Sample records for absorbing film assisted

  1. Femtosecond laser printing of living cells using absorbing film-assisted laser-induced forward transfer

    NASA Astrophysics Data System (ADS)

    Hopp, Béla; Smausz, Tomi; Szabó, Gábor; Kolozsvári, Lajos; Kafetzopoulos, Dimitris; Fotakis, Costas; Nógrádi, Antal

    2012-01-01

    The applicability of a femtosecond KrF laser in absorbing film-assisted, laser-induced forward transfer of living cells was studied. The absorbing materials were 50-nm-thick metal films and biomaterials (gelatine, Matrigel, each 50 μm thick, and polyhydroxybutyrate, 2 μm). The used cell types were human neuroblastoma, chronic myeloid leukemia, and osteogenic sarcoma cell lines, and primary astroglial rat cells. Pulses of a 500-fs KrF excimer laser focused onto the absorbing layer in a 250-μm diameter spot with 225 mJ/cm2 fluence were used to transfer the cells to the acceptor plate placed at 0.6 mm distance, which was a glass slide either pure or covered with biomaterials. While the low-absorptivity biomaterial absorbing layers proved to be ineffective in transfer of cells, when applied on the surface of acceptor plate, the wet gelatine and Matrigel layers successfully ameliorated the impact of the cells, which otherwise did not survive the arrival onto a hard surface. The best short- and long-term survival rate was between 65% and 70% for neuroblastoma and astroglial cells. The long-term survival of the transferred osteosarcoma cells was low, while the myeloid leukemia cells did not tolerate the procedure under the applied experimental conditions.

  2. Polyethylene glycol-assisted growth of Cu2SnS3 promising absorbers for thin film solar cell applications

    NASA Astrophysics Data System (ADS)

    Kahraman, S.; Çetinkaya, S.; Yaşar, S.; Bilican, İ.

    2014-09-01

    In this paper, we report, for the first time, the results of the polyethylene glycol- (PEG) assisted preparation and characterization of high-quality and well-crystallized Cu2SnS3 (CTS) thin films obtained using sol-gel spin-coating method and a subsequent annealing in a sulphur atmosphere. Structural, morphological, compositional, electrical and optical investigations were carried out. The X-ray diffraction patterns of the samples proved the polycrystalline nature and preferred crystallization of the films. No peak referring to other binary or ternary phases were detected in the patterns. The intensity of the preferred orientation and crystallite size of the films increased with increasing PEG content. This trend yielded an improvement in photo-transient currents of the PEG-assisted growth of CTS films. The scanning electron microscopy images revealed that the CTS films have continuous, dense and agglomeration-like morphology. Through energy dispersive X-ray spectroscopy studies, it has been deduced that the samples consist of Cu, Sn and S of which atomic percentages were consistent with Cu/Sn and S/metal initial ratios. The agglomerated morphology of the samples has been attributed to increasing PEG content. A remarkable enhancement was observed in photo-transient currents of p-n junction of the produced films along with increasing PEG content. Through resistivity-temperature measurements, three impurity level electrical activation energy values for each film were found. Optical band gap values of the films were estimated via absorbance-wavelength behaviours and decreased with increasing PEG content. It has been revealed that PEG-assisted growth of CTS thin films is a promising way to improve its photovoltaic characteristics.

  3. Thin film absorber for a solar collector

    DOEpatents

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  4. Gold absorbing film for a composite bolometer

    NASA Technical Reports Server (NTRS)

    Dragovan, M.; Moseley, S. H.

    1984-01-01

    The principles governing the design of metal films are reviewed, with attention also given to the choice of metals. A description is then given of the characteristics of a bolometer with a gold absorbing film. It is demonstrated that gold is effective as an absorbing film for a millimeter bolometer operated at 1.5 K. At 1.5 K, gold is significantly better than bismuth since gold has a lower heat capacity for the absorbing film. At 0.3 K, gold and bismuth are both suitable. It is pointed out that at temperatures below 0.3 K, a superconducting absorbing film can have a heat capacity low enough not to dominate the heat capacity of the detector; for this reason, it may give better performance than a nonsuperconducting absorbing film.

  5. Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia)

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Smausz, T.; Antal, Zs.; Kresz, N.; Bor, Zs.; Chrisey, D.

    2004-09-01

    We present an investigation on absorbing film assisted laser induced forward transfer (AFA-LIFT) of fungus (Trichoderma) conidia. A KrF excimer laser beam [λ =248nm,FWHM=30ns (FWHM, full width at half maximum)] was directed through a quartz plate and focused onto its silver coated surface where conidia of the Trichoderma strain were uniformly spread. The laser fluence was varied in the range of 0-2600mJ/cm2 and each laser pulse transferred a pixel of target material. The average irradiated area was 8×10-2mm2. After the transfer procedure, the yeast extract medium covered glass slide and the transferred conidia patterns were incubated for 20 h and then observed using an optical microscope. The transferred conidia pixels were germinated and the areas of the culture medium surfaces covered by the pixels were evaluated as a function of laser fluence. As the laser fluence was increased from 0 to 355mJ/cm2 the transferred and germinated pixel area increased from 0 to 0.25mm2. Further increase in fluence resulted in a drastic decrease down to an approximately constant value of 0.06mm2. The yield of successful transfer by AFA-LIFT and germination was as much as 75% at 355mJ/cm2. The results prove that AFA-LIFT can successfully be applied for the controlled transfer of biological objects.

  6. Parasitic oscillation suppression in solid state lasers using absorbing thin films

    DOEpatents

    Zapata, Luis E.

    1994-01-01

    A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber.

  7. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    DOEpatents

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  8. Parasitic oscillation suppression in solid state lasers using absorbing thin films

    DOEpatents

    Zapata, L.E.

    1994-08-02

    A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber. 16 figs.

  9. Thin films with disordered nanohole patterns for solar radiation absorbers

    NASA Astrophysics Data System (ADS)

    Fang, Xing; Lou, Minhan; Bao, Hua; Zhao, C. Y.

    2015-06-01

    The radiation absorption in thin films with three disordered nanohole patterns, i.e., random position, non-uniform radius, and amorphous pattern, are numerically investigated by finite-difference time-domain (FDTD) simulations. Disorder can alter the absorption spectra and has an impact on the broadband absorption performance. Compared to random position and non-uniform radius nanoholes, amorphous pattern can induce a much better integrated absorption. The power density spectra indicate that amorphous pattern nanoholes reduce the symmetry and provide more resonance modes that are desired for the broadband absorption. The application condition for amorphous pattern nanoholes shows that they are much more appropriate in absorption enhancement for weak absorption materials. Amorphous silicon thin films with disordered nanohole patterns are applied in solar radiation absorbers. Four configurations of thin films with different nanohole patterns show that interference between layers in absorbers will change the absorption performance. Therefore, it is necessary to optimize the whole radiation absorbers although single thin film with amorphous pattern nanohole has reached optimal absorption.

  10. IR Reflectance Properties Of Weakly And Strongly Absorbing Surface Films

    NASA Astrophysics Data System (ADS)

    Yen, Yu-Sze; Wong, James S.

    1989-12-01

    In an external reflection measurement, the optical properties of a surface film can give rise to a variety of spectral behavior on metallic and nonmetallic substrates. The diversity of behavior can be explained by the presence of transverse optical (TO) and longitudinal optical (LO) bands of the film in the infrared region. The excitation modes associated with these bands are directional with respect to the plane of the surface. Spectral interpretation is facilitated by understanding the roles of the TO and LO bands in reflectance spectra, the substrate selection rules for the appearance of these bands, and the relationship between the TO and LO frequencies. We will show that weakly absorbing films have a simpler optical behavior than strongly absorbing films.

  11. Preparation of pure chitosan film using ternary solvents and its super absorbency.

    PubMed

    Wang, Xuejun; Lou, Tao; Zhao, Wenhua; Song, Guojun

    2016-11-20

    Chemical modification and graft copolymerization were commonly adopted to prepare super absorbent materials. However, physical microstructure of pure chitosan film was optimized to improve the water uptake capacity in this study. Chitosan films with micro-nanostructure were prepared by a ternary solvent system. The optimal process parameters are 1% acetic acid water solution: dioxane: dimethyl sulfoxide=90: 2.5: 7.5 (v/v/v) with chitosan concentration at 1.25% (w/v). The water uptake capacity of the chitosan film prepared under the optimal process parameters was 896g/g. The prepared chitosan films also exhibited high water uptake capacity in response to external stimuli such as temperature, pH and salt. This finding may provide another way for improving the water absorbency. The pure chitosan film may find potential applications especially in the fields of hygienic products and biomedicine due to its super water absorbency and nontoxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The New Film Technologies: Computerized Video-Assisted Film Production.

    ERIC Educational Resources Information Center

    Mott, Donald R.

    Over the past few years, video technology has been used to assist film directors after they have shot a scene, to control costs, and to create special effects, especially computer assisted graphics. At present, a computer based editing system called "Film 5" combines computer technology and video tape with film to save as much as 50% of…

  13. The relationship between absorbency and density of bioplastic film made from hydrolyzed starch

    NASA Astrophysics Data System (ADS)

    Singan, Grace; Chiang, Liew Kang

    2017-12-01

    Water absorption in polymer blends such as starch-based bioplastic films is important to evaluate the stability characteristics of such films in water that will affect their long-term performance in final products. In this study, the absorbency of starch-based bioplastic films made from potato, cassava, and corn starches that have went through the hydrolysis process first to alter its characteristics and properties in terms of granular swelling and hydrophilicity behaviour. The final results showed that hydrolyzed cassava bioplastic film has the ability to absorb more water compared to hydrolyzed potato and corn bioplastic films. The reading of hydrolyzed cassava bioplastic film on the seventh day of immersion for all ratios were between 87.83 % to 131.29 %, while for hydrolyzed potato bioplastic films was 69.48 % to 92.41 % and hydrolyzed corn bioplastic films was 66.28 % to 74.18 %. Meanwhile, the density analysis was evaluated to determine its physical properties towards moisture condition. The results showed that the hydrolyzed cassava bioplastic films have higher density compared to the other two, which indicated that it is a more favourable raw material to produce biodegradable planting pot due to its ability to absorb more water. Hence, still manage to retain its shape with low brittle surface.

  14. Simultaneous fabrication of a microcavity absorber-emitter on a Ni-W alloy film

    NASA Astrophysics Data System (ADS)

    Nashun; Kagimoto, Masahiro; Iwami, Kentaro; Umeda, Norihiro

    2017-10-01

    A process for the simultaneous fabrication of microcavity structures on both sides of a film was proposed and demonstrated to develop a free-standing-type integrated absorber-emitter for use in solar thermophotovoltaic power generation systems. The absorber-emitter-integrated film comprised a heat-resistant Ni-W alloy deposited by electroplating. A two-step silicon mould was fabricated using deep reactive-ion etching and electron beam lithography. Cavity arrays with different unit sizes were successfully fabricated on both sides of the film; these arrays are suitable for use as a solar spectrum absorber and an infrared-selective emitter. Their emissivity spectra were characterised through UV-vis-NIR and Fourier transform infrared spectroscopy.

  15. An ultrathin wide-band planar metamaterial absorber based on a fractal frequency selective surface and resistive film

    NASA Astrophysics Data System (ADS)

    Fan, Yue-Nong; Cheng, Yong-Zhi; Nie, Yan; Wang, Xian; Gong, Rong-Zhou

    2013-06-01

    We propose an ultrathin wide-band metamaterial absorber (MA) based on a Minkowski (MIK) fractal frequency selective surface and resistive film. This absorber consists of a periodic arrangement of dielectric substrates sandwiched with an MIK fractal loop structure electric resonator and a resistive film. The finite element method is used to simulate and analyze the absorption of the MA. Compared with the MA-backed copper film, the designed MA-backed resistive film exhibits an absorption of 90% at a frequency region of 2 GHz-20 GHz. The power loss density distribution of the MA is further illustrated to explain the mechanism of the proposed MA. Simulated absorptions at different incidence cases indicate that this absorber is polarization-insensitive and wide-angled. Finally, further simulated results indicate that the surface resistance of the resistive film and the dielectric constant of the substrate can affect the absorbing property of the MA. This absorber may be used in many military fields.

  16. Preparation of nonconducting infrared-absorbing thin films

    NASA Astrophysics Data System (ADS)

    Gradhand, Martin; Breitenstein, Otwin

    2005-05-01

    A simple procedure for preparing colloidal "black" bismuth films is introduced, which leaves the target cold and does not pollute the recipient. The Bi evaporation occurs in a closed box in the evaporation chamber with an internal radiation shield. The bismuth is evaporated from a tantalum boat at a residual air pressure of 2×102Pa. The resulting films with a thickness of about 10μm are structureless down to a spatial resolution of 5.6μm, they become electrically insulating after 48h storage time in air, and they show an IR absorbance of above 70% in the 3-5μm wavelength range. The films are easily removable in an ultrasonic water bath. Thus, these films are ideally appropriate to increase the IR emissivity of microelectronic structures in microthermal infrared failure analysis investigations such as lock-in thermography, as is demonstrated in an application example. The application of this film may improve the thermographic detection limit of heat sources below metallized areas by up to a factor of 10, leading to a saving in acquisition time by a factor of 100.

  17. Fabrication of Cu2ZnSn(S,Se)4 (CZTSSe) absorber films based on solid-phase synthesis and blade coating processes

    NASA Astrophysics Data System (ADS)

    Ma, Ruixin; Yang, Fan; Li, Shina; Zhang, Xiaoyong; Li, Xiang; Cheng, Shiyao; Liu, Zilin

    2016-04-01

    CZTSSe is an important earth abundant collection of materials for the development of low cost and high efficiency thin film solar cells. This work developed a simple non-vacuum-based route to fabricate CZTSSe absorber films. This was demonstrated by first synthesizing Cu2ZnSnS4 (CZTS) nano-crystalline based on solid-phase synthesis. Then a stable colloidal ink composed of CZTS nano-crystalline was blade coated on Mo-coated substrates followed by an annealing process under Ar atmosphere. After CZTS films formation, the films were sintered into CZTSSe absorber films by exposing them under Selenium vapor. The formation of a kesterite type CZTS was confirmed using X-ray diffraction and Raman scattering measurements. The band gap of CZTSSe absorber films was determined to be 1.26 eV, which was appropriate for use as an absorber layer in thin film solar cells. The CZTSSe absorber films showed a good photovoltatic performance, demonstrating this simple approach had great potential for CZTSSe solar cell production.

  18. An improved method for determination of refractive index of absorbing films: A simulation study

    NASA Astrophysics Data System (ADS)

    Özcan, Seçkin; Coşkun, Emre; Kocahan, Özlem; Özder, Serhat

    2017-02-01

    In this work an improved version of the method presented by Gandhi was presented for determination of refractive index of absorbing films. In this method local maxima of consecutive interference order in transmittance spectrum are used. The method is based on the minimizing procedure leading to the determination of interference order accurately by using reasonable Cauchy parameters. It was tested on theoretically generated transmittance spectrum of absorbing film and the details of the minimization procedure were discussed.

  19. Aging behavior of near atmospheric N2 ambient sputtered/patterned Au IR absorber thin films

    NASA Astrophysics Data System (ADS)

    Gaur, Surender P.; Kothari, Prateek; Rangra, Kamaljit; Kumar, Dinesh

    2018-03-01

    Near atmospheric N2 ambient sputtered Au thin films exhibit significant spectral absorptivity over medium to long wave infrared radiations. Thin films were found adequately robust for micropatterning using conventional photolithography and metal lift off processes. Since long term spectral absorptivity is major practical concern for Au blacks, this paper reports on aging behavior of near atmospheric Ar and Ar + N2 (1:1) ambient sputtered infrared absorber Au thin films. Comparative analysis on electrical, morphological and spectral absorption behavior of twenty-five weeks room temperature/vacuum aged Au infrared absorber thin films is performed. The Ar and Ar + N2 ambient sputtered Au thing films have shown anticipated consistency in their physical, electrical and spectral properties regardless the long term aging in this work.

  20. Absorbing TiOx thin film enabling laser welding of polyurethane membranes and polyamide fibers

    PubMed Central

    Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M; Hegemann, Dirk

    2015-01-01

    We report on the optical properties of thin titanium suboxide (TiOx) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiOx coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiOx coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiOx films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties. PMID:27877837

  1. Absorbing TiOx thin film enabling laser welding of polyurethane membranes and polyamide fibers

    NASA Astrophysics Data System (ADS)

    Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M.; Hegemann, Dirk

    2015-10-01

    We report on the optical properties of thin titanium suboxide (TiOx) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiOx coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiOx coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiOx films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties.

  2. Optimization of Multilayer Laminated Film and Absorbent of Vacuum Insulation Panel for Use at High Temperature

    NASA Astrophysics Data System (ADS)

    Araki, Kuninari; Echigoya, Wataru; Tsuruga, Toshimitsu; Kamoto, Daigorou; Matsuoka, Shin-Ichi

    For the energy saving regulation and larger capacity, Vacuum Insulation Panel (VIP) has been used in refrigerators with urethane foam in recent years. VIP for low temperature is constructed by laminated plastic film, using heat welding of each neighboring part for keeping vacuum, so that the performance decrement is very large under high temperature. But recently high efficiency insulation material is desired for high temperature water holding devices (automatic vending machine, heat pump water heater, electric hot-water pot water, etc.), and we especially focused on cost and ability of the laminated plastic film and absorbent for high temperature VIP. We measured the heatproof temperature of plastic films and checked the amount of water vapor and out coming gas on temperature-programmed adsorption in absorbent. These results suggest the suitable laminated film and absorbent system for VIP use at high temperature, and the long-term reliability was evaluated by measuring thermal conductivity of high temperature. As a result it was found that high-retort pouch of CPP (cast polypropylene film) and adding of aluminum coating are the most suitable materials for use in the welded layers of high-temperature VIPs (105°C).

  3. Simplified method for creating a density-absorbed dose calibration curve for the low dose range from Gafchromic EBT3 film.

    PubMed

    Gotanda, Tatsuhiro; Katsuda, Toshizo; Gotanda, Rumi; Kuwano, Tadao; Akagawa, Takuya; Tanki, Nobuyoshi; Tabuchi, Akihiko; Shimono, Tetsunori; Kawaji, Yasuyuki

    2016-01-01

    Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were -32.336 and -33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range.

  4. Simplified method for creating a density-absorbed dose calibration curve for the low dose range from Gafchromic EBT3 film

    PubMed Central

    Gotanda, Tatsuhiro; Katsuda, Toshizo; Gotanda, Rumi; Kuwano, Tadao; Akagawa, Takuya; Tanki, Nobuyoshi; Tabuchi, Akihiko; Shimono, Tetsunori; Kawaji, Yasuyuki

    2016-01-01

    Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were −32.336 and −33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range. PMID:28144120

  5. Design and characterization of terahertz-absorbing nano-laminates of dielectric and metal thin films.

    PubMed

    Bolakis, C; Grbovic, D; Lavrik, N V; Karunasiri, G

    2010-07-05

    A terahertz-absorbing thin-film stack, containing a dielectric Bragg reflector and a thin chromium metal film, was fabricated on a silicon substrate for applications in bi-material terahertz (THz) sensors. The Bragg reflector is to be used for optical readout of sensor deformation under THz illumination. The THz absorption characteristics of the thin-film composite were measured using Fourier transform infrared spectroscopy. The absorption of the structure was calculated both analytically and by finite element modeling and the two approaches agreed well. Finite element modeling provides a convenient way to extract the amount of power dissipation in each layer and is used to quantify the THz absorption in the multi-layer stack. The calculation and the model were verified by experimentally characterizing the multi-layer stack in the 3-5 THz range. The measured and simulated absorption characteristics show a reasonably good agreement. It was found that the composite film absorbed about 20% of the incident THz power. The model was used to optimize the thickness of the chromium film for achieving high THz absorption and found that about 50% absorption can be achieved when film thickness is around 9 nm.

  6. Shadow-angle method for anisotropic and weakly absorbing films.

    PubMed

    Surdutovich, G; Vitlina, R; Baranauskas, V

    1999-07-01

    A method for determining the optical properties of a film on an isotropic substrate is proposed. The method is based on the existence of two specific incidence angles in the angular interference pattern of the p-polarized light where oscillations of the reflection coefficient cease. The first of these angles, theta(B1), is the well-known Abelès angle, i.e., the ambient-film Brewster angle, and the second angle theta(B2) is the film-substrate Brewster angle. In the conventional planar geometry and in a vacuum ambient there is a rigorous constraint epsilon(1) + epsilon > epsilon(1)epsilon on the film and the substrate dielectric permittivities epsilon(1) and epsilon, respectively, for the existence of the second angle theta(B2.) The limitation may be removed in an experiment by use of a cylindrical lens as an ambient with epsilon(0) > 1, so that both angles become observable. This, contrary to general belief, allows one to adopt the conventional Abelès method not only for films with epsilon(1) close to the substrate's value epsilon but also for any value of epsilon(1). The method, when applied to a wedge-shaped film or to any film of unknown variable thickness, permits one to determine (i) the refractive index of a film on an unknown substrate, (ii) the vertical and the horizontal optical anisotropies of a film on an isotropic substrate, (iii) the weak absorption of a moderately thick film on a transparent or an absorbing isotropic substrate.

  7. Research Update: Emerging chalcostibite absorbers for thin-film solar cells

    DOE PAGES

    de Souza Lucas, Francisco Willian; Zakutayev, Andriy

    2018-06-04

    Copper antimony chalcogenides CuSbCh 2 (Ch=S, Se) are an emerging family of absorbers studied for thin-film solar cells. These non-toxic and Earth-abundant materials show a layered low-dimensional chalcostibite crystal structure, leading to interesting optoelectronic properties for applications in photovoltaic (PV) devices. This research update describes the CuSbCh 2 crystallographic structures, synthesis methods, competing phases, band structures, optoelectronic properties, point defects, carrier dynamics, and interface band offsets, based on experimental and theoretical data. Correlations between these absorber properties and PV device performance are discussed, and opportunities for further increase in the efficiency of the chalcostibite PV devices are highlighted.

  8. Research Update: Emerging chalcostibite absorbers for thin-film solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Souza Lucas, Francisco Willian; Zakutayev, Andriy

    Copper antimony chalcogenides CuSbCh 2 (Ch=S, Se) are an emerging family of absorbers studied for thin-film solar cells. These non-toxic and Earth-abundant materials show a layered low-dimensional chalcostibite crystal structure, leading to interesting optoelectronic properties for applications in photovoltaic (PV) devices. This research update describes the CuSbCh 2 crystallographic structures, synthesis methods, competing phases, band structures, optoelectronic properties, point defects, carrier dynamics, and interface band offsets, based on experimental and theoretical data. Correlations between these absorber properties and PV device performance are discussed, and opportunities for further increase in the efficiency of the chalcostibite PV devices are highlighted.

  9. Fast microwave assisted pyrolysis of biomass using microwave absorbent.

    PubMed

    Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger

    2014-03-01

    A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Absorbing TiO x thin film enabling laser welding of polyurethane membranes and polyamide fibers.

    PubMed

    Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M; Hegemann, Dirk

    2015-10-01

    We report on the optical properties of thin titanium suboxide (TiO x ) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiO x coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiO x coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiO x films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties.

  11. Superb electromagnetic wave-absorbing composites based on large-scale graphene and carbon nanotube films.

    PubMed

    Li, Jinsong; Lu, Weibang; Suhr, Jonghwan; Chen, Hang; Xiao, John Q; Chou, Tsu-Wei

    2017-05-24

    Graphene has sparked extensive research interest for its excellent physical properties and its unique potential for application in absorption of electromagnetic waves. However, the processing of stable large-scale graphene and magnetic particles on a micrometer-thick conductive support is a formidable challenge for achieving high reflection loss and impedance matching between the absorber and free space. Herein, a novel and simple approach for the processing of a CNT film-Fe 3 O 4 -large scale graphene composite is studied. The Fe 3 O 4 particles with size in the range of 20-200 nm are uniformly aligned along the axial direction of the CNTs. The composite exhibits exceptionally high wave absorption capacity even at a very low thickness. Minimum reflection loss of -44.7 dB and absorbing bandwidth of 4.7 GHz at -10 dB are achieved in composites with one-layer graphene in six-layer CNT film-Fe 3 O 4 prepared from 0.04 M FeCl 3 . Microstructural and theoretical studies of the wave-absorbing mechanism reveal a unique Debye dipolar relaxation with an Eddy current effect in the absorbing bandwidth.

  12. Design of a wide-band metamaterial absorber based on fractal frequency selective surface and resistive films

    NASA Astrophysics Data System (ADS)

    Cheng, Yong-Zhi; Nie, Yan; Gong, Rong-Zhou

    2013-10-01

    We present the design of a wide-band metamaterial absorber, based on fractal frequency selective surface and resistive films. The total thickness is only 0.8 mm and shows a polarization-insensitive and wide-angle strong absorption. Due to the multiband resonance properties of the Minkowski fractal loop structure and Ohmic loss properties of resistive films, a strongly absorptive bandwidth of about 19 GHz is demonstrated numerically in the range 6.51-25.42 GHz. This design provides an effective and feasible way to construct a broad-band absorber in stealth technology.

  13. Ion Beam Assisted Deposition of Thin Epitaxial GaN Films.

    PubMed

    Rauschenbach, Bernd; Lotnyk, Andriy; Neumann, Lena; Poppitz, David; Gerlach, Jürgen W

    2017-06-23

    The assistance of thin film deposition with low-energy ion bombardment influences their final properties significantly. Especially, the application of so-called hyperthermal ions (energy <100 eV) is capable to modify the characteristics of the growing film without generating a large number of irradiation induced defects. The nitrogen ion beam assisted molecular beam epitaxy (ion energy <25 eV) is used to deposit GaN thin films on (0001)-oriented 6H-SiC substrates at 700 °C. The films are studied in situ by reflection high energy electron diffraction, ex situ by X-ray diffraction, scanning tunnelling microscopy, and high-resolution transmission electron microscopy. It is demonstrated that the film growth mode can be controlled by varying the ion to atom ratio, where 2D films are characterized by a smooth topography, a high crystalline quality, low biaxial stress, and low defect density. Typical structural defects in the GaN thin films were identified as basal plane stacking faults, low-angle grain boundaries forming between w-GaN and z-GaN and twin boundaries. The misfit strain between the GaN thin films and substrates is relieved by the generation of edge dislocations in the first and second monolayers of GaN thin films and of misfit interfacial dislocations. It can be demonstrated that the low-energy nitrogen ion assisted molecular beam epitaxy is a technique to produce thin GaN films of high crystalline quality.

  14. A facile fabrication of chemically converted graphene oxide thin films and their uses as absorber materials for solar cells

    NASA Astrophysics Data System (ADS)

    Adelifard, Mehdi; Darudi, Hosein

    2016-07-01

    There is a great interest in the use of graphene sheets in thin film solar cells with low-cost and good-optoelectronic properties. Here, the production of absorbent conductive reduced graphene oxide (RGO) thin films was investigated. RGO thin films were prepared from spray-coated graphene oxide (GO) layers at various substrate temperature followed by a simple hydrazine-reducing method. The structural, morphological, optical, and electrical characterizations of graphene oxide (GO) and RGO thin films were investigated. X-ray diffraction analysis showed a phase shift from GO to RGO due to hydrazine treatment, in agreement with the FTIR spectra of the layers. FESEM images clearly exhibited continuous films resulting from the overlap of graphene nanosheets. The produced low-cost thin films had high absorption coefficient up to 1.0 × 105 cm-1, electrical resistance as low as 0.9 kΩ/sq, and effective optical band gap of about 1.50 eV, close to the optimum value for solar conversion. The conductive absorbent properties of the reduced graphene oxide thin films would be useful to develop photovoltaic cells.

  15. Repair of orbital floor fractures with absorbable gelatin film.

    PubMed

    Mermer, R W; Orban, R E

    1995-01-01

    Many materials have been utilized for the repair of orbital floor fractures. Absorbable gelatin film is a bioabsorbable sheeting material that is manufactured from denatured collagen. This material is appropriate for the repair of smaller orbital floor defects (5 mm or less) and trapdoor-type fractures; it is used with larger defects as an interpositional graft material between the periorbital tissues and as an orbital floor reconstruction plate or mesh. Sixteen cases consisting of both types of defects were retrospectively examined clinically and radiographically. Satisfactory results were obtained in all of these cases, including no adverse ocular signs or implant rejection, good facial form, good function, and acceptable postoperative radiography results.

  16. Aerosol-Assisted Chemical Vapor Deposited Thin Films for Space Photovoltaics

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; McNatt, Jeremiah; Dickman, John E.; Jin, Michael H.-C.; Banger, Kulbinder K.; Kelly, Christopher V.; AquinoGonzalez, Angel R.; Rockett, Angus A.

    2006-01-01

    Copper indium disulfide thin films were deposited via aerosol-assisted chemical vapor deposition using single source precursors. Processing and post-processing parameters were varied in order to modify morphology, stoichiometry, crystallography, electrical properties, and optical properties in order to optimize device-quality material. Growth at atmospheric pressure in a horizontal hot-wall reactor at 395 C yielded best device films. Placing the susceptor closer to the evaporation zone and flowing a more precursor-rich carrier gas through the reactor yielded shinier, smoother, denser-looking films. Growth of (112)-oriented films yielded more Cu-rich films with fewer secondary phases than growth of (204)/(220)-oriented films. Post-deposition sulfur-vapor annealing enhanced stoichiometry and crystallinity of the films. Photoluminescence studies revealed four major emission bands (1.45, 1.43, 1.37, and 1.32 eV) and a broad band associated with deep defects. The highest device efficiency for an aerosol-assisted chemical vapor deposited cell was 1.03 percent.

  17. Precursors for the polymer-assisted deposition of films

    DOEpatents

    McCleskey, Thomas M.; Burrell, Anthony K.; Jia, Quanxi; Lin, Yuan

    2013-09-10

    A polymer assisted deposition process for deposition of metal oxide films is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures to yield metal oxide films. Such films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.

  18. Enhancement of conduction noise absorption by hybrid absorbers composed of indium-tin-oxide thin film and magnetic composite sheet on a microstrip line

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Hong; Kim, Sung-Soo

    2014-05-01

    In order to develop wide-band noise absorbers with a focused design for low frequency performance, this study investigates hybrid absorbers that are composed of conductive indium-tin-oxide (ITO) thin film and magnetic composite sheets. The ITO films prepared via reactive sputtering exhibit a typical value of electrical resistivity of ≃10-4 Ω m. Rubber composites with flaky Fe-Si-Al particles are used as the magnetic sheet with a high permeability and high permittivity. For the ITO film with a low surface resistance and covered by the magnetic sheet, approximately 90% power absorption can be obtained at 1 GHz, which is significantly higher than that of the original magnetic sheet or ITO film. The high power absorption of the hybrid absorber is attributed to the enhanced ohmic loss of the ITO film through increased electric field strength bounded by the upper magnetic composite sheet. However, for the reverse layering sequence of the ITO film, the electric field experienced by ITO film is very weak due to the electromagnetic shielding by the under layer of magnetic sheet, which does not result in enhanced power absorption.

  19. Low-cost thin-film absorber/evaporator for an absorption chiller. Final report, May 1992-April 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowenstein, A.; Sibilia, M.

    1993-04-01

    The feasibility of making the absorber and evaporator of a small lithium-bromide absorption chiller from thin plastic films was studied. Tests were performed to measure (1) pressure limitations for a plastic thin-film heat exchanger, (2) flow pressure-drop characteristics, (3) air permeation rates across the plastic films, and (4) creep characteristics of the plastic films. Initial tests were performed on heat exchangers made of either low-density polyethylene (LDPE), high-density polyethylene (HDPE), or a LDPE/HDPE blend. While initial designs for the heat exchanger failed at internal pressures of only 5 to 6 psi, the final design could withstand pressures of 34 psi.

  20. Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers.

    PubMed

    Ma, Jie; Xie, Guoqiang; Lv, Peng; Gao, Wenlan; Yuan, Peng; Qian, Liejia; Griebner, Uwe; Petrov, Valentin; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2014-05-23

    An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage.

  1. Wavelength-Versatile Graphene-Gold Film Saturable Absorber Mirror for Ultra-Broadband Mode-Locking of Bulk Lasers

    PubMed Central

    Ma, Jie; Xie, Guoqiang; Lv, Peng; Gao, Wenlan; Yuan, Peng; Qian, Liejia; Griebner, Uwe; Petrov, Valentin; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2014-01-01

    An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage. PMID:24853072

  2. Super-hydrophilic copper sulfide films as light absorbers for efficient solar steam generation under one sun illumination

    NASA Astrophysics Data System (ADS)

    Guo, Zhenzhen; Ming, Xin; Wang, Gang; Hou, Baofei; Liu, Xinghang; Mei, Tao; Li, Jinhua; Wang, Jianying; Wang, Xianbao

    2018-02-01

    Solar steam technology is one of the simplest, most direct and effective ways to harness solar energy through water evaporation. Here, we report the development using super-hydrophilic copper sulfide (CuS) films with double-layer structures as light absorbers for solar steam generation. In the double-layer structure system, a porous mixed cellulose ester (MCE) membrane is used as a supporting layer, which enables water to get into the CuS light absorbers through a capillary action to provide continuous water during solar steam generation. The super-hydrophilic property of the double-layer system (CuS/MCE) leads to a thinner water film close to the air-water interface where the surface temperature is sufficiently high, leading to more efficient evaporation (˜80 ± 2.5%) under one sun illumination. Furthermore, the evaporation efficiencies still keep a steady value after 15 cycles of testing. The super-hydrophilic CuS film is promising for practical application in water purification and evaporation as a light absorption material.

  3. Structured Metal Film as Perfect Absorber

    NASA Astrophysics Data System (ADS)

    Xiong, Xiang; Jiang, Shang-Chi; Peng, Ru-Wen; Wang, Mu

    2014-03-01

    With standing U-shaped resonators, fish-spear-like resonator has been designed for the first time as the building block to assemble perfect absorbers. The samples have been fabricated with two-photon polymerization process and FTIR measurement results support the effectiveness of the perfect absorber design. In such a structure the polarization-dependent resonance occurs between the tines of the spears instead of the conventional design where the resonance occurs between the metallic layers separated by a dielectric interlayer. The incident light neither transmits nor reflects back which results in unit absorbance. The power of light is trapped between the tines of spears and finally be absorbed. The whole structure is covered with a continuous metallic layer with good thermo-conductance, which provides an excellent approach to deal with heat dissipation, is enlightening in exploring metamaterial absorbers.

  4. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films

    PubMed Central

    Kocer, Hasan; Butun, Serkan; Palacios, Edgar; Liu, Zizhuo; Tongay, Sefaattin; Fu, Deyi; Wang, Kevin; Wu, Junqiao; Aydin, Koray

    2015-01-01

    Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2) phase transition. Using planar layered thin film structures, where top layer is chosen to be an ultrathin (20 nm) VO2 film, we demonstrate broadband IR light absorption tuning (from ~90% to ~30% in measured absorption) over the entire mid-wavelength infrared spectrum. Our numerical and experimental results indicate that the bandwidth of the absorption bands can be controlled by changing the dielectric spacer layer thickness. Broadband tunable absorbers can find applications in absorption filters, thermal emitters, thermophotovoltaics and sensing. PMID:26294085

  5. Hybrid absorbers composed of Fe3O4 thin film and magnetic composite sheet and enhancement of conduction noise absorption on a microstrip line

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Soo

    2015-05-01

    In response to develop wide-band noise absorbers with an improved low-frequency performance, this study investigates hybrid absorbers that are composed of conductive Fe3O4 thin film and magnetic composite sheets. The Fe3O4 films prepared via reactive sputtering exhibit a typical value of electrical resistivity of ≃10-4 Ωm. Rubber composites with flaky Fe-Si-Al particles of a high permeability and high permittivity are used as the magnetic sheet functioning as an electromagnetic shield barrier. Microstrip lines with a characteristic impedance of 50 Ω are used to measure the noise absorbing properties. For the Fe3O4 film with a low surface resistance and covered by the magnetic sheet, approximately 80% power absorption can be obtained at 1 GHz, which is significantly higher than that of the original magnetic sheet or Fe3O4 film. The high power absorption of the hybrid absorber is attributed to the enhanced ohmic loss of the Fe3O4 film through increased electric field strength bounded by the upper magnetic composite sheet. The noise absorption is further enhanced through increasing the electrical conductivity of the film containing more conductive phase (Fe3O4 + Fe), which can be prepared in a reduced oxygen partial pressure during reactive sputtering.

  6. Organometal Halide Perovskite Solar Absorbers and Ferroelectric Nanocomposites for Harvesting Solar Energy

    NASA Astrophysics Data System (ADS)

    Hettiarachchi, Chaminda Lakmal

    Organometal halide perovskite absorbers such as methylammonium lead iodide chloride (CH3NH3PbI3-xClx), have emerged as an exciting new material family for photovoltaics due to its appealing features that include suitable direct bandgap with intense light absorbance, band gap tunability, ultra-fast charge carrier generation, slow electron-hole recombination rates, long electron and hole diffusion lengths, microsecond-long balanced carrier mobilities, and ambipolarity. The standard method of preparing CH3NH3PbI3-xClx perovskite precursors is a tedious process involving multiple synthesis steps and, the chemicals being used (hydroiodic acid and methylamine) are quite expensive. This work describes a novel, single-step, simple, and cost-effective solution approach to prepare CH3NH3PbI3-xClx thin films by the direct reaction of the commercially available CH3NH 3Cl (or MACl) and PbI2. A detailed analysis of the structural and optical properties of CH3NH3PbI3-xCl x thin films deposited by aerosol assisted chemical vapor deposition is presented. Optimum growth conditions have been identified. It is shown that the deposited thin films are highly crystalline with intense optical absorbance. Charge carrier separation of these thin films can be enhanced by establishing a local internal electric field that can reduce electron-hole recombination resulting in increased photo current. The intrinsic ferroelectricity in nanoparticles of Barium Titanate (BaTiO3 -BTO) embedded in the solar absorber can generate such an internal field. A hybrid structure of CH3NH 3PbI3-xClx perovskite and ferroelectric BTO nanocomposite FTO/TiO2/CH3NH3PbI3-xClx : BTO/P3HT/Cu as a new type of photovoltaic device is investigated. Aerosol assisted chemical vapor deposition process that is scalable to large-scale manufacturing was used for the growth of the multilayer structure. TiO 2 and P3HT with additives were used as ETL and HTL respectively. The growth process of the solar absorber layer includes the

  7. Investigation of blister formation in sputtered Cu{sub 2}ZnSnS{sub 4} absorbers for thin film solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bras, Patrice, E-mail: patrice.bras@angstrom.uu.se; Sterner, Jan; Platzer-Björkman, Charlotte

    2015-11-15

    Blister formation in Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films sputtered from a quaternary compound target is investigated. While the thin film structure, composition, and substrate material are not correlated to the blister formation, a strong link between sputtering gas entrapment, in this case argon, and blistering effect is found. It is shown that argon is trapped in the film during sputtering and migrates to locally form blisters during the high temperature annealing. Blister formation in CZTS absorbers is detrimental for thin film solar cell fabrication causing partial peeling of the absorber layer and potential shunt paths in the complete device.more » Reduced sputtering gas entrapment, and blister formation, is seen for higher sputtering pressure, higher substrate temperature, and change of sputtering gas to larger atoms. This is all in accordance with previous publications on blister formation caused by sputtering gas entrapment in other materials.« less

  8. Nanostructured light-absorbing crystalline CuIn(1-x)GaxSe2 thin films grown through high flux, low energy ion irradiation

    NASA Astrophysics Data System (ADS)

    Hall, Allen J.; Hebert, Damon; Shah, Amish B.; Bettge, Martin; Rockett, Angus A.

    2013-10-01

    A hybrid effusion/sputtering vacuum system was modified with an inductively coupled plasma (ICP) coil enabling ion assisted physical vapor deposition of CuIn1-xGaxSe2 thin films on GaAs single crystals and stainless steel foils. With <80 W rf power to the ICP coil at 620-740 °C, film morphologies were unchanged compared to those grown without the ICP. At low temperature (600-670 °C) and high rf power (80-400 W), a light absorbing nanostructured highly anisotropic platelet morphology was produced with surface planes dominated by {112}T facets. At 80-400 W rf power and 640-740 °C, both interconnected void and small platelet morphologies were observed while at >270 W and above >715 °C nanostructured pillars with large inter-pillar voids were produced. The latter appeared black and exhibited a strong {112}T texture with interpillar twist angles of ±8°. Application of a negative dc bias of 0-50 V to the film during growth was not found to alter the film morphology or stoichiometry. The results are interpreted as resulting from the plasma causing strong etching favoring formation of {112}T planes and preferential nucleation of new grains, balanced against conventional thermal diffusion and normal growth mechanisms at higher temperatures. The absence of effects due to applied substrate bias suggests that physical sputtering or ion bombardment effects were minimal. The nanostructured platelet and pillar films were found to exhibit less than one percent reflectivity at angles up to 75° from the surface normal.

  9. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  10. Absorbed dose in AgBr in direct film for photon energies ( < 150 keV): relation to optical density. Theoretical calculation and experimental evaluation.

    PubMed

    Helmrot, E; Alm Carlsson, G

    1996-01-01

    In the radiological process it is necessary to develop tools so as to explore how X-rays can be used in the most effective way. Evaluation of models to derive measures of image quality and risk-related parameters is one possibility of getting such a tool. Modelling the image receptor, an important part of the imaging chain, is then required. The aim of this work was to find convenient and accurate ways of describing the blackening of direct dental films by X-rays. Since the beginning of the 20th century, the relation between optical density and photon interactions in the silver bromide in X-ray films has been investigated by many authors. The first attempts used simple quantum theories with no consideration of underlying physical interaction processes. The theories were gradually made more realistic by the introduction of dosimetric concepts and cavity theory. A review of cavity theories for calculating the mean absorbed dose in the AgBr grains of the film emulsion is given in this work. The cavity theories of GREENING (15) and SPIERS-CHARLTON (37) were selected for calculating the mean absorbed dose in the AgBr grains relative to the air collision kerma (Kc,air) of the incident photons of Ultra-speed and Ektaspeed (intraoral) films using up-to-date values of interaction coefficients. GREENING'S theory is a multi-grain theory and the results depend on the relative amounts of silver bromide and gelatine in the emulsion layer. In the single grain theory of SPIERS-CHARLTON, the shape and size of the silver bromide grain are important. Calculations of absorbed dose in the silver bromide were compared with measurements of optical densities in Ultra-speed and Ektaspeed films for a broad range (25-145 kV) of X-ray energy. The calculated absorbed dose values were appropriately averaged over the complete photon energy spectrum, which was determined experimentally using a Compton spectrometer. For the whole range of tube potentials used, the measured optical densities of the

  11. Photon induced facile synthesis and growth of CuInS2 absorber thin film for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Singh, Manjeet; Jiu, Jinting; Suganuma, Katsuaki

    2016-04-01

    In this paper, we demonstrate the use of high intensity pulsed light technique for the synthesis of phase pure CuInS2 (CIS) thin film at room temperature. The intense pulse of light is used to induce sintering of binary sulfides CuS and In2S3 to produce CIS phase without any direct thermal treatment. Light energy equivalent to the 706 mJ/cm2 is found to be the best energy to convert the CIS precursor film deposited at room temperature into CIS pure phase and well crystalline film. The CIS absorber film thus prepared is useful in making printed solar cell at room temperature on substrate with large area.

  12. The preparation and characterization of optical thin films produced by ion-assisted deposition

    NASA Astrophysics Data System (ADS)

    Martin, P. J.; Netterfield, R. P.; Sainty, W. G.; Pacey, C. G.

    1984-06-01

    Ion-based deposition techniques have been successfully used to deposit compound films suitable for photothermal applications, as well as dielectric films with stable and reproducible optical properties. Thus, thin films of TiN, a-Si:H, and PbS have been obtained by ion-assisted deposition for photothermal solar-selective elements and similarly prepared dielectric layers of ZrO2, SiO2, and Al2O3 have been used as protective coatings on Ag and Al mirrors. It is shown that the technique of ion-assisted deposition affords control over the film density, microstructure, adhesion, composition, and optical properties. Details of the process and film properties are discussed.

  13. Change Spectrum Characteristics Modification of Films Deposited by Magnetron Sputtering with the Assistance of Argon Ions Beam

    NASA Astrophysics Data System (ADS)

    Umnov, S.; Asainov, O.

    2015-04-01

    Thin aluminum films were prepared using the method of magnetron sputtering with and without argon ion beam assistance. The influence of argon ion beam on the reflectivity in the UV range and the structure of aluminum films was studied. The structure of the films was studied by transmission electron microscopy (TEM), X-ray diffractometry (XRD) and atomic- force microscope (AFM). The study has shown that the films deposed with the assistance of the argon ion beam have more significant microstresses associated with an increase of crystallites microstructure defects as compared to the films deposed without ion assistance. Comparison of the measured reflectivity of aluminum films deposed without and with the assistance of the ion beam has shown that the films characterized by a higher level of microstructure def ects have increased reflectivity in the UV range. The studies suggest that the defects of thin aluminum films crystal structure influence its optical properties.

  14. Monitoring of Diisopropyl Fluorophosphate Hydrolysis by Fluoride-Selective Polymeric Films Using Absorbance Spectroscopy

    PubMed Central

    Ramanathan, Madhumati; Wang, Lin; Wild, James R.; Meyeroff, Mark E.; Simonian, Aleksandr L.

    2012-01-01

    In this study, a novel system for the detection and quantification of organofluorophosphonates (OFP) has been developed by using an optical sensing polymeric membrane to detect the fluoride ions produced upon OFP hydrolysis. Diisopropyl fluorophosphate (DFP), a structural analogue of Type G Chemical Warfare Agents such as Sarin (GB) and Soman (GD), is used as the surrogate target analyte. An optical sensing fluoride-ion-selective polymeric film was formulated from plasticized PVC containing aluminum(III) octaethylporphyrin and ETH 7075 chromoionophore (Al[OEP]-ETH 7075). Selected formulations were used to detect the fluoride ions produced by the catalytic hydrolysis of DFP by the enzyme organophosphate hydrolase (OPH, EC 3.1.8.1). The changes in absorbance that corresponded to the deprotonated state of chromoionophore within the film results from simultaneous co-extraction of fluoride and protons as DFP hydrolysis takes place in the solution phase in contact with the film. The developed sensing system demonstrates excellent sensitivity for concentrations as low as 0.1 µM DFP. PMID:20441875

  15. Deposition and characterization of spray pyrolysed p-type Cu2SnS3 thin film for potential absorber layer of solar cell

    NASA Astrophysics Data System (ADS)

    Thiruvenkadam, S.; Sakthi, P.; Prabhakaran, S.; Chakravarty, Sujay; Ganesan, V.; Rajesh, A. Leo

    2018-06-01

    Thin film of ternary Cu2SnS3 (CTS), a potential absorber layer for solar cells was successfully deposited by chemical spray pyrolysis technique. The GIXRD pattern revealed that the film having tetragonal Cu2SnS3 phase with the preferential orientation along (112), (200), (220) and (312) plane and it is further confirmed using Raman spectroscopy by the existence of Raman peak at 320 cm-1. Atomic Force Microscopy (AFM) was used to estimate the surface roughness of 28.8 nm. The absorption coefficient was found to be greater than the order of 105 cm-1 and bandgap of 1.70 eV. Hall effect measurement indicates the p type nature of the film with a hole concentration of 1.03 × 1016cm-3 and a hall mobility of 404 cm2/V. The properties of CTS thin film confirmed suitable to be a potential absorber layer material for photovoltaic applications.

  16. Water-Assisted Vapor Deposition of PEDOT Thin Film.

    PubMed

    Goktas, Hilal; Wang, Xiaoxue; Ugur, Asli; Gleason, Karen K

    2015-07-01

    The synthesis and characterization of poly(3,4-ethylenedioxythiophene) (PEDOT) using water-assisted vapor phase polymerization (VPP) and oxidative chemical vapor deposition (oCVD) are reported. For the VPP PEDOT, the oxidant, FeCl3 , is sublimated onto the substrate from a heated crucible in the reactor chamber and subsequently exposed to 3,4-ethylenedioxythiophene (EDOT) monomer and water vapor in the same reactor. The oCVD PEDOT was produced by introducing the oxidant, EDOT monomer, and water vapor simultaneously to the reactor. The enhancement of doping and crystallinity is observed in the water-assisted oCVD thin films. The high doping level observed at UV-vis-NIR spectra for the oCVD PEDOT, suggests that water acts as a solubilizing agent for oxidant and its byproducts. Although the VPP produced PEDOT thin films are fully amorphous, their conductivities are comparable with that of the oCVD produced ones. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Modeling and prediction of extraction profile for microwave-assisted extraction based on absorbed microwave energy.

    PubMed

    Chan, Chung-Hung; Yusoff, Rozita; Ngoh, Gek-Cheng

    2013-09-01

    A modeling technique based on absorbed microwave energy was proposed to model microwave-assisted extraction (MAE) of antioxidant compounds from cocoa (Theobroma cacao L.) leaves. By adapting suitable extraction model at the basis of microwave energy absorbed during extraction, the model can be developed to predict extraction profile of MAE at various microwave irradiation power (100-600 W) and solvent loading (100-300 ml). Verification with experimental data confirmed that the prediction was accurate in capturing the extraction profile of MAE (R-square value greater than 0.87). Besides, the predicted yields from the model showed good agreement with the experimental results with less than 10% deviation observed. Furthermore, suitable extraction times to ensure high extraction yield at various MAE conditions can be estimated based on absorbed microwave energy. The estimation is feasible as more than 85% of active compounds can be extracted when compared with the conventional extraction technique. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Experimental investigation of instability in optical and morphological properties of percolated gold thin film during ambient aging

    NASA Astrophysics Data System (ADS)

    Sudheer, Mukherjee, C.; Rai, S. K.; Rai, V. N.; Srivastava, A. K.

    2018-04-01

    Instability in morphological and optical properties of sputtered grown percolated gold (Au) film has been experimentally investigated during ambient aging. Optical absorbance of the film recorded at various stage of aging shows huge variation in the spectra. A schematic is drawn to explain aging-assist evolution in the morphology (dewetting) and correlated with the variation in optical properties. The validity of model is confirmed by X-ray reflectivity (XRR) techniques, performed for both as-deposited and aged samples. Furthermore, change in the color of Au thin film with aging also seen in the photographic images of the samples that also support the absorbance and XRR results.

  19. Passive mode locking of a Nd:YAG laser with a thin gelatine-film saturable absorber containing organic-dye J-aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avdeeva, V I; Shapiro, Boris I; Kuch'yanov, Aleksandr S

    2003-06-30

    Ultrashort pulses of duration {approx}13 ps are first obtained in a passively mode-locked Nd:YAG laser with a negative feedback using a thin gelatine-film saturable absorber containing organic-dye J-aggregates. (control of laser radiation parameters)

  20. Reactive decontamination of absorbing thin film polymer coatings: model development and parameter determination

    NASA Astrophysics Data System (ADS)

    Varady, Mark; Mantooth, Brent; Pearl, Thomas; Willis, Matthew

    2014-03-01

    A continuum model of reactive decontamination in absorbing polymeric thin film substrates exposed to the chemical warfare agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (known as VX) was developed to assess the performance of various decontaminants. Experiments were performed in conjunction with an inverse analysis method to obtain the necessary model parameters. The experiments involved contaminating a substrate with a fixed VX exposure, applying a decontaminant, followed by a time-resolved, liquid phase extraction of the absorbing substrate to measure the residual contaminant by chromatography. Decontamination model parameters were uniquely determined using the Levenberg-Marquardt nonlinear least squares fitting technique to best fit the experimental time evolution of extracted mass. The model was implemented numerically in both a 2D axisymmetric finite element program and a 1D finite difference code, and it was found that the more computationally efficient 1D implementation was sufficiently accurate. The resulting decontamination model provides an accurate quantification of contaminant concentration profile in the material, which is necessary to assess exposure hazards.

  1. Reconstructing the energy band electronic structure of pulsed laser deposited CZTS thin films intended for solar cell absorber applications

    NASA Astrophysics Data System (ADS)

    Pandiyan, Rajesh; Oulad Elhmaidi, Zakaria; Sekkat, Zouheir; Abd-lefdil, Mohammed; El Khakani, My Ali

    2017-02-01

    We report here on the use of pulsed KrF-laser deposition (PLD) technique for the growth of high-quality Cu2ZnSnS4 (CZTS) thin films onto Si, and glass substrates without resorting to any post sulfurization process. The PLD-CZTS films were deposited at room temperature (RT) and then subjected to post annealing at different temperatures ranging from 200 to 500 °C in Argon atmosphere. The X-ray diffraction and Raman spectroscopy confirmed that the PLD films crystallize in the characteristic kesterite CZTS structure regardless of their annealing temperature (Ta), but their crystallinity is much improved for Ta ≥ 400 °C. The PLD-CZTS films were found to exhibit a relatively dense morphology with a surface roughness (RMS) that increases with Ta (from ∼14 nm at RT to 70 nm at Ta = 500 °C with a value around 40 nm for Ta = 300-400 °C). The optical bandgap of the PLD-CZTS films, was derived from UV-vis transmission spectra analysis, and found to decrease from 1.73 eV for non-annealed films to ∼1.58 eV for those annealed at Ta = 300 °C. These band gap values are very close to the optimum value needed for an ideal solar cell absorber. In order to achieve a complete reconstruction of the one-dimensional energy band structure of these PLD-CZTS absorbers, we have combined both XPS and UPS spectroscopies to determine their chemical bondings, the position of their valence band maximum (relative to Fermi level), and their work function values. This enabled us to sketch out, as accurately as possible, the band alignment of the heterojunction interface formed between CZTS and both CdS and ZnS buffer layer materials.

  2. Ultrasound-assisted fabrication of nanoporous CdS films.

    PubMed

    Singh, R S; Sanagapalli, S; Jayaraman, V; Singh, V P

    2004-01-01

    A new method for fabricating nanoporous CdS films is reported. It involves exposing the CdS solution with ultrasound waves during the process of dip coating. Indium tin oxide (ITO)-coated glass and plastic (commercial transparency) were used as substrates. In each case three different precursors were used for dip coating. The precursors used were CdCl2 and thiourea in one case and CdS nanoparticles prepared by sonochemical and microwave-assisted methods in the other two cases. X-ray diffraction studies performed on these powders show a phase corresponding to cubic CdS. The Field Emission Scanning Electron Microscopy (FE-SEM) images of the films on plastic showed uniform pores with a diameter of 80 nm for all three methods. Optical absorption measurements indicated a blue shift and multiple peaks in the absorption curve. The FE-SEM observations of the films on an ITO/glass substrate indicated a crystalline film with voids. The UV-vis absorption results indicated a blue shift in the absorption with an absorption edge at 435, 380, and 365 nm for CdS films made by solution growth, sonochemical, and microwave routes, respectively. The magnitude of the absorption is dependent on film thickness, and the observed blue shift in the absorption can be explained on the basis of quantum confinement effects.

  3. Thermalization of X-rays in evaporated tin and bismuth films used as the absorbing materials in X-ray calorimeters

    NASA Astrophysics Data System (ADS)

    Stahle, C. K.; Kelley, R. L.; Moseley, S. H.; Szymkowiak, A. E.; Juda, M.; McCammon, D.; Zhang, J.

    1993-11-01

    We have investigated the use of evaporated tin and bismuth films as the absorbing materials in X-ray calorimeters. When the films were deposited directly on monolithic silicon calorimeters, the output signal from both Sn and Bi devices was strongly dependent on the location of the absorption event relative to the ion-implanted thermistors, presumably indicating thermistor sensitivity to a non-thermal spectrum of phonons. With Sn films we also observed that a component of the thermalization proceeded slowly, relative to a complete thermalization reference. The thermalization function could be modified by trapping magnetic flux within the film. In order to distinguish thermalization effects in the films from the thermistor sensitivity to energetic phonons, we deposited Sn and Bi films on thin Si substrates which we then affixed to calorimeters using epoxy. With glued Sn films, we were able to attain as good as 13.6 eV resolution of 6 keV X-rays with no excess broadening of the line beyond the width of the baseline, while similarly made Bi devices showed excess broadening.

  4. Correlation between the structural and optical properties of ion-assisted hafnia thin films

    NASA Astrophysics Data System (ADS)

    Scaglione, Salvatore; Sarto, Francesca; Alvisi, Marco; Rizzo, Antonella; Perrone, Maria R.; Protopapa, Maria L.

    2000-03-01

    The ion beam assistance during the film growth is one of the most useful method to obtain dense film along with improved optical and structural properties. Afnia material is widely used in optical coating operating in the UV region of the spectrum and its optical properties depend on the production method and the physical parameters of the species involved in the deposition process. In this work afnia thin films were evaporated by an e-gun and assisted during the growth process. The deposition parameters, ion beam energy, density of ions impinging on the growing film and the number of arrival atoms from the crucible, have been related to the optical and structural properties of the film itself. The absorption coefficient and the refractive index were measured by spectrophotometric technique while the microstructure has been studied by means of x-ray diffraction. A strictly correlation between the grain size, the optical properties and the laser damage threshold measurements at 248 nm was found for the samples deposited at different deposition parameters.

  5. Optimization of X-ray Absorbers for TES Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Iyomoto, Naoko; Sadleir, John E.; Figueroa-Feliciano, Enectali; Saab, Tarek; Bandler, Simon; Kilbourne, Caroline; Chervenak, James; Talley, Dorothy; Finkbeiner, Fred; Brekosky, Regis

    2004-01-01

    We have investigated the thermal, electrical, and structural properties of Bi and BiCu films that are being developed as X-ray absorbers for transition-edge sensor (TES) microcalorimeter arrays for imaging X-ray spectroscopy. Bi could be an ideal material for an X-ray absorber due to its high X-ray stopping power and low heat capacity, but it has a low thermal conductivity, which can result in position dependence of the pulses in the absorber. In order to improve the thermal conductivity, we added Cu layers in between the Bi layers. We measured electrical and thermal conductivities of the films around 0.1 K(sub 1) the operating temperature of the TES calorimeter, to examine the films and to determine the optimal thickness of the Cu layer. From the electrical conductivity measurements, we found that the Cu is more resistive on the Bi than on a Si substrate. Together with an SEM picture of the Bi surface, we concluded that the rough surface of the Bi film makes the Cu layer resistive when the Cu layer is not thick enough t o fill in the roughness. From the thermal conductivity measurements, we determined the thermal diffusion constant to be 2 x l0(exp 3) micrometers squared per microsecond in a film that consists of 2.25 micrometers of Bi and 0.1 micrometers of Cu. We measured the position dependence in the film and found that its thermal diffusion constant is too low to get good energy resolution, because of the resistive Cu layer and/or possibly a very high heat capacity of our Bi films. We show plans to improve the thermal diffusion constant in our BiCu absorbers.

  6. ZnO-based transparent conductive thin films via sonicated-assisted sol-gel technique

    NASA Astrophysics Data System (ADS)

    Malek, M. F.; Mamat, M. H.; Ismail, A. S.; Yusoff, M. M.; Mohamed, R.; Rusop, M.

    2018-05-01

    We report on the growth of Al-doped ZnO (AZO) thin films onto Corning 7740 glass substrates via sonicated-assisted sol-gel technique. The influence of Al dopant on crystallisation behavior, optical and electrical properties of AZO films has been systematically investigated. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction <002>. All films exhibit a transmittance above than 80-90 % along the visible range up to 800 nm and a sharp absorption onset below 400 nm corresponding to the fundamental absorption edge of ZnO.

  7. Fabrication of bright and thin Zn₂SiO₄ luminescent film for electron beam excitation-assisted optical microscope.

    PubMed

    Furukawa, Taichi; Kanamori, Satoshi; Fukuta, Masahiro; Nawa, Yasunori; Kominami, Hiroko; Nakanishi, Yoichiro; Sugita, Atsushi; Inami, Wataru; Kawata, Yoshimasa

    2015-07-13

    We fabricated a bright and thin Zn₂SiO₄ luminescent film to serve as a nanometric light source for high-spatial-resolution optical microscopy based on electron beam excitation. The Zn₂SiO₄ luminescent thin film was fabricated by annealing a ZnO film on a Si₃N₄ substrate at 1000 °C in N₂. The annealed film emitted bright cathodoluminescence compared with the as-deposited film. The film is promising for nano-imaging with electron beam excitation-assisted optical microscopy. We evaluated the spatial resolution of a microscope developed using this Zn₂SiO₄ luminescent thin film. This is the first report of the investigation and application of ZnO/Si₃N₄ annealed at a high temperature (1000 °C). The fabricated Zn₂SiO₄ film is expected to enable high-frame-rate dynamic observation with ultra-high resolution using our electron beam excitation-assisted optical microscopy.

  8. Proximity effect assisted absorption enhancement in thin film with locally clustered nanoholes.

    PubMed

    Wu, Shaolong; Zhang, Cheng; Li, Xiaofeng; Zhan, Yaohui

    2015-03-01

    We focus on the light-trapping characteristics of a thin film with locally clustered nanoholes (NHs), considering that the clustering effect is usually encountered in preparing the nanostructures. Our full-wave finite-element simulation indicates that an intentionally introduced clustering effect could be employed for improving the light-trapping performance of the nanostructured thin film. For a 100 nm thick amorphous silicon film, an optimal clustering design with NH diameter of 100 nm is able to double the integrated optical absorption over the solar spectrum, compared to the planar counterpart, as well as show much improved optical performance over that of the nonclustered setup. A further insight into the underlying physics explains the outstanding light-trapping capability in terms of the increased available modes, a stronger power coupling efficiency, a higher fraction of electric field concentrated in absorbable material, and a higher density of photon states.

  9. Growth of oriented polycrystalline α-HgI 2 films by ultrasonic-wave-assisted physical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yang, Weiguang; Nie, Lei; Li, Dongmei; Wang, Yali; Zhou, Jie; Ma, Lei; Wang, Zhenhua; Shi, Weimin

    2011-06-01

    Polycrystalline α-HgI 2 thick films have been grown on ITO-coated glass substrates using ultrasonic-wave-assisted vapor phase deposition (UWAVPD) with the different source temperatures and ultrasonic frequencies. The influence of the assisted ultrasonic wave and source temperature on the structural and electrical properties of the polycrystalline α-HgI 2 films is investigated. It is found that the assisted ultrasonic wave plays an important role in the improvement of the structural and electrical properties. An uniformly oriented polycrystalline α-HgI 2 film with clear facets and narrow size distribution can be obtained at the source temperature of 80 °C under the assistance of 59 KHz ultrasonic frequency with the ultrasonic power of 200 W, which has the lowest value of ρ=2.2×10 12 Ω cm for E-field parallel to c-axis, approaching to that of high quality α-HgI 2 single crystals (4.0×10 12 Ω cm).

  10. Antimony sulfide thin films prepared by laser assisted chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Shaji, S.; Garcia, L. V.; Loredo, S. L.; Krishnan, B.; Aguilar Martinez, J. A.; Das Roy, T. K.; Avellaneda, D. A.

    2017-01-01

    Antimony sulfide (Sb2S3) thin films were prepared by laser assisted chemical bath deposition (LACBD) technique. These thin films were deposited on glass substrates from a chemical bath containing antimony chloride, acetone and sodium thiosulfate under various conditions of normal chemical bath deposition (CBD) as well as in-situ irradiation of the chemical bath using a continuous laser of 532 nm wavelength. Structure, composition, morphology, optical and electrical properties of the Sb2S3 thin films produced by normal CBD and LACBD were analyzed by X-Ray diffraction (XRD), Raman Spectroscopy, Atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and Photoconductivity. The results showed that LACBD is an effective synthesis technique to obtain Sb2S3 thin films for optoelectronic applications.

  11. Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer

    PubMed Central

    Zhang, Zhaojing; Yao, Liyong; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming‐Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun

    2017-01-01

    Abstract Double layer distribution exists in Cu2SnZnSe4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double‐layer distribution of CZTSe film is eliminated entirely and the formation of MoSe2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSex mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu‐Sn‐Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu2Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm2 and a CZTSe solar cell with efficiency of 7.2% is fabricated. PMID:29610727

  12. Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer.

    PubMed

    Zhang, Zhaojing; Yao, Liyong; Zhang, Yi; Ao, Jianping; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming-Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun

    2018-02-01

    Double layer distribution exists in Cu 2 SnZnSe 4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double-layer distribution of CZTSe film is eliminated entirely and the formation of MoSe 2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSe x mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu-Sn-Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu 2 Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe 2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm 2 and a CZTSe solar cell with efficiency of 7.2% is fabricated.

  13. Effect of assistant rf field on phase composition of iron nitride film prepared by magnetron sputtering process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, W.L.; Zheng, F.; Fei, W.D.

    2006-01-15

    Fe-N thin films were fabricated using a direct current magnetron sputtering process assisted by a radio-frequency (rf) field. The effect of the rf field on the phase composition of the films was investigated. The results indicate that with the assistance of the rf field, various kinds of iron nitrides can be obtained in the films, including {alpha}{sup '}-Fe-N, {alpha}{sup ''}-Fe{sub 16}N{sub 2}, {xi}-Fe{sub 2}N, {epsilon}-Fe{sub 3}N, and {gamma}{sup ''}-FeN with ZnS structure. It was found that the rf field greatly benefits the formation of iron nitrides in the Fe-N films.

  14. Capillary assisted deposition of carbon nanotube film for strain sensing

    NASA Astrophysics Data System (ADS)

    Li, Zida; Xue, Xufeng; Lin, Feng; Wang, Yize; Ward, Kevin; Fu, Jianping

    2017-10-01

    Advances in stretchable electronics offer the possibility of developing skin-like motion sensors. Carbon nanotubes (CNTs), owing to their superior electrical properties, have great potential for applications in such sensors. In this paper, we report a method for deposition and patterning of CNTs on soft, elastic polydimethylsiloxane (PDMS) substrates using capillary action. Micropillar arrays were generated on PDMS surfaces before treatment with plasma to render them hydrophilic. Capillary force enabled by the micropillar array spreads CNT solution evenly on PDMS surfaces. Solvent evaporation leaves a uniform deposition and patterning of CNTs on PDMS surfaces. We studied the effect of the CNT concentration and micropillar gap size on CNT coating uniformity, film conductivity, and piezoresistivity. Leveraging the piezoresistivity of deposited CNT films, we further designed and characterized a device for the contraction force measurement. Our capillary assisted deposition method of CNT films showed great application potential in fabrication of flexible CNT thin films for strain sensing.

  15. Semiconductor meta-surface based perfect light absorber

    NASA Astrophysics Data System (ADS)

    Liu, Guiqiang; Nie, Yiyou; Fu, Guolan; Liu, Xiaoshan; Liu, Yi; Tang, Li; Liu, Zhengqi

    2017-04-01

    We numerically proposed and demonstrated a semiconductor meta-surface light absorber, which consists of a silicon patches array on a silicon thin-film and an opaque silver substrate. The Mie resonances of the silicon patches and the fundamental cavity mode of the ultra-thin silicon film couple strongly to the incident optical field, leading to a multi-band perfect absorption. The maximal absorption is above 99.5% and the absorption is polarization-independent. Moreover, the absorption behavior is scalable in the frequency region via tuning the structural parameters. These features hold the absorber platform with wide applications in optoelectronics such as hot-electron excitation and photo-detection.

  16. Subtractive Plasma-Assisted-Etch Process for Developing High Performance Nanocrystalline Zinc-Oxide Thin-Film-Transistors

    DTIC Science & Technology

    2015-03-26

    THIN - FILM - TRANSISTORS THESIS Thomas M. Donigan, First Lieutenant, USAF AFIT-ENG-MS-15-M-027 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR...DEVELOPING HIGH PERFORMANCE NANOCRYSTALLINE ZINC-OXIDE THIN - FILM - TRANSISTORS THESIS Presented to the Faculty Department of Electrical and...15-M-027 SUBTRACTIVE PLASMA-ASSISTED-ETCH PROCESS FOR DEVELOPING HIGH PERFORMANCE NANOCRYSTALLINE ZINC-OXIDE THIN - FILM - TRANSISTORS

  17. Metamaterial Perfect Absorber Analyzed by a Meta-Cavity Model Consisting of Multilayer Metasurfaces (Postprint)

    DTIC Science & Technology

    2017-09-05

    metamaterial perfect absorber behaves as a meta-cavity bounded between a resonant metasurface and a metallic thin- film reflector. The perfect absorption...cavity quantum electrodynamics devices. 15. SUBJECT TERMS Metamaterial; meta-cavity; metallic thin- film reflector; Fabry-Perot cavity resonance...metamaterial perfect absorber behaves as a meta-cavity bounded between a resonant metasurface and a metallic thin- film reflector. The perfect absorption is

  18. Stabilized CdSe-CoPi composite photoanode for light-assisted water oxidation by transformation of a CdSe/cobalt metal thin film.

    PubMed

    Costi, Ronny; Young, Elizabeth R; Bulović, Vladimir; Nocera, Daniel G

    2013-04-10

    Integration of water splitting catalysts with visible-light-absorbing semiconductors would enable direct solar-energy-to-fuel conversion schemes such as those based on water splitting. A disadvantage of some common semiconductors that possess desirable optical bandgaps is their chemical instability under the conditions needed for oxygen evolution reaction (OER). In this study, we demonstrate the dual benefits gained from using a cobalt metal thin-film as the precursor for the preparation of cobalt-phosphate (CoPi) OER catalyst on cadmium chalcogenide photoanodes. The cobalt layer protects the underlying semiconductor from oxidation and degradation while forming the catalyst and simultaneously facilitates the advantageous incorporation of the cadmium chalcogenide layer into the CoPi layer during continued processing of the electrode. The resulting hybrid material forms a stable photoactive anode for light-assisted water splitting.

  19. Mechanical behaviour of metallic thin films on polymeric substrates and the effect of ion beam assistance on crack propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, M.; Coupeau, C.; Colin, J.

    2005-01-10

    The mechanisms of crack propagation in metallic films on polymeric substrates have been studied through in situ atomic force microscopy observations of thin films under tensile stresses and finite element stress calculations. Two series of films - ones deposited with ion beam assistance, the others without - have been investigated. The observations and stress calculations show that ion beam assistance can change drastically the propagation of cracks in coated materials: by improving the adhesion film/substrate, it slows down the delamination process, but in the same time enhances the cracks growth in the thickness of the material.

  20. Continuous Microreactor-Assisted Solution Deposition for Scalable Production of CdS Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramprasad, Sudhir; Su, Yu-Wei; Chang, Chih-Hung

    2013-06-13

    Solution deposition offers an attractive, low temperature option in the cost effective production of thin film solar cells. Continuous microreactor-assisted solution deposition (MASD) was used to produce nanocrystalline cadmium sulfide (CdS) films on fluorine doped tin oxide (FTO) coated glass substrates with excellent uniformity. We report a novel liquid coating technique using a ceramic rod to efficiently and uniformly apply reactive solution to large substrates (152 mm × 152 mm). This technique represents an inexpensive approach to utilize the MASD on the substrate for uniform growth of CdS films. Nano-crystalline CdS films have been produced from liquid phase at ~90°C,more » with average thicknesses of 70 nm to 230 nm and with a 5 to 12% thickness variation. The CdS films produced were characterized by UV-Vis spectroscopy, transmission electron microscopy, and X-Ray diffraction to demonstrate their suitability to thin-film solar technology.« less

  1. Experimental investigation of defect-assisted and intrinsic water vapor permeation through ultrabarrier films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyungchul; Singh, Ankit Kumar; Wang, Cheng-Yin

    In the development of ultrabarrier films for packaging electronics, the effective water vapor transmission rate is a combination of permeation through pinhole defects and the intrinsic permeation through the actual barrier film. While it is possible to measure the effective permeation rate through barriers, it is important to develop a better understanding of the contribution from defects to the overall effective barrier performance. Here, we demonstrate a method to investigate independently defect-assisted permeation and intrinsic permeation rates by observing the degradation of a calcium layer encapsulated with a hybrid barrier film, that is, prepared using atomic layer deposition (ALD) andmore » plasma enhanced deposition (PECVD). The results are rationalized using an analytical diffusion model to calculate the permeation rate as a function of spatial position within the barrier. It was observed that a barrier film consisting of a PECVD SiN{sub x} layer combined with an ALD Al{sub 2}O{sub 3}/HfO{sub x} nanolaminate resulted in a defect-assisted water vapor transmission rate (WVTR) of 4.84 × 10{sup −5} g/m{sup 2} day and intrinsic WVTR of 1.41 × 10{sup −4} g/m{sup 2} day at 50 °C/85% RH. Due to the low defect density of the tested barrier film, the defect-assisted WVTR was found to be three times lower than the intrinsic WVTR, and an effective (or total) WVTR value was 1.89 × 10{sup −4} g/m{sup 2} day. Thus, improvements of the barrier performance should focus on reducing the number of defects while also improving the intrinsic barrier performance of the hybrid layer.« less

  2. Growth of Cu2ZnSnS4(CZTS) by Pulsed Laser Deposition for Thin film Photovoltaic Absorber Material

    NASA Astrophysics Data System (ADS)

    Nandur, Abhishek; White, Bruce

    2014-03-01

    CZTS (Cu2ZnSnS4) has become the subject of intense interest because it is an ideal candidate absorber material for thin-film solar cells with an optimal band gap (1.5 eV), high absorption coefficient (104 cm-1) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since thin films are deposited under high vacuum with excellent stoichiometry transfer from the target. CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of laser energy fluence and substrate temperature and post-deposition sulfur annealing on the surface morphology, composition and optical absorption have been investigated. Optimal CZTS thin films exhibited a band gap of 1.54 eV with an absorption coefficient of 4x104cm-1. A solar cell utilizing PLD grown CZTS with the structure SLG/Mo/CZTS/CdS/ZnO/ITO showed a conversion efficiency of 5.85% with Voc = 376 mV, Jsc = 38.9 mA/cm2 and Fill Factor, FF = 0.40.

  3. Modulated optical phase conjugation in rhodamine 110 doped boric acid glass saturable absorber thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh C.; Waigh, Thomas A.; Singh, Jagdish P.

    2008-03-01

    The optical phase conjugation signal in nearly nondegenerate four wave mixing was studied using a rhodamine 110 doped boric acid glass saturable absorber nonlinear medium. We have demonstrated a narrow band optical filter (2.56±0.15Hz) using an optical phase conjugation signal in the frequency modulation of a weak probe beam in the presence of two strong counterpropagating pump beams in rhodamine 110 doped boric acid glass thin films (10-4m). Both the pump beams and the probe beam are at a wavelength of 488nm (continuous-wave Ar+ laser). The probe beam frequency was detuned with a ramp signal using a piezoelectric transducer mirror.

  4. Shock absorber servicing tool

    NASA Technical Reports Server (NTRS)

    Koepler, Jack L. (Inventor); Hill, Robert L. (Inventor)

    1981-01-01

    A tool to assist in the servicing of a shock absorber wherein the shock absorber is constructed of a pair of aligned gas and liquid filled chambers. Each of the chambers is separated by a movable separator member. Maximum efficiency of the shock absorber is achieved in the locating of a precise volume of gas within the gas chamber and a precise volume of liquid within the liquid chamber. The servicing tool of this invention employs a rod which is to connect with the separator and by observation of the position of the rod with respect to the gauge body, the location of the separator is ascertained even though it is not directly observable.

  5. Optical Characterization of Lead Monoxide Films Grown by Laser-Assisted Deposition

    NASA Astrophysics Data System (ADS)

    Baleva, M.; Tuncheva, V.

    1994-05-01

    The Raman spectra of PbO films, grown by laser-assisted deposition (LAD) at different substrate temperatures are investigated. The spectra of the films, deposited on amorphous, single crystal quartz and polycrystal PbTe substrates, are compared with the Raman spectra of tetragonal and orthorhombic powder samples. The phonon frequencies determined in our experiment with powder samples coincide fairly well with those obtained by Adams and Stevens, J. Chem. Soc., Dalton Trans., 1096 (1977). Thus the Raman spectra of the powder samples presented in this paper can be considered as unambiguous characteristics of the two different PbO crystal phases. It was concluded that the Raman scattering may serve as a tool for identification of PbO films and their crystal modifications. On the basis of this investigation it was concluded that the film structure changes from orthorhombic to tetragonal with increased substrate temperature, and that the nature of the substrate influences the crystal structure of the films. On the basis of the Raman spectra of the β-PbO films with prevailing (001) orientation of crystallization, an assignment of the modes is proposed.

  6. Enhanced sensitivity to dielectric function and thickness of absorbing thin films by combining total internal reflection ellipsometry with standard ellipsometry and reflectometry

    NASA Astrophysics Data System (ADS)

    Lizana, A.; Foldyna, M.; Stchakovsky, M.; Georges, B.; Nicolas, D.; Garcia-Caurel, E.

    2013-03-01

    High sensitivity of spectroscopic ellipsometry and reflectometry for the characterization of thin films can strongly decrease when layers, typically metals, absorb a significant fraction of the light. In this paper, we propose a solution to overcome this drawback using total internal reflection ellipsometry (TIRE) and exciting a surface longitudinal wave: a plasmon-polariton. As in the attenuated total reflectance technique, TIRE exploits a minimum in the intensity of reflected transversal magnetic (TM) polarized light and enhances the sensitivity of standard methods to thicknesses of absorbing films. Samples under study were stacks of three films, ZnO : Al/Ag/ZnO : Al, deposited on glass substrates. The thickness of the silver layer varied from sample to sample. We performed measurements with a UV-visible phase-modulated ellipsometer, an IR Mueller ellipsometer and a UV-NIR reflectometer. We used the variance-covariance formalism to evaluate the sensitivity of the ellipsometric data to different parameters of the optical model. Results have shown that using TIRE doubled the sensitivity to the silver layer thickness when compared with the standard ellipsometry. Moreover, the thickness of the ZnO : Al layer below the silver layer can be reliably quantified, unlike for the fit of the standard ellipsometry data, which is limited by the absorption of the silver layer.

  7. Ion assisted deposition of SiO2 film from silicon

    NASA Astrophysics Data System (ADS)

    Pham, Tuan. H.; Dang, Cu. X.

    2005-09-01

    Silicon dioxide, SiO2, is one of the preferred low index materials for optical thin film technology. It is often deposited by electron beam evaporation source with less porosity and scattering, relatively durable and can have a good laser damage threshold. Beside these advantages the deposition of critical optical thin film stacks with silicon dioxide from an E-gun was severely limited by the stability of the evaporation pattern or angular distribution of the material. The even surface of SiO2 granules in crucible will tend to develop into groove and become deeper with the evaporation process. As the results, angular distribution of the evaporation vapor changes in non-predicted manner. This report presents our experiments to apply Ion Assisted Deposition process to evaporate silicon in a molten liquid form. By choosing appropriate process parameters we can get SiO2 film with good and stable property.

  8. Novel Solution Process for Fabricating Ultra-Thin-Film Absorber Layers in Fe 2SiS 4 and Fe 2GeS 4 Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orefuwa, Samuel A.; Lai, Cheng-Yu; Dobson, Kevin D.

    2014-05-12

    Fe 2SiS 4 and Fe 2GeS 4 crystalline materials posses direct bandgaps of ~1.55 and ~1.4 eV respectively and an absorption coefficient larger than 10^5 cm–1; their theoretical potential as solar photovoltaic absorbers has been demonstrated. However, no solar devices that employ either Fe 2SiS 4 or Fe 2GeS 4 have been reported to date. In the presented work, nanoprecursors to Fe 2SiS 4 and Fe 2GeS 4 have been fabricated and employed to build ultra-thin-film layers via spray coating and rod coating methods. Temperature-dependent X-Ray diffraction analyses of nanoprecursors coatings show an unprecedented low temperature for forming crystalline Femore » 2SiS 4 and Fe 2GeS 4. Fabricating of ultra-thin-film photovoltaic devices utilizing Fe 2SiS 4 and Fe 2GeS 4 as solar absorber material is presented.« less

  9. Thin-film optical initiator

    DOEpatents

    Erickson, Kenneth L.

    2001-01-01

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  10. Rough gold films as broadband absorbers for plasmonic enhancement of TiO2 photocurrent over 400–800 nm

    PubMed Central

    Tan, Furui; Li, Tenghao; Wang, Ning; Lai, Sin Ki; Tsoi, Chi Chung; Yu, Weixing; Zhang, Xuming

    2016-01-01

    Recent years have witnessed an increasing interest in highly-efficient absorbers of visible light for the conversion of solar energy into electrochemical energy. This study presents a TiO2-Au bilayer that consists of a rough Au film under a TiO2 film, which aims to enhance the photocurrent of TiO2 over the whole visible region and may be the first attempt to use rough Au films to sensitize TiO2. Experiments show that the bilayer structure gives the optimal optical and photoelectrochemical performance when the TiO2 layer is 30 nm thick and the Au film is 100 nm, measuring the absorption 80–90% over 400–800 nm and the photocurrent intensity of 15 μA·cm−2, much better than those of the TiO2-AuNP hybrid (i.e., Au nanoparticle covered by the TiO2 film) and the bare TiO2 film. The superior properties of the TiO2-Au bilayer can be attributed to the rough Au film as the plasmonic visible-light sensitizer and the photoactive TiO2 film as the electron accepter. As the Au film is fully covered by the TiO2 film, the TiO2-Au bilayer avoids the photocorrosion and leakage of Au materials and is expected to be stable for long-term operation, making it an excellent photoelectrode for the conversion of solar energy into electrochemical energy in the applications of water splitting, photocatalysis and photosynthesis. PMID:27608836

  11. Substrate-biasing during plasma-assisted atomic layer deposition to tailor metal-oxide thin film growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Profijt, H. B.; Sanden, M. C. M. van de; Kessels, W. M. M.

    2013-01-15

    Two substrate-biasing techniques, i.e., substrate-tuned biasing and RF biasing, have been implemented in a remote plasma configuration, enabling control of the ion energy during plasma-assisted atomic layer deposition (ALD). With both techniques, substrate bias voltages up to -200 V have been reached, which allowed for ion energies up to 272 eV. Besides the bias voltage, the ion energy and the ion flux, also the electron temperature, the electron density, and the optical emission of the plasma have been measured. The effects of substrate biasing during plasma-assisted ALD have been investigated for Al{sub 2}O{sub 3}, Co{sub 3}O{sub 4}, and TiO{sub 2}more » thin films. The growth per cycle, the mass density, and the crystallinity have been investigated, and it was found that these process and material properties can be tailored using substrate biasing. Additionally, the residual stress in substrates coated with Al{sub 2}O{sub 3} films varied with the substrate bias voltage. The results reported in this article demonstrate that substrate biasing is a promising technique to tailor the material properties of thin films synthesized by plasma-assisted ALD.« less

  12. Direct droplet production from a liquid film: a new gas-assisted atomization mechanism

    NASA Astrophysics Data System (ADS)

    Snyder, Herman E.; Reitz, Rolf D.

    1998-11-01

    X-ray lithography and micro-machining have been used to study gas-assisted liquid atomization in which a liquid film was impinged by a large number of sonic micro-gas jets. Three distinct breakup regimes were demonstrated. Two of these regimes share characteristics with previously observed atomization processes: a bubble bursting at a free surface (Newitt et al. 1954; Boulton-Stone & Blake 1993) and liquid sheet disintegration in a high gas/liquid relative velocity environment (Dombrowski & Johns 1963). The present work shows that suitable control of the gas/liquid interface creates a third regime, a new primary atomization mechanism, in which single liquid droplets are ejected directly from the liquid film without experiencing an intermediate ligament formation stage. The interaction produces a stretched liquid sheet directly above each gas orifice. This effectively pre-films the liquid prior to its breakup. Following this, surface tension contracts the stretched film of liquid into a sphere which subsequently detaches from the liquid sheet and is entrained by the gas jet that momentarily pierces the film. After droplet ejection, the stretched liquid film collapses, covering the gas orifice, and the process repeats. This new mechanism is capable of the efficient creation of finely atomized sprays at low droplet ejection velocities (e.g. 20 [mu]m Sauter mean diameter methanol sprays using air at 239 kPa, with air-to-liquid mass ratios below 1.0, and droplet velocities lower than 2.0 m s[minus sign]1). Independent control of the gas and the liquid flows allows the droplet creation process to be effectively de-coupled from the initial droplet momentum, a characteristic not observed with standard gas-assisted atomization mechanisms.

  13. Kinetic study on UV-absorber photodegradation under different conditions

    NASA Astrophysics Data System (ADS)

    Bubev, Emil; Georgiev, Anton; Machkova, Maria

    2016-09-01

    The photodegradation kinetics of two benzophenone derivative UV-absorbers (UVAs)-BP-4 (benzophenone-4) and 4-HBP (4-hydroxybenzophenone), as additives in polyvinyl acetate (PVAc) films, were studied. Solution-processed PVAc films were irradiated in different environments in order to study oxygen and atmospheric humidity influence on UVA photodegradation. Photodegradation was traced by absorption intensity loss via UV-vis spectroscopy. Both UVAs exhibited excellent photostability in an inert atmosphere. Rate constants showed that BP-4 has better permanence in absence of oxygen. Both film types experienced rapid absorption loss, when irradiated in an oxygen containing atmosphere. UVA degradation was treated as a two-stage process. The photodegradation kinetics in the first stage agreed with the adopted complex rate law, but the second stage was best described by pseudo-first order kinetics. BP-4 exhibited better stability. Oxygen was established as the main accelerating factor for photodegradation of benzophenone derivatives UV-absorbers in thin PVAc films.

  14. Low-Temperature UV-Assisted Fabrication of Metal Oxide Thin Film Transistor

    NASA Astrophysics Data System (ADS)

    Zhu, Shuanglin

    Solution processed metal oxide semiconductors have attracted intensive attention in the last several decades and have emerged as a promising candidate for the application of thin film transistor (TFT) due to their nature of transparency, flexibility, high mobility, simple processing technique and potential low manufacturing cost. However, metal oxide thin film fabricated by solution process usually requires a high temperature (over 300 °C), which is above the glass transition temperature of some conventional polymer substrates. In order to fabricate the flexible electronic device on polymer substrates, it is necessary to find a facile approach to lower the fabrication temperature and minimize defects in metal oxide thin film. In this thesis, the electrical properties dependency on temperature is discussed and an UV-assisted annealing method incorporating Deep ultraviolet (DUV)-decomposable additives is demonstrated, which can effectively improve electrical properties solution processed metal oxide semiconductors processed at temperature as low as 220 °C. By studying a widely used indium oxide (In2O3) TFT as a model system, it is worth noted that compared with the sample without UV treatment, the linear mobility and saturation mobility of UV-annealing sample are improved by 56% and 40% respectively. Meanwhile, the subthreshold swing is decreased by 32%, indicating UV-treated device could turn on and off more efficiently. In addition to pure In2O3 film, the similar phenomena have also been observed in indium oxide based Indium-Gallium-Zinc Oxide (IGZO) system. These finding presented in this thesis suggest that the UV assisted annealing process open a new route to fabricate high performance metal oxide semiconductors under low temperatures.

  15. Ultra-thin and -broadband microwave magnetic absorber enhanced by phase gradient metasurface incorporation

    NASA Astrophysics Data System (ADS)

    Fan, Ya; Wang, Jiafu; Li, Yongfeng; Pang, Yongqiang; Zheng, Lin; Xiang, Jiayu; Zhang, Jieqiu; Qu, Shaobo

    2018-05-01

    Based on the effect of anomalous reflection and refraction caused by the circularly cross-polarized phase gradient metasurface (PGM), an ultra-thin and -broadband composite absorber composed of metasurface and conventional magnetic absorbing film is proposed and demonstrated in this paper. In the case of keeping nearly the same thickness of absorbing layer, the equivalent thickness of magnetic absorbing film is enlarged by the effect of anomalous reflection and refraction, resulting in the expansion and improvement of the absorbing bandwidth and efficiency in low microwave frequency. A biarc metallic sub-cell for circularly crossed polarization is adopted to form a broadband phase gradient, by the means of rotating the Pancharatnam–Berry phases. As indicated in the experimental results, the fabricated 3.6 mm-thick absorber can averagely absorb microwave energy with the specular reflection below  ‑10 dB in the frequency interval of 2–12 GHz, which shows a good match with simulated results. Due to ultra-thin thickness and ultra-wide operating bandwidth, the proposed application of PGM in absorbing can provide an alternative way to enhance the absorbing property of current absorbing materials.

  16. Solvent-Assisted Gel Printing for Micropatterning Thin Organic-Inorganic Hybrid Perovskite Films.

    PubMed

    Jeong, Beomjin; Hwang, Ihn; Cho, Sung Hwan; Kim, Eui Hyuk; Cha, Soonyoung; Lee, Jinseong; Kang, Han Sol; Cho, Suk Man; Choi, Hyunyong; Park, Cheolmin

    2016-09-27

    While tremendous efforts have been made for developing thin perovskite films suitable for a variety of potential photoelectric applications such as solar cells, field-effect transistors, and photodetectors, only a few works focus on the micropatterning of a perovskite film which is one of the most critical issues for large area and uniform microarrays of perovskite-based devices. Here we demonstrate a simple but robust method of micropatterning a thin perovskite film with controlled crystalline structure which guarantees to preserve its intrinsic photoelectric properties. A variety of micropatterns of a perovskite film are fabricated by either microimprinting or transfer-printing a thin spin-coated precursor film in soft-gel state with a topographically prepatterned elastomeric poly(dimethylsiloxane) (PDMS) mold, followed by thermal treatment for complete conversion of the precursor film to a perovskite one. The key materials development of our solvent-assisted gel printing is to prepare a thin precursor film with a high-boiling temperature solvent, dimethyl sulfoxide. The residual solvent in the precursor gel film makes the film moldable upon microprinting with a patterned PDMS mold, leading to various perovskite micropatterns in resolution of a few micrometers over a large area. Our nondestructive micropatterning process does not harm the intrinsic photoelectric properties of a perovskite film, which allows for realizing arrays of parallel-type photodetectors containing micropatterns of a perovskite film with reliable photoconduction performance. The facile transfer of a micropatterned soft-gel precursor film on other substrates including mechanically flexible plastics can further broaden its applications to flexible photoelectric systems.

  17. Simultaneous phase and morphology controllable synthesis of copper selenide films by microwave-assisted nonaqueous approach

    NASA Astrophysics Data System (ADS)

    Li, Jing; Fa, Wenjun; Li, Yasi; Zhao, Hongxiao; Gao, Yuanhao; Zheng, Zhi

    2013-02-01

    Copper selenide films with different phase and morphology were synthesized on copper substrate through controlling reaction solvent by microwave-assisted nonaqueous approach. The films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The result showed that the pure films could be obtained using cyclohexyl alcohol or benzyl alcohol as solvent. The cubic Cu2-xSe dendrites were synthesized in cyclohexyl alcohol reaction system and hexagonal CuSe flaky crystals were obtained with benzyl alcohol as solvent.

  18. Atmospheric Pressure Plasma Jet-Assisted Synthesis of Zeolite-Based Low-k Thin Films.

    PubMed

    Huang, Kai-Yu; Chi, Heng-Yu; Kao, Peng-Kai; Huang, Fei-Hung; Jian, Qi-Ming; Cheng, I-Chun; Lee, Wen-Ya; Hsu, Cheng-Che; Kang, Dun-Yen

    2018-01-10

    Zeolites are ideal low-dielectric constant (low-k) materials. This paper reports on a novel plasma-assisted approach to the synthesis of low-k thin films comprising pure-silica zeolite MFI. The proposed method involves treating the aged solution using an atmospheric pressure plasma jet (APPJ). The high reactivity of the resulting nitrogen plasma helps to produce zeolite crystals with high crystallinity and uniform crystal size distribution. The APPJ treatment also remarkably reduces the time for hydrothermal reaction. The zeolite MFI suspensions synthesized with the APPJ treatment are used for the wet deposition to form thin films. The deposited zeolite thin films possessed dense morphology and high crystallinity, which overcome the trade-off between crystallinity and film quality. Zeolite thin films synthesized using the proposed APPJ treatment achieve low leakage current (on the order of 10 -8 A/cm 2 ) and high Young's modulus (12 GPa), outperforming the control sample synthesized without plasma treatment. The dielectric constant of our zeolite thin films was as low as 1.41. The overall performance of the low-k thin films synthesized with the APPJ treatment far exceed existing low-k films comprising pure-silica MFI.

  19. Thermally assisted magnetization reversal in sub-micron sized magnetic thin films

    NASA Astrophysics Data System (ADS)

    Koch, Roger H.

    2000-03-01

    We have measured the rate of thermally assisted magnetization reversal of sub-micron sized magnetic thin film elements. For fields H just less than the zero-temperature coercive field H_C, the probability of reversal, P^exps (t), increases for short times, t, achieves a maximum value, and then decreases exponentially. The temperature dependence of the reversal is consistent with a temperature independent barrier height. Micromagnetic simulations exhibit the same behavior, and show that the reversal for a film without disorder proceeds through the annihilation of two domain walls that move from opposite sides of the sample. The behavior of P^exps (t) can be understood using a simple ``energy-ladder" model of thermal activation. In this model, the film reverses its magnetization direction by thermally activating (reversibly) through a ladder of intermediate metastable states. The measured data are consistent with there being a handful of these states in the energy landscape of the film. These states are a result of the disorder in the film and we will show micromagnetic simulation movies depicting this behavior. In collaboration with G. Grinstein, G.A. Keefe, Yu Lu, P.L. Trouilloud, W. J. Gallagher, S.S.P. Parkin, S. Ingvarson, and G. Xaio

  20. Spin–orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy

    DOE PAGES

    Li, Peng; Liu, Tao; Chang, Houchen; ...

    2016-09-01

    As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque on and thereby switches the magnetization in a neighbouring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. Here we report the SOT-assisted switching in heavy metal/magnetic insulator systems. The experiments used a Pt/BaFe 12O 19 bilayer where the BaFe 12O 19 layer exhibits perpendicular magnetic anisotropy. As a charge current is passed through the Pt film, it produces a SOT that can control themore » up and down states of the remnant magnetization in the BaFe 12O 19 film when the film is magnetized by an in-plane magnetic field. Furthermore, it can reduce or increase the switching field of the BaFe 12O 19 film by as much as about 500 Oe when the film is switched with an out-of-plane field.« less

  1. Spin-orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Li, Peng; Liu, Tao; Chang, Houchen; Kalitsov, Alan; Zhang, Wei; Csaba, Gyorgy; Li, Wei; Richardson, Daniel; Demann, August; Rimal, Gaurab; Dey, Himadri; Jiang, J. S.; Porod, Wolfgang; Field, Stuart B.; Tang, Jinke; Marconi, Mario C.; Hoffmann, Axel; Mryasov, Oleg; Wu, Mingzhong

    2016-09-01

    As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque on and thereby switches the magnetization in a neighbouring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. Here we report the SOT-assisted switching in heavy metal/magnetic insulator systems. The experiments used a Pt/BaFe12O19 bilayer where the BaFe12O19 layer exhibits perpendicular magnetic anisotropy. As a charge current is passed through the Pt film, it produces a SOT that can control the up and down states of the remnant magnetization in the BaFe12O19 film when the film is magnetized by an in-plane magnetic field. It can reduce or increase the switching field of the BaFe12O19 film by as much as about 500 Oe when the film is switched with an out-of-plane field.

  2. Template assisted synthesis and optical properties of gold nanoparticles.

    NASA Astrophysics Data System (ADS)

    Fodor, Petru; Lasalvia, Vincenzo

    2009-03-01

    A hybrid nanofabrication method (interference lithography + self assembly) was explored for the fabrication of arrays of gold nanoparticles. To ensure the uniformity of the nanoparticles, a template assisted synthesis was used in which the gold is electrodeposited in the pores of anodized aluminum membranes. The spacing between the pores and their ordering is controlled in the first fabrication step of the template in which laser lithography and metal deposition are used to produce aluminum films with controlled strain profiles. The diameter of the pores produced after anodizing the aluminum film in acidic solution determines the diameter of the gold particles, while their aspect ratio is controlled through the deposition time. Optical absorbance spectroscopy is used to evaluate the ability to tune the nanoparticles plasmon resonance spectra through control over their size and aspect ratio.

  3. Phase, current, absorbance, and photoluminescence of double and triple metal ion-doped synthetic and salmon DNA thin films

    NASA Astrophysics Data System (ADS)

    Chopade, Prathamesh; Reddy Dugasani, Sreekantha; Reddy Kesama, Mallikarjuna; Yoo, Sanghyun; Gnapareddy, Bramaramba; Lee, Yun Woo; Jeon, Sohee; Jeong, Jun-Ho; Park, Sung Ha

    2017-10-01

    We fabricated synthetic double-crossover (DX) DNA lattices and natural salmon DNA (SDNA) thin films, doped with 3 combinations of double divalent metal ions (M2+)-doped groups (Co2+-Ni2+, Cu2+-Co2+, and Cu2+-Ni2+) and single combination of a triple M2+-doped group (Cu2+-Ni2+-Co2+) at various concentrations of M2+ ([M2+]). We evaluated the optimum concentration of M2+ ([M2+]O) (the phase of M2+-doped DX DNA lattices changed from crystalline (up to ([M2+]O) to amorphous (above [M2+]O)) and measured the current, absorbance, and photoluminescent characteristics of multiple M2+-doped SDNA thin films. Phase transitions (visualized in phase diagrams theoretically as well as experimentally) from crystalline to amorphous for double (Co2+-Ni2+, Cu2+-Co2+, and Cu2+-Ni2+) and triple (Cu2+-Ni2+-Co2+) dopings occurred between 0.8 mM and 1.0 mM of Ni2+ at a fixed 0.5 mM of Co2+, between 0.6 mM and 0.8 mM of Co2+ at a fixed 3.0 mM of Cu2+, between 0.6 mM and 0.8 mM of Ni2+ at a fixed 3.0 mM of Cu2+, and between 0.6 mM and 0.8 mM of Co2+ at fixed 2.0 mM of Cu2+ and 0.8 mM of Ni2+, respectively. The overall behavior of the current and photoluminescence showed increments as increasing [M2+] up to [M2+]O, then decrements with further increasing [M2+]. On the other hand, absorbance at 260 nm showed the opposite behavior. Multiple M2+-doped DNA thin films can be used in specific devices and sensors with enhanced optoelectric characteristics and tunable multi-functionalities.

  4. Resonant infrared matrix-assisted pulsed laser evaporation of TiO2 nanoparticle films

    NASA Astrophysics Data System (ADS)

    Mayo, Daniel C.; Paul, Omari; Airuoyo, Idemudia J.; Pan, Zhengda; Schriver, Kenneth E.; Avanesyan, Sergey M.; Park, Hee K.; Mu, Richard R.; Haglund, Richard F.

    2013-03-01

    The successful development of flexible, high performance thin films that are competitive with silicon-based technology will likely require fabricating films of hybrid materials that incorporate nanomaterials, glasses, ceramics, polymers, and thin films. Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) is an ideal method for depositing organic materials and nanoparticles with minimal photochemical or photothermal damage to the deposited material. Furthermore, there are many nonhazardous solvents containing chemical functional groups with infrared absorption bands that are accessible using IR lasers. We report here results of recent work in which RIR-MAPLE has been employed successfully to deposit thin films of TiO2 nanoparticles on Si substrates. Using an Er:YAG laser ( λ=2.94 μm), we investigated a variety of MAPLE matrices containing -OH moieties, including water and all four isomers of butyl alcohol. The alcohol isomers are shown to provide effective and relatively nontoxic solvents for use in the RIR-MAPLE process. In addition, we examine the effects of varying concentration and laser fluence on film roughness and surface coverage.

  5. Development of plasma assisted thermal vapor deposition technique for high-quality thin film.

    PubMed

    Lee, Kang-Il; Choi, Yong Sup; Park, Hyun Jae

    2016-12-01

    The novel technique of Plasma-Assisted Vapor Deposition (PAVD) is developed as a new deposition method for thin metal films. The PAVD technique yields a high-quality thin film without any heating of the substrate because evaporated particles acquire energy from plasma that is confined to the inside of the evaporation source. Experiments of silver thin film deposition have been carried out in conditions of pressure lower than 10 -3 Pa. Pure silver plasma generation is verified by the measurement of the Ag-I peak using optical emission spectroscopy. A four point probe and a UV-VIS spectrophotometer are used to measure the electrical and optical properties of the silver film that is deposited by PAVD. For an ultra-thin silver film with a thickness of 6.5 nm, we obtain the result of high-performance silver film properties, including a sheet resistance <20 Ω sq -1 and a visible-range transmittance >75%. The PAVD-film properties show a low sheet resistance of 30% and the same transmittance with conventional thermal evaporation film. In the PAVD source, highly energetic particles and UV from plasma do not reach the substrate because the plasma is completely shielded by the optimized nozzle of the crucible. This new PAVD technique could be a realistic solution to improve the qualities of transparent electrodes for organic light emission device fabrication without causing damage to the organic layers.

  6. Development of plasma assisted thermal vapor deposition technique for high-quality thin film

    NASA Astrophysics Data System (ADS)

    Lee, Kang-Il; Choi, Yong Sup; Park, Hyun Jae

    2016-12-01

    The novel technique of Plasma-Assisted Vapor Deposition (PAVD) is developed as a new deposition method for thin metal films. The PAVD technique yields a high-quality thin film without any heating of the substrate because evaporated particles acquire energy from plasma that is confined to the inside of the evaporation source. Experiments of silver thin film deposition have been carried out in conditions of pressure lower than 10-3 Pa. Pure silver plasma generation is verified by the measurement of the Ag-I peak using optical emission spectroscopy. A four point probe and a UV-VIS spectrophotometer are used to measure the electrical and optical properties of the silver film that is deposited by PAVD. For an ultra-thin silver film with a thickness of 6.5 nm, we obtain the result of high-performance silver film properties, including a sheet resistance <20 Ω sq-1 and a visible-range transmittance >75%. The PAVD-film properties show a low sheet resistance of 30% and the same transmittance with conventional thermal evaporation film. In the PAVD source, highly energetic particles and UV from plasma do not reach the substrate because the plasma is completely shielded by the optimized nozzle of the crucible. This new PAVD technique could be a realistic solution to improve the qualities of transparent electrodes for organic light emission device fabrication without causing damage to the organic layers.

  7. Biodegradation improvement of poly(3-hydroxy-butyrate) films by entomopathogenic fungi and UV-assisted surface functionalization.

    PubMed

    Kessler, Felipe; Marconatto, Leticia; Rodrigues, Roberta da Silva Bussamara; Lando, Gabriela Albara; Schrank, Augusto; Vainstein, Marilene Henning; Weibel, Daniel Eduardo

    2014-01-05

    Ultraviolet (UV)-assisted surface modification in the presence of oxygen was used as initial step to achieve controlled degradation of poly(3-hydroxy-butyrate), PHB, films by entomopathogenic fungi. Treated surfaces were investigated by surface analysis techniques (water contact angle, Fourier Transformed Infrared Spectroscopy in Attenuated Total Reflectance mode, X-ray Photoelectron Spectroscopy, Near-edge X-ray Absorption Fine Structure, Gel Permeation Chromatography, Optical Microscopy, Scanning Electron Microscopy, and weight loss). After the UV-assisted treatments, new carbonyl groups in new chemical environments were detected by XPS and NEXAFS spectroscopy. The oxidizing atmosphere did not allow the formation of CC bonds, indicating that Norrish Type II mechanism is suppressed during or by the treatments. The higher hydrophilicity and concentration of oxygenated functional groups at the surface of the treated films possibly improved the biodegradation of the films. It was observed a clear increase in the growth of this fungus when oxygenated groups were grafted on the polymers surfaces. This simple methodology can be used to improve and control the degradation rate of PHB films in applications that require a controllable degradation rate. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Structural Analysis of a Carbon Nitride Film Prepared by Ion-Beam-Assisted Deposition

    NASA Astrophysics Data System (ADS)

    Hayashi, Toshiyuki; Matsumuro, Akihito; Muramatsu, Mutsuo; Kohzaki, Masao; Takahashi, Yutaka; Yamaguchi, Katsumi

    1999-04-01

    The microstructure of a carbon nitride (CNx) film formed by ion-beam-assisted deposition (IBAD) was investigated by transmission electron microscopy (TEM). This film was formed on the Si (100) substrate by IBAD with an N/C transport ratio of 1. Three different spacings (0.34 nm, 0.21 nm, 0.12 nm) were observed by transmission electron diffraction (TED) and the periodic structure corresponding to the spacing of 0.34 nm was aligned perpendicular to the substrate. The bending of this plane resembled a carbon nanotube; therefore, it seemed reasonable to suppose that the CNx film obtained consisted of numerous carbon-nanotube-like structural elements grown vertically, relative to the substrate, and it also seemed appropriate that these structural elements should be termed nanotube-like carbon nitride.

  9. Utilizing strongly absorbing materials for low-loss surface-wave nonlinear optics

    NASA Astrophysics Data System (ADS)

    Grosse, Nicolai B.; Franz, Philipp; Heckmann, Jan; Pufahl, Karsten; Woggon, Ulrike

    2018-04-01

    Optical media endowed with large nonlinear susceptibilities are highly prized for their employment in frequency conversion and the generation of nonclassical states of light. Although the presence of an optical resonance can greatly increase the nonlinear response (e.g., in epsilon-near-zero materials), the non-negligible increase in linear absorption often precludes the application of such materials in nonlinear optics. Absorbing materials prepared as thin films, however, can support a low-loss surface wave: the long-range surface exciton polariton (LRSEP). Its propagation lifetime increases with greater intrinsic absorption and reduced film thickness, provided that the film is embedded in a transparent medium (symmetric cladding). We explore LRSEP propagation in a molybdenum film by way of a prism-coupling configuration. Our observations show that excitation of the LRSEP mode leads to a dramatic increase in the yield of second-harmonic generation. This implies that the LRSEP mode is an effective vehicle for utilizing the nonlinear response of absorbing materials.

  10. Thin Semiconductor/Metal Films For Infrared Devices

    NASA Technical Reports Server (NTRS)

    Lamb, James L.; Nagendra, Channamallappa L.

    1995-01-01

    Spectral responses of absorbers and reflectors tailored. Thin cermet films composites of metals and semiconductors undergoing development for use as broadband infrared reflectors and absorbers. Development extends concepts of semiconductor and dielectric films used as interference filters for infrared light and visible light. Composite films offer advantages over semiconductor films. Addition of metal particles contributes additional thermal conductivity, reducing thermal gradients and associated thermal stresses, with resultant enhancements of thermal stability. Because values of n in composite films made large, same optical effects achieved with lesser thicknesses. By decreasing thicknesses of films, one not only decreases weights but also contributes further to reductions of thermal stresses.

  11. Segmentation-assisted detection of dirt impairments in archived film sequences.

    PubMed

    Ren, Jinchang; Vlachos, Theodore

    2007-04-01

    In this correspondence, a novel segmentation-assisted method for film-dirt detection is proposed. We exploit the fact that film dirt manifests in the spatial domain as a cluster of connected pixels whose intensity differs substantially from that of its neighborhood, and we employ a segmentation-based approach to identify this type of structure. A key feature of our approach is the computation of a measure of confidence attached to detected dirt regions, which can be utilized for performance fine tuning. Another important feature of our algorithm is the avoidance of the computational complexity associated with motion estimation. Our experimental framework benefits from the availability of manually derived as well as objective ground-truth data obtained using infrared scanning. Our results demonstrate that the proposed method compares favorably with standard spatial, temporal, and multistage median-filtering approaches and provides efficient and robust detection for a wide variety of test materials.

  12. Electrical and optical performance of transparent conducting oxide films deposited by electrostatic spray assisted vapour deposition.

    PubMed

    Hou, Xianghui; Choy, Kwang-Leong; Liu, Jun-Peng

    2011-09-01

    Transparent conducting oxide (TCO) films have the remarkable combination of high electrical conductivity and optical transparency. There is always a strong motivation to produce TCO films with good performance at low cost. Electrostatic Spray Assisted Vapor Deposition (ESAVD), as a variant of chemical vapour deposition (CVD), is a non-vacuum and low-cost deposition method. Several types of TCO films have been deposited using ESAVD process, including indium tin oxide (ITO), antimony-doped tin oxide (ATO), and fluorine doped tin oxide (FTO). This paper reports the electrical and optical properties of TCO films produced by ESAVD methods, as well as the effects of post treatment by plasma hydrogenation on these TCO films. The possible mechanisms involved during plasma hydrogenation of TCO films are also discussed. Reduction and etching effect during plasma hydrogenation are the most important factors which determine the optical and electrical performance of TCO films.

  13. Multi-target determination of organic ultraviolet absorbents in organism tissues by ultrasonic assisted extraction and ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Peng, Xianzhi; Jin, Jiabin; Wang, Chunwei; Ou, Weihui; Tang, Caiming

    2015-03-06

    A sensitive and reliable method was developed for multi-target determination of 13 most widely used organic ultraviolet (UV) absorbents (including UV filters and UV stabilizers) in aquatic organism tissues. The organic UV absorbents were extracted using ultrasonic-assisted extraction, purified via gel permeation chromatography coupled with silica gel column chromatography, and determined by ultra-high performance liquid chromatography-tandem mass spectrometry. Recoveries of the UV absorbents from organism tissues mostly ranged from 70% to 120% from fish filet with satisfactory reproducibility. Method quantification limits were 0.003-1.0ngg(-1) dry weight (dw) except for 2-ethylhexyl 4-methoxycinnamate. This method has been applied to analysis of the UV absorbents in wild and farmed aquatic organisms collected from the Pearl River Estuary, South China. 2-Hydroxy-4-methoxybenzophenone and UV-P were frequently detected in both wild and farmed marine organisms at low ngg(-1)dw. 3-(4-Methylbenzylidene)camphor and most of the benzotriazole UV stabilizers were also frequently detected in maricultured fish. Octocrylene and 2-ethylhexyl 4-methoxycinnamate were not detected in any sample. This work lays basis for in-depth study about bioaccumulation and biomagnification of the UV absorbents in marine environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Spray Chemical Vapor Deposition of Single-Source Precursors for Chalcopyrite I-III-VI2 Thin-Film Materials

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Banger, Kulbinder K.; Jin, Michael H.-C.; Harris, Jerry D.; McNatt, Jeremiah S.; Dickman, John E.

    2008-01-01

    Thin-film solar cells on flexible, lightweight, space-qualified substrates provide an attractive approach to fabricating solar arrays with high mass-specific power. A polycrystalline chalcopyrite absorber layer is among the new generation of photovoltaic device technologies for thin film solar cells. At NASA Glenn Research Center we have focused on the development of new single-source precursors (SSPs) for deposition of semiconducting chalcopyrite materials onto lightweight, flexible substrates. We describe the syntheses and thermal modulation of SSPs via molecular engineering. Copper indium disulfide and related thin-film materials were deposited via aerosol-assisted chemical vapor deposition using SSPs. Processing and post-processing parameters were varied in order to modify morphology, stoichiometry, crystallography, electrical properties, and optical properties to optimize device quality. Growth at atmospheric pressure in a horizontal hotwall reactor at 395 C yielded the best device films. Placing the susceptor closer to the evaporation zone and flowing a more precursor-rich carrier gas through the reactor yielded shinier-, smoother-, and denser-looking films. Growth of (112)-oriented films yielded more Cu-rich films with fewer secondary phases than growth of (204)/(220)-oriented films. Post-deposition sulfur-vapor annealing enhanced stoichiometry and crystallinity of the films. Photoluminescence studies revealed four major emission bands and a broad band associated with deep defects. The highest device efficiency for an aerosol-assisted chemical vapor deposited cell was one percent.

  15. Dendritic-metasurface-based flexible broadband microwave absorbers

    NASA Astrophysics Data System (ADS)

    Wang, Mei; Weng, Bin; Zhao, Jing; Zhao, Xiaopeng

    2017-06-01

    Based on the dendritic metasurface model, a type of flexible and lightweight microwave absorber (MA) comprising resistance film array with dendritic slot (RFADS), dielectric material, and metal plate is proposed. A broadband absorptivity of >80% is obtained both from simulation and experiment at frequency ranges of 3.0-9.2 and 3.2-9.00 GHz, respectively. And the thickness of MA is 5 mm, which is only 0.05λ _{low}, or 0.15λ _ {high}, where the λ _{low} and the λ _{high} are the beginning and the end of the working frequency. By combining this metasurface-based MA with the dendritic-resistance-film-based microwave metasurface absorber (MMA), we designed a broadband MMA. The simulations and experiments showed that this kind of MMA can absorb the radiation effectively at a wide frequency range 4.5-17.5 GHz. And the thickness of this combined MMA is 4 mm. All the structures showed their insensitivity to the incident angle (0°-40°) and the polarization of the incident wave because of their structural symmetry. In addition, the small thickness, low apparent density, and flexibility made those structures possess the advantages of being applied in microwave stealth and radar cross-section (RCS) reduction.

  16. Deposition and characterization of far-infrared absorbing gold black films

    NASA Technical Reports Server (NTRS)

    Advena, Donna J.; Bly, Vincent T.; Cox, J. T.

    1993-01-01

    A process is described for producing gold black films with high absorptance in the far IR. The optical and electrical properties of these films have been studied with particular emphasis on the absorptance of films at wavelengths as long as 50 microns. A substantial decrease in absorptance near 50 microns has been observed for pure gold black films on aging in air. This degradation can be largely avoided by alloying the gold with a small percentage of copper during the deposition. Preliminary results on two methods for delineating gold black films are also presented.

  17. Dependence of lattice strain relaxation, absorbance, and sheet resistance on thickness in textured ZnO@B transparent conductive oxide for thin-film solar cell applications.

    PubMed

    Kou, Kuang-Yang; Huang, Yu-En; Chen, Chien-Hsun; Feng, Shih-Wei

    2016-01-01

    The interplay of surface texture, strain relaxation, absorbance, grain size, and sheet resistance in textured, boron-doped ZnO (ZnO@B), transparent conductive oxide (TCO) materials of different thicknesses used for thin film, solar cell applications is investigated. The residual strain induced by the lattice mismatch and the difference in the thermal expansion coefficient for thicker ZnO@B is relaxed, leading to an increased surface texture, stronger absorbance, larger grain size, and lower sheet resistance. These experimental results reveal the optical and material characteristics of the TCO layer, which could be useful for enhancing the performance of solar cells through an optimized TCO layer.

  18. Laser interferometry for the determination of thickness distributions of low absorbing films and their spatial and thickness resolutions.

    PubMed

    Mishima, T; Kao, K C

    1982-03-15

    New laser interferometry has been developed, based on the principle that a 2-D fringe pattern can be produced by interference of spatially coherent light beams. To avoid the effect of reflection from the back surface of the substrate, the Brewster angle of incidence is adopted; to suppress the effect of diffraction, a lens or a lens system is used. This laser interferometry is an efficient nondestructive technique for the determination of thickness distributions or uniformities of low absorbing films on transparent substrates over a large area without involving laborious computations. The limitation of spatial resolution, thickness resolution, and visibility of fringes is fully analyzed.

  19. Low resistivity and low compensation ratio Ga-doped ZnO films grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Yu; Hsiao, Li-Han; Chyi, Jen-Inn

    2015-09-01

    In this study, Ga-doped ZnO (GZO) thin films were deposited on GaN templates by using plasma-assisted molecular beam epitaxy. To obtain low resistivity GZO films, in-situ post-annealing under Zn overpressure was carried out to avoid the generation of acceptor-liked Zn vacancies. The resultant films showed optical transparency over 95% in the visible spectral range. By reducing the acceptor-like defects, GZO films with compensation ratio near 0.4 and resistivity simultaneously lower than 1×10-4 Ω cm have been successfully demonstrated.

  20. Additive manufacturing of RF absorbers

    NASA Astrophysics Data System (ADS)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  1. Properties of zinc tin oxide thin film by aerosol assisted chemical vapor deposition (AACVD)

    NASA Astrophysics Data System (ADS)

    Riza, Muhammad Arif; Rahman, Abu Bakar Abd; Sepeai, Suhaila; Ludin, Norasikin Ahmad; Teridi, Mohd Asri Mat; Ibrahim, Mohd Adib

    2018-05-01

    This study focuses on the properties of ZTO which have been deposited by a low-cost method namely aerosol assisted chemical vapor deposition (AACVD). The precursors used in this method were zinc acetate dihidrate and tin chloride dihydrate for ZTO thin film deposition. Both precursors were mixed and stirred until fully dissolved before deposition. The ZTO was deposited on borosilicate glass substrate for the investigation of optical properties. The films deposited have passed the scotch tape adherence test. XRD revealed that the crystal ZTO is slightly in the form of perovskite structure but several deteriorations were also seen in the spectrum. The UV-Vis analysis showed high transmittance of ˜85% and the band gap was calculated to be 3.85 eV. The average thickness of the film is around 284 nm. The results showed that the ZTO thin films have been successfully deposited by the utilization of AACVD method.

  2. Effect of pressure-assisted thermal annealing on the optical properties of ZnO thin films.

    PubMed

    Berger, Danielle; Kubaski, Evaldo Toniolo; Sequinel, Thiago; da Silva, Renata Martins; Tebcherani, Sergio Mazurek; Varela, José Arana

    2013-01-01

    ZnO thin films were prepared by the polymeric precursor method. The films were deposited on silicon substrates using the spin-coating technique, and were annealed at 330 °C for 32 h under pressure-assisted thermal annealing and under ambient pressure. Their structural and optical properties were characterized, and the phases formed were identified by X-ray diffraction. No secondary phase was detected. The ZnO thin films were also characterized by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, photoluminescence and ultraviolet emission intensity measurements. The effect of pressure on these thin films modifies the active defects that cause the recombination of deep level states located inside the band gap that emit yellow-green (575 nm) and orange (645 nm) photoluminescence. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Rapid crystallization of WS2 films assisted by a thin nickel layer: An in situ energy-dispersive X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Ellmer, K.; Seeger, S.; Mientus, R.

    2006-08-01

    By rapid thermal crystallization of an amorphous WS3+x film, deposited by reactive magnetron sputtering at temperatures below 150 °C, layer-type semiconducting tungsten disulfide films (WS2) were grown. The rapid crystallization was monitored in real-time by in situ energy-dispersive X-ray diffraction. The films crystallize very fast (>40 nm/s), provided that a thin nickel film acts as nucleation seeds. Experiments on different substrates and the onset of the crystallization only at a temperature between 600 and 700 °C points to the decisive role of seeds for the textured growth of WS2, most probably liquid NiSx drops. The rapidly crystallized WS2 films exhibit a pronounced (001) texture with the van der Waals planes oriented parallel to the surface, leading to photoactive layers with a high hole mobility of about 80 cm2/Vs making such films suitable as absorbers for thin film solar cells.

  4. [Absorbed doses to critical organs from full mouth dental radiography].

    PubMed

    Zhang, G; Yasuhiko, O; Hidegiko, Y

    1999-01-01

    A few studies were reported in China on radiological risk of dental radiography. The aim of this study is to evaluate the absorbed doses of patients from the full mouth radiographs, and to find out the contribution from each projection to the total absorbed dose of the organs. Absorbed doses to critical organs were measured from 14-film complete dental radiography. The organs included pituitary, optical lens, parotid glands, submandibular glands, sublingual glands, thyroid, breasts, ovary, testes and the skin in center field of each projection were studied. A-radiation analog dosimetry system (RANDO) phantom with thermoluminescent dosimeters (ILD200) was used for the study. All of the exposure parameters were fixed. The total filtration was 2 mm Al equivalent. The column collaboration was 6 cm in diameter and 20 cm in length. The absorbed doses of organs were measured three times in each projection of the full-mouth series (FMS) exposures. The absorbed dose of lenses in FMS (249 microGy) in present study was much less (10%) than the doses (2,630 microGy) reported in 1976. The doses absorbed of other organs in the present study were thyroid gland (125 microGy), pituitary gland (112 microGy), parotid gland (153 microGy), submandibular gland (629 microGy), sublingual gland (1,900 microGy), and breast gland (12 microGy). The doses of the ovary and testis were to small to further analysis. All of the results show that the radiation risk to patients in intraoral radiograph has been reduced significantly. In the pituitary, half of the dose is from both sides of the maxillary molar projection. For the lenses, the largest contribultions of radiation (60%) come from the ipsilateral molar and premolar projection of maxilla. In parotid gland, up to 57% of the dose is from the contralateral molar, pre-molar and canine of maxilla. It could be derived that about 90% of the absorbed doses could be avoided in FMS if the column collimator is 20 cm long and the filter is 2.0 mm thick

  5. Sapphire substrate-induced effects in VO2 thin films grown by oxygen plasma-assisted pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Skuza, J. R.; Scott, D. W.; Pradhan, A. K.

    2015-11-01

    We investigate the structural and electronic properties of VO2 thin films on c-plane sapphire substrates with three different surface morphologies to control the strain at the substrate-film interface. Only non-annealed substrates with no discernible surface features (terraces) provided a suitable template for VO2 film growth with a semiconductor-metal transition (SMT), which was much lower than the bulk transition temperature. In addition to strain, oxygen vacancy concentration also affects the properties of VO2, which can be controlled through deposition conditions. Oxygen plasma-assisted pulsed laser deposition allows favorable conditions for VO2 film growth with SMTs that can be easily tailored for device applications.

  6. Dosimetric characterization of GafChromic EBT film and its implication on film dosimetry quality assurance.

    PubMed

    Fuss, Martina; Sturtewagen, Eva; De Wagter, Carlos; Georg, Dietmar

    2007-07-21

    The suitability of radiochromic EBT film was studied for high-precision clinical quality assurance (QA) by identifying the dose response for a wide range of irradiation parameters typically modified in highly-conformal treatment techniques. In addition, uncertainties associated with varying irradiation conditions were determined. EBT can be used for dose assessment of absorbed dose levels as well as relative dosimetry when compared to absolute absorbed dose calibrated using ionization chamber results. For comparison, a silver halide film (Kodak EDR-2) representing the current standard in film dosimetry was included. As an initial step a measurement protocol yielding accurate and precise results was established for a flatbed transparency scanner (Epson Expression 1680 Pro) that was utilized as a film reading instrument. The light transmission measured by the scanner was found to depend on the position of the film on the scanner plate. For three film pieces irradiated with doses of 0 Gy, approximately 1 Gy and approximately 7 Gy, the pixel values measured in portrait or landscape mode differed by 4.7%, 6.2% and 10.0%, respectively. A study of 200 film pieces revealed an excellent sheet-to-sheet uniformity. On a long time scale, the optical development of irradiated EBT film consisted of a slow but steady increase of absorbance which was not observed to cease during 4 months. Sensitometric curves of EBT films obtained under reference conditions (SSD = 95 cm, FS = 5 x 5 cm(2), d = 5 cm) for 6, 10 and 25 MV photon beams did not show any energy dependence. The average separation between all curves was only 0.7%. The variation of the depth d (range 2-25 cm) in the phantom did not affect the dose response of EBT film. Also the influence of the radiation field size (range 3 x 3-40 x 40 cm(2)) on the sensitometric curve was not significant. For EDR-2 films maximum differences between the calibration curves reached 7-8% for X6MV and X25MV. Radiochromic EBT film, in

  7. Dosimetric characterization of GafChromic EBT film and its implication on film dosimetry quality assurance

    NASA Astrophysics Data System (ADS)

    Fuss, Martina; Sturtewagen, Eva; DeWagter, Carlos; Georg, Dietmar

    2007-07-01

    The suitability of radiochromic EBT film was studied for high-precision clinical quality assurance (QA) by identifying the dose response for a wide range of irradiation parameters typically modified in highly-conformal treatment techniques. In addition, uncertainties associated with varying irradiation conditions were determined. EBT can be used for dose assessment of absorbed dose levels as well as relative dosimetry when compared to absolute absorbed dose calibrated using ionization chamber results. For comparison, a silver halide film (Kodak EDR-2) representing the current standard in film dosimetry was included. As an initial step a measurement protocol yielding accurate and precise results was established for a flatbed transparency scanner (Epson Expression 1680 Pro) that was utilized as a film reading instrument. The light transmission measured by the scanner was found to depend on the position of the film on the scanner plate. For three film pieces irradiated with doses of 0 Gy, ~1 Gy and ~7 Gy, the pixel values measured in portrait or landscape mode differed by 4.7%, 6.2% and 10.0%, respectively. A study of 200 film pieces revealed an excellent sheet-to-sheet uniformity. On a long time scale, the optical development of irradiated EBT film consisted of a slow but steady increase of absorbance which was not observed to cease during 4 months. Sensitometric curves of EBT films obtained under reference conditions (SSD = 95 cm, FS = 5 × 5 cm2, d = 5 cm) for 6, 10 and 25 MV photon beams did not show any energy dependence. The average separation between all curves was only 0.7%. The variation of the depth d (range 2-25 cm) in the phantom did not affect the dose response of EBT film. Also the influence of the radiation field size (range 3 × 3-40 × 40 cm2) on the sensitometric curve was not significant. For EDR-2 films maximum differences between the calibration curves reached 7-8% for X6MV and X25MV. Radiochromic EBT film, in combination with a flatbed scanner

  8. Template-assisted electrostatic spray deposition as a new route to mesoporous, macroporous, and hierarchically porous oxide films.

    PubMed

    Sokolov, S; Paul, B; Ortel, E; Fischer, A; Kraehnert, R

    2011-03-01

    A novel film coating technique, template-assisted electrostatic spray deposition (TAESD), was developed for the synthesis of porous metal oxide films and tested on TiO(2). Organic templates are codeposited with the titania precursor by electrostatic spray deposition and then removed during calcination. Resultant films are highly porous with pores casted by uniformly sized templates, which introduced a new level of control over the pore morphology for the ESD method. Employing the amphiphilic block copolymer Pluronic P123, PMMA latex spheres, or a combination of the two, mesoporous, macroporous, and hierarchically porous TiO(2) films are obtained. Decoupled from other coating parameters, film thickness can be controlled by deposition time or depositing multiple layers while maintaining the coating's structure and integrity.

  9. A study on the enhancement of opto-electronic properties of CdS thin films: seed-assisted fabrication

    NASA Astrophysics Data System (ADS)

    Kumarage, W. G. C.; Wijesundera, R. P.; Seneviratne, V. A.; Jayalath, C. P.; Dassanayake, B. S.

    2017-04-01

    A novel method of fabricating chemical bath deposited CdS thin films (CBD-CdS) by using electrodeposited CdS (ED-CdS) as a seed layer is reported. The resulting thin, compact, uniform and adherent seed-assisted CdS films (ED/CBD-CdS) show enhanced effective surface area compared to both ED-CdS and CBD-CdS. The phase of these CdS films was determined to be hexagonal. The fabricated ED/CBD-CdS films show higher photoelectrochemical (PEC) cell efficiency than either ED-CdS and CBD-CdS thin films. Carrier concentration and flat band potential values for ED/CBD-CdS systems are also found to be superior compared to both ED-CdS and CBD-CdS systems.

  10. Broadband polarization-independent and low-profile optically transparent metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Li, Long; Xi, Rui; Liu, Haixia; Lv, Zhiyong

    2018-05-01

    A transparent metamaterial absorber with simultaneously high optical transparency and broadband microwave absorption is presented in this paper. Consisting of a two-layer soda-lime glass substrate and three-layer patch-shaped indium tin oxide (ITO) films, the proposed absorber has advantages of broadband absorption with an absorptivity higher than 85% in the range from 6.1 to 22.1 GHz, good polarization insensitiveness, a high transparency, a low profile, and wide-incident-angle stability. A prototype of the proposed absorber is fabricated and experimentally measured to demonstrate its excellent performance. The measured results agree well with the theoretical design and numerical simulations.

  11. Water surface assisted synthesis of large-scale carbon nanotube film for high-performance and stretchable supercapacitors.

    PubMed

    Yu, Minghao; Zhang, Yangfan; Zeng, Yinxiang; Balogun, Muhammad-Sadeeq; Mai, Kancheng; Zhang, Zishou; Lu, Xihong; Tong, Yexiang

    2014-07-16

    A kind of multiwalled carbon-nanotube (MWCNT)/polydimethylsiloxane (PDMS) film with excellent conductivity and mechanical properties is developed using a facile and large-scale water surface assisted synthesis method. The film can act as a conductive support for electrochemically active PANI nano fibers. A device based on these PANI/MWCNT/PDMS electrodes shows good and stable capacitive behavior, even under static and dynamic stretching conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ultrasonic-assisted preparation of graphene oxide carboxylic acid polyvinyl alcohol polymer film and studies of thermal stability and surface resistivity.

    PubMed

    Li, Yongshen; Li, Jihui; Li, Yuehai; Li, Yali; Song, Yunan; Niu, Shuai; Li, Ning

    2018-01-01

    In this paper, flake graphite, nitric acid and acetic anhydride are used to prepare graphene oxide carboxylic acid (GO-COOH) via an ultrasonic-assisted method, and GO-COOH and polyvinyl alcohol polymer (PVA) are used to synthesize graphene oxide carboxylic acid polyvinyl alcohol polymer (GO-COOPVA) via the ultrasonic-assisted method, and GO-COOPVA is used to manufacture graphene oxide carboxylic acid polyvinyl alcohol polymer film (GO-COOPVA film) via a solidification method, and the structure and morphology of GO-COOH, GO-COOPVA and GO-COOPVA film are characterized, and the thermal stability and surface resistivity are measured in the case of the different amount of GO-COOH. Based on the characterization and measurement, it has been successively confirmed and attested that carboxyl groups implant on 2D lattice of GO to form GO-COOH, and GO-COOH and PVA have the esterification reaction to produce GO-COOPVA, and GO-COOPVA consists of 2D lattice of GO-COOH and the chain of PVA connected in the form of carboxylic ester, and GO-COOPVA film is composed of GO-COOPVA, and the thermal stability of GO-COOPVA film obviously improves in comparison with PVA film, and the surface resistivity of GO-COOPVA film clearly decreases. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Domain growth of carbon nanotubes assisted by dewetting of thin catalyst precursor films

    NASA Astrophysics Data System (ADS)

    Srivastava, Alok Kumar; Sachan, Priyanka; Samanta, Chandan; Mukhopadhyay, Kingsuk; Sharma, Ashutosh

    2014-01-01

    We explore self-organized dewetting of ultrathin films of a novel metal complex as a one step surface patterning method to create nanoislands of iron, using which spatially separated carbon nanostructures were synthesized. Dewetting of ultrathin metal complex films was induced by two different methods: liquid solvent exposure and thermal annealing to engender surface patterning. For thermal dewetting, thin films of the iron oleate complex were dewetted at high temperature. In the case of liquid solvent assisted dewetting, the metal complex, mixed with a sacrificial polymer (polystyrene) was spin coated as thin films (<40 nm) and then dewetted under an optimal solution mixture consisting of methyl ethyl ketone, acetone and water. The carrier polymer was then selectively removed to produce the iron metal islands. These metal islands were used for selective growth of discrete patches of multiwall CNTs and CNFs by a chemical vapor deposition (CVD) process. Solvent induced dewetting showed clear advantages over thermal dewetting owing to reduced size of catalyst domains formed by dewetting, an improved control over CNT growth as well as in its ability to immobilize the seed particles. The generic solution mediated dewetting and pattern generation in thin films of various catalytic precursors can thus be a powerful method for selective domain growth of a variety of functional nanomaterials.

  14. Chemistry of K in Cu(In,Ga)Se 2 photovoltaic absorbers: Effects of temperature on Cu-K-In-Se films

    DOE PAGES

    Muzzillo, Christopher P.; Tong, Ho Ming; Anderson, Tim

    2017-08-05

    Incorporation of K has led to world record Cu(In,Ga)Se 2 photovoltaic power conversion efficiencies, but there is poor consensus about the role of phase impurities in these advances. This work lays a foundation for identifying and controlling these phase impurities. Films of Cu-K-In-Se were co-evaporated at varied K/(K + Cu) compositions and substrate temperatures (with constant (K + Cu)/In ~ 0.85). Increased Na composition on the substrate's surface and decreased growth temperature were both found to favor Cu 1-xK xInSe 2 alloy formation, relative to two-phase CuInSe 2+KInSe 2 formation. Structures from X-ray diffraction (XRD), band gaps, resistivities, minority carriermore » lifetimes and carrier concentrations from time-resolved photoluminescence were in agreement with previous reports, where low K/(K + Cu) composition films exhibited properties promising for photovoltaic absorbers. Films grown at 400-500 °C were then annealed to 600 degrees C in a controlled Se ambient, which caused K loss by evaporation in proportion to the initial K/(K + Cu) composition. Similar to growth temperature, annealing drove Cu 1-xK xInSe 2 alloy consumption and CuInSe 2+KInSe 2 production, as evidenced by high temperature XRD. Annealing also decomposed KInSe 2 and formed K 2In 12Se 19. At high temperature, the KInSe 2 crystal lattice gradually contracted as temperature and time increased, as well as just time. Evaporative loss of K during annealing could accompany the generation of vacancies on K lattice sites, and may explain the KInSe 2 lattice contraction. As a result, this knowledge of Cu-K-In-Se material chemistry may be used to predict and control minor phase impurities in Cu(In,Ga)(Se,S) 2 photovoltaic absorbers - where impurities below typical detection limits may have played a role in recent world record photovoltaic efficiencies that utilized KF post-deposition treatments.« less

  15. Chemistry of K in Cu(In,Ga)Se 2 photovoltaic absorbers: Effects of temperature on Cu-K-In-Se films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzillo, Christopher P.; Tong, Ho Ming; Anderson, Tim

    Incorporation of K has led to world record Cu(In,Ga)Se 2 photovoltaic power conversion efficiencies, but there is poor consensus about the role of phase impurities in these advances. This work lays a foundation for identifying and controlling these phase impurities. Films of Cu-K-In-Se were co-evaporated at varied K/(K + Cu) compositions and substrate temperatures (with constant (K + Cu)/In ~ 0.85). Increased Na composition on the substrate's surface and decreased growth temperature were both found to favor Cu 1-xK xInSe 2 alloy formation, relative to two-phase CuInSe 2+KInSe 2 formation. Structures from X-ray diffraction (XRD), band gaps, resistivities, minority carriermore » lifetimes and carrier concentrations from time-resolved photoluminescence were in agreement with previous reports, where low K/(K + Cu) composition films exhibited properties promising for photovoltaic absorbers. Films grown at 400-500 °C were then annealed to 600 degrees C in a controlled Se ambient, which caused K loss by evaporation in proportion to the initial K/(K + Cu) composition. Similar to growth temperature, annealing drove Cu 1-xK xInSe 2 alloy consumption and CuInSe 2+KInSe 2 production, as evidenced by high temperature XRD. Annealing also decomposed KInSe 2 and formed K 2In 12Se 19. At high temperature, the KInSe 2 crystal lattice gradually contracted as temperature and time increased, as well as just time. Evaporative loss of K during annealing could accompany the generation of vacancies on K lattice sites, and may explain the KInSe 2 lattice contraction. As a result, this knowledge of Cu-K-In-Se material chemistry may be used to predict and control minor phase impurities in Cu(In,Ga)(Se,S) 2 photovoltaic absorbers - where impurities below typical detection limits may have played a role in recent world record photovoltaic efficiencies that utilized KF post-deposition treatments.« less

  16. Controlling the defects and transition layer in SiO2 films grown on 4H-SiC via direct plasma-assisted oxidation

    PubMed Central

    Kim, Dae-Kyoung; Jeong, Kwang-Sik; Kang, Yu-Seon; Kang, Hang-Kyu; Cho, Sang W.; Kim, Sang-Ok; Suh, Dongchan; Kim, Sunjung; Cho, Mann-Ho

    2016-01-01

    The structural stability and electrical performance of SiO2 grown on SiC via direct plasma-assisted oxidation were investigated. To investigate the changes in the electronic structure and electrical characteristics caused by the interfacial reaction between the SiO2 film (thickness ~5 nm) and SiC, X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), density functional theory (DFT) calculations, and electrical measurements were performed. The SiO2 films grown via direct plasma-assisted oxidation at room temperature for 300s exhibited significantly decreased concentrations of silicon oxycarbides (SiOxCy) in the transition layer compared to that of conventionally grown (i.e., thermally grown) SiO2 films. Moreover, the plasma-assisted SiO2 films exhibited enhanced electrical characteristics, such as reduced frequency dispersion, hysteresis, and interface trap density (Dit ≈ 1011 cm−2 · eV−1). In particular, stress induced leakage current (SILC) characteristics showed that the generation of defect states can be dramatically suppressed in metal oxide semiconductor (MOS) structures with plasma-assisted oxide layer due to the formation of stable Si-O bonds and the reduced concentrations of SiOxCy species defect states in the transition layer. That is, energetically stable interfacial states of high quality SiO2 on SiC can be obtained by the controlling the formation of SiOxCy through the highly reactive direct plasma-assisted oxidation process. PMID:27721493

  17. Substrate-dependent structural and CO sensing properties of LaCoO3 epitaxial films

    NASA Astrophysics Data System (ADS)

    Liu, Haifeng; Sun, Hongjuan; Xie, Ruishi; Zhang, Xingquan; Zheng, Kui; Peng, Tongjiang; Wu, Xiaoyu; Zhang, Yanping

    2018-06-01

    LaCoO3 thin films were grown on different (0 0 1) oriented LaAlO3, SrTiO3 and (LaAlO3)0.3(Sr2AlTaO6)0.7 by the polymer assisted deposition method, respectively. All the LaCoO3 thin films are in epitaxial growth on these substrates, with tetragonal distortion of CoO6 octahedrons. Due to different in-plane lattice mismatch, the LaCoO3 film on LaAlO3 has the largest tetragonal distortion of CoO6 octahedrons while the film grown on (LaAlO3)0.3(Sr2AlTaO6)0.7 has the smallest tetragonal distortion. The relative contents of the surface absorbed oxygen species are found to increase for the LaCoO3 epitaxial films grown on (0 0 1) oriented (LaAlO3)0.3(Sr2AlTaO6)0.7, SrTiO3 and LaAlO3 substrates, sequentially. The film sensors exhibit good CO sensing properties at 150 °C, and the LaCoO3 film on LaAlO3 shows the highest response but the film on (LaAlO3)0.3(Sr2AlTaO6)0.7 shows the lowest. It reveals that the larger degree of Jahn-Teller-like tetragonal distortion of CoO6 octahedrons may greatly improve the surface absorbing and catalytic abilities, corresponding to more excellent CO sensing performance. The present study suggests that the formation of epitaxial films is an efficient methodology for controlling the octahedral distortion and thereby improving the gas sensing performance of perovskite transition metal oxides.

  18. Absorber Materials for Transition-Edge Sensor X-ray Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Brown, Ari-David; Bandler, Simon; Brekosky, Regis; Chervenak, James; Figueroa-Feliciano, Enectali; Finkbeiner, Fred; Sadleir, Jack; Iyomoto, Naoko; Kelley, Richard; Kilbourne, Caroline; hide

    2007-01-01

    Arrays of superconducting transition-edge sensors (TES) can provide high spatial and energy resolution necessary for x-ray astronomy. High quantum efficiency and uniformity of response can be achieved with a suitable absorber material, in which absorber x-ray stopping power, heat capacity, and thermal conductivity are relevant parameters. Here we compare these parameters for bismuth and gold. We have fabricated electroplated gold, electroplated gold/electroplated bismuth, and evaporated gold/evaporated bismuth 8x8 absorber arrays and find that a correlation exists between the residual resistance ratio (RRR) and thin film microstructure. This finding indicates that we can tailor absorber material conductivity via microstructure alteration, so as to permit absorber thermalization on timescales suitable for high energy resolution x-ray microcalorimetry. We show that by incorporating absorbers possessing large grain size, including electroplated gold and electroplated gold/electroplated bismuth, into our current Mo/Au TES, devices with tunable heat capacity and energy resolution of 2.3 eV (gold) and 2.1 eV (gold/bismuth) FWHM at 6 keV have been fabricated.

  19. Spray CVD for Making Solar-Cell Absorber Layers

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Harris, Jerry; Jin, Michael H.; Hepp, Aloysius

    2007-01-01

    Spray chemical vapor deposition (spray CVD) processes of a special type have been investigated for use in making CuInS2 absorber layers of thin-film solar photovoltaic cells from either of two subclasses of precursor compounds: [(PBu3) 2Cu(SEt)2In(SEt)2] or [(PPh3)2Cu(SEt)2 In(SEt)2]. The CuInS2 films produced in the experiments have been characterized by x-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and four-point-probe electrical tests.

  20. Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst.

    PubMed

    Zhang, Bo; Zhong, Zhaoping; Xie, Qinglong; Liu, Shiyu; Ruan, Roger

    2016-07-01

    A novel technology of two-step fast microwave-assisted pyrolysis (fMAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent (SiC) and HZSM-5 catalyst. Effects of fMAP temperature and catalyst-to-biomass ratio on bio-oil yield and chemical components were examined. The results showed that this technology, employing microwave, microwave absorbent and HZSM-5 catalyst, was effective and promising for biomass fast pyrolysis. The fMAP temperature of 500°C was considered the optimum condition for maximum yield and best quality of bio-oil. Besides, the bio-oil yield decreased linearly and the chemical components in bio-oil were improved sequentially with the increase of catalyst-to-biomass ratio from 1:100 to 1:20. The elemental compositions of bio-char were also determined. Additionally, compared to one-step fMAP process, two-step fMAP could promote the bio-oil quality with a smaller catalyst-to-biomass ratio. Copyright © 2016. Published by Elsevier B.V.

  1. Synthesis of Cu2ZnSnS4 thin films by a precursor solution paste for thin film solar cell applications.

    PubMed

    Cho, Jin Woo; Ismail, Agus; Park, Se Jin; Kim, Woong; Yoon, Sungho; Min, Byoung Koun

    2013-05-22

    Cu2ZnSnS4 (CZTS) is a very promising semiconductor material when used for the absorber layer of thin film solar cells because it consists of only abundant and inexpensive elements. In addition, a low-cost solution process is applicable to the preparation of CZTS absorber films, which reduces the cost when this film is used for the production of thin film solar cells. To fabricate solution-processed CZTS thin film using an easily scalable and relatively safe method, we suggest a precursor solution paste coating method with a two-step heating process (oxidation and sulfurization). The synthesized CZTS film was observed to be composed of grains of a size of ~300 nm, showing an overall densely packed morphology with some pores and voids. A solar cell device with this film as an absorber layer showed the highest efficiency of 3.02% with an open circuit voltage of 556 mV, a short current density of 13.5 mA/cm(2), and a fill factor of 40.3%. We also noted the existence of Cd moieties and an inhomogeneous Zn distribution in the CZTS film, which may have been triggered by the presence of pores and voids in the CZTS film.

  2. Evaporation of Particle-Stabilized Emulsion Sunscreen Films.

    PubMed

    Binks, Bernard P; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-08-24

    We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here.

  3. Synthesis of Al2O3 thin films using laser assisted spray pyrolysis (LASP)

    NASA Astrophysics Data System (ADS)

    Dhonge, Baban P.; Mathews, Tom; Tripura Sundari, S.; Krishnan, R.; Balamurugan, A. K.; Kamruddin, M.; Subbarao, R. V.; Dash, S.; Tyagi, A. K.

    2013-01-01

    The present study reports the development of a laser assisted ultrasonic spray pyrolysis technique and synthesis of dense optical alumina films using the same. In this technique ultrasonically generated aerosols of aluminum acetylacetonate dissolved in ethanol and a laser beam (Nd:YAG, CW, 1064 nm) were fed coaxially and concurrently through a quartz tube on to a hot substrate mounted on an X-Y raster stage. At the laser focused spot the precursor underwent solvent evaporation and solute sublimation followed by precursor vapor decomposition giving rise to oxide coating, the substrate is rastered to get large surface area coating. The surface morphology revealed coalescence of particles with increase in laser power. The observed particle sizes were 17 nm for films synthesized without laser and 18, 21 and 25 nm for films made with laser at 25, 38 and 50 W, respectively. Refractive index of the films synthesized increased from 1.56 to 1.62 as the laser power increased from 0 to 50 W. The stoichiometry of films was studied using XPS and the increase in interfacial layer thickness with laser power was observed from dynamic SIMS depth profiling and ellipsometry.

  4. Fabrication of CIS Absorber Layers with Different Thicknesses Using A Non-Vacuum Spray Coating Method.

    PubMed

    Diao, Chien-Chen; Kuo, Hsin-Hui; Tzou, Wen-Cheng; Chen, Yen-Lin; Yang, Cheng-Fu

    2014-01-03

    In this study, a new thin-film deposition process, spray coating method (SPM), was investigated to deposit the high-densified CuInSe₂ absorber layers. The spray coating method developed in this study was a non-vacuum process, based on dispersed nano-scale CuInSe₂ precursor and could offer a simple, inexpensive, and alternative formation technology for CuInSe₂ absorber layers. After spraying on Mo/glass substrates, the CuInSe₂ thin films were annealed at 550 °C by changing the annealing time from 5 min to 30 min in a selenization furnace, using N₂ as atmosphere. When the CuInSe₂ thin films were annealed, without extra Se or H₂Se gas used as the compensation source during the annealing process. The aim of this project was to investigate the influence of annealing time on the densification and crystallization of the CuInSe₂ absorber layers to optimize the quality for cost effective solar cell production. The thickness of the CuInSe₂ absorber layers could be controlled as the volume of used dispersed CuInSe₂-isopropyl alcohol solution was controlled. In this work, X-ray diffraction patterns, field emission scanning electron microscopy, and Hall parameter measurements were performed in order to verify the quality of the CuInSe₂ absorber layers obtained by the Spray Coating Method.

  5. Method of improving field emission characteristics of diamond thin films

    DOEpatents

    Krauss, A.R.; Gruen, D.M.

    1999-05-11

    A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

  6. Method of improving field emission characteristics of diamond thin films

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.

    1999-01-01

    A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

  7. Electromagnetic wave absorbing properties of amorphous carbon nanotubes.

    PubMed

    Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing

    2014-07-10

    Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7-50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was -25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at -10 dB was up to 5.8 GHz within the frequency range of 2-18 GHz.

  8. Stable high-power saturable absorber based on polymer-black-phosphorus films

    NASA Astrophysics Data System (ADS)

    Mao, Dong; Li, Mingkun; Cui, Xiaoqi; Zhang, Wending; Lu, Hua; Song, Kun; Zhao, Jianlin

    2018-01-01

    Black phosphorus (BP), a rising two-dimensional material with a layer-number-dependent direct bandgap of 0.3-1.5 eV, is very interesting for optoelectronics applications from near- to mid-infrared wavebands. In the atmosphere, few-layer BP tends to be oxidized or degenerated during interacting with lasers. Here, we fabricate few-layer BP nanosheets based on a liquid exfoliation method using N-methylpyrrolidone as the dispersion liquid. By incorporating BP nanosheets with polymers (polyvinyl alcohol or high-melting-point polyimide), two flexible filmy BP saturable absorbers are fabricated to realize passive mode locking in erbium-doped fiber lasers. The polymer-BP saturable absorber, especially the polyimide-BP saturable absorber, can prevent the oxidation or water-induced etching under high-power laser illuminations, providing a promising candidate for Q-switchers, mode lockers, and light modulators.

  9. Titanium Dioxide (TiO2) film as a new saturable absorber for generating mode-locked Thulium-Holmium doped all-fiber laser

    NASA Astrophysics Data System (ADS)

    Mohd Rusdi, Muhammad Farid; Latiff, Anas Abdul; Paul, Mukul Chandra; Das, Shyamal; Dhar, Anirban; Ahmad, Harith; Harun, Sulaiman Wadi

    2017-03-01

    We report the generation of mode-locked thulium-holmium doped fiber laser (THDFL) at 1979 nm. This is a first demonstration of mode-locked by using Titanium Dioxide (TiO2) film as a saturable absorber (SA). A piece of 1 mm×1 mm TiO2 film was sandwiched in between two fiber ferrule in the cavity. Fabrication process of TiO2 film incorporated a TiO2 and a polyvinyl alcohol (PVA). The stable 9 MHz repetition rate of mode-locked mode operation with 58 dB SNR was generated under pump power of 902-1062 mW. At maximum pump power, the mode-locked THDFL has output power and pulse energy of 15 mW and 1.66 nJ, respectively. Our results demonstrate the TiO2 can be used promisingly in ultrafast photonics applications.

  10. Nanoimprinted backside reflectors for a-Si:H thin-film solar cells: critical role of absorber front textures.

    PubMed

    Tsao, Yao-Chung; Fisker, Christian; Pedersen, Thomas Garm

    2014-05-05

    The development of optimal backside reflectors (BSRs) is crucial for future low cost and high efficiency silicon (Si) thin-film solar cells. In this work, nanostructured polymer substrates with aluminum coatings intended as BSRs were produced by positive and negative nanoimprint lithography (NIL) techniques, and hydrogenated amorphous silicon (a-Si:H) was deposited hereon as absorbing layers. The relationship between optical properties and geometry of front textures was studied by combining experimental reflectance spectra and theoretical simulations. It was found that a significant height variation on front textures plays a critical role for light-trapping enhancement in solar cell applications. As a part of sample preparation, a transfer NIL process was developed to overcome the problem of low heat deflection temperature of polymer substrates during solar cell fabrication.

  11. Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration

    NASA Astrophysics Data System (ADS)

    Cunning, B. V.; Brown, C. L.; Kielpinski, D.

    2011-12-01

    Saturable absorbers are a key component for mode-locking femtosecond lasers. Polymer films containing graphene flakes have recently been used in transmission as laser mode-lockers but suffer from high nonsaturable loss, limiting their application in low-gain lasers. Here, we present a saturable absorber mirror based on a film of pure graphene flakes. The device is used to mode lock an erbium-doped fiber laser, generating pulses with state-of-the-art, sub-200-fs duration. The laser characteristic indicates that the film exhibits low nonsaturable loss (13% per pass) and large absorption modulation depth (45% of low-power absorption).

  12. Characterization of ion-assisted induced absorption in A-Si thin-films used for multivariate optical computing

    NASA Astrophysics Data System (ADS)

    Nayak, Aditya B.; Price, James M.; Dai, Bin; Perkins, David; Chen, Ding Ding; Jones, Christopher M.

    2015-06-01

    Multivariate optical computing (MOC), an optical sensing technique for analog calculation, allows direct and robust measurement of chemical and physical properties of complex fluid samples in high-pressure/high-temperature (HP/HT) downhole environments. The core of this MOC technology is the integrated computational element (ICE), an optical element with a wavelength-dependent transmission spectrum designed to allow the detector to respond sensitively and specifically to the analytes of interest. A key differentiator of this technology is it uses all of the information present in the broadband optical spectrum to determine the proportion of the analyte present in a complex fluid mixture. The detection methodology is photometric in nature; therefore, this technology does not require a spectrometer to measure and record a spectrum or a computer to perform calculations on the recorded optical spectrum. The integrated computational element is a thin-film optical element with a specific optical response function designed for each analyte. The optical response function is achieved by fabricating alternating layers of high-index (a-Si) and low-index (SiO2) thin films onto a transparent substrate (BK7 glass) using traditional thin-film manufacturing processes (e.g., ion-assisted e-beam vacuum deposition). A proprietary software and process are used to control the thickness and material properties, including the optical constants of the materials during deposition to achieve the desired optical response function. The ion-assisted deposition is useful for controlling the densification of the film, stoichiometry, and material optical constants as well as to achieve high deposition growth rates and moisture-stable films. However, the ion-source can induce undesirable absorption in the film; and subsequently, modify the optical constants of the material during the ramp-up and stabilization period of the e-gun and ion-source, respectively. This paper characterizes the unwanted

  13. Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces

    PubMed Central

    Petoukhoff, Christopher E.; O'Carroll, Deirdre M.

    2015-01-01

    Interactions between absorbers and plasmonic metasurfaces can give rise to unique optical properties not present for either of the individual materials and can influence the performance of a host of optical sensing and thin-film optoelectronic applications. Here we identify three distinct mode types of absorber-coated plasmonic metasurfaces: localized and propagating surface plasmons and a previously unidentified optical mode type called absorption-induced scattering. The extinction of the latter mode type can be tuned by controlling the morphology of the absorber coating and the spectral overlap of the absorber with the plasmonic modes. Furthermore, we show that surface plasmons are backscattered when the crystallinity of the absorber is low but are absorbed for more crystalline absorber coatings. This work furthers our understanding of light–matter interactions between absorbers and surface plasmons to enable practical optoelectronic applications of metasurfaces. PMID:26271900

  14. Nanoplate-like tungsten trioxide (hydrate) films prepared by crystal-seed-assisted hydrothermal reaction

    NASA Astrophysics Data System (ADS)

    Wang, P.; Yang, L.; Dai, B.; Yang, Z.; Guo, S.; Zhu, J.

    2017-07-01

    Vertically-aligned WO3 nanoplates on transparent conducting fluorine-doped tin oxide (FTO) glass were prepared by a facile template-free crystal-seed-assisted hydrothermal method. The effects of the hydrothermal temperature and reaction time on the crystal structure and morphology of the products were investigated by XRD and SEM. The XRD results showed that the as-prepared thin films obtained below 150∘C comprised orthorhombic WO3 ṡ H2O and completely converted to monoclinic WO3 at 180∘C. It was also noted that there was a phase transformation from orthorhombic to monoclinic by increasing the reaction time from 1 to 12 h. SEM analysis revealed that WO3 thin films are composed of plate-like nanostructures.

  15. Thin-film solar cell fabricated on a flexible metallic substrate

    DOEpatents

    Tuttle, John R.; Noufi, Rommel; Hasoon, Falah S.

    2006-05-30

    A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

  16. Thin-Film Solar Cell Fabricated on a Flexible Metallic Substrate

    DOEpatents

    Tuttle, J. R.; Noufi, R.; Hasoon, F. S.

    2006-05-30

    A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

  17. Design of a five-band terahertz perfect metamaterial absorber using two resonators

    NASA Astrophysics Data System (ADS)

    Meng, Tianhua; Hu, Dan; Zhu, Qiaofen

    2018-05-01

    We present a polarization-insensitive five-band terahertz perfect metamaterial absorber composed of two metallic circular rings and a metallic ground film separated by a dielectric layer. The calculated results show that the absorber has five distinctive absorption bands whose peaks are greater than 99% on average. The physical origin of the absorber originates from the combination of dipolar, hexapolar, and surface plasmon resonance of the patterned metallic structure, which is different from the work mechanism of previously reported absorbers. In addition, the influence of the structural parameters on the absorption spectra is analyzed to further confirm the origin of the five-band absorption peaks. The proposed absorber has potential applications in terahertz imaging, refractive index sensing, and material detecting.

  18. Effect of selenization time on the structural and morphological properties of Cu(In,Ga)Se2 thin films absorber layers using two step growth process

    NASA Astrophysics Data System (ADS)

    Korir, Peter C.; Dejene, Francis B.

    2018-04-01

    In this work two step growth process was used to prepare Cu(In, Ga)Se2 thin film for solar cell applications. The first step involves deposition of Cu-In-Ga precursor films followed by the selenization process under vacuum using elemental selenium vapor to form Cu(In,Ga)Se2 film. The growth process was done at a fixed temperature of 515 °C for 45, 60 and 90 min to control film thickness and gallium incorporation into the absorber layer film. The X-ray diffraction (XRD) pattern confirms single-phase Cu(In,Ga)Se2 film for all the three samples and no secondary phases were observed. A shift in the diffraction peaks to higher 2θ (2 theta) values is observed for the thin films compared to that of pure CuInSe2. The surface morphology of the resulting film grown for 60 min was characterized by the presence of uniform large grain size particles, which are typical for device quality material. Photoluminescence spectra show the shifting of emission peaks to higher energies for longer duration of selenization attributed to the incorporation of more gallium into the CuInSe2 crystal structure. Electron probe microanalysis (EPMA) revealed a uniform distribution of the elements through the surface of the film. The elemental ratio of Cu/(In + Ga) and Se/Cu + In + Ga strongly depends on the selenization time. The Cu/In + Ga ratio for the 60 min film is 0.88 which is in the range of the values (0.75-0.98) for best solar cell device performances.

  19. A new radiochromic dosimeter film

    NASA Astrophysics Data System (ADS)

    Sidney, L. N.; Lynch, D. C.; Willet, P. S.

    By employing acid-sensitive leuco dyes in a chlorine-containing polymer matrix, a new radiochromic dosimeter film has been developed for gamma, electron beam, and ultraviolet radiation. These dosimeter films undergo a color change from colorless to royal blue, red fuchsia, or black, depending on dye selection, and have been characterized using a visible spectrophotometer over an absorbed dose range of 1 to 100 kGy. The primary features of the film are improved color stability before and after irradiation, whether stored in the dark or under artificial lights, and improved moisture resistance. The effects of absorbed dose, dose rate, and storage conditions on dosimeter performance are discussed. The dosimeter material may be produced as a free film or coated onto a transparent substrate and optionally backed with adhesive. Potential applications for these materials include gamma sterilization indicator films for food and medical products, electron beam dosimeters, and in-line radiation monitors for electron beam and ultraviolet processing.

  20. Characterization of ethylcellulose and hydroxypropyl methylcellulose thin films deposited by matrix-assisted pulsed laser evaporation

    NASA Astrophysics Data System (ADS)

    Palla-Papavlu, A.; Rusen, L.; Dinca, V.; Filipescu, M.; Lippert, T.; Dinescu, M.

    2014-05-01

    In this study is reported the deposition of hydroxypropyl methylcellulose (HPMC) and ethylcellulose (EC) by matrix-assisted pulsed laser evaporation (MAPLE). Both HPMC and EC were deposited on silicon substrates using a Nd:YAG laser (266 nm, 5 ns laser pulse and 10 Hz repetition rate) and then characterized by atomic force microscopy and Fourier transform infrared spectroscopy. It was found that for laser fluences up to 450 mJ/cm2 the structure of the deposited HPMC and EC polymer in the thin film resembles to the bulk. Morphological investigations reveal island features on the surface of the EC thin films, and pores onto the HPMC polymer films. The obtained results indicate that MAPLE may be an alternative technique for the fabrication of new systems with desired drug release profile.

  1. Deposition of Methylammonium Lead Triiodide by Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation

    NASA Astrophysics Data System (ADS)

    Barraza, E. Tomas; Dunlap-Shohl, Wiley A.; Mitzi, David B.; Stiff-Roberts, Adrienne D.

    2018-02-01

    Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) was used to deposit the metal-halide perovskite (MHP) CH3NH3PbI3 (methylammonium lead triiodide, or MAPbI), creating phase-pure films. Given the moisture sensitivity of these crystalline, multi-component organic-inorganic hybrid materials, deposition of MAPbI by RIR-MAPLE required a departure from the use of water-based emulsions as deposition targets. Different chemistries were explored to create targets that properly dissolved MAPbI components, were stable under vacuum conditions, and enabled resonant laser energy absorption. Secondary phases and solvent contamination in the resulting films were studied through Fourier transform infrared (FTIR) absorbance and x-ray diffraction (XRD) measurements, suggesting that lingering excess methylammonium iodide (MAI) and low-vapor pressure solvents can distort the microstructure, creating crystalline and amorphous non-perovskite phases. Thermal annealing of films deposited by RIR-MAPLE allowed for excess solvent to be evaporated from films without degrading the MAPbI structure. Further, it was demonstrated that RIR-MAPLE does not require excess MAI to create stoichiometric films with optoelectronic properties, crystal structure, and film morphology comparable to films created using more established spin-coating methods for processing MHPs. This work marks the first time a MAPLE-related technique was used to deposit MHPs.

  2. Promotion by humus-reducing bacteria for the degradation of UV254 absorbance in reverse-osmosis concentrates pretreated with O3-assisted UV-Fenton method.

    PubMed

    Xia, Jiaohui; Zhang, Hui; Ding, Shaoxuan; Li, Changyu; Ding, Jincheng; Lu, Jie

    2017-07-12

    The primary pollutants in reverse-osmosis concentrates (ROC) are the substances with the UV absorbance at 254 nm (UV 254 ), which is closely related to humic substances that can be degraded by humus-reducing bacteria. This work studied the degradation characteristics of humus-reducing bacteria in ROC treatment. The physiological and biochemical characteristics of humus-reducing bacteria were investigated, and the effects of pH values and electron donors on the reduction of humic analog, antraquinone-2, 6-disulfonate were explored to optimize the degradation. Furthermore, the O 3 -assisted UV-Fenton method was applied for the pretreatment of ROC, and the degradation of UV 254 absorbance was apparently promoted with their removal rate, reaching 84.2% after 10 days of degradation by humus-reducing bacteria.

  3. Laser-processing of VO2 thin films synthesized by polymer-assisted-deposition

    NASA Astrophysics Data System (ADS)

    Breckenfeld, Eric; Kim, Heungsoo; Gorzkowski, Edward P.; Sutto, Thomas E.; Piqué, Alberto

    2017-03-01

    We investigate a novel route for synthesis and laser-sintering of VO2 thin films via solution-based polymer-assisted-deposition (PAD). By replacing the traditional solvent for PAD (water) with propylene glycol, we are able to control the viscosity and improve the environmental stability of the precursor. The solution stability and ability to control the viscosity makes for an ideal solution to pattern simple or complex shapes via direct-write methods. We demonstrate the potential of our precursor for printing applications by combining PAD with laser induced forward transfer (LIFT). We also demonstrate large-area film synthesis on 4 in. diameter glass wafers. By varying the annealing temperature, we identify the optimal synthesis conditions, obtaining optical transmittance changes of 60% at a 2500 nm wavelength and a two-order-of-magnitude semiconductor-to-metal transition. We go on to demonstrate two routes for improved semiconductor-to-metal characteristics. The first method uses a multi-coating process to produce denser films with large particles. The second method uses a pulsed-UV-laser sintering step in films annealed at low temperatures (<450° C) to promote particle growth and improve the semiconductor-to-metal transition. By comparing the hysteresis width and semiconductor-to-metal transition magnitude in these samples, we demonstrate that both methods yield high quality VO2 with a three-order-of-magnitude transition.

  4. Formation of silicon nanowire packed films from metallurgical-grade silicon powder using a two-step metal-assisted chemical etching method.

    PubMed

    Ouertani, Rachid; Hamdi, Abderrahmen; Amri, Chohdi; Khalifa, Marouan; Ezzaouia, Hatem

    2014-01-01

    In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films.

  5. Sapphire substrate-induced effects in VO{sub 2} thin films grown by oxygen plasma-assisted pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skuza, J. R., E-mail: jrskuza@nsu.edu, E-mail: apradhan@nsu.edu; Scott, D. W.; Pradhan, A. K., E-mail: jrskuza@nsu.edu, E-mail: apradhan@nsu.edu

    2015-11-21

    We investigate the structural and electronic properties of VO{sub 2} thin films on c-plane sapphire substrates with three different surface morphologies to control the strain at the substrate-film interface. Only non-annealed substrates with no discernible surface features (terraces) provided a suitable template for VO{sub 2} film growth with a semiconductor-metal transition (SMT), which was much lower than the bulk transition temperature. In addition to strain, oxygen vacancy concentration also affects the properties of VO{sub 2}, which can be controlled through deposition conditions. Oxygen plasma-assisted pulsed laser deposition allows favorable conditions for VO{sub 2} film growth with SMTs that can bemore » easily tailored for device applications.« less

  6. Ultrasonically assisted single screw extrusion, film blowing and film casting of LLDPE/clay and PA6/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Niknezhad, Setareh

    maleic anhydride (MA) affected mechanical properties and oxygen permeability with ultrasonic treatment to higher extent. However, use of compatibilizers led to a higher die pressure and resulted in opaque cast films. The mechanical properties were in agreement with crystallinity of samples. The exfoliated structure was achieved for PA6/clay 30B nanocomposites prepared using ultrasonically assisted single screw extrusion except for untreated nanocomposites containing 10 wt% of clay 30B. Untreated 92.5/7.5 and 90/10 PA6/clay 30B blown films showed the intercalated structure, but the exfoliated structure was achieved with ultrasonic treatment. All cast films of PA6/clay 30B showed the exfoliated structure. FTIR spectroscopy along with XRD results confirmed the existence of alpha and gamma-type crystals in the cast films, with clay particles favoring the formation of gamma-type crystals, and ultrasonic treatment favoring the formation of alpha-type crystals. Both parameters increased crystallinity of cast films improving their mechanical properties and oxygen permeability.

  7. Polycrystalline BiFeO{sub 3} thin film synthesized via sol-gel assisted spin coating technique for photosensitive application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogle, K. A., E-mail: kashinath.bogle@gmail.com; Narwade, R. D.; Mahabole, M. P.

    2016-05-06

    We are reporting photosensitivity property of BiFeO{sub 3} thin film under optical illumination. The thin film used for photosensitivity work was fabricated via sol-gel assisted spin coating technique. I-V measurements on the Cu/BiFeO{sub 3}/Al structure under dark condition show a good rectifying property and show dramatic blue shit in threshold voltage under optical illumination. The microstructure, morphology and elemental analysis of the films were characterized by using XRD, UV-Vis, FTIR, SEM and EDS.

  8. Fabrication of CIS Absorber Layers with Different Thicknesses Using A Non-Vacuum Spray Coating Method

    PubMed Central

    Diao, Chien-Chen; Kuo, Hsin-Hui; Tzou, Wen-Cheng; Chen, Yen-Lin; Yang, Cheng-Fu

    2014-01-01

    In this study, a new thin-film deposition process, spray coating method (SPM), was investigated to deposit the high-densified CuInSe2 absorber layers. The spray coating method developed in this study was a non-vacuum process, based on dispersed nano-scale CuInSe2 precursor and could offer a simple, inexpensive, and alternative formation technology for CuInSe2 absorber layers. After spraying on Mo/glass substrates, the CuInSe2 thin films were annealed at 550 °C by changing the annealing time from 5 min to 30 min in a selenization furnace, using N2 as atmosphere. When the CuInSe2 thin films were annealed, without extra Se or H2Se gas used as the compensation source during the annealing process. The aim of this project was to investigate the influence of annealing time on the densification and crystallization of the CuInSe2 absorber layers to optimize the quality for cost effective solar cell production. The thickness of the CuInSe2 absorber layers could be controlled as the volume of used dispersed CuInSe2-isopropyl alcohol solution was controlled. In this work, X-ray diffraction patterns, field emission scanning electron microscopy, and Hall parameter measurements were performed in order to verify the quality of the CuInSe2 absorber layers obtained by the Spray Coating Method. PMID:28788451

  9. High-throughput measurement of polymer film thickness using optical dyes

    NASA Astrophysics Data System (ADS)

    Grunlan, Jaime C.; Mehrabi, Ali R.; Ly, Tien

    2005-01-01

    Optical dyes were added to polymer solutions in an effort to create a technique for high-throughput screening of dry polymer film thickness. Arrays of polystyrene films, cast from a toluene solution, containing methyl red or solvent green were used to demonstrate the feasibility of this technique. Measurements of the peak visible absorbance of each film were converted to thickness using the Beer-Lambert relationship. These absorbance-based thickness calculations agreed within 10% of thickness measured using a micrometer for polystyrene films that were 10-50 µm. At these thicknesses it is believed that the absorbance values are actually more accurate. At least for this solvent-based system, thickness was shown to be accurately measured in a high-throughput manner that could potentially be applied to other equivalent systems. Similar water-based films made with poly(sodium 4-styrenesulfonate) dyed with malachite green oxalate or congo red did not show the same level of agreement with the micrometer measurements. Extensive phase separation between polymer and dye resulted in inflated absorbance values and calculated thickness that was often more than 25% greater than that measured with the micrometer. Only at thicknesses below 15 µm could reasonable accuracy be achieved for the water-based films.

  10. Physicochemical controls on absorbed water film thickness in unsaturated geological media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokunaga, T.

    2011-06-14

    Adsorbed water films commonly coat mineral surfaces in unsaturated soils and rocks, reducing flow and transport rates. Therefore, it is important to understand how adsorbed film thickness depends on matric potential, surface chemistry, and solution chemistry. Here, the problem of adsorbed water film thickness is examined through combining capillary scaling with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Novel aspects of this analysis include determining capillary influences on film thicknesses, and incorporating solution chemistry-dependent electrostatic potential at air-water interfaces. Capillary analysis of monodisperse packings of spherical grains provided estimated ranges of matric potentials where adsorbed films are stable, and showed that pendular ringsmore » within drained porous media retain most of the 'residual' water except under very low matric potentials. Within drained pores, capillary contributions to thinning of adsorbed films on spherical grains are shown to be small, such that DLVO calculations for flat surfaces are suitable approximations. Hamaker constants of common soil minerals were obtained to determine ranges of the dispersion component to matric potential-dependent film thickness. The pressure component associated with electrical double layer forces was estimated using the compression and linear superposition approximations. The pH-dependent electrical double layer pressure component is the dominant contribution to film thicknesses at intermediate values of matric potential, especially in lower ionic strength solutions (< 10 mol m{sup -3}) on surfaces with higher magnitude electrostatic potentials (more negative than - 50 mV). Adsorbed water films are predicted to usually range in thickness from 1 to 20 nm in drained pores and fractures of unsaturated environments.« less

  11. Friction and Wear Properties of Selected Solid Lubricating Films. Part 3; Magnetron-Sputtered and Plasma-Assisted, Chemical-Vapor-Deposited Diamondlike Carbon Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Iwaki, Masanori; Gotoh, Kenichi; Obara, Shingo; Imagawa, Kichiro

    2000-01-01

    To evaluate commercially developed dry solid film lubricants for aerospace bearing applications, an investigation was conducted to examine the friction and wear behavior of magnetron-sputtered diamondlike carbon (MS DLC) and plasma-assisted, chemical-vapor-deposited diamondlike carbon (PACVD DLC) films in sliding contact with 6-mm-diameter American Iron and Steel Institute (AISI) 440C stainless steel balls. Unidirectional sliding friction experiments were conducted with a load of 5.9 N (600 g), a mean Hertzian contact pressure of 0.79 GPa (maximum Hertzian contact pressure of L-2 GPa), and a sliding velocity of 0.2 m/s. The experiments were conducted at room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7x10(exp -7) Pa), humid air (relative humidity, approx.20 percent), and dry nitrogen (relative humidity, <1 percent). The resultant films were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and surface profilometry. Marked differences in the friction and wear of the DLC films investigated herein resulted from the environmental conditions. The main criteria for judging the performance of the DLC films were coefficient of friction and wear rate, which had to be less than 0.3 and on the order of 10(exp -6) cu mm/N-m or less, respectively. MS DLC films and PACVD DLC films met the criteria in humid air and dry nitrogen but failed in ultrahigh vacuum, where the coefficients of friction were greater than the criterion, 0.3. In sliding contact with 440C stainless steel balls in all three environments the PACVD DLC films exhibited better tribological performance (i.e., lower friction and wear) than the MS DLC films. All sliding involved adhesive transfer of wear materials: transfer of DLC wear debris to the counterpart 440C stainless steel and transfer of 440C stainless steel wear debris to the counterpart DLC film.

  12. Raman studied of undoped amorphous carbon thin film deposited by bias assisted-CVD

    NASA Astrophysics Data System (ADS)

    Ishak, A.; Fadzilah, A. N.; Dayana, K.; Saurdi, I.; Malek, M. F.; Nurbaya, Z.; Shafura, A. K.; Rusop, M.

    2018-05-01

    The undoped amorphous carbon thin film carbon was deposited at 200°C-350°C by bias assisted-CVD using palm oil as a precursor material. The effect of different substrate deposition temperatures on structural and electrical properties of undoped doped amorphous carbon film was discussed. The structural of undoped amorphous carbon films were correlated with Raman analysis through the evolution of D and G bands, Fourier spectra, and conductivity measurement. The spectral evolution observed showed the increase of upward shift of D and G peaks as substrate deposition temperatures increased. The spectral evolution observed at different substrate deposition temperatures show progressive formation of crystallites. It was predicted that small number of hydrogen is terminated with carbon at surface of thin film as shown by FTIR spectra since palm oil has high number of hydrogen (C67H127O8). These structural changes were further correlated with conductivity and the results obtained are discussed and compared. The conductivity is found in the range of 10-8 Scm-1. The increase of conductivity is correlated by the change of structural properties as correlated with characteristic parameters of Raman spectra including the position of G peak, full width at half maximum of G peak, and ID/IG and FTIR result.

  13. Centrifugation-assisted Assembly of Colloidal Silica into Crack-Free and Transferrable Films with Tunable Crystalline Structures

    PubMed Central

    Fan, Wen; Chen, Min; Yang, Shu; Wu, Limin

    2015-01-01

    Self-assembly of colloidal particles into colloidal films has many actual and potential applications. While various strategies have been developed to direct the assembly of colloidal particles, fabrication of crack-free and transferrable colloidal film with controllable crystal structures still remains a major challenge. Here we show a centrifugation-assisted assembly of colloidal silica spheres into free-standing colloidal film by using the liquid/liquid interfaces of three immiscible phases. Through independent control of centrifugal force and interparticle electrostatic repulsion, polycrystalline, single-crystalline and quasi-amorphous structures can be readily obtained. More importantly, by dehydration of silica particles during centrifugation, the spontaneous formation of capillary water bridges between particles enables the binding and pre-shrinkage of the assembled array at the fluid interface. Thus the assembled colloidal films are not only crack-free, but also robust and flexible enough to be easily transferred on various planar and curved substrates. PMID:26159121

  14. Electrical and optical percolations in PMMA/GNP composite films

    NASA Astrophysics Data System (ADS)

    Arda, Ertan; Mergen, Ömer Bahadır; Pekcan, Önder

    2018-05-01

    Effects of graphene nanoplatelet (GNP) addition on the electrical conductivity and optical absorbance of poly(methyl methacrylate)/graphene nanoplatelet (PMMA/GNP) composite films were studied. Optical absorbance and two point probe resistivity techniques were used to determine the variations of the optical and electrical properties of the composites, respectively. Absorbance intensity, A, and surface resistivity, Rs, of the composite films were monitored as a function of GNP mass fraction (M) at room temperature. Absorbance intensity values of the composites were increased and surface resistivity values were decreased by increasing the content of GNP in the composite. Electrical and optical percolation thresholds of composite films were determined as Mσ = 27.5 wt.% and Mop = 26.6 wt.%, respectively. The conductivity and the optical results were attributed to the classical and site percolation theories, respectively. Optical (βop) and electrical (βσ) critical exponents were calculated as 0.40 and 1.71, respectively.

  15. Application of ICP-OES to the determination of CuIn(1-x)Ga(x)Se2 thin films used as absorber materials in solar cell devices.

    PubMed

    Fernández-Martínez, Rodolfo; Caballero, Raquel; Guillén, Cecilia; Gutiérrez, María Teresa; Rucandio, María Isabel

    2005-05-01

    CuIn(1-x)Ga(x)Se2 [CIGS; x=Ga/(In+Ga)] thin films are among of the best candidates as absorber materials for solar cell applications. The material quality and main properties of the polycrystalline absorber layer are critically influenced by deviations in the stoichiometry, particularly in the Cu/(In+Ga) atomic ratio. In this work a simple, sensitive and accurate method has been developed for the quantitative determination of these thin films by inductively coupled plasma optical emission spectrometry (ICP-OES). The proposed method involves an acid digestion of the samples to achieve the complete solubilization of CIGS, followed by the analytical determination by ICP-OES. A digestion procedure with 50% HNO3 alone or in the presence of 10% HCl was performed to dissolve those thin films deposited on glass or Mo-coated glass substrates, respectively. Two analytical lines were selected for each element (Cu 324.754 and 327.396 nm, Ga 294.364 and 417.206 nm, In 303.936 and 325.609 nm, Se 196.090 and 203.985 nm, and Mo 202.030 and 379.825 nm) and a study of spectral interferences was performed which showed them to be suitable, since they offered a high sensitivity and no significant inter-element interferences were detected. Detection limits for all elements at the selected lines were found to be appropriate for this kind of application, and the relative standard deviations were lower than 1.5% for all elements with the exception of Se (about 5%). The Cu/(In+Ga) atomic ratios obtained from the application of this method to CIGS thin films were consistent with the study of the structural and morphological properties by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

  16. Broadband planar multilayered absorbers tuned by VO2 phase transition

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Ji, Chunhui; Lu, Lulu; Li, Zhe; Li, Haoyang; Wang, Jun; Wu, Zhiming; Jiang, Yadong; Xu, Jimmy; Liu, Zhijun

    2017-08-01

    The metal-insulator transition makes vanadium dioxide an attractive material for developing reconfigurable optoelectronic components. Here we report on dynamically tunable broadband absorbers consisting of planar multilayered thin films. By thermally triggering the phase transition of vanadium dioxide, the effective impedance of multilayered structures is tuned in or out of the condition of impedance matching to free-space, leading to switchable broadband absorptions. Two types of absorbers are designed and demonstrated by using either the insulating or metallic state of vanadium dioxide at the impedance matched condition. The planar multilayered absorbers exhibit tunable absorption bands over the wavelength ranges of 5-9.3 μm and 3.9-8.2 μm, respectively. A large modulation depth up to 88% is measured. The demonstrated broadband absorbance tunability is of potential interest for reconfigurable bolometric sensing, camouflaging, and modulation of mid-infrared lights.

  17. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells

    NASA Astrophysics Data System (ADS)

    He, Ming; Li, Bo; Cui, Xun; Jiang, Beibei; He, Yanjie; Chen, Yihuang; O'Neil, Daniel; Szymanski, Paul; Ei-Sayed, Mostafa A.; Huang, Jinsong; Lin, Zhiqun

    2017-07-01

    Control over morphology and crystallinity of metal halide perovskite films is of key importance to enable high-performance optoelectronics. However, this remains particularly challenging for solution-printed devices due to the complex crystallization kinetics of semiconductor materials within dynamic flow of inks. Here we report a simple yet effective meniscus-assisted solution printing (MASP) strategy to yield large-grained dense perovskite film with good crystallization and preferred orientation. Intriguingly, the outward convective flow triggered by fast solvent evaporation at the edge of the meniscus ink imparts the transport of perovskite solutes, thus facilitating the growth of micrometre-scale perovskite grains. The growth kinetics of perovskite crystals is scrutinized by in situ optical microscopy tracking to understand the crystallization mechanism. The perovskite films produced by MASP exhibit excellent optoelectronic properties with efficiencies approaching 20% in planar perovskite solar cells. This robust MASP strategy may in principle be easily extended to craft other solution-printed perovskite-based optoelectronics.

  18. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells

    PubMed Central

    He, Ming; Li, Bo; Cui, Xun; Jiang, Beibei; He, Yanjie; Chen, Yihuang; O’Neil, Daniel; Szymanski, Paul; EI-Sayed, Mostafa A.; Huang, Jinsong; Lin, Zhiqun

    2017-01-01

    Control over morphology and crystallinity of metal halide perovskite films is of key importance to enable high-performance optoelectronics. However, this remains particularly challenging for solution-printed devices due to the complex crystallization kinetics of semiconductor materials within dynamic flow of inks. Here we report a simple yet effective meniscus-assisted solution printing (MASP) strategy to yield large-grained dense perovskite film with good crystallization and preferred orientation. Intriguingly, the outward convective flow triggered by fast solvent evaporation at the edge of the meniscus ink imparts the transport of perovskite solutes, thus facilitating the growth of micrometre-scale perovskite grains. The growth kinetics of perovskite crystals is scrutinized by in situ optical microscopy tracking to understand the crystallization mechanism. The perovskite films produced by MASP exhibit excellent optoelectronic properties with efficiencies approaching 20% in planar perovskite solar cells. This robust MASP strategy may in principle be easily extended to craft other solution-printed perovskite-based optoelectronics. PMID:28685751

  19. Epitaxial growth and physical properties of ternary nitride thin films by polymer-assisted deposition

    NASA Astrophysics Data System (ADS)

    Enriquez, Erik; Zhang, Yingying; Chen, Aiping; Bi, Zhenxing; Wang, Yongqiang; Fu, Engang; Harrell, Zachary; Lü, Xujie; Dowden, Paul; Wang, Haiyan; Chen, Chonglin; Jia, Quanxi

    2016-08-01

    Epitaxial layered ternary metal-nitride FeMoN2, (Fe0.33Mo0.67)MoN2, CoMoN2, and FeWN2 thin films have been grown on c-plane sapphire substrates by polymer-assisted deposition. The ABN2 layer sits on top of the oxygen sublattices of the substrate with three possible matching configurations due to the significantly reduced lattice mismatch. The doping composition and elements affect not only the out-of-plane lattice parameters but also the temperature-dependent electrical properties. These films have resistivity in the range of 0.1-1 mΩ.cm, showing tunable metallic or semiconducting behaviors by adjusting the composition. A modified parallel connection channel model has been used to analyze the grain boundary and Coulomb blockade effect on the electrical properties. The growth of the high crystallinity layered epitaxial thin films provides an avenue to study the composition-structure-property relationship in ABN2 materials through A and B-site substitution.

  20. CuInS2 Films Deposited by Aerosol-Assisted Chemical Vapor Deposition Using Ternary Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Jin, Michael; Banger, Kal; Harris, Jerry; Hepp, Aloysius

    2003-01-01

    Polycrystalline CuInS2 films were deposited by aerosol-assisted chemical vapor deposition using both solid and liquid ternary single-source precursors (SSPs) which were prepared in-house. Films with either (112) or (204/220) preferred orientation, had a chalcopyrite structure, and (112)-oriented films contained more copper than (204/220)-oriented films. The preferred orientation of the film is likely related to the decomposition and reaction kinetics associated with the molecular structure of the precursors at the substrate. Interestingly, the (204/220)-oriented films were always In-rich and were accompanied by a secondary phase. From the results of post-growth annealing, etching experiments, and Raman spectroscopic data, the secondary phase was identified as an In-rich compound. On the contrary, (112)-oriented films were always obtained with a minimal amount of the secondary phase, and had a maximum grain size of about 0.5 micron. Electrical and optical properties of all the films grown were characterized. They all showed p-type conduction with an electrical resistivity between 0.1 and 30 Omega-cm, and an optical band gap of approximately 1.46 eV +/- 0.02, as deposited. The material properties of deposited films revealed this methodology of using SSPs for fabricating chalcopyrite-based solar cells to be highly promising.

  1. Transparent nanostructured Fe-doped TiO2 thin films prepared by ultrasonic assisted spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Rasoulnezhad, Hossein; Hosseinzadeh, Ghader; Ghasemian, Naser; Hosseinzadeh, Reza; Homayoun Keihan, Amir

    2018-05-01

    Nanostructured TiO2 and Fe-doped TiO2 thin films with high transparency were deposited on glass substrate through ultrasonic-assisted spray pyrolysis technique and were used in the visible light photocatalytic degradation of MB dye. The resulting thin films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, photoluminescence spectroscopy, x-ray diffraction (XRD), and UV-visible absorption spectroscopy techniques. Based on Raman spectroscopy results, both of the TiO2 and Fe-doped TiO2 films have anatase crystal structure, however, because of the insertion of Fe in the structure of TiO2 some point defects and oxygen vacancies are formed in the Fe-doped TiO2 thin film. Presence of Fe in the structure of TiO2 decreases the band gap energy of TiO2 and also reduces the electron–hole recombination rate. Decreasing of the electron–hole recombination rate and band gap energy result in the enhancement of the visible light photocatalytic activity of the Fe-doped TiO2 thin film.

  2. Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes

    PubMed Central

    Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing

    2014-01-01

    Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7–50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was −25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at −10 dB was up to 5.8 GHz within the frequency range of 2–18 GHz. PMID:25007783

  3. Effect of growth parameters on crystallinity and properties of ZnO films grown by plasma assisted MOCVD

    NASA Astrophysics Data System (ADS)

    Losurdo, M.; Giangregorio, M. M.; Sacchetti, A.; Capezzuto, P.; Bruno, G.; Malandrino, G.; Fragalà, I. L.

    2007-07-01

    Thin films of ZnO have been grown by plasma assisted metal-organic chemical vapour deposition (PA-MOCVD) using a 13.56 MHz O 2 plasma and the Zn(TTA)•tmed (HTTA=2-thenoyltrifluoroacetone, TMED=N,N,N',N'-tetramethylethylendiamine) precursor. The effects of growth parameters such as the plasma activation, the substrate, the surface temperature, and the ratio of fluxes of precursors on the structure, morphology, and optical and electrical properties of ZnO thin films have been studied. Under a very low plasma power of 20 W, c-axis oriented hexagonal ZnO thin films are grown on hexagonal sapphire (0001), cubic Si(001) and amorphous quartz substrates. The substrate temperature mainly controls grain size.

  4. Alkyl chitosan film-high strength, functional biomaterials.

    PubMed

    Lu, Li; Xing, Cao; Xin, Shen; Shitao, Yu; Feng, Su; Shiwei, Liu; Fusheng, Liu; Congxia, Xie

    2017-11-01

    Biofilm with strong tensile strength is a topic item in the area of tissue engineering, medicine engineering, and so forth. Here we introduced an alkyl chitosan film with strong tensile strength and its possibility for an absorbable anticoagulation material in vivo was tested in the series of blood test, such as dynamic coagulation time, plasma recalcification time and hemolysis. Alkyl chitosan film was a better biomaterial than traditional chitosan film in the anticoagulation, tissue compatibility and cell compatibility. The unique trait of alkyl chitosan film may be for its greater contact angle and hydrophobicity ability to reduce the adsorption capacity for the blood component and the activity of fibrinolytic enzymes, enhance the antibacterial capacity than chitosan film. Moreover, none of chitosan film or butyl chitosan film exhibited quick inflammation or other disadvantage and degraded quickly by implanted test. Therefore, Alkyl chitosan film is of prospective properties as an implantable, absorbable agent for tissue heals, and this material need further research. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3034-3041, 2017. © 2017 Wiley Periodicals, Inc.

  5. Formation of silicon nanowire packed films from metallurgical-grade silicon powder using a two-step metal-assisted chemical etching method

    PubMed Central

    2014-01-01

    In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films. PMID:25349554

  6. III-V semiconductor resonators: A new strategy for broadband light perfect absorbers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoshan; Chen, Jian; Liu, Jiasong; Huang, Zhenping; Yu, Meidong; Pan, Pingping; Liu, Zhengqi

    2017-11-01

    Broadband light perfect absorbers (BPAs) are desirable for applications in numerous optoelectronics devices. In this work, a semiconductor-based broadband light perfect absorber (S-BPA) has been numerically demonstrated by utilizing plasmonlike resonances of high-index semiconductor resonators. A maximal absorption of 99.7% is observed in the near-infrared region. By taking the absorption above 80% into account, the spectral bandwidth reaches 340 nm. The absorption properties mainly originate from the optical cavity modes induced by the cylinder resonators and ultrathin semiconductor film. These optical properties and simple structural features can maintain the absorber platform with wide applications in semiconductor optoelectronics.

  7. Quantitative Nanomechanical Properties of Multilayer Films Made of Polysaccharides through Spray Assisted Layer-by-Layer Assembly.

    PubMed

    Criado, Miryam; Rebollar, Esther; Nogales, Aurora; Ezquerra, Tiberio A; Boulmedais, Fouzia; Mijangos, Carmen; Hernández, Rebeca

    2017-01-09

    Nanomechanical properties of alginate/chitosan (Alg/Chi) multilayer films, obtained through spray assisted layer-by-layer assembly, were studied by means of PeakForce quantitative nanomechanical mapping atomic force microscopy (PF-QNM AFM). Prepared at two different alginate concentrations (1.0 and 2.5 mg/mL) and a fixed chitosan concentration (1.0 mg/mL), Alg/Chi films have an exponential growth in thickness with a transition to a linear growth toward a plateau by increasing the number of deposited bilayers. Height, elastic modulus, deformation, and adhesion maps were simultaneously recorded depending on the number of deposited bilayers. The elastic modulus of Alg/Chi films was found to be related to the mechanism of growth in contrast to the adhesion and deformation. A comparison of the nanomechanical properties obtained for non-cross-linked and thermally cross-linked Alg/Chi films revealed an increase of the elastic modulus after cross-linking regardless alginate concentration. The incorporation of iron oxide nanoparticles (NPs), during the spray preparation of the films, gave rise to nanocomposite Alg/Chi films with increased elastic moduli with the number of incorporated NPs layers. Deformation maps of the films strongly suggested the presence of empty spaces associated with the method of preparation. Finally, adhesion measurements point out to a significant role of NPs on the increase of the adhesion values found for nanocomposite films.

  8. Temperature-assisted photochemical construction of CdS-based ordered porous films with photocatalytic activities on solution surfaces.

    PubMed

    Huang, Zhenxun; Sun, Fengqiang; Zhang, Yu; Gu, Kaiyuan; Zou, Xueqiong; Huang, Yuying; Wu, Qingsong; Zhang, Zihe

    2011-04-15

    Taking a colloidal monolayer floating on the surface of a precursor solution as template, free-standing CdS/Cd composites and pure CdS (CdS-based) ordered porous films had been prepared by a temperature-assisted photochemical strategy. After irradiation with UV-light and heat treatment, the films formed hemi-spherical pores due to the preferable deposition of CdS and Cd onto the PS spheres during the photochemical and interfacial reactions. When the temperature increased from 15 to 60°C, the air/water interface gradually changed into a vapor/water interface on the surface of the solution, resulting in variations of the final compositions. The optical properties of the films were hence changed. Because of the free-standing characteristic, the ordered porous films were first transferred on surface of polluted solutions as photocatalysts, which was a new mode in application of photocatalysts. The photocatalytic activities of films showed regular variations with the compositions in photodegradation of Rhodamine B. This method provides a simple route for tuning the properties of porous films through control of its composition and a flexible application of films on any surface. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Photocatalytic degradation of metronidazole and methylene blue by PVA-assisted Bi2WO6-CdS nanocomposite film under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Rajendran, Ranjith; Varadharajan, Krishnakumar; Jayaraman, Venkatesan; Singaram, Boobas; Jeyaram, Jayaprakash

    2018-02-01

    The enhanced photocatalytic performance of nanocomposite is synthesized via the hydrothermal method and characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FT-IR), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS) and photoluminescence spectroscopy (PL). Under visible light irradiation, PVA assisted Bi2WO6-CdS nanocomposite film displayed enhanced photocatalytic efficiency and inhibition of photocorrosion as compared with pure CdS, pure Bi2WO6 and Bi2WO6-CdS composite. The PVA assisted Bi2WO6-CdS composite film catalyst showed stable catalytic performance until seven successive runs with 92% of methylene blue(MB) degradation, and easy to recover after degradation of organic pollutant. PVA assisted Bi2WO6-CdS nanocomposite film has optimal band edge position for superior photocatalytic degradation. Furthermore, the trapping experiment was carried out using different scavenger for active species. Among the active species, OH· are the most responsive species which play a vital role in the degradation of metronidazole and MB.

  10. Deposition of ultra thin CuInS₂ absorber layers by ALD for thin film solar cells at low temperature (down to 150 °C).

    PubMed

    Schneider, Nathanaelle; Bouttemy, Muriel; Genevée, Pascal; Lincot, Daniel; Donsanti, Frédérique

    2015-02-06

    Two new processes for the atomic layer deposition of copper indium sulfide (CuInS₂) based on the use of two different sets of precursors are reported. Metal chloride precursors (CuCl, InCl₃) in combination with H2S imply relatively high deposition temperature (Tdep = 380 °C), and due to exchange reactions, CuInS₂ stoechiometry was only achieved by depositing In₂S3 layers on a CuxS film. However, the use of acac- metal precursors (Cu(acac)₂, In(acac)₃) allows the direct deposition of CuInS₂ at temperature as low as 150 °C, involving in situ copper-reduction, exchange reaction and diffusion processes. The morphology, crystallographic structure, chemical composition and optical band gap of thin films were investigated using scanning electronic microscope, x-ray diffraction under grazing incidence conditions, x-ray fluorescence, energy dispersive spectrometry, secondary ion mass spectrometry, x-ray photoelectron spectroscopy and UV-vis spectroscopy. Films were implemented as ultra-thin absorbers in a typical CIS-solar cell architecture and allowed conversion efficiencies up to 2.8%.

  11. Fabrication of High-Resolution Gamma-Ray Metallic Magnetic Calorimeters with Ag:Er Sensor and Thick Electroplated Absorbers

    NASA Astrophysics Data System (ADS)

    Hummatov, Ruslan; Hall, John A.; Kim, Geon-Bo; Friedrich, Stephan; Cantor, Robin; Boyd, S. T. P.

    2018-05-01

    We are developing metallic magnetic calorimeters for high-resolution gamma-ray spectroscopy for non-destructive assay of nuclear materials. Absorbers for these higher-energy photons can require substantial thickness to achieve adequate stopping power. We developed a new absorber fabrication process using dry-film photoresists to electroform cantilevered, thick absorbers. Gamma detectors with these absorbers have an energy resolution of 38 eV FWHM at 60 keV. In this report, we summarize modifications to STARCryo's "Delta 1000" process for our devices and describe the new absorber fabrication process.

  12. Laser post-processing of halide perovskites for enhanced photoluminescence and absorbance

    NASA Astrophysics Data System (ADS)

    Tiguntseva, E. Y.; Saraeva, I. N.; Kudryashov, S. I.; Ushakova, E. V.; Komissarenko, F. E.; Ishteev, A. R.; Tsypkin, A. N.; Haroldson, R.; Milichko, V. A.; Zuev, D. A.; Makarov, S. V.; Zakhidov, A. A.

    2017-11-01

    Hybrid halide perovskites have emerged as one of the most promising type of materials for thin-film photovoltaic and light-emitting devices. Further boosting their performance is critically important for commercialization. Here we use femtosecond laser for post-processing of organo-metalic perovskite (MAPbI3) films. The high throughput laser approaches include both ablative silicon nanoparticles integration and laser-induced annealing. By using these techniques, we achieve strong enhancement of photoluminescence as well as useful light absorption. As a result, we observed experimentally 10-fold enhancement of absorbance in a perovskite layer with the silicon nanoparticles. Direct laser annealing allows for increasing of photoluminescence over 130%, and increase absorbance over 300% in near-IR range. We believe that the developed approaches pave the way to novel scalable and highly effective designs of perovskite based devices.

  13. Direct Imaging Mass Spectrometry of Plant Leaves Using Surface-assisted Laser Desorption/Ionization with Sputter-deposited Platinum Film.

    PubMed

    Ozawa, Tomoyuki; Osaka, Issey; Hamada, Satoshi; Murakami, Tatsuya; Miyazato, Akio; Kawasaki, Hideya; Arakawa, Ryuichi

    2016-01-01

    Plant leaves administered with systemic insecticides as agricultural chemicals were analyzed using imaging mass spectrometry (IMS). Matrix-assisted laser desorption/ionization (MALDI) is inadequate for the detection of insecticides on leaves because of the charge-up effect that occurs on the non-conductive surface of the leaves. In this study, surface-assisted laser desorption/ionization with a sputter-deposited platinum film (Pt-SALDI) was used for direct analysis of chemicals in plant leaves. Sputter-deposited platinum (Pt) films were prepared on leaves administered with the insecticides. A sputter-deposited Pt film with porous structure was used as the matrix for Pt-SALDI. Acephate and acetamiprid contained in the insecticides on the leaves could be detected using Pt-SALDI-MS, but these chemical components could not be adequately detected using MALDI-MS because of the charge-up effect. Enhancement of ion yields for the insecticides was achieved using Pt-SALDI, accompanied by prevention of the charge-up effect by the conductive Pt film. The movement of systemic insecticides in plants could be observed clearly using Pt-SALDI-IMS. The distribution and movement of components of systemic insecticides on leaves could be analyzed directly using Pt-SALDI-IMS. Additionally, changes in the properties of the chemicals with time, as an indicator of the permeability of the insecticides, could be evaluated.

  14. Low-temperature formation of c-axis-oriented aluminum nitride thin films by plasma-assisted reactive pulsed-DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Takenaka, Kosuke; Satake, Yoshikatsu; Uchida, Giichiro; Setsuhara, Yuichi

    2018-01-01

    The low-temperature formation of c-axis-oriented aluminum nitride thin films was demonstrated by plasma-assisted reactive pulsed-DC magnetron sputtering. The effects of the duty cycle at the pulsed-DC voltage applied to the Al target on the properties of AlN films formed via inductively coupled plasma (ICP)-enhanced pulsed-DC magnetron sputtering deposition were investigated. With decreasing duty cycle at the target voltage, the peak intensity of AlN(0002) increased linearly. The surface roughness of AlN films decreased since there was an increase in film density owing to the impact of energetic ions on the films together with the enhancement of nitriding associated with the relative increase in N radical flux. The improvement of both the crystallinity and surface morphology of AlN films at low temperatures is considered to be caused by the difference between the relative flux values of ions and sputtered atoms.

  15. Moving beyond the limits of mass transport in liquid absorbent microfilms through the implementation of surface-induced vortices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bigham, S; Yu, DZ; Chugh, D

    2014-02-01

    The slow diffusion of an absorbate molecule into an absorbent often makes the absorption process a rate-limiting step in many applications. In cases involving an absorbate with a high heat of phase change, such as water absorption into a LiBr (lithium bromide) solution, the absorption rate is further slowed due to significant heating of the absorbent. Recently, it has been demonstrated that constraining a LiBr solution film by a hydrophobic porous structure enables manipulation of the solution flow thermohydraulic characteristics. Here, it is shown that mass transport mode in a constrained laminar solution flow can be changed from diffusive tomore » advective. This change in mode is accomplished through stretching and folding the laminar streamlines within the solution film via the implementation of micro-scale features on the flow channel surface. The process induces vortices within the solution film, which continuously bring concentrated solution from the bottom and middle of the solution channel to its interface with the vapor phase, thus leading to a significant enhancement in the absorption rate. The detailed physics of the involved transport processes is elucidated using the LBM (Lattice Boltzmann Method). Published by Elsevier Ltd.« less

  16. Surface scaling analysis of textured MgO thin films fabricated by energetic particle self-assisted deposition

    NASA Astrophysics Data System (ADS)

    Feng, Feng; Zhang, Xiangsong; Qu, Timing; Liu, Binbin; Huang, Junlong; Li, Jun; Xiao, Shaozhu; Han, Zhenghe; Feng, Pingfa

    2018-04-01

    In the fabrication of a high-temperature superconducting coated conductor, the surface roughness and texture of buffer layers can significantly affect the epitaxially grown superconductor layer. A biaxially textured MgO buffer layer fabricated by ion beam assisted deposition (IBAD) is widely used in the coated conductor manufacture due to its low thickness requirement. In our previous study, a new method called energetic particle self-assisted deposition (EPSAD), which employed only a sputtering deposition apparatus without an ion source, was proposed for fabricating biaxially textured MgO films on non-textured substrates. In this study, our aim was to investigate the deposition mechanism of EPSAD-MgO thin films. The behavior of the surface roughness (evaluated by Rq) was studied using atomic force microscopy (AFM) measurements with three scan scales, while the in-plane and out-of-plane textures were measured using X-ray diffraction (XRD). It was found that the variations of surface roughness and textures along with the increase in the thickness of EPSAD-MgO samples were very similar to those of IBAD-MgO reported in the literature, revealing the similarity of their deposition mechanisms. Moreover, fractal geometry was utilized to conduct the scaling analysis of EPSAD-MgO film's surface. Different scaling behaviors were found in two scale ranges, and the indications of the fractal properties in different scale ranges were discussed.

  17. Tuning Bandgap of p-Type Cu2Zn(Sn, Ge)(S, Se)4 Semiconductor Thin Films via Aqueous Polymer-Assisted Deposition.

    PubMed

    Yi, Qinghua; Wu, Jiang; Zhao, Jie; Wang, Hao; Hu, Jiapeng; Dai, Xiao; Zou, Guifu

    2017-01-18

    Bandgap engineering of kesterite Cu 2 Zn(Sn, Ge)(S, Se) 4 with well-controlled stoichiometric composition plays a critical role in sustainable inorganic photovoltaics. Herein, a cost-effective and reproducible aqueous solution-based polymer-assisted deposition approach is developed to grow p-type Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films with tunable bandgap. The bandgap of Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films can be tuned within the range 1.05-1.95 eV using the aqueous polymer-assisted deposition by accurately controlling the elemental compositions. One of the as-grown Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films exhibits a hall coefficient of +137 cm 3 /C. The resistivity, concentration and carrier mobility of the Cu 2 ZnSn(S, Se) 4 thin film are 3.17 ohm·cm, 4.5 × 10 16 cm -3 , and 43 cm 2 /(V·S) at room temperature, respectively. Moreover, the Cu 2 ZnSn(S, Se) 4 thin film when used as an active layer in a solar cell leads to a power conversion efficiency of 3.55%. The facile growth of Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films in an aqueous system, instead of organic solvents, provides great promise as an environmental-friendly platform to fabricate a variety of single/multi metal chalcogenides for the thin film industry and solution-processed photovoltaic devices.

  18. A comprehensive simulation model of the performance of photochromic films in absorbance-modulation-optical-lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majumder, Apratim; Helms, Phillip L.; Menon, Rajesh, E-mail: rmenon@eng.utah.edu

    2016-03-15

    Optical lithography is the most prevalent method of fabricating micro-and nano-scale structures in the semiconductor industry due to the fact that patterning using photons is fast, accurate and provides high throughput. However, the resolution of this technique is inherently limited by the physical phenomenon of diffraction. Absorbance-Modulation-Optical Lithography (AMOL), a recently developed technique has been successfully demonstrated to be able to circumvent this diffraction limit. AMOL employs a dual-wavelength exposure system in conjunction with spectrally selective reversible photo-transitions in thin films of photochromic molecules to achieve patterning of features with sizes beyond the far-field diffraction limit. We have developed amore » finite-element-method based full-electromagnetic-wave solution model that simulates the photo-chemical processes that occur within the thin film of the photochromic molecules under illumination by the exposure and confining wavelengths in AMOL. This model allows us to understand how the material characteristics influence the confinement to sub-diffraction dimensions, of the transmitted point spread function (PSF) of the exposure wavelength inside the recording medium. The model reported here provides the most comprehensive analysis of the AMOL process to-date, and the results show that the most important factors that govern the process, are the polarization of the two beams, the ratio of the intensities of the two wavelengths, the relative absorption coefficients and the concentration of the photochromic species, the thickness of the photochromic layer and the quantum yields of the photoreactions at the two wavelengths. The aim of this work is to elucidate the requirements of AMOL in successfully circumventing the far-field diffraction limit.« less

  19. Specular spin-valve films with an FeCo nano-oxide layer by ion-assisted oxidation

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Hideaki; Koi, Katsuhiko; Tomita, Hiroshi; Fuke, Hiromi Niu; Iwasaki, Hitoshi; Sahashi, Masashi

    2002-05-01

    We compared the specular spin-valve films with an Fe50Co50 nano-oxide layer (NOL) and a Co90Fe10 NOL in a pinned layer, prepared by natural oxidation (NO) and ion-assisted oxidation (IAO). For the IAO, an Ar-ion beam was used for the energy-assist effect during the oxidation, resulting in thermally stable NOL formation. With small oxygen exposures during the oxidation for the Fe50Co50 NOL by IAO, good ferromagnetic coupling through the NOL and high specularity at the NOL interface were concurrently obtained. Moreover, twisted coupling through the NOL was observed for the Fe50Co50 NOL by IAO for higher oxygen exposures. On the other hand, the NO did not cause large magnetoresistance (MR) enhancement for either the Co90Fe10 or Fe50Co50 NOLs, and the Co90Fe10 NOL by IAO caused weak magnetic coupling through the NOL, resulting in a small MR ratio. The Fe50Co50 NOL for small oxygen exposures is a good candidate for a final specular spin-valve film head for 100-Giga-bit per square inch recording.

  20. Effect of in situ electric-field-assisted growth on antiphase boundaries in epitaxial Fe3O4 thin films on MgO

    NASA Astrophysics Data System (ADS)

    Kumar, Ankit; Wetterskog, Erik; Lewin, Erik; Tai, Cheuk-Wai; Akansel, Serkan; Husain, Sajid; Edvinsson, Tomas; Brucas, Rimantas; Chaudhary, Sujeet; Svedlindh, Peter

    2018-05-01

    Antiphase boundaries (APBs) normally form as a consequence of the initial growth conditions in all spinel ferrite thin films. These boundaries result from the intrinsic nucleation and growth mechanism, and are observed as regions where the periodicity of the crystalline lattice is disrupted. The presence of APBs in epitaxial films of the inverse spinel Fe3O4 alters their electronic and magnetic properties due to strong antiferromagnetic (AF) interactions across these boundaries. We explore the effect of using in-plane in situ electric-field-assisted growth on the formation of APBs in heteroepitaxial Fe3O4 (100)/MgO(100) thin films. The electric-field-assisted growth is found to reduce the AF interactions across APBs and, as a consequence, APB-free thin-film-like properties are obtained, which have been probed by electronic, magnetic, and structural characterization. The electric field plays a critical role in controlling the density of APBs during the nucleation process by providing an electrostatic force acting on adatoms and therefore changing their kinetics. This innovative technique can be employed to grow epitaxial spinel thin films with controlled AF interactions across APBs.

  1. Epitaxial growth and physical properties of ternary nitride thin films by polymer-assisted deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enriquez, Erik M.; Zhang, Yingying; Chen, Aiping

    2016-08-26

    Epitaxial layered ternary metal-nitride FeMoN 2, (Fe 0.33 Mo 0.67)MoN 2, CoMoN 2, and FeWN 2 thin films have been grown on c-plane sapphire substrates by polymer-assisted deposition. The ABN 2 layer sits on top of the oxygen sublattices of the substrate with three possible matching configurations due to the significantly reduced lattice mismatch. The doping composition and elements affect not only the out-of-plane lattice parameters but also the temperature-dependent electrical properties. These films have resistivity in the range of 0.1–1 mΩ·cm, showing tunable metallic or semiconducting behaviors by adjusting the composition. A modified parallel connection channel model has beenmore » used to analyze the grain boundary and Coulomb blockade effect on the electrical properties. Furthermore, the growth of the high crystallinity layered epitaxial thin films provides an avenue to study the composition-structure-property relationship in ABN 2 materials through A and B-site substitution.« less

  2. Transparent sunlight conversion film based on carboxymethyl cellulose and carbon dots.

    PubMed

    You, Yaqin; Zhang, Haoran; Liu, Yingliang; Lei, Bingfu

    2016-10-20

    Transparent sunlight conversion film based on carboxymethyl cellulose (CMC) and carbon dots (CDs) has been developed for the first time through dispersion of CDs in CMC aqueous solution. Due to the hydrogen bonds interaction, CMC can effectively absorb the CDs, whose surfaces are functionalized by lots of polar groups. The results from atomic force microscopy (AFM), scanning electron microscopy (SEM) confirm that the composite film possesses a homogeneous and compact structure. Besides, the CMC matrix neither competes for absorbing excitation light nor absorbs the emissions of CDs, which reserves the inherent optical properties of the individual CDs. The composite films can efficiently convert ultraviolet light to blue light. What's more, the film is transparent and possesses excellent mechanical properties, expected to apply in the field of agricultural planting for sunlight conversion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Plasma assisted facile synthesis of vanadium oxide (V3O7) nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Singh, Megha; Saini, Sujit K.; Kumar, Prabhat; Sharma, Rabindar K.; Reddy, G. B.

    2018-05-01

    Vanadium oxides nanostructured thin films are synthesized using plasma assisted sublimation process. The effect of temperatures on growth of V2O5 and V3O7 thin films is studied. Scanning electron micrographs shows different morphologies are obtained at different temperatures i.e. at 450 °C nano cubes-like structures are obtained, whereas at 550 °C and 650 °C nanorods are obtained. Sample deposited at 450 °C is entirely composed of V2O5 and sample at higher temperatures are composed of mixed phase of vanadium oxides i.e. V2O5 and V3O7. As temperature increased, so the content of V3O7 in the sample is increased as confirmed by XRD and Raman analyses.

  4. Tunable and multi-channel perfect absorber based on graphene at mid-infrared region

    NASA Astrophysics Data System (ADS)

    Meng, HaiYu; Xue, XiongXiong; Lin, Qi; Liu, GuiDong; Zhai, Xiang; Wang, LingLing

    2018-05-01

    A tunable, multi-channel plasmonic perfect absorber based on graphene is proposed. Simulated results reveal that the resonant wavelength can be effectively tuned in many ways (by changing the Fermi energy of graphene, radius of Si, or air gap between the Si and the graphene film). Furthermore, the multi-channel perfect absorber is obtained by changing the period of the system. Specifically, a high absorption is obtained by using a multilayer Bragg mirror in place of the metallic plate. We believe that such an absorber may have potential applications for multi-channel photodetectors, frequency selection, and electromagnetic-wave energy storage.

  5. Photovoltaic enhancement due to surface-plasmon assisted visible-light absorption at the inartificial surface of lead zirconate-titanate film

    NASA Astrophysics Data System (ADS)

    Zheng, Fengang; Zhang, Peng; Wang, Xiaofeng; Huang, Wen; Zhang, Jinxing; Shen, Mingrong; Dong, Wen; Fang, Liang; Bai, Yongbin; Shen, Xiaoqing; Sun, Hua; Hao, Jianhua

    2014-02-01

    PZT film of 300 nm thickness was deposited on tin indium oxide (ITO) coated quartz by a sol-gel method. Four metal electrodes, such as Pt, Au, Cu and Ag, were used as top electrodes deposited on the same PZT film by sputtering at room temperature. In ITO-PZT-Ag and ITO-PZT-Au structures, the visible light (400-700 nm) can be absorbed partially by a PZT film, and the maximum efficiency of photoelectric conversion of the ITO-PZT-Ag structure was enhanced to 0.42% (100 mW cm-2, AM 1.5G), which is about 15 times higher than that of the ITO-PZT-Pt structure. Numerical simulations show that the natural random roughness of polycrystalline-PZT-metal interface can offer a possibility of coupling between the incident photons and SPs at the metal surface. The coincidence between the calculated SP properties and the measured EQE spectra reveals the SP origin of the photovoltaic enhancement in these ITO-PZT-metal structures, and the improved photocurrent output is caused by the enhanced optical absorption in the PZT region near the metal surface, rather than by the direct charge-transfer process between two materials.PZT film of 300 nm thickness was deposited on tin indium oxide (ITO) coated quartz by a sol-gel method. Four metal electrodes, such as Pt, Au, Cu and Ag, were used as top electrodes deposited on the same PZT film by sputtering at room temperature. In ITO-PZT-Ag and ITO-PZT-Au structures, the visible light (400-700 nm) can be absorbed partially by a PZT film, and the maximum efficiency of photoelectric conversion of the ITO-PZT-Ag structure was enhanced to 0.42% (100 mW cm-2, AM 1.5G), which is about 15 times higher than that of the ITO-PZT-Pt structure. Numerical simulations show that the natural random roughness of polycrystalline-PZT-metal interface can offer a possibility of coupling between the incident photons and SPs at the metal surface. The coincidence between the calculated SP properties and the measured EQE spectra reveals the SP origin of the

  6. Application of chitosan as biomaterial for active packaging of ethylene absorber

    NASA Astrophysics Data System (ADS)

    Warsiki, E.

    2018-03-01

    Chitosan was used for active packaging of ethylene absorber that can change the head space of food packaging to extend the shelf life. The purpose of this study was to develop active packaging from chitosan and KMnO4 and apply the active film to package tomatoes. Active film was prepared by mixing chitosan 6 g, 140 mL of acetic acid 1%, 60 mL of aquadest, 2 mL sorbitol, and KMnO4 with concentration of 3 g, 5 g, and 7 g. After 5 days of storage, the film used to wrap the tomatoes was sweated. The best formulation to absorb the ethylene was made from 7 g of KMnO4 since it could inhibit tomatoes from shortly ripening compared to other formulations. The fruits were packed at room temperature had a high hardness as much as 17,79 mm/50mg/5s compared to the control of 3,47 mm/50mg/5s, while at the refrigerator, the tomato had lower hardness value of the 2,72 mm/50mg/5s compared to the control of 4,29 mm/50mg/5s. Addition of KMnO4 on the film could maintain the value °Hue either for all treated sample and control in the range of the yellow to red.

  7. Low-Temperature-Processed Zinc Oxide Thin-Film Transistors Fabricated by Plasma-Assisted Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Kawamura, Yumi; Tani, Mai; Hattori, Nozomu; Miyatake, Naomasa; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2012-02-01

    We investigated zinc oxide (ZnO) thin films prepared by plasma assisted atomic layer deposition (PA-ALD), and thin-film transistors (TFTs) with the ALD ZnO channel layer for application to next-generation displays. We deposited the ZnO channel layer by PA-ALD at 100 or 300 °C, and fabricated TFTs. The transfer characteristic of the 300 °C-deposited ZnO TFT exhibited high mobility (5.7 cm2 V-1 s-1), although the threshold voltage largely shifted toward the negative (-16 V). Furthermore, we deposited Al2O3 thin film as a gate insulator by PA-ALD at 100 °C for the low-temperature TFT fabrication process. In the case of ZnO TFTs with the Al2O3 gate insulator, the shift of the threshold voltage improved (-0.1 V). This improvement of the negative shift seems to be due to the negative charges of the Al2O3 film deposited by PA-ALD. On the basis of the experimental results, we confirmed that the threshold voltage of ZnO TFTs is controlled by PA-ALD for the deposition of the gate insulator.

  8. Redeposition in plasma-assisted atomic layer deposition: Silicon nitride film quality ruled by the gas residence time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoops, Harm C. M., E-mail: h.c.m.knoops@tue.nl, E-mail: w.m.m.kessels@tue.nl; Oxford Instruments Plasma Technology, North End, Bristol BS49 4AP; Peuter, K. de

    2015-07-06

    The requirements on the material properties and growth control of silicon nitride (SiN{sub x}) spacer films in transistors are becoming ever more stringent as scaling of transistor structures continues. One method to deposit high-quality films with excellent control is atomic layer deposition (ALD). However, depositing SiN{sub x} by ALD has turned out to be very challenging. In this work, it is shown that the plasma gas residence time τ is a key parameter for the deposition of SiN{sub x} by plasma-assisted ALD and that this parameter can be linked to a so-called “redeposition effect”. This previously ignored effect, which takesmore » place during the plasma step, is the dissociation of reaction products in the plasma and the subsequent redeposition of reaction-product fragments on the surface. For SiN{sub x} ALD using SiH{sub 2}(NH{sup t}Bu){sub 2} as precursor and N{sub 2} plasma as reactant, the gas residence time τ was found to determine both SiN{sub x} film quality and the resulting growth per cycle. It is shown that redeposition can be minimized by using a short residence time resulting in high-quality films with a high wet-etch resistance (i.e., a wet-etch rate of 0.5 nm/min in buffered HF solution). Due to the fundamental nature of the redeposition effect, it is expected to play a role in many more plasma-assisted ALD processes.« less

  9. Effect of reactive monomer on PS-b-P2VP film with UV irradiation

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Shin, D. M.

    2012-03-01

    Poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) lamellar film which is hydrophobic block hydrophilic polyelectrolyte block polymer of 52 kg/mol -b- 57 kg/mol and PS-b-P2VP film with reactive monomer (RM257) were prepared for photonic gel films. The lamellar stacks, which is alternating layer of hydrophilic and hydrophobic part of PS-b-P2VP. We reported about the influence of reactive monomer on those photonic gel films. Added reactive monomer photonic gel film had higher absorbance than pure photonic gel films. And band gaps of the lamellar films shifted by the time of UV light irradiation. That Photonic gel films were measured with the UV spectrophotometer. As a result the photonic gel film with reactive monomer had more clear color. The lamellar films were swollen by DI water, Ethyl alcohol (aq) and calcium carbonate solution. Since the domain spacing of dried photonic gel films were not showing any color in visible wavelength. The band gap of the lamellar films were drastically shifted to longer wavelength swollen by calcium carbonate solution (absorbance peak 565nm-->617nm). And the lamellar films were shifted to shorter wave length swollen by ethanol (absorbance peak 565nm-->497nm). So each Photonic gel film showed different color.

  10. Characterization and device performance of (AgCu)(InGa)Se2 absorber layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanket, Gregory; Boyle, Jonathan H.; Shafarman, William N.

    The study of (AgCu)(InGa)Se2 absorber layers is of interest in that Ag-chalcopyrites exhibit both wider bandgaps and lower melting points than their Cu counterparts. (AgCu)(InGa)Se2 absorber layers were deposited over the composition range 0 < Ag/(Ag+Cu) < 1 and 0.3 < Ga/(In+Ga) < 1.0 using a variety of elemental co-evaporation processes. Films were found to be singlephase over the entire composition range, in contrast to prior studies. Devices with Ga content 0.3 < Ga/(In+Ga) <0.5 tolerated Ag incorporation up to Ag/(Ag+Cu) = 0.5 without appreciable performance loss. Ag-containing films with Ga/(In+Ga) = 0.8 showed improved device characteristics over Cu-only controlmore » samples, in particular a 30-40% increase in short-circuit current. An absorber layer with composition Ag/(Ag+Cu) = 0.75 and Ga/(In+Ga) = 0.8 yielded a device with VOC = 890 mV, JSC = 20.5mA/cm2, fill factor = 71.3%, and η = 13.0%.« less

  11. Aqueous Solution-Deposited Molybdenum Oxide Films as an Anode Interfacial Layer for Organic Solar Cells.

    PubMed

    Yi, Qinghua; Zhai, Pengfei; Sun, Yinghui; Lou, Yanhui; Zhao, Jie; Sun, Baoquan; Patterson, Brian; Luo, Hongmei; Zhang, Wenrui; Jiao, Liang; Wang, Haiyan; Zou, Guifu

    2015-08-26

    In this study, we report the growth of molybdenum oxide (MoOx) film by polymer-assisted deposition (PAD), an environmentally friendly strategy in an aqueous system. The MoOx film has good crystal quality and is dense and smooth. The transparency of the film is >95% in the wavelength range of 300-900 nm. The device based on P3HT:PCBM absorber material was fabricated. The solar cell with PAD-MoOx as an anode interfacial layer exhibits great performance, even better than that of a solar cell with PSS or evaporated MoOx as an anode interfacial layer. More importantly, the solar cells based on the growth of MoOx have a longer term stability than that of solar cells based on PSS. These results demonstrate the aqueous PAD technology provides an alternative strategy not only for the thin films' growth of applied materials but also for the solution processing for the low-cost fabrication of future materials to be applied in the field of solar cells.

  12. Improved Single-Source Precursors for Solar-Cell Absorbers

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Harris, Jerry; Hepp, Aloysius

    2007-01-01

    Improved single-source precursor compounds have been invented for use in spray chemical vapor deposition (spray CVD) of chalcopyrite semiconductor absorber layers of thin-film cells. A "single-source precursor compound" is a single molecular compound that contains all the required elements, which when used under the spray CVD conditions, thermally decomposes to form CuIn(x)Ga(1-x)S(y)Se(2-y).

  13. Low leakage current gate dielectrics prepared by ion beam assisted deposition for organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Chang Su; Jo, Sung Jin; Kim, Jong Bok; Ryu, Seung Yoon; Noh, Joo Hyon; Baik, Hong Koo; Lee, Se Jong; Kim, Youn Sang

    2007-12-01

    This communication reports on the fabrication of low operating voltage pentacene thin-film transistors with high-k gate dielectrics by ion beam assisted deposition (IBAD). These densely packed dielectric layers by IBAD show a much lower level of leakage current than those created by e-beam evaporation. These results, from the fact that those thin films deposited with low adatom mobility, have an open structure, consisting of spherical grains with pores in between, that acts as a significant path for leakage current. By contrast, our results demonstrate the potential to limit this leakage. The field effect mobility, on/off current ratio, and subthreshold slope obtained from pentacene thin-film transistors (TFTs) were 1.14 cm2/V s, 105, and 0.41 V/dec, respectively. Thus, the high-k gate dielectrics obtained by IBAD show promise in realizing low leakage current, low voltage, and high mobility pentacene TFTs.

  14. Structural and optical properties of copper-coated substrates for solar thermal absorbers

    NASA Astrophysics Data System (ADS)

    Pratesi, Stefano; De Lucia, Maurizio; Meucci, Marco; Sani, Elisa

    2016-10-01

    Spectral selectivity, i.e. merging a high absorbance at sunlight wavelengths to a low emittance at the wavelengths of thermal spectrum, is a key characteristics for materials to be used for solar thermal receivers. It is known that spectrally selective absorbers can raise the receiver efficiency for all solar thermal technologies. Tubular sunlight receivers for parabolic trough collector (PTC) systems can be improved by the use of spectrally selective coatings. Their absorbance is increased by deposing black films, while the thermal emittance is minimized by the use of properly-prepared substrates. In this work we describe the intermediate step in the fabrication of black-chrome coated solar absorbers, namely the fabrication and characterization of copper coatings on previously nickel-plated stainless steel substrates. We investigate the copper surface features and optical properties, correlating them to the coating thickness and to the deposition process, in the perspective to assess optimal conditions for solar absorber applications.

  15. Triple-wavelength passively Q-switched ytterbium-doped fibre laser using zinc oxide nanoparticles film as a saturable absorber

    NASA Astrophysics Data System (ADS)

    Mohsin Al-Hayali, Sarah Kadhim; Hadi Al-Janabi, Abdul

    2018-07-01

    We report on the generation of a triple-wavelength passively Q-switched ytterbium-doped fibre laser using a saturable absorber (SA) based on zinc oxide nanoparticles (ZnO NPs) film. The SA was fabricated by embedding ZnO NPs powder into a polyvinyl alcohol as a host polymer. By properly adjusting the pump power and the polarization state, single-, dual- and triple-wavelength Q-switching are stably generated without additional components (such as optical filter, or fibre grating). For the triple wavelength operation, the fibre laser generates a maximum pulse repetition of 87.9 kHz with the shortest pulse duration of 2.7 μs. To the best of authors' knowledge, it's the first demonstration of triple-wavelength passively Q-switching fibre laser using ZnO NPs as a SA. Our results suggest that ZnO is a promising SA for multi-wavelength laser operation.

  16. Raman spectra boron doped amorphous carbon thin film deposited by bias assisted-CVD

    NASA Astrophysics Data System (ADS)

    Ishak, A.; Fadzilah, A. N.; Dayana, K.; Saurdi, I.; Malek, M. F.; Nurbaya, Z.; Shafura, A. K.; Rusop, M.

    2018-05-01

    Boron doped amorphous carbon thin film carbon was deposited at 200°C-350°C by bias assisted-CVD using palm oil as a precursor material. The structural boron doped amorphous carbon films were discussed by Raman analysis through the evolution of D and G bands. The spectral evolution observed showed the increase of upward shift of D and G peaks as substrate deposition temperatures increased. These structural changes were further correlated with optical gap and the results obtained are discussed and compared. The estimated optical band gap is found to be 1.9 to 2.05 eV and conductivity is to be in the range of 10-5 Scm-1 to 10-4 Scm-1. The decrease of optical band gap is associated to conductivity increased which change the characteristic parameters of Raman spectra including the position of G peak, full width at half maximum of G peak, and ID/IG.

  17. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings

    NASA Astrophysics Data System (ADS)

    Li, Zhongyang; Palacios, Edgar; Butun, Serkan; Kocer, Hasan; Aydin, Koray

    2015-10-01

    Resonant absorbers based on nanostructured materials are promising for variety of applications including optical filters, thermophotovoltaics, thermal emitters, and hot-electron collection. One of the significant challenges for such micro/nanoscale featured medium or surface, however, is costly lithographic processes for structural patterning which restricted from industrial production of complex designs. Here, we demonstrate lithography-free, broadband, polarization-independent optical absorbers based on a three-layer ultrathin film composed of subwavelength chromium (Cr) and oxide film coatings. We have measured almost perfect absorption as high as 99.5% across the entire visible regime and beyond (400-800 nm). In addition to near-ideal absorption, our absorbers exhibit omnidirectional independence for incidence angle over ±60 degrees. Broadband absorbers introduced in this study perform better than nanostructured plasmonic absorber counterparts in terms of bandwidth, polarization and angle independence. Improvements of such “blackbody” samples based on uniform thin-film coatings is attributed to extremely low quality factor of asymmetric highly-lossy Fabry-Perot cavities. Such broadband absorber designs are ultrathin compared to carbon nanotube based black materials, and does not require lithographic processes. This demonstration redirects the broadband super absorber design to extreme simplicity, higher performance and cost effective manufacturing convenience for practical industrial production.

  18. Chemically Deposited Thin-Film Solar Cell Materials

    NASA Technical Reports Server (NTRS)

    Raffaelle, R.; Junek, W.; Gorse, J.; Thompson, T.; Harris, J.; Hehemann, D.; Hepp, A.; Rybicki, G.

    2005-01-01

    We have been working on the development of thin film photovoltaic solar cell materials that can be produced entirely by wet chemical methods on low-cost flexible substrates. P-type copper indium diselenide (CIS) absorber layers have been deposited via electrochemical deposition. Similar techniques have also allowed us to incorporate both Ga and S into the CIS structure, in order to increase its optical bandgap. The ability to deposit similar absorber layers with a variety of bandgaps is essential to our efforts to develop a multi-junction thin-film solar cell. Chemical bath deposition methods were used to deposit a cadmium sulfide (CdS) buffer layers on our CIS-based absorber layers. Window contacts were made to these CdS/CIS junctions by the electrodeposition of zinc oxide (ZnO). Structural and elemental determinations of the individual ZnO, CdS and CIS-based films via transmission spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy and energy dispersive spectroscopy will be presented. The electrical characterization of the resulting devices will be discussed.

  19. Structural characteristics of phosphorus-doped C60 thin film prepared by radio frequency-plasma assisted thermal evaporation technique.

    PubMed

    Arie, Arenst Andreas; Lee, Joong Kee

    2012-02-01

    Phosphorus doped C60 (P:C60) thin films were prepared by a radio frequency plasma assisted thermal evaporation technique using C60 powder as a carbon source and a mixture of argon and phosphine (PH3) gas as a dopant precursor. The effects of the plasma power on the structural characteristics of the as-prepared films were then studied using Raman spectroscopy, Auger electron spectroscopy (AES) and X-ray photo-electrons spectroscopy (XPS). XPS and Auger analysis indicated that the films were mainly composed of C and P and that the concentration of P was proportional to the plasma power. The Raman results implied that the doped films contained a more disordered carbon structure than the un-doped samples. The P:C60 films were then used as a coating layer for the Si anodes of lithium ion secondary batteries. The cyclic voltammetry (CV) analysis of the P:C60 coated Si electrodes demonstrated that the P:C60 coating layer might be used to improve the transport of Li-ions at the electrode/electrolyte interface.

  20. Integrated Microcalorimeters Using Ir TES And Sn Mushroom Absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C.; Bogorin, D.; Galeazzi, M.

    2006-09-07

    Cryogenic microcalorimeters have the potential to meet the requirements of future x-ray missions. The University of Miami has recently started a program to fabricate fully integrated microcalorimeter arrays. We deposit high purity iridium thin film as Transition Edge Sensors (TES). We chose iridium because it has a bulk transition temperature of 112 mK and we expect single layer TES to have good reproducibility and long term stability. Also we use integrated tin film in a mushroom geometry as the absorbers to get high filling factor, low heat capacity and easy array manufacturing process. We present here our preliminary results inmore » both areas.« less

  1. Effect of composition on SILAR deposited CdxZn1-xS thin films

    NASA Astrophysics Data System (ADS)

    Ashith V., K.; Gowrish Rao, K.

    2018-04-01

    In the group of II-VI compound semiconductor, cadmium zinc sulphide (CdxZn1-xS) thin films have broad application in photovoltaic, optoelectronic devices etc. For heterojunction aspects, CdxZn1-xS thin film can be used as heterojunction partner for CdTe as the absorber layer. In this work, CdZnS thin films prepared on glass substrates by Successive Ion Layer Adsorption and Reaction (SILAR) method by varying the composition. The XRD patterns of deposited films showed polycrystalline with the hexagonal phase. The crystallite size of the films was estimated from W-H plot. The bond length of the film varied w.r.to the composition of the CdxZn1-xS films. The urbach energy of the films was calcualted from absorbance data.

  2. Graphene Oxide Transparent Hybrid Film and Its Ultraviolet Shielding Property.

    PubMed

    Xie, Siyuan; Zhao, Jianfeng; Zhang, Bowu; Wang, Ziqiang; Ma, Hongjuan; Yu, Chuhong; Yu, Ming; Li, Linfan; Li, Jingye

    2015-08-19

    Herein, we first reported a facile strategy to prepare functional Poly(vinyl alcohol) (PVA) hybrid film with well ultraviolet (UV) shielding property and visible light transmittance using graphene oxide nanosheets as UV-absorber. The absorbance of ultraviolet light at 300 nm can be up to 97.5%, while the transmittance of visible light at 500 nm keeps 40% plus. This hybrid film can protect protein from UVA light induced photosensitive damage, remarkably.

  3. Enhancement of near-infrared detectability from InGaZnO thin film transistor with MoS2 light absorbing layer.

    PubMed

    Pak, Sang Woo; Chu, Dongil; Song, Da Ye; Lee, Seung Kyo; Kim, Eun Kyu

    2017-11-24

    We report an enhancement of near-infrared (NIR) detectability from amorphous InGaZnO (α-IGZO) thin film transistor in conjunction with randomly distributed molybdenum disulfide (MoS 2 ) flakes. The electrical characteristics of the α-IGZO grown by radio-frequency magnetron sputtering exhibit high effective mobility exceeding 15 cm 2 V -1 s -1 and current on/off ratio up to 10 7 . By taking advantages of the high quality α-IGZO and MoS 2 light absorbing layer, photodetection spectra are able to extend from ultra-violet to NIR range. The α-IGZO channel detector capped by MoS 2 show a photo-responsivity of approximately 14.9 mA W -1 at 1100 nm wavelength, which is five times higher than of the α-IGZO device without MoS 2 layer.

  4. Enhancement of near-infrared detectability from InGaZnO thin film transistor with MoS2 light absorbing layer

    NASA Astrophysics Data System (ADS)

    Pak, Sang Woo; Chu, Dongil; Song, Da Ye; Kyo Lee, Seung; Kim, Eun Kyu

    2017-11-01

    We report an enhancement of near-infrared (NIR) detectability from amorphous InGaZnO (α-IGZO) thin film transistor in conjunction with randomly distributed molybdenum disulfide (MoS2) flakes. The electrical characteristics of the α-IGZO grown by radio-frequency magnetron sputtering exhibit high effective mobility exceeding 15 cm2 V-1 s-1 and current on/off ratio up to 107. By taking advantages of the high quality α-IGZO and MoS2 light absorbing layer, photodetection spectra are able to extend from ultra-violet to NIR range. The α-IGZO channel detector capped by MoS2 show a photo-responsivity of approximately 14.9 mA W-1 at 1100 nm wavelength, which is five times higher than of the α-IGZO device without MoS2 layer.

  5. Stress assisted selective ablation of ITO thin film by picosecond laser

    NASA Astrophysics Data System (ADS)

    Farid, Nazar; Chan, Helios; Milne, David; Brunton, Adam; M. O'Connor, Gerard

    2018-01-01

    Fast selective pattering with high precession on 175 nm ITO thin film with IR ps lasers is investigated. Ablation parameters are optimized with detailed studies on the scribed depth, topography, and particle generation using AFM and SEM. A comparison of 10 and 150 ps laser revealed that the shorter pulse (10 ps) laser is more appropriate in selective and partial ablation; up to 20 nm resolution for controlled depth with multipulses having energy below the damage threshold is demonstrated. The experimental results are interpreted to involve stress assisted ablation mechanism for the 10 ps laser while thermal ablation along with intense melting occurs for 150 ps laser. The transition between these regimes is estimated to occur at approximately 30 ps.

  6. Flexible Packaging by Film-Assisted Molding for Microintegration of Inertia Sensors

    PubMed Central

    Hera, Daniel; Berndt, Armin; Günther, Thomas; Schmiel, Stephan; Harendt, Christine; Zimmermann, André

    2017-01-01

    Packaging represents an important part in the microintegration of sensors based on microelectromechanical system (MEMS). Besides miniaturization and integration density, functionality and reliability in combination with flexibility in packaging design at moderate costs and consequently high-mix, low-volume production are the main requirements for future solutions in packaging. This study investigates possibilities employing printed circuit board (PCB-)based assemblies to provide high flexibility for circuit designs together with film-assisted transfer molding (FAM) to package sensors. The feasibility of FAM in combination with PCB and MEMS as a packaging technology for highly sensitive inertia sensors is being demonstrated. The results prove the technology to be a viable method for damage-free packaging of stress- and pressure-sensitive MEMS. PMID:28653992

  7. Synthesis and characterization of photoconducting (Cd:Zn)S thin films by hydrothermal assisted chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Mathew, Joissy; Devasia, Sebin; Anila, E. I.

    2018-04-01

    We report the synthesis of polycrystalline ternary (Cd:Zn)S thin films by hydrothermal assisted chemical bath deposition on glass substrates. X-ray diffraction reveals the hexagonal phase of cadmium zinc sulphide (CZS) film with preferred orientation along the (002) plane and the average grain size to be 22.78 nm. SEM image shows clusters of nano fibers grown on the film. The optical band gap obtained from the optical absorption studies using UV-Vis-NIR spectroscopy is 3.4 eV. Broad and asymmetric emission due to the combination of near band edge emission and emission fromintrinsic point defects was observed in the PL spectrum. The filmexhibit photo conductivity under illumination by light from 32 watts halogen bulb. In dark condition, the I-V curve shows non-linear behavior, whereas ohmic behavior under illumination. The Photo response of film was recorded for the light-on and light-off conditions at intervals of 100 seconds when 10V voltage was applied. We observed fast rise and decay of the photocurrent depicting high photosensitivity. This work present a simple way to obtain photo-detectors and will benefit in optical-electron devices manufacture.

  8. Combinatorial development of Cu2SnS3 as an earth abundant photovoltaic absorber

    NASA Astrophysics Data System (ADS)

    Baranowski, Lauryn L.

    The development of high efficiency, earth abundant photovoltaic absorbers is critical if photovoltaics are to be implemented on the TW scale. Although traditional thin films absorbers such as Cu(In,Ga)Se2 and CdTe have achieved over 20% device efficiencies, the ultimately scalability of these devices may be limited by elemental scarcity and toxicity issues. To date, the most successful earth abundant thin film absorber is Cu2ZnSn(S,Se) 4, which has achieved 12.6% efficiency as of 2014. However, chemical complexity and disorder issues with this material have made the path to higher efficiency CZTSSe devices unclear. As a result, many researchers are now exploring alternative earth abundant absorber materials. In this thesis, we apply our "rapid development" methodology to the exploration of alternative photovoltaic absorbers. The rapid development (RD) methodology, consisting of exploration, research, and development stages, uses complementary theory and experiment to assess candidate materials and down-select in each stage. The overall result is that, in the time span of ~2-3 years, we are able to rapidly go from tens of possible absorber materials to 1-2 working PV device prototypes. Here, we demonstrate the RD approach as applied to the Cu-Sn-S system. We begin our investigation of the Cu-Sn-S system by evaluating the thermodynamic stability, electrical transport, electronic structure, and optical and defect properties of candidate materials using complementary theory and experiment. We find that Cu2SnS3 is the most promising absorber candidate because of its strong optical absorption, tunable doping, and wide stability range. Our other candidate compounds suffer from serious flaws that preclude them from being successful photovoltaic absorbers, including too high experimental conductivity (Cu4SnS4), or poor hole transport and low absorption coefficient (Cu4Sn7S16). Next, we investigate the doping and defect physics of Cu2SnS 3. We identify the origins of the

  9. Ion energy/momentum effects during ion assisted growth of niobium nitride films

    NASA Astrophysics Data System (ADS)

    Klingenberg, Melissa L.

    The research described herein was performed to better understand and discern ion energy vs. ion momentum effects during ion beam assisted (IBAD) film growth and their effects on residual stress, crystalline structure, morphology, and composition, which influence film tribological properties. NbxN y was chosen for this research because it is a refractory material that can possess a large number of crystalline structures, and it has been found to have good tribological properties. To separate the effects of momentum transfer per arriving atom (p/a), which considers bombarding species mass, energy, and ion-to-atom transport ratio, from those of energy deposition per arriving atom (E/a), a mass independent parameter, different inert ion beams (krypton, argon, and neon) were used to create a matrix of coatings formed using similar energy deposition, but different momentum transfer and vice versa. Deposition was conducted in a research-scale IBAD system using electron beam evaporation, a radio frequency ion source, and a neutral nitrogen gas backfill. Films were characterized using x-ray diffraction, atomic force microscopy, Rutherford backscattering spectrometry, and residual stress analysis. Direct and quantifiable effects of bombardment were observed; however, energy deposition and momentum transfer effects could not be completely separated, confirming that thin film processes are complex. Complexities arose from ion-specific interactions (ion size, recoil energy, per cent reflected neutrals, Penning ionization, etc.) and chemistry effects that are not considered by the simple models. Overall, it can be stated that bombardment promoted nitride formation, nanocrystallinity, and compressive stress formation; influenced morphology (which influenced post-deposition oxygen uptake) and stress evolution; increased lattice parameter; modified crystalline phase and texture; and led to inert gas incorporation. High stress levels correlated strongly with material disorder and

  10. Study of earth abundant tco and absorber materials for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Prabhakar, Tejas

    In order to make photovoltaic power generation a sustainable venture, it is necessary to use cost-effective materials in the manufacture of solar cells. In this regard, AZO (Aluminum doped Zinc Oxide) and CZTS (Copper Zinc Tin Sulfide) have been studied for their application in thin film solar cells. While AZO is a transparent conducting oxide, CZTS is a photovoltaic absorber. Both AZO and CZTS consist of earth abundant elements and are non-toxic in nature. Highly transparent and conductive AZO thin films were grown using RF sputtering. The influence of deposition parameters such as working pressure, RF power, substrate temperature and flow rate on the film characteristics was investigated. The as-grown films had a high degree of preferred orientation along the (002) direction which enhanced at lower working pressures, higher RF powers and lower substrate temperatures. Williamson-Hall analysis on the films revealed that as the working pressure was increased, the nature of stress and strain gradually changed from being compressive to tensile. The fall in optical transmission of the films was a consequence of free carrier absorption resulting from enhanced carrier density due to incorporation of Al atoms or oxygen vacancies. The optical and electrical properties of the films were described well by the Burstein-Moss effect. CZTS absorber layers were grown using ultrasonic spray pyrolysis at a deposition temperature of 350 C and subsequently annealed in a sulfurization furnace. Measurements from XRD and Raman spectra confirmed the presence of pure single phase Cu2ZnSnS4. Texture analysis of as-deposited and annealed CZTS films indicated that the (112) plane which is characteristic of the kesterite phase was preferred. The grain size increased from 50 nm to 100 nm on conducting post-deposition annealing. CZTS films with stoichiometric composition yielded a band gap of 1.5 eV, which is optimal for solar energy conversion. The variation of tin in the film changed its

  11. Visible absorption properties of radiation exposed XR type-T radiochromic film.

    PubMed

    Butson, Martin J; Cheung, Tsang; Yu, Peter K N

    2004-10-07

    The visible absorption spectra of Gafchromic XR type-T radiochromic film have been investigated to analyse the dosimetry characteristics of the film with visible light densitometers. Common densitometers can use photospectrometry, fluorescent light (broad-band visible), helium neon (632 nm), light emitting diode (LED) or other specific bandwidth spectra. The visible absorption spectra of this film when exposed to photon radiation show peaks at 676 nm and 618 nm at 2 Gy absorbed doses which shift to slightly lower wavelengths (662 nm and 612 nm at 8 Gy absorbed dose) at higher doses. This is similar to previous models of Gafchromic film such as MD-55-2 and HS but XR type-T also includes a large absorption at lower visible wavelengths due to 'yellow' dyes placed within the film to aid with visible recognition of the film exposure level. The yellow dye band pass is produced at approximately 520 nm to 550 nm and absorbs wavelengths lower than this value within the visible spectrum. This accounts for the colour change from yellow to brown through the added absorption in the red wavelengths with radiation exposure. The film produces a relatively high dose sensitivity with up to 0.25 OD units per Gy change at 672 nm at 100 kVp x-ray energy. Variations in dose sensitivity can be achieved by varying wavelength analysis.

  12. Mechanically Robust, Stretchable Solar Absorbers with Submicron-Thick Multilayer Sheets for Wearable and Energy Applications.

    PubMed

    Lee, Hye Jin; Jung, Dae-Han; Kil, Tae-Hyeon; Kim, Sang Hyeon; Lee, Ki-Suk; Baek, Seung-Hyub; Choi, Won Jun; Baik, Jeong Min

    2017-05-31

    A facile method to fabricate a mechanically robust, stretchable solar absorber for stretchable heat generation and an enhanced thermoelectric generator (TEG) is demonstrated. This strategy is very simple: it uses a multilayer film made of titanium and magnesium fluoride optimized by a two-dimensional finite element frequency-domain simulation, followed by the application of mechanical stresses such as bending and stretching to the film. This process produces many microsized sheets with submicron thickness (∼500 nm), showing great adhesion to any substrates such as fabrics and polydimethylsiloxane. It exhibits a quite high light absorption of approximately 85% over a wavelength range of 0.2-4.0 μm. Under 1 sun illumination, the solar absorber on various stretchable substrates increased the substrate temperature to approximately 60 °C, irrespective of various mechanical stresses such as bending, stretching, rubbing, and even washing. The TEG with the absorber on the top surface also showed an enhanced output power of 60%, compared with that without the absorber. With an incident solar radiation flux of 38.3 kW/m 2 , the output power significantly increased to 24 mW/cm 2 because of the increase in the surface temperature to 141 °C.

  13. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    NASA Astrophysics Data System (ADS)

    Deb, K.; Bhowmik, K. L.; Bera, A.; Chattopadhyay, K. K.; Saha, B.

    2016-05-01

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  14. Accuracy of a dose-area product compared to an absorbed dose to water at a point in a 2 cm diameter field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufreneix, S.; Ostrowsky, A.; Rapp, B.

    Purpose: Graphite calorimeters with a core diameter larger than the beam can be used to establish dosimetric references in small fields. The dose-area product (DAP) measured can theoretically be linked to an absorbed dose at a point by the determination of a profile correction. This study aims at comparing the DAP-based protocol to the usual absorbed dose at a point protocol in a 2 cm diameter field for which both references exist. Methods: Two calorimeters were used, respectively, with a sensitive volume of 0.6 cm (for the absorbed dose at a point measurement) and 3 cm diameter (for the DAPmore » measurement). Profile correction was calculated from a 2D dose mapping using three detectors: a PinPoint chamber, a synthetic diamond, and EBT3 films. A specific protocol to read EBT3 films was implemented and the dose-rate and energy dependences were studied to assure a precise measurement, especially in the penumbra and out-of-field regions. Results: EBT3 films were found independent on dose rates over the range studied but showed a strong under-response (18%) at low energies. Depending on the dosimeter used for calculating the profile correction, a deviation of 0.8% (PinPoint chamber), 0.9% (diamond), or 1.9% (EBT3 films) was observed between the calibration coefficient derived from DAP measurements and the one directly established in terms of absorbed dose to water at a point. Conclusions: The DAP method can currently be linked to the classical dosimetric reference system based in an absorbed dose at a point only with a confidence interval of 95% (k = 2). None of the detectors studied can be used to determine an absorbed dose to water at a point from a DAP measurement with an uncertainty smaller than 1.2%.« less

  15. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides.

    PubMed

    Wang, Ziming; Zhao, Xin; Xu, Xu; Wu, Lijie; Su, Rui; Zhao, Yajing; Jiang, Chengfei; Zhang, Hanqi; Ma, Qiang; Lu, Chunmei; Dong, Deming

    2013-01-14

    A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60°C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Heteroepitaxial growth of Pt and Au thin films on MgO single crystals by bias-assisted sputtering

    DOE PAGES

    Tolstova, Yulia; Omelchenko, Stefan T.; Shing, Amanda M.; ...

    2016-03-17

    The crystallographic orientation of a metal affects its surface energy and structure, and has profound implications for surface chemical reactions and interface engineering, which are important in areas ranging from optoelectronic device fabrication to catalysis. However, it can be very difficult and expensive to manufacture, orient, and cut single crystal metals along different crystallographic orientations, especially in the case of precious metals. One approach is to grow thin metal films epitaxially on dielectric substrates. In this work, we report on growth of Pt and Au films on MgO single crystal substrates of (100) and (110) surface orientation for use asmore » epitaxial templates for thin film photovoltaic devices. We develop bias-assisted sputtering for deposition of oriented Pt and Au films with sub-nanometer roughness. We show that biasing the substrate decreases the substrate temperature necessary to achieve epitaxial orientation, with temperature reduction from 600 to 350 °C for Au, and from 750 to 550 °C for Pt, without use of transition metal seed layers. Additionally, this temperature can be further reduced by reducing the growth rate. Biased deposition with varying substrate bias power and working pressure also enables control of the film morphology and surface roughness.« less

  17. Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition.

    PubMed

    Yoo, Young Jin; Lee, Gil Ju; Jang, Kyung-In; Song, Young Min

    2017-08-29

    Ultra-thin film structures have been studied extensively for use as optical coatings, but performance and fabrication challenges remain.  We present an advanced method for fabricating ultra-thin color films with improved characteristics. The proposed process addresses several fabrication issues, including large area processing. Specifically, the protocol describes a process for fabricating ultra-thin color films using an electron beam evaporator for oblique angle deposition of germanium (Ge) and gold (Au) on silicon (Si) substrates.  Film porosity produced by the oblique angle deposition induces color changes in the ultra-thin film. The degree of color change depends on factors such as deposition angle and film thickness. Fabricated samples of the ultra-thin color films showed improved color tunability and color purity. In addition, the measured reflectance of the fabricated samples was converted into chromatic values and analyzed in terms of color. Our ultra-thin film fabricating method is expected to be used for various ultra-thin film applications such as flexible color electrodes, thin film solar cells, and optical filters. Also, the process developed here for analyzing the color of the fabricated samples is broadly useful for studying various color structures.

  18. Solution-assisted ultrafast transfer of graphene-based thin films for solar cells and humidity sensors.

    PubMed

    Sun, Jiawei; Xie, Xiao; Bi, Hengchang; Jia, Haiyang; Zhu, Chongyang; Wan, Neng; Huang, Jianqiu; Nie, Meng; Li, Dan; Sun, Litao

    2017-03-01

    Vacuum filtration enables the fabrication of large-area graphene-based membranes (GBMs), possessing a smoother surface than that by spray, spin coating or drop casting. However, due to the strong interaction with substrates, the separation of thin GBMs from the filter is problematic. Conventional stamping separation/transfer of graphene oxide (GO) thin films requires another substrate and pressing for >10 h, which may damage the delicate structure of the transfer substrates. Other methods require GO to be reduced on filters before separation, thus limiting the reduction methods. Inspired by a coagulation bath that enables rapid formation of ultrastrong GO fibers, we present an ultrafast (<1 min) and solution-assisted strategy to fabricate smooth and freestanding GO films. The diverse interfacial energy of hydrogen bonds also demonstrates another reason for the successful separation. The film thickness ranges from 45 nm to several micrometers. When used as a composite of counter electrodes in dye sensitized solar cells, it showed higher (8.58%) power conversion efficiency than its spin-(7.71%) and spray-coated (8.07%) counterparts. It also showed promising performance in capacitive humidity sensors. The capacitance varied by three orders of magnitude in the range of the relative humidity of 15%-95%. Therefore the strategy realizes an ultrafast and high-quality film production which is suitable for various applications.

  19. Solution-assisted ultrafast transfer of graphene-based thin films for solar cells and humidity sensors

    NASA Astrophysics Data System (ADS)

    Sun, Jiawei; Xie, Xiao; Bi, Hengchang; Jia, Haiyang; Zhu, Chongyang; Wan, Neng; Huang, Jianqiu; Nie, Meng; Li, Dan; Sun, Litao

    2017-03-01

    Vacuum filtration enables the fabrication of large-area graphene-based membranes (GBMs), possessing a smoother surface than that by spray, spin coating or drop casting. However, due to the strong interaction with substrates, the separation of thin GBMs from the filter is problematic. Conventional stamping separation/transfer of graphene oxide (GO) thin films requires another substrate and pressing for >10 h, which may damage the delicate structure of the transfer substrates. Other methods require GO to be reduced on filters before separation, thus limiting the reduction methods. Inspired by a coagulation bath that enables rapid formation of ultrastrong GO fibers, we present an ultrafast (<1 min) and solution-assisted strategy to fabricate smooth and freestanding GO films. The diverse interfacial energy of hydrogen bonds also demonstrates another reason for the successful separation. The film thickness ranges from 45 nm to several micrometers. When used as a composite of counter electrodes in dye sensitized solar cells, it showed higher (8.58%) power conversion efficiency than its spin-(7.71%) and spray-coated (8.07%) counterparts. It also showed promising performance in capacitive humidity sensors. The capacitance varied by three orders of magnitude in the range of the relative humidity of 15%-95%. Therefore the strategy realizes an ultrafast and high-quality film production which is suitable for various applications.

  20. Substrate temperature influence on the properties of GaN thin films grown by hollow-cathode plasma-assisted atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Gungor, Neşe; Haider, Ali

    2016-01-15

    Gallium nitride films were grown by hollow cathode plasma-assisted atomic layer deposition using triethylgallium and N{sub 2}/H{sub 2} plasma. An optimized recipe for GaN film was developed, and the effect of substrate temperature was studied in both self-limiting growth window and thermal decomposition-limited growth region. With increased substrate temperature, film crystallinity improved, and the optical band edge decreased from 3.60 to 3.52 eV. The refractive index and reflectivity in Reststrahlen band increased with the substrate temperature. Compressive strain is observed for both samples, and the surface roughness is observed to increase with the substrate temperature. Despite these temperature dependent material properties,more » the chemical composition, E{sub 1}(TO), phonon position, and crystalline phases present in the GaN film were relatively independent from growth temperature.« less

  1. Spectroscopic investigation of the chemical and electronic properties of chalcogenide materials for thin-film optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Horsley, Kimberly Anne

    Chalcogen-based materials are at the forefront of technologies for sustainable energy production. This progress has come only from decades of research, and further investigation is needed to continue improvement of these materials. For this dissertation, a number of chalcogenide systems were studied, which have applications in optoelectronic devices, such as LEDs and Photovoltaics. The systems studied include Cu(In,Ga)Se2 (CIGSe) and CuInSe 2 (CISe) thin-film absorbers, CdTe-based photovoltaic structures, and CdTe-ZnO nanocomposite materials. For each project, a sample set was prepared through collaboration with outside institutions, and a suite of spectroscopy techniques was employed to answer specific questions about the system. These techniques enabled the investigation of the chemical and electronic structure of the materials, both at the surface and towards the bulk. CdS/Cu(In,Ga)Se2 thin-films produced from the roll-to-roll, ambient pressure, Nanosolar industrial line were studied. While record-breaking efficiency cells are usually prepared in high-vacuum (HV) or ultra-high vacuum (UHV) environments, these samples demonstrate competitive mass-production efficiency without the high-cost deposition environment. We found relatively low levels of C contaminants, limited Na and Se oxidation, and a S-Se intermixing at the CdS/CIGSe interface. The surface band gap compared closely to previously investigated CIGSe thin-films deposited under vacuum, illustrating that roll-to-roll processing is a promising and less-expensive alternative for solar cell production. An alternative deposition process for CuInSe2 was also studied, in collaboration with the University of Luxembourg. CuInSe2 absorbers were prepared with varying Cu content and surface treatments to investigate the potential to produce an absorber with a Cu-rich bulk and Cu-poor surface. This is desired to combine the bulk characteristics of reduced defects and larger grains in Cu-rich films, while maintaining

  2. Electrostatically assisted fabrication of silver-dielectric core/shell nanoparticles thin film capacitor with uniform metal nanoparticle distribution and controlled spacing.

    PubMed

    Li, Xue; Niitsoo, Olivia; Couzis, Alexander

    2016-03-01

    An electrostatically-assisted strategy for fabrication of thin film composite capacitors with controllable dielectric constant (k) has been developed. The capacitor is composed of metal-dielectric core/shell nanoparticle (silver/silica, Ag@SiO2) multilayer films, and a backfilling polymer. Compared with the simple metal particle-polymer mixtures where the metal nanoparticles (NP) are randomly dispersed in the polymer matrix, the metal volume fraction in our capacitor was significantly increased, owing to the densely packed NP multilayers formed by the electrostatically assisted assembly process. Moreover, the insulating layer of silica shell provides a potential barrier that reduces the tunneling current between neighboring Ag cores, endowing the core/shell nanocomposites with a stable and relatively high dielectric constant (k) and low dielectric loss (D). Our work also shows that the thickness of the SiO2 shell plays a dominant role in controlling the dielectric properties of the nanocomposites. Control over metal NP separation distance was realized not only by variation the shell thickness of the core/shell NPs but also by introducing a high k nanoparticle, barium strontium titanate (BST) of relatively smaller size (∼8nm) compared to 80-160nm of the core/shell Ag@SiO2 NPs. The BST assemble between the Ag@SiO2 and fill the void space between the closely packed core/shell NPs leading to significant enhancement of the dielectric constant. This electrostatically assisted assembly method is promising for generating multilayer films of a large variety of NPs over large areas at low cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Modification of UV absorption profile of polymer film reflectors to increase solar-weighted reflectance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgensen, Gary; Gee, Randall C.; White, David

    Provided are reflective thin film constructions including a reduced number of layers, which provides for increased solar-weighted hemispherical reflectance and durability. Reflective films include those comprising an ultraviolet absorbing abrasion resistant coating over a metal layer. Also provided are ultraviolet absorbing abrasion resistant coatings and methods for optimizing the ultraviolet absorption of an abrasion resistant coating. Reflective films disclosed herein are useful for solar reflecting, solar collecting, and solar concentrating applications, such as for the generation of electrical power.

  4. In Situ Nanocalorimetric Investigations of Plasma Assisted Deposited Poly(ethylene oxide)-like Films by Specific Heat Spectroscopy.

    PubMed

    Madkou, Sherif; Melnichu, Iurii; Choukourov, Andrei; Krakovsky, Ivan; Biederman, Hynek; Schönhals, Andreas

    2016-04-28

    In recent years, highly cross-linked plasma polymers have started to unveil their potential in numerous biomedical applications in thin-film form. However, conventional diagnostic methods often fail due to their diverse molecular dynamics conformations. Here, glassy dynamics and the melting transition of thin PEO-like plasma assisted deposited (ppPEO) films (thickness 100 nm) were in situ studied by a combination of specific heat spectroscopy, utilizing a pJ/K sensitive ac-calorimeter chip, and composition analytical techniques. Different cross-linking densities were obtained by different plasma powers during the deposition of the films. Glassy dynamics were observed for all values of the plasma power. It was found that the glassy dynamics slows down with increasing the plasma power. Moreover, the underlying relaxation time spectra broaden indicating that the molecular motions become more heterogeneous with increasing plasma power. In a second set of the experiment, the melting behavior of the ppPEO films was studied. The melting temperature of ppPEO was found to decrease with increasing plasma power. This was explained by a decrease of the order in the crystals due to formation of chemical defects during the plasma process.

  5. Absorbing boundary layers for spin wave micromagnetics

    NASA Astrophysics Data System (ADS)

    Venkat, G.; Fangohr, H.; Prabhakar, A.

    2018-03-01

    Micromagnetic simulations are used to investigate the effects of different absorbing boundary layers (ABLs) on spin waves (SWs) reflected from the edges of a magnetic nano-structure. We define the conditions that a suitable ABL must fulfill and compare the performance of abrupt, linear, polynomial and tan hyperbolic damping profiles in the ABL. We first consider normal incidence in a permalloy stripe and propose a transmission line model to quantify reflections and calculate the loss introduced into the stripe due to the ABL. We find that a parabolic damping profile absorbs the SW energy efficiently and has a low reflection coefficient, thus performing much better than the commonly used abrupt damping profile. We then investigated SWs that are obliquely incident at 26.6 °, 45 ° and 63.4 ° on the edge of a yttrium-iron-garnet film. The parabolic damping profile again performs efficiently by showing a high SW energy transfer to the ABL and a low reflected SW amplitude.

  6. Jet impact on a soap film

    NASA Astrophysics Data System (ADS)

    Kirstetter, Geoffroy; Raufaste, Christophe; Celestini, Franck

    2012-09-01

    We experimentally investigate the impact of a liquid jet on a soap film. We observe that the jet never breaks the film and that two qualitatively different steady regimes may occur. The first one is a refractionlike behavior obtained at small incidence angles when the jet crosses the film and is deflected by the film-jet interaction. For larger incidence angles, the jet is absorbed by the film, giving rise to a new class of flows in which the jet undulates along the film with a characteristic wavelength. Besides its fundamental interest, this paper presents a different way to guide a micrometric flow of liquid in the inertial regime and to probe foam stability submitted to violent perturbations at the soap film scale.

  7. Jet impact on a soap film.

    PubMed

    Kirstetter, Geoffroy; Raufaste, Christophe; Celestini, Franck

    2012-09-01

    We experimentally investigate the impact of a liquid jet on a soap film. We observe that the jet never breaks the film and that two qualitatively different steady regimes may occur. The first one is a refractionlike behavior obtained at small incidence angles when the jet crosses the film and is deflected by the film-jet interaction. For larger incidence angles, the jet is absorbed by the film, giving rise to a new class of flows in which the jet undulates along the film with a characteristic wavelength. Besides its fundamental interest, this paper presents a different way to guide a micrometric flow of liquid in the inertial regime and to probe foam stability submitted to violent perturbations at the soap film scale.

  8. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating.

    PubMed

    Jiang, Zhi Hao; Yun, Seokho; Toor, Fatima; Werner, Douglas H; Mayer, Theresa S

    2011-06-28

    Metamaterials offer a new approach to create surface coatings with highly customizable electromagnetic absorption from the microwave to the optical regimes. Thus far, efficient metamaterial absorbers have been demonstrated at microwave frequencies, with recent efforts aimed at much shorter terahertz and infrared wavelengths. The present infrared absorbers have been constructed from arrays of nanoscale metal resonators with simple circular or cross-shaped geometries, which provide a single band response. In this paper, we demonstrate a conformal metamaterial absorber with a narrow band, polarization-independent absorptivity of >90% over a wide ±50° angular range centered at mid-infrared wavelengths of 3.3 and 3.9 μm. The highly efficient dual-band metamaterial was realized by using a genetic algorithm to identify an array of H-shaped nanoresonators with an effective electric and magnetic response that maximizes absorption in each wavelength band when patterned on a flexible Kapton and Au thin film substrate stack. This conformal metamaterial absorber maintains its absorption properties when integrated onto curved surfaces of arbitrary materials, making it attractive for advanced coatings that suppress the infrared reflection from the protected surface.

  9. Orientation of Zn3P2 films via phosphidation of Zn precursors

    NASA Astrophysics Data System (ADS)

    Katsube, Ryoji; Nose, Yoshitaro

    2017-02-01

    Orientation of solar absorber is an important factor to achieve high efficiency of thin film solar cells. In the case of Zn3P2 which is a promising absorber of low-cost and high-efficiency solar cells, (110)/(001) orientation was only reported in previous studies. We have successfully prepared (101)-oriented Zn3P2 films by phosphidation of (0001)-oriented Zn films at 350 °C. The phosphidation mechanism of Zn is discussed through STEM observations on the partially-reacted sample and the consideration of the relationship between the crystal structures of Zn and Zn3P2 . We revealed that (0001)-oriented Zn led to nucleation of (101)-oriented Zn3P2 due to the similarity in atomic arrangement between Zn and Zn3P2 . The electrical resistivity of the (101)-oriented Zn3P2 film was lower than those of (110)/(001)-oriented films, which is an advantage of the phosphidation technique to the growth processes in previous works. The results in this study demonstrated that well-conductive Zn3P2 films could be obtained by controlling orientations of crystal grains, and provide a guiding principle for microstructure control in absorber materials.

  10. Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers.

    PubMed

    Siddique, Radwanul H; Donie, Yidenekachew J; Gomard, Guillaume; Yalamanchili, Sisir; Merdzhanova, Tsvetelina; Lemmer, Uli; Hölscher, Hendrik

    2017-10-01

    The wings of the black butterfly, Pachliopta aristolochiae , are covered by micro- and nanostructured scales that harvest sunlight over a wide spectral and angular range. Considering that these properties are particularly attractive for photovoltaic applications, we analyze the contribution of these micro- and nanostructures, focusing on the structural disorder observed in the wing scales. In addition to microspectroscopy experiments, we conduct three-dimensional optical simulations of the exact scale structure. On the basis of these results, we design nanostructured thin photovoltaic absorbers of disordered nanoholes, which combine efficient light in-coupling and light-trapping properties together with a high angular robustness. Finally, inspired by the phase separation mechanism of self-assembled biophotonic nanostructures, we fabricate these bioinspired absorbers using a scalable, self-assembly patterning technique based on the phase separation of binary polymer mixture. The nanopatterned absorbers achieve a relative integrated absorption increase of 90% at a normal incident angle of light to as high as 200% at large incident angles, demonstrating the potential of black butterfly structures for light-harvesting purposes in thin-film solar cells.

  11. Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers

    PubMed Central

    Siddique, Radwanul H.; Donie, Yidenekachew J.; Gomard, Guillaume; Yalamanchili, Sisir; Merdzhanova, Tsvetelina; Lemmer, Uli; Hölscher, Hendrik

    2017-01-01

    The wings of the black butterfly, Pachliopta aristolochiae, are covered by micro- and nanostructured scales that harvest sunlight over a wide spectral and angular range. Considering that these properties are particularly attractive for photovoltaic applications, we analyze the contribution of these micro- and nanostructures, focusing on the structural disorder observed in the wing scales. In addition to microspectroscopy experiments, we conduct three-dimensional optical simulations of the exact scale structure. On the basis of these results, we design nanostructured thin photovoltaic absorbers of disordered nanoholes, which combine efficient light in-coupling and light-trapping properties together with a high angular robustness. Finally, inspired by the phase separation mechanism of self-assembled biophotonic nanostructures, we fabricate these bioinspired absorbers using a scalable, self-assembly patterning technique based on the phase separation of binary polymer mixture. The nanopatterned absorbers achieve a relative integrated absorption increase of 90% at a normal incident angle of light to as high as 200% at large incident angles, demonstrating the potential of black butterfly structures for light-harvesting purposes in thin-film solar cells. PMID:29057320

  12. Experimental study of a smart foam sound absorber.

    PubMed

    Leroy, Pierre; Berry, Alain; Herzog, Philippe; Atalla, Noureddine

    2011-01-01

    This article presents the experimental implementation and results of a hybrid passive/active absorber (smart foam) made up from the combination of a passive absorbent (foam) and a curved polyvinylidene fluoride (PVDF) film actuator bonded to the rear surface of the foam. Various smart foam prototypes were built and tested in active absorption experiments conducted in an impedance tube under plane wave propagation condition at frequencies between 100 and 1500 Hz. Three control cases were tested. The first case used a fixed controller derived in the frequency domain from estimations of the primary disturbance at a directive microphone position in the tube and the transfer function between the control PVDF and the directive microphone. The two other cases used an adaptive time-domain feedforward controller to absorb either a single-frequency incident wave or a broadband incident wave. The non-linearity of the smart foams and the causality constraint were identified to be important factors influencing active control performance. The effectiveness of the various smart foam prototypes is discussed in terms of the active and passive absorption coefficients as well as the control voltage of the PVDF actuator normalized by the incident sound pressure.

  13. Interfacial Engineering and Charge Carrier Dynamics in Extremely Thin Absorber Solar Cells

    NASA Astrophysics Data System (ADS)

    Edley, Michael

    Photovoltaic energy is a clean and renewable source of electricity; however, it faces resistance to widespread use due to cost. Nanostructuring decouples constraints related to light absorption and charge separation, potentially reducing cost by allowing a wider variety of processing techniques and materials to be used. However, the large interfacial areas also cause an increased dark current which negatively affects cell efficiency. This work focuses on extremely thin absorber (ETA) solar cells that used a ZnO nanowire array as a scaffold for an extremely thin CdSe absorber layer. Photoexcited electrons generated in the CdSe absorber are transferred to the ZnO layer, while photogenerated holes are transferred to the liquid electrolyte. The transfer of photoexcited carriers to their transport layer competes with bulk recombination in the absorber layer. After charge separation, transport of charge carriers to their respective contacts must occur faster than interfacial recombination for efficient collection. Charge separation and collection depend sensitively on the dimensions of the materials as well as their interfaces. We demonstrated that an optimal absorber thickness can balance light absorption and charge separation. By treating the ZnO/CdSe interface with a CdS buffer layer, we were able to improve the Voc and fill factor, increasing the ETA cell's efficiency from 0.53% to 1.34%, which is higher than that achievable using planar films of the same material. We have gained additional insight into designing ETA cells through the use of dynamic measurements. Ultrafast transient absorption spectroscopy revealed that characteristic times for electron injection from CdSe to ZnO are less than 1 ps. Electron injection is rapid compared to the 2 ns bulk lifetime in CdSe. Optoelectronic measurements such as transient photocurrent/photovoltage and electrochemical impedance spectroscopy were applied to study the processes of charge transport and interfacial recombination

  14. Paper-Thin Plastic Film Soaks Up Sun to Create Solar Energy

    NASA Technical Reports Server (NTRS)

    2006-01-01

    A non-crystallized silicon known as amorphous silicon is the semiconductor material most frequently chosen for deposition, because it is a strong absorber of light. According to the U.S. Department of Energy, amorphous silicon absorbs solar radiation 40 times more efficiently than single-crystal silicon, and a thin film only about 1-micrometer (one one-millionth of a meter) thick containing amorphous silicon can absorb 90 percent of the usable light energy shining on it. Peak efficiency and significant reduction in the use of semiconductor and thin film materials translate directly into time and money savings for manufacturers. Thanks in part to NASA, thin film solar cells derived from amorphous silicon are gaining more and more attention in a market that has otherwise been dominated by mono- and poly-crystalline silicon cells for years. At Glenn Research Center, the Photovoltaic & Space Environments Branch conducts research focused on developing this type of thin film solar cell for space applications. Placing solar cells on thin film materials provides NASA with an attractively priced solution to fabricating other types of solar cells, given that thin film solar cells require significantly less semiconductor material to generate power. Using the super-lightweight solar materials also affords NASA the opportunity to cut down on payload weight during vehicle launches, as well as the weight of spacecraft being sent into orbit.

  15. Spin-Orbit Torque-Assisted Switching in Magnetic Insulator Thin Films with Perpendicular Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Wu, Mingzhong

    As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque that can induce magnetization switching in a neighboring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. This presentation reports the SOT-assisted switching in heavy metal/magnetic insulator systems.1 The experiments made use of Pt/BaFe12O19 bi-layered structures. Thanks to its strong spin-orbit coupling, Pt has been widely used to produce pure spin currents in previous studies. BaFe12O19 is an M-type barium hexagonal ferrite and is often referred as BaM. It is one of the few magnetic insulators with strong magneto-crystalline anisotropy and shows an effective uniaxial anisotropy field of about 17 kOe. It's found that the switching response in the BaM film strongly depends on the charge current applied to the Pt film. When a constant magnetic field is applied in the film plane, the charge current in the Pt film can switch the normal component of the magnetization (M⊥) in the BaM film between the up and down states. The current also dictates the up and down states of the remnant magnetization when the in-plane field is reduced to zero. When M⊥ is measured by sweeping an in-plane field, the response manifests itself as a hysteresis loop, which evolves in a completely opposite manner if the sign of the charge current is flipped. When the coercivity is measured by sweeping an out-of-plane field, its value can be reduced or increased by as much as about 500 Oe if an appropriate charge current is applied. 1. P. Li, T. Liu, H. Chang, A. Kalitsov, W. Zhang, G. Csaba, W. Li, D. Richardson, A. Demann, G. Rimal, H. Dey, J. S. Jiang, W. Porod, S. Field, J. Tang, M. C. Marconi, A. Hoffmann, O. Mryasov, and M. Wu, Nature Commun. 7:12688 doi: 10.1038/ncomms12688 (2016).

  16. Pressure-assisted synthesis of HKUST-1 thin film on polymer hollow fiber at room temperature toward gas separation.

    PubMed

    Mao, Yiyin; Li, Junwei; Cao, Wei; Ying, Yulong; Sun, Luwei; Peng, Xinsheng

    2014-03-26

    The scalable fabrication of continuous and defect-free metal-organic framework (MOF) films on the surface of polymeric hollow fibers, departing from ceramic supported or dense composite membranes, is a huge challenge. The critical way is to reduce the growth temperature of MOFs in aqueous or ethanol solvents. In the present work, a pressure-assisted room temperature growth strategy was carried out to fabricate continuous and well-intergrown HKUST-1 films on a polymer hollow fiber by using solid copper hydroxide nanostrands as the copper source within 40 min. These HKUST-1 films/polyvinylidenefluoride (PVDF) hollow fiber composite membranes exhibit good separation performance for binary gases with selectivity 116% higher than Knudsen values via both inside-out and outside-in modes. This provides a new way to enable for scale-up preparation of HKUST-1/polymer hollow fiber membranes, due to its superior economic and ecological advantages.

  17. Linking Precursor Alterations to Nanoscale Structure and Optical Transparency in Polymer Assisted Fast-Rate Dip-Coating of Vanadium Oxide Thin Films

    PubMed Central

    Glynn, Colm; Creedon, Donal; Geaney, Hugh; Armstrong, Eileen; Collins, Timothy; Morris, Michael A.; Dwyer, Colm O’

    2015-01-01

    Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative vapour or physical deposition methods. To increase the effectiveness and versatility of dip-coated thin films, alterations to commonly used precursors can be made that facilitate controlled thin film deposition. The effects of polymer assisted deposition and changes in solvent-alkoxide dilution on the morphology, structure, optoelectronic properties and crystallinity of vanadium pentoxide thin films was studied using a dip-coating method using a substrate withdrawal speed within the fast-rate draining regime. The formation of sub-100 nm thin films could be achieved rapidly from dilute alkoxide based precursor solutions with high optical transmission in the visible, linked to the phase and film structure. The effects of the polymer addition was shown to change the crystallized vanadium pentoxide thin films from a granular surface structure to a polycrystalline structure composed of a high density of smaller in-plane grains, resulting in a uniform surface morphology with lower thickness and roughness. PMID:26123117

  18. Ecofriendly and Nonvacuum Electrostatic Spray-Assisted Vapor Deposition of Cu(In,Ga)(S,Se)2 Thin Film Solar Cells.

    PubMed

    Hossain, Md Anower; Wang, Mingqing; Choy, Kwang-Leong

    2015-10-14

    Chalcopyrite Cu(In,Ga)(S,Se)2 (CIGSSe) thin films have been deposited by a novel, nonvacuum, and cost-effective electrostatic spray-assisted vapor deposition (ESAVD) method. The generation of a fine aerosol of precursor solution, and their controlled deposition onto a molybdenum substrate, results in adherent, dense, and uniform Cu(In,Ga)S2 (CIGS) films. This is an essential tool to keep the interfacial area of thin film solar cells to a minimum value for efficient charge separation as it helps to achieve the desired surface smoothness uniformity for subsequent cadmium sulfide and window layer deposition. This nonvacuum aerosol based approach for making the CIGSSe film uses environmentally benign precursor solution, and it is cheaper for producing solar cells than that of the vacuum-based thin film solar technology. An optimized CIGSSe thin film solar cell with a device configuration of molybdenum-coated soda-lime glass substrate/CIGSSe/CdS/i-ZnO/AZO shows the photovoltaic (j-V) characteristics of Voc=0.518 V, jsc=28.79 mA cm(-2), fill factor=64.02%, and a promising power conversion efficiency of η=9.55% under simulated AM 1.5 100 mW cm(-2) illuminations, without the use of an antireflection layer. This demonstrates the potential of ESAVD deposition as a promising alternative approach for making thin film CIGSSe solar cells at a lower cost.

  19. Structural and optical properties of CuS thin films deposited by Thermal co-evaporation

    NASA Astrophysics Data System (ADS)

    Sahoo, A. K.; Mohanta, P.; Bhattacharyya, A. S.

    2015-02-01

    Copper sulfide (CuS) thin films with thickness 100, 150 and 200 nm have been deposited on glass substrates by thermal co-evaporation of Copper and Sulphur. The effect of CuS film thickness on the structural and optical properties have investigated and discussed. Structural and optical investigations of the films were carried out by X-ray diffraction, atomic force microscopy, high-resolution transmission electron microscopy and UV spectroscopy. XRD and selected area electron diffraction conforms that polycrystalline in nature with hexagonal crystal structure. AFM studies revealed a smooth surface morphology with root mean-square roughness values increases from 24 nm to 42 nm as the film thickness increase from 100 nm to 200 nm. AFM image showed that grain size increases with thickness of film increases and good agreement with the calculated from full width half maximum of the X-ray diffraction peak using Scherrer's formula and Williamson-Hall plot. The absorbance of the thin films were absorbed decreases with wavelength through UV-visible regions but showed a increasing in the near-infrared regions. The reflectance spectra also showed lower reflectance peak (25% to 32%) in visible region and high reflectance peak (49 % to 54 %) in near-infrared region. These high absorbance films made them for photo-thermal conversion of solar energy.

  20. Study of structural and optical properties of PbS thin films

    NASA Astrophysics Data System (ADS)

    Homraruen, T.; Sudswasd, Y.; Sorod, R.; Kayunkid, N.; Yindeesuk, W.

    2018-03-01

    This research aimed to synthesize lead sulfide (PbS) thin films on glass slides using the successive ion layer absorption and reaction (SILAR) method. We studied the optical properties and structure of PbS thin films by changing the number of dipping cycles and the concentration of precursor solution. The results of this experiment show that different conditions have a considerable influence on the thickness and absorbance of the films. When the number of dipping cycles and the concentration of the solution are increased, film thickness and absorbance tend to become higher. The xrays diffraction pattern showed all the diffraction peaks which confirmed the face center cubic and the structure of PbS had identified. Grain size computation was used to confirm how much these conditions could be affected.

  1. Annealed CVD molybdenum thin film surface

    DOEpatents

    Carver, Gary E.; Seraphin, Bernhard O.

    1984-01-01

    Molybdenum thin films deposited by pyrolytic decomposition of Mo(CO).sub.6 attain, after anneal in a reducing atmosphere at temperatures greater than 700.degree. C., infrared reflectance values greater than reflectance of supersmooth bulk molybdenum. Black molybdenum films deposited under oxidizing conditions and annealed, when covered with an anti-reflecting coating, approach the ideal solar collector characteristic of visible light absorber and infrared energy reflector.

  2. Nanoparticle Thin Films for Gas Sensors Prepared by Matrix Assisted Pulsed Laser Evaporation

    PubMed Central

    Caricato, Anna Paola; Luches, Armando; Rella, Roberto

    2009-01-01

    The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO2, SnO2) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al2O3 substrates. A rather uniform distribution of TiO2 nanoparticles with an average size of about 10 nm and of SnO2 nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented. PMID:22574039

  3. Nanoparticle thin films for gas sensors prepared by matrix assisted pulsed laser evaporation.

    PubMed

    Caricato, Anna Paola; Luches, Armando; Rella, Roberto

    2009-01-01

    The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO(2), SnO(2)) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al(2)O(3) substrates. A rather uniform distribution of TiO(2) nanoparticles with an average size of about 10 nm and of SnO(2) nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented.

  4. Fabrication and characterization of differentiated aramid nanofibers and transparent films

    NASA Astrophysics Data System (ADS)

    Luo, Jingjing; Zhang, Meiyun; Yang, Bin; Liu, Guodong; Song, Shunxi

    2018-03-01

    Aramid nanofibers (ANFs) frequently are employed as versatile building blocks for constructing high-performance nanocomposites due to its structural and performance superiority. In this paper, the different ANFs and ANF films derived from the typical aramid yarns, chopped fiber, pulp fiber and fibrid fiber, respectively, were fabricated through deprotonation with potassium hydroxide in dimethyl sulphoxide, protonation with deionized water and vacuum-assisted filtration. The physical tests such as tensile test, ultraviolet transmittance and absorbance, thermogravimetric analysis were executed to evaluate and contrast the thermodynamic and optical performances of these differentiated ANFs and ANF films. The analytical results suggested that ANFs films prepared by the different forms of aramid macrofibers presented with differentiated properties such as mechanical behaviors, transparencies and flexibilities. And also it was found that the oversized nanofiber in length led to the formation of flocculation which was adverse for ANFs films in the formation of high strength. Whereas, small diameter just facilitated for the achievement of high stiffness and transparency. By contrast, the ANFs films made from chopped nanofiber, with aspect ratio of 200-500, exhibited good transparency, thermal stability and mechanical properties with transmittance value of 83%, TG10% around 521 °C, ultimate strength (σ) of 103.41 MPa, stiffness (E) of 4.70 GPa and strain at break of 5.56%. This work offers an alternative nanoscale building block as an effective nanofiller for preparing high-performance nanocomposites with different requirements in the potential fields such as transparent coating and flexible electrode or display materials, battery separator and microporous membrane.

  5. An ultrahigh vacuum, low-energy ion-assisted deposition system for III-V semiconductor film growth

    NASA Astrophysics Data System (ADS)

    Rohde, S.; Barnett, S. A.; Choi, C.-H.

    1989-06-01

    A novel ion-assisted deposition system is described in which the substrate and growing film can be bombarded with high current densities (greater than 1 mA/sq cm) of very low energy (10-200 eV) ions. The system design philosophy is similar to that used in III-V semiconductor molecular-beam epitaxy systems: the chamber is an all-metal ultrahigh vacuum system with liquid-nitrogen-cooled shrouds, Knudsen-cell evaporation sources, a sample insertion load-lock, and a 30-kV reflection high-energy electron diffraction system. III-V semiconductor film growth is achieved using evaporated group-V fluxes and group-III elemental fluxes sputtered from high-purity targets using ions extracted from a triode glow discharge. Using an In target and an As effusion cell, InAs deposition rates R of 2 microns/h have been obtained. Epitaxial growth of InAs was observed on both GaSb(100) and Si(100) substrates.

  6. Electronic and optical device applications of hollow cathode plasma assisted atomic layer deposition based GaN thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolat, Sami, E-mail: bolat@ee.bilkent.edu.tr; Tekcan, Burak; Ozgit-Akgun, Cagla

    2015-01-15

    Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metal–semiconductor–metal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N{sub 2}/H{sub 2} PA-ALD based GaN channels aremore » observed to have improved stability and transfer characteristics with respect to NH{sub 3} PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N{sub 2}:H{sub 2} ambient.« less

  7. Post-annealing effect on optical absorbance of hydrothermally grown zinc oxide nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohar, Rahmat Setiawan; Djuhana, Dede; Imawan, Cuk

    In this study, the optical absorbance of zinc oxide (ZnO) nanorods was investigated. The ZnO thin film were deposited on indium tin oxide (ITO) layers using ultrasonic spray pyrolysis (USP) method and then grown by hydrothermal method. In order to improve the optical absorbance, the ZnO nanorods were then post-annealed for one hour at three different of temperatures, namely 250, 400, and 500 °C. The X-ray diffraction (XRD) spectra and FESEM images show that the ZnO nanorods have the hexagonal wurtzite crystal structure and the increasing of post-annealing temperature resulted in the increasing of crystallite size from 38.2 nm to 48.4 nm.more » The UV-vis spectra shows that all samples of ZnO nanorods exhibited the identical sharp absorption edge at 390 nm indicating that all samples have the same bandgap. The post-annealing process seemed to decrease the optical absorbance in the region of 300-550 nm and increase the optical absorbance in the region of 550-700 nm..« less

  8. Vapor deposition of thin films

    DOEpatents

    Smith, David C.; Pattillo, Stevan G.; Laia, Jr., Joseph R.; Sattelberger, Alfred P.

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  9. Thermal tuning of infrared resonant absorbers based on hybrid gold-VO{sub 2} nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocer, Hasan; Department of Electrical Engineering, Turkish Military Academy, 06654 Ankara; Butun, Serkan

    2015-04-20

    Resonant absorbers based on plasmonic materials, metamaterials, and thin films enable spectrally selective absorption filters, where absorption is maximized at the resonance wavelength. By controlling the geometrical parameters of nano/microstructures and materials' refractive indices, resonant absorbers are designed to operate at wide range of wavelengths for applications including absorption filters, thermal emitters, thermophotovoltaic devices, and sensors. However, once resonant absorbers are fabricated, it is rather challenging to control and tune the spectral absorption response. Here, we propose and demonstrate thermally tunable infrared resonant absorbers using hybrid gold-vanadium dioxide (VO{sub 2}) nanostructure arrays. Absorption intensity is tuned from 90% to 20%more » and 96% to 32% using hybrid gold-VO{sub 2} nanowire and nanodisc arrays, respectively, by heating up the absorbers above the phase transition temperature of VO{sub 2} (68 °C). Phase change materials such as VO{sub 2} deliver useful means of altering optical properties as a function of temperature. Absorbers with tunable spectral response can find applications in sensor and detector applications, in which external stimulus such as heat, electrical signal, or light results in a change in the absorption spectrum and intensity.« less

  10. Dental Training Films.

    ERIC Educational Resources Information Center

    Veterans Administration Medical Center, Washington, DC.

    This dental training films catalog is organized into two sections. Section I is a category listing of the films by number and title, indexed according to generalized headings; categories are as follow: anatomy, articulator systems, complete dentures, dental assisting, dental laboratory technology, dental materials, dental office emergencies,…

  11. Structural, optical and electrical properties of copper antimony sulfide thin films grown by a citrate-assisted single chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Loranca-Ramos, F. E.; Diliegros-Godines, C. J.; Silva González, R.; Pal, Mou

    2018-01-01

    Copper antimony sulfide (CAS) has been proposed as low toxicity and earth abundant absorber materials for thin film photovoltaics due to their suitable optical band gap, high absorption coefficient and p-type electrical conductivity. The present work reports the formation of copper antimony sulfide by chemical bath deposition using sodium citrate as a complexing agent. We show that by tuning the annealing condition, one can obtain either chalcostibite or tetrahedrite phase. However, the main challenge was co-deposition of copper and antimony as ternary sulfides from a single chemical bath due to the distinct chemical behavior of these metals. The as-deposited films were subjected to several trials of thermal treatment using different temperatures and time to find the optimized annealing condition. The films were characterized by different techniques including Raman spectroscopy, X-ray diffraction (XRD), profilometer, scanning electron microscopy (SEM), UV-vis spectrophotometer, and Hall Effect measurements. The results show that the formation of chalcostibite and tetrahedrite phases is highly sensitive to annealing conditions. The electrical properties obtained for the chalcostibite films varied as the annealing temperature increases from 280 to 350 °C: hole concentration (n) = 1017-1018 cm-3, resistivity (ρ) = 1.74-2.14 Ωcm and carrier mobility (μ) = 4.7-9.26 cm2/Vseg. While for the tetrahedrite films, the electrical properties were n = 5 × 1019 cm-3, μ = 18.24 cm2/Vseg, and ρ = 5.8 × 10-3 Ωcm. A possible mechanism for the formation of ternary copper antimony sulfide has also been proposed.

  12. Neutron reflectometry on highly absorbing films and its application to 10B4C-based neutron detectors

    PubMed Central

    Piscitelli, F.; Khaplanov, A.; Devishvili, A.; Schmidt, S.; Höglund, C.; Birch, J.; Dennison, A. J. C.; Gutfreund, P.; Hall-Wilton, R.; Van Esch, P.

    2016-01-01

    Neutron reflectometry is a powerful tool used for studies of surfaces and interfaces. The absorption in the typical studied materials is neglected and this technique is limited only to the reflectivity measurement. For strongly absorbing nuclei, the absorption can be directly measured by using the neutron-induced fluorescence technique which exploits the prompt particle emission of absorbing isotopes. This technique is emerging from soft matter and biology where highly absorbing nuclei, in very small quantities, are used as a label for buried layers. Nowadays, the importance of absorbing layers is rapidly increasing, partially because of their application in neutron detection; a field that has become more active also due to the 3He-shortage. We extend the neutron-induced fluorescence technique to the study of layers of highly absorbing materials, in particular 10B4C. The theory of neutron reflectometry is a commonly studied topic; however, when a strong absorption is present the subtle relationship between the reflection and the absorption of neutrons is not widely known. The theory for a general stack of absorbing layers has been developed and compared to measurements. We also report on the requirements that a 10B4C layer must fulfil in order to be employed as a converter in neutron detection. PMID:26997902

  13. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deb, K.; Bera, A.; Saha, B., E-mail: biswajit.physics@gmail.com

    2016-05-23

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline filmmore » is well suited for their applications in electronic devices.« less

  14. Evaluation of mechanism of cold atmospheric pressure plasma assisted polymerization of acrylic acid on low density polyethylene (LDPE) film surfaces: Influence of various gaseous plasma pretreatment

    NASA Astrophysics Data System (ADS)

    Ramkumar, M. C.; Pandiyaraj, K. Navaneetha; Arun Kumar, A.; Padmanabhan, P. V. A.; Uday Kumar, S.; Gopinath, P.; Bendavid, A.; Cools, P.; De Geyter, N.; Morent, R.; Deshmukh, R. R.

    2018-05-01

    Owing to its exceptional physiochemical properties, low density poly ethylene (LDPE) has wide range of tissue engineering applications. Conversely, its inadequate surface properties make LDPE an ineffectual candidate for cell compatible applications. Consequently, plasma-assisted polymerization with a selected precursor is a good choice for enhancing its biocompatibility. The present investigation studies the efficiency of plasma polymerization of acrylic acid (AAC) on various gaseous plasma pretreated LDPE films by cold atmospheric pressure plasma, to enhance its cytocompatibility. The change in chemical composition and surface topography of various gaseous plasma pretreated and acrylic deposited LDPE films has been assessed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The changes in hydrophilic nature of surface modified LDPE films were studied by contact angle (CA) analysis. Cytocompatibility of the AAC/LDPE films was also studied in vitro, using RIN-5F cells. The results acquired by the XPS and AFM analysis clearly proved that cold atmospheric pressure (CAP) plasma assisted polymerization of AAC enhances various surface properties including carboxylic acid functional group density and increased surface roughness on various gaseous plasma treated AAC/LDPE film surfaces. Moreover, contact angle analysis clearly showed that the plasma polymerized samples were hydrophilic in nature. In vitro cytocompatibility analysis undoubtedly validates that the AAC polymerized various plasma pretreated LDPE films surfaces stimulate cell distribution and proliferation compared to pristine LDPE films. Similarly, cytotoxicity analysis indicates that the AAC deposited various gaseous plasma pretreated LDPE film can be considered as non-toxic as well as stimulating cell viability significantly. The cytocompatible properties of AAC polymerized Ar + O2 plasma pretreated LDPE films were found to be more pronounced compared to the other plasma pretreated

  15. Plasticization of Poly (lactic) acid Film as a Potential Coating Material

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Li, Hua; Liu, Qingsong; Dong, Hongbiao; Duan, Yafei; Zhang, Jiasong

    2018-01-01

    PLA-based composite films with different plasticizers, such as polyethylene glycol (PEG) and Tributyl citrate (TBC), were prepared using a solvent casting method and their machanical, water absorbency and NO3 --N permeability properties were tested. Tensile strength, elongation at break, water absorbency and NO3 --N permeability of neat PLA film were 1.99 ± 0.04 MPa, 2.7 ± 0.46%, 29.33 ± 0.3% and 216.03 ± 19.92 mg·L-1·m-2·h-1, respectively. After the addition of plasticizers the tensile strength were decreased, tensile strength of flims added 40wt% TBC and PEG decreased by 59.3% and 52.26%. While the elongation at break of the PLA film gradually increased. The elongation at break reached the value of 23.96±0.48% and 38.55±1.66% for the films added PEG and TBC respectively at the concentration of 40wt%. Water absorbency decreased as the increase of plasticizers. The NO3 --N permeability attained a maximum of 300.05±10.47 and 270.97±14.54 mg·L-1·m-2·h-1 for films added PEG and TBC at the concentration of 10 wt % respectively. Considered the NO3 --N permeability, PEG at 10wt% seemed the better plasticizer for PLA used in control release of fertilizer.

  16. Zincblende to Wurtzite phase shift of CdSe thin films prepared by electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Bai, Rekha; Chaudhary, Sujeet; Pandya, Dinesh K.

    2018-04-01

    Cadmium selenide (CdSe) nanostructured thin films have been deposited on conducting glass substrates by potentiostatic electrochemical deposition (ECD) technique. The effect of electrolyte bath pH on the structural, morphological and optical properties of CdSe films has been investigated. Crystal structure of these films is characterized by X-ray diffraction and Raman spectroscopy which reveal polycrystalline nature of CdSe films exhibiting phase shift from zincblende to wurtzite structure with increase in bath pH. Optical studies reveal that the CdSe thin films have good absorbance in visible spectral region and they possess direct optical band gap which increases from 1.68 to 1.97 eV with increase in bath pH. The results suggest CdSe is an efficient absorber material for next generation solar cells.

  17. Design and simulation of multi-color infrared CMOS metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengxi; Chen, Yongping; Ma, Bin

    2016-05-01

    Metamaterial electromagnetic wave absorbers, which usually can be fabricated in a low weight thin film structure, have a near unity absorptivity in a special waveband, and therefore have been widely applied from microwave to optical waveband. To increase absorptance of CMOS MEMS devices in 2-5 μmm waveband, multi-color infrared metamaterial absorbers are designed with CSMC 0.5 μmm 2P3M and 0.18 μmm 1P6M CMOS technology in this work. Metal-insulator-metal (MIM) three-layer MMAs and Insulator-metal-insulator-metal (MIMI) four-layer MMAs are formed by CMOS metal interconnect layers and inter metal dielectrics layer. To broaden absorption waveband in 2-5μmm range, MMAs with a combination of different sizes cross bars are designed. The top metal layer is a periodic aluminum square array or cross bar array with width ranging from submicron to several microns. The absorption peak position and intensity of MMAs can be tuned by adjusting the top aluminum micro structure array. Post-CMOS process is adopted to fabricate MMAs. The infrared absorption spectra of MMAs are verified with finite element method simulation, and the effects of top metal structure sizes, patterns, and films thickness are also simulated and intensively discussed. The simulation results show that CMOS MEMS MMAs enhance infrared absorption in 2-20 μmm. The MIM broad MMA has an average absorptance of 0.22 in 2-5 μmm waveband, and 0.76 in 8-14 μm waveband. The CMOS metamaterial absorbers can be inherently integrated in many kinds of MEMS devices fabricated with CMOS technology, such as uncooled bolometers, infrared thermal emitters.

  18. On the influence of DC electric fields on the aerosol assisted chemical vapor deposition growth of photoactive titanium dioxide thin films.

    PubMed

    Romero, Luz; Binions, Russell

    2013-11-05

    Titanium dioxide thin films were deposited on fluorine doped tin oxide glass substrate from the electric field assisted aerosol chemical vapor deposition (EACVD) reaction of titanium isopropoxide (TTIP, Ti(OC3H7)4) in toluene on glass substrates at a temperature of 450 °C. DC electric fields were generated by applying a potential difference between the electrodes of the transparent coated oxide coated glass substrates during the deposition. The deposited films were characterized using scanning electron microscopy, X-ray diffraction, atomic force microscopy, Raman spectroscopy, and UV-vis spectroscopy. The photoactivity and hydrophilicity of the deposited films were also analyzed using a dye-ink test and water-contact angle measurements. The characterization work revealed that the incorporation of DC electric fields produced significant reproducible changes in the film microstructure, preferred crystallographic orientation, roughness, and film thickness. Photocatalytic activity was calculated from the half-time (t1/2) or time taken to degrade 50% of the initial resazurin dye concentration. A large improvement in photocatalytic activity was observed for films deposited using an electric field with a strong orientation in the (004) direction (t1/2 17 min) as compared to a film deposited with no electric field (t1/2 40 min).

  19. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices.

    PubMed

    Eslamian, Morteza; Zabihi, Fatemeh

    2015-12-01

    A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few similar reports by others, confirm that imposing ultrasonic vibration on the substrate can simply convert the uncontrollable drop casting method into a controllable coating technique. Therefore, the SVADC may be used to fabricate an array of emerging thin-film solar cells, such as polymer, perovskite, and quantum-dot solar cells, as well as other small thin-film devices, in a roll-to-roll and automated fabrication process. The preliminary results demonstrate a ten-fold increase in electrical conductivity of PSS made by SVADC compared with the film made by conventional drop casting. Also, simple planar perovskite solar cells made here using SVADC show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.

  20. Optical and structural properties of CsI thin film photocathode

    NASA Astrophysics Data System (ADS)

    Triloki; Rai, R.; Singh, B. K.

    2015-06-01

    In the present work, the performance of a cesium iodide thin film photocathode is studied in detail. The optical absorbance of cesium iodide films has been analyzed in the spectral range from 190 nm to 900 nm. The optical band gap energy of 500 nm thick cesium iodide film is calculated from the absorbance data using a Tauc plot. The refractive index is estimated from the envelope plot of transmittance data using Swanepoel's method. The absolute quantum efficiency measurement has been carried out in the wavelength range from 150 nm to 200 nm. The crystallographic nature and surface morphology are investigated by X-ray diffraction and transmission electron microscopy techniques. In addition, the elemental composition result obtained by energy dispersive X-ray analysis is also reported in the present work.

  1. Modification of absorbent poly(glycerol-glutaric acid) films by the addition of monoglycerides

    USDA-ARS?s Scientific Manuscript database

    Monoglycerides (MGs) have been incorporated into the matrix of poly-(glycerol-co-glutaric acid) films to investigate their effect on the thermal, mechanical, and solvent absorption properties of the resultant films. MGs were concentrated using a combination of solvent extraction and molecular disti...

  2. Simultaneous measurement of liquid absorbance and refractive index using a compact optofluidic probe.

    PubMed

    Malak, Maurine; Marty, Frédéric; Bourouina, Tarik; Angelescu, Dan

    2013-07-21

    We present a novel optical technique for simultaneously measuring the absorbance and the refractive index of a thin film using an infrared optofluidic probe. Experiments were carried on two different liquids and the results agree with the bibliographical data. The ultimate goal is to achieve a multi-functional micro-optical device for analytical applications.

  3. Organic Photovoltaic Devices Based on Oriented n-Type Molecular Films Deposited on Oriented Polythiophene Films.

    PubMed

    Mizokuro, Toshiko; Tanigaki, Nobutaka; Miyadera, Tetsuhiko; Shibata, Yousei; Koganezawa, Tomoyuki

    2018-04-01

    The molecular orientation of π-conjugated molecules has been reported to significantly affect the performance of organic photovoltaic devices (OPVs) based on molecular films. Hence, the control of molecular orientation is a key issue toward the improvement of OPV performance. In this research, oriented thin films of an n-type molecule, 3,4,9,10-Perylenetetracarboxylic Bisbenzimida-zole (PTCBI), were formed by deposition on in-plane oriented polythiophene (PT) films. Orientation of the PTCBI films was evaluated by polarized UV-vis spectroscopy and 2D-Grazing incidence X-ray diffraction. Results indicated that PTCBI molecules on PT film exhibit nearly edge-on and in-plane orientation (with molecular long axis along the substrate), whereas PTCBI molecules without PT film exhibit neither. OPVs composed of PTCBI molecular film with and without PT were fabricated and evaluated for correlation of orientation with performance. The OPVs composed of PTCBI film with PT showed higher power conversion efficiency (PCE) than that of film without PT. The experiment indicated that in-plane orientation of PTCBI molecules absorbs incident light more efficiently, leading to increase in PCE.

  4. High Brightness and Color Contrast Displays Constructed from Nematic Droplet/Polymer Films Incorporating Pleochroic Dyes

    NASA Astrophysics Data System (ADS)

    Drzaic, Paul S.; Wiley, Richard C.; McCoy, James A.

    1989-07-01

    A new class of high-brightness, high color contrast reflective-mode displays can be constructed from nematic droplet/polymer (NCAP) films. In these films, a high order parameter pleochroic dye can be dissolved in the nematic, leading to a film with both controllable absorbance and scattering. The physics behind the operation of these films is discussed. The intrinsic optical order parameter of a guest-host mixture is related to the performance of the NCAP film. It is shown that the scattering effects inherent in these films can be used to amplify the effects of the controllable dye absorbance, leading to excellent optical performance for a reflective-mode display. A typical construction of a display cell is given, and examples of applications are discussed. Touch switches may easily be fabricated within the display, so that an integrated control/display module can be constructed.

  5. The Effects of Ion-Assisted Deposition on the Mechanical, Physical, Chemical and Optical Properties of Magnesium Fluoride Thin Films.

    NASA Astrophysics Data System (ADS)

    Kennemore, Charles Milton, III

    1992-01-01

    This dissertation investigates the results of ion assisted deposition (IAD) on various properties of magnesium fluoride thin films deposited on room temperature substrates. MgF_2 films deposited in this manner have increased abrasion resistance and increased adhesion comparable to that found in films deposited at the usual substrate temperature of approximately 300 ^circC. IAD tends to drive the normal high tensile stress of non-IAD films to a more compressive state thereby reducing the overall stress. The IAD MgF _2 films have a higher index of refraction than non-IAD films, as high as 1.41, and the ultraviolet absorption edge in shifted to longer wavelengths beginning about 350 nm but no detectable absorption at visible wavelengths is seen in the films deposited with less than 250 eV bombardment energies. However, at higher IAD energies beginning at approximately 600 eV an absorption band is present in the red end of the visible spectrum making low energy bombardment the parameter of choice. Transmission electron microscopy and X-ray diffraction studies show that the IAD films have a more amorphous-like structure with fewer and smaller crystallites than non-IAD films deposited on either heated or unheated substrates. Rutherford backscattering spectroscopy (RBS) shows the bombarded films have fluorine depletion that roughly scales with the energy of bombardment with F:Mg ratios as low as 1.69 being found. Bombardment by fluorinated compounds, specifically C_2 F_6 and SF_6 , limit this depletion and in some instances super fluorinate the resulting compound. Additionally, RBS shows that IAD introduces a significant amount of oxygen throughout the film that is unaccountable as water take-up. X-ray photoelectron spectroscopy (XPS) indicates the presence of two compounds of oxygen that are attributed to MgO and Mg(OH)_2 or some oxy-fluoride complex similar to them and it is the introduction of these compounds which provide for the changes in the properties of IAD MgF_2

  6. Aerosol-assisted chemical vapor deposition of ultra-thin CuOx films as hole transport material for planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Zhixin; Chen, Shuqun; Li, Pingping; Li, Hongyi; Wu, Junshu; Hu, Peng; Wang, Jinshu

    This paper reports on the fabrication of CuOx films to be used as hole transporting layer (HTL) in CH3NH3PbI3 perovskite solar cells (PSCs). Ultra-thin CuOx coatings were grown onto FTO substrates for the first time via aerosol-assisted chemical vapor deposition (AACVD) of copper acetylacetonate in methanol. After incorporating into the PSCs prepared at ambient air, a highest power conversion efficiency (PCE) of 8.26% with HTL and of 3.34% without HTL were achieved. Our work represents an important step in the development of low-cost CVD technique for fabricating ultra-thin metal oxide functional layers in thin film photovoltaics.

  7. TiAlN/TiAlON/Si{sub 3}N{sub 4} tandem absorber for high temperature solar selective applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barshilia, Harish C.; Selvakumar, N.; Rajam, K. S.

    2006-11-06

    A tandem absorber of TiAlN/TiAlON/Si{sub 3}N{sub 4} is prepared using a magnetron sputtering process. The graded composition of the individual component layers of the tandem absorber produces a film with a refractive index increasing from the surface to the substrate, which exhibits a high absorptance (0.95) and a low emittance (0.07). The tandem absorber is stable in air up to 600 deg. C for 2 h, indicating its importance for high temperature solar selective applications. The thermal stability of the tandem absorber is attributed to high oxidation resistance and microstructural stability of the component materials at higher temperatures.

  8. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity

    NASA Astrophysics Data System (ADS)

    Navaneetha Pandiyaraj, K.; Ram Kumar, M. C.; Arun Kumar, A.; Padmanabhan, P. V. A.; Deshmukh, R. R.; Bah, M.; Ismat Shah, S.; Su, Pi-Guey; Halleluyah, M.; Halim, A. S.

    2016-05-01

    Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as Osbnd Cdbnd O, Cdbnd O, Csbnd N and Ssbnd S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was found that the anti-thrombogenic properties of the PP films are effectively controlled by the CAPP grafting of AAc and PEG followed by immobilization of biomolecules of heparin, chitosan and insulin. The grafting and immobilization was confirmed by FTIR and XPS through the recognition of specific functional groups such as COOH, Csbnd O, Ssbnd S and Csbnd N. on the surface of PP film. Furthermore, the surface morphology and hydrophilic nature of the PP films also tailored

  9. Picosecond laser fabrication of nanostructures on ITO film surface assisted by pre-deposited Au film

    NASA Astrophysics Data System (ADS)

    Yang, H. Z.; Jiang, G. D.; Wang, W. J.; Mei, X. S.; Pan, A. F.; Zhai, Z. Y.

    2017-10-01

    With greater optical penetration depth and lower ablation threshold fluence, it is difficult to directly fabricate large scales of laser-induced periodic surface structures (LIPSSs) on indium-tin-oxide (ITO) films. This study proposed an approach to obtain optimized LIPSSs by sputtering an Au thin film on the ITO film surface. The concept behind the proposal is that the upper layer of the thin Au film can cause surface energy aggregation, inducing the initial ripple structures. The ripples deepened and become clear with lower energy due to optical trapping. The effective mechanism of Au film was analyzed and verified by a series of experiments. Linear sweep, parallel to the laser polarization direction, was performed using a Nd:VAN laser system with 10-ps Q-switched pulse, at a central wavelength of 532 nm, with a repetition rate of 1 kHz. The complete and clear features of the nanostructures, obtained with the periods of approximately 320 nm, were observed on ITO films with proper laser fluence and scanning speed. The depth of ripples was varying in the range of 15-65 nm with clear and coherent ITO films. The preferred efficiency of fabricating nanostructures and the excellent results were obtained at a scanning speed of 2.5 mm/s and a fluence of 0.189 J/cm2. In this way, the ablation and shedding of ITO films was successfully avoided. Thus, the proposed technique can be considered to be a promising method for the laser machining of special nonmetal films.

  10. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings

    NASA Astrophysics Data System (ADS)

    Kats, Mikhail A.; Byrnes, Steven J.; Blanchard, Romain; Kolle, Mathias; Genevet, Patrice; Aizenberg, Joanna; Capasso, Federico

    2013-09-01

    Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.

  11. Revealing the nature of morphological changes in carbon nanotube-polymer saturable absorber under high-power laser irradiation.

    PubMed

    Chernysheva, Maria; Araimi, Mohammed Al; Rance, Graham A; Weston, Nicola J; Shi, Baogui; Saied, Sayah; Sullivan, John L; Marsh, Nicholas; Rozhin, Aleksey

    2018-05-10

    Composites of single-walled carbon nanotubes (SWNTs) and water-soluble polymers (WSP) are the focus of significant worldwide research due to a number of applications in biotechnology and photonics, particularly for ultrashort pulse generation. Despite the unique possibility of constructing non-linear optical SWNT-WSP composites with controlled optical properties, their thermal degradation threshold and limit of operational power remain unexplored. In this study, we discover the nature of the SWNT-polyvinyl alcohol (PVA) film thermal degradation and evaluate the modification of the composite properties under continuous high-power ultrashort pulse laser operation. Using high-precision optical microscopy and micro-Raman spectroscopy, we have examined SWNT-PVA films before and after continuous laser radiation exposure (up to 40 hours) with a maximum optical fluence of 2.3 mJ·cm -2 . We demonstrate that high-intensity laser radiation results in measurable changes in the composition and morphology of the SWNT-PVA film due to efficient heat transfer from SWNTs to the polymer matrix. The saturable absorber modification does not affect the laser operational performance. We anticipate our work to be a starting point for more sophisticated research aimed at the enhancement of SWNT-PVA films fabrication for their operation as reliable saturable absorbers in high-power ultrafast lasers.

  12. Tunable broadband near-infrared absorber based on ultrathin phase-change material

    NASA Astrophysics Data System (ADS)

    Hu, Er-Tao; Gu, Tong; Guo, Shuai; Zang, Kai-Yan; Tu, Hua-Tian; Yu, Ke-Han; Wei, Wei; Zheng, Yu-Xiang; Wang, Song-You; Zhang, Rong-Jun; Lee, Young-Pak; Chen, Liang-Yao

    2017-11-01

    In this work, a tunable broadband near-infrared light absorber was designed and fabricated with a simple and lithography free approach by introducing an ultrathin phase-change material Ge2Sb2Te5 (GST) layer into the metal-dielectric multilayered film structure with the structure parameters as that: SiO2 (72.7 nm)/Ge2Sb2Te5 (6.0 nm)/SiO2 (70.2 nm)/Cu (>100.0 nm). The film structure exhibits a modulation depth of ∼72.6% and an extinction ratio of ∼8.8 dB at the wavelength of 1410 nm. The high light absorption (95%) of the proposed film structure at the wavelength of 450 nm in both of the amorphous and crystalline phase of GST, indicates that the intensity of the reflectance in the infrared region can be rapidly tuned by the blue laser pulses. The proposed planar layered film structure with layer thickness as the only controllable parameter and large reflectivity tuning range shows the potential for practical applications in near-infrared light modulation and absorption.

  13. A broadband metamaterial absorber based on multi-layer graphene in the terahertz region

    NASA Astrophysics Data System (ADS)

    Fu, Pan; Liu, Fei; Ren, Guang Jun; Su, Fei; Li, Dong; Yao, Jian Quan

    2018-06-01

    A broadband metamaterial absorber, composed of the periodic graphene pattern on SiO2 dielectric with the double layer graphene films inserted in it and all of them backed by metal plan, is proposed and investigated. The simulation results reveal that the wide absorption band can be flexibly tuned between the low-frequency band and the high-frequency band by adjusting graphene's Fermi level. The absorption can achieve 90% in 5.50-7.10 THz, with Fermi level of graphene is 0.3 eV, while in 6.98-9.10 THz with Fermi level 0.6 eV. Furthermore, the proposed structure can be switched from reflection (>81%) to absorption (>90%) over the whole operation band, when the Fermi level of graphene varies from 0 to 0.6 eV. Besides, the proposed absorber is insensitive to the polarization and can work over a wide range of incident angle. Compared with the previous broadband absorber, our graphene based wideband terahertz absorber can enable a wide application of high performance terahertz devices, including sensors, imaging devices and electro-optic switches.

  14. A Film Canister Colorimeter.

    ERIC Educational Resources Information Center

    Gordon, James; James, Alan; Harman, Stephanie; Weiss, Kristen

    2002-01-01

    A low-cost, low-tech colorimeter was constructed from a film canister. The student-constructed colorimeter was used to show the Beer-Lambert relationship between absorbance and concentration and to calculate the value of the molar absorptivity for permanganate at the wavelength emission maximum for an LED. Makes comparisons between this instrument…

  15. Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: Comparative study

    NASA Astrophysics Data System (ADS)

    Popescu-Pelin, G.; Sima, F.; Sima, L. E.; Mihailescu, C. N.; Luculescu, C.; Iordache, I.; Socol, M.; Socol, G.; Mihailescu, I. N.

    2017-10-01

    Pulsed Laser Deposition (PLD) and Matrix Assisted Pulsed Laser Evaporation (MAPLE) techniques were applied for growing hydroxyapatite (HA) thin films on titanium substrates. All experiments were conducted in a reaction chamber using a KrF* excimer laser source (λ = 248 nm, τFWHM ≈ 25 ns). Half of the samples were post-deposition thermally treated at 500 °C in a flux of water vapours in order to restore crystallinity and improve adherence. Coating surface morphologies and topographies specific to the deposition method were evidenced by scanning electron, atomic force microscopy investigations and profilometry. They were shown to depend on deposition technique and also on the post-deposition treatment. Crystalline structure of the coatings evaluated by X-ray diffraction was improved after thermal treatment. Biocompatibility of coatings, cellular adhesion, proliferation and differentiation tests were conducted using human mesenchymal stem cells (MSCs). Results showed that annealed MAPLE deposited HA coatings were supporting MSCs proliferation, while annealed PLD obtained films were stimulating osteogenic differentiation.

  16. Green, stable and earth abundant ionic PV absorbers based on chalcogenide perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Hao

    Searching for inexpensive, environment-friendly, and air-stable absorber materials for thin film solar cells has become a key thrust of PV research. Supported by this one-year award, the UB-RPI team aims to develop a novel class of semiconductors — chalcogenide perovskites. Sharing some similarities to the widely researched halide perovskites, and unlike most conventional semiconductors, the chalcogenide perovskites are strongly ionic. Such characteristics is expected to provide intrinsic defect properties favorable for charge transport in PV absorbers. In this one-year project, we confirmed structural stability of the BaZrS3 material through high pressure Raman studies. We find no evidence that the perovskitemore » structure of BaZrS3 undergoes any phase changes under hydrostatic pressure to at least 8.9 GPa. Our results indicate the robust structural stability of BaZrS3, and suggest cation alloying as a viable approach for band-gap engineering for photovoltaic and other applications. We also achieved reduced band gap to 1.45 eV by Ti-alloying of BaZrS3, which is close to the optimal value for a single junction solar cell. We further synthesized BaZrS3 thin films with desired crystal structure and band gap. The optical absorption is high as expected. The carrier mobility is moderate. The high processing temperature limits its ability for device integration. We are working on deposition of chalcogenide perovskite thin films using molecular beam epitaxy.« less

  17. Electric-field assisted switching of magnetization in perpendicularly magnetized (Ga,Mn)As films at high temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Ma, Jialin; Yu, Xueze; Yu, Zhifeng; Zhao, Jianhua

    2017-01-01

    The electric-field effects on the magnetism in perpendicularly magnetized (Ga,Mn)As films at high temperatures have been investigated. An electric-field as high as 0.6 V nm-1 is applied by utilizing a solid-state dielectric Al2O3 film as a gate insulator. The coercive field, saturation magnetization and magnetic anisotropy have been clearly changed by the gate electric-field, which are detected via the anomalous Hall effect. In terms of the Curie temperature, a variation of about 3 K is observed as determined by the temperature derivative of the sheet resistance. In addition, electrical switching of the magnetization assisted by a fixed external magnetic field at 120 K is demonstrated, employing the gate-controlled coercive field. The above experimental results have been attributed to the gate voltage modulation of the hole density in (Ga,Mn)As films, since the ferromagnetism in (Ga,Mn)As is carrier-mediated. The limited modulation magnitude of magnetism is found to result from the strong charge screening effect introduced by the high hole concentration up to 1.10  ×  1021 cm-3, while the variation of the hole density is only about 1.16  ×  1020 cm-3.

  18. Thin film absorption characterization by focus error thermal lensing

    NASA Astrophysics Data System (ADS)

    Domené, Esteban A.; Schiltz, Drew; Patel, Dinesh; Day, Travis; Jankowska, E.; Martínez, Oscar E.; Rocca, Jorge J.; Menoni, Carmen S.

    2017-12-01

    A simple, highly sensitive technique for measuring absorbed power in thin film dielectrics based on thermal lensing is demonstrated. Absorption of an amplitude modulated or pulsed incident pump beam by a thin film acts as a heat source that induces thermal lensing in the substrate. A second continuous wave collimated probe beam defocuses after passing through the sample. Determination of absorption is achieved by quantifying the change of the probe beam profile at the focal plane using a four-quadrant detector and cylindrical lenses to generate a focus error signal. This signal is inherently insensitive to deflection, which removes noise contribution from point beam stability. A linear dependence of the focus error signal on the absorbed power is shown for a dynamic range of over 105. This technique was used to measure absorption loss in dielectric thin films deposited on fused silica substrates. In pulsed configuration, a single shot sensitivity of about 20 ppm is demonstrated, providing a unique technique for the characterization of moving targets as found in thin film growth instrumentation.

  19. Polymer-assisted aqueous deposition of metal oxide films

    DOEpatents

    Li, DeQuan [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM

    2003-07-08

    An organic solvent-free process for deposition of metal oxide thin films is presented. The process includes aqueous solutions of necessary metal precursors and an aqueous solution of a water-soluble polymer. After a coating operation, the resultant coating is fired at high temperatures to yield optical quality metal oxide thin films.

  20. Trade-Offs in Thin Film Solar Cells with Layered Chalcostibite Photovoltaic Absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Adam W.; Baranowski, Lauryn L.; Peng, Haowei

    Discovery of novel semiconducting materials is needed for solar energy conversion and other optoelectronic applications. However, emerging low-dimensional solar absorbers often have unconventional crystal structures and unusual combinations of optical absorption and electrical transport properties, which considerably slows down the research and development progress. Here, the effect of stronger absorption and weaker carrier collection of 2D-like absorber materials are studied using a high-throughput combinatorial experimental approach, complemented by advanced characterization and computations. It is found that the photoexcited charge carrier collection in CuSbSe 2 solar cells is enhanced by drift in an electric field, addressing a different absorption/collection balance. Themore » resulting drift solar cells efficiency is <5% due to inherent J SC/ V OC trade-off, suggesting that improved carrier diffusion and better contacts are needed to further increase the CuSbSe 2 performance. Furthermore, this study also illustrates the advantages of high-throughput experimental methods for fast optimization of the optoelectronic devices based on emerging low-dimensional semiconductor materials.« less

  1. Trade-Offs in Thin Film Solar Cells with Layered Chalcostibite Photovoltaic Absorbers

    DOE PAGES

    Welch, Adam W.; Baranowski, Lauryn L.; Peng, Haowei; ...

    2017-01-25

    Discovery of novel semiconducting materials is needed for solar energy conversion and other optoelectronic applications. However, emerging low-dimensional solar absorbers often have unconventional crystal structures and unusual combinations of optical absorption and electrical transport properties, which considerably slows down the research and development progress. Here, the effect of stronger absorption and weaker carrier collection of 2D-like absorber materials are studied using a high-throughput combinatorial experimental approach, complemented by advanced characterization and computations. It is found that the photoexcited charge carrier collection in CuSbSe 2 solar cells is enhanced by drift in an electric field, addressing a different absorption/collection balance. Themore » resulting drift solar cells efficiency is <5% due to inherent J SC/ V OC trade-off, suggesting that improved carrier diffusion and better contacts are needed to further increase the CuSbSe 2 performance. Furthermore, this study also illustrates the advantages of high-throughput experimental methods for fast optimization of the optoelectronic devices based on emerging low-dimensional semiconductor materials.« less

  2. Composite films prepared by plasma ion-assisted deposition (IAD) for design and fabrication of antireflection coatings in visible and near-infrared spectral regions

    NASA Astrophysics Data System (ADS)

    Tsai, Rung-Ywan; Ho, Fang C.

    1994-11-01

    Ion-assisted deposition (IAD) processes configured with a well-controlled plasma source at the center base of a vacuum chamber, which accommodates two independent e-gun sources, is used to deposition TiO2MgF2 and TiO2-SiO2 composite films of selected component ratios. Films prepared by this technology are found durable, uniform, and nonabsorbing in visible and near-IR regions. Single- and multilayer antireflection coatings with refractive index from 1.38 to 2.36 at (lambda) equals 550 nm are presented. Methods of enhancement in optical performance of these coatings are studied. The advantages of AR coatings formed by TiO2-MgF2 composite films over those similar systems consisting of TiO2-SiO2 composite films in both visible and near-IR regions are also presented.

  3. Pure antimony film as saturable absorber for Q-switched erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Rahman, M. F. A.; Zhalilah, M. Z.; Latiff, A. A.; Rosol, A. H. A.; Lokman, M. Q.; Bushroa, A. R.; Dimyati, K.; Harun, S. W.

    2018-04-01

    This paper reports on the use of Antimony (Sb) polymer film to generate stable Q-switching pulses in Erbium-doped fiber laser (EDFL) cavity. The SA is fabricated by coating a thin layer of Sb on a polyvinyl alcohol (PVA) film through physical vapour deposition (PVD) process. A 1 × 1 mm area of the film SA is cut and integrated into between two fiber ferrules inside the laser cavity for intra-cavity loss modulation. Self-starting and stable Q-switched pulses are obtained within a pump power range from 60 to 142 mW. Within this range, the repetition rate increases from 70.82 to 98.04 kHz, while pulse width decreases from 7.42 to 5.36 μs. The fundamental frequency signal-to-noise ratio of the pulse signal is 74 dB, which indicates the excellent stability of the pulses. The maximum output power and pulse energy are 8.45 mW and 86.19 nJ, respectively. Our demonstration shows that Sb film SA capable of generating stable pulses train operating at 1.55-micron region.

  4. Physicochemically functional ultrathin films by interfacial polymerization

    DOEpatents

    Lonsdale, Harold K.; Babcock, Walter C.; Friensen, Dwayne T.; Smith, Kelly L.; Johnson, Bruce M.; Wamser, Carl C.

    1990-01-01

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclsoed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers.

  5. Effect of substrate surface treatment on electrochemically assisted photocatalytic activity of N-S co-doped TiO2 films

    NASA Astrophysics Data System (ADS)

    Parada-Gamboa, N. J.; Pedraza-Avella, J. A.; Meléndez, A. M.

    2017-01-01

    To investigate whether different metal surface treatments, performed on meshes of stainless steel 304 and titanium, affect the photocatalytic activity (PCA) of supported modified anodic TiO2 films, metallic substrates were coated with titanium isopropoxide sol-gel precursor modified with thiourea. Substrates were pretreated by some of the following techniques: a) sandblasting, b) pickling, c) hydroxylation and d) passivation. The as-prepared electrode materials were characterized by X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and voltammetry in the dark and under light UVA irradiation. PCA of modified N-S-TiO2 electrodes was evaluated by electrochemically assisted photocatalytic degradation of methyl orange. The results of XPS revealed that N and S were incorporated into the lattice of TiO2. FESEM showed that surface roughness and thickness of films varies depending on surface treatment. Voltammetric and XPS characterization of N-S co-doped TiO2 films supported on stainless steel revealed that their surface contains alpha-Fe2O3/FeOOH. Accordingly, iron contamination of the films coming from stainless steel was detrimental to the degradation of methyl orange. Prior to sol-gel coating process, sandblasting followed by nitric acid passivation for stainless steel or hydrofluoric acid pickling process in the case of titanium improved the PCA of N-S co-doped TiO2 films.

  6. Optical, electrical, and photovoltaic properties of PbS thin films by anionic and cationic dopants

    NASA Astrophysics Data System (ADS)

    Cheraghizade, Mohsen; Jamali-Sheini, Farid; Yousefi, Ramin

    2017-06-01

    Lead sulfide (PbS) thin films were deposited by CVD method to examine the effects of anionic and cationic dopants on optical and electrical properties for photovoltaic applications. XRD diffractograms verified the formation of cubic phase of multicrystalline PbS thin films. FESEM images showed surface morphologies in nano-dimensions (rods and flowers). UV-Vis-NIR spectrum revealed absorbance in the visible and NIR regions for all samples, in which dopants decreased the intensity of absorbance. Se as an anionic dopant for PbS thin films increased electrical resistance, acceptor concentrations, and crystallite defects, and decreased flat-band voltage and depletion width. Finally, photovoltaic measurements indicated that Zn-doped PbS thin film, as a photovoltaic cell, exhibited higher conversion efficiency and external quantum efficiency (EQE).

  7. Fabrication and characterization of high mobility spin-coated zinc oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Singh, Shaivalini; Chakrabarti, P.

    2012-10-01

    A ZnO based thin film transistor (TFT) with bottom-gate configuration and SiO2 as insulating layer has been fabricated and characterized. The ZnO thin film was prepared by spin coating the sol-gel solution on the p-type Si wafers. The optical and structural properties of ZnO films were investigated using UV measurements and scanning electron microscope (SEM). The result of UV-visible study confirms that the films have a good absorbance in UV region and relatively low absorbance in the visible region. The TFT exhibited an off-current of 2.5×10-7 A. The values of field effect channel mobility and on/off current ratio extracted for the device, measured 11 cm2/V.s and ~102 respectively. The value of threshold voltage was found to be 1.3 V.

  8. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films.

    PubMed

    Chirilă, Adrian; Buecheler, Stephan; Pianezzi, Fabian; Bloesch, Patrick; Gretener, Christina; Uhl, Alexander R; Fella, Carolin; Kranz, Lukas; Perrenoud, Julian; Seyrling, Sieghard; Verma, Rajneesh; Nishiwaki, Shiro; Romanyuk, Yaroslav E; Bilger, Gerhard; Tiwari, Ayodhya N

    2011-09-18

    Solar cells based on polycrystalline Cu(In,Ga)Se(2) absorber layers have yielded the highest conversion efficiency among all thin-film technologies, and the use of flexible polymer films as substrates offers several advantages in lowering manufacturing costs. However, given that conversion efficiency is crucial for cost-competitiveness, it is necessary to develop devices on flexible substrates that perform as well as those obtained on rigid substrates. Such comparable performance has not previously been achieved, primarily because polymer films require much lower substrate temperatures during absorber deposition, generally resulting in much lower efficiencies. Here we identify a strong composition gradient in the absorber layer as the main reason for inferior performance and show that, by adjusting it appropriately, very high efficiencies can be obtained. This implies that future manufacturing of highly efficient flexible solar cells could lower the cost of solar electricity and thus become a significant branch of the photovoltaic industry.

  9. Chain Conformation and Dynamics in Spin-Assisted Weak Polyelectrolyte Multilayers

    DOE PAGES

    Zhuk, Aliaksandr; Selin, Victor; Zhuk, Iryna; ...

    2015-03-13

    In this paper, we report on the effect of the deposition technique on film layering, stability, and chain mobility in weak polyelectrolyte layer-by-layer (LbL) films. Ellipsometry and neutron reflectometry (NR) showed that shear forces arising during spin-assisted assembly lead to smaller amounts of adsorbed polyelectrolytes within LbL films, result in a higher degree of internal film order, and dramatically improve stability of assemblies in salt solutions as compared to dip-assisted LbL assemblies. The underlying flattening of polyelectrolyte chains in spin-assisted LbL films was also revealed as an increase in ionization degree of the assembled weak polyelectrolytes. As demonstrated by fluorescencemore » recovery after photobleaching (FRAP), strong binding between spin-deposited polyelectrolytes results in a significant slowdown of chain diffusion in salt solutions as compared to dip-deposited films. Moreover, salt-induced chain intermixing in the direction perpendicular to the substrate is largely inhibited in spin-deposited films, resulting in only subdiffusional (<2 Å) chain displacements even after 200 h exposure to 1 M NaCl solutions. Finally, this persistence of polyelectrolyte layering has important ramifications for multistage drug delivery and optical applications of LbL assemblies.« less

  10. Physicochemically functional ultrathin films by interfacial polymerization

    DOEpatents

    Lonsdale, H.K.; Babcock, W.C.; Friensen, D.T.; Smith, K.L.; Johnson, B.M.; Wamser, C.C.

    1990-08-14

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclosed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers. 3 figs.

  11. Characterization of diamond thin films and related materials

    NASA Astrophysics Data System (ADS)

    McKindra, Travis Kyle

    Thin carbon films including sputtered deposited graphite and CO 2 laser-assisted combustion-flame deposited graphite and diamond thin films were characterized using optical and electron microscopy, X-ray diffraction and micro-Raman spectroscopy. Amorphous carbon thin films were deposited by DC magnetron sputtering using Ar/O2 gases. The film morphology changed with the oxygen content. The deposition rate decreased as the amount of oxygen increased due to oxygen reacting with the growing film. The use of oxygen in the working gas enhanced the crystalline nature of the films. Graphite was deposited on WC substrates by a CO2 laser-assisted O2/C2H2 combustion-flame method. Two distinct microstructural areas were observed; an inner core of dense material surrounded by an outer shell of lamellar-like material. The deposits were crystalline regardless of the laser power and deposition times of a few minutes. Diamond films were deposited by a CO2 laser-assisted O 2/C2H2/C2H4 combustion-flame method with the laser focused parallel to the substrate surface. The laser enhanced diamond growth was most pronounced when deposited with a 10.532 microm CO2 laser wavelength tuned to the CH2-wagging vibrational mode of the C2H4 molecule. Nucleation of diamond thin films deposited with and without using a CO 2 laser-assisted combustion-flame process was investigated. With no laser there was nucleation of a sub-layer of grains followed by irregular grain growth. An untuned laser wavelength yielded nucleation of a sub-layer then columnar grain growth. The 10.532 microm tuned laser wavelength caused growth of columnar grains.

  12. Temperature-assisted morphological transition in CuPc thin films

    NASA Astrophysics Data System (ADS)

    Bae, Yu Jeong; Pham, Thi Kim Hang; Kim, Tae Hee

    2016-05-01

    Ex-situ and in-situ morphological analyses were performed for Cu-phthalocyanine (CuPc) organic semiconductor films by using atomic force microscopy (AFM) and reflection high-energy electron diffraction (RHEED). The focus was the effects of post-annealing on the structural characteristics of CuPc films grown on MgO(001) layers by using an ultra-high-vacuum thermal evaporator. Sphere-to-nanofibril and 2-D to 3-D morphological transitions were observed with increasing CuPc thickness beyond 3 nm. The surface morphology and the crystallinity were drastically improved after an additional cooling of the post-annealed CuPc films thinner than 3 nm. Our results highlight that molecular orientation and structural ordering can be effectively controlled by using different temperature treatments and a proper combination of material, film thickness, and substrate.

  13. The Role of Trap-assisted Recombination in Luminescent Properties of Organometal Halide CH3NH3PbBr3 Perovskite Films and Quantum Dots

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Yu; Wang, Hai-Yu; Zhang, Yan-Xia; Hao, Ya-Wei; Sun, Chun; Zhang, Yu; Gao, Bing-Rong; Chen, Qi-Dai; Sun, Hong-Bo

    2016-06-01

    Hybrid metal halide perovskites have been paid enormous attentions in photophysics research, whose excellent performances were attributed to their intriguing charge carriers proprieties. However, it still remains far from satisfaction in the comprehensive understanding of perovskite charge-transport properities, especially about trap-assisted recombination process. In this Letter, through time-resolved transient absorption (TA) and photoluminescence (PL) measurements, we provided a relative comprehensive investigation on the charge carriers recombination dynamics of CH3NH3PbBr3 (MAPbBr3) perovskite films and quantum dots (QDs), especially about trap-assisted recombination. It was found that the integral recombination mode of MAPbBr3 films was highly sensitive to the density distribution of generated charge carriers and trap states. Additional, Trap effects would be gradually weakened with elevated carrier densities. Furthermore, the trap-assisted recombination can be removed from MAPbBr3 QDs through its own surface passivation mechanism and this specialty may render the QDs as a new material in illuminating research. This work provides deeper physical insights into the dynamics processes of MAPbBr3 materials and paves a way toward more light-harvesting applications in future.

  14. Dielectric-based subwavelength metallic meanders for wide-angle band absorbers.

    PubMed

    Shen, Su; Qiao, Wen; Ye, Yan; Zhou, Yun; Chen, Linsen

    2015-01-26

    We propose nano-meanders that can achieve wide-angle band absorption in visible regime. The nano-meander consists of a subwavelength dielectric grating covered by continuous ultra-thin Aluminum film (less than one tenth of the incident wavelength). The excited photonic resonant modes, such as cavity mode, surface plasmonic mode and Rayleigh-Wood anomaly, are discussed in detail. Nearly total resonant absorption due to funneling mechanism in the air nano-groove is almost invariant with large incident angle in transverse magnetic polarization. From both the structural geometry and the nanofabrication point of view, the light absorber has a very simple geometrical structure and it is easy to be integrated into complex photonic devices. The highly efficient angle-robust light absorber can be potential candidate for a range of passive and active photonic applications, including solar-energy harvesting as well as producing artificial colors on a large scale substrate.

  15. Influence of Te and Se doping on ZnO films growth by SILAR method

    NASA Astrophysics Data System (ADS)

    Güney, Harun; Duman, Ćaǧlar

    2016-04-01

    The AIP Successive ionic layer adsorption and reaction (SILAR) is an economic and simple method to growth thin films. In this study, SILAR method is used to growth Selenium (Se) and Tellurium (Te) doped zinc oxide (ZnO) thin films with different doping rates. For characterization of the films X-ray diffraction (XRD), absorbance and scanning electron microscopy (SEM) are used. XRD results are showed well-defined strongly (002) oriented crystal structure for all samples. Also, absorbance measurements show, Te and Se concentration are proportional and inversely proportional with band gap energy, respectively. SEM measurements show that the surface morphology and thickness of the material varied with Se and/or Te and varying concentrations.

  16. Influence of Te and Se doping on ZnO films growth by SILAR method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Güney, Harun, E-mail: harunguney25@hotmail.com; Duman, Çağlar, E-mail: caglarduman@erzurum.edu.tr

    2016-04-18

    The AIP Successive ionic layer adsorption and reaction (SILAR) is an economic and simple method to growth thin films. In this study, SILAR method is used to growth Selenium (Se) and Tellurium (Te) doped zinc oxide (ZnO) thin films with different doping rates. For characterization of the films X-ray diffraction (XRD), absorbance and scanning electron microscopy (SEM) are used. XRD results are showed well-defined strongly (002) oriented crystal structure for all samples. Also, absorbance measurements show, Te and Se concentration are proportional and inversely proportional with band gap energy, respectively. SEM measurements show that the surface morphology and thickness ofmore » the material varied with Se and/or Te and varying concentrations.« less

  17. Metamaterial absorber for molecular detection and identification (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tanaka, Takuo

    2017-03-01

    Metamaterial absorber was used for a background-suppressed surface-enhanced molecular detection technique. By utilizing the resonant coupling between plasmonic modes of a metamaterial absorber and infrared (IR) vibrational modes of a self-assembled monolayer (SAM), attomole level molecular sensitivity was experimentally demonstrated. IR absorption spectroscopy of molecular vibrations is of importance in chemical, material, medical science and so on, since it provides essential information of the molecular structure, composition, and orientation. In the vibrational spectroscopic techniques, in addition to the weak signals from the molecules, strong background degrades the signal-to-noise ratio, and suppression of the background is crucial for the further improvement of the sensitivity. Here, we demonstrate low-background resonant Surface enhanced IR absorption (SEIRA) by using the metamaterial IR absorber that offers significant background suppression as well as plasmonic enhancement. By using mask-less laser lithography technique, metamaterial absorber which consisted of 1D array of Au micro-ribbons on a thick Au film separated by a transparent gap layer made of MgF2 was fabricated. This metamaterial structure was designed to exhibit an anomalous IR absorption at 3000 cm-1, which spectrally overlapped with C-H stretching vibrational modes. 16-Mercaptohexadecanoic acid (16-MHDA) was used as a test molecule, which formed a 2-nm thick SAM with their thiol head-group chemisorbed on the Au surface. In the FTIR measurements, the symmetric and asymmetric C-H stretching modes were clearly observed as reflection peaks within a broad plasmonic absorption of the metamaterial, and 1.8 attomole molecular sensitivity was experimentally demonstrated.

  18. A Cooperative Film Effort in Colorado

    ERIC Educational Resources Information Center

    Spetnagel, H. T.; And Others

    1972-01-01

    The mass communications department of the University of Denver assisted in producing a film on community colleges in Colorado which improved the film students' cinema skills while providing greater exposure for the community college system. (NF)

  19. 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications.

    PubMed

    Cao, Duyen H; Stoumpos, Constantinos C; Farha, Omar K; Hupp, Joseph T; Kanatzidis, Mercouri G

    2015-06-24

    We report on the fabrication and properties of the semiconducting 2D (CH3(CH2)3NH3)2(CH3NH3)(n-1)Pb(n)I(3n+1) (n = 1, 2, 3, and 4) perovskite thin films. The band gaps of the series decrease with increasing n values, from 2.24 eV (CH3(CH2)3NH3)2PbI4 (n = 1) to 1.52 eV CH3NH3PbI3 (n = ∞). The compounds exhibit strong light absorption in the visible region, accompanied by strong photoluminescence at room temperature, rendering them promising light absorbers for photovoltaic applications. Moreover, we find that thin films of the semi-2D perovskites display an ultrahigh surface coverage as a result of the unusual film self-assembly that orients the [Pb(n)I(3n+1)](-) layers perpendicular to the substrates. We have successfully implemented this 2D perovskite family in solid-state solar cells, and obtained an initial power conversion efficiency of 4.02%, featuring an open-circuit voltage (V(oc)) of 929 mV and a short-circuit current density (J(sc)) of 9.42 mA/cm(2) from the n = 3 compound. This result is even more encouraging considering that the device retains its performance after long exposure to a high-humidity environment. Overall, the homologous 2D halide perovskites define a promising class of stable and efficient light-absorbing materials for solid-state photovoltaics and other applications.

  20. Electrochemically exfoliated graphene as a novel microwave susceptor: the ultrafast microwave-assisted synthesis of carbon-coated silicon-graphene film as a lithium-ion battery anode.

    PubMed

    Kim, Jong Min; Ko, Dongjin; Oh, Jiseop; Lee, Jeongyeon; Hwang, Taejin; Jeon, Youngmoo; Hooch Antink, Wytse; Piao, Yuanzhe

    2017-10-19

    Graphene nanocomposites have attracted much attention in many applications due to their superior properties. However, preparing graphene nanocomposites requires a time-consuming thermal treatment to reduce the graphene or synthesize nanomaterials, in most cases. We present an ultrafast synthesis of a carbon-coated silicon-graphene nanocomposite using a commercial microwave system. Electrochemically exfoliated graphene is used as a novel microwave susceptor to deliver efficient microwave energy conversion. Unlike graphene oxide, it does not require a time-consuming pre-thermal reduction or toxic chemical reduction to absorb microwave radiation efficiently. A carbon-coated silicon nanoparticle-electrochemically exfoliated graphene nanocomposite film was prepared by a few seconds' microwave irradiation. The sp 2 domains of graphene absorb microwave radiation and generate heat to simultaneously reduce the graphene and carbonize the polydopamine carbon precursor. The as-prepared N-doped carbon-coated silicon-graphene film was used as a lithium-ion battery anode. The N-doped carbon coating decreases the contact resistance between silicon nanoparticles and graphene provides a wide range conductive network. Consequently, it exhibited a reversible capacity of 1744 mA h g -1 at a current density of 0.1 A g -1 and 662 mA h g -1 at 1.0 A g -1 after 200 cycles. This method can potentially be a general approach to prepare various graphene nanocomposites in an extremely short time.

  1. Development of Multifunctional Active Film and Its Application in Modified Atmosphere Packaging of Shiitake Mushrooms.

    PubMed

    Wang, Hong Jiang; An, Duck Soon; Lee, Dong Sun

    2016-09-01

    Agar-based films with multiple functions (CO 2 absorption, water vapor absorption, and antimicrobial activity) were developed, tested for their properties, and then applied to the packaging of fresh shiitake mushrooms as an insert label. The films were cast from an agar-based aqueous solution containing a dissolving plasticizer (glycerol), a CO 2 absorbent (sodium carbonate [SC] alone or a combination of SC and sodium glycinate [SC-SG]), and a volatile antimicrobial agent (carvacrol [CRV]). The agar of the film matrix is designed to serve as a water vapor absorbent. The multifunctional films tended to have poor mechanical properties, with a hard texture and an opaque and yellowish color. The CO 2 absorbent, either SC alone or SC-SG, affected CRV retention and release along with the CO 2 and water vapor absorption behavior. Both films (SC-CRV and SC-SG-CRV films) showed good inhibitory effects against Pseudomonas fluorescens and Saccharomyces cerevisiae . SC-CRV film had a higher and faster CO 2 absorption property, higher retention and extended release of CRV, and lower and slower water vapor absorption and was assessed to be better suited for use in shiitake mushroom packaging. The packaging in which the SC-CRV film with an appropriate amount of CRV was used as an insert label was able to generate the desired atmosphere and less moisture condensation inside the package, producing the best preservation of quality in terms of mushroom color, firmness, flavor score, and microbial counts after 6 days of storage at 10°C. A tailored modified atmosphere packaging system using multifunctional film would be useful in the preservation of CO 2 -sensitive fresh commodities.

  2. Study of titania nanorod films deposited by matrix-assisted pulsed laser evaporation as a function of laser fluence

    NASA Astrophysics Data System (ADS)

    Caricato, A. P.; Belviso, M. R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Rella, R.; Taurino, A.

    2011-11-01

    Chemically synthesized brookite titanium dioxide (TiO2) nanorods with average diameter and length dimensions of 3-4 nm and 35-50 nm, respectively, were deposited by the matrix-assisted pulsed laser evaporation technique. A toluene nanorod solution was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser ( λ=248 nm, τ=20 ns) at the repetition rate of 10 Hz, at different fluences (25 to 350 mJ/cm2). The deposited films were structurally characterized by high-resolution scanning and transmission electron microscopy. <100> single-crystal Si wafers and carbon-coated Cu grids were used as substrates. Structural analyses evidenced the occurrence of brookite-phase crystalline nanospheres coexisting with individually distinguishable TiO2 nanorods in the films deposited at fluences varying from 50 to 350 mJ/cm2. Nanostructured TiO2 films comprising only nanorods were deposited by lowering the laser fluence to 25 mJ/cm2. The observed shape and phase transitions of the nanorods are discussed taking into account the laser-induced heating effects, reduced melting temperature and size-dependent thermodynamic stability of nanoscale TiO2.

  3. Ion-beam-assisted deposition of Au nanocluster/Nb 2O 5 thin films with nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Cotell, C. M.; Schiestel, S.; Carosella, C. A.; Flom, S.; Hubler, G. K.; Knies, D. L.

    1997-05-01

    Gold nanocluster thin films (˜ 200 nm thickness) consisting of metal clusters ˜ 5 nm in size embedded in a matrix of Nb 2O 5 were deposited by ion beam-assisted deposition (IBAD) by coevaporation of Au and Nb with O 2+ ion bombardment. The microstructure and optical characteristics of these films were examined as-deposited and after annealing at 600°C. Annealing crystallized the amorphous oxide matrix and ripened the nanoclusters. A strong linear absorption at the wavelength of the surface plasmon resonance for Au developed as a result of annealing. The linear optical behavior was modeled using Mie scattering theory. Good agreement was found between the nanocluster sizes predicted by the theory and the particle sizes observed experimentally using transmission electron microscopy (TEM). The nonlinear optical (NLO) properties of the nanocluster films were probed experimentally using degenerate four wave mixing and nonlinear transmission. The wavelength was near the peak of the surface plasmon resonance as measured by VIS/UV spectroscopy. Values of | χxxxx(3)| were 7.3 × 10 -8 and 3.0 × 10 -10 esu for annealed and unannealed samples, respe The dominant mechanism for the nonlinear response was change in dielectric constant due to the generation of a distribution of hot, photoexcited electrons.

  4. Organic Thin Films Deposited by Emulsion-Based, Resonant Infrared, Matrix-Assisted Pulsed Laser Evaporation: Fundamentals and Applications

    NASA Astrophysics Data System (ADS)

    Ge, Wangyao

    Thin film deposition techniques are indispensable to the development of modern technologies as thin film based optical coatings, optoelectronic devices, sensors, and biological implants are the building blocks of many complicated technologies, and their performance heavily depends on the applied deposition technique. Particularly, the emergence of novel solution-processed materials, such as soft organic molecules, inorganic compounds and colloidal nanoparticles, facilitates the development of flexible and printed electronics that are inexpensive, light weight, green and smart, and these thin film devices represent future trends for new technologies. One appealing feature of solution-processed materials is that they can be deposited into thin films using solution-processed deposition techniques that are straightforward, inexpensive, high throughput and advantageous to industrialize thin film based devices. However, solution-processed techniques rely on wet deposition, which has limitations in certain applications, such as multi-layered film deposition of similar materials and blended film deposition of dissimilar materials. These limitations cannot be addressed by traditional, vacuum-based deposition techniques because these dry approaches are often too energetic and can degrade soft materials, such as polymers, such that the performance of resulting thin film based devices is compromised. The work presented in this dissertation explores a novel thin film deposition technique, namely emulsion-based, resonant infrared, matrix-assisted pulsed laser evaporation (RIR-MAPLE), which combines characteristics of wet and dry deposition techniques for solution-processed materials. Previous studies have demonstrated the feasibility of emulsion-based RIR-MAPLE to deposit uniform and continuous organic, nanoparticle and blended films, as well as hetero-structures that otherwise are difficult to achieve. However, fundamental understanding of the growth mechanisms that govern

  5. EUV lithography reticles fabricated without the use of a patterned absorber

    DOEpatents

    Stearns, Daniel G.; Sweeney, Donald W.; Mirkarimi, Paul B.

    2006-05-23

    Absorber material used in conventional EUVL reticles is eliminated by introducing a direct modulation in the complex-valued reflectance of the multilayer. A spatially localized energy source such as a focused electron or ion beam directly writes a reticle pattern onto the reflective multilayer coating. Interdiffusion is activated within the film by an energy source that causes the multilayer period to contract in the exposed regions. The contraction is accurately determined by the energy dose. A controllable variation in the phase and amplitude of the reflected field in the reticle plane is produced by the spatial modulation of the multilayer period. This method for patterning an EUVL reticle has the advantages (1) avoiding the process steps associated with depositing and patterning an absorber layer and (2) providing control of the phase and amplitude of the reflected field with high spatial resolution.

  6. Fringes in FTIR spectroscopy revisited: understanding and modelling fringes in infrared spectroscopy of thin films.

    PubMed

    Konevskikh, Tatiana; Ponossov, Arkadi; Blümel, Reinhold; Lukacs, Rozalia; Kohler, Achim

    2015-06-21

    The appearance of fringes in the infrared spectroscopy of thin films seriously hinders the interpretation of chemical bands because fringes change the relative peak heights of chemical spectral bands. Thus, for the correct interpretation of chemical absorption bands, physical properties need to be separated from chemical characteristics. In the paper at hand we revisit the theory of the scattering of infrared radiation at thin absorbing films. Although, in general, scattering and absorption are connected by a complex refractive index, we show that for the scattering of infrared radiation at thin biological films, fringes and chemical absorbance can in good approximation be treated as additive. We further introduce a model-based pre-processing technique for separating fringes from chemical absorbance by extended multiplicative signal correction (EMSC). The technique is validated by simulated and experimental FTIR spectra. It is further shown that EMSC, as opposed to other suggested filtering methods for the removal of fringes, does not remove information related to chemical absorption.

  7. Q-switched erbium doped fiber laser based on single and multiple walled carbon nanotubes embedded in polyethylene oxide film as saturable absorber

    NASA Astrophysics Data System (ADS)

    Ahmed, M. H. M.; Ali, N. M.; Salleh, Z. S.; Rahman, A. A.; Harun, S. W.; Manaf, M.; Arof, H.

    2015-01-01

    A passive, stable and low cost Q-switched Erbium-doped fiber laser (EDFL) is demonstrated using both single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), which are embedded in polyethylene oxide (PEO) film as a saturable absorber (SA). The film is sandwiched between two FC/PC fiber connectors and integrated into the laser cavity for Q-switching pulse generation operating at wavelength of 1533.6 nm. With SWCNTs, the laser produces a stable pulse train with repetition rate and pulse width ranging from 9.52 to 33.33 kHz and 16.8 to 8.0 μs while varying the 980 nm pump power from 48.5 mW to 100.4 mW. On the other hand, with MWCNTs, the repetition rate and pulse width can be tuned in a wider range of 6.12-33.62 kHz and 9.5- 4.2 μs, respectively as the pump power increases from 37.9 to 120.6 mW. The MWCNTs produce the pulse train at a lower threshold and attain a higher repetition rate compared to the SWCNTs. This is due to thicker carbon nanotubes layer of the MWCNTs which provides more absorption and consequently higher damage threshold. The Q-switched EDFL produces the highest pulse energy of 531 nJ at pump power of 37.9 mW with the use of MWCNTs-PEO SA.

  8. Design of optimal buffer layers for CuInGaSe2 thin-film solar cells(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo; Varley, Joel B.; He, Xiaoqing; Rockett, Angus A.; Bailey, Jeff; Zapalac, Geordie H.; Mackie, Neil; Poplavskyy, Dmitry; Bayman, Atiye

    2016-09-01

    Optimizing the buffer layer in manufactured thin-film PV is essential to maximize device efficiency. Here, we describe a combined synthesis, characterization, and theory effort to design optimal buffers based on the (Cd,Zn)(O,S) alloy system for CIGS devices. Optimization of buffer composition and absorber/buffer interface properties in light of several competing requirements for maximum device efficiency were performed, along with process variations to control the film and interface quality. The most relevant buffer properties controlling performance include band gap, conduction band offset with absorber, dopability, interface quality, and film crystallinity. Control of an all-PVD deposition process enabled variation of buffer composition, crystallinity, doping, and quality of the absorber/buffer interface. Analytical electron microscopy was used to characterize the film composition and morphology, while hybrid density functional theory was used to predict optimal compositions and growth parameters based on computed material properties. Process variations were developed to produce layers with controlled crystallinity, varying from amorphous to fully epitaxial, depending primarily on oxygen content. Elemental intermixing between buffer and absorber, particularly involving Cd and Cu, also is controlled and significantly affects device performance. Secondary phase formation at the interface is observed for some conditions and may be detrimental depending on the morphology. Theoretical calculations suggest optimal composition ranges for the buffer based on a suite of computed properties and drive process optimizations connected with observed film properties. Prepared by LLNL under Contract DE-AC52-07NA27344.

  9. Does periodic lung screening of films meets standards?

    PubMed

    Binay, Songul; Arbak, Peri; Safak, Alp Alper; Balbay, Ege Gulec; Bilgin, Cahit; Karatas, Naciye

    2016-01-01

    To determine whether the workers' periodic chest x-ray screening techniques in accordance with the quality standards is the responsibility of physicians. Evaluation of differences of interpretations by physicians in different levels of education and the importance of standardization of interpretation. Previously taken chest radiographs of 400 workers who are working in a factory producing the glass run channels were evaluated according to technical and quality standards by three observers (pulmonologist, radiologist, pulmonologist assistant). There was a perfect concordance between radiologist and pulmonologist for the underpenetrated films. Whereas there was perfect concordance between pulmonologist and pulmonologist assistant for over penetrated films. Pulmonologist (52%) has interpreted the dose of the films as regular more than other observers (radiologist; 44.3%, pulmonologist assistant; 30.4%). The frequency of interpretation of the films as taken in inspiratory phase by the pulmonologist (81.7%) was less than other observers (radiologist; 92.1%, pulmonologist assistant; 92.6%). The rate of the pulmonologist (53.5%) was higher than the other observers (radiologist; 44.6%, pulmonologist assistant; 41.8%) for the assessment of the positioning of the patients as symmetrical. Pulmonologist assistant (15.3%) was the one who most commonly reported the parenchymal findings (radiologist; 2.2%, pulmonologist; 12.9%). It is necessary to reorganize the technical standards and exposure procedures for improving the quality of the chest radiographs. The reappraisal of all interpreters and continuous training of technicians is required.

  10. Does periodic lung screening of films meets standards?

    PubMed Central

    Binay, Songul; Arbak, Peri; Safak, Alp Alper; Balbay, Ege Gulec; Bilgin, Cahit; Karatas, Naciye

    2016-01-01

    Objective: To determine whether the workers’ periodic chest x-ray screening techniques in accordance with the quality standards is the responsibility of physicians. Evaluation of differences of interpretations by physicians in different levels of education and the importance of standardization of interpretation. Methods: Previously taken chest radiographs of 400 workers who are working in a factory producing the glass run channels were evaluated according to technical and quality standards by three observers (pulmonologist, radiologist, pulmonologist assistant). There was a perfect concordance between radiologist and pulmonologist for the underpenetrated films. Whereas there was perfect concordance between pulmonologist and pulmonologist assistant for over penetrated films. Results: Pulmonologist (52%) has interpreted the dose of the films as regular more than other observers (radiologist; 44.3%, pulmonologist assistant; 30.4%). The frequency of interpretation of the films as taken in inspiratory phase by the pulmonologist (81.7%) was less than other observers (radiologist; 92.1%, pulmonologist assistant; 92.6%). The rate of the pulmonologist (53.5%) was higher than the other observers (radiologist; 44.6%, pulmonologist assistant; 41.8%) for the assessment of the positioning of the patients as symmetrical. Pulmonologist assistant (15.3%) was the one who most commonly reported the parenchymal findings (radiologist; 2.2%, pulmonologist; 12.9%). Conclusion: It is necessary to reorganize the technical standards and exposure procedures for improving the quality of the chest radiographs. The reappraisal of all interpreters and continuous training of technicians is required. PMID:28083054

  11. The design of wideband metamaterial absorber at E band based on defect

    NASA Astrophysics Data System (ADS)

    Wang, L. S.; Xia, D. Y.; Ding, X. Y.; Wang, Y.

    2018-01-01

    A kind of wideband metamaterial absorber at E band is designed in this paper; it is composed of round metal cells with defect, dielectric substrate and metal film. The electromagnetic parameters of unit cell are calculated by using the finite element method. The results show that the wideband metamaterial absorber presents nearly perfect absorption above 90% with absorption ranging from 65.38GHz to 67.86GHz; the reason of wideband absorption is the overlap of different absorption frequency which is caused by electromagnetic resonance; the size parameters and position of defect has important effect on its absorption property. It has many advantages, such as simply, easy to preparation and so on. It has potential application on aerospace measurement and control, remote data communication, LTE wideband mobile communication and other fields.

  12. The feasibility of using methylene blue sensitized polyvinylalcohol film as a linear polarizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jyothilakshmi, K.; Anju, K. S.; Arathy, K.

    2014-01-28

    Linear light polarizing films selectively transmit radiations vibrating along an electromagnetic radiation vector and selectively absorb radiations vibrating along a second electromagnetic radiation vector. It happens according to the anisotropy of the film . In the present study the polarization effects of methylene blue sensitized polyvinyl alcohol is investigated. The polarization effects on the dye concentration, heating and stretching of film also are evaluated.

  13. Organic/hybrid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    NASA Astrophysics Data System (ADS)

    Stiff-Roberts, Adrienne D.; Ge, Wangyao

    2017-12-01

    Some of the most exciting materials research in the 21st century attempts to resolve the challenge of simulating, synthesizing, and characterizing new materials with unique properties designed from first principles. Achievements in such development for organic and organic-inorganic hybrid materials make them important options for electronic and/or photonic devices because they can impart multi-functionality, flexibility, transparency, and sustainability to emerging systems, such as wearable electronics. Functional organic materials include small molecules, oligomers, and polymers, while hybrid materials include inorganic nanomaterials (such as zero-dimensional quantum dots, one-dimensional carbon nanotubes, or two-dimensional nanosheets) combined with organic matrices. A critically important step to implementing new electronic and photonic devices using such materials is the processing of thin films. While solution-based processing is the most common laboratory technique for organic and hybrid materials, vacuum-based deposition has been critical to the commercialization of organic light emitting diodes based on small molecules, for example. Therefore, it is desirable to explore vacuum-based deposition of organic and hybrid materials that include larger macromolecules, such as polymers. This review article motivates the need for physical vapor deposition of polymeric and hybrid thin films using matrix-assisted pulsed laser evaporation (MAPLE), which is a type of pulsed laser deposition. This review describes the development of variations in the MAPLE technique, discusses the current understanding of laser-target interactions and growth mechanisms for different MAPLE variations, surveys demonstrations of MAPLE-deposited organic and hybrid materials for electronic and photonic devices, and provides a future outlook for the technique.

  14. Ag/BiOBr Film in a Rotating-Disk Reactor Containing Long-Afterglow Phosphor for Round-the-Clock Photocatalysis.

    PubMed

    Yin, Haibo; Chen, Xiaofang; Hou, Rujing; Zhu, Huijuan; Li, Shiqing; Huo, Yuning; Li, Hexing

    2015-09-16

    Ag/BiOBr film coated on the glass substrate was synthesized by a solvothermal method and a subsequent photoreduction process. Such a Ag/BiOBr film was then adhered to a hollow rotating disk filled with long-afterglow phosphor inside the chamber. The Ag/BiOBr film exhibited high photocatalytic activity for organic pollutant degradation owing to the improved visible-light harvesting and the separation of photoinduced charges. The long-afterglow phosphor could absorb the excessive daylight and emit light around 488 nm, activating the Ag/BiOBr film to realize round-the-clock photocatalysis. Because the Ag nanoparticles could extend the light absorbance of the Ag/BiOBr film to wavelengths of around 500 nm via a surface plasma resonance effect, they played a key role in realizing photocatalysis induced by long-afterglow phosphor.

  15. Light Absorbers and Catalysts for Solar to Fuel Conversion

    NASA Astrophysics Data System (ADS)

    Kornienko, Nikolay I.

    solvents, I aimed to heterogenize a class of molecular porphyrin catalysts into a 3D mesoscopic porous catalytic structure in the form of a metal-organic framework (MOF). To do so, I initially developed a growth for thin film MOFs that were embedded with catalytic groups in their linkers. Next, I utilized these thin film MOFs grown on conductive substrates and functionalized with cobalt porphyrin units as 3D porous CO2 reduction catalysts. This new class of catalyst exhibited high efficiency, selectivity, and stability in neutral pH aqueous electrolytes. Finally, as a last chapter of my work, I explored hybrid inorganic/biological CO2 reduction pathways. Specifically, I used time-resolved spectroscopic and biochemical techniques to investigate charge transfer pathways from light absorber to CO2-derived acetate in acetogenic self-sensitized bacteria.

  16. Preliminary biocompatibility experiment of polymer films for laser-assisted tissue welding.

    PubMed

    Sorg, Brian S; Welch, Ashley J

    2003-01-01

    The purpose of this study was to examine the impact of a polymer film for liquid solder strength reinforcement on the short term healing of a wound closed by laser-tissue soldering. Full thickness incisions created on the dorsum of Sprague-Dawley rats were closed by laser-tissue soldering: albumin solder with Indocyanine Green (ICG) dye was inserted between the incision edges and photothermally coagulated with a diode laser. A poly(DL-lactic-co-glycolic acid) (PLGA) polymer film was implanted subcutaneously in the bottom of the incision (controls had no film). Specimens were harvested at 0, 3, 7, and 14 days for breaking strength testing and histological analysis. Breaking strengths of the controls at 0 and 14 days were statistically stronger than the specimens with the implanted films (t-test, P < 0.05). A slight difficulty in apposing the wound edges due to the film presence may have contributed to the low acute strengths. Interference with the wound contraction process by the films possibly contributed to the lower breaking strength at 14 days. Wound histology indicated a mild foreign body reaction to the polymer film material. The polymer film was well tolerated by the tissue, and the tissue response to the material was consistent with that seen in the literature. The breaking strength differences between control and film-implanted specimens at 0 and 14 days were probably the result of mechanical complications (tissue apposition and wound contraction) due to the presence of the film, and not due to the film material itself. The use of polymer film patches for liquid solder reinforcement and breaking strength enhancement may have certain application specific issues that need to be addressed. Strategies to account for these issues require further research. Copyright 2003 Wiley-Liss, Inc.

  17. Plasma-assisted interface engineering of boron nitride nanostructure films.

    PubMed

    Pakdel, Amir; Bando, Yoshio; Golberg, Dmitri

    2014-10-28

    Today many aspects of science and technology are progressing into the nanoscale realm where surfaces and interfaces are intrinsically important in determining properties and performances of materials and devices. One familiar phenomenon in which interfacial interactions play a major role is the wetting of solids. In this work we use a facile one-step plasma method to control the wettability of boron nitride (BN) nanostructure films via covalent chemical functionalization, while their surface morphology remains intact. By tailoring the concentration of grafted hydroxyl groups, superhydrophilic, hydrophilic, and hydrophobic patterns are created on the initially superhydrophobic BN nanosheet and nanotube films. Moreover, by introducing a gradient of the functional groups, directional liquid spreading toward increasing [OH] content is achieved on the films. The resulting insights are meant to illustrate great potentials of this method to tailor wettability of ceramic films, control liquid flow patterns for engineering applications such as microfluidics and biosensing, and improve the interfacial contact and adhesion in nanocomposite materials.

  18. Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics.

    PubMed

    Chen, Hao; Yin, Jinde; Yang, Jingwei; Zhang, Xuejun; Liu, Mengli; Jiang, Zike; Wang, Jinzhang; Sun, Zhipei; Guo, Tuan; Liu, Wenjun; Yan, Peiguang

    2017-11-01

    In this Letter, high-quality WS 2 film and MoS 2 film were vertically stacked on the tip of a single-mode fiber in turns to form heterostructure (WS 2 -MoS 2 -WS 2 )-based saturable absorbers with all-fiber integrated features. Their nonlinear saturable absorption properties were remarkable, such as a large modulation depth (∼16.99%) and a small saturable intensity (6.23  MW·cm -2 ). Stable pulses at 1.55 μm with duration as short as 296 fs and average power as high as 25 mW were obtained in an erbium-doped fiber laser system. The results demonstrate that the proposed heterostructures own remarkable nonlinear optical properties and offer a platform for adjusting nonlinear optical properties by stacking different transition-metal dichalcogenides or modifying the thickness of each layer, paving the way for engineering functional ultrafast photonics devices with desirable properties.

  19. Ultra-broadband Tunable Resonant Light Trapping in a Two-dimensional Randomly Microstructured Plasmonic-photonic Absorber

    PubMed Central

    Liu, Zhengqi; Liu, Long; Lu, Haiyang; Zhan, Peng; Du, Wei; Wan, Mingjie; Wang, Zhenlin

    2017-01-01

    Recently, techniques involving random patterns have made it possible to control the light trapping of microstructures over broad spectral and angular ranges, which provides a powerful approach for photon management in energy efficiency technologies. Here, we demonstrate a simple method to create a wideband near-unity light absorber by introducing a dense and random pattern of metal-capped monodispersed dielectric microspheres onto an opaque metal film; the absorber works due to the excitation of multiple optical and plasmonic resonant modes. To further expand the absorption bandwidth, two different-sized metal-capped dielectric microspheres were integrated into a densely packed monolayer on a metal back-reflector. This proposed ultra-broadband plasmonic-photonic super absorber demonstrates desirable optical trapping in dielectric region and slight dispersion over a large incident angle range. Without any effort to strictly control the spatial arrangement of the resonant elements, our absorber, which is based on a simple self-assembly process, has the critical merits of high reproducibility and scalability and represents a viable strategy for efficient energy technologies. PMID:28256599

  20. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harumoto, Takashi; Tamura, Yohei; Ishiguro, Takashi, E-mail: ishiguro@rs.noda.tus.ac.jp

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabrication method only requires aluminum alloy film and hot-water with chelating agent, the ultrafine nanoporous film can be prepared simply and environmentally friendly.

  1. Improvement of the lipophilic-oxygen radical absorbance capacity (L-ORAC) method and single-laboratory validation.

    PubMed

    Watanabe, Jun; Oki, Tomoyuki; Takebayashi, Jun; Yamasaki, Koji; Takano-Ishikawa, Yuko; Hino, Akihiro; Yasui, Akemi

    2013-01-01

    We improved the procedure for lipophilic-oxygen radical absorbance capacity (L-ORAC) measurement for better repeatability and intermediate precision. A sealing film was placed on the assay plate, and glass vials and microdispensers equipped with glass capillaries were used. The antioxidant capacities of food extracts can be evaluated by this method with nearly the same precision as antioxidant solutions.

  2. Absorbent product to absorb fluids. [for collection of human wastes

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multi-layer absorbent product for use in contact with the skin to absorb fluids is discussed. The product utilizes a water pervious facing layer for contacting the skin, overlayed by a first fibrous wicking layer, the wicking layer preferably being of the one-way variety in which fluid or liquid is moved away from the facing layer. The product further includes a first container section defined by inner and outer layer of a water pervious wicking material between which is disposed a first absorbent mass. A second container section defined by inner and outer layers between which is disposed a second absorbent mass and a liquid impermeable/gas permeable layer. Spacesuit applications are discussed.

  3. Influence of the normalized ion flux on the constitution of alumina films deposited by plasma-assisted chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurapov, Denis; Reiss, Jennifer; Trinh, David H.

    2007-07-15

    Alumina thin films were deposited onto tempered hot working steel substrates from an AlCl{sub 3}-O{sub 2}-Ar-H{sub 2} gas mixture by plasma-assisted chemical vapor deposition. The normalized ion flux was varied during deposition through changes in precursor content while keeping the cathode voltage and the total pressure constant. As the precursor content in the total gas mixture was increased from 0.8% to 5.8%, the deposition rate increased 12-fold, while the normalized ion flux decreased by approximately 90%. The constitution, morphology, impurity incorporation, and the elastic properties of the alumina thin films were found to depend on the normalized ion flux. Thesemore » changes in structure, composition, and properties induced by normalized ion flux may be understood by considering mechanisms related to surface and bulk diffusion.« less

  4. LPG ammonia and nitrogen dioxide gas sensing properties of nanostructured polypyrrole thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagul, Sagar B., E-mail: nano.sbbagul@gmail.com; Upadhye, Deepak S.; Sharma, Ramphal, E-mail: rps.phy@gmail.com

    Nanostructured Polypyrrole thin film was synthesized by easy and economic chemical oxidative polymerization technique on glass at room temperature. The prepared thin film of Polypyrrole was characterized by optical absorbance study by UV-visible spectroscopy and electrical study by I-V measurement system. The optical absorbance spectrum of Polypyrrole shows two fundamental peaks in region of 420 and 890 nm, which confirms the formation of Polypyrrole on glass substrate. The I-V graph of nanostructured Polypyrrole represents the Ohmic nature. Furthermore, the thin film of Polypyrrole was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents spherical nanostructured morphology ofmore » Polypyrrole on glass substrate. In order to investigate gas sensing properties, 100 ppm of LPG, Ammonia and Nitrogen Dioxide were injected in the gas chamber and magnitude of resistance has been recorded as a function of time in second. It was observed that nanostructured Polypyrrole thin film shows good sensing behavior at room temperature.« less

  5. LPG ammonia and nitrogen dioxide gas sensing properties of nanostructured polypyrrole thin film

    NASA Astrophysics Data System (ADS)

    Bagul, Sagar B.; Upadhye, Deepak S.; Sharma, Ramphal

    2016-05-01

    Nanostructured Polypyrrole thin film was synthesized by easy and economic chemical oxidative polymerization technique on glass at room temperature. The prepared thin film of Polypyrrole was characterized by optical absorbance study by UV-visible spectroscopy and electrical study by I-V measurement system. The optical absorbance spectrum of Polypyrrole shows two fundamental peaks in region of 420 and 890 nm, which confirms the formation of Polypyrrole on glass substrate. The I-V graph of nanostructured Polypyrrole represents the Ohmic nature. Furthermore, the thin film of Polypyrrole was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents spherical nanostructured morphology of Polypyrrole on glass substrate. In order to investigate gas sensing properties, 100 ppm of LPG, Ammonia and Nitrogen Dioxide were injected in the gas chamber and magnitude of resistance has been recorded as a function of time in second. It was observed that nanostructured Polypyrrole thin film shows good sensing behavior at room temperature.

  6. Spectroscopic ellipsometry investigation of the optical properties of graphene oxide dip-coated on magnetron sputtered gold thin films

    NASA Astrophysics Data System (ADS)

    Politano, Grazia Giuseppina; Vena, Carlo; Desiderio, Giovanni; Versace, Carlo

    2018-02-01

    Despite intensive investigations on graphene oxide-gold nanocomposites, the interaction of graphene oxide sheets with magnetron sputtered gold thin films has not been studied yet. The optical constants of graphene oxide thin films dip-coated on magnetron sputtered gold thin films were determined by spectroscopic ellipsometry in the [300-1000] wavelength range. Moreover, the morphologic properties of the samples were investigated by SEM analysis. Graphene oxide absorbs mainly in the ultraviolet region, but when it is dip-coated on magnetron sputtered gold thin films, its optical constants show dramatic changes, becoming absorbing in the visible region, with a peak of the extinction coefficient at 3.1 eV. Using magnetron sputtered gold thin films as a substrate for graphene oxide thin films could therefore be the key to enhance graphene oxide optical sheets' properties for several technological applications, preserving their oxygen content and avoiding the reduction process.

  7. Design and fabrication of absorber coupled TES microbolometers on continuous silicon-nitride windows.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C. L.; Carlstrom, J. E.; Datesman, A.

    2008-04-01

    The implementation of TES based microbolometer arrays will achieve unprecedented sensitivities for mm and sub-mm astronomy through fabrication of large format arrays and improved linearity and stability arising from strong electro-thermal feedback. We report on progress in developing TES microbolometers using Mo/Au thin films and Au absorbing structures. We present measurements of suppressing the thermal conductance through the etching of features on a continuous Silicon-Nitride window.

  8. Characterization of Cu(In,Ga)Se 2 (CIGS) films with varying gallium ratios

    DOE PAGES

    Claypoole, Jesse; Peace, Bernadette; Sun, Neville; ...

    2015-09-05

    Cu(In 1–x,Ga x)Se 2 (CIGS) absorber layers were deposited on molybdenum (Mo) coated soda-lime glass substrates with varying Ga content (described as Ga/(In + Ga) ratios) with respect to depth. As the responsible mechanisms for the limitation of the performance of the CIGS solar cells with high Ga contents are not well understood, the goal of this work was to investigate different properties of CIGS absorber films with Ga/(In + Ga) ratios varied between 0.29 and 0.41 (as determined by X-ray florescence spectroscopy (XRF)) in order to better understand the role that the Ga content has on film quality. Themore » Ga grading in the CIGS layer has the effect causing a higher band gap toward the surface and Mo contact while the band gap in the middle of the CIGS layer is lower. Also, a wider and larger Ga/(In + Ga) grading dip located deeper in the CIGS absorber layers tend to produce larger grains in the regions of the films that have lower Ga/(In + Ga) ratios. Moreover, it was found that surface roughness decreases from 51.2 nm to 41.0 nm with increasing Ga/(In + Ga) ratios. Furthermore, the surface roughness generally decreases if the Ga grading occurs deeper in the absorber layer.« less

  9. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  10. Structural and optical properties of tin disulphide thin films grown by flash evaporation

    NASA Astrophysics Data System (ADS)

    Banotra, Arun; Padha, Naresh

    2018-04-01

    Tin Disulphide thin films were deposited by Flash Evaporation method on corning Glass Substrate at different substrate temperatures. The deposited films were undertaken for Structural, Optical and compositional characterizations. Compositional analysis of the films exhibited decrease in the sulphur content enabling S/Sn ratio to vary from 2.05 to 1.32 with increasing substrate temperature. X-ray diffraction reveals amorphous nature of the as-deposited films with varying substrate temperatures. Optical measurements estimated from absorbance spectra suggest higher absorbance at λ≤500nm and higher transmission at λ≥500nm with bandgap changes from 2.45eV to 2.09eV. The 323K as-deposited films were undertaken for annealing which transforms the films into crystalline form corresponding to hexagonal SnS2 phase at 423K and above. However, the optical response for the annealed samples shows a higher transmission of 70% in the visible region which increases further in the Infrared region of the spectrum achieving maximum transmission upto 98%. This higher transmission in the Visible to Infrared region of the solar spectrum in amorphous as well as crystalline form makes the film suitable for their use as a window layer in the Solar Cell Design.

  11. Synthesis of BiFeO{sub 3} thin films on single-terminated Nb : SrTiO{sub 3} (111) substrates by intermittent microwave assisted hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velasco-Davalos, Ivan; Ambriz-Vargas, Fabian; Kolhatkar, Gitanjali

    We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO{sub 3} (111) substrates and the deposition of ferroelectric BiFeO{sub 3} thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO{sub 3}){sup 4−} or Ti{sup 4+} layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d{sub 111}) and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO{sub 3} single crystal substrates. Multiferroic BiFeO{sub 3} thinmore » films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO{sub 3} (111) substrates. Bi(NO{sub 3}){sub 3} and Fe(NO{sub 3}){sub 3} along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO{sub 3} films on Nb : SrTiO{sub 3} (100) substrates was verified by piezoresponse force microscopy.« less

  12. Smart skin spiral antenna with chiral absorber

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Varadan, Vasundara V.

    1995-05-01

    Recently there has been considerable interest toward designing 'smart skins' for aircraft. The smart skin is a composite layer which may contain conformal radars, conformal microstrip antennas or spiral antennas for electromagnetic applications. These embedded antennas will give rise to very low radar cross section (RCS) or can be completely 'hidden' to tracking radar. In addition, they can be used to detect, monitor or even jam other unwanted electromagnetic field signatures. This paper is designed to address some technical advances made to reduce the size of spiral antennas using tunable dielectric materials and chiral absorbers. The purpose is to design, develop and fabricate a thin, wideband, conformal spiral antenna architecture that is structurally integrable and which uses advanced Penn State dielectric and absorber materials to achieve wideband ground planes, and together with low RCS. Traditional practice has been to design radome and antenna as separate entities and then resolve any interface problems during an integration phase. A structurally integrable conformal antenna, however, demands that the functional components be highly integrated both conceptually and in practice. Our concept is to use the lower skin of the radome as a substrate on which the radiator can be made using standard photolithography, thick film or LTCC techniques.

  13. Transition metal-substituted lead halide perovskite absorbers

    DOE PAGES

    Sampson, M. D.; Park, J. S.; Schaller, R. D.; ...

    2017-01-27

    Here, lead halide perovskites have proven to be a versatile class of visible light absorbers that allow rapid access to the long minority carrier lifetimes and diffusion lengths desirable for traditional single-junction photovoltaics. We explore the extent to which the attractive features of these semiconductors may be extended to include an intermediate density of states for future application in multi-level solar energy conversion systems capable of exceeding the Shockley–Queisser limit. We computationally and experimentally explore the substitution of transition metals on the Pb site of MAPbX 3 (MA = methylammonium, X = Br or Cl) to achieve a tunable densitymore » of states within the parent gap. Computational screening identified both Fe- and Co-substituted MAPbBr 3 as promising absorbers with a mid-gap density of states, and the later films were synthesized via conventional solution-based processing techniques. First-principles density functional theory (DFT) calculations support the existence of mid-gap states upon Co incorporation and enhanced sub-gap absorption, which are consistent with UV-visible-NIR absorption spectroscopy. Strikingly, steady state and time-resolved PL studies reveal no sign of self-quenching for Co-substitution up to 25%, which suggest this class of materials to be a worthy candidate for future application in intermediate band photovoltaics.« less

  14. Ambient CdCl{sub 2} treatment on CdS buffer layer for improved performance of Sb{sub 2}Se{sub 3} thin film photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liang; Luo, Miao; Qin, Sikai

    2015-10-05

    Antimony selenide (Sb{sub 2}Se{sub 3}) is appealing as a promising light absorber because of its intrinsically benign grain boundaries, suitable band gap (∼1.1 eV), strong absorption coefficient, and relatively environmentally friendly constituents. Recently, we achieved a certified 5.6% efficiency Sb{sub 2}Se{sub 3} thin film solar cell with the assistance of ambient CdCl{sub 2} treatment on the CdS buffer layer. Here, we focused on investigating the underlying mechanism from a combined materials and device physics perspective applying current density-voltage (J-V) fitting analysis, atomic force microscope, X-ray photoelectron spectroscopy, fluorescence, and UV–Vis transmission spectroscopy. Our results indicated that ambient CdCl{sub 2} treatment onmore » CdS film not only improved CdS grain size and quality, but also incorporated Cl and more O into the film, both of which can significantly improve the heterojunction quality and device performance of CdS/Sb{sub 2}Se{sub 3} solar cells.« less

  15. Ultrasonic-assisted synthesis of phosphorus graphene oxide/poly (vinyl alcohol) polymer and surface resistivity research of phosphorus graphene oxide/poly (vinyl alcohol) film.

    PubMed

    Li, Jihui; Li, Yongshen; Niu, Shuai; Li, Ning

    2017-05-01

    In this paper, phosphorus graphene oxide/poly (vinyl alcohol) polymer (PGO/PVA polymer) was synthesized by PGO and PVA via the esterification in the case of faint acidity and the ultrasound irradiation and characterized; moreover, phosphorus graphene oxide/poly (vinyl alcohol) film (PGO/PVA film) was prepared by PGO/PVA polymer and characterized; also, the surface resistivity of PGO/PVA film was investigated in the case of the different amount of PGO. Based on those, it had been found that PGO reacted with PVA to produce PGO/PVA polymer via the esterification under the ultrasonic-assisted condition, and PGO/PVA polymer was structured by 2D lattice of PGO and the chain of PVA connected in the form of six-member lactone ring and phosphonic ester, and PGO/PVA film was constituted by PGO/PVA polymer, and surface resistivity of 0.00, 0.75, 1.50, 2.25 and 3.00wt% of PGO/PVA film were 6.85×10 8 , 2.98×10 8 , 1.42×10 6 , 7.66×10 4 and 1.29×10 5 Ω/sq, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The Ion-Assisted Deposition of Optical Thin Films

    DTIC Science & Technology

    1988-01-01

    nitrogen ions (Martin et al. 1984b). The substrates were maintained at room temperature or at 300 °C. Films were deposited of the characteristic gold color...band matches that reported by Hass et al. (1959) for CeF3 films, with aborption bands at 210 nm, 220 nm, 235 nm, and 250 nm 03 corresponding to...onset of aborption than LaF 3 . This could be due to the relatively short-wavelength absorption edge of La20 3 (300 nm) in comparison to NdF3 (400 nm

  17. Germanium films by polymer-assisted deposition

    DOEpatents

    Jia, Quanxi; Burrell, Anthony K.; Bauer, Eve; Ronning, Filip; McCleskey, Thomas Mark; Zou, Guifu

    2013-01-15

    Highly ordered Ge films are prepared directly on single crystal Si substrates by applying an aqueous coating solution having Ge-bound polymer onto the substrate and then heating in a hydrogen-containing atmosphere. A coating solution was prepared by mixing water, a germanium compound, ethylenediaminetetraacetic acid, and polyethyleneimine to form a first aqueous solution and then subjecting the first aqueous solution to ultrafiltration.

  18. Electrospun polystyrene/oxidized carbon nanotubes film as both sorbent for thin film microextraction and matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    He, Xiao-Mei; Zhu, Gang-Tian; Yin, Jia; Zhao, Qin; Yuan, Bi-Feng; Feng, Yu-Qi

    2014-07-18

    In the current study, polystyrene/oxidized carbon nanotubes (PS/OCNTs) film was prepared and applied as both an adsorbent of thin film microextraction (TFME) and matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for the first time. The uniform size of PS/OCNTs film with OCNTs evenly and firmly immobilized in PS was obtained by electrospinning. And a novel TFME device was developed using the prepared PS/OCNTs film to enrich benzo[a]pyrene (BaP) from water, and also BaP and 1-hydroxypyrene (1-OHP) from urine sample. Then the extracted analytes on the PS/OCNTs film were directly applied to MALDI-MS analysis with PS/OCNTs film as the MALDI matrix. Our results show that PS/OCNTs film is a good TFME adsorbent toward the analytes and an excellent matrix for the sensitive determination of BaP and 1-OHP using MALDI-TOF-MS. The employment of PS/OCNTs as the matrix for MALDI can effectively avoid the large variation of signal intensity normally resulting from heterogeneous distribution of the adsorbed analyte on matrix layer, which therefore significantly improve spot-to-spot reproducibility. The introduction of PS in the film can prevent OCNTs from flying out of MALDI plate to damage the equipment. In addition, PS/OCNTs film also largely extended the duration of ion signal of target analyte compared to OCNTs matrix. The developed method was further successfully used to quantitatively determine BaP in environmental water and 1-OHP in urine samples. The results show that BaP and 1-OHP could be easily detected at concentrations of 50pgmL(-1) and 500pgmL(-1), respectively, indicating the high detection sensitivity of this method. For BaP analysis, the linear range was 0.1-20ngmL(-1) with a correlation coefficient of 0.9970 and the recoveries were in the range of 81.3 to 123.4% with the RSD≤8.5% (n=3); for urinary 1-OHP analysis, the linear range was 0.5-20ngmL(-1) with a correlation coefficient of 0.9937 and the recoveries

  19. Filtration-wet transferred transparent conducting films of mm long carbon nanotubes grown using water-assisted chemical vapor deposition.

    PubMed

    Patole, Shashikant P; Shin, Dong Wook; Fugetsu, Bunshi; Yoo, Ji-Beom

    2013-11-01

    Transparent conducting films (TCF) made up from carbon nanotubes (CNTs) have a tremendous potential in replacing the indium tin oxide films. Compare to single wall CNTs multiwall CNTs are more metallic and are more suitable candidate for the TCF. In this letter we report the use of selectively grown mm-scale, few-wall, vertically aligned CNTs for the fabrication of TCF. Water-assisted chemical vapor deposition was used to grow the mm-scale CNTs within short growth time. A special post-growth water-vapor treatment allowed us to remove the catalyst-free CNT forest very easily from the substrate and use it for the further process. A filtration-wet transfer process was used to form the TCF. The TCF shows sheet resistance of 228 omega/sq. at 72% transparency (at 550 nm). The ratio of optical conductivity to dc conductivity was observed in between 0.21 to 0.25 for below 80% transmission.

  20. Development of a real-time reflectance and transmittance monitoring system for the manufacturing of metaldielectric light absorbers

    NASA Astrophysics Data System (ADS)

    Badoil, Bruno; Cathelinaud, Michel; Lemarchand, Fabien; Lemarquis, Frédéric; Lequime, Michel

    2017-11-01

    Metal-dielectric light absorbers are of great interest for suppressing stray light in optical systems. Such coatings can give an absorption level greater than 99.9% over a broad spectral range provided that the complex refractive index of metallic films is accurately known. For this purpose we developed a new real-time monitoring system that allows to measure in situ both reflectance and transmittance of the coating during manufacturing in the deposition chamber. This paper describes the system design and its characteristics and gives some preliminary results concerning metallic thin film characterizations.

  1. High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter

    NASA Astrophysics Data System (ADS)

    Shimizu, Makoto; Kohiyama, Asaka; Yugami, Hiroo

    2015-01-01

    We demonstrate a high-efficiency solar-thermophotovoltaic system (STPV) using a monolithic, planar, and spectrally selective absorber/emitter. A complete STPV system using gallium antimonide (GaSb) cells was designed and fabricated to conduct power generation tests. To produce a high-efficiency STPV, it is important to match the thermal radiation spectrum with the sensitive region of the GaSb cells. Therefore, to reach high temperatures with low incident power, a planar absorber/emitter is incorporated for controlling the thermal radiation spectrum. This multilayer coating consists of thin-film tungsten sandwiched by yttria-stabilized zirconia. The system efficiency is estimated to be 16% when accounting for the optical properties of the fabricated absorber/emitter. Power generation tests using a high-concentration solar simulator show that the absorber/emitter temperature peaks at 1640 K with an incident power density of 45 W/cm2, which can be easily obtained by low-cost optics such as Fresnel lenses. The conversion efficiency became 23%, exceeding the Shockley-Queisser limit for GaSb, with a bandgap of 0.67 eV. Furthermore, a total system efficiency of 8% was obtained with the view factor between the emitter and the cell assumed to be 1.

  2. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  3. UV absorption control of thin film growth

    DOEpatents

    Biefeld, Robert M.; Hebner, Gregory A.; Killeen, Kevin P.; Zuhoski, Steven P.

    1991-01-01

    A system for monitoring and controlling the rate of growth of thin films in an atmosphere of reactant gases measures the UV absorbance of the atmosphere and calculates the partial pressure of the gases. The flow of reactant gases is controlled in response to the partial pressure.

  4. Nanostructural characterization of amorphous diamondlike carbon films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SIEGAL,MICHAEL P.; TALLANT,DAVID R.; MARTINEZ-MIRANDA,L.J.

    2000-01-27

    Nanostructural characterization of amorphous diamondlike carbon (a-C) films grown on silicon using pulsed-laser deposition (PLD) is correlated to both growth energetic and film thickness. Raman spectroscopy and x-ray reflectivity probe both the topological nature of 3- and 4-fold coordinated carbon atom bonding and the topographical clustering of their distributions within a given film. In general, increasing the energetic of PLD growth results in films becoming more ``diamondlike'', i.e. increasing mass density and decreasing optical absorbance. However, these same properties decrease appreciably with thickness. The topology of carbon atom bonding is different for material near the substrate interface compared to materialmore » within the bulk portion of an a-C film. A simple model balancing the energy of residual stress and the free energies of resulting carbon topologies is proposed to provide an explanation of the evolution of topographical bonding clusters in a growing a-C film.« less

  5. Hydrophilic absorbable copolyester exhibiting zero-order drug release.

    PubMed

    Andjelić, Sasa; Yuan, Jenny; Jamiolkowski, Dennis D; Diluccio, Robert; Bezwada, Rao; Zhang, Hua; Mijović, Jovan

    2006-04-01

    A novel absorbable hydrophilic copolyester developed in our laboratory, amorphous 40/60 poly(ethylene diglycolate-co-glycolide), exhibits outstanding physical properties. Films made from this material appear fully transparent, colorless, soft and slightly elastic, but relatively strong and durable materials so that they can be potentially used as stand-alone devices in various in-vivo medical applications. In this study, in-vitro drug release characteristics of this copolyester were examined. High Performance Liquid Chromatography was used to generate release profiles on selected non-steroidal anti-inflammatory agents, NSAIDs. In addition, dielectric relaxation spectroscopy, as well as mid- and near infrared spectroscopy, were used to study specific polymer chain interactions in water and buffer solution as a function of aging time at 37 degrees C. This copolyester, compression molded into a film, exhibited nearly constant in-vitro release of various hydrophilic and hydrophobic drugs. The release profile showed minimal or, in most cases, no burst effect. The effect was observed with the three NSAIDs that were tested as model compounds; however, this system may prove generally useful for other drug entities. In-vitro hydrolysis conducted at 37 degrees C on this hydrophilic copolyester revealed an unusually long induction period (no hydrolysis for up to 6 days), followed by the relatively rapid hydrolysis. Data from dipole relaxation spectroscopy indicated that the water molecules do not structurally associate with the polymer chains in phosphate buffer during initial hydrolysis period. The results suggest unique dynamics of water diffusion through the polymer matrix that may play a critical role in achieving controlled release properties. Furthermore, we suspect that the molecular interactions associated with this new synthetic absorbable material may find a critical utility in important medical applications.

  6. Synthesis and characterisation of co-evaporated tin sulphide thin films

    NASA Astrophysics Data System (ADS)

    Koteeswara Reddy, N.; Ramesh, K.; Ganesan, R.; Ramakrishna Reddy, K. T.; Gunasekhar, K. R.; Gopal, E. S. R.

    2006-04-01

    Tin sulphide films were grown at different substrate temperatures by a thermal co-evaporation technique. The crystallinity of the films was evaluated from X-ray diffraction studies. Single-phase SnS films showed a strong (040) orientation with an orthorhombic crystal structure and a grain size of 0.12 μm. The films showed an electrical resistivity of 6.1 Ω cm with an activation energy of 0.26 eV. These films exhibited an optical band gap of 1.37 eV and had a high optical absorption coefficient (>104 cm-1) above the band-gap energy. The results obtained were analysed to evaluate the potentiality of the co-evaporated SnS films as an absorber layer in solar photovoltaic devices.

  7. Realizing high-performance metamaterial absorber based on the localized surface plasmon resonance in the terahertz regime

    NASA Astrophysics Data System (ADS)

    Yunfeng, Lin; Xiaoqi, Hu; Lin, Hu

    2018-04-01

    A composite structure design metamaterial absorber is designed and simulated. The proposed composite structure consists of a double-hole sub-structure and a double-metallic particle sub-structure. The damping constant of bulk gold layer is optimized to eliminate the adverse effects of the grain boundary and the surface scattering of thin films on the absorption property. Two absorption peaks (A1 = 58%, A2 = 23%) are achieved based on the localized surface plasmon (LSP) modes resonance. Moreover, the plasmonic hybridization phenomenon between LSP modes is found, which leads to the absorption enhancement between two absorption peaks. The proposed metamaterial absorber holds the property of wide-angle incidence.

  8. Plasma-assisted microwave processing of materials

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin (Inventor); Jackson, Henry (Inventor); Ylin, Tzu-yuan (Inventor)

    1998-01-01

    A microwave plasma assisted method and system for heating and joining materials. The invention uses a microwave induced plasma to controllably preheat workpiece materials that are poorly microwave absorbing. The plasma preheats the workpiece to a temperature that improves the materials' ability to absorb microwave energy. The plasma is extinguished and microwave energy is able to volumetrically heat the workpiece. Localized heating of good microwave absorbing materials is done by shielding certain parts of the workpiece and igniting the plasma in the areas not shielded. Microwave induced plasma is also used to induce self-propagating high temperature synthesis (SHS) process for the joining of materials. Preferably, a microwave induced plasma preheats the material and then microwave energy ignites the center of the material, thereby causing a high temperature spherical wave front from the center outward.

  9. Electroactive Film of Myoglobin Incorporated in a 3D-porous Calcium Alginate Film with Polyvinyl Alcohol, Glycerin and Gelatin.

    PubMed

    Zheng, Xueqin; Sun, Hong; Hou, Shifeng

    2015-01-01

    In this work, an electroactive porous Mb-CA's composite film was fabricated by incorporating myoglobin (Mb) in a three-dimension (3D) porous calcium alginate (CA) film with polyvinyl alcohol, glycerol, and gelatin. The porous Mb-CA's film modified electrodes exhibited a pair of well-defined, quasi-reversible cyclic voltammetric (CV) peaks at about -0.37 V vs. SCE in pH 7.0 buffers, characteristic of Mb heme Fe((III))/Fe((II)) redox couples. The electrochemical parameters, such as formal potentials (E(o')) and apparent heterogeneous electron-transfer rate constants (ks), were estimated by square-wave voltammetry with nonlinear regression analysis. The porous CA's composite film could form hydrogel in aqueous solution. The positions of the Soret absorbance band suggest that Mb in the CA's composite film kept its native states in the medium pH range. Hydrogen peroxide, oxygen, and nitrite were electrochemically catalyzed by the Mb-CA's composite film with significant lowering of the reduction overpotential.

  10. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  11. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  12. Annealing Effects on Structure and Optical Properties of Diamond-Like Carbon Films Containing Silver.

    PubMed

    Meškinis, Šarūnas; Čiegis, Arvydas; Vasiliauskas, Andrius; Šlapikas, Kęstutis; Gudaitis, Rimantas; Yaremchuk, Iryna; Fitio, Volodymyr; Bobitski, Yaroslav; Tamulevičius, Sigitas

    2016-12-01

    In the present study, diamond-like carbon films with embedded Ag nanoparticles (DLC:Ag) were deposited by reactive magnetron sputtering. Structure of the films was investigated by Raman scattering spectroscopy. Atomic force microscopy was used to define thickness of DLC:Ag films as well as to study the surface morphology and size distribution of Ag nanoparticles. Optical absorbance and reflectance spectra of the films were studied in the 180-1100-nm range. Air annealing effects on structure and optical properties of the DLC:Ag were investigated. Annealing temperatures were varied in the 180-400 °C range. Changes of size and shape of the Ag nanoclusters took place due to agglomeration. It was found that air annealing of DLC:Ag films can result in graphitization following destruction of the DLC matrix. Additional activation of surface-enhanced Raman scattering (SERS) effect in DLC:Ag films can be achieved by properly selecting annealing conditions. Annealing resulted in blueshift as well as significant narrowing of the plasmonic absorbance and reflectance peaks. Moreover, quadrupole surface plasmon resonance peaks appeared. Modeling of absorption spectra of the nanoclusters depending on the shape and surrounding media has been carried out.

  13. Annealing Effects on Structure and Optical Properties of Diamond-Like Carbon Films Containing Silver

    NASA Astrophysics Data System (ADS)

    Meškinis, Šarūnas; Čiegis, Arvydas; Vasiliauskas, Andrius; Šlapikas, Kęstutis; Gudaitis, Rimantas; Yaremchuk, Iryna; Fitio, Volodymyr; Bobitski, Yaroslav; Tamulevičius, Sigitas

    2016-03-01

    In the present study, diamond-like carbon films with embedded Ag nanoparticles (DLC:Ag) were deposited by reactive magnetron sputtering. Structure of the films was investigated by Raman scattering spectroscopy. Atomic force microscopy was used to define thickness of DLC:Ag films as well as to study the surface morphology and size distribution of Ag nanoparticles. Optical absorbance and reflectance spectra of the films were studied in the 180-1100-nm range. Air annealing effects on structure and optical properties of the DLC:Ag were investigated. Annealing temperatures were varied in the 180-400 °C range. Changes of size and shape of the Ag nanoclusters took place due to agglomeration. It was found that air annealing of DLC:Ag films can result in graphitization following destruction of the DLC matrix. Additional activation of surface-enhanced Raman scattering (SERS) effect in DLC:Ag films can be achieved by properly selecting annealing conditions. Annealing resulted in blueshift as well as significant narrowing of the plasmonic absorbance and reflectance peaks. Moreover, quadrupole surface plasmon resonance peaks appeared. Modeling of absorption spectra of the nanoclusters depending on the shape and surrounding media has been carried out.

  14. Experimental investigation of the heat and mass transfer in a tube bundle absorber of an absorption chiller

    NASA Astrophysics Data System (ADS)

    Olbricht, Michael; Luke, Andrea

    2018-05-01

    The design of the absorber of absorption chillers is still subject to great uncertainty since the coupled processes of heat and mass transfer as well as the influence of systemic interactions on the absorption process are not fully understood. Unfortunately, only a few investigations on the transport phenomena in the absorber during operation in an absorption chiller are reported in the literature. Therefore, experimental investigations on the heat and mass transfer during falling film absorption of steam in aqueous LiBr-solution are carried out in an absorber installed in an absorption chiller in this work. An improvement of heat and mass transfer due to the increase in convective effects are observed as the Ref number increases. Furthermore, an improvement of the heat transfer in the absorber with increasing coolant temperature can be identified in the systemic context. This is explained by a corresponding reduction in the average viscosity of the solution in the absorber. A comparison with experimental data from literature obtained from so-called absorber-generator test rigs shows a good consistency. Thus, it has been shown that the findings obtained on these simplified experimental setups can be transferred to the absorber in an absorption chiller. However, a comparison with correlations from the literature reveals a strong deviation between experimental and calculated results. Hence, further research activities on the development of better correlations are required in future.

  15. Carbon Nanotube Thin-Film Antennas.

    PubMed

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of <10 ohm/sq is needed to achieve a 10 dB return loss in the unbalanced antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed.

  16. Evaluation of tensile properties and water absortion of cassava starch film

    NASA Astrophysics Data System (ADS)

    Walster, R. Justin; Rozyanty, A. R.; Kahar, A. W. M.; Musa, L.; Shahnaz, S. B. S.

    2017-09-01

    Casava Starch film was prepared by casting method with different percentage of glycerol (0%, 0.5%, 1.0%, 1.5%, 2.0% and 2.5%) as plasticizer. The effect of glycerol content in starch film on mechanical and water absorption properties was studied. Results shows that the increase of glycerol content in cassava starch film had decrease the tensile strength, tensile modulus and increase the elongation of break properties. The result of water absorbency tended to increase for starch film with higher percentage of glycerol content. The incorporation of glycerol in cassava starch film had increase the water absorption ability due to increase of hydroxyl content contributed by glycerol.

  17. Morphology and structure evolution of Cu(In,Ga)S{sub 2} films deposited by reactive magnetron co-sputtering with electron cyclotron resonance plasma assistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Man, E-mail: man.nie@helmholtz-berlin.de; Ellmer, Klaus

    2014-02-28

    Cu(In,Ga)S{sub 2} (CIGS) films were deposited on Mo coated soda lime glass substrates using an electron cyclotron resonance plasma enhanced one-step reactive magnetron co-sputtering process (ECR-RMS). The crystalline quality and the morphology of the Cu(In,Ga)S{sub 2} films were investigated by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and X-ray fluorescence. We also compared these CIGS films with films previously prepared without ECR assistance and find that the crystallinity of the CIGS films is correlated with the roughness evolution during deposition. Atomic force microscopy was used to measure the surface topography and to derive one-dimensional power spectral densities (1DPSD). Allmore » 1DPSD spectra of CIGS films exhibit no characteristic peak which is typical for the scaling of a self-affine surface. The growth exponent β, characterizing the roughness R{sub q} evolution during the film growth as R{sub q} ∼ d{sup β}, changes with film thickness. The root-mean-square roughness at low temperatures increases only slightly with a growth exponent β = 0.013 in the initial growth stage, while R{sub q} increases with a much higher exponent β = 0.584 when the film thickness is larger than about 270 nm. Additionally, we found that the H{sub 2}S content of the sputtering atmosphere and the Cu- to-(In + Ga) ratio has a strong influence of the morphology of the CIGS films in this one-step ECR-RMS process.« less

  18. Graphene Oxide saturable absorber for generating eye-safe Q-switched fiber laser

    NASA Astrophysics Data System (ADS)

    Rosol, A. H. A.; Jusoh, Z.; Rahman, H. A.; Rusdi, M. F. M.; Harun, S. W.; Latiff, A. A.

    2017-06-01

    This paper reports the generation of Q-switched fiber laser using thulium doped fiber (TDF) as a gain medium and graphene oxide (GO) as a saturable absorber (SA). The GO powder is embedded into polyvinyl alcohol (PVA) to form an SA film based on a drop-casting technique. GO-SA film is sandwiched between two fiber connectors and tighten by FC adapter before it is incorporated into an TDF laser cavity for Q-switching pulse generation. At 344 mW pump level, a stable Q-switching regime presence at 1943 nm with a 3-dB spectral bandwidth of 9 nm. The maximum repetition rate, pulse width, and pulse energy are at 25 kHz, 4.2 µs, and 0.68 µJ, respectively. All finding results are comparable with other reported pulse fiber lasers.

  19. Effect of Annealing Temperature on Flowerlike Cu3BiS3 Thin Films Grown by Chemical Bath Deposition

    NASA Astrophysics Data System (ADS)

    Deshmukh, S. G.; Patel, S. J.; Patel, K. K.; Panchal, A. K.; Kheraj, Vipul

    2017-10-01

    For widespread application of thin-film photovoltaic solar cells, synthesis of inexpensive absorber material is essential. In this work, deposition of ternary Cu3BiS3 absorber material, which contains abundant and environmentally benign elements, was carried out on glass substrate. Flowerlike Cu3BiS3 thin films with nanoflakes as building block were formed on glass substrate by chemical bath deposition. These films were annealed at 573 K and 673 K in sulfur ambient for structural improvement. Their structure was characterized using Raman spectroscopy, as well as their surface morphological and optical properties. The x-ray diffraction profile of as-deposited Cu3BiS3 thin film revealed amorphous structure, which transformed to orthorhombic phase after annealing. The Raman spectrum exhibited a characteristic peak at 290 cm-1. Scanning electron microscopy of as-deposited Cu3BiS3 film confirmed formation of nanoflowers with diameter of around 1052 nm. Wettability testing of as-deposited Cu3BiS3 thin film demonstrated hydrophobic nature, which became hydrophilic after annealing. The measured ultraviolet-visible (UV-Vis) absorption spectra of the Cu3BiS3 thin films gave an absorption coefficient of 105 cm-1 and direct optical bandgap of about 1.42 eV after annealing treatment. Based on all these results, such Cu3BiS3 material may have potential applications in the photovoltaic field as an absorber layer.

  20. Optical properties and surface topography of CdCl2 activated CdTe thin films

    NASA Astrophysics Data System (ADS)

    Patel, S. L.; Purohit, A.; Chander, S.; Dhaka, M. S.

    2018-05-01

    The effect of post-CdCl2 heat treatment on optical properties and surface topography of evaporated CdTe thin films is investigated. The pristine and thermally annealed films were subjected to UV-Vis spectrophotometer and atomic force microscopy (AFM) to investigate the optical properties and surface topography, respectively. The absorbance is found to be maximum (˜90%) at 320°C temperature and transmittance found to be minimum and almost constant in ultraviolet and visible regions. The direct band gap is increased from 1.42 eV to 2.12 eV with post-CdCl2 annealing temperature. The surface topography revealed that the uniformity is improved with annealing temperature and average surface roughness is found in the range of 83.3-144.3 nm as well as grains have cylindrical hill-like shapes. The investigated results indicate that the post-CdCl2 treated films annealed at 320°C may be well-suitable for thin film solar cells as an absorber layer.

  1. Copper cladding on polymer surfaces by ionization-assisted deposition

    NASA Astrophysics Data System (ADS)

    Kohno, Tomoki; Tanaka, Kuniaki; Usui, Hiroaki

    2018-03-01

    Copper thin films were prepared on poly(ethylene terephthalate) (PET) and polyimide (PI) substrates by an ionization-assisted vapor deposition method. The films had a polycrystalline structure, and their crystallite size decreased with increasing ion acceleration voltage V a. Ion acceleration was effective in reducing the surface roughness of the films. Cross-sectional transmission electron microscopy revealed that the copper/polymer interface showed increased corrugation with increasing V a. The increase in V a also induced the chemical modification of polymer chains of the PET substrate, but the PI substrate underwent smaller modification after ion bombardment. Most importantly, the adhesion strength between the copper film and the PET substrate increased with increasing V a. It was concluded that ionization-assisted deposition is a promising technique for preparing metal clad layers on flexible polymer substrates.

  2. Potassium doped methylammonium lead iodide (MAPbI3) thin films as a potential absorber for perovskite solar cells; structural, morphological, electronic and optoelectric properties

    NASA Astrophysics Data System (ADS)

    Muzammal uz Zaman, Muhammad; Imran, Muhammad; Saleem, Abida; Kamboh, Afzal Hussain; Arshad, Muhammad; Khan, Nawazish Ali; Akhter, Parvez

    2017-10-01

    In this article, we have demonstrated the doping of K in the light absorbing CH3NH3PbI3 perovskite i.e. (M = CH3, A = NH3; x = 0-1). One of the major merits of methylammonium lead iodide (CH3NH3PbI3) perovskites is that they act as efficient absorbing material of light in photovoltaic cell imparting long carrier lifetime and optimum band gap. The structural, morphological, electronic and optoelectric properties of potassium (K) doped light absorber methylammonium lead iodide (CH3NH3PbI3) perovskites are reported here i.e. Kx(MA)1-xPbI3 (M = CH3, A =NH3; x = 0-1). The thin films of perovskites (x = 0-1) were deposited by spin coating on cleaned FTO substrates and characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), current-voltage (IV), X-ray photoelectron spectroscopy (XPS) and Diffused reflectance spectroscopy (DRS) analysis. The organic constituents i.e. MA = CH3NH3, in perovskites solar cells induce instability even at the room temperature. To overcome such instabilities we have replaced the organic constituents by K because both of them have electropositive nature. Potassium successfully replaces the CH3NH3. Initially, this compound grows in a tetragonal crystal structure, however, beyond 30% doping of potassium orthorhombic distortions are induced in the parent tetragonal unit cell. Such phase transformation is microscopically visible in the electron micrographs of doped samples; cubic grains for MAPbI3 begin to transform into strip like structures in K-doped samples. The resistance of the samples is decreased for partial K-doping, which we suggested to be arising due to the electropositive nature of K. It is observed that the binding energy difference between Pb4f and I3d core levels are very similar in all the investigated systems and show formal oxidation states. Also, the partially doped samples showed increased absorption and bandgaps around 1.5 eV which is an optimum value for solar absorption.

  3. Synthesis and characterization of ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anilkumar, T. S., E-mail: anil24march@gmail.com; Girija, M. L., E-mail: girija.ml.grt1@gmail.com; Venkatesh, J., E-mail: phph9502@yahoo.com

    2016-05-06

    Zinc oxide (ZnO) Thin films were deposited on glass substrate using Spin coating method. Zinc acetate dehydrate, Carbinol and Mono-ethanolamine were used as the precursor, solvent and stabilizer respectively to prepare ZnO Thin-films. The molar ratio of Monoethanolamine to Zinc acetate was maintained as approximately 1. The thickness of the films was determined by Interference technique. The optical properties of the films were studied by UV Vis-Spectrophotometer. From transmittance and absorbance curve, the energy band gap of ZnO is found out. Electrical Conductivity measurements of ZnO are carried out by two probe method and Activation energy for the electrical conductivitymore » of ZnO are found out. The crystal structure and orientation of the films were analyzed by XRD. The XRD patterns show that the ZnO films are polycrystalline with wurtzite hexagonal structure.« less

  4. Chemical structural analysis of diamondlike carbon films: II. Raman analysis

    NASA Astrophysics Data System (ADS)

    Takabayashi, Susumu; Ješko, Radek; Shinohara, Masanori; Hayashi, Hiroyuki; Sugimoto, Rintaro; Ogawa, Shuichi; Takakuwa, Yuji

    2018-02-01

    The chemical structure of diamondlike carbon (DLC) films, synthesized by photoemission-assisted glow discharge, has been analyzed by Raman spectroscopy. Raman analysis in conjunction with the sp2 cluster model clarified the film structure. The sp2 clusters in DLC films synthesized at low temperature preferred various aliphatic structures. Sufficient argon-ion assist allowed for formation of less strained DLC films containing large amounts of hydrogen. As the synthesis temperature was increased, thermal desorption of hydrogen left carbon dangling bonds with active unpaired electrons in the films, and the reactions that followed created strained films containing aromatic sp2 clusters. In parallel, the desorption of methane molecules from the growing surface by chemisorption of hydrogen radicals prevented the action of argon ions, promoting internal strain of the films. However, in synthesis at very high temperature, where sp2 clusters are sufficiently dominant, the strain was dissolved gradually. In contrast, the DLC films synthesized at low temperature were more stable than other films synthesized at the same temperature because of stable hydrogen-carbon bonds in the films.

  5. Aqueous Solution-Phase Selenized CuIn(S,Se)2 Thin Film Solar Cells Annealed under Inert Atmosphere.

    PubMed

    Oh, Yunjung; Yang, Wooseok; Kim, Jimin; Woo, Kyoohee; Moon, Jooho

    2015-10-14

    A nonvacuum solution-based approach can potentially be used to realize low cost, roll-to-roll fabrication of chalcopyrite CuIn(S,Se)2 (CISSe) thin film solar cells. However, most solution-based fabrication methods involve highly toxic solvents and inevitably require sulfurization and/or postselenization with hazardous H2S/H2Se gases. Herein, we introduce novel aqueous-based Cu-In-S and Se inks that contain an amine additive for producing a high-quality absorber layer. CISSe films were fabricated by simple deposition of Cu-In-S ink and Se ink followed by annealing under an inert atmosphere. Compositional and phase analyses confirmed that our simple aqueous ink-based method facilitated in-site selenization of the CIS layer. In addition, we investigated the molecular structures of our aqueous inks to determine how crystalline chalcopyrite absorber layers developed without sulfurization and/or postselenization. CISSe thin film solar cells annealed at 550 °C exhibited an efficiency of 4.55% under AM 1.5 illumination. The low-cost, nonvacuum method to deposit chalcopyrite absorber layers described here allows for safe and simple processing of thin film solar cells.

  6. Rare earth-based low-index films for IR and multispectral thin film solutions

    NASA Astrophysics Data System (ADS)

    Stolze, Markus; Neff, Joe; Waibel, Friedrich

    2017-10-01

    Non-thoriated rare-earth fluoride based coating solutions involving DyF3 and YbF3 based films as well as non-wetting fluorohydrocarbon cap layers on such films, have been deposited, analyzed and partly optimized. Intermediate results for DyF3 based films from ion assisted e-gun deposition with O2 and N2 alone and as base for the non-wetting to-player as well as for YbF3 starting material with or without admixtures of CaF2 are discussed for low-loss LWIR and multispectral solutions.

  7. Substrate impact on the low-temperature growth of GaN thin films by plasma-assisted atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kizir, Seda; Haider, Ali; Biyikli, Necmi, E-mail: biyikli@unam.bilkent.edu.tr

    2016-07-15

    Gallium nitride (GaN) thin films were grown on Si (100), Si (111), and c-plane sapphire substrates at 200 °C via hollow-cathode plasma-assisted atomic layer deposition (HCPA-ALD) using GaEt{sub 3} and N{sub 2}/H{sub 2} plasma as group-III and V precursors, respectively. The main aim of the study was to investigate the impact of substrate on the material properties of low-temperature ALD-grown GaN layers. Structural, chemical, and optical characterizations were carried out in order to evaluate and compare film quality of GaN on different substrates. X-ray reflectivity measurements showed film density values of 5.70, 5.74, and 5.54 g/cm{sup 3} for GaN grown on Simore » (100), Si (111), and sapphire, respectively. Grazing incidence x-ray diffraction measurements exhibited hexagonal wurtzite structure in all HCPA-ALD grown GaN samples. However, dominant diffraction peak for GaN films grown on Si and sapphire substrates were detected differently as (002) and (103), respectively. X-ray diffraction gonio scans measured from GaN grown on c-plane sapphire primarily showed (002) orientation. All samples exhibited similar refractive index values (∼2.17 at 632 nm) with 2–3 at. % of oxygen impurity existing within the bulk of the films. The grain size was calculated as ∼9–10 nm for GaN grown on Si (100) and Si (111) samples while it was ∼5 nm for GaN/sapphire sample. Root-mean-square surface roughness values found as 0.68, 0.76, and 1.83 nm for GaN deposited on Si (100), Si (111), and sapphire, respectively. Another significant difference observed between the samples was the film growth per cycle: GaN/sapphire sample showed a considerable higher thickness value when compared with GaN/Si samples, which might be attributed to a possibly more-efficient nitridation and faster nucleation of sapphire surface.« less

  8. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas.

    PubMed

    Moreau, Antoine; Ciracì, Cristian; Mock, Jack J; Hill, Ryan T; Wang, Qiang; Wiley, Benjamin J; Chilkoti, Ashutosh; Smith, David R

    2012-12-06

    Efficient and tunable absorption is essential for a variety of applications, such as designing controlled-emissivity surfaces for thermophotovoltaic devices, tailoring an infrared spectrum for controlled thermal dissipation and producing detector elements for imaging. Metamaterials based on metallic elements are particularly efficient as absorbing media, because both the electrical and the magnetic properties of a metamaterial can be tuned by structured design. So far, metamaterial absorbers in the infrared or visible range have been fabricated using lithographically patterned metallic structures, making them inherently difficult to produce over large areas and hence reducing their applicability. Here we demonstrate a simple method to create a metamaterial absorber by randomly adsorbing chemically synthesized silver nanocubes onto a nanoscale-thick polymer spacer layer on a gold film, making no effort to control the spatial arrangement of the cubes on the film. We show that the film-coupled nanocubes provide a reflectance spectrum that can be tailored by varying the geometry (the size of the cubes and/or the thickness of the spacer). Each nanocube is the optical analogue of a grounded patch antenna, with a nearly identical local field structure that is modified by the plasmonic response of the metal's dielectric function, and with an anomalously large absorption efficiency that can be partly attributed to an interferometric effect. The absorptivity of large surface areas can be controlled using this method, at scales out of reach of lithographic approaches (such as electron-beam lithography) that are otherwise required to manipulate matter on the nanoscale.

  9. [Assisted suicide in the movies - what is (not) shown?

    PubMed

    Schmidt, Kurt W

    2017-01-01

    Whereas changes to the existing legal situation regarding assisted suicide have been a topic of controversial debate in Germany for the last few years, this issue has long been of interest for international film-makers. Since the mid-1980s, the theme of assisted suicide has repeatedly been taken up by cinema, predominantly as central to a relationship drama. A sick person asks somebody close to them for help. Often this somebody is a physician or a nurse, ultimately an obvious way of solving the practical problem of how the assistant is to gain access to a lethal substance. At the same time, this constellation enables a physician or nurse to be forced into a dramatic conflict between professional ethics and a personal obligation towards a loved one.Alongside more classic clinical pictures such as terminal cancer, recent films about assisted suicide have featured neurodegenerative diseases and physical disabilities. Another new development is that elderly patients are no longer alone in requesting assistance; films also and increasingly portray young adults. Besides a fear of unbearable pain, more recent films have also increasingly addressed the worry that permanent nursing might be required, as well as the subjectively experienced loss of dignity. The possibilities offered by palliative care hardly play a role in feature films. However, we should not forget, that movies are fictional and orchestrated, or, in other words, they are neither educational nor documental. They neither need nor want to portray reality, although they do wish to draw upon real experiences. They exploit highly emotional and ethically controversial themes to create tensions and stir up emotions in the audience, but ultimately they seek to entertain. Movies about death and dying are always "die-tainment".

  10. Microwave plasma-assisted chemical vapor deposition of porous carbon film as supercapacitive electrodes

    NASA Astrophysics Data System (ADS)

    Wu, Ai-Min; Feng, Chen-Chen; Huang, Hao; Paredes Camacho, Ramon Alberto; Gao, Song; Lei, Ming-Kai; Cao, Guo-Zhong

    2017-07-01

    Highly porous carbon film (PCF) coated on nickel foam was prepared successfully by microwave plasma-assisted chemical vapor deposition (MPCVD) with C2H2 as carbon source and Ar as discharge gas. The PCF is uniform and dense with 3D-crosslinked nanoscale network structure possessing high degree of graphitization. When used as the electrode material in an electrochemical supercapacitor, the PCF samples verify their advantageous electrical conductivity, ion contact and electrochemical stability. The test results show that the sample prepared under 1000 W microwave power has good electrochemical performance. It displays the specific capacitance of 62.75 F/g at the current density of 2.0 A/g and retains 95% of its capacitance after 10,000 cycles at the current density of 2.0 A/g. Besides, its near-rectangular shape of the cyclic voltammograms (CV) curves exhibits typical character of an electric double-layer capacitor, which owns an enhanced ionic diffusion that can fit the requirements for energy storage applications.

  11. Use of film digitizers to assist radiology image management

    NASA Astrophysics Data System (ADS)

    Honeyman-Buck, Janice C.; Frost, Meryll M.; Staab, Edward V.

    1996-05-01

    The purpose of this development effort was to evaluate the possibility of using digital technologies to solve image management problems in the Department of Radiology at the University of Florida. The three problem areas investigated were local interpretation of images produced in remote locations, distribution of images to areas outside of radiology, and film handling. In all cases the use of a laser film digitizer interfaced to an existing Picture Archiving and Communication System (PACS) was investigated as a solution to the problem. In each case the volume of studies involved were evaluated to estimate the impact of the solution on the network, archive, and workstations. Communications were stressed in the analysis of the needs for all image transmission. The operational aspects of the solution were examined to determine the needs for training, service, and maintenance. The remote sites requiring local interpretation included were a rural hospital needing coverage for after hours studies, the University of Florida student infirmary, and the emergency room. Distribution of images to the intensive care units was studied to improve image access and patient care. Handling of films originating from remote sites and those requiring urgent reporting were evaluated to improve management functions. The results of our analysis and the decisions that were made based on the analysis are described below. In the cases where systems were installed, a description of the system and its integration into the PACS system is included. For all three problem areas, although we could move images via a digitizer to the archive and a workstation, there was no way to inform the radiologist that a study needed attention. In the case of outside films, the patient did not always have a medical record number that matched one in our Radiology Information Systems (RIS). In order to incorporate all studies for a patient, we needed common locations for orders, reports, and images. RIS orders

  12. Heat and Mass Transfer of Ammonia Gas Absorption into Falling Liquid Film on a Horizontal Tube

    NASA Astrophysics Data System (ADS)

    Inoue, Norihiro; Yabuuchi, Hironori; Goto, Masao; Koyama, Shigeru

    Heat and mass transfer coefficients during ammonia gas absorption into a falling liquid film formed by distilled water on a horizontal tube were obtained experimentally. The test absorber consists of 200 mm i.d., 600 mm long stainless steel shell, a 1 7.3 mm o.d., 14.9 mm i.d. stainless steel test tube with 600 mm working length mounted along the axis of shell, and a 12.7 mm o.d. pipe manifold of supplying the absorbent. In this paper, it was clear that heat and mass transfer coefficient could be enhanced by increasing the flow rate of absorbent and temperature difference between inlet absorbent and ammonia gas, also heat driven by the temperature difference have an effect on heat transfer of the fa1ling liquid film and mass transfer of vapor side. And the new correlation of heat transfer in dimensionless form was proposed by the temperature difference which was considered heat driven of vapor and liquid film side using a interface temperature of vapor and liquid phase. The new correlations of mass transfer on a interface of vapor and liquid phase in dimensionless form were proposed by using effect factors could be suppose from absorption phenomena.

  13. Progress with polycrystalline silicon thin-film solar cells on glass at UNSW

    NASA Astrophysics Data System (ADS)

    Aberle, Armin G.

    2006-01-01

    Polycrystalline Si (pc-Si) thin-film solar cells on glass have long been considered a very promising approach for lowering the cost of photovoltaic (PV) solar electricity. In recent years there have been dramatic advances with this PV technology, and the first commercial modules (CSG Solar) are expected to hit the marketplace in 2006. The CSG modules are based on solid-phase crystallisation of plasma-enhanced chemical vapor deposition (PECVD) -deposited amorphous Si. Independent research in the author's group at the University of New South Wales (UNSW) during recent years has led to the development of three alternative pc-Si thin-film solar cells on glass—EVA, ALICIA and ALICE. Cell thickness is generally about 2 μm. The first two cells are made by vacuum evaporation, whereas ALICE cells can be made by either vacuum evaporation or PECVD. Evaporation has the advantage of being a fast and inexpensive Si deposition method. A crucial component of ALICIA and ALICE cells is a seed layer made on glass by metal-induced crystallisation of amorphous silicon (a-Si). The absorber layer of these cells is made by either ion-assisted Si epitaxy (ALICIA) or solid-phase epitaxy of a-Si (ALICE). This paper reports on the status of these three new thin-film PV technologies. All three solar cells seem to be capable of voltages of over 500 mV and, owing to their potentially inexpensive and scalable fabrication process, have significant industrial appeal.

  14. Flexible and conformable broadband metamaterial absorber with wide-angle and polarization stability for radar application

    NASA Astrophysics Data System (ADS)

    Chen, Huijie; Yang, Xiaoqing; Wu, Shiyue; Zhang, Di; Xiao, Hui; Huang, Kama; Zhu, Zhanxia; Yuan, Jianping

    2018-01-01

    In this work, a type of flexible, broadband electromagnetic microwave absorber is designed, fabricated and experimentally characterized. The absorber is composed of lumped resistors loaded frequency selective surface which is mounted on flexible substrate using silicone rubber and in turn backed by copper film. The simulated results show that an effective absorption (over 90%) bandwidth spans from 7.6 to 18.3 GHz, which covers both X (8-12 GHz) and Ku (12-18 GHz) bands, namely a 82.6% fraction bandwidth. And the bandwidth performs a good absorption response by varying the incident angle up to 60° for both TE and TM polarization. Moreover, the flexibility of the substrate enables the absorber conformably to bend and attach to cylinders of various radius without breakdown of the absorber. The designed structure has been fabricated and measured for both planar and conformable cases, and absorption responses show a good agreement of the broadband absorption feature with the simulated ones. This work has demonstrated specifically that proposed structure provides polarization-insensitive, wide-angle, flexible and conformable wideband absorption, which extends the absorber’s application to practical radar cross section reductions for radars and warships.

  15. Mesoporous inverse opal TiO2 film as light scattering layer for dye-sensitized solar cell.

    PubMed

    Jin, Mingshi; Kim, Sung Soo; Yoon, Minyoung; Li, Zhenghua; Lee, Yoon Yun; Kim, Ji Man

    2012-01-01

    The light harvesting efficiency of dye-sensitized solar cells was enhanced by using a scattering layer. Such as sphere type TiO2, inverse photonic crystal TiO2, hollow spherical TiO2. Among these materials, the TiO2 with inverse photonic crystal (IPC) structure, synthesized by self-assembly using spherical templates, has attracted much attention due to their photonic crystal characteristics and light scattering effects. However, when applied in the DSSCs, the surface area of IPC is very low that caused insufficient adsorption amount of dye molecules. In the present work, a scattering layer with mesoporous inverse photonic crystal (MIPC) TiO2 film was fabricated by the sol-gel reactions with surfactant-assisted sol-gel method using poly(methyl methacrylate) as the template and titanium (IV) isopropoxide as the TiO2 precursor. After removing the PMMA and surfactant, a highly ordered macroporous structure with mesopores were successfully obtained. The surface area and total pore volume of the MIPC were 82 m2/g and 0.31 cm3/g, respectively, which is much larger than those of the IPC. The DSSCs with the scattering layer of MIPC film exhibited 18 and 10% higher photo-conversion efficiency than those of cells only with a nano-crystalline TiO2 film and with scattering layer of IPC film. From UV-visible spectra of dye solutions, the MIPC film showed a higher amount of absorbed dye molecules than those of the reference and IPC films. Accordingly, an increase in the photo-current density through abundant adsorption of the dye, coupled with inherent light scattering ability can improve overall photo-conversion efficiency.

  16. Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption

    PubMed Central

    Su, Zhaoxian; Yin, Jianbo; Zhao, Xiaopeng

    2015-01-01

    We design a soft infrared metamaterial absorber based on gold nanorods dispersed in liquid crystal (LC) placed on a gold film and theoretically investigate its total absorption character. Because the nanorods align with the LC molecule, the gold nanorods/LC hybrid exhibits different permittivity as a function of tilt angle of LC. At a certain tilt angle, the absorber shows an omnidirectional total absorption effect. By changing the tilt angle of LC by an external electric field, the total absorption character can be adjusted. The total absorption character also depends on the concentration, geometric dimension of nanorods, and defect of nanorod arrangement in LC. When the LC contains different size of gold nanorods, a broadband absorption can be easily realized. The characteristics including flexibility, omnidirectional, broadband and tunablility make the infrared metamaterial absorber possess potential use in smart metamaterial devices. PMID:26576660

  17. Ultrashort pulse generation in mode-locked erbium-doped fiber lasers with tungsten disulfide saturable absorber

    NASA Astrophysics Data System (ADS)

    Liu, Mengli; Liu, Wenjun; Pang, Lihui; Teng, Hao; Fang, Shaobo; Wei, Zhiyi

    2018-01-01

    Tungsten disulfide (WS2), as one of typical transition metal dichalcogenides with the characteristics of strong nonlinear polarization and wide bandgap, has been widely used in such fields as biology and optoelectronics. With the magnetron sputtering technique, the saturable absorber (SA) is prepared by depositing WS2 and Au film on the tapered fiber. The heat elimination and damage threshold can be improved for the WS2 SA with evanescent field interaction. Besides, the Au film is deposited on the surface of the WS2 film to improve their reliability and avoid being oxidized. The fabricated SA has a modulation depth of 14.79%. With this SA, we obtain a relatively stable mode-locked fiber laser with the pulse duration of 288 fs, the repetition rate of 41.4 MHz and the signal to noise ratio of 58 dB.

  18. Laser-assisted atom probe tomography of Ti/TiN films deposited on Si.

    PubMed

    Sanford, N A; Blanchard, P T; White, R; Vissers, M R; Diercks, D R; Davydov, A V; Pappas, D P

    2017-03-01

    Laser-assisted atom probe tomography (L-APT) was used to examine superconducting TiN/Ti/TiN trilayer films with nominal respective thicknesses of 5/5/5 (nm). Such materials are of interest for applications that require large arrays of microwave kinetic inductance detectors. The trilayers were deposited on Si substrates by reactive sputtering. Electron energy loss microscopy performed in a scanning transmission electron microscope (STEM/EELS) was used to corroborate the L-APT results and establish the overall thicknesses of the trilayers. Three separate batches were studied where the first (bottom) TiN layer was deposited at 500°C (for all batches) and the subsequent TiN/Ti bilayer was deposited at ambient temperature, 250°C, and 500°C, respectively. L-APT rendered an approximately planar TiN/Si interface by making use of plausible mass-spectral assignments to N 3 1+ , SiN 1+ , and SiO 1+ . This was necessary since ambiguities associated with the likely simultaneous occurrence of Si 1+ and N 2 1+ prevented their use in rendering the TiN/Si interface upon reconstruction. The non-superconducting Ti 2 N phase was also revealed by L-APT. Neither L-APT nor STEM/EELS rendered sharp Ti/TiN interfaces and the contrast between these layers diminished with increased film deposition temperature. L-APT also revealed that hydrogen was present in varying degrees in all samples including control samples that were composed of single layers of Ti or TiN. Published by Elsevier Ltd.

  19. HIGH-k GATE DIELECTRIC: AMORPHOUS Ta/La2O3 FILMS GROWN ON Si AT LOW PRESSURE

    NASA Astrophysics Data System (ADS)

    Bahari, Ali; Khorshidi, Zahra

    2014-09-01

    In the present study, Ta/La2O3 films (La2O3 doped with Ta2O5) as a gate dielectric were prepared using a sol-gel method at low pressure. Ta/La2O3 film has some hopeful properties as a gate dielectric of logic device. The structure and morphology of Ta/La2O3 films were studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrical properties of films were performed using capacitance-voltage (C-V) and current density-voltage (J-V) measurements. The optical bandgap of samples was studied by UV-visible optical absorbance measurement. The optical bandgap, Eopt, is determined from the absorbance spectra. The obtained results show that Ta/La2O3 film as a good gate dielectric has amorphous structure, good thermal stability, high dielectric constant (≈ 25), low leakage current and wide bandgap (≈ 4.7 eV).

  20. Internal absorber solar collector

    DOEpatents

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  1. Radiochromic film calibration for the RQT9 quality beam

    NASA Astrophysics Data System (ADS)

    Costa, K. C.; Gomez, A. M. L.; Alonso, T. C.; Mourao, A. P.

    2017-11-01

    When ionizing radiation interacts with matter it generates energy deposition. Radiation dosimetry is important for medical applications of ionizing radiation due to the increasing demand for diagnostic radiology and radiotherapy. Different dosimetry methods are used and each one has its advantages and disadvantages. The film is a dose measurement method that records the energy deposition by the darkening of its emulsion. Radiochromic films have a little visible light sensitivity and respond better to ionizing radiation exposure. The aim of this study is to obtain the resulting calibration curve by the irradiation of radiochromic film strips, making it possible to relate the darkening of the film with the absorbed dose, in order to measure doses in experiments with X-ray beam of 120 kV, in computed tomography (CT). Film strips of GAFCHROMIC XR-QA2 were exposed according to RQT9 reference radiation, which defines an X-ray beam generated from a voltage of 120 kV. Strips were irradiated in "Laboratório de Calibração de Dosímetros do Centro de Desenvolvimento da Tecnologia Nuclear" (LCD / CDTN) at a dose range of 5-30 mGy, corresponding to the range values commonly used in CT scans. Digital images of the irradiated films were analyzed by using the ImageJ software. The darkening responses on film strips according to the doses were observed and they allowed obtaining the corresponding numeric values to the darkening for each specific dose value. From the numerical values of darkening, a calibration curve was obtained, which correlates the darkening of the film strip with dose values in mGy. The calibration curve equation is a simplified method for obtaining absorbed dose values using digital images of radiochromic films irradiated. With the calibration curve, radiochromic films may be applied on dosimetry in experiments on CT scans using X-ray beam of 120 kV, in order to improve CT acquisition image processes.

  2. Interference-enhanced infrared-to-visible upconversion in solid-state thin films sensitized by colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Mengfei; Jean, Joel; Bulović, Vladimir; Baldo, Marc A.

    2017-05-01

    Infrared-to-visible photon upconversion has potential applications in photovoltaics, sensing, and bioimaging. We demonstrate a solid-state thin-film device that utilizes sensitized triplet-triplet exciton annihilation, converting infrared photons absorbed by colloidal lead sulfide nanocrystals (NCs) into visible photons emitted from a luminescent dopant in rubrene at low incident light intensities. A typical bilayer device consisting of a monolayer of NCs and a doped film of rubrene is limited by low infrared absorption in the thin NC film. Here, we augment the bilayer with an optical spacer layer and a silver-film back reflector, resulting in interference effects that enhance the optical field and thus the absorption in the NC film. The interference-enhanced device shows an order-of-magnitude increase in the upconverted emission at the wavelength of λ = 610 nm when excited at λ = 980 nm. At incident light intensities above 1.1 W/cm2, the device attains maximum efficiency, converting (1.6 ± 0.2)% of absorbed infrared photons into higher-energy singlet excitons in rubrene.

  3. Effect of flash lamp annealing on electrical activation in boron-implanted polycrystalline Si thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Do, Woori; Jin, Won-Beom; Choi, Jungwan

    2014-10-15

    Highlights: • Intensified visible light irradiation was generated via a high-powered Xe arc lamp. • The disordered Si atomic structure absorbs the intensified visible light. • The rapid heating activates electrically boron-implanted Si thin films. • Flash lamp heating is applicable to low temperature polycrystalline Si thin films. - Abstract: Boron-implanted polycrystalline Si thin films on glass substrates were subjected to a short duration (1 ms) of intense visible light irradiation generated via a high-powered Xe arc lamp. The disordered Si atomic structure absorbs the intense visible light resulting from flash lamp annealing. The subsequent rapid heating results in themore » electrical activation of boron-implanted Si thin films, which is empirically observed using Hall measurements. The electrical activation is verified by the observed increase in the crystalline component of the Si structures resulting in higher transmittance. The feasibility of flash lamp annealing has also been demonstrated via a theoretical thermal prediction, indicating that the flash lamp annealing is applicable to low-temperature polycrystalline Si thin films.« less

  4. Exploring Literature through Films. Project ELF.

    ERIC Educational Resources Information Center

    Los Angeles County Office of Education, Downey, CA.

    Noting that instructional films can serve as a valuable tool to motivate students and to help them organize, interpret, and evaluate concepts presented, this program guide is designed to assist teachers in planning instructional activities that will effectively integrate films into the English language arts curriculum. The first section of the…

  5. Fabrication of solution processed 3D nanostructured CuInGaS₂ thin film solar cells.

    PubMed

    Chu, Van Ben; Cho, Jin Woo; Park, Se Jin; Hwang, Yun Jeong; Park, Hoo Keun; Do, Young Rag; Min, Byoung Koun

    2014-03-28

    In this study we demonstrate the fabrication of CuInGaS₂ (CIGS) thin film solar cells with a three-dimensional (3D) nanostructure based on indium tin oxide (ITO) nanorod films and precursor solutions (Cu, In and Ga nitrates in alcohol). To obtain solution processed 3D nanostructured CIGS thin film solar cells, two different precursor solutions were applied to complete gap filling in ITO nanorods and achieve the desirable absorber film thickness. Specifically, a coating of precursor solution without polymer binder material was first applied to fill the gap between ITO nanorods followed by deposition of the second precursor solution in the presence of a binder to generate an absorber film thickness of ∼1.3 μm. A solar cell device with a (Al, Ni)/AZO/i-ZnO/CdS/CIGS/ITO nanorod/glass structure was constructed using the CIGS film, and the highest power conversion efficiency was measured to be ∼6.3% at standard irradiation conditions, which was 22.5% higher than the planar type of CIGS solar cell on ITO substrate fabricated using the same precursor solutions.

  6. Absorber for terahertz radiation management

    DOEpatents

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  7. X Ray Mask Of Gold-Carbon Mixture Absorber On BCN Compound Substrate Fabricated By Plasma Processes

    NASA Astrophysics Data System (ADS)

    Aiyer, Chandrasekhar R.; Itoh, Satoshi; Yamada, Hitomi; Morita, Shinzo; Hattori, Shuzo

    1988-06-01

    X-ray mask fabrication based on BCN compound membrane and gold containing polymeric carbon ( Au-C ) absorber by totally dry processes is proposed. The Au-C films were depo-sited by plasma polymerization of propylene or styrene monomers and co-evaporation of gold. These films have 2 to 5 times higher etching rate than that of pure gold for 09 RIE, depending on the Au content. The stress in the films could be reduced to 1.9 E 7 N/m2 by annealing. The BCN films were deposited on silicon wafers by rf (13.56 MHz) plasma CVD with diborane, methane and nitrogen as source gases at typical deposition rate of 30 nm/min. The optical (633nm) and X ray (Pd L~) transparencies were nearly 80% for film thickness of 6 um. Patterning of Au-C was achieved by using tungsten as intermediate layer and PMMA electron beam resist. CF4 RIE was used to etch the tungsten layer which in turn acted as mask for the gold carbide 02 RIE. The process parameters and the characteristics of the Au-C and BCN films are presented.

  8. Controllable Growth of Large-Size Crystalline MoS2 and Resist-Free Transfer Assisted with a Cu Thin Film.

    PubMed

    Lin, Ziyuan; Zhao, Yuda; Zhou, Changjian; Zhong, Ren; Wang, Xinsheng; Tsang, Yuen Hong; Chai, Yang

    2015-12-21

    Two-dimensional MoS2 is a promising material for future nanoelectronics and optoelectronics. It has remained a great challenge to grow large-size crystalline and high surface coverage monolayer MoS2. In this work, we investigate the controllable growth of monolayer MoS2 evolving from triangular flakes to continuous thin films by optimizing the concentration of gaseous MoS2, which has been shown a both thermodynamic and kinetic growth factor. A single-crystal monolayer MoS2 larger than 300 μm was successfully grown by suppressing the nuclei density and supplying sufficient source. Furthermore, we present a facile process of transferring the centimeter scale MoS2 assisted with a copper thin film. Our results show the absence of observable residues or wrinkles after we transfer MoS2 from the growth substrates onto flat substrates using this technique, which can be further extended to transfer other two-dimensional layered materials.

  9. Controllable Growth of Large-Size Crystalline MoS2 and Resist-Free Transfer Assisted with a Cu Thin Film

    NASA Astrophysics Data System (ADS)

    Lin, Ziyuan; Zhao, Yuda; Zhou, Changjian; Zhong, Ren; Wang, Xinsheng; Tsang, Yuen Hong; Chai, Yang

    2015-12-01

    Two-dimensional MoS2 is a promising material for future nanoelectronics and optoelectronics. It has remained a great challenge to grow large-size crystalline and high surface coverage monolayer MoS2. In this work, we investigate the controllable growth of monolayer MoS2 evolving from triangular flakes to continuous thin films by optimizing the concentration of gaseous MoS2, which has been shown a both thermodynamic and kinetic growth factor. A single-crystal monolayer MoS2 larger than 300 μm was successfully grown by suppressing the nuclei density and supplying sufficient source. Furthermore, we present a facile process of transferring the centimeter scale MoS2 assisted with a copper thin film. Our results show the absence of observable residues or wrinkles after we transfer MoS2 from the growth substrates onto flat substrates using this technique, which can be further extended to transfer other two-dimensional layered materials.

  10. Design of a polarization-independent, wide-angle, broadband visible absorber

    NASA Astrophysics Data System (ADS)

    Jia, Xiuli; Wang, Xiaoou

    2018-01-01

    Many optical systems benefit from elements that can absorb a broad range of wavelengths over a wide range of angles, independent of polarization. In this paper, we present a polarization-independent, wide-angle, broadband absorber in the visible regime that exploits strong symmetric and asymmetric resonance modes of electromagnetic dipoles. It makes use of a bilayer cross-pattern structure which is simple, having five layers that include two stacks of metal ribbon in cross-patterns, two dielectric spacers and a metal reflecting layer. Simulations show that the design exhibits a significantly enhanced absorption property when compared to a device with a bilayer metal film structure or any other complex structure of cross-patterns that have no intersection angle. The maximum absorption efficiency of the device is 100% at resonances, and its absorption characteristics can be maintained over a wide range of angles of incidence - up to ± 60° - regardless of the incident polarization. This strategy can, in principle, be applied to other material systems and could be useful in diverse applications, including thermal emitters, photovoltaics and photodetectors.

  11. Professor Camillo Negro's Neuropathological Films.

    PubMed

    Chiò, Adriano; Gianetto, Claudia; Dagna, Stella

    2016-01-01

    Camillo Negro, Professor in Neurology at the University of Torino, was a pioneer of scientific film. From 1906 to 1908, with the help of his assistant Giuseppe Roasenda and in collaboration with Roberto Omegna, one of the most experienced cinematographers in Italy, he filmed some of his patients for scientific and educational purposes. During the war years, he continued his scientific film project at the Military Hospital in Torino, filming shell-shocked soldiers. In autumn 2011, the Museo Nazionale del Cinema, in partnership with the Faculty of Neurosciences of the University of Torino, presented a new critical edition of the neuropathological films directed by Negro. The Museum's collection also includes 16 mm footage probably filmed in 1930 by Doctor Fedele Negro, Camillo's son. One of these films is devoted to celebrating the effects of the so-called "Bulgarian cure" on Parkinson's disease.

  12. Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Luo, Hao; Cheng, Yong Zhi

    2017-09-01

    We present the design and numerical simulations of an ultrabroadband visible metamaterial absorber (MMA) with polarization-insensitive and wide-angle based on three-dimensional (3D) metallic nanostructure. Distinct from previous designs, the proposed visible MMA only consisted of structured 3D metallic film constructed with an assembly of four vertical split-rings (FVSR) structure. For the optimized design of our MMA, the absorbance of over 90% with a relative bandwidth of 94.8% can be obtained. Further simulation results indicate that our design is polarization-insensitive and also operated well in a wide range of incident angles for both TE and TM modes. In addition, the designed visible MMA design can tolerate some geometric parameters errors in fabrication. Thus, the proposed visible MMA can be potential application in the photodetectors, thermal imaging, photoelectrochemical, and solar energy harvesting devices.

  13. Comparison of tungsten films grown by CVD and hot-wire assisted atomic layer deposition in a cold-wall reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Mengdi, E-mail: M.Yang@utwente.nl; Aarnink, Antonius A. I.; Kovalgin, Alexey Y.

    2016-01-15

    In this work, the authors developed hot-wire assisted atomic layer deposition (HWALD) to deposit tungsten (W) with a tungsten filament heated up to 1700–2000 °C. Atomic hydrogen (at-H) was generated by dissociation of molecular hydrogen (H{sub 2}), which reacted with WF{sub 6} at the substrate to deposit W. The growth behavior was monitored in real time by an in situ spectroscopic ellipsometer. In this work, the authors compare samples with tungsten grown by either HWALD or chemical vapor deposition (CVD) in terms of growth kinetics and properties. For CVD, the samples were made in a mixture of WF{sub 6} and molecularmore » or atomic hydrogen. Resistivity of the WF{sub 6}-H{sub 2} CVD layers was 20 μΩ·cm, whereas for the WF{sub 6}-at-H-CVD layers, it was 28 μΩ·cm. Interestingly, the resistivity was as high as 100 μΩ·cm for the HWALD films, although the tungsten films were 99% pure according to x-ray photoelectron spectroscopy. X-ray diffraction reveals that the HWALD W was crystallized as β-W, whereas both CVD films were in the α-W phase.« less

  14. Study on deposition of Al2O3 films by plasma-assisted atomic layer with different plasma sources

    NASA Astrophysics Data System (ADS)

    Haiying, WEI; Hongge, GUO; Lijun, SANG; Xingcun, LI; Qiang, CHEN

    2018-04-01

    In this paper, Al2O3 thin films are deposited on a hydrogen-terminated Si substrate by using two home-built electron cyclotron resonance (ECR) and magnetic field enhanced radio frequency plasma-assisted atomic layer deposition (PA-ALD) devices with Al(CH3)3 (trimethylaluminum, TMA) and oxygen plasma used as precursor and oxidant, respectively. The thickness, chemical composition, surface morphology and group reactions are characterized by in situ spectroscopic ellipsometer, x-ray photoelectric spectroscopy, atomic force microscopy, scanning electron microscopy, a high-resolution transmission electron microscope and in situ mass spectrometry (MS), respectively. We obtain that both ECR PA-ALD and the magnetic field enhanced PA-ALD can deposit thin films with high density, high purity, and uniformity at a high deposition rate. MS analysis reveals that the Al2O3 deposition reactions are not simple reactions between TMA and oxygen plasma to produce alumina, water and carbon dioxide. In fact, acetylene, carbon monoxide and some other by-products also appear in the exhaustion gas. In addition, the presence of bias voltage has a certain effect on the deposition rate and surface morphology of films, which may be attributed to the presence of bias voltage controlling the plasma energy and density. We conclude that both plasma sources have a different deposition mechanism, which is much more complicated than expected.

  15. Thin Film Deposition Using Energetic Ions

    PubMed Central

    Manova, Darina; Gerlach, Jürgen W.; Mändl, Stephan

    2010-01-01

    One important recent trend in deposition technology is the continuous expansion of available processes towards higher ion assistance with the subsequent beneficial effects to film properties. Nowadays, a multitude of processes, including laser ablation and deposition, vacuum arc deposition, ion assisted deposition, high power impulse magnetron sputtering and plasma immersion ion implantation, are available. However, there are obstacles to overcome in all technologies, including line-of-sight processes, particle contaminations and low growth rates, which lead to ongoing process refinements and development of new methods. Concerning the deposited thin films, control of energetic ion bombardment leads to improved adhesion, reduced substrate temperatures, control of intrinsic stress within the films as well as adjustment of surface texture, phase formation and nanotopography. This review illustrates recent trends for both areas; plasma process and solid state surface processes. PMID:28883323

  16. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOEpatents

    Schmitt, III, Jerome J.; Halpern, Bret L.

    1993-01-01

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures.

  17. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOEpatents

    Schmitt, J.J. III; Halpern, B.L.

    1993-10-26

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures. 5 figures.

  18. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  19. Comparison of trimethylgallium and triethylgallium as “Ga” source materials for the growth of ultrathin GaN films on Si (100) substrates via hollow-cathode plasma-assisted atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Haider, Ali; Kizir, Seda

    2016-01-15

    GaN films grown by hollow cathode plasma-assisted atomic layer deposition using trimethylgallium (TMG) and triethylgallium (TEG) as gallium precursors are compared. Optimized and saturated TMG/TEG pulse widths were used in order to study the effect of group-III precursors. The films were characterized by grazing incidence x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and spectroscopic ellipsometry. Refractive index follows the same trend of crystalline quality, mean grain, and crystallite sizes. GaN layers grown using TMG precursor exhibited improved structural and optical properties when compared to GaN films grown with TEG precursor.

  20. Optical properties and indentation hardness of thin-film acrylated epoxidized oil

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Syuhaimi Ab.; Shaktur, Khaled Mohamed; Mohammad, Rahmah; Zalikha, Wan Aimi; Nawi, Norwimie; Mohd, Ahmad Faiza

    2012-02-01

    Epoxy acrylate has been widely used as optical resin for applications such as cladding, the core of a waveguide, and other photonic devices. In this study, sustainable resin from edible oil was used as an alternative to epoxy acrylate. Structural features and the transmission of planar thin-film resin from an ultraviolet-visible spectroscopy (UV-VIS) spectrometer were investigated upon UV exposure. It was found that high transmission still persists for all samples with and without an UV absorber for exposed and unexposed samples. The film was found to absorb strongly below 400 nm. A change in the cut-off wavelength was observed upon exposure. Thin-film hardness and its dynamic indentation in the load-unload mode with different test forces were evaluated. Vickers hardness and the elastic modulus were determined for unacrylated epoxidized soybean oil (ESO) and acrylated epoxidized soybean oil (AESO). It was found that the AESO has a higher Vickers hardness and elastic modulus than those of unacrylated thin film. The Vickers hardness and elastic modulus were found to increase as the applied test force increased. The refractive index, thickness, and modes present were characterized from a spin-coated planar thin film. The refractive index in the transverse electric mode (TE) and transverse magnetic mode (TM) were determined and compared for unacrylated and acrylated epoxidized oil.

  1. Microstructures, optical and photovoltaic properties of CH3NH3PbI3(1‑x)Cl x perovskite films with CuSCN additive

    NASA Astrophysics Data System (ADS)

    Shirahata, Yasuhiro; Oku, Takeo

    2018-05-01

    Microstructures, optical and photovoltaic properties of CH3NH3PbI3(1‑x)Cl x perovskite films with copper(I) thiocyanate (CuSCN) additive were investigated. The CuSCN-added CH3NH3PbI3(1‑x)Cl x films were prepared by a hot air blow-assisted spin-coating method. Current density–voltage characteristics of the photovoltaic device using the CuSCN-added CH3NH3PbI3(1‑x)Cl x light-absorbing layer showed increases in short-circuit current density, open-circuit voltage, which resulted in increase in the conversion efficiency. Microstructure analysis showed that the crystal structure of the CuSCN-added CH3NH3PbI3(1‑x)Cl x was a pseudocubic system. From these results, partial substitutions of Pb2+ and anions (I‑ and Cl‑) by Cu ions (Cu+ and Cu2+) and SCN‑, respectively, are considered to occur in the CuSCN-added CH3NH3PbI3(1‑x)Cl x films. Based on the obtained results, reaction mechanisms of the CH3NH3PbI3(1‑x)Cl x films with and without CuSCN additive were discussed.

  2. Effects of annealing on the optical, structural, and chemical properties of TiO2 and MgF2 thin films prepared by plasma ion-assisted deposition.

    PubMed

    Woo, Seouk-Hoon; Hwangbo, Chang Kwon

    2006-03-01

    Effects of thermal annealing at 400 degrees C on the optical, structural, and chemical properties of TiO2 single-layer, MgF2 single-layer, and TiO2/MgF2 narrow-bandpass filters deposited by conventional electron-beam evaporation (CE) and plasma ion-assisted deposition (PIAD) were investigated. In the case of TiO2 films, the results show that the annealing of both CE and PIAD TiO2 films increases the refractive index slightly and the extinction coefficient and surface roughness greatly. Annealing decreases the thickness of CE TiO2 films drastically, whereas it does not vary that of PIAD TiO2 films. For PIAD MgF2 films, annealing increases the refractive index and decreases the extinction coefficient drastically. An x-ray photoelectron spectroscopy analysis suggests that an increase in the refractive index and a decrease in the extinction coefficient for PIAD MgF2 films after annealing may be related to the enhanced concentration of MgO in the annealed PIAD MgF2 films and the changes in the chemical bonding states of Mg 2p, F 1s, and O is. It is found that (TiO2/MgF2) multilayer filters, consisting of PIAD TiO2 and CE MgF2 films, are as deposited without microcracks and are also thermally stable after annealing.

  3. Silver Nanoparticle Enhanced Freestanding Thin-Film Silicon Solar Cells

    NASA Astrophysics Data System (ADS)

    Winans, Joshua David

    As the supply of fossil fuels diminishes in quantity the demand for alternative energy sources will consistently increase. Solar cells are an environmentally friendly and proven technology that suffer in sales due to a large upfront cost. In order to help facilitate the transition from fossil fuels to photovoltaics, module costs must be reduced to prices well below $1/Watt. Thin-film solar cells are more affordable because of the reduced materials costs, but lower in efficiency because less light is absorbed before passing through the cell. Silver nanoparticles placed at the front surface of the solar cell absorb and reradiate the energy of the light in ways such that more of the light ends being captured by the silicon. Silver nanoparticles can do this because they have free electron clouds that can take on the energy of an incident photon through collective action. This bulk action of the electrons is called a plasmon. This work begins by discussing the economics driving the need for reduced material use, and the pros and cons of taking this step. Next, the fundamental theory of light-matter interaction is briefly described followed by an introduction to the study of plasmonics. Following that we discuss a traditional method of silver nanoparticle formation and the initial experimental studies of their effects on the ability of thin-film silicon to absorb light. Then, Finite-Difference Time-Domain simulation software is used to simulate the effects of nanoparticle morphology and size on the scattering of light at the surface of the thin-film.

  4. A flexible method for the preparation of thin film samples for in situ TEM characterization combining shadow-FIB milling and electron-beam-assisted etching.

    PubMed

    Liebig, J P; Göken, M; Richter, G; Mačković, M; Przybilla, T; Spiecker, E; Pierron, O N; Merle, B

    2016-12-01

    A new method for the preparation of freestanding thin film samples for mechanical testing in transmission electron microscopes is presented. It is based on a combination of focused ion beam (FIB) milling and electron-beam-assisted etching with xenon difluoride (XeF 2 ) precursor gas. The use of the FIB allows for the target preparation of microstructural defects and enables well-defined sample geometries which can be easily adapted in order to meet the requirements of various testing setups. In contrast to existing FIB-based preparation approaches, the area of interest is never exposed to ion beam irradiation which preserves a pristine microstructure. The method can be applied to a wide range of thin film material systems compatible with XeF 2 etching. Its feasibility is demonstrated for gold and alloyed copper thin films and its practical application is discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Metal-oxide assisted surface treatment of polyimide gate insulators for high-performance organic thin-film transistors.

    PubMed

    Kim, Sohee; Ha, Taewook; Yoo, Sungmi; Ka, Jae-Won; Kim, Jinsoo; Won, Jong Chan; Choi, Dong Hoon; Jang, Kwang-Suk; Kim, Yun Ho

    2017-06-14

    We developed a facile method for treating polyimide-based organic gate insulator (OGI) surfaces with self-assembled monolayers (SAMs) by introducing metal-oxide interlayers, called the metal-oxide assisted SAM treatment (MAST). To create sites for surface modification with SAM materials on polyimide-based OGI (KPI) surfaces, the metal-oxide interlayer, here amorphous alumina (α-Al 2 O 3 ), was deposited on the KPI gate insulator using spin-coating via a rapid sol-gel reaction, providing an excellent template for the formation of a high-quality SAM with phosphonic acid anchor groups. The SAM of octadecylphosphonic acid (ODPA) was successfully treated by spin-coating onto the α-Al 2 O 3 -deposited KPI film. After the surface treatment by ODPA/α-Al 2 O 3 , the surface energy of the KPI thin film was remarkably decreased and the molecular compatibility of the film with an organic semiconductor (OSC), 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-C 10 ), was increased. Ph-BTBT-C 10 molecules were uniformly deposited on the treated gate insulator surface and grown with high crystallinity, as confirmed by atomic force microscopy (AFM) and X-ray diffraction (XRD) analysis. The mobility of Ph-BTBT-C 10 thin-film transistors (TFTs) was approximately doubled, from 0.56 ± 0.05 cm 2 V -1 s -1 to 1.26 ± 0.06 cm 2 V -1 s -1 , after the surface treatment. The surface treatment of α-Al 2 O 3 and ODPA significantly decreased the threshold voltage from -21.2 V to -8.3 V by reducing the trap sites in the OGI and improving the interfacial properties with the OSC. We suggest that the MAST method for OGIs can be applied to various OGI materials lacking reactive sites using SAMs. It may provide a new platform for the surface treatment of OGIs, similar to that of conventional SiO 2 gate insulators.

  6. Illuminating the Potential of Thin-Film Photovoltaics

    NASA Astrophysics Data System (ADS)

    Katahara, John K.

    Widespread adoption of photovoltaics (PV) as an alternative electricity source will be predicated upon improvements in price performance compared to traditional power sources. Solution processing of thin-film PV is one promising way to reduce the capital expenditure (CAPEX) of manufacturing solar cells. However, it is imperative that a shift to solution processing does not come at the expense of device performance. One particularly problematic parameter for thin-film PV has historically been the open-circuit voltage (VOC ). As such, there is a pressing need for characterization tools that allow us to quickly and accurately evaluate the potential performance of solution-processed PV absorber layers. This work describes recent progress in developing photoluminescence (PL) techniques for probing optoelectronic quality in semiconductors. We present a generalized model of absorption that encompasses ideal direct-gap semiconductor absorption and various band tail models. This powerful absorption model is used to fit absolute intensity PL data and extract quasi-Fermi level splitting (maximum attainable VOC) for a variety of PV absorber technologies. This technique obviates the need for full device fabrication to get feedback on optoelectronic quality of PV absorber layers and has expedited materials exploration. We then use this absorption model to evaluate the thermodynamic losses due to different band tail cases and estimate tail losses in Cu 2ZnSn(S,Se)4 (CZTSSe). The effect of sub-bandgap absorption on PL quantum yield (PLQY) and voltage is elucidated, and new analysis techniques for extracting VOC from PLQY are validated that reduce computation time and provide us even faster feedback on material quality. We then use PL imaging to develop a mechanism describing the degradation of solution-processed CH3NH3PbI3 films under applied bias and illumination.

  7. Plasma-assisted synthesis of MoS2

    NASA Astrophysics Data System (ADS)

    Campbell, Philip M.; Perini, Christopher J.; Chiu, Johannes; Gupta, Atul; Ray, Hunter S.; Chen, Hang; Wenzel, Kevin; Snyder, Eric; Wagner, Brent K.; Ready, Jud; Vogel, Eric M.

    2018-03-01

    There has been significant interest in transition metal dichalcogenides (TMDs), including MoS2, in recent years due to their potential application in novel electronic and optical devices. While synthesis methods have been developed for large-area films of MoS2, many of these techniques require synthesis temperatures of 800 °C or higher. As a result of the thermal budget, direct synthesis requiring high temperatures is incompatible with many integrated circuit processes as well as flexible substrates. This work explores several methods of plasma-assisted synthesis of MoS2 as a way to lower the synthesis temperature. The first approach used is conversion of a naturally oxidized molybdenum thin film to MoS2 using H2S plasma. Conversion is demonstrated at temperatures as low as 400 °C, and the conversion is enabled by hydrogen radicals which reduce the oxidized molybdenum films. The second method is a vapor phase reaction incorporating thermally evaporated MoO3 exposed to a direct H2S plasma, similar to chemical vapor deposition (CVD) synthesis of MoS2. Synthesis at 400 °C results in formation of super-stoichiometric MoS2 in a beam-interrupted growth process. A final growth method relies on a cyclical process in which a small amount of Mo is sputtered onto the substrate and is subsequently sulfurized in a H2S plasma. Similar results could be realized using an atomic layer deposition (ALD) process to deposit the Mo film. Compared to high temperature synthesis methods, the lower temperature samples are lower quality, potentially due to poor crystallinity or higher defect density in the films. Temperature-dependent conductivity measurements are consistent with hopping conduction in the plasma-assisted synthetic MoS2, suggesting a high degree of disorder in the low-temperature films. Optimization of the plasma-assisted synthesis process for slower growth rate and better stoichiometry is expected to lead to high quality films at low growth temperature.

  8. Hybrid 2D photonic crystal-assisted Lu3Al5O12:Ce ceramic-plate phosphor and free-standing red film phosphor for white LEDs with high color-rendering index.

    PubMed

    Park, Hoo Keun; Oh, Ji Hye; Kang, Heejoon; Zhang, Jian; Do, Young Rag

    2015-03-04

    This paper reports the combined optical effects of a two-dimensional (2D) SiNx photonic crystal layer (PCL)-assisted Lu3Al5O12:Ce (LuAG:Ce) green ceramic-plate phosphor (CPP) and a free-standing (Sr,Ca)AlSiN3:Eu red film phosphor to enhance luminous efficacy, color rendering index (CRI), and special CRI (R9) of LuAG:Ce CPP-capped white light-emitting diodes (LEDs) for high-power white LEDs at 350 mA. By introducing the 2D SiNx PCL, the luminous efficacy was improved by a factor of 1.25 and 1.15 compared to that of the conventional flat CPP-capped LED and the thickness-increased CPP-capped LED (with a thickness of 0.15 mm), respectively, while maintaining low color-rendering properties. The combining of the free-standing red film phosphor in the flat CPP-capped, the 2D PCL-assisted CPP-capped, and the thickness-increased CPP-capped LEDs led to enhancement of the CRI and the special CRI (R9); it also led to a decrease of the correlated color temperature (CCT) due to broad wavelength coverage via the addition of red emission. High CRI (94), natural white CCT (4450 K), and acceptable luminous efficacy (71.1 lm/W) were attained from the 2D PCL-assisted LuAG:Ce CPP/free-standing red film phosphor-based LED using a red phosphor concentration of 7.5 wt %. It is expected that the combination of the 2D PCL and the free-standing red film phosphor will be a good candidate for achieving a high-power white CPP-capped LED with excellent CRI.

  9. Characterization of Nanostructured Polymer Films

    DTIC Science & Technology

    2014-12-23

    discovered that polymer films with exceptional thermal and kinetic stability could be formed by Matrix Assisted Pulsed Laser Evaporation ( MAPLE ) onto...thermal properties of amorphous polymer nanoglobules fabricated via Matrix-Assisted Pulsed Laser Deposition ( MAPLE ). We discovered that stability in... MAPLE , Glass Transition Temperature 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON

  10. Process for preparing group Ib-IIIa-VIa semiconducting films

    DOEpatents

    Birkmire, R.W.; Schultz, J.M.; Marudachalam, M.; Hichri, H.

    1997-10-07

    Methods are provided for the production of supported monophasic group I-III-VI semiconductor films. In the subject methods, a substrate is coated with group I and III elements and then contacted with a reactive group VI element containing atmosphere under conditions sufficient to produce a substrate coated with a composite of at least two different group I-III-IV alloys. The resultant composite coated substrate is then annealed in an inert atmosphere under conditions sufficient to convert the composite coating to a monophasic group I-III-VI semiconductor film. The resultant supported semiconductor films find use in photovoltaic applications, particularly as absorber layers in solar cells. 4 figs.

  11. Process for preparing group Ib-IIIa-VIa semiconducting films

    DOEpatents

    Birkmire, Robert W.; Schultz, Jerold M.; Marudachalam, Matheswaran; Hichri, Habib

    1997-01-01

    Methods are provided for the production of supported monophasic group I-III-VI semiconductor films. In the subject methods, a substrate is coated with group I and III elements and then contacted with a reactive group VI element containing atmosphere under conditions sufficient to produce a substrate coated with a composite of at least two different group I-III-IV alloys. The resultant composite coated substrate is then annealed in an inert atmosphere under conditions sufficient to convert the composite coating to a monophasic group I-III-VI semiconductor film. The resultant supported semiconductor films find use in photovoltaic applications, particularly as absorber layers in solar cells.

  12. Towards a Script-Based Representation Language for Educational Films.

    ERIC Educational Resources Information Center

    Parkes, Alan P.

    1987-01-01

    Discusses aspects of the syntax and semantics of film, and presents a scenario for the use of film by intelligent computer assisted instruction (ICAI) systems. An outline of a representation language for educational films on videodisc is presented, and an appendix provides conceptual graphs that explain notations used in examples. (Author/LRW)

  13. Atomically flat platinum films grown on synthetic mica

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroyuki; Taniguchi, Masateru

    2018-04-01

    Atomically flat platinum thin films were heteroepitaxially grown on synthetic fluorophlogopite mica [KMg3(AlSi3O10)F2] by van der Waals epitaxy. Platinum films deposited on a fluorophlogopite mica substrate by inductively coupled plasma-assisted sputtering with oxygen introduction on a synthetic mica substrate resulted in the growth of twin single-crystalline epitaxial Pt(111) films.

  14. Apparatus for laser assisted thin film deposition

    DOEpatents

    Warner, B.E.; McLean, W. II

    1996-02-13

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus. 9 figs.

  15. Apparatus for laser assisted thin film deposition

    DOEpatents

    Warner, Bruce E.; McLean, II, William

    1996-01-01

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus.

  16. Microbial imprinted polypyrrole/poly(3-methylthiophene) composite films for the detection of Bacillus endospores.

    PubMed

    Namvar, Azadeh; Warriner, Keith

    2007-04-15

    The fabrication of Bacillus subtilis endospore imprinted conducting polymer films and subsequent electrochemical detection of bound spores is reported. Imprinted films were prepared by absorbing spores on the surface of glassy carbon electrodes upon which a polypyrrole, followed by a poly(3-methylthiophene), layer were electrochemically deposited. Spore template release was achieved through soaking the modified electrode in DMSO. Binding of endospores to imprinted films could be detected via impedance spectroscopy by monitoring changes in Y'' (susceptance) using Mn(II)Cl2 (0.5M pH 3) as the supporting electrolyte. Here, the change in Y'' could be correlated to spore densities between 10(4) and 10(7)cfu/ml. More sensitive detection of absorbed spores was achieved by following endospore germination via changes in film charge as measured using cyclic voltammetry. Here, imprinted films were submerged in spore suspensions to permit absorption, heat activated at 70 degrees C for 10 min prior to transferring to an electrochemical cell containing germination activators. By using the assay format it was possible to detect 10(2)cfu/ml. The observed changes in film charge could be attributed to the interaction of the supporting conducting polymer with dipicolinic acid (DPA) and other constituents released from the core in the course of germination. In all cases, it was not possible to regenerate the imprinted films without losing electrode response. In summary, the study has provided proof-of-concept for fabricating microbial imprinted films using conducting polymers.

  17. (abstract) Optical Scattering and Surface Microroughness of Ion Beam Deposited Au and Pt Thin Films

    NASA Technical Reports Server (NTRS)

    Al-Jumaily, Ghanim A.; Raouf, Nasrat A.; Edlou, Samad M.; Simons, John C.

    1994-01-01

    Thin films of gold and platinum have been deposited onto superpolished fused silica substrates using thermal evaporation, ion assisted deposition (IAD), and ion assisted sputtering. The influence of ion beam flux, thin film material, and deposition rate on the films microroughness have been investigated. Short range surface microroughness of the films has been examined using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). Long range surface microroughness has been characterized using an angle resolved optical scatterometer. Results indicate that ion beam deposited coatings have improved microstructure over thermally evaporated films.

  18. Multichannel film dosimetry with nonuniformity correction.

    PubMed

    Micke, Andre; Lewis, David F; Yu, Xiang

    2011-05-01

    A new method to evaluate radiochromic film dosimetry data scanned in multiple color channels is presented. This work was undertaken to demonstrate that the multichannel method is fundamentally superior to the traditional single channel method. The multichannel method allows for the separation and removal of the nondose-dependent portions of a film image leaving a residual image that is dependent only on absorbed dose. Radiochromic films were exposed to 10 x 10 cm radiation fields (Co-60 and 6 MV) at doses up to about 300 cGy. The films were scanned in red-blue-green (RGB) format on a flatbed color scanner and measured to build calibration tables relating the absorbed dose to the response of the film in each of the color channels. Film images were converted to dose maps using two methods. The first method used the response from a single color channel and the second method used the response from all three color channels. The multichannel method allows for the separation of the scanned signal into one part that is dose-dependent and another part that is dose-independent and enables the correction of a variety of disturbances in the digitized image including nonuniformities in the active coating on the radiochromic film as well as scanner related artifacts. The fundamental mathematics of the two methods is described and the dose maps calculated from film images using the two methods are compared and analyzed. The multichannel dosimetry method was shown to be an effective way to separate out non-dose-dependent abnormalities from radiochromic dosimetry film images. The process was shown to remove disturbances in the scanned images caused by nonhomogeneity of the radiochromic film and artifacts caused by the scanner and to improve the integrity of the dose information. Multichannel dosimetry also reduces random noise in the dose images and mitigates scanner-related artifacts such as lateral position dependence. In providing an ability to calculate dose maps from data in

  19. Topological, chemical and electro-optical characteristics of riboflavin-doped artificial and natural DNA thin films

    NASA Astrophysics Data System (ADS)

    Gnapareddy, Bramaramba; Dugasani, Sreekantha Reddy; Son, Junyoung; Park, Sung Ha

    2018-02-01

    DNA is considered as a useful building bio-material, and it serves as an efficient template to align functionalized nanomaterials. Riboflavin (RF)-doped synthetic double-crossover DNA (DX-DNA) lattices and natural salmon DNA (SDNA) thin films were constructed using substrate-assisted growth and drop-casting methods, respectively, and their topological, chemical and electro-optical characteristics were evaluated. The critical doping concentrations of RF ([RF]C, approx. 5 mM) at given concentrations of DX-DNA and SDNA were obtained by observing the phase transition (from crystalline to amorphous structures) of DX-DNA and precipitation of SDNA in solution above [RF]C. [RF]C are verified by analysing the atomic force microscopy images for DX-DNA and current, absorbance and photoluminescence (PL) for SDNA. We study the physical characteristics of RF-embedded SDNA thin films, using the Fourier transform infrared spectrum to understand the interaction between the RF and DNA molecules, current to evaluate the conductance, absorption to understand the RF binding to the DNA and PL to analyse the energy transfer between the RF and DNA. The current and UV absorption band of SDNA thin films decrease up to [RF]C followed by an increase above [RF]C. By contrast, the PL intensity illustrates the reverse trend, as compared to the current and UV absorption behaviour as a function of the varying [RF]. Owing to the intense PL characteristic of RF, the DNA lattices and thin films with RF might offer immense potential to develop efficient bio-sensors and useful bio-photonic devices.

  20. Topological, chemical and electro-optical characteristics of riboflavin-doped artificial and natural DNA thin films

    PubMed Central

    Gnapareddy, Bramaramba; Son, Junyoung

    2018-01-01

    DNA is considered as a useful building bio-material, and it serves as an efficient template to align functionalized nanomaterials. Riboflavin (RF)-doped synthetic double-crossover DNA (DX-DNA) lattices and natural salmon DNA (SDNA) thin films were constructed using substrate-assisted growth and drop-casting methods, respectively, and their topological, chemical and electro-optical characteristics were evaluated. The critical doping concentrations of RF ([RF]C, approx. 5 mM) at given concentrations of DX-DNA and SDNA were obtained by observing the phase transition (from crystalline to amorphous structures) of DX-DNA and precipitation of SDNA in solution above [RF]C. [RF]C are verified by analysing the atomic force microscopy images for DX-DNA and current, absorbance and photoluminescence (PL) for SDNA. We study the physical characteristics of RF-embedded SDNA thin films, using the Fourier transform infrared spectrum to understand the interaction between the RF and DNA molecules, current to evaluate the conductance, absorption to understand the RF binding to the DNA and PL to analyse the energy transfer between the RF and DNA. The current and UV absorption band of SDNA thin films decrease up to [RF]C followed by an increase above [RF]C. By contrast, the PL intensity illustrates the reverse trend, as compared to the current and UV absorption behaviour as a function of the varying [RF]. Owing to the intense PL characteristic of RF, the DNA lattices and thin films with RF might offer immense potential to develop efficient bio-sensors and useful bio-photonic devices. PMID:29515837

  1. Effect of reactive monomer on PS-b-P2VP film.

    PubMed

    Kim, H J; Shin, D M

    2014-08-01

    Poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) lamellar film which is hydrophobic block-hydrophilic polyelectrolyte block polymer of 52 kg/mol-b-57 kg/mol and PS-b-P2VP film with reactive monomer (RM257) were prepared for photonic gel films. The lamellar stacks, which is alternating layer of hydrophilic and hydrophobic moiety of PS-b-P2VP, were obtained by exposing the spin coated film under chloroform vapor. The lamellar films were quaternized with 5 wt% of iodomethane diluted by n-hexane. We reported about the influence of reactive monomer on those photonic gel films. Added reactive monomer photonic gel film had higher absorbance than pure photonic gel films. As a result the photonic gel film with RM had more clear color. The lamellar films were swollen by DI water, ethanol (aq) and calcium carbonate solution. The band gaps of the lamellar films were drastically shifted to longer wavelength swollen by calcium carbonate solution. And the lamellar films were shifted to shorter wave length swollen by ethanol. So each lamellar film showed different color.

  2. Thermal cycling and the optical and electrical characterization of self-assembled multilayer nile blue A-gold thin films.

    PubMed

    Geist, Brian; Spillman, William B; Claus, Richard O

    2005-10-20

    Some laser applications produce high power densities that can be dangerous to equipment and operators. We have fabricated thin-film coatings by using molecular electrostatic self-assembly to create a spectrally selective absorbing coating that is able to withstand thermal fluctuations from -20 degrees C to 120 degrees C. We made the thin-film coatings by alternating deposition of an organic dye and gold colloidal nanoparticles onto glass substrates. Nile Blue A perchlorate, with a maximum absorbance slightly above 632 nm, was chosen as the organic dye. Strong coupling between the dye molecules and the gold nanoparticles provides a redshift that increases as the film's thickness is increased. The incorporation of the gold colloidal nanoparticles also decreases the resistivity of the film. The resistivity of the film was measured with a four-point probe and found to be approximately 10 omega/cm for the two samples measured. Atomic-force microscopy was used to show that film thickness increased 2.4 nm per bilayer. The optical properties of the film were measured at the end of every 5 thermal cycles from -20 degrees C to 120 degrees C, and negligible degradation was observed after 30 cycles.

  3. Electromagnetic and optical characteristics of Nb5+-doped double-crossover and salmon DNA thin films

    NASA Astrophysics Data System (ADS)

    Babu Mitta, Sekhar; Reddy Dugasani, Sreekantha; Jung, Soon-Gil; Vellampatti, Srivithya; Park, Tuson; Park, Sung Ha

    2017-10-01

    We report the fabrication and physical characteristics of niobium ion (Nb5+)-doped double-crossover DNA (DX-DNA) and salmon DNA (SDNA) thin films. Different concentrations of Nb5+ ([Nb5+]) are coordinated into the DNA molecules, and the thin films are fabricated via substrate-assisted growth (DX-DNA) and drop-casting (SDNA) on oxygen plasma treated substrates. We conducted atomic force microscopy to estimate the optimum concentration of Nb5+ ([Nb5+]O = 0.08 mM) in Nb5+-doped DX-DNA thin films, up to which the DX-DNA lattices maintain their structures without deformation. X-ray photoelectron spectroscopy (XPS) was performed to probe the chemical nature of the intercalated Nb5+ in the SDNA thin films. The change in peak intensities and the shift in binding energy were witnessed in XPS spectra to explicate the binding and charge transfer mechanisms between Nb5+ and SDNA molecules. UV-visible, Raman, and photoluminescence (PL) spectra were measured to determine the optical properties and thus investigate the binding modes, Nb5+ coordination sites in Nb5+-doped SDNA thin films, and energy transfer mechanisms, respectively. As [Nb5+] increases, the absorbance peak intensities monotonically increase until ˜[Nb5+]O and then decrease. However, from the Raman measurements, the peak intensities gradually decrease with an increase in [Nb5+] to reveal the binding mechanism and binding sites of metal ions in the SDNA molecules. From the PL, we observe the emission intensities to reduce them at up to ˜[Nb5+]O and then increase after that, expecting the energy transfer between the Nb5+ and SDNA molecules. The current-voltage measurement shows a significant increase in the current observed as [Nb5+] increases in the SDNA thin films when compared to that of pristine SDNA thin films. Finally, we investigate the temperature dependent magnetization in which the Nb5+-doped SDNA thin films reveal weak ferromagnetism due to the existence of tiny magnetic dipoles in the Nb5+-doped SDNA

  4. [The correlations between corneal sensation, tear meniscus volume, and tear film osmolarity after femtosecond laser-assisted LASIK].

    PubMed

    Zhang, Luyan; Sun, Xiyu; Yu, Ye; Xiong, Yan; Cui, Yuxin; Wang, Qinmei; Hu, Liang

    2016-01-01

    To investigate the correlations between corneal sensation, tear meniscus volume, and tear film osmolarity after femtosecond laser-assisted LASIK (FS-LASIK) surgery. In this prospective clinical study, 31 patients undergoing FS-LASIK for myopia were recruited. The upper and lower tear meniscus volumes (UTMV and LTMV) were measured by customized anterior segment optical coherence tomography, tear film osmolarity was measured by a TearLab Osmolarity test device, central corneal sensation was measured by a Cochet-Bonner esthesiometer preoperatively, at 1 week, 1 and 3 months postoperatively. Repeated measures analysis of variance was used to evaluate whether the tear film osmolarity, tear meniscus volume, and corneal sensation were changed after surgery. The correlations between these variables were analyzed by the Pearson correlation analysis. The tear film osmolarity was (310.03 ± 16.48) mOsms/L preoperatively, (323.51 ± 15.92) mOsms/L at 1 week, (319.93 ± 14.27) mOsms/L at 1 month, and (314.97±12.91) mOsms/L at 3 months. The UTMV was (0.42±0.15), (0.25± 0.09), (0.30±0.11), and (0.35±0.09) μL, respectively; the LTMV was (0.60±0.21),(0.37±0.08), (0.44± 0.14), and (0.52±0.17) μL, respectively. The tear film osmolarity was significantly higher at 1 week and 1 month postoperatively compared with the baseline (P=0.001, 0.004), and reduced to the preoperative level at 3 months (P=0.573). The UTMV, LTMV, and corneal sensation values presented significant decreases at all postoperative time points (all P<0.05). The Pearson correlation analysis showed the postoperative UTMV had a weak relationship with corneal sensation at 1 week after surgery (r=0.356,P=0.005). There were significant correlations between the preoperative LTMV and corneal sensation at 1 week, 1 and 3 months (respectively, r=0.422, 0.366, 0.352;P=0.001, 0.004, 0.006). No significant correlations were found between the tear film osmolarity, tear meniscus volume, and corneal sensation after surgery

  5. 3D metamaterial absorber for attomole molecular detection (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tanaka, Takuo; Ishikawa, Atsushi

    2016-09-01

    3D Metamaterial absorber was used for a background-suppressed surface-enhanced molecular detection technique. By utilizing the resonant coupling of plasmonic modes of a metamaterial absorber and infrared (IR) vibrational modes of a self-assembled monolayer (SAM), attomole level molecular sensitivity was experimentally demonstrated. IR absorption spectroscopy of molecular vibrations is of importance in chemical, material, medical science and so on, since it provides essential information of the molecular structure, composition, and orientation. In the vibrational spectroscopic techniques, in addition to the weak signals from the molecules, strong background degrades the signal-to-noise ratio, and suppression of the background is crucial for the further improvement of the sensitivity. Here, we demonstrate low-background resonant Surface enhanced IR absorption (SEIRA) by using the metamaterial IR absorber that offers significant background suppression as well as plasmonic enhancement. The fabricated metamaterial consisted of 1D array of Au micro-ribbons on a thick Au film separated by a transparent gap layer made of MgF2. The surface structures were designed to exhibit an anomalous IR absorption at 3000 cm-1, which spectrally overlapped with C-H stretching vibrational modes. 16-Mercaptohexadecanoic acid (16-MHDA) was used as a test molecule, which formed a 2-nm thick SAM with their thiol head-group chemisorbed on the Au surface. In the FTIR measurements, the symmetric and asymmetric C-H stretching modes were clearly observed as reflection peaks within a broad plasmonic absorption of the metamaterial.

  6. Enhanced performance of VOx-based bolometer using patterned gold black absorber

    NASA Astrophysics Data System (ADS)

    Smith, Evan M.; Panjwani, Deep; Ginn, James; Warren, Andrew; Long, Christopher; Figuieredo, Pedro; Smith, Christian; Perlstein, Joshua; Walter, Nick; Hirschmugl, Carol; Peale, Robert E.; Shelton, David J.

    2015-06-01

    Patterned highly absorbing gold black film has been selectively deposited on the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves gold black's near unity absorption. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. Infrared responsivity is substantially improved by the gold black coating without significantly increasing noise. The increase in the time constant caused by the additional mass of gold black is a modest 14%.

  7. Chitosan-Assisted Crystallization and Film Forming of Perovskite Crystals through Biomineralization.

    PubMed

    Yang, Yang; Sun, Chen; Yip, Hin-Lap; Sun, Runcang; Wang, Xiaohui

    2016-03-18

    Biomimetic mineralization is a powerful approach for the synthesis of advanced composite materials with hierarchical organization and controlled structure. Herein, chitosan was introduced into a perovskite precursor solution as a biopolymer additive to control the crystallization and to improve the morphology and film-forming properties of a perovskite film by way of biomineralization. The biopolymer additive was able to control the size and morphology of the perovskite crystals and helped to form smooth films. The mechanism of chitosan-mediated nucleation and growth of the perovskite crystals was explored. As a possible application, the chitosan-perovskite composite film was introduced into a planar heterojunction solar cell and increased power conversion efficiency relative to that observed for the pristine perovskite film was achieved. The biomimetic mineralization method proposed in this study provides an alternative way of preparing perovskite crystals with well-controlled morphology and properties and extends the applications of perovskite crystals in photoelectronic fields, including planar-heterojunction solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Structural and biological evaluation of lignin addition to simple and silver-doped hydroxyapatite thin films synthesized by matrix-assisted pulsed laser evaporation.

    PubMed

    Janković, A; Eraković, S; Ristoscu, C; Mihailescu Serban, N; Duta, L; Visan, A; Stan, G E; Popa, A C; Husanu, M A; Luculescu, C R; Srdić, V V; Janaćković, Dj; Mišković-Stanković, V; Bleotu, C; Chifiriuc, M C; Mihailescu, I N

    2015-01-01

    We report on thin film deposition by matrix-assisted pulsed laser evaporation of simple hydroxyapatite (HA) or silver (Ag) doped HA combined with the natural biopolymer organosolv lignin (Lig) (Ag:HA-Lig). Solid cryogenic target of aqueous dispersions of Ag:HA-Lig composite and its counterpart without silver (HA-Lig) were prepared for evaporation using a KrF* excimer laser source. The expulsed material was assembled onto TiO2/Ti substrata or silicon wafers and subjected to physical-chemical investigations. Smooth, uniform films adherent to substratum were observed. The chemical analyses confirmed the presence of the HA components, but also evidenced traces of Ag and Lig. Deposited HA was Ca deficient, which is indicative of a film with increased solubility. Recorded X-ray Diffraction patterns were characteristic for amorphous films. Lig presence in thin films was undoubtedly proved by both X-ray Photoelectron and Fourier Transform Infra-Red Spectroscopy analyses. The microbiological evaluation showed that the newly assembled surfaces exhibited an inhibitory activity both on the initial steps of biofilm forming, and on mature bacterial and fungal biofilm development. The intensity of the anti-biofilm activity was positively influenced by the presence of the Lig and/or Ag, in the case of Staphylococcus aureus, Pseudomonas aeruginosa and Candida famata biofilms. The obtained surfaces exhibited a low cytotoxicity toward human mesenchymal stem cells, being therefore promising candidates for fabricating implantable biomaterials with increased biocompatibility and resistance to microbial colonization and further biofilm development.

  9. Generation of an ultrafast femtosecond soliton fiber laser by carbon nanotube as saturable absorber

    NASA Astrophysics Data System (ADS)

    Salim, M. A. M.; Ahmad, H.; Harun, S. W.; Bidin, N.; Krishnan, G.

    2018-05-01

    This paper reports the demonstration of ultrafast fiber laser in a simple erbium-doped fiber (EDF) laser that employed a carbon nanotube (CNT) thin film saturable absorber (SA) to generate a stable soliton pulse. The repetition rate of 10.8 MHz pulse consistently achieved has narrowest pulse width of 640 fs and 1555.78 nm central wavelength for an hour operation in room temperature. This proposed setup has the capability for reliable and stable system features.

  10. Films of brookite TiO2 nanorods/nanoparticles deposited by matrix-assisted pulsed laser evaporation as NO2 gas-sensing layers

    NASA Astrophysics Data System (ADS)

    Caricato, A. P.; Buonsanti, R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Taurino, A.; Rella, R.

    2011-09-01

    Titanium dioxide (TiO2) nanorods in the brookite phase, with average dimensions of 3-4 nm × 20-50 nm, were synthesized by a wet-chemical aminolysis route and used as precursors for thin films that were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. A nanorod solution in toluene (0.016 wt% TiO2) was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser at a fluence of 350 mJ/cm2 and repetition rate of 10 Hz. Single-crystal Si wafers, silica slides, carbon-coated Cu grids and alumina interdigitated slabs were used as substrates to allow performing different characterizations. Films fabricated with 6000 laser pulses had an average thickness of ˜150 nm, and a complete coverage of the selected substrate as achieved. High-resolution scanning and transmission electron microscopy investigations evidenced the formation of quite rough films incorporating individually distinguishable TiO2 nanorods and crystalline spherical nanoparticles with an average diameter of ˜13 nm. Spectrophotometric analysis showed high transparency through the UV-Vis spectral range. Promising resistive sensing responses to 1 ppm of NO2 mixed in dry air were obtained.

  11. Characterizing the discoloration of EBT3 films in solar UV A+B measurement using red LED

    NASA Astrophysics Data System (ADS)

    Omar, Ahmad Fairuz; Osman, Ummi Shuhada; Tan, Kok Chooi

    2017-09-01

    This research article proposes an alternative method to measure the discoloration or the color changes of EBT3 films due to exposure by solar ultraviolet (UV A+B) dose. Common methods to measure the color changes of EBT3 are through imaging technique measured by flatbed scanner and through absorbance spectroscopy measured by visible spectrometer. The research presented in this article measure the color changes of EBT3 through simplified optical system using the combination of light emitting diode (LED) as the light source and photodiode as the detector. In this research, 50 pieces of Gafchromic EBT3 films were prepared with the dimension of 3 cm x 2 cm. Color of the films changed from light green to dark green based on the total accumulated UV dose (mJ/cm2) by each film that depends on the duration of exposure, irradiance level (mW/cm2) and condition of the sky. The exposed films were then taken to the laboratory for its color measurement using absorbance spectroscopy technique and using newly developed simplified optical instrument using LED-photodiode. Results from spectroscopy technique indicate that wavelength within red region exhibit better response in term of linearity and responsivity towards the colors of EBT3 films. Wavelength of 626 nm was then selected as the peak emission wavelength for LED-photodiode absorbance system. UV dose measurement using LEDphotodiode system produced good result with coefficient of determination, R2 of 0.97 and root mean square of error, RMSE of 431.82 mJ/cm2 while comparatively, similar wavelength but analyzed from spectroscopy dataset produced R2 of 0.988 and RMSE of 268.94 mJ/cm2.

  12. Optimization of high quality Cu2ZnSnS4 thin film by low cost and environment friendly sol-gel technique for thin film solar cells applications

    NASA Astrophysics Data System (ADS)

    Chaudhari, J. J.; Joshi, U. S.

    2018-05-01

    In this study kesterite Cu2ZnSnS4 (CZTS) thin films suitable for absorber layer in thin film solar cells (TFSCs) were successfully fabricated on glass substrate by sol-gel method. The effects of complexing agent on formation of CZTS thin films have been investigated. X-ray diffraction (XRD) analysis confirms formation of polycrystalline CZTS thin films with single phase kesterite structure. XRD and Raman spectroscopy analysis of CZTS thin films with optimized concentration of complexing agent confirmed formation of kesterite phase in CZTS thin films. The direct optical band gap energy of CZTS thin films is found to decrease from 1.82 to 1.50 eV with increase of concentration of complexing agent triethanolamine. Morphological analysis of CZTS thin films shows smooth, uniform and densely packed CZTS grains and increase in the grain size with increase of concentration of complexing agent. Hall measurements revealed that concentration of charge carrier increases and resistivity decreases in CZTS thin films as amount of complexing agent increases.

  13. Thin-film cadmium telluride photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Compaan, A. D.; Bohn, R. G.

    1994-09-01

    This report describes work to develop and optimize radio-frequency (RF) sputtering for the deposition of thin films of cadmium telluride (CdTe) and related semiconductors for thin-film solar cells. Pulsed laser physical vapor deposition was also used for exploratory work on these materials, especially where alloying or doping are involved, and for the deposition of cadmium chloride layers. The sputtering work utilized a 2-in diameter planar magnetron sputter gun. The film growth rate by RF sputtering was studied as a function of substrate temperature, gas pressure, and RF power. Complete solar cells were fabricated on tin-oxide-coated soda-lime glass substrates. Currently, work is being done to improve the open-circuit voltage by varying the CdTe-based absorber layer, and to improve the short-circuit current by modifying the CdS window layer.

  14. Reflection measurements of microwave absorbers

    NASA Astrophysics Data System (ADS)

    Baker, Dirk E.; van der Neut, Cornelis A.

    1988-12-01

    A swept-frequency interferometer is described for making rapid, real-time assessments of localized inhomogeneities in planar microwave absorber panels. An aperture-matched exponential horn is used to reduce residual reflections in the system to about -37 dB. This residual reflection is adequate for making comparative measurements on planar absorber panels whose reflectivities usually fall in the -15 to -25 dB range. Reflectivity measurements on a variety of planar absorber panels show that multilayer Jaumann absorbers have the greatest inhomogeneity, while honeycomb absorbers generally have excellent homogeneity within a sheet and from sheet to sheet. The test setup is also used to measure the center frequencies of resonant absorbers. With directional couplers and aperture-matched exponential horns, the technique can be easily applied in the standard 2 to 40 GHz waveguide bands.

  15. Selective Destruction of Protein Function by Chromophore-Assisted Laser Inactivation

    NASA Astrophysics Data System (ADS)

    Jay, Daniel G.

    1988-08-01

    Chromophore-assisted laser inactivation of protein function has been achieved. After a protein binds a specific ligand or antibody conjugated with malachite green (C.I. 42000), it is selectively inactivated by laser irradiation at a wavelength of light absorbed by the dye but not significantly absorbed by cellular components. Ligand-bound proteins in solution and on the surfaces of cells can be denatured without other proteins in the same samples being affected. Chromophore-assisted laser inactivation can be used to study cell surface phenomena by inactivating the functions of single proteins on living cells, a molecular extension of cellular laser ablation. It has an advantage over genetics and the use of specific inhibitors in that the protein function of a single cell within the organism can be inactivated by focusing the laser beam.

  16. Method for fabricating reticles for EUV lithography without the use of a patterned absorber

    DOEpatents

    Stearns, Daniel G [Los Altos, CA; Sweeney, Donald W [San Ramon, CA; Mirkarimi, Paul B [Sunol, CA

    2003-10-21

    Absorber material used in conventional EUVL reticles is eliminated by introducing a direct modulation in the complex-valued reflectance of the multilayer. A spatially localized energy source such as a focused electron or ion beam directly writes a reticle pattern onto the reflective multilayer coating. Interdiffusion is activated within the film by an energy source that causes the multilayer period to contract in the exposed regions. The contraction is accurately determined by the energy dose. A controllable variation in the phase and amplitude of the reflected field in the reticle plane is produced by the spatial modulation of the multilayer period. This method for patterning an EUVL reticle has the advantages of (1) avoiding the process steps associated with depositing and patterning an absorber layer and (2) providing control of the phase and amplitude of the reflected field with high spatial resolution.

  17. Temperature-controlled transparent-film heater based on silver nanowire-PMMA composite film

    NASA Astrophysics Data System (ADS)

    He, Xin; Liu, A.'lei; Hu, Xuyang; Song, Mingxia; Duan, Feng; Lan, Qiuming; Xiao, Jundong; Liu, Junyan; Zhang, Mei; Chen, Yeqing; Zeng, Qingguang

    2016-11-01

    We fabricated a high-performance film heater based on a silver nanowire and polymethyl methacrylate (Ag NW-PMMA) composite film, which was synthesized with the assistance of mechanical lamination and an in situ transfer method. The films exhibit excellent conductivity, high figure of merit, and strong adhesion of percolation network to substrate. By controlling NW density, we prepared the films with a transmittance of 44.9-85.0% at 550 nm and a sheet resistance of 0.13-1.40 Ω sq-1. A stable temperature ranging from 130 °C-40 °C was generated at 3.0 V within 10-30 s, indicating that the resulting film heaters show a rapid thermal response, low driving voltage and stable temperature recoverability. Furthermore, we demonstrated the applications of the film heater in defrosting and a physical therapeutic instrument. A fast defrosting on the composite film with a transmittance of 88% was observed by applying a 9 V driving voltage for 20 s. Meanwhile, we developed a physical therapeutic instrument with two modes of thermotherapy and electronic-pulse massage by using the composite films as two electrodes, greatly decreasing the weight and power consumption compared to a traditional instrument. Therefore, Ag NW-PMMA film can be a promising candidate for diversified heating applications.

  18. Correlation of film thickness to optical band gap of Sol-gel derived Ba0.9Gd0.1TiO3 thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Teh, Yen Chin; Saif, Ala'eddin A.; Azhar Zahid Jamal, Zul; Poopalan, Prabakaran

    2017-11-01

    Ba0.9Gd0.1TiO3 thin films have been fabricated on SiO2/Si and fused silica by sol-gel method. The films are prepared through a spin coating process and annealed at 900 °C to obtain crystallized films. The effect of film thickness on the microstructure and optical band gap has been investigated using X-ray diffractometer, atomic force microscope and ultraviolet-visible spectroscopy, respectively. XRD patterns confirm that the films crystallized with tetragonal phase perovskite structure. The films surface morphology is analysed through amplitude parameter analysis to find out that the grain size and surface roughness are increased with the increase of films thickness. The transmittance and absorbance spectra reveal that all films exhibit high absorption in UV region. The evaluated optical band gap is obtained in the range of 3.67 - 3.78 eV and is found to be decreased as the thickness increase.

  19. Using high haze (> 90%) light-trapping film to enhance the efficiency of a-Si:H solar cells

    NASA Astrophysics Data System (ADS)

    Chu, Wei-Ping; Lin, Jian-Shian; Lin, Tien-Chai; Tsai, Yu-Sheng; Kuo, Chen-Wei; Chung, Ming-Hua; Hsieh, Tsung-Eong; Liu, Lung-Chang; Juang, Fuh-Shyang; Chen, Nien-Po

    2012-07-01

    The high haze light-trapping (LT) film offers enhanced scattering of light and is applied to a-Si:H solar cells. UV glue was spin coated on glass, and then the LT pattern was imprinted. Finally, a UV lamp was used to cure the UV glue on the glass. The LT film effectively increased the Haze ratio of glass and decreased the reflectance of a-Si:H solar cells. Therefore, the photon path length was increased to obtain maximum absorption by the absorber layer. High Haze LT film is able to enhance short circuit current density and efficiency of the device, as partial composite film generates broader scattering light, thereby causing shorter wave length light to be absorbed by the P layer so that the short circuit current density decreases. In case of lab-made a-Si:H thin film solar cells with v-shaped LT films, superior optoelectronic performances have been found (Voc = 0.74 V, Jsc = 15.62 mA/cm2, F.F. = 70%, and η = 8.09%). We observed ~ 35% enhancement of the short-circuit current density and ~ 31% enhancement of the conversion efficiency.

  20. Impact of natural photosensitizer extraction solvent upon light absorbance in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Suhaimi, Suriati; Mohamed Siddick, Siti Zubaidah; Ahmad Hambali, Nor Azura Malini; Retnasamy, Vithyacharan; Abdul Wahid, Mohamad Halim; Mohamad Shahimin, Mukhzeer

    2017-02-01

    Natural pigmentations of Ardisia, Bawang Sabrang, Harum Manis mango, Oxalis Triangularis and Rosella were used to study the general trend in performance of dyes as a photosensitizer in the application of dye-sensitized solar cells (DSSCs) based on optical light absorbance and photoelectrochemical characteristics. From the Ultraviolet-Visible Spectrophotometer with the recorded absorption measurements in the range between 400 nm to 800 nm, the dyes extracted from Rosella and Oxalis Triangularis in water solvent exhibited the conversion efficiency up to 0.68% and 0.67%, respectively. The light absorbance peak for dye extracted from Ardisia, Bawang Sabrang, Oxalis Triangularis and Rosella in water and ethanol solvent resulted in the range between 500 nm to 650 nm, while the Harum Manis mango resulted in the broader spectra in both water and ethanol solvent. The light absorbance spectra of each the dyes shows shifted wavelength spectrum when the extracted dye is adsorbed onto TiO2 film surface that might influenced the absorption of light by TiO2 particle in the visible region. The capabilities of the dyes to absorb light when bonded onto the TiO2 photoanode was found to be significant with the current-voltage conversion of the cell. The results demonstrates just the tip of the vastness of natural dyes' (native to tropical region) feasibility and applicability as a photosensitizer.

  1. Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by Laser-Assisted Bioprinting

    NASA Astrophysics Data System (ADS)

    Catros, Sylvain; Guillotin, Bertrand; Bačáková, Markéta; Fricain, Jean-Christophe; Guillemot, Fabien

    2011-04-01

    Biofabrication of three dimensional tissues by Laser-Assisted Bioprinting (LAB) implies to develop specific strategies for assembling the extracellular matrix (ECM) and cells. Possible strategies consist in (i) printing cells onto or in the depth of ECM layer and/or (ii) printing bioinks containing both cells and ECM-like printable biomaterial. The aim of this article was to evaluate combinatorial effects of laser pulse energy, ECM thickness and viscosity of the bioink on cell viability. A LAB workstation was used to print Ea.hy926 endothelial cells onto a quartz substrate covered with a film of ECM mimicking Matrigel™. Hence, effect of laser energy, Matrigel™ film thickness and bioink viscosity was addressed for different experimental conditions (8-24 μJ, 20-100 μm and 40-110 mPa s, respectively). Cell viability was assessed by live/dead assay performed 24 h post-printing. Results show that increasing the laser energy tends to augment the cell mortality while increasing the thickness of the Matrigel™ film and the viscosity of the bioink support cell viability. Hence, critical printing parameters influencing high cell viability have been related to the cell landing conditions and more specifically to the intensity of the cell impacts occurring at the air-ECM interface and at the ECM-glass interface.

  2. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  3. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  4. Pinning down high-performance Cu-chalcogenides as thin-film solar cell absorbers: A successive screening approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yubo; Zhang, Wenqing, E-mail: wqzhang@mail.sic.ac.cn, E-mail: pzhang3@buffalo.edu; State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050

    2016-05-21

    Photovoltaic performances of Cu-chalcogenides solar cells are strongly correlated with the absorber fundamental properties such as optimal bandgap, desired band alignment with window material, and high photon absorption ability. According to these criteria, we carry out a successive screening for 90 Cu-chalcogenides using efficient theoretical approaches. Besides the well-recognized CuInSe{sub 2} and Cu{sub 2}ZnSnSe{sub 4} materials, several novel candidates are identified to have optimal bandgaps of around 1.0–1.5 eV, spike-like band alignments with CdS window layer, sharp photon absorption edges, and high absorption coefficients. These new systems have great potential to be superior absorbers for photovolatic applications if their carrriermore » transport and defect properties are properly optimized.« less

  5. Trap-assisted tunneling in aluminum-doped ZnO/indium oxynitride nanodot interlayer Ohmic contacts on p-GaN

    NASA Astrophysics Data System (ADS)

    Ke, Wen-Cheng; Lee, Fang-Wei; Yang, Cheng-Yi; Chen, Wei-Kuo; Huang, Hao-Ping

    2015-10-01

    This study developed an Ohmic contact formation method for a ZnO:Al (AZO) transparent conductive layer on p-GaN films involving the introduction of an indium oxynitride (InON) nanodot interlayer. An antisurfactant pretreatment was used to grow InON nanodots on p-GaN films in a RF magnetron sputtering system. A low specific contact resistance of 1.12 × 10-4 Ω cm2 was achieved for a sample annealed at 500 °C for 30 s in nitrogen ambient and embedded with an InON nanodot interlayer with a nanodot density of 6.5 × 108 cm-2. By contrast, a sample annealed in oxygen ambient exhibited non-Ohmic behavior. X-ray photoemission spectroscopy results showed that the oxygen vacancy (Vo) in the InON nanodots played a crucial role in carrier transport. The fitting I-V characteristic curves indicated that the hopping mechanism with an activation energy of 31.6 meV and trap site spacing of 1.1 nm dominated the carrier transport in the AZO/InON nanodot/p-GaN sample. Because of the high density of donor-like oxygen vacancy defects at the InON nanodot/p-GaN interface, positive charges from the underlying p-GaN films were absorbed at the interface. This led to positive charge accumulation, creating a narrow depletion layer; therefore, carriers from the AZO layer passed through InON nanodots by hopping transport, and subsequently tunneling through the interface to enter the p-GaN films. Thus, AZO Ohmic contact can be formed on p-GaN films by embedding an InON nanodot interlayer to facilitate trap-assisted tunneling.

  6. Liquid-film electron stripper

    DOEpatents

    Gavin, Basil F.

    1986-01-01

    An improved liquid-film electron stripper particularly for high intensity heavy ion beams which produces constant regenerated, stable, free-standing liquid films having an adjustable thickness between 0.3 to 0.05 microns. The improved electron stripper is basically composed of at least one high speed, rotating disc with a very sharp, precision-like, ground edge on one said of the disc's periphery and with a highly polished, flat, radial surface adjacent the sharp edge. A fine stream of liquid, such as oil, impinges at a 90.degree. angle adjacent the disc's sharp outer edge. Film terminators, located at a selected distance from the disc perimeter are positioned approximately perpendicular to the film. The terminators support, shape, and stretch the film and are arranged to assist in the prevention of liquid droplet formation by directing the collected film to a reservoir below without breaking or interfering with the film. One embodiment utilizes two rotating discs and associated terminators, with the discs rotating so as to form films in opposite directions, and with the second disc being located down beam-line relative to the first disc.

  7. Optical and electrical properties of copper-incorporated ZnS films applicable as solar cell absorbers

    NASA Astrophysics Data System (ADS)

    Mehrabian, M.; Esteki, Z.; Shokrvash, H.; Kavei, G.

    2016-10-01

    Un-doped and Cu-doped ZnS (ZnS:Cu) thin films were synthesized by Successive Ion Layer Absorption and Reaction (SILAR) method. The UV-visible absorption studies have been used to calculate the band gap values of the fabricated ZnS:Cu thin films. It was observed that by increasing the concentration of Cu2+ ions, the Fermi level moves toward the edge of the valence band of ZnS. Photoluminescence spectra of un-doped and Cu-doped ZnS thin films was recorded under 355 nm. The emission spectrum of samples has a blue emission band at 436 nm. The peak positions of the luminescence showed a red shift as the Cu2+ ion concentration was increased, which indicates that the acceptor level (of Cu2+) is getting close to the valence band of ZnS.

  8. Effects of thermochemical treatment on CuSbS 2 photovoltaic absorber quality and solar cell reproducibility

    DOE PAGES

    de Souza Lucas, Francisco Willian; Welch, Adam W.; Baranowski, Lauryn L.; ...

    2016-08-01

    CuSbS 2 is a promising nontoxic and earth-abundant photovoltaic absorber that is chemically simpler than the widely studied Cu 2ZnSnS 4. However, CuSbS 2 photovoltaic (PV) devices currently have relatively low efficiency and poor reproducibility, often due to suboptimal material quality and insufficient optoelectronic properties. To address these issues, here we develop a thermochemical treatment (TT) for CuSbS 2 thin films, which consists of annealing in Sb 2S 3 vapor followed by a selective KOH surface chemical etch. The annealed CuSbS 2 films show improved structural quality and optoelectronic properties, such as stronger band-edge photoluminescence and longer photoexcited carrier lifetime.more » These improvements also lead to more reproducible CuSbS 2 PV devices, with performance currently limited by a large cliff-type interface band offset with CdS contact. Altogether, these results point to the potential avenues to further increase the performance of CuSbS 2 thin film solar cell, and the findings can be transferred to other thin film photovoltaic technologies.« less

  9. Epitaxial ternary nitride thin films prepared by a chemical solution method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Hongmei; Feldmann, David M; Wang, Haiyan

    2008-01-01

    It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN2 films. Epitaxial tetragonal SrTiN2 films have been successfully prepared by a chemical solution approach, polymer-assisted deposition. The structural, electrical, and optical properties of the films are also investigated.

  10. Internal stress-assisted epitaxial lift-off process for flexible thin film (In)GaAs solar cells on metal foil

    NASA Astrophysics Data System (ADS)

    Kim, Youngjo; Kim, Kangho; Jung, Sang Hyun; Kim, Chang Zoo; Shin, Hyun-Beom; Choi, JeHyuk; Kang, Ho Kwan

    2017-12-01

    Flexible thin film (In)GaAs solar cells are grown by metalorganic chemical vapor deposition on GaAs substrates and transferred to 30 μm thick Au foil by internal stress-assisted epitaxial lift-off processes. The internal stress is induced by replacing the solar cell epi-layers from GaAs to In0.015Ga0.985As, which has a slightly larger lattice constant. The compressive strained layer thickness was varied from 0 to 4.5 μm to investigate the influence of the internal stress on the epitaxial lift-off time. The etching time in the epitaxial lift-off process was reduced from 36 to 4 h by employing a GaAs/In0.015Ga0.985As heterojunction structure that has a compressive film stress of -59.0 MPa. We found that the partially strained epi-structure contributed to the much faster lateral etching rate with spontaneous bending. Although an efficiency degradation problem occurred in the strained solar cell, it was solved by optimizing the epitaxial growth conditions.

  11. Defect analysis and detection of micro nano structured optical thin film

    NASA Astrophysics Data System (ADS)

    Xu, Chang; Shi, Nuo; Zhou, Lang; Shi, Qinfeng; Yang, Yang; Li, Zhuo

    2017-10-01

    This paper focuses on developing an automated method for detecting defects on our wavelength conversion thin film. We analyzes the operating principle of our wavelength conversion Micro/Nano thin film which absorbing visible light and emitting infrared radiation, indicates the relationship between the pixel's pattern and the radiation of the thin film, and issues the principle of defining blind pixels and their categories due to the calculated and experimental results. An effective method is issued for the automated detection based on wavelet transform and template matching. The results reveal that this method has desired accuracy and processing speed.

  12. Whey protein film with oxygen scavenging function by incorporation of ascorbic acid.

    PubMed

    Janjarasskul, Theeranun; Tananuwong, Kanitha; Krochta, John M

    2011-01-01

    Residual O(2) in a package headspace can be removed by an O(2)-absorbing sachet, which can be harmful if swallowed by the consumer, or by a chemically-active plastic packaging film, which is difficult to recycle. An edible, O(2)-absorbing film would avoid these disadvantages. The objective of our research was to assess the O(2)-scavenging potential of an edible whey protein isolate (WPI) film incorporating ascorbic acid (AA). AA at 0.05, 0.1, or 0.2 M was added to 5% (w/w) heat-denatured WPI film-forming solutions with WPI : glycerol (Gly) ratio of 1: 1.00, 1: 0.80, or 1: 0.67. The pH of solutions was then adjusted to 3.5 (below pK(a1) of AA), to stabilize AA against oxidation, before film casting. The mechanical properties, O(2) permeabilities, and thermal transitions of films were measured. Activation of the O(2)-scavenging function of the AA-incorporated films was accomplished by adjustment of the films to pH ≥ 7. O(2)-scavenging ability of AA-incorporated WPI films was determined by measuring residual O(2) in the headspace of a high-barrier container. Incorporation of AA into WPI film decreased film tensile strength and further reduced O(2) permeability at each WPI : Gly ratio. AA-containing films adjusted to pH ≥ 7 demonstrated O(2) absorption proportional to AA content, consistent with theoretical O(2)-scavenging capacity. Thermal transition measurements indicated that AA was involved in WPI structural modification and decreased the degradation temperature of WPI-based film. The demonstrated O(2)-scavenging function, improved O(2) barrier and acceptable mechanical properties of AA-incorporated films indicate potential commercial usefulness. Ascorbic acid-incorporated whey protein film with oxygen scavenging function can be used to extend shelf lives of a wide variety of oxygen-sensitive products by eliminating headspace oxygen as well as oxygen permeating through the packaging wall over time. Edible oxygen-scavenger film has the advantages of avoiding

  13. Frictional behavior and adhesion of Ag and Au films applied to aluminum oxide by oxygen-ion assisted Screen Cage Ion Plating (SCIP)

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis; Sliney, Harold E.

    1994-01-01

    A modified dc-diode ion plating system, by utilizing a metallic screen cage as a cathode, is introduced for coating nonconductors such as ceramics. Screen cage ion plating (SCIP) is used to apply Ag and Au lubricating films on aluminum oxide surfaces. This process has excellent ability to coat around corners to produce three-dimensional coverage of the substrate. A dramatic increase in adhesion is achieved when plating is performed in a reactive 50 percent O2 - 50 percent Ar glow discharge compared to the adhesion when plating is performed in 100 percent Ar. The presence of oxygen ion assistance contributes to the excellent adhesion as measured in a pull-type adhesion tester. The Ag and Au film adhesion is significantly increased (less than 70MPa) and generally exceeds the cohesion of the substrate such that portions of the alumina are pulled out.

  14. Effect of sodium dodecylbenzene sulfonate on subtilisin Carlsberg proteolysis of an immobilized ovalbumin film.

    PubMed

    Foose, Ladan L; Blanch, Harvey W; Radke, C J

    2009-03-01

    Enzymatic degradation of immobilized ovalbumin multilayer films by subtilisin Carlsberg was investigated using in situ ellipsometry. Changes in the substrate cleavage rate in the presence of an anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), were assessed. Exposure of the protein film to SDBS prior to introduction of the enzyme increased the measured proteolysis rate threefold. Surfactant increased the measured film thickness, absorbing into the protein film and causing swelling. Surfactant-induced film swelling was reversible upon aqueous rinsing. Nevertheless, exposure of enzyme to the surfactant-rinsed film increased the proteolysis rate, most likely due to irreversible conformational changes induced in the substrate film by the surfactant. Simultaneous addition of SDBS with enzyme after the initial surfactant exposure did not produce additional protein-removal benefit.

  15. Counterflow absorber for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    An air-cooled, vertical tube absorber for an absorption refrigeration system is disclosed. Strong absorbent solution is supplied to the top of the absorber and refrigerant vapor is supplied to the bottom of the absorber to create a direct counterflow of refrigerant vapor and absorbent solution in the absorber. The refrigeration system is designed so that the volume flow rate of refrigerant vapor in the tubes of the absorber is sufficient to create a substantially direct counterflow along the entire length of each tube in the absorber. This provides several advantages for the absorber such as higher efficiency and improved heat transfer characteristics, and allows improved purging of non-condensibles from the absorber.

  16. An educational intervention to change planned behavior concerning midwife-assisted out-of-hospital childbirth.

    PubMed

    Hans, Jason D; Kimberly, Claire

    2011-01-01

    'The Business of Being Born' is a documentary film that reviews the history, economics, and culture of birth in the United States, with an emphasis on viewing low-risk birth as a natural and reasonably safe experience that does not require medical intervention. A nonequivalent control group design with 468 American university students was used to examine the potential of 'The Business of Being Born' for changing attitudes toward, and planned behavior concerning, midwife-assisted out-of-hospital childbirth. Viewing the film had a large positive effect on planned behavior concerning midwife-assisted out-of-hospital childbirth. Rationales for planned behaviors indicated that trust and safety concerns accounted for the appeal of physician-assisted hospital childbirth over midwife-assisted out-of-hospital childbirth, but that viewing the film substantially tempered these concerns vis-à-vis midwife-assisted out-of-hospital childbirth among a large portion of participants. The results indicate that 'The Business of Being Born' can increase awareness of and support for the midwifery profession, and that these changes may result in increased demand for midwifery services. However, proactive efforts must be taken to ensure that the film reaches its target audience. © 2011 by the American College of Nurse-Midwives.

  17. Thin film solar cells: research in an industrial perspective.

    PubMed

    Edoff, Marika

    2012-01-01

    Electricity generation by photovoltaic conversion of sunlight is a technology in strong growth. The thin film technology is taking market share from the dominant silicon wafer technology. In this article, the market for photovoltaics is reviewed, the concept of photovoltaic solar energy conversion is discussed and more details are given about the present technological limitations of thin film solar cell technology. Special emphasis is given for solar cells which employ Cu(In,Ga)Se(2) and Cu(2)ZnSn(S,Se)(4) as the sunlight-absorbing layer.

  18. Electrochemical preparation of poly(methylene blue)/graphene nanocomposite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erçarıkcı, Elif; Dağcı, Kader; Topçu, Ezgi

    2014-07-01

    Highlights: • Poly(MB)/graphene thin films are prepared by a simple electrochemical approach. • Graphene layers in the film show a broad band in visible region of absorbance spectra. • Morphology of composite films indicates both disordered and ordered regions. • XRD reveals that nanocomposite films include rGO layers after electropolymerization process. • Chemically prepared graphene is better than electrochemically prepared graphene for electrooxidation of nitrite. - Abstract: Poly(methylene blue)/graphene nanocomposite thin films were prepared by electropolymerization of methylene blue in the presence of graphene which have been synthesized by two different methods of a chemical oxidation process and an electrochemicalmore » approach. Synthesized nanocomposite thin films were characterized by using cyclic voltammetry, UV–vis. absorption spectroscopy, powder X-ray diffraction, and scanning tunneling microscopy techniques. Electrocatalytical properties of prepared poly(methylene blue)/graphene nanocomposite films were compared toward electrochemical oxidation of nitrite. Under optimized conditions, electrocatalytical effect of nanocomposite films of chemically prepared graphene through electrochemical oxidation of nitrite was better than that of electrochemically prepared graphene.« less

  19. Graphene doped ZnO films for photoelectrowetting on microchannels

    NASA Astrophysics Data System (ADS)

    Al-Aribe, Khaled; Knopf, George K.

    2017-02-01

    Photoelectrowetting on dielectric surfaces can be used to drive droplets of liquid along reconfigurable paths on a microfluidic chip using controlled optical signals. These electrostatically activated surfaces along the desired path eliminate the need for precision molded channels and discrete functional components such as microvalves and micropumps. The photoelectrowetting effect exploits the surface tension of the droplet to maintain its volume during the transportation pathway and the photoelectric properties of the substrate surface are used to induce reversible fluidic flow. The active light-driven substrate is structured from graphene doped zinc-oxide (ZnO-G) films deposited on ITO coated glass. This substrate is coated from the ZnO-G side with Ruthenium-based dye (N719) to maximize its absorbability. The light triggers two forces that enable the droplet to be transported along the substrate. The first arises from the induced hydrophobicity gradient formed across the droplet contact area with the substrate surface. Exposing the ZnO-G film to a broad spectrum white light source alters the surface's electric potential which induces a change in the droplet's contact angle and the associated hydrophobicity. Once the hydrophobicity gradient is generated the droplet will start to move in the direction of the wetting zone. The second force is also created by the optical input when the absorbed light generates a photoelectric potential that produces a piezo-electrical effect on the ZnO-G film. The light triggered piezo-electrical behavior of the ZnO-G film can be used to generate the erasable microchannels that can guide droplet movement through a microfluidic chip. Preliminary experiments are performed to investigate the photoelectric potential of light activated ZnO-G films.

  20. How Does a SILAR CdSe Film Grow? Tuning the Deposition Steps to Suppress Interfacial Charge Recombination in Solar Cells.

    PubMed

    Becker, Matthew A; Radich, James G; Bunker, Bruce A; Kamat, Prashant V

    2014-05-01

    Successive ionic layer adsorption and reaction (SILAR) is a popular method of depositing the metal chalcogenide semiconductor layer on the mesoscopic metal oxide films for designing quantum-dot-sensitized solar cells (QDSSCs) or extremely thin absorber (ETA) solar cells. While this deposition method exhibits higher loading of the light-absorbing semiconductor layer than direct adsorption of presynthesized colloidal quantum dots, the chemical identity of these nanostructures and the evolution of interfacial structure are poorly understood. We have now analyzed step-by-step SILAR deposition of CdSe films on mesoscopic TiO2 nanoparticle films using X-ray absorption near-edge structure analysis and probed the interfacial structure of these films. The film characteristics interestingly show dependence on the order in which the Cd and Se are deposited, and the CdSe-TiO2 interface is affected only during the first few cycles of deposition. Development of a SeO2 passivation layer in the SILAR-prepared films to form a TiO2/SeO2/CdSe junction facilitates an increase in photocurrents and power conversion efficiencies of quantum dot solar cells when these films are integrated as photoanodes in a photoelectrochemical solar cell.

  1. Self-Regulating Shock Absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J.

    1995-01-01

    Mechanical shock absorber keeps frictional damping force within tolerable limit. Its damping force does not increase with coefficient of friction between energy-absorbing components; rather, frictional damping force varies only slightly. Relatively insensitive to manufacturing variations and environmental conditions altering friction. Does not exhibit high breakaway friction and consequent sharp increase followed by sharp decrease in damping force at beginning of stroking. Damping force in absorber does not vary appreciably with speed of stroking. In addition, not vulnerable to leakage of hydraulic fluid.

  2. Plasma-assisted physical vapor deposition surface treatments for tribological control

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1990-01-01

    In any mechanical or engineering system where contacting surfaces are in relative motion, adhesion, wear, and friction affect reliability and performance. With the advancement of space age transportation systems, the tribological requirements have dramatically increased. This is due to the optimized design, precision tolerance requirements, and high reliability expected for solid lubricating films in order to withstand hostile operating conditions (vacuum, high-low temperatures, high loads, and space radiation). For these problem areas the ion-assisted deposition/modification processes (plasma-based and ion beam techniques) offer the greatest potential for the synthesis of thin films and the tailoring of adherence and chemical and structural properties for optimized tribological performance. The present practices and new approaches of applying soft solid lubricant and hard wear resistant films to engineering substrates are reviewed. The ion bombardment treatments have increased film adherence, lowered friction coefficients, and enhanced wear life of the solid lubricating films such as the dichalcogenides (MoS2) and the soft metals (Au, Ag, Pb). Currently, sputtering is the preferred method of applying MoS2 films; and ion plating, the soft metallic films. Ultralow friction coefficients (less than 0.01) were achieved with sputtered MoS2. Further, new diamond-like carbon and BN lubricating films are being developed by using the ion assisted deposition techniques.

  3. Demonstration of surface plasmons in metal island films and the effect of the surrounding medium--An undergraduate experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orfanides, P.; Buckner, T. F.; Buncick, M. C.

    2000-10-01

    We present a demonstration of the surface plasmon phenomenon as it occurs in thin metal island films. The metal films are deposited on glass microscope slides. The effect of the surface plasmon resonance may be observed visually on the slide without further apparatus. Heating the film changes the shape of the islands and therefore the resonant frequency of the surface plasmon and changes the color of the film. Placing the film in a dielectric medium changes the resonance condition for the surface plasmon again and changes the color again. We show this by coating the slides with commercially available liquidsmore » with different indices of refraction. We present a theoretical model that assumes the islands are oblate spheroids. There are enough details given so that the equations can be programed and the theoretical optical absorbance can be reproduced. We also present a modification to the theory so that the shift in resonant frequency can be calculated when the spheroids are immersed in the index fluids. We describe our apparatus for making thin films and our optical spectrometer system. We then present optical absorbance measurements of thin films of both Ag and Au in air and in two liquids with different indices of refraction. (c) 2000 American Association of Physics Teachers.« less

  4. Emitter/absorber interface of CdTe solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Tao; Kanevce, Ana; Sites, James R.

    The performance of CdTe solar cells can be very sensitive to their emitter/absorber interfaces, especially for high-efficiency cells with improved bulk properties. When interface defect states are located at efficient recombination energies, performance losses from acceptor-type interface defects can be significant. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e. defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV /= 0.4 eV), however, can impede electron transport and leadmore » to a reduction of photocurrent and fill-factor. In contrast to the spike, a 'cliff' (.delta..EC < 0 eV) is likely to allow many holes in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. In addition, a thin and highly-doped emitter can invert the absorber, form a large hole barrier, and decrease device performance losses due to high interface defect density. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. Other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ..delta..EC. These materials are predicted to yield higher voltages and would therefore be better candidates for the CdTe-cell emitter.« less

  5. Mechanical energy absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J. (Inventor)

    1993-01-01

    An energy absorbing system for controlling the force where a moving object engages a stationary stop and where the system utilized telescopic tubular members, energy absorbing diaphragm elements, force regulating disc springs, and a return spring to return the telescoping member to its start position after stroking is presented. The energy absorbing system has frusto-conical diaphragm elements frictionally engaging the shaft and are opposed by a force regulating set of disc springs. In principle, this force feedback mechanism serves to keep the stroking load at a reasonable level even if the friction coefficient increases greatly. This force feedback device also serves to desensitize the singular and combined effects of manufacturing tolerances, sliding surface wear, temperature changes, dynamic effects, and lubricity.

  6. Chemical precursor impact on the properties of Cu{sub 2}ZnSnS{sub 4} absorber layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vashistha, Indu B., E-mail: indu-139@yahoo.com; Sharma, S. K.; Sharma, Mahesh C.

    2016-04-13

    In present work impact of different chemical precursor on the deposition of solar absorber layer Cu{sub 2}ZnSnS{sub 4} (CZTS) were studied by Chemical Bath Deposition (CBD) method without using expensive vacuum facilities and followed by annealing. As compared to the other deposition methods, CBD method is interesting one because it is simple, reproducible, non-hazardous, cost effective and well suited for producing large-area thin films at low temperatures, although effect of precursors and concentration plays a vital role in the deposition. So, the central theme of this work is optimizing and controlling of chemical reactions for different chemical precursors. Further Effectmore » of different chemical precursors i.e. sulphate and chloride is analyzed by structural, morphological, optical and electrical properties. The X-ray diffraction (XRD) of annealed CZTS thin film revealed that films were polycrystalline in nature with kestarite tetragonal crystal structure. The Atomic Force micrographs (AFM) images indicated total coverage compact film and as well as growth of crystals. The band gap of annealed CZTS films was found in the range of optimal band gap by absorption spectroscopy.« less

  7. Unspoken Content: Silent Film in the ESL Classroom.

    ERIC Educational Resources Information Center

    Kasper, Loretta F.; Singer, Robert

    2001-01-01

    Describes how one short silent film, "The Painted Lady," may be used to build language and content knowledge in English-as-a-second-language (ESL) courses. Provides a representative list of titles and corresponding content areas to assist instructors in their efforts to incorporate silent film into ESL courses. (SG)

  8. Optimization of sound absorbing performance for gradient multi-layer-assembled sintered fibrous absorbers

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhang, Weiyong; Zhu, Jian

    2012-04-01

    The transfer matrix method, based on plane wave theory, of multi-layer equivalent fluid is employed to evaluate the sound absorbing properties of two-layer-assembled and three-layer-assembled sintered fibrous sheets (generally regarded as a kind of compound absorber or structures). Two objective functions which are more suitable for the optimization of sound absorption properties of multi-layer absorbers within the wider frequency ranges are developed and the optimized results of using two objective functions are also compared with each other. It is found that using the two objective functions, especially the second one, may be more helpful to exert the sound absorbing properties of absorbers at lower frequencies to the best of their abilities. Then the calculation and optimization of sound absorption properties of multi-layer-assembled structures are performed by developing a simulated annealing genetic arithmetic program and using above-mentioned objective functions. Finally, based on the optimization in this work the thoughts of the gradient design over the acoustic parameters- the porosity, the tortuosity, the viscous and thermal characteristic lengths and the thickness of each samples- of porous metals are put forth and thereby some useful design criteria upon the acoustic parameters of each layer of porous fibrous metals are given while applying the multi-layer-assembled compound absorbers in noise control engineering.

  9. Photopatternable sorbent and functionalized films

    DOEpatents

    Grate, Jay W [West Richland, WA; Nelson, David A [Richland, WA

    2006-01-31

    A composition containing a polymer, a crosslinker and a photo-activatable catalyst is placed on a substrate. The composition is exposed to a predetermined pattern of light, leaving an unexposed region. The light causes the polymer to become crosslinked by hydrosilylation. A solvent is used to remove the unexposed composition from the substrate, leaving the exposed pattern to become a sorbent polymer film that will absorb a predetermined chemical species when exposed to such chemical species.

  10. A Two-Step Absorber Deposition Approach To Overcome Shunt Losses in Thin-Film Solar Cells: Using Tin Sulfide as a Proof-of-Concept Material System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinmann, Vera; Chakraborty, Rupak; Rekemeyer, Paul H.

    2016-08-31

    As novel absorber materials are developed and screened for their photovoltaic (PV) properties, the challenge remains to reproducibly test promising candidates for high-performing PV devices. Many early-stage devices are prone to device shunting due to pinholes in the absorber layer, producing 'false-negative' results. Here, we demonstrate a device engineering solution toward a robust device architecture, using a two-step absorber deposition approach. We use tin sulfide (SnS) as a test absorber material. The SnS bulk is processed at high temperature (400 degrees C) to stimulate grain growth, followed by a much thinner, low-temperature (200 degrees C) absorber deposition. At a lowermore » process temperature, the thin absorber overlayer contains significantly smaller, densely packed grains, which are likely to provide a continuous coating and fill pinholes in the underlying absorber bulk. We compare this two-step approach to the more standard approach of using a semi-insulating buffer layer directly on top of the annealed absorber bulk, and we demonstrate a more than 3.5x superior shunt resistance Rsh with smaller standard error ..sigma..Rsh. Electron-beam-induced current (EBIC) measurements indicate a lower density of pinholes in the SnS absorber bulk when using the two-step absorber deposition approach. We correlate those findings to improvements in the device performance and device performance reproducibility.« less

  11. Local Magnetoelectric Effect in La-Doped BiFeO3 Multiferroic Thin Films Revealed by Magnetic-Field-Assisted Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Pan, Dan-Feng; Zhou, Ming-Xiu; Lu, Zeng-Xing; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-06-01

    Multiferroic La-doped BiFeO3 thin films have been prepared by a sol-gel plus spin-coating process, and the local magnetoelectric coupling effect has been investigated by the magnetic-field-assisted scanning probe microscopy connected with a ferroelectric analyzer. The local ferroelectric polarization response to external magnetic fields is observed and a so-called optimized magnetic field of ~40 Oe is obtained, at which the ferroelectric polarization reaches the maximum. Moreover, we carry out the magnetic-field-dependent surface conductivity measurements and illustrate the origin of local magnetoresistance in the La-doped BiFeO3 thin films, which is closely related to the local ferroelectric polarization response to external magnetic fields. This work not only provides a useful technique to characterize the local magnetoelectric coupling for a wide range of multiferroic materials but also is significant for deeply understanding the local multiferroic behaviors in the BiFeO3-based systems.

  12. Conduction band position tuning and Ga-doping in (Cd,Zn)S alloy thin films

    DOE PAGES

    Baranowski, Lauryn L.; Christensen, Steven; Welch, Adam W.; ...

    2017-02-13

    In recent years, the number of novel photovoltaic absorber materials under exploration has rapidly increased. However, to reap the most benefit from these new absorbers, alternative device structures and components must also be considered. In particular, the choice of a heterojunction partner, or contact layer, is critical to device optimization. In this work, we explore alternative n-type contact layer candidates that could be widely applicable to a variety of new absorbers. We use theory to calculate the band edge tuning provided by a variety of II-VI alloy systems, and select the (Cd,Zn)S system as one that affords a wide rangemore » of conduction band tuning. The synthesis of (Cd,Zn)S alloys is explored using atomic layer deposition, which afforded precise compositional control and produced crystalline thin films. The predicted tuning of the band gap and conduction band minimum is confirmed through X-ray photoelectron spectroscopy and optical absorption measurements. In addition, we investigated Ga-doping in Cd 0.6Zn 0.4S films to decrease their series resistance when used as contact layers in photovoltaic devices. In conclusion, this study provides a framework for exploring and optimizing alternative contact layer materials, which will prove critical to the success of new PV absorbers.« less

  13. Atmospheric Pressure Spray Chemical Vapor Deposited CuInS2 Thin Films for Photovoltaic Applications

    NASA Technical Reports Server (NTRS)

    Harris, J. D.; Raffaelle, R. P.; Banger, K. K.; Smith, M. A.; Scheiman, D. A.; Hepp, A. F.

    2002-01-01

    Solar cells have been prepared using atmospheric pressure spray chemical vapor deposited CuInS2 absorbers. The CuInS2 films were deposited at 390 C using the single source precursor (PPh3)2CuIn(SEt)4 in an argon atmosphere. The absorber ranges in thickness from 0.75 - 1.0 micrometers, and exhibits a crystallographic gradient, with the leading edge having a (220) preferred orientation and the trailing edge having a (112) orientation. Schottky diodes prepared by thermal evaporation of aluminum contacts on to the CuInS2 yielded diodes for films that were annealed at 600 C. Solar cells were prepared using annealed films and had the (top down) composition of Al/ZnO/CdS/CuInS2/Mo/Glass. The Jsc, Voc, FF and (eta) were 6.46 mA per square centimeter, 307 mV, 24% and 0.35%, respectively for the best small area cells under simulated AM0 illumination.

  14. Assessing the role of hydrogen in Fermi-level pinning in chalcopyrite and kesterite solar absorbers from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Varley, J. B.; Lordi, V.; Ogitsu, T.; Deangelis, A.; Horsley, K.; Gaillard, N.

    2018-04-01

    Understanding the impact of impurities in solar absorbers is critical to engineering high-performance in devices, particularly over extended periods of time. Here, we use hybrid functional calculations to explore the role of hydrogen interstitial (Hi) defects in the electronic properties of a number of attractive solar absorbers within the chalcopyrite and kesterite families to identify how this common impurity may influence device performance. Our results identify that Hi can inhibit the highly p-type conditions desirable for several higher-band gap absorbers and that H incorporation could detrimentally affect the open-circuit voltage (Voc) and limit device efficiencies. Additionally, we find that Hi can drive the Fermi level away from the valence band edge enough to lead to n-type conductivity in a number of chalcopyrite and kesterite absorbers, particularly those containing Ag rather than Cu. We find that these effects can lead to interfacial Fermi-level pinning that can qualitatively explain the observed performance in high-Ga content CIGSe solar cells that exhibit saturation in the Voc with increasing band gap. Our results suggest that compositional grading rather than bulk alloying, such as by creating In-rich surfaces, may be a better strategy to favorably engineering improved thin-film photovoltaics with larger-band gap absorbers.

  15. Foam flow and liquid films motion: role of the surfactants properties

    NASA Astrophysics Data System (ADS)

    Cantat, Isabelle

    2011-11-01

    Liquid foams absorb energy in a much more efficient way than each of its constituents, taken separately. However, the local process at the origin of the energy dissipation is not entirely elucidated yet, and several models may apply, thus making worth local studies on simpler systems. We investigate the motion through a wet tube of transverse soap films, or lamellae, combining local thickness and velocity measurements in the wetting film. For foaming solution with a high dilatational surface modulus, we reveal a zone of several centimeters in length, the dynamic wetting film, which is significantly influenced by a moving lamella. The dependence of this influence length on lamella velocity and wetting film thickness provides an accurate discrimination among several possible surfactants models. In collaboration with B. Dollet.

  16. Sound Absorbers

    NASA Astrophysics Data System (ADS)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  17. Effect of plasticizer on moisture sorption isotherm of sugar palm (Arenga Pinnata) starch film

    NASA Astrophysics Data System (ADS)

    Jatmiko, Tri Hadi; Poeloengasih, Crescentiana D.; Prasetyo, Dwi Joko; Rosyida, Vita Taufika

    2016-02-01

    The effect of plasticizer type (glycerol, sorbitol) and plasticizer concentrations (30, 35, 40, 45% w/w polymer) on the moisture sorption isotherm characteristics of sugar palm (Arenga pinnata) starch films were investigated. Moisture affinity of sugar palm starch films was influenced by the plasticizer type and plasticizer concentration. The affinity of the glycerol plasticized film is stronger than that of sorbitol plasticized film. Sugar palm starch film with a higher concentration of glycerol absorbs more moisture with higher initial absorption rate than that of with sorbitol. Films with higher plasticizer concentration of glycerol and sorbitol show higher equilibrium moisture contents at the given relative humidity. The moisture sorption isotherm characteristic of sugar palm starch films can be described very well with the semi empirical 4 parameter Peleg's model.

  18. Single Source Precursors for Thin Film Solar Cells

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Hollingsworth, Jennifer A.; Harris, Jerry D.; Cowen, Jonathan; Buhro, William E.; Hepp, Aloysius F.

    2002-01-01

    The development of thin film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. At NASA GRC we have focused on the development of new single source precursors (SSP) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD (chemical vapor deposition) process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV (photovoltaic) devices.

  19. Vapour phase techniques for deposition of CZTS thin films: A review

    NASA Astrophysics Data System (ADS)

    Kaur, Ramanpreet; Kumar, Sandeep; Singh, Sukhpal

    2018-05-01

    With the surge of thin film photovoltaic technologies in recent years, for cost reduction and increased production there is a need for earth abundant and non-toxic raw materials. Existing thin film solar cells comprising CuInS2 (CIS), CuInGaSe2 (CIGS) and CdTe contain elements that are rare in earth's crust and in case of CdTe toxic. Cu2ZnSnS4 (CZTS), having Kesterite structure, a direct band gap of 1.4 - 1.5 eV and an absorption coefficient of 104 cm-1 makes a promising candidate for absorber layer in thin film solar cells. So far many physical and chemical techniques have been employed for deposition of CZTS thin films. This review focuses on various vapour phase techniques used for fabrication of films, recent advances in these techniques and their future outlook.

  20. Layer-by-Layer Assembled Films of Perylene Diimide- and Squaraine-Containing Metal-Organic Frameworks- like Materials: Solar Energy Capture and Directional Energy Transfer

    DOE PAGES

    Park, Hea Jung; So, Monica C.; Gosztola, David J.

    2016-09-28

    We demonstrate that thin films of metal organic framework (MOF)-like materials, containing two perylenedlimides (PDICl4, PDIOPh2) and a squaraine dye (S1); can be fabricated by, layer-by-layer assembly (LbL). Interestingly, these LbL films absorb across the visible light region (400-750 nm) and facilitate directional energy transfer. Due to the high spectral overlap and oriented transition dipole moments of the donor (PDICl4 and PDIOPh2) and acceptor (S1) components, directional long-range energy transfer from the bluest to reddest absorber was successfully demonstrated in the multicomponent MOF-like films. These findings have significant implications for the development of solar energy conversion devices based on MOFs.