaces. We use the solution of diffusion equation near such surfaces to find the numerical values of η, as well as to provide some insight into the behavior of ideal polymers near such surfaces. PMID:25974457

  5. Near-infrared absorbing semitransparent organic solar cells

    NASA Astrophysics Data System (ADS)

    Meiss, Jan; Holzmueller, Felix; Gresser, Roland; Leo, Karl; Riede, Moritz

    2011-11-01

    We present efficient, semitransparent small molecule organic solar cells. The devices employ an indium tin oxide-free top contact, consisting of thin metal films and an additional organic capping layer for enhanced light in/outcoupling. The solar cell encorporates a bulk heterojunction with the donor material Ph2-benz-bodipy, an infrared absorber. Combination of Ph2-benz-bodipy with C60 as acceptor leads to devices with high open circuit voltages of up to 0.81 V and short circuit current densities of 5-6 mA/cm2, resulting in efficiences of 2.2%-2.5%. At the same time, the devices are highly transparent, with an average transmittance in the visible range (400-750 nm) of up to 47.9%, with peaks at 538 nm of up to 64.2% and an average transmittance in the yellow-green range of up to 61.8%.

  6. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  7. Neural network modeling of distillation columns

    SciTech Connect

    Baratti, R.; Vacca, G.; Servida, A.

    1995-06-01

    Neural network modeling (NNM) was implemented for monitoring and control applications on two actual distillation columns: the butane splitter tower and the gasoline stabilizer. The two distillation columns are in operation at the SARAS refinery. Results show that with proper implementation techniques NNM can significantly improve column operation. The common belief that neural networks can be used as black-box process models is not completely true. Effective implementation always requires a minimum degree of process knowledge to identify the relevant inputs to the net. After background and generalities on neural network modeling, the paper describes efforts on the development of neural networks for the two distillation units.

  8. A sound absorbing metasurface with coupled resonators

    NASA Astrophysics Data System (ADS)

    Li, Junfei; Wang, Wenqi; Xie, Yangbo; Popa, Bogdan-Ioan; Cummer, Steven A.

    2016-08-01

    An impedance matched surface is able, in principle, to totally absorb the incident sound and yield no reflection, and this is desired in many acoustic applications. Here we demonstrate a design of impedance matched sound absorbing surface with a simple construction. By coupling different resonators and generating a hybrid resonance mode, we designed and fabricated a metasurface that is impedance-matched to airborne sound at tunable frequencies with subwavelength scale unit cells. With careful design of the coupled resonators, over 99% energy absorption at central frequency of 511 Hz with a 50% absorption bandwidth of 140 Hz is achieved experimentally. The proposed design can be easily fabricated, and is mechanically stable. The proposed metasurface can be used in many sound absorption applications such as loudspeaker design and architectural acoustics.

  9. Absorbing Software Testing into the Scrum Method

    NASA Astrophysics Data System (ADS)

    Tuomikoski, Janne; Tervonen, Ilkka

    In this paper we study, how to absorb software testing into the Scrum method. We conducted the research as an action research during the years 2007-2008 with three iterations. The result showed that testing can and even should be absorbed to the Scrum method. The testing team was merged into the Scrum teams. The teams can now deliver better working software in a shorter time, because testing keeps track of the progress of the development. Also the team spirit is higher, because the Scrum team members are committed to the same goal. The biggest change from test manager’s point of view was the organized Product Owner Team. Test manager don’t have testing team anymore, and in the future all the testing tasks have to be assigned through the Product Backlog.

  10. Investigations on Absorber Materials at Cryogenic Temperatures

    SciTech Connect

    Marhauser, Frank; Elliott, Thomas; Rimmer, Robert

    2009-05-01

    In the framework of the 12 GeV upgrade project for the Continuous Electron Beam Accelerator Facility (CEBAF) improvements are being made to refurbish cryomodules housing Thomas Jefferson National Accelerator Facility's (JLab) original 5-cell cavities. Recently we have started to look into a possible simplification of the existing Higher Order Mode (HOM) absorber design combined with the aim to find alternative material candidates. The absorbers are implemented in two HOM-waveguides immersed in the helium bath and operate at 2 K temperature. We have built a cryogenic setup to perform measurements on sample load materials to investigate their lossy characteristics and variations from room temperature down to 2 K. Initial results are presented in this paper.

  11. Infrared bolometers with silicon nitride micromesh absorbers

    NASA Technical Reports Server (NTRS)

    Bock, J. J.; Turner, A. D.; DelCastillo, H. M.; Beeman, J. W.; Lange, A. E.; Mauskopf, P. D.

    1996-01-01

    Sensitive far infrared and millimeter wave bolometers fabricated from a freestanding membrane of low stress silicon nitride are reported. The absorber, consisting of a metallized silicon nitride micromesh thermally isolated by radial legs of silicon nitride, is placed in an integrating cavity to efficiently couple to single mode or multiple mode infrared radiation. This structure provides low heat capacity, low thermal conduction and minimal cross section to energetic particles. A neutron transmutation doped Ge thermister is bump bonded to the center of the device and read out with evaporated Cr-Au leads. The limiting performance of the micromesh absorber is discussed and the recent results obtained from a 300 mK cold stage are summarized.

  12. Mechanically stretchable and tunable metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Zhang, Fuli; Feng, Shuqi; Qiu, Kepeng; Liu, Zijun; Fan, Yuancheng; Zhang, Weihong; Zhao, Qian; Zhou, Ji

    2015-03-01

    In this letter, we present experimental demonstration of a mechanically stretchable and tunable metamaterial absorber composed of dielectric resonator stacked on a thin conductive rubber layer. A near unity absorption is observed due to strong local field confinement around magnetic Mie resonance of dielectric resonator. Furthermore, the interspacing between unit cells is modulated dynamically under uniaxial stress. Owing to the decreases of longitudinal coupling between neighboring unit cells, the resonant absorption peak is reversibly tuned by 410 MHz, as the stain varies up to 180% along H field direction. On the contrary, the resonant absorption state is nearly independent on strain variation when external stress is applied along E field direction, due to the weak transverse interplaying. The mechanically tunable metamaterial absorber featured by flexibility paves a way forwards for actual application.

  13. Imaging highly absorbing nanoparticles using photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lussier, Simon-Alexandre; Moradi, Hamid; Price, Alain; Murugkar, Sangeeta

    2015-03-01

    Gold nanoparticles (NPs) have tremendous potential in biomedicine. They can be used as absorbing labels inside living cells for the purpose of biomedical imaging, biosensing as well as for photothermal therapy. We demonstrate photothermal imaging of highly-absorbing particles using a pump-probe setup. The photothermal signal is recovered by heterodyne detection, where the excitation pump laser is at 532 nm and the probe laser is at 638 nm. The sample is moved by a scanning stage. Proof of concept images of red polystyrene microspheres and gold nanoparticles are obtained with this home-built multimodal microscope. The increase in temperature at the surface of the gold NPs, due to the pump laser beam, can be directly measured by means of this photothermal microscope and then compared with the results from theoretical predictions. This technique will be useful for characterization of nanoparticles of different shapes, sizes and materials that are used in cancer diagnosis and therapy.

  14. Disposable Diaper Absorbency: Improvements via Advanced Designs.

    PubMed

    Helmes, C Tucker; O'Connor, Robert; Sawyer, Larry; Young, Sharon

    2014-06-24

    Absorbency effectiveness in diapers has improved significantly in recent years with the advent of new ingredient combinations and advanced design features. With these features, many leading products maintain their dryness performance overnight. Considering the importance of holding liquid away from the skin, ongoing research in diaper construction focuses on strategies to increase the effectiveness to capture liquid and help avoid rewetting of infant skin. The layout and design of a disposable diaper allows for distribution of absorbency features where they can provide the optimal benefit. Clinical evidence indicates materials can keep moisture away from the skin in the diapered area, helping maintain proper skin hydration, minimizing irritation, and contributing to reduced rates of diaper rash.

  15. Shock wave absorber having apertured plate

    DOEpatents

    Shin, Y.W.; Wiedermann, A.H.; Ockert, C.E.

    1983-08-26

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  16. Shock wave absorber having apertured plate

    DOEpatents

    Shin, Yong W.; Wiedermann, Arne H.; Ockert, Carl E.

    1985-01-01

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  17. Development and application of rotary shock absorber

    SciTech Connect

    Yamamoto, Kozo; Yamada, Toshihiro; Fukuyama, Katsura

    1995-12-31

    In recent years, rear suspension systems with a single shock absorber unit placed behind the engine, have been used primarily in the middle and large classes of motorcycles. Some features such as the longer rear wheel travel, progressive response characteristics and mass concentration at the center part of motorcycle are effective in improving maneuverability of the motorcycle. In the 1980s, the systems were introduced first in the off-road motorcycles and then in the on-road motorcycles. Performance of the systems are excellent, but there are demands for further improvement of suspension characteristics and space utility at the center part of motorcycle. For this purpose, the authors have developed a prototype of a rotary shock absorber and studied the applicability to modern motorcycles.

  18. Impedance matched thin metamaterials make metals absorbing

    PubMed Central

    Mattiucci, N.; Bloemer, M. J.; Aközbek, N.; D'Aguanno, G.

    2013-01-01

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others. PMID:24220284

  19. Disposable Diaper Absorbency: Improvements via Advanced Designs.

    PubMed

    Helmes, C Tucker; O'Connor, Robert; Sawyer, Larry; Young, Sharon

    2014-06-24

    Absorbency effectiveness in diapers has improved significantly in recent years with the advent of new ingredient combinations and advanced design features. With these features, many leading products maintain their dryness performance overnight. Considering the importance of holding liquid away from the skin, ongoing research in diaper construction focuses on strategies to increase the effectiveness to capture liquid and help avoid rewetting of infant skin. The layout and design of a disposable diaper allows for distribution of absorbency features where they can provide the optimal benefit. Clinical evidence indicates materials can keep moisture away from the skin in the diapered area, helping maintain proper skin hydration, minimizing irritation, and contributing to reduced rates of diaper rash. PMID:24961785

  20. Impedance matched thin metamaterials make metals absorbing.

    PubMed

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-01-01

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others. PMID:24220284

  1. Impedance matched thin metamaterials make metals absorbing.

    PubMed

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-11-13

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others.

  2. Tech Transfer Webinar: Energy Absorbing Materials

    SciTech Connect

    Duoss, Eric

    2014-06-17

    A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  3. Design and Manufacture of Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2016-07-12

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  4. Lightweight Energy Absorbers for Blast Containers

    NASA Technical Reports Server (NTRS)

    Balles, Donald L.; Ingram, Thomas M.; Novak, Howard L.; Schricker, Albert F.

    2003-01-01

    Kinetic-energy-absorbing liners made of aluminum foam have been developed to replace solid lead liners in blast containers on the aft skirt of the solid rocket booster of the space shuttle. The blast containers are used to safely trap the debris from small explosions that are initiated at liftoff to sever frangible nuts on hold-down studs that secure the spacecraft to a mobile launch platform until liftoff.

  5. Tech Transfer Webinar: Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2016-07-12

    A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  6. Design and Manufacture of Energy Absorbing Materials

    SciTech Connect

    Duoss, Eric

    2014-05-28

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  7. Load limiting energy absorbing lightweight debris catcher

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B. (Inventor); Schneider, William C. (Inventor)

    1991-01-01

    In the representative embodiment of the invention disclosed, a load limiting, energy absorbing net is arranged to overlay a normally-covered vent opening in the rear bulkhead of the space orbiter vehicle. Spatially-disposed flexible retainer straps are extended from the net and respectively secured to bulkhead brackets spaced around the vent opening. The intermediate portions of the straps are doubled over and stitched together in a pattern enabling the doubled-over portions to progressively separate at a predicable load designed to be well below the tensile capability of the straps as the stitches are successively torn apart by the forces imposed on the retainer members whenever the cover plate is explosively separated from the bulkhead and propelled into the net. By arranging these stitches to be successively torn away at a load below the strap strength in response to forces acting on the retainers that are less than the combined strength of the retainers, this tearing action serves as a predictable compact energy absorber for safely halting the cover plate as the retainers are extended as the net is deployed. The invention further includes a block of an energy-absorbing material positioned in the net for receiving loose debris produced by the explosive release of the cover plate.

  8. Shock wave absorber having a deformable liner

    DOEpatents

    Youngdahl, C.K.; Wiedermann, A.H.; Shin, Y.W.; Kot, C.A.; Ockert, C.E.

    1983-08-26

    This invention discloses a shock wave absorber for a piping system carrying liquid. The absorber has a plastically deformable liner defining the normal flow boundary for an axial segment of the piping system, and a nondeformable housing is spaced outwardly from the liner so as to define a gas-tight space therebetween. The flow capacity of the liner generally corresponds to the flow capacity of the piping system line, but the liner has a noncircular cross section and extends axially of the piping system line a distance between one and twenty times the diameter thereof. Gas pressurizes the gas-tight space equal to the normal liquid pressure in the piping system. The liner has sufficient structural capacity to withstand between one and one-half and two times this normal liquid pressures; but at greater pressures it begins to plastically deform initially with respect to shape to a more circular cross section, and then with respect to material extension by circumferentially stretching the wall of the liner. A high energy shock wave passing through the liner thus plastically deforms the liner radially into the gas space and progressively also as needed in the axial direction of the shock wave to minimize transmission of the shock wave beyond the absorber.

  9. An absorbed dose calorimeter for IMRT dosimetry

    NASA Astrophysics Data System (ADS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N. D.; Thomas, C. G.; Palmans, H.

    2012-10-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%).

  10. PRTR ion exchange vault column sampling

    SciTech Connect

    Cornwell, B.C.

    1995-03-14

    This report documents ion exchange column sampling and Non Destructive Assay (NDA) results from activities in 1994, for the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. The objective was to obtain sufficient information to prepare disposal documentation for the ion exchange columns found in the PRTR Ion exchange vault. This activity also allowed for the monitoring of the liquid level in the lower vault. The sampling activity contained five separate activities: (1) Sampling an ion exchange column and analyzing the ion exchange media for purpose of waste disposal; (2) Gamma and neutron NDA testing on ion exchange columns located in the upper vault; (3) Lower vault liquid level measurement; (4) Radiological survey of the upper vault; and (5) Secure the vault pending waste disposal.

  11. A Versatile, Automatic Chromatographic Column Packing Device

    ERIC Educational Resources Information Center

    Barry, Eugene F.; And Others

    1977-01-01

    Describes an inexpensive apparatus for packing liquid and gas chromatographic columns of high efficiency. Consists of stainless steel support struts, an Automat Getriebmotor, and an associated three-pulley system capable of 10, 30, and 300 rpm. (MLH)

  12. Fabrication of Graphite/Epoxy Column Elements

    NASA Technical Reports Server (NTRS)

    Bluck, R. M.; Grotbeck, G. H.; Reighard, W. M.

    1983-01-01

    Dimensionally precise columns wound on vertical mandrels. Dry fiber wound on tapered aluminum mandrel and outer sleeve. Winding and injection done at elevated temperature to minimize thermal-expansion problems during curing of resin. Technique used in textile industry.

  13. Axial laser heating of three meter theta pinch plasma columns

    NASA Astrophysics Data System (ADS)

    Hoffman, A. L.; Lowenthal, D. D.

    1980-10-01

    A 3-m long plasma column formed and confined by a fast rising solenoidal field was irradiated from one end by a powerful pulsed CO2 laser. It was found that beam trapping density minima could be maintained for the length of the laser pulse if the plasma diameter exceeded about 1.5 cm. The erosion of the density minimum was governed by classical diffusion processes. Three meter long plasmas in 2.6 cm bore plasma tubes could be fairly uniformly heated by 3.0 kJ of CO2 laser irradiation. Best results were obtained when heating began before or during the theta pinch implosion phase and the plasma fill pressure exceeded 1.0 torr H2. Plasma line energies of about 1 kJ/m could be obtained in a magnetic field rising to 6 T in 4.7 microseconds.

  14. Wide band cryogenic ultra-high vacuum microwave absorber

    SciTech Connect

    Campisi, Isidoro E.

    1992-01-01

    An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

  15. Wide band cryogenic ultra-high vacuum microwave absorber

    SciTech Connect

    Campisi, I.E.

    1992-05-12

    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

  16. Preparation of perlite-based carbon dioxide absorbent.

    PubMed

    He, H; Wu, L; Zhu, J; Yu, B

    1994-02-01

    A new highly efficient carbon dioxide absorbent consisting of sodium hydroxide, expanded perlite and acid-base indicator was prepared. The absorption efficiency, absorption capacity, flow resistance and color indication for the absorbent were tested and compared with some commercial products. The absorbent can reduce the carbon dioxide content in gases to 3.3 ppb (v/v) and absorbs not less than 35% of its weight of carbon dioxide. Besides its large capacity and sharp color indication, the absorbent has an outstanding advantage of small flow resistance in comparison with other commercial carbon dioxide absorbents. Applications in gas analysis and purification were also investigated.

  17. Modeling Tropical Precipitation in a Single Column.

    NASA Astrophysics Data System (ADS)

    Sobel, Adam H.; Bretherton, Christopher S.

    2000-12-01

    A modified formulation of the traditional single column model for representing a limited area near the equator is proposed. This formulation can also be considered a two-column model in the limit as the area represented by one of the columns becomes very large compared to the other. Only a single column is explicitly modeled, but its free tropospheric temperature, rather than its mean vertical velocity, is prescribed. This allows the precipitation and vertical velocity to be true prognostic variables, as in prior analytical theories of tropical precipitation. Two models developed by other authors are modified according to the proposed formulation. The first is the intermediate atmospheric model of J. D. Neelin and N. Zeng, but with the horizontal connections between columns broken, rendering it a set of disconnected column models. The second is the column model of N. O. Rennó, K. A. Emanuel, and P. H. Stone. In the first model, the set of disconnected column models is run with a fixed temperature that is uniform in the Tropics, and insolation, SST, and surface wind speed taken from a control run of the original model. The column models produce a climatological precipitation field that is grossly similar to that of the control run, despite that the circulation implied by the column models is not required to conserve mass. The addition of horizontal moisture advection by the wind from the control run substantially improves the simulation in dry regions. In the second model the sensitivity of the modeled steady-state precipitation and relative humidity to varying SST and wind speed is examined. The transition from shallow to deep convection is simulated in a `Lagrangian' calculation in which the column model is subjected to an SST that increases in time. In this simulation, the onset of deep convection is delayed to a higher SST than in the steady-state case, due to the effect of horizontal moisture advection (viewed in a Lagrangian reference frame). In both of the

  18. Influence of carbon black and indium tin oxide absorber particles on laser transmission welding

    NASA Astrophysics Data System (ADS)

    Aden, Mirko; Mamuschkin, Viktor; Olowinsky, Alexander

    2015-06-01

    For laser transmission welding of polypropylene carbon black and indium tin oxide (ITO) are used as absorber particles. Additionally, the colorant titanium dioxide is mixed to the absorbing part, while the transparent part is kept in natural state. The absorption coefficients of ITO and carbon black particles are obtained, as well as the scattering properties of polypropylene loaded with titanium dioxide (TiO2). At similar concentrations the absorption coefficient of ITO is an order of magnitude smaller than that of carbon black. Simulations of radiation propagation show that the penetration depth of laser light is smaller for carbon black. Therefore, the density of the released heat is higher. Adding TiO2 changes the distribution of heat in case of ITO, whereas for carbon black the effect is negligible. Thermal simulations reveal the influence of the two absorbers and TiO2 on the heat affected zone. The results of the thermal simulations are compared to tensile test results.

  19. Flow in a metal hydride chromatographic column

    SciTech Connect

    Nichols, G.S.

    1990-01-01

    The flow of hydrogen isotopes in a metal hydride chromatographic column is calculated by a one-dimensional finite difference method. The Ergun equation is used to define the gas flow; and equilibrium pressure isotherms are used to define the column holdup. Solid phase loadings are shown to move as a wave front on absorption, but remain more uniform on desorption. 3 refs., 4 figs.

  20. Commander prepares glass columns for electrophoresis experiment

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Jack Lousma prepares on of the glass columns for the electrophoresis test in the middeck area of the Columbia. The experiment, deployed in an L-shaped mode in upper right corner, consists of the processing unit with glass columns in which the separation takes place; a camera (partially obscurred by Lousma's face) to document the process; and a cryogenic freezer to freeze and store the samples after separation.

  1. Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN

    NASA Astrophysics Data System (ADS)

    Aalto, S.; Martín, S.; Costagliola, F.; González-Alfonso, E.; Muller, S.; Sakamoto, K.; Fuller, G. A.; García-Burillo, S.; van der Werf, P.; Neri, R.; Spaans, M.; Combes, F.; Viti, S.; Mühle, S.; Armus, L.; Evans, A.; Sturm, E.; Cernicharo, J.; Henkel, C.; Greve, T. R.

    2015-12-01

    We present high resolution (0.̋4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (ν2 = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r< 17-70 pc) nuclei that have very high implied mid-infrared surface brightness > 5 × 1013 L⊙ kpc-2. These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, ν2 = 1, lines of HCN are excited by intense 14 μm mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H2 column densities exceed 1024 cm-2. It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (ν = 0), J = 3-2and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self- and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions - possibly in the form of in- or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback. Based on observations carried out with the IRAM Plateau de Bure and ALMA Interferometers. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). ALMA is a partnership of ESO (representing its member states

  2. Avoid problems during distillation column startups

    SciTech Connect

    Sloley, A.W.

    1996-07-01

    The startup of a distillation column is the end product of the design process. Indeed, startup is the culmination of the theory and practice of designing the column to meet the process objectives. The author will direct most of this discussion towards column revamps due to their inherent complexity; however, the points apply equally to new columns, as well. The most important question that must be answered prior to a startup is how will the distillation system changes affect initial startup, process control of the system, and normal day-to-day operations? How will the operators run the system? Steady-state distillation-column simulations alone cannot provide an authoritative answer and, indeed, engineers` over-reliance on software too often has led them to ignore many practical aspects. Computer modeling, while an important engineering tool, is not reality. Distillation columns are real functioning pieces of equipment that require practical skills to successfully modify. They are not steady-state solutions that result from converged computer simulations. Early planning, coupled with thorough inspections and comprehensive reviews of instrumentation and procedures, can play a key role in assuring smooth startups.

  3. Interpretation of the lime column penetration test

    NASA Astrophysics Data System (ADS)

    Liyanapathirana, D. S.; Kelly, R. B.

    2010-06-01

    Dry soil mix (DSM) columns are used to reduce the settlement and to improve the stability of embankments constructed on soft clays. During construction the shear strength of the columns needs to be confirmed for compliance with technical assumptions. A specialized blade shaped penetrometer known as the lime column probe, has been developed for testing DSM columns. This test can be carried out as a pull out resistance test (PORT) or a push in resistance test (PIRT). The test is considered to be more representative of average column shear strength than methods that test only a limited area of the column. Both PORT and PIRT tests require empirical correlations of measured resistance to an absolute measure of shear strength, in a similar manner to the cone penetration test. In this paper, finite element method is used to assess the probe factor, N, for the PORT test. Due to the large soil deformations around the probe, an Arbitrary Lagrangian Eulerian (ALE) based finite element formulation has been used. Variation of N with rigidity index and the friction at the probe-soil interface are investigated to establish a range for the probe factor.

  4. Gas Chromatograph Method Optimization Trade Study for RESOLVE: 20-meter Column v. 8-meter Column

    NASA Technical Reports Server (NTRS)

    Huz, Kateryna

    2014-01-01

    RESOLVE is the payload on a Class D mission, Resource Prospector, which will prospect for water and other volatile resources at a lunar pole. The RESOLVE payload's primary scientific purpose includes determining the presence of water on the moon in the lunar regolith. In order to detect the water, a gas chromatograph (GC) will be used in conjunction with a mass spectrometer (MS). The goal of the experiment was to compare two GC column lengths and recommend which would be best for RESOLVE's purposes. Throughout the experiment, an Inficon Fusion GC and an Inficon Micro GC 3000 were used. The Fusion had a 20m long column with 0.25mm internal diameter (Id). The Micro GC 3000 had an 8m long column with a 0.32mm Id. By varying the column temperature and column pressure while holding all other parameters constant, the ideal conditions for testing with each column length in their individual instrument configurations were determined. The criteria used for determining the optimal method parameters included (in no particular order) (1) quickest run time, (2) peak sharpness, and (3) peak separation. After testing numerous combinations of temperature and pressure, the parameters for each column length that resulted in the most optimal data given my three criteria were selected. The ideal temperature and pressure for the 20m column were 95 C and 50psig. At this temperature and pressure, the peaks were separated and the retention times were shorter compared to other combinations. The Inficon Micro GC 3000 operated better at lower temperature mainly due to the shorter 8m column. The optimal column temperature and pressure were 70 C and 30psig. The Inficon Micro GC 3000 8m column had worse separation than the Inficon Fusion 20m column, but was able to separate water within a shorter run time. Therefore, the most significant tradeoff between the two column lengths was peak separation of the sample versus run time. After performing several tests, it was concluded that better

  5. The Computational Properties of a Simplified Cortical Column Model.

    PubMed

    Cain, Nicholas; Iyer, Ramakrishnan; Koch, Christof; Mihalas, Stefan

    2016-09-01

    The mammalian neocortex has a repetitious, laminar structure and performs functions integral to higher cognitive processes, including sensory perception, memory, and coordinated motor output. What computations does this circuitry subserve that link these unique structural elements to their function? Potjans and Diesmann (2014) parameterized a four-layer, two cell type (i.e. excitatory and inhibitory) model of a cortical column with homogeneous populations and cell type dependent connection probabilities. We implement a version of their model using a displacement integro-partial differential equation (DiPDE) population density model. This approach, exact in the limit of large homogeneous populations, provides a fast numerical method to solve equations describing the full probability density distribution of neuronal membrane potentials. It lends itself to quickly analyzing the mean response properties of population-scale firing rate dynamics. We use this strategy to examine the input-output relationship of the Potjans and Diesmann cortical column model to understand its computational properties. When inputs are constrained to jointly and equally target excitatory and inhibitory neurons, we find a large linear regime where the effect of a multi-layer input signal can be reduced to a linear combination of component signals. One of these, a simple subtractive operation, can act as an error signal passed between hierarchical processing stages. PMID:27617444

  6. The Computational Properties of a Simplified Cortical Column Model

    PubMed Central

    Iyer, Ramakrishnan; Koch, Christof; Mihalas, Stefan

    2016-01-01

    The mammalian neocortex has a repetitious, laminar structure and performs functions integral to higher cognitive processes, including sensory perception, memory, and coordinated motor output. What computations does this circuitry subserve that link these unique structural elements to their function? Potjans and Diesmann (2014) parameterized a four-layer, two cell type (i.e. excitatory and inhibitory) model of a cortical column with homogeneous populations and cell type dependent connection probabilities. We implement a version of their model using a displacement integro-partial differential equation (DiPDE) population density model. This approach, exact in the limit of large homogeneous populations, provides a fast numerical method to solve equations describing the full probability density distribution of neuronal membrane potentials. It lends itself to quickly analyzing the mean response properties of population-scale firing rate dynamics. We use this strategy to examine the input-output relationship of the Potjans and Diesmann cortical column model to understand its computational properties. When inputs are constrained to jointly and equally target excitatory and inhibitory neurons, we find a large linear regime where the effect of a multi-layer input signal can be reduced to a linear combination of component signals. One of these, a simple subtractive operation, can act as an error signal passed between hierarchical processing stages. PMID:27617444

  7. Low Bone Density

    MedlinePlus

    ... Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone density ... people with normal bone density. Detecting Low Bone Density A bone density test will determine whether you ...

  8. Thermally-Resilient, Broadband Optical Absorber from UV-to-IR Derived from Carbon Nanostructures and Method of Making the Same

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B. (Inventor); Coles, James B. (Inventor)

    2015-01-01

    A monolithic optical absorber and methods of making same. The monolithic optical absorber uses an array of mutually aligned carbon nanotubes that are grown using a PECVD growth process and a structure that includes a conductive substrate, a refractory template layer and a nucleation layer. Monolithic optical absorbers made according to the described structure and method exhibit high absorptivity, high site densities (greater than 10.sup.9 nanotubes/cm.sup.2), very low reflectivity (below 1%), and high thermal stability in air (up to at least 400.degree. C.). The PECVD process allows the application of such absorbers in a wide variety of end uses.

  9. Simultaneous Ultraviolet and X-Ray Observations of the Seyfert Galaxy NGC 4151. II. Physical Conditions in the UV Absorbers

    NASA Astrophysics Data System (ADS)

    Kraemer, S. B.; Crenshaw, D. M.; Gabel, J. R.; Kriss, G. A.; Netzer, H.; Peterson, B. M.; George, I. M.; Gull, T. R.; Hutchings, J. B.; Mushotzky, R. F.; Turner, T. J.

    2006-12-01

    We present a detailed analysis, including photoionization modeling, of the intrinsic absorption in the Seyfert 1 galaxy NGC 4151 using ultraviolet (UV) spectra from the Hubble Space Telescope Space Telescope Imaging Spectrograph and the Far Ultraviolet Spectrographic Explorer obtained 2002 May as part of a set of contemporaneous observations that included Chandra High Energy Transmission Grating Spectrometer spectra. In our analysis of the Chandra spectra, we determined that the X-ray absorption was dominated by two components: a high-ionization absorber, revealed by the presence of H-like and He-like lines of Mg, Si, and S, and a lower ionization absorber, in which inner shell absorption lines from lower ionization species of these elements formed. We identified the latter as the source of the saturated UV lines of O VI, C IV, and N V associated with the absorption feature at a radial velocity of ~-500 km s-1, which we referred to as component D+E. In the present work, we have derived tighter constrains on the line-of-sight covering factors, densities, and radial distances of the absorbers. We confirm the presence of the three subcomponents of D+E described in our previous paper, with line-of-sight covering factors (Clos) ranging from ~0.5 to 0.9, and find evidence for a fourth component, D+Ed, characterized by low ionization and a Clos~0.2. The complexity of the UV absorption in NGC 4151 may be a consequence of the fact that we are viewing the black hole/accretion disk system at a relatively high inclination and, therefore, may be detecting the densest part of the flow. Our deconvolution of the underlying C IV emission indicates that D+E must lie outside the intermediate line region (ILR), hence at a radial distance of ~0.1 pc. We find that the equivalent widths (EWs) of the low-ionization lines associated with D+E varied over the period from 1999 July to 2002 May. Although over part of this time, the variations were correlated with changes in the UV continuum

  10. RXTE Observations of the Strongly Absorbed Sources IGR J16318-4848 and IGR J16358-4726

    NASA Astrophysics Data System (ADS)

    Revnivtsev, M. G.

    2003-10-01

    We analyzed the RXTE observations of two strongly absorbed sources, IGR J16318-4848 and IGR J16358-4726. We were able to obtain the 3-25 keV spectra of the sources by taking into account the contribution of the Galactic diffuse background to the X-ray flux recorded with the RXTE/PCA spectrometer. The spectra of the sources are well described by a power-law decrease of the photon flux with energy with a photon index of 1 and strong photoabsorption. The photoabsorption column density nHL for IGR J16318-4848 derived from the RXTE observation on March 14.1, 2003, is shown to be much higher than its value obtained by the XMM observatory on February 10.7, 2003. This result may suggest that the source has variable absorption that may depend on the orbital phase of the system. We point out that all of the three X-ray sources discovered by the INTEGRAL observatory in the region (l, b) (336, 0) (IGR J16318-4848, IGR J16320-4751, and IGR J16358-4726) have strong intrinsic photoabsorption and may be high-mass binaries. Their proximity to the region where the tangent to the Galactic spiral arm passes, i.e., to the region of enhanced concentration of young high-mass stars, can serve as an indirect confirmation of this assumption. If our assumption about the positions of the sources in the Norma spiral arm is valid, then we can roughly estimate their heliocentric distances: 6-8 kpc.

  11. Mass transfer model liquid phase catalytic exchange column simulation applicable to any column composition profile

    SciTech Connect

    Busigin, A.

    2015-03-15

    Liquid Phase Catalytic Exchange (LPCE) is a key technology used in water detritiation systems. Rigorous simulation of LPCE is complicated when a column may have both hydrogen and deuterium present in significant concentrations in different sections of the column. This paper presents a general mass transfer model for a homogenous packed bed LPCE column as a set of differential equations describing composition change, and equilibrium equations to define the mass transfer driving force within the column. The model is used to show the effect of deuterium buildup in the bottom of an LPCE column from non-negligible D atom fraction in the bottom feed gas to the column. These types of calculations are important in the design of CECE (Combined Electrolysis and Catalytic Exchange) water detritiation systems.

  12. Discovery of a Damped Lyα Absorber at z = 3.3 along a Galaxy Sight-line in the SSA22 Field

    NASA Astrophysics Data System (ADS)

    Mawatari, K.; Inoue, A. K.; Kousai, K.; Hayashino, T.; Cooke, R.; Prochaska, J. X.; Yamada, T.; Matsuda, Y.

    2016-02-01

    Using galaxies as background light sources to map the Lyα absorption lines is a novel approach to study Damped Lyα Absorbers (DLAs). We report the discovery of an intervening z = 3.335 ± 0.007 DLA along a galaxy sight-line identified among 80 Lyman Break Galaxy (LBG) spectra obtained with our Very Large Telescope/Visible Multi-Object Spectrograph survey in the SSA22 field. The measured DLA neutral hydrogen (H i) column density is log(NH i/cm-2) = 21.68 ± 0.17. The DLA covering fraction over the extended background LBG is >70% (2σ), yielding a conservative constraint on the DLA area of ≳1 kpc2. Our search for a counterpart galaxy hosting this DLA concludes that there is no counterpart galaxy with star formation rate larger than a few M⊙ yr-1, ruling out an unobscured violent star formation in the DLA gas cloud. We also rule out the possibility that the host galaxy of the DLA is a passive galaxy with M* ≳ 5 × 1010M⊙ or a heavily dust-obscured galaxy with E(B - V) ≳ 2. The DLA may coincide with a large-scale overdensity of the spectroscopic LBGs. The occurrence rate of the DLA is compatible with that of DLAs found in QSO sight-lines.

  13. Total Column NO2 from the OMI Instrument on EOS Aura

    NASA Astrophysics Data System (ADS)

    Brinksma, E. J.; Boersma, K. F.; Gleason, J. F.; Bucsela, E. J.; Celarier, E.; de Haan, J. F.; Veefkind, J. P.

    2003-04-01

    OMI-EOS is a Dutch-Finnish nadir pointing spaceborne imaging spectrometer that will fly on NASA's Aura Mission, which is part of the Earth Observation System (EOS). OMI measures the reflected solar radiation in the ultraviolet and visible spectrum between 270 and 500 nm, using two channels with a spectral resolution of about 0.5 nm. OMI data products include ozone columns and profiles, aerosols, clouds, surface UV irradiance, and the trace gases NO_2, SO_2, HCHO, BrO, and OClO. Total column NO_2 will be measured using data from the visible channel, range, 365 - 500 nm; resolution, 0.63 nm; sampling, 0.21 nm/pixel. The NO_2 algorithm will compute vertical column densities (VCD) from spectrally fitted NO_2 slant column densities (SCD). The method to determine NO_2 slant column densities is Differential Optical Absorption Spectroscopy (DOAS), which uses a linear decomposition of a measured Earth reflectance spectrum into its component spectra, including NO_2, O_3, O_2-O_2, H_2O, Ring and a third order polynomial. Calculation of the air mass factor in regions of enhanced tropospheric NO_2 will be accomplished by designating two components of the column density: an unpolluted component, which includes stratospheric and free tropospheric NO_2, and a polluted component, containing boundary layer NO_2. The two parts will be separated through spatial filtering of the geographic NO_2 field. Polluted NO_2 is assumed to show the greatest small-scale variation and will be isolated and corrected for air mass factor and temperature.

  14. SEPARATION OF OCTYLPHENOL POLYETHER ALCOHOLS SURFACTANTS BY CAPILLARY COLUMN SFC AND HPLC

    EPA Science Inventory

    Separation of nonionic octylphenol polyether alcohols (OPA) by supercritical fluid chromatography (SFC) and HPLC is described. Using a density programming and a 50-μm i.d. capillary column, a total of 18 group oligomers was separated. The effects of the operating parameters, such...

  15. Analysis and Design of MEBT Beam Absorber for Project-X

    SciTech Connect

    Awida, Mohamed H.; Lebedev, Valeri; Yakovlev, Vyacheslav P.; /Fermilab

    2012-05-01

    A beam absorber is needed for a new high power accelerator to be built in Fermilab. It is called Project-X and should replace the existing linac and the 8 GeV Booster synchrotron. The beam absorber is part of the bunch-by-bunch chopper assigned to create an arbitrary bunch sequence required by experimental program. It will be located in the middle of the medium energy beam transport (MEBT) and has to remove the unnecessary bunches from the initially uniform bunch structure supplied by 2.1 MeV CW RFQ. At nominal RFQ beam current of 5 mA, the maximum power delivered to the beam absorber is about 10 kW. Beam optics requirements result in that the length allocated to the beam absorber is short ({approx}400 mm) and the beam size is small ({sigma}{approx}2mm). That yields high power density of the beam arriving to the absorber. The paper presents the thermal and mechanical analysis of one of proposed designs.

  16. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters.

    PubMed

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-21

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis.

  17. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters

    PubMed Central

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-01

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis. PMID:26805819

  18. Inorganic UV absorbers for the photostabilisation of wood-clearcoating systems: Comparison with organic UV absorbers

    NASA Astrophysics Data System (ADS)

    Aloui, F.; Ahajji, A.; Irmouli, Y.; George, B.; Charrier, B.; Merlin, A.

    2007-02-01

    Inorganic UV absorbers which are widely used today were originally designed neither as a UV blocker in coatings applications, nor for wood protection. In recent years however, there has been extensive interest in these compounds, especially with regard to their properties as a UV blocker in coating applications. In this work, we carried out a comparative study to look into some inorganic and organic UV absorbers used in wood coating applications. The aim of this study is to determine the photostabilisation performances of each type of UV absorbers, to seek possible synergies and the influences of different wood species. We have also searched to find eventual correlation between these performances and the influence of UV absorbers on the film properties. Our study has compared the performances of the following UV absorbers: hombitec RM 300, hombitec RM 400 from the Sachtleben Company; transparent yellow and red iron oxides from Sayerlack as inorganic UV absorbers; organic UV absorbers Tinuvin 1130 and Tinuvin 5151 from Ciba Company. The study was carried out on three wood species: Abies grandis, tauari and European oak. The environmental constraints (in particular the limitation of the emission of volatile organic compounds VOCs) directed our choice towards aqueous formulations marketed by the Sayerlack Arch Coatings Company. The results obtained after 800 h of dry ageing showed that the Tinuvins and the hombitecs present better wood photostabilisations. On the other hand in wet ageing, with the hombitec, there are appearances of some cracks and an increase in the roughness of the surface. This phenomenon is absent when the Tinuvins are used. With regard to these results, the thermomechanical analyses relating to the follow-up of the change of the glass transition temperature ( Tg) of the various coating systems, show a different behaviour between the two types of absorbers. However, contrary to organic UV absorbers, inorganic ones tend to increase Tg during ageing

  19. Modeling the Effect of Polychromatic Light in Quantitative Absorbance Spectroscopy

    ERIC Educational Resources Information Center

    Smith, Rachel; Cantrell, Kevin

    2007-01-01

    Laboratory experiment is conducted to give the students practical experience with the principles of electronic absorbance spectroscopy. This straightforward approach creates a powerful tool for exploring many of the aspects of quantitative absorbance spectroscopy.

  20. β-Cyclodextrin-based oil-absorbent microspheres: preparation and high oil absorbency.

    PubMed

    Song, Ci; Ding, Lei; Yao, Fei; Deng, Jianping; Yang, Wantai

    2013-01-01

    This article reports the preparation and evaluation of polymeric microspheres as a new class of oil-absorbent (POAMs). Based on our earlier oil-absorbents, the present microspheres contained β-cyclodextrin (β-CD) moieties as both cross-linking agent and porogen agent, and showed exciting high oil absorbency, fast oil absorption speed and good reusability. Such microspheres were prepared via suspension polymerization with octadecyl acrylate and butyl acrylate as co-monomers, β-CD derivative as cross-linking agent, 2,2'-azoisobutyronitrile as initiator and polyvinylalcohol as stabilizer. Oil absorbency of the POAMs was, for CCl(4), 83.4; CHCl(3), 75.1; xylene, 48.7; toluene, 42.8; gasoline, 30.0; kerosene 27.1; and diesel, 18.2 g/g (oil/POAMs). Saturation oil absorption reached within 3h in CCl(4). The POAMs exhibited high oil retention percentage (>90%), and can be reused for at least 10 times while keeping oil absorbency almost unchanged. PMID:23044125