Sample records for absorbing galaxies imaging

  1. Properties of CGM-Absorbing Galaxies

    NASA Astrophysics Data System (ADS)

    Hamill, Colin; Conway, Matthew; Apala, Elizabeth; Scott, Jennifer

    2018-01-01

    We extend the results of a study of the sightlines of 45 low-redshift quasars (0.06 < z < 0.85) observed by HST/COS that lie within the Sloan Digital Sky Survey. We have used photometric data from the SDSS DR12, along with the known absorption characteristics of the intergalactic medium and circumgalactic medium, to identify the most probable galaxy matches to absorbers in the spectroscopic dataset. Here, we use photometric data and measured galaxy parameters from SDSS DR12 to examine the distributions of galaxy properties such as virial radius, morphology, and position angle among those that match to absorbers within a specific range of impact parameters. We compare those distributions to galaxies within the same impact parameter range that are not matched to any absorber in the HST/COS spectrum in order to investigate global properties of the circumgalactic medium.

  2. Modeling MgII Absorbers from SDSS Spectroscopic and Imaging Catalogs

    NASA Astrophysics Data System (ADS)

    Rimoldini, L. G.; Menard, B.; Nestor, D. B.; Rao, S. M.; Sheth, R. K.; Turnshek, D. A.; Zibetti, S.; Feather, S.; Quider, A.

    2005-12-01

    The detection of more than 14,000 MgII absorption doublets along the sight-lines to SDSS DR4 QSOs (pursued by Turnshek, Nestor, Rao, and collaborators) has produced the largest sample of MgII absorbers to date in the redshift interval 0.37 < z < 2.30. The statistical relation between galaxies and MgII systems is investigated by cross-correlating the spectroscopic MgII catalog with the SDSS imaging catalog of galaxies in the neighborhood of QSO sight-lines. A model for MgII absorbers is derived to account for the measured MgII rest equivalent width distribution and the absorbing galaxy properties (e.g., luminosity, impact parameter, and morphological type). Some preliminary results of our analysis are presented. This work was supported in part by the National Science Foundation. L.G.R. acknowledges further support from the Z. Daniel's Predoctoral Fellowship.

  3. Large-scale correlations in gas traced by Mg II absorbers around low-mass galaxies

    NASA Astrophysics Data System (ADS)

    Kauffmann, Guinevere

    2018-03-01

    The physical origin of the large-scale conformity in the colours and specific star formation rates of isolated low-mass central galaxies and their neighbours on scales in excess of 1 Mpc is still under debate. One possible scenario is that gas is heated over large scales by feedback from active galactic nuclei (AGNs), leading to coherent modulation of cooling and star formation between well-separated galaxies. In this Letter, the metal line absorption catalogue of Zhu & Ménard is used to probe gas out to large projected radii around a sample of a million galaxies with stellar masses ˜1010M⊙ and photometric redshifts in the range 0.4 < z < 0.8 selected from Sloan Digital Sky Survey imaging data. This galaxy sample covers an effective volume of 2.2 Gpc3. A statistically significant excess of Mg II absorbers is present around the red-low-mass galaxies compared to their blue counterparts out to projected radii of 10 Mpc. In addition, the equivalent width distribution function of Mg II absorbers around low-mass galaxies is shown to be strongly affected by the presence of a nearby (Rp < 2 Mpc) radio-loud AGNs out to projected radii of 5 Mpc.

  4. Mg II-Absorbing Galaxies in the UltraVISTA Survey

    NASA Astrophysics Data System (ADS)

    Stroupe, Darren; Lundgren, Britt

    2018-01-01

    Light that is emitted from distant quasars can become partially absorbed by intervening gaseous structures, including galaxies, in its path toward Earth, revealing information about the chemical content, degree of ionization, organization and evolution of these structures through time. In this project, quasar spectra are used to probe the halos of foreground galaxies at a mean redshift of z=1.1 in the COSMOS Field. Mg II absorption lines in Sloan Digital Sky Survey quasar spectra are paired with galaxies in the UltraVISTA catalog at an impact parameter less than 200 kpc. A sample of 77 strong Mg II absorbers with a rest-frame equivalent width ≥ 0.3 Å and redshift from 0.34 < z < 2.21 are investigated to find equivalent width ratios of Mg II, C IV and Fe II absorption lines, and their relation to the impact parameter and the star formation rates, stellar masses, environments and redshifts of their host galaxies.

  5. Discovery of a Dwarf Poststarburst Galaxy near a High Column Density Local Lyα Absorber

    NASA Astrophysics Data System (ADS)

    Stocke, John T.; Keeney, Brian A.; McLin, Kevin M.; Rosenberg, Jessica L.; Weymann, R. J.; Giroux, Mark L.

    2004-07-01

    We report the discovery of a dwarf (MB=-13.9) poststarburst galaxy coincident in recession velocity (within uncertainties) with the highest column density absorber (NHI=1015.85 cm-2 at cz=1586 km s- 1) in the 3C 273 sight line. This galaxy is by far the closest galaxy to this absorber, projected just 71h-170 kpc on the sky from the sight line. The mean properties of the stellar populations in this galaxy are consistent with a massive starburst ~3.5 Gyr ago, whose attendant supernovae, we argue, could have driven sufficient gas from this galaxy to explain the nearby absorber. Beyond its proximity on the sky and in recession velocity, the further evidence in favor of this conclusion includes both a match in the metallicities of absorber and galaxy and the fact that the absorber has an overabundance of Si/C, suggesting recent Type II supernova enrichment. Thus, this galaxy and its ejecta are in the expected intermediate stage in the fading dwarf evolutionary sequence envisioned by Babul & Rees to explain the abundance of faint blue galaxies at intermediate redshifts. While this one instance of a QSO metal-line absorber and a nearby dwarf galaxy is not proof of a trend, a similar dwarf galaxy would be too faint to be observed by galaxy surveys around more distant metal-line absorbers. Thus, we cannot exclude the possibility that dwarf galaxies are primarily responsible for weak (NHI=1014-1017 cm-2) metal-line absorption systems in general. If a large fraction of the dwarf galaxies expected to exist at high redshift had a similar history (i.e., they had a massive starburst that removed all or most of their gas), these galaxies could account for at least several hundred high-z metal-line absorbers along the line of sight to a high-z QSO. The volume-filling factor for this gas, however, would be less than 1%. ID="FN1"> 1Based on observations made with the Apache Point 3.5 m telescope, operated by the Astronomical Research Consortium, and the 2.6 m du Pont telescope of the

  6. Low Ionization Absorbing Gas Kinematics Around Z ~ 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Churchill, C. W.; Steidel, C. C.; Vogt, S. S.

    1996-12-01

    Absorption profiles of the Mg II lambda lambda 2796,2803 doublet arising from gas associated with 48 ``normal'' intermediate redshift (0.4 < z < 1.7) galaxies have been resolved in QSO spectra at 6 km s(-1) resolution using HIRES on Keck I. We have found evidence for pronounced redshift evolution in the subcomponent velocity two--point correlation function, suggestive that the gas surrounding galaxies has settled over a 5--10 Gyr look--back time. Based upon a sub--sample of 15 galaxies at z<1, we found no evidence for correlations between the absorbing gas kinematics and the projected galactocentric distance of the gas, galaxy luminosities, or galaxy rest--frame colors (though trends between galaxy properties and absorption properties are apparent from a larger low resolution absorption line sample). The implication is that low ionization gas surrounding early epoch galaxies was not smoothly distributed either spatially or kinematically out to a galactocentric distance ~ 40 kpc. Directly from the profiles, we have measured the number of separate absorbing ``kinematic subsystems'' associated with each galaxy, and each subsystem's profile velocity width, asymmetry (skew), and integrated column density. The distribution in these subsystem properties with velocity is highly peaked at zero, and does not exhibit a bimodality. The lack of a bimodality is suggestive that the gas kinematics is not dominated by quasi--symmetric infall into galactic potential wells. In view of absorption line studies of local galaxies, it appears that extended regions of low ionization gas surrounding galaxies represent a dynamical and active epoch of ``normal'' galaxy evolution. The reservoirs of gas for these extended ``halos'' were probably residual infalling fragments (from earlier formation processes and on--going dynamical events) whose evolution first included a settling in velocity dispersion and then more recently a decline in number. The build up of thick and/or extended gaseous

  7. Characterising the Circum-Galactic Medium of Damped Lyman-α Absorbing Galaxies

    NASA Astrophysics Data System (ADS)

    Augustin, Ramona; Péroux, Céline; Møller, Palle; Kulkarni, Varsha; Rahmani, Hadi; Milliard, Bruno; Pieri, Matthew; York, Donald G.; Vladilo, Giovanni; Aller, Monique; Zwaan, Martin

    2018-05-01

    Gas flows in and out of galaxies through their circumgalactic medium (CGM) are poorly constrained and direct observations of this faint, diffuse medium remain challenging. We use a sample of five z ˜ 1-2 galaxy counterparts to Damped Lyman-α Absorbers (DLAs) to combine data on cold gas, metals and stellar content of the same galaxies. We present new HST/WFC3 imaging of these fields in 3-5 broadband filters and characterise the stellar properties of the host galaxies. By fitting the spectral energy distribution, we measure their stellar masses to be in the range of log(M*/M⊙) ˜ 9.1-10.7. Combining these with IFU observations, we find a large spread of baryon fractions inside the host galaxies, between 7 and 100 percent. Similarly, we find gas fractions between 3 and 56 percent. Given their star formation rates, these objects lie on the expected main sequence of galaxies. Emission line metallicities indicate they are consistent with the mass-metallicity relation for DLAs. We also report an apparent anti-correlation between the stellar masses and N(H I), which could be due to a dust bias effect or lower column density systems tracing more massive galaxies. We present new ALMA observations of one of the targets leading to a molecular gas mass of log(Mmol/M⊙) < 9.89. We also investigate the morphology of the DLA counterparts and find that most of the galaxies show a clumpy structure and suggest ongoing tidal interaction. Thanks to our high spatial resolution HST data, we gain new insights in the structural complexity of the CGM.

  8. Revealing the Host Galaxy of a Quasar 2175 Å Dust Absorber at z =  2.12

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Brammer, Gabriel; Ge, Jian; Prochaska, J. Xavier; Lundgren, Britt

    2018-04-01

    We report the first detection of the host galaxy of a strong 2175 Å dust absorber at z = 2.12 toward the background quasar SDSS J121143.42+083349.7 using Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3) IR F140W direct imaging and G141 grism spectroscopy. The spectroscopically confirmed host galaxy is located at a small impact parameter of ∼5.5 kpc (∼0.″65). The F140W image reveals a disk-like morphology with an effective radius of 2.24 ± 0.08 kpc. The extracted 1D spectrum is dominated by a continuum with weak emission lines ([O III] and [O II]). The [O III]-based unobscured star formation rate (SFR) is 9.4 ± 2.6 M ⊙ yr‑1, assuming an [O III]/Hα ratio of 1. The moderate 4000 Å break (Dn(4000) index ∼1.3) and Balmer absorption lines indicate that the host galaxy contains an evolved stellar population with an estimated stellar mass M * of (3–7) × 1010 M ⊙. The SFR and M * of the host galaxy are comparable to, though slightly lower than, those of typical emission-selected galaxies at z ∼ 2. As inferred from our absorption analysis in Ma et al., the host galaxy is confirmed to be a chemically enriched, evolved, massive, and star-forming disk-like galaxy that is likely in the transition from a blue star-forming galaxy to a red quiescent galaxy.

  9. Automatic Detection of Galaxy Type From Datasets of Galaxies Image Based on Image Retrieval Approach.

    PubMed

    Abd El Aziz, Mohamed; Selim, I M; Xiong, Shengwu

    2017-06-30

    This paper presents a new approach for the automatic detection of galaxy morphology from datasets based on an image-retrieval approach. Currently, there are several classification methods proposed to detect galaxy types within an image. However, in some situations, the aim is not only to determine the type of galaxy within the queried image, but also to determine the most similar images for query image. Therefore, this paper proposes an image-retrieval method to detect the type of galaxies within an image and return with the most similar image. The proposed method consists of two stages, in the first stage, a set of features is extracted based on shape, color and texture descriptors, then a binary sine cosine algorithm selects the most relevant features. In the second stage, the similarity between the features of the queried galaxy image and the features of other galaxy images is computed. Our experiments were performed using the EFIGI catalogue, which contains about 5000 galaxies images with different types (edge-on spiral, spiral, elliptical and irregular). We demonstrate that our proposed approach has better performance compared with the particle swarm optimization (PSO) and genetic algorithm (GA) methods.

  10. About Galaxy of Images

    Science.gov Websites

    This site has moved! Please go to our new Image Gallery site! dot header About the Image Galaxy are added regularly. Statistics about the Galaxy of Images Frequently Asked Questions Image Use Fees Quick Search! Enter a search term and hit the search button to quickly find an image Go The above "

  11. Automatic morphological classification of galaxy images

    PubMed Central

    Shamir, Lior

    2009-01-01

    We describe an image analysis supervised learning algorithm that can automatically classify galaxy images. The algorithm is first trained using a manually classified images of elliptical, spiral, and edge-on galaxies. A large set of image features is extracted from each image, and the most informative features are selected using Fisher scores. Test images can then be classified using a simple Weighted Nearest Neighbor rule such that the Fisher scores are used as the feature weights. Experimental results show that galaxy images from Galaxy Zoo can be classified automatically to spiral, elliptical and edge-on galaxies with accuracy of ~90% compared to classifications carried out by the author. Full compilable source code of the algorithm is available for free download, and its general-purpose nature makes it suitable for other uses that involve automatic image analysis of celestial objects. PMID:20161594

  12. Featured Image: Identifying Weird Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-08-01

    Hoags Object, an example of a ring galaxy. [NASA/Hubble Heritage Team/Ray A. Lucas (STScI/AURA)]The above image (click for the full view) shows PanSTARRSobservationsof some of the 185 galaxies identified in a recent study as ring galaxies bizarre and rare irregular galaxies that exhibit stars and gas in a ring around a central nucleus. Ring galaxies could be formed in a number of ways; one theory is that some might form in a galaxy collision when a smaller galaxy punches through the center of a larger one, triggering star formation around the center. In a recent study, Ian Timmis and Lior Shamir of Lawrence Technological University in Michigan explore ways that we may be able to identify ring galaxies in the overwhelming number of images expected from large upcoming surveys. They develop a computer analysis method that automatically finds ring galaxy candidates based on their visual appearance, and they test their approach on the 3 million galaxy images from the first PanSTARRS data release. To see more of the remarkable galaxies the authors found and to learn more about their identification method, check out the paper below.CitationIan Timmis and Lior Shamir 2017 ApJS 231 2. doi:10.3847/1538-4365/aa78a3

  13. Infrared images of merging galaxies

    NASA Technical Reports Server (NTRS)

    Wright, G. S.; James, P. A.; Joseph, R. D.; Mclean, I. S.; Doyon, R.

    1990-01-01

    Infrared imaging of interacting galaxies is especially interesting because their optical appearance is often so chaotic due to extinction by dust and emission from star formation regions, that it is impossible to locate the nuclei or determine the true stellar distribution. However, at near-infrared wavelengths extinction is considerably reduced, and most of the flux from galaxies originates from red giant stars that comprise the dominant stellar component by mass. Thus near infrared images offer the opportunity to study directly components of galactic structure which are otherwise inaccessible. Such images may ultimately provide the framework in which to understand the activity taking place in many of the mergers with high Infrared Astronomy Satellite (IRAS) luminosities. Infrared images have been useful in identifying double structures in the nuclei of interacting galaxies which have not even been hinted at by optical observations. A striking example of this is given by the K images of Arp 220. Graham et al. (1990) have used high resolution imaging to show that it has a double nucleus coincident with the radio sources in the middle of the dust lane. The results suggest that caution should be applied in the identification of optical bright spots as multiple nuclei in the absence of other evidence. They also illustrate the advantages of using infrared imaging to study the underlying structure in merging galaxies. The authors have begun a program to take near infrared images of galaxies which are believed to be mergers of disk galaxies because they have tidal tails and filaments. In many of these the merger is thought to have induced exceptionally luminous infrared emission (cf. Joseph and Wright 1985, Sanders et al. 1988). Although the optical images of the galaxies show spectacular dust lanes and filaments, the K images all have a very smooth distribution of light with an apparently single nucleus.

  14. Frankenstein Galaxy

    NASA Image and Video Library

    2016-07-11

    The galaxy UGC 1382 has been revealed to be far larger and stranger than previously thought. Astronomers relied on a combination of ground-based and space telescopes to uncover the true nature of this "Frankenstein galaxy." The composite image shows the same galaxy as viewed with different instruments. The component images are also available. In the image at left, UGC 1382 appears to be a simple elliptical galaxy, based on optical data from the Sloan Digital Sky Survey (SDSS). But spiral arms emerged when astronomers incorporated ultraviolet data from the Galaxy Evolution Explorer (GALEX) and deep optical data from SDSS, as seen in the middle image. Combining that with a view of low-density hydrogen gas (shown in green), detected at radio wavelengths by the Very Large Array, scientists discovered that UGC 1382 is a giant, and one of the largest isolated galaxies known. GALEX in particular was able detect very faint features because it operated from space, which is necessary for UV observations because ultraviolet light is absorbed by the Earth's atmosphere. Astronomers also used Stripe 82 of SDSS, a small region of sky where SDSS imaged the sky 80 times longer than the original standard SDSS survey. This enabled optical detection of much fainter features as well. http://photojournal.jpl.nasa.gov/catalog/PIA20695

  15. GRAVITATIONAL LENS CAPTURES IMAGE OF PRIMEVAL GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Hubble Space Telescope image shows several blue, loop-shaped objects that actually are multiple images of the same galaxy. They have been duplicated by the gravitational lens of the cluster of yellow, elliptical and spiral galaxies - called 0024+1654 - near the photograph's center. The gravitational lens is produced by the cluster's tremendous gravitational field that bends light to magnify, brighten and distort the image of a more distant object. How distorted the image becomes and how many copies are made depends on the alignment between the foreground cluster and the more distant galaxy, which is behind the cluster. In this photograph, light from the distant galaxy bends as it passes through the cluster, dividing the galaxy into five separate images. One image is near the center of the photograph; the others are at 6, 7, 8, and 2 o'clock. The light also has distorted the galaxy's image from a normal spiral shape into a more arc-shaped object. Astronomers are certain the blue-shaped objects are copies of the same galaxy because the shapes are similar. The cluster is 5 billion light-years away in the constellation Pisces, and the blue-shaped galaxy is about 2 times farther away. Though the gravitational light-bending process is not new, Hubble's high resolution image reveals structures within the blue-shaped galaxy that astronomers have never seen before. Some of the structures are as small as 300 light-years across. The bits of white imbedded in the blue galaxy represent young stars; the dark core inside the ring is dust, the material used to make stars. This information, together with the blue color and unusual 'lumpy' appearance, suggests a young, star-making galaxy. The picture was taken October 14, 1994 with the Wide Field Planetary Camera-2. Separate exposures in blue and red wavelengths were taken to construct this color picture. CREDIT: W.N. Colley and E. Turner (Princeton University), J.A. Tyson (Bell Labs, Lucent Technologies) and NASA Image files

  16. Galaxy of Images

    Science.gov Websites

    This site has moved! Please go to our new Image Gallery site! dot header Basic Image Search Options dot header Search Tips Enter a keyword term below: Submit Use this search to find ANY words you Irish Lion Cubs Taxonomic (Scientific) Keyword Search: Submit Many of the images in the Galaxy of Images

  17. Galaxy Zoo: morphological classifications for 120 000 galaxies in HST legacy imaging

    NASA Astrophysics Data System (ADS)

    Willett, Kyle W.; Galloway, Melanie A.; Bamford, Steven P.; Lintott, Chris J.; Masters, Karen L.; Scarlata, Claudia; Simmons, B. D.; Beck, Melanie; Cardamone, Carolin N.; Cheung, Edmond; Edmondson, Edward M.; Fortson, Lucy F.; Griffith, Roger L.; Häußler, Boris; Han, Anna; Hart, Ross; Melvin, Thomas; Parrish, Michael; Schawinski, Kevin; Smethurst, R. J.; Smith, Arfon M.

    2017-02-01

    We present the data release paper for the Galaxy Zoo: Hubble (GZH) project. This is the third phase in a large effort to measure reliable, detailed morphologies of galaxies by using crowdsourced visual classifications of colour-composite images. Images in GZH were selected from various publicly released Hubble Space Telescope legacy programmes conducted with the Advanced Camera for Surveys, with filters that probe the rest-frame optical emission from galaxies out to z ˜ 1. The bulk of the sample is selected to have mI814W < 23.5, but goes as faint as mI814W < 26.8 for deep images combined over five epochs. The median redshift of the combined samples is = 0.9 ± 0.6, with a tail extending out to z ≃ 4. The GZH morphological data include measurements of both bulge- and disc-dominated galaxies, details on spiral disc structure that relate to the Hubble type, bar identification, and numerous measurements of clump identification and geometry. This paper also describes a new method for calibrating morphologies for galaxies of different luminosities and at different redshifts by using artificially redshifted galaxy images as a baseline. The GZH catalogue contains both raw and calibrated morphological vote fractions for 119 849 galaxies, providing the largest data set to date suitable for large-scale studies of galaxy evolution out to z ˜ 1.

  18. Morphology-based Query for Galaxy Image Databases

    NASA Astrophysics Data System (ADS)

    Shamir, Lior

    2017-02-01

    Galaxies of rare morphology are of paramount scientific interest, as they carry important information about the past, present, and future Universe. Once a rare galaxy is identified, studying it more effectively requires a set of galaxies of similar morphology, allowing generalization and statistical analysis that cannot be done when N=1. Databases generated by digital sky surveys can contain a very large number of galaxy images, and therefore once a rare galaxy of interest is identified it is possible that more instances of the same morphology are also present in the database. However, when a researcher identifies a certain galaxy of rare morphology in the database, it is virtually impossible to mine the database manually in the search for galaxies of similar morphology. Here we propose a computer method that can automatically search databases of galaxy images and identify galaxies that are morphologically similar to a certain user-defined query galaxy. That is, the researcher provides an image of a galaxy of interest, and the pattern recognition system automatically returns a list of galaxies that are visually similar to the target galaxy. The algorithm uses a comprehensive set of descriptors, allowing it to support different types of galaxies, and it is not limited to a finite set of known morphologies. While the list of returned galaxies is neither clean nor complete, it contains a far higher frequency of galaxies of the morphology of interest, providing a substantial reduction of the data. Such algorithms can be integrated into data management systems of autonomous digital sky surveys such as the Large Synoptic Survey Telescope (LSST), where the number of galaxies in the database is extremely large. The source code of the method is available at http://vfacstaff.ltu.edu/lshamir/downloads/udat.

  19. Ganalyzer: A Tool for Automatic Galaxy Image Analysis

    NASA Astrophysics Data System (ADS)

    Shamir, Lior

    2011-08-01

    We describe Ganalyzer, a model-based tool that can automatically analyze and classify galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze ~10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large data sets of galaxy images collected by autonomous sky surveys such as SDSS, LSST, or DES. The software is available for free download at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer, and the data used in the experiment are available at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer/GalaxyImages.zip.

  20. Galaxy Zoo: Morphological Classification of Galaxy Images from the Illustris  Simulation

    NASA Astrophysics Data System (ADS)

    Dickinson, Hugh; Fortson, Lucy; Lintott, Chris; Scarlata, Claudia; Willett, Kyle; Bamford, Steven; Beck, Melanie; Cardamone, Carolin; Galloway, Melanie; Simmons, Brooke; Keel, William; Kruk, Sandor; Masters, Karen; Vogelsberger, Mark; Torrey, Paul; Snyder, Gregory F.

    2018-02-01

    Modern large-scale cosmological simulations model the universe with increasing sophistication and at higher spatial and temporal resolutions. These ongoing enhancements permit increasingly detailed comparisons between the simulation outputs and real observational data. Recent projects such as Illustris are capable of producing simulated images that are designed to be comparable to those obtained from local surveys. This paper tests the degree to which Illustris achieves this goal across a diverse population of galaxies using visual morphologies derived from Galaxy Zoo citizen scientists. Morphological classifications provided by these volunteers for simulated galaxies are compared with similar data for a compatible sample of images drawn from the Sloan Digital Sky Survey (SDSS) Legacy Survey. This paper investigates how simple morphological characterization by human volunteers asked to distinguish smooth from featured systems differs between simulated and real galaxy images. Significant differences are identified, which are most likely due to the limited resolution of the simulation, but which could be revealing real differences in the dynamical evolution of populations of galaxies in the real and model universes. Specifically, for stellar masses {M}\\star ≲ {10}11 {M}ȯ , a substantially larger proportion of Illustris galaxies that exhibit disk-like morphology or visible substructure, relative to their SDSS counterparts. Toward higher masses, the visual morphologies for simulated and observed galaxies converge and exhibit similar distributions. The stellar mass threshold indicated by this divergent behavior confirms recent works using parametric measures of morphology from Illustris simulated images. When {M}\\star ≳ {10}11 {M}ȯ , the Illustris data set contains substantially fewer galaxies that classifiers regard as unambiguously featured. In combination, these results suggest that comparison between the detailed properties of observed and simulated galaxies

  1. Ganalyzer: A tool for automatic galaxy image analysis

    NASA Astrophysics Data System (ADS)

    Shamir, Lior

    2011-05-01

    Ganalyzer is a model-based tool that automatically analyzes and classifies galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze ~10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large datasets of galaxy images collected by autonomous sky surveys such as SDSS, LSST or DES.

  2. Contacts | Galaxy of Images

    Science.gov Websites

    This site has moved! Please go to our new Image Gallery site! dot header Contact Us About the Image Galaxy For licensing and other usage questions, please contact: Image use and licensing ! Enter a search term and hit the search button to quickly find an image Go The above "Quick Search

  3. Featured Image: A Galaxy Plunges Into a Cluster Core

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    The galaxy that takes up most of the frame in this stunning image (click for the full view!) is NGC 1427A. This is a dwarf irregular galaxy (unlike the fortuitously-located background spiral galaxy in the lower right corner of the image), and its currently in the process of plunging into the center of the Fornax galaxy cluster. Marcelo Mora (Pontifical Catholic University of Chile) and collaborators have analyzed observations of this galaxy made by both the Very Large Telescope in Chile and the Hubble Advanced Camera for Surveys, which produced the image shown here as a color composite in three channels. The team worked to characterize the clusters of star formation within NGC 1427A identifiable in the image as bright knots within the galaxy and determine how the interactions of this galaxy with its cluster environment affect the star formation within it. For more information and the original image, see the paper below.Citation:Marcelo D. Mora et al 2015 AJ 150 93. doi:10.1088/0004-6256/150/3/93

  4. Image-based query-by-example for big databases of galaxy images

    NASA Astrophysics Data System (ADS)

    Shamir, Lior; Kuminski, Evan

    2017-01-01

    Very large astronomical databases containing millions or even billions of galaxy images have been becoming increasingly important tools in astronomy research. However, in many cases the very large size makes it more difficult to analyze these data manually, reinforcing the need for computer algorithms that can automate the data analysis process. An example of such task is the identification of galaxies of a certain morphology of interest. For instance, if a rare galaxy is identified it is reasonable to expect that more galaxies of similar morphology exist in the database, but it is virtually impossible to manually search these databases to identify such galaxies. Here we describe computer vision and pattern recognition methodology that receives a galaxy image as an input, and searches automatically a large dataset of galaxies to return a list of galaxies that are visually similar to the query galaxy. The returned list is not necessarily complete or clean, but it provides a substantial reduction of the original database into a smaller dataset, in which the frequency of objects visually similar to the query galaxy is much higher. Experimental results show that the algorithm can identify rare galaxies such as ring galaxies among datasets of 10,000 astronomical objects.

  5. Galaxy evolution in the densest environments: HST imaging

    NASA Astrophysics Data System (ADS)

    Jorgensen, Inger

    2013-10-01

    We propose to process in a consistent fashion all available HST/ACS and WFC3 imaging of seven rich clusters of galaxies at z=1.2-1.6. The clusters are part of our larger project aimed at constraining models for galaxy evolution in dense environments from observations of stellar populations in rich z=1.2-2 galaxy clusters. The main objective is to establish the star formation {SF} history and structural evolution over this epoch during which large changes in SF rates and galaxy structure are expected to take place in cluster galaxies.The observational data required to meet our main objective are deep HST imaging and high S/N spectroscopy of individual cluster members. The HST imaging already exists for the seven rich clusters at z=1.2-1.6 included in this archive proposal. However, the data have not been consistently processed to derive colors, magnitudes, sizes and morphological parameters for all potential cluster members bright enough to be suitable for spectroscopic observations with 8-m class telescopes. We propose to carry out this processing and make all derived parameters publicly available. We will use the parameters derived from the HST imaging to {1} study the structural evolution of the galaxies, {2} select clusters and galaxies for spectroscopic observations, and {3} use the photometry and spectroscopy together for a unified analysis aimed at the SF history and structural changes. The analysis will also utilize data from the Gemini/HST Cluster Galaxy Project, which covers rich clusters at z=0.2-1.0 and for which we have similar HST imaging and high S/N spectroscopy available.

  6. Near-infrared imaging of CfA Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    McLeod, K. K.; Rieke, G. H.

    1995-03-01

    We present near-IR images of 43 Seyfert galaxies from the CfA Seyfert sample. The near-IR luminosity is a good tracer of luminous mass in these galaxies. Most of the Seyfert nuclei are found in hosts of mass similar to that of L* galaxies and ranging in type from S0 to Sc. In addition, there is a population of low-mass host galaxies with very low luminosity Seyfert nuclei. We have examined our images for signs of perturbations that could drive fuel toward the galaxy nucleus, but there are none we can identify at a significant level. The critical element for fueling is evidently not reflected clearly in the large-scale distribution of luminous mass in the galaxy. The Seyfert hosts are compared with a sample of 50 low-redshift quasar host galaxies we have also imaged. The radio-quiet quasars and the Seyfert nuclei lie in similar kinds of galaxies spanning the same range of mass centered around L*. However, for the most luminous quasars, there is a correlation between the minimum host-galaxy mass and the luminosity of the active nucleus. Radio-loud quasars are generally found in hosts more massive than an L* galaxy. The low-luminosity quasars and the Seyfert nuclei both tend to lie in host galaxies seen preferentially face-on, which suggests that there is a substantial amount of obscuration coplanar with the galaxian disk. The obscuration must be geometrically thick (thickness-to-radius ratio approximately 1) and must cover a significant fraction of the narrow-line region (r greater than 100 pc).

  7. Element abundance measurements in gas-rich galaxies at z~5

    NASA Astrophysics Data System (ADS)

    Poudel, Suraj; Kulkarni, Varsha; Morrison, Sean; Peroux, Celine; Som, Debopam; Rahmani, Hadi; Quiret, Samuel

    2018-01-01

    Element abundances in high-redshift galaxies offer key constraints on models of the chemical evolution of galaxies. The chemical composition of galaxies at z>~5 are especially important since they constrain the star formation history in the first ~1 Gyr after the Big Bang and the initial mass function of early stars. Observations of damped Lyman-alpha (DLA) absorbers in quasar spectra enable robust measurements of the element abundances in distant gas-rich galaxies. In particular, abundances of volatile elements such as S, O and refractory elements such as Si, Fe allow determination of the dust-corrected metallicity and the depletion strength in the absorbing galaxies. Unfortunately measurements for volatile (nearly undepleted) elements are very sparse for DLAs at z > 4.5. We present abundance measurements of O, C, Si and Fe for three gas-rich galaxies at z~5 using observations from the Very Large Telescope (VLT) X-shooter spectrograph and the Keck Echellette Spectrograph and Imager. Our study has doubled the existing sample of measurements of undepleted elements at z > 4.5. After combining our measurements with those from the literature, we find that the cosmological mean metallicity of z ˜ 5 absorbers is consistent with the prediction based on z < 4.5 DLAs within < 0.5 σ. Thus, we find no significant evidence of a sudden drop in metallicity at z > 4.7 as reported by prior studies. Some of the absorbers show evidence of depletion of elements on dust grains, e.g. low [Si/O] or [Fe/O]. These absorbers along with other z~5 absorbers from the literature show some peculiarities in the relative abundances, e.g. low [C/O] in several absorbers and high [Si/O] in one absorber. We also find that the metallicity vs. velocity dispersion relation of z~5 absorbers may be different from that of lower-redshift absorbers.We acknowledge support from NASA grant NNX14AG74G and NASA/STScI support for HST programs GO-12536, 13801 to the Univ. of South Carolina.

  8. High resolution in galaxy photometry and imaging

    NASA Astrophysics Data System (ADS)

    Nieto, J.-L.; Lelievre, G.

    Techniques for increasing the resolution of ground-based photometric observations of galaxies are discussed. The theoretical limitations on resolution and their implications for choosing telescope size at a given site considered, with an emphasis on the importance of the Fried (1966) parameter r0. The techniques recommended are shortening exposure time, selection of the highest-resolution images, and a posteriori digital image processing (as opposed to active-mirror image stabilization or the cine-CCD system of Fort et al., 1984). The value of the increased resolution (by a factor of 2) achieved at Pic du Midi observatory for studies of detailed structure in extragalactic objects, for determining the distance to galaxies, and for probing the central cores of galaxies is indicated.

  9. Confusion-limited galaxy fields. I - Simulated optical and near-infrared images

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Wright, Edward L.

    1988-01-01

    Techniques for simulating images of galaxy fields are presented that extend to high redshifts and a surface density of galaxies high enough to produce overlapping images. The observed properties of galaxies and galaxy-ensembles in the 'local' universe are extrapolated to high redshifts using reasonable scenarios for the evolution of galaxies and their spatial distribution. This theoretical framework is then employed with Monte Carlo techniques to create fairly realistic two-dimensional distributions of galaxies plus optical and near-infrared sky images in a variety of model universes, using the appropriate density, luminosity, and angular size versus redshift relations.

  10. Unification of X-ray Winds in Seyfert Galaxies: From Ultra-fast Outflows to Warm Absorbers

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-01-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60 per cent, consistent with previous studies. The fraction of sources with UFOs is >34 per cent, >67 per cent of which also show WAs. The large dynamic range obtained when considering all the absorbers together, spanning several orders of magnitude in ionization, column, velocity and distance allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. In all the cases, the absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. These evidence strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The UFOs are likely launched from the inner accretion disc and the WAs at larger distances, such as the outer disc and/or torus. We argue that the observed parameters and correlations are, to date, consistent with both radiation pressure through Compton scattering and magnetohydrodynamic processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, show

  11. Unification of X-ray winds in Seyfert galaxies: from ultra-fast outflows to warm absorbers

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-04-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60 per cent, consistent with previous studies. The fraction of sources with UFOs is >34 per cent, >67 per cent of which also show WAs. The large dynamic range obtained when considering all the absorbers together, spanning several orders of magnitude in ionization, column, velocity and distance allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. In all the cases, the absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. These evidence strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The UFOs are likely launched from the inner accretion disc and the WAs at larger distances, such as the outer disc and/or torus. We argue that the observed parameters and correlations are, to date, consistent with both radiation pressure through Compton scattering and magnetohydrodynamic processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, show

  12. Imaging of Nearby Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    Theios, Rachel L.; Malkan, Matthew A.; Ross, Nathaniel R.

    2016-05-01

    We used narrowband (Δλ = 70 Å) interference filters with the CCD imaging camera on the Nickel 1.0 m telescope at Lick Observatory to observe 31 nearby (z < 0.03) Seyfert galaxies in the 12 μm active galaxy sample. We obtained pure emission-line images of each galaxy, which reach down to a flux limit of 7.3 × 10-15 erg cm-2 s-1 arcsec-2, and corrected these images for [N II] emission and extinction. We separated the Hα emission line of the “nucleus” (central 100-1000 pc) from that of the host galaxy. The extended Hα emission is expected to be powered by newly formed hot stars, and indeed correlates well with other indicators of current star formation rates (SFRs) in these galaxies: extended 7.7 μm polycyclic aromatic hydrocarbon, total far-infrared, and radio luminosity. Relative to what would be expected from recent star formation, there is a 0.8 dex excess of radio emission in our Seyfert galaxies. The Hα luminosity we measured in the centers of our galaxies is dominated by the active galactic nucleus (AGN), and is linearly correlated with the hard X-ray luminosity. There is, however, an upward offset of 1 dex in this correlation for the Seyfert 1s, because their nuclear Hα emission includes a strong additional contribution from the broad-line region. We found a correlation between SFR and AGN luminosity. In spite of selection effects, we concluded that the absence of bright Seyfert nuclei in galaxies with low SFRs is real, albeit only weakly significant. Finally, we used our measured spatial distributions of Hα emission to determine what these Seyfert galaxies would look like when observed through fixed apertures (e.g., a spectroscopic fiber) at high redshifts. We found that although all of these Seyfert galaxies would be detectable emission-line galaxies at any redshift, most of them would appear to be dominated by (>67%) their H II region emission. Only the most luminous AGNs (log(L Hα /erg s-1) > 41.5) would still be identified as such at z

  13. Ultraviolet Imaging Telescope (UIT) observations of galaxies

    NASA Technical Reports Server (NTRS)

    Neff, S. G.

    1993-01-01

    Ultraviolet images of several galaxies were obtained during the ASTRO-1 shuttle mission in December, 1990. The images have a FWHM angular resolution of approximately 3 arcsecond and are of circular fields approximately 40 arcminutes in diameter. Most galaxies were observed in at least two and sometimes as many as four broad bands. A very few fields were observed with narrower band filters. The most basic result of these observations is that most systems look dramatically different in the UV from their well-known optical appearances. Preliminary results of these studies will be presented. Information will be available on fields observed by the UTI during the ASTRO 1 mission; when that data becomes public it can be obtained from the NSSDC. The ASTRO observatory is expected to fly again in 1994 with approximately half of the observing time from that mission devoted to guest observers. The Ultraviolet Imaging telescope is extremely well suited for galaxy studies, and the UIT term is interested in encouraging a wide range of scientific studies by guest observers. Ultraviolet Imaging telescope is extremely well suited for galaxy studies, and the UIT team is interested in encouraging a wide range of scientific studies by guest observers.

  14. KPNO 0.9m H(alpha) Imaging Survey of ``Transforming Galaxies" in Local Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Haines, Christopher; O'Sullivan, Ewan; Raychaudhury, Somak; Gargiulo, Adriana; Campusano, Luis

    2012-02-01

    We propose to use the KPNO 0.9-m telescope to obtain panoramic H(alpha) imaging of ~200 galaxies in two nearby (32, 35 Mpc) galaxy groups NGC 4261 and NGC 5353 from the CLoGS local group survey. In rich clusters ram-pressure stripping has been shown to be very effective at removing the gas contents and quenching star formation in infalling spiral galaxies. It is much less clear how galaxies are affected by the much lower ram pressures found in galaxy groups, or if other environmental processes begin to dominate. Given that >50% of galaxies in the local volume reside in groups, it is vital we gain new insights into which mechanisms drive the SFR-density relation in groups. The proposed H(alpha) imaging will allow us to resolve where star-formation is occuring in each galaxy. This can effectively discriminate between ram-pressure stripping characterized by truncated H(alpha) disks, the much gentler starvation mechanism which produces anemic spirals, and nuclear star-bursts triggered by low-velocity encounters which should be most frequent in groups.

  15. KPNO 0.9m H(alpha) Imaging Survey of ``Transforming Galaxies'' in Local Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Haines, Christopher; O'Sullivan, Ewan; Raychaudhury, Somak; Egami, Eiichi; Campusano, Luis

    2012-08-01

    We propose to use the KPNO 0.9-m telescope to obtain panoramic H(alpha) imaging of ~135 galaxies in ten nearby galaxy groups (60- 80 Mpc) from the Complete Local-Volume Groups Sample (CLoGS). In rich clusters ram-pressure stripping has been shown to be very effective at removing the gas contents and quenching star formation in infalling spiral galaxies. It is much less clear how galaxies are affected by the much lower ram pressures found in galaxy groups, or if other environmental processes begin to dominate. Given that >50% of galaxies in the local volume reside in groups, it is vital that we gain new insights into which mechanisms drive the SFR-density relation in groups. The proposed H(alpha) imaging will allow us to resolve where star-formation is occurring in each galaxy. This can effectively discriminate between ram-pressure stripping characterized by truncated H(alpha) disks, the much gentler starvation mechanism which produces anemic spirals, and nuclear starbursts triggered by low-velocity encounters and mergers which should be most frequent in groups.

  16. New Images Show Unprecedented Detail of Neighbor Galaxy's Gas

    NASA Astrophysics Data System (ADS)

    2001-01-01

    Using radio telescopes in the United States and Europe, astronomers have made the most detailed images ever of Hydrogen gas in a spiral galaxy other than the Milky Way. The scientists used the National Science Foundation's Very Large Array (VLA) radio telescope in New Mexico and the Westerbork Synthesis Radio Telescope (WSRT) in the Netherlands to produce an image of the galaxy M33, known to amateur astronomers as the Pinwheel Galaxy. Doppler-Shift Image of M33's Gas "An image with the level of detail we have achieved opens the door to learning fundamental new facts about the relationship between massive stars and the galaxy's complicated gaseous environment. This, in turn, will help us better understand how galaxies age," said David Thilker, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Thilker worked with Robert Braun of the Netherlands Foundation for Research in Astronomy and Rene Walterbos of New Mexico State University in Las Cruces. The scientists reported their findings today at the American Astronomical Society's meeting in San Diego, CA. The VLA and WSRT received radio waves at a wavelength of 21 centimeters that are naturally emitted by Hydrogen atoms. Using this data, the astronomers produced images showing the distribution of neutral atomic Hydrogen in M33. In addition, because the atoms emit at a very specific wavelength, the scientists could detect the galaxy's rotation by tuning the telescopes' radio receivers to receive radio waves whose length has been changed by Doppler shifting. The new images show details of the galaxy smaller than 130 light-years. "With more computer processing, we will be able to see features as small as 65 light-years," Thilker said. "This, we believe, will allow us to see 'bubbles' in the galaxy's gas that have been inflated as the result of one or more supernova explosions," Thilker added. At a distance from Earth of about 2.7 million light-years, M33 is a member of the Local Group of galaxies, which

  17. NASA Galaxy Mission Celebrates Sixth Anniversary

    NASA Image and Video Library

    2009-04-28

    NASA Galaxy Evolution Explorer Mission celebrates its sixth anniversary studying galaxies beyond our Milky Way through its sensitive ultraviolet telescope, the only such far-ultraviolet detector in space. Pictured here, the galaxy NGC598 known as M33. The mission studies the shape, brightness, size and distance of distant galaxies across 10 billion years of cosmic history, giving scientists a wealth of data to help us better understand the origins of the universe. One such object is pictured here, the galaxy NGC598, more commonly known as M33. This image is a blend of the Galaxy Evolution Explorer's M33 image and another taken by NASA's Spitzer Space Telescope. M33, one of our closest galactic neighbors, is about 2.9 million light-years away in the constellation Triangulum, part of what's known as our Local Group of galaxies. Together, the Galaxy Evolution Explorer and Spitzer can see a broad spectrum of sky. Spitzer, for example, can detect mid-infrared radiation from dust that has absorbed young stars' ultraviolet light. That's something the Galaxy Evolution Explorer cannot see. This combined image shows in amazing detail the beautiful and complicated interlacing of the heated dust and young stars. In some regions of M33, dust gathers where there is very little far-ultraviolet light, suggesting that the young stars are obscured or that stars farther away are heating the dust. In some of the outer regions of the galaxy, just the opposite is true: There are plenty of young stars and very little dust. Far-ultraviolet light from young stars glimmers blue, near-ultraviolet light from intermediate age stars glows green, and dust rich in organic molecules burns red. This image is a 3-band composite including far infrared as red. http://photojournal.jpl.nasa.gov/catalog/PIA11998

  18. The HI Environment of Nearby Lyman-alpha Absorbers

    NASA Technical Reports Server (NTRS)

    VanGorkom, J. H.; Carilli, C. L.; Stocke, John T.; Perlman, Eric S.; Shull, J. Michael

    1996-01-01

    We present the results of a VLA and WSRT search for H I emission from the vicinity of seven nearby clouds, which were observed in Ly-alpha absorption with HST toward Mrk 335, Mrk 501, and PKS 2155-304. Around the absorbers, we searched a volume of 4O' x 40' x 1000 km/s; for one of the absorbers we probed a velocity range of only 600 km/s. The H I mass sensitivity (5 sigma) very close to the lines of sight varies from 5 x 10(exp 6) solar mass at best to 5 x 10(exp 8) solar mass at worst. We detected H I emission in the vicinity of four out of seven absorbers. The closest galaxy we find to the absorbers is a small dwarf galaxy at a projected distance of 68 h(exp -1) kpc from the sight line toward Mrk 335. This optically uncataloged galaxy has the same velocity (V = 1970 km/s) as one of the absorbers, is fainter than the SMC, and has an H I mass of only 4 x 10(exp 7) solar mass. We found a somewhat more luminous galaxy at exactly the velocity (V = 5100 km/s) of one of the absorbers toward PKS 2155-304 at a projected distance of 230 h(exp -1) kpc from the sight line. Two other, stronger absorbers toward PKS 2155-304 at V approx. 17,000 km/s appear to be associated with a loose group of three bright spiral galaxies, at projected distances of 300 to 600 h(exp -1) kpc. These results support the conclusions emerging from optical searches that most nearby Ly-alpha forest clouds trace the large-scale structures outlined by the optically luminous galaxies, although this is still based on small-number statistics. We do not find any evidence from the H I distribution or kinematics that there is a physical association between an absorber and its closest galaxy. While the absorbing clouds are at the systemic velocity of the galaxies, the H I extent of the galaxies is fairly typical, and at least an order of magnitude smaller than the projected distance to the sight line at which the absorbers are seen. On the other hand, we also do not find evidence against such a connection. In

  19. Circumnuclear Regions In Barred Spiral Galaxies. 1; Near-Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Perez-Ramirez, D.; Knapen, J. H.; Peletier, R. F.; Laine, S.; Doyon, R.; Nadeau, D.

    2000-01-01

    We present sub-arcsecond resolution ground-based near-infrared images of the central regions of a sample of twelve barred galaxies with circumnuclear star formation activity, which is organized in ring-like regions typically one kiloparsec in diameter. We also present Hubble Space Telescope near-infrared images of ten of our sample galaxies, and compare them with our ground-based data. Although our sample galaxies were selected for the presence of circumnuclear star formation activity, our broad-band near-infrared images are heterogeneous, showing a substantial amount of small-scale structure in some galaxies, and practically none in others. We argue that, where it exists, this structure is caused by young stars, which also cause the characteristic bumps or changes in slope in the radial profiles of ellipticity, major axis position angle, surface brightness and colour at the radius of the circumnuclear ring in most of our sample galaxies. In 7 out of 10 HST images, star formation in the nuclear ring is clearly visible as a large number of small emitting regions, organised into spiral arm fragments, which are accompanied by dust lanes. NIR colour index maps show much more clearly the location of dust lanes and, in certain cases, regions of star formation than single broad-band images. Circumnuclear spiral structure thus outlined appears to be common in barred spiral galaxies with circumnuclear star formation.

  20. Chandra Images the Seething Cauldron of Starburst Galaxy

    NASA Astrophysics Data System (ADS)

    2000-01-01

    NASA's Chandra X-ray Observatory has imaged the core of the nearest starburst galaxy, Messier 82 (M82). The observatory has revealed a seething cauldron of exploding stars, neutron stars, black holes, 100 million degree gas, and a powerful galactic wind. The discovery will be presented by a team of scientists from Carnegie Mellon University, Pittsburgh, Penn., Pennsylvania State University, University Park, and the University of Michigan, Ann Arbor, on January 14 at the 195th national meeting of the American Astronomical Society. "In the disk of our Milky Way Galaxy, stars form and die in a relatively calm fashion like burning embers in a campfire," said Richard Griffiths, Professor of Astrophysics at Carnegie Mellon University. "But in a starburst galaxy, star birth and death are more like explosions in a fireworks factory." Short-lived massive stars in a starburst galaxy produce supernova explosions, which heat the interstellar gas to millions of degrees, and leave behind neutron stars and black holes. These explosions emit light in the X rays rather than in visible light. Because the superhot components inside starburst galaxies are complex and sometimes confusing, astronomers need an X-ray-detecting telescope with the highest focusing power (spatial resolution) to clearly discriminate the various structures. "NASA's Chandra X-ray Observatory is the perfect tool for studying starburst galaxies since it has the critical combination of high-resolution optics and good sensitivity to penetrating X rays," said Gordon Garmire, the Evan Pugh Professor of Astronomy and Astrophysics at Pennsylvania State University, and head of the team that conceived and built Chandra's Advanced CCD Imaging Spectrograph (ACIS) X-ray camera, which acquired the data. Many intricate structures missed by earlier satellite observatories are now visible in the ACIS image, including more than twenty powerful X-ray binary systems that contain a normal star in a close orbit around a neutron star

  1. Wide-field Imaging of the Environments of LITTLE THINGS Dwarf Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Hunter, Deidre A.; Melton, Casey; Leshin, Stephen; Wong, Alson; Clark, Maurice; Kamienski, Jerald; Moriya, Netzer; Packwood, Burley; Birket, Bob; Edwards, William; Millward, Mervyn; Wheelband, Ian

    2018-01-01

    We have obtained wide-field images of 36 of the 41 LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, The H I Nearby Galaxy Survey) nearby (<10.3 Mpc) dwarf irregular and blue compact dwarf galaxies. Although the LITTLE THINGS galaxies were chosen to be non-interacting and no companions were found in H I imaging, the purpose of this imaging was to search for optical companion galaxies that had been missed in imaging with smaller fields of view and that might indicate an external factor in ongoing star formation. The limiting magnitudes of the images range from 19.7 to 28.3 mag arcsec‑2, with a median value of 25.9 mag arcsec‑2. We did not find any unknown companions. Two of the LITTLE THINGS galaxies, NGC 4163 and NGC 4214, and the fainter dwarf, UGCA 276, lie potentially within 100 kpc of each other, but our imaging does not reveal any stellar bridge between the galaxies. This project was part of the Lowell Amateur Research Initiative.

  2. Imaging the Hot Stellar Content of Early Type Galaxies

    NASA Astrophysics Data System (ADS)

    Bertola, Francesco

    1991-07-01

    WE PROPOSE TO IMAGE WITH THE FOC IN THE F/96 CONFIGURATION FIVE EARLY TYPE GALAXIES IN FOUR PASSBANDS CENTERED AT 1500 A, 2200 A, 2800 A AND 3400 A. WHEN COUPLED WITH PHOTOMETRY OBTAINED FROM THE GROUND OUR OBSERVATIONS WILL ALLOW US TO DERIVE COMPLETE SED OF THESE GALAXIES AS A FUNCTION OF THE DISTANCE FROM THE CENTER. THIS IS A KEY STEP TOWARDS THE UNDERSTANDING OF STELLAR POPULATIONS - IN PARTICULAR THE ONE RESPONSIBLE FOR THE UV EMISSION - IN EARLY TYPE GALAXIES AND WILL PROVIDE IMPORTANT INSIGHT IN THEIR FORMATION AND EVOLUTION. WE PLAN TO OBSERVE NGC 1399, NGC 2681, NGC 4552, NGC 5018 AND NGC 4627 WHICH SAMPLE A WIDE RANGE OF INTRINSIC PROPERTIES AS INDICATED BY PREVIOUS IUE OBSERVATIONS. FOR NGC 4627 THERE IS EVIDENCE OF ONGOING STAR FORMATION AND THE HST WILL BE ABLE TO SHOW THE CHARACTERISTIC CLUMPINESS. NGC 2681 HAD A STARBUST OF AGE GREATER THAN 1 GYR. NGC 4552 IS ONE OF THE MOST METAL RICH GALAXY KNOWN. NGC 1399 HAS THE SAME METALLICITY AND LUMINOSITY OF THE PREVIOUS GALAXY BUT IS A MUCH STRONGER X-RAY EMITTER. NGC 5018 IS A VERY GOOD CANDIDATE FOR ONGOING STAR FORMATION. WE BELIEVE IN THIS WAY WE CAN OBTAIN SED FOR THE TWO-DIMENSIONAL IMAGES OF EARLY TYPE GALAXIES FROM BROAD BAND IMAGING ALONE. THE CALIBRATION OF OUR FILTER SYSTEM WILL ALLOW US TO APPLY IT TO THE BIDIMENSIONAL ANALYSIS OF THE GENERAL SAMPLE OF EARLY TYPE GALAXIES.

  3. ALMA + VLT observations of a damped Lyman-α absorbing galaxy: massive, wide CO emission, gas-rich but with very low SFR

    NASA Astrophysics Data System (ADS)

    Møller, P.; Christensen, L.; Zwaan, M. A.; Kanekar, N.; Prochaska, J. X.; Rhodin, N. H. P.; Dessauges-Zavadsky, M.; Fynbo, J. P. U.; Neeleman, M.; Zafar, T.

    2018-03-01

    We are undertaking an Atacama Large Millimeter Array survey of molecular gas in galaxies selected for their strong H I absorption, so-called damped Lyα absorber (DLA)/sub-DLA galaxies. Here, we report CO(2-1) detection from a DLA galaxy at z = 0.716. We also present optical and near-infrared (NIR) spectra of the galaxy revealing [O II], Hα, and [N II] emission lines shifted by ˜170 km s-1 relative to the DLA, and providing an oxygen abundance 3.2 times solar, similar to the absorption metallicity. We report low unobscured SFR˜1 M⊙ yr-1 given the large reservoir of molecular gas, and also modest obscured SFR =4.5_{-2.6}^{+4.4} M⊙ yr-1 based on far-IR and sub-millimetre data. We determine mass components of the galaxy: log[M*/M_{&sun} ]= 10.80^{+0.07}_{-0.14}, log[Mmol-gas/M⊙] = 10.37 ± 0.04, and log[Mdust/M_{⊙} ]= 8.45^{+0.10}_{-0.30}. Surprisingly, this H I absorption-selected galaxy has no equivalent objects in CO surveys of flux-selected samples. The galaxy falls off current scaling relations for the star formation rate (SFR) to molecular gas mass and CO Tully-Fisher relation. Detailed comparison of kinematical components of the absorbing, ionized, and molecular gas, combined with their spatial distribution, suggests that part of the CO gas is both kinematically and spatially decoupled from the main galaxy. It is thus possible that a major starburst in the past could explain the wide CO profile as well as the low SFR. Support for this also comes from the spectral energy distribution favouring an instantaneous burst of age ≈0.5 Gyr. Our survey will establish whether flux-selected surveys of molecular gas are missing a key stage in the evolution of galaxies and their conversion of gas to stars.

  4. GALAXIES IN THE YOUNG UNIVERSE [left

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of a small region of the constellation Sculptor, taken with a ground-based photographic sky survey camera, illustrates the extremely small angular size of a distant galaxy cluster in the night sky. Though this picture encompasses a piece of the sky about the width of the bowl of the Big Dipper, the cluster is so far away it fills a sky area only 1/10th the diameter of the Full Moon. The cluster members are not visible because they are so much fainter than foreground stars. [center] A NASA Hubble Space Telescope (HST) image of the farthest cluster of galaxies in the universe, located at a distance of 12 billion light-years. Because the light from these remote galaxies has taken 12 billion years to reach us, this image is a remarkable glimpse of the primeval universe, at it looked about two billion years after the Big Bang. The cluster contains 14 galaxies, the other objects are largely foreground galaxies. The galaxy cluster lies in front of quasar Q0000-263 in the constellation Sculptor. Presumably the brilliant core of an active galaxy, the quasar provides a beacon for searching for primordial galaxy clusters. The image is the full field view of the Wide Field and Planetary Camera-2, taken on September 6, 1994. The 4.7-hour exposure reveals objects down to 28.5 magnitude. [right] This enlargement shows one of the farthest normal galaxies yet detected, (blob at center right) at a distance of 12 billion light-years (redshift of z=3.330). The galaxy lies 300 million light-years in front of the quasar Q0000-263 (z=4.11, large white blob and spike on left side of frame) and was detected because it absorbs some light from the quasar. The galaxy's spectrum reveals that vigorous star formation is taking place. Credit: Duccio Macchetto (ESA/STScI), Mauro Giavalisco (STScI), and NASA

  5. IRAC Imaging of LSB Galaxies

    NASA Astrophysics Data System (ADS)

    Schombert, James; McGaugh, Stacy; Lelli, Federico

    2017-04-01

    We propose a program to observe a large sample of Low Surface Brightness (LSB) galaxies. Large galaxy surveys conducted with Spitzer suffer from the unavoidable selection bias against LSB systems (e.g., the S4G survey). Even those programs thathave specifically targeted LSB galaxies have usually been restricted objects of intermediate surface brightness (between 22 and 23 B mag/ []). Our sample is selected to be of a more extreme LSB nature (with central surface brightness fainter than 23 Bmag/[]). Even warm, Spitzer is the ideal instrument to image these low contrast targets in the near infrared: our sample goes a considerable way towards remedying this hole in the Spitzer legacy archive, also increasing coverage in terms of stellar mass, gas mass, and SFR. The sample will be used to address the newly discovered radial acceleration relation (RAR) in disk galaxies. While issues involving the connection between baryons and dark matter have been known since the development of the global baryonic Tully-Fisher (bTF) relation, it is only in the last six months that the particle physics and theoretical communities have recognized and responded to the local coupling between dark and baryonic matter represented by the RAR. This important new correlation is effectively a new natural law for galaxies. Spitzer photometry has been at the forefront of resolving the stellar mass component in galaxies that make-up the RAR and is the primary reason for the discovery of this new kinematic law.

  6. Host galaxy properties of calcium II and sodium I quasar absorption-line systems

    NASA Astrophysics Data System (ADS)

    Cherinka, Brian

    Many questions remain within the areas of galaxy formation and evolution. Understanding the origin of gas in galaxy environments, whether as tidal debris, infalling High Velocity Clouds, galaxy outflows, or as gaseous material residing in galaxy disks, is an important step in answering those questions. Quasar absorption-lines can often be used to probe the environments of intervening galaxies. Traditionally, quasar absorption-lines are studied independently of the host galaxy but this method denies us the exploration of the connection between galaxy and environment. Instead, one can select pairs of known galaxies and quasars. This gives much more information regarding the host galaxy and allows us to better connect galaxy properties with associated absorbers. We use the seventh data release of the Sloan Digital Sky Survey to generate a sample of spectroscopic galaxy-quasar pairs. We cross-correlated a sample of 105,000 quasars and ˜800,000 galaxies to produce ˜98,000 galaxy-quasar pairs, with the quasar projected within 100 kpc of the galaxy. Adopting an automated line-finding algorithm and using the galaxy redshift as a prior, we search through all quasar spectra and identify Ca II and Na I absorption due to the intervening galaxy. This procedure produced 1745 Ca II absorbers and 4500 Na I absorbers detected at or above 2σ. Stacking analysis of a subset of absorbers at z > 0.01, with significances at or above 3σ, showed strong Ca II and Na I features around external galaxies. Using the same subset of absorbers at z > 0.01, we looked for correlations between absorber and galaxy properties and examined differences in galaxy properties between the absorbers and non-absorbers. We found no correlations with absorber strength or differences between many galaxy properties at the 3σ level. The lack of correlations and differences between absorbers and non-absorbers suggest a ubiquitous nature for Ca II and Na I around all types of galaxies, with the absorbers showing

  7. Image decomposition of barred galaxies and AGN hosts

    NASA Astrophysics Data System (ADS)

    Gadotti, Dimitri Alexei

    2008-02-01

    I present the results of multicomponent decomposition of V and R broad-band images of a sample of 17 nearby galaxies, most of them hosting bars and active galactic nuclei (AGN). I use BUDDA v2.1 to produce the fits, allowing the inclusion of bars and AGN in the models. A comparison with previous results from the literature shows a fairly good agreement. It is found that the axial ratio of bars, as measured from ellipse fits, can be severely underestimated if the galaxy axisymmetric component is relatively luminous. Thus, reliable bar axial ratios can only be determined by taking into account the contributions of bulge and disc to the light distribution in the galaxy image. Through a number of tests, I show that neglecting bars when modelling barred galaxies can result in an overestimation of the bulge-to-total luminosity ratio of a factor of 2. Similar effects result when bright, type 1 AGN are not considered in the models. By artificially redshifting the images, I show that the structural parameters of more distant galaxies can in general be reliably retrieved through image fitting, at least up to the point where the physical spatial resolution is ~1.5kpc. This corresponds, for instance, to images of galaxies at z = 0.05 with a seeing full width at half-maximum (FWHM) of 1.5arcsec, typical of the Sloan Digital Sky Survey (SDSS). In addition, such a resolution is also similar to what can be achieved with the Hubble Space Telescope (HST), and ground-based telescopes with adaptive optics, at z ~ 1-2. Thus, these results also concern deeper studies such as COSMOS and SINS. This exercise shows that disc parameters are particularly robust, but bulge parameters are prone to errors if its effective radius is small compared to the seeing radius, and might suffer from systematic effects. For instance, the bulge-to-total luminosity ratio is systematically overestimated, on average, by 0.05 (i.e. 5 per cent of the galaxy total luminosity). In this low-resolution regime, the

  8. ONLY THE LONELY: H I IMAGING OF VOID GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreckel, K.; Van Gorkom, J. H.; Platen, E.

    2011-01-15

    Void galaxies, residing within the deepest underdensities of the Cosmic Web, present an ideal population for the study of galaxy formation and evolution in an environment undisturbed by the complex processes modifying galaxies in clusters and groups, as well as provide an observational test for theories of cosmological structure formation. We have completed a pilot survey for the H I imaging aspects of a new Void Galaxy Survey (VGS), imaging 15 void galaxies in H I in local (d < 100 Mpc) voids. H I masses range from 3.5 x 10{sup 8} to 3.8 x 10{sup 9} M{sub sun}, withmore » one nondetection with an upper limit of 2.1 x 10{sup 8} M{sub sun}. Our galaxies were selected using a structural and geometric technique to produce a sample that is purely environmentally selected and uniformly represents the void galaxy population. In addition, we use a powerful new backend of the Westerbork Synthesis Radio Telescope that allows us to probe a large volume around each targeted galaxy, simultaneously providing an environmentally constrained sample of fore- and background control samples of galaxies while still resolving individual galaxy kinematics and detecting faint companions in H I. This small sample makes up a surprisingly interesting collection of perturbed and interacting galaxies, all with small stellar disks. Four galaxies have significantly perturbed H I disks, five have previously unidentified companions at distances ranging from 50 to 200 kpc, two are in interacting systems, and one was found to have a polar H I disk. Our initial findings suggest void galaxies are a gas-rich, dynamic population which present evidence of ongoing gas accretion, major and minor interactions, and filamentary alignment despite the surrounding underdense environment.« less

  9. NASA Galaxy Mission Celebrates Sixth Anniversary

    NASA Image and Video Library

    2009-04-28

    NASA Galaxy Evolution Explorer Mission celebrates its sixth anniversary studying galaxies beyond our Milky Way through its sensitive ultraviolet telescope, the only such far-ultraviolet detector in space. The mission studies the shape, brightness, size and distance of distant galaxies across 10 billion years of cosmic history, giving scientists a wealth of data to help us better understand the origins of the universe. One such object is pictured here, the galaxy NGC598, more commonly known as M33. This image is a blend of the Galaxy Evolution Explorer's M33 image and another taken by NASA's Spitzer Space Telescope. M33, one of our closest galactic neighbors, is about 2.9 million light-years away in the constellation Triangulum, part of what's known as our Local Group of galaxies. Together, the Galaxy Evolution Explorer and Spitzer can see a broad spectrum of sky. Spitzer, for example, can detect mid-infrared radiation from dust that has absorbed young stars' ultraviolet light. That's something the Galaxy Evolution Explorer cannot see. This combined image shows in amazing detail the beautiful and complicated interlacing of the heated dust and young stars. In some regions of M33, dust gathers where there is very little far-ultraviolet light, suggesting that the young stars are obscured or that stars further away are heating the dust. In some of the outer regions of the galaxy, just the opposite is true: There are plenty of young stars and very little dust. Far-ultraviolet light from young stars glimmers blue, near-ultraviolet light from intermediate age stars glows green, near-infrared light from old stars burns yellow and orange, and dust rich in organic molecules burns red. The small blue flecks outside the spiral disk of M33 are most likely distant background galaxies. This image is a four-band composite that, in addition to the two ultraviolet bands, includes near infrared as yellow/orange and far infrared as red. http://photojournal.jpl.nasa.gov/catalog/PIA11999

  10. Galaxy Groups in HST/COS-SDSS Fields

    NASA Astrophysics Data System (ADS)

    Conway, Matthew; Hamill, Colin; Apala, Elizabeth; Scott, Jennifer

    2018-01-01

    We extend the results of a study of the sightlines of 45 low redshift quasars (0.06 < z < 0.85) observed by HST/COS that lie within the footprint of the Sloan Digital Sky Survey. We have used photometric data from the SDSS DR12, along with the known absorption characteristics of the intergalactic medium and circumgalactic medium, to identify the most probable galaxy matches to absorbers in the spectroscopic dataset. Here, we use an existing catalog of galaxy group candidates in the SDSS DR8 to identify galaxy groups within our HST/COS-SDSS fields that may show line of sight absorption due to an intergroup medium. To identify galaxy group candidates that lie within the impact parameter of our quasar fields (< 3 degrees), we calculate the angular separation between the quasar coordinates and the galaxy group centroid coordinates. We investigate differences in galaxy and absorber properties among the galaxy-absorber pairs likely arising in groups and those likely associated with individual field galaxies.

  11. VLA+WSRT HI Imaging of Two "Almost Dark" Galaxies

    NASA Astrophysics Data System (ADS)

    Ball, Catie; Singer, Quinton; Cannon, John M.; Leisman, Luke; Haynes, Martha P.; Adams, Elizabeth A.; Bernal Neira, David; Giovanelli, Riccardo; Hallenbeck, Gregory L.; Janesh, William; Janowiecki, Steven; Jozsa, Gyula; Rhode, Katherine L.; Salzer, John Joseph

    2017-01-01

    We present sensitive HI imaging of the "Almost Dark" galaxies AGC229385 and AGC229101. Selected from the ALFALFA survey, "Almost Dark" galaxies have significant HI reservoirs but lack an obvious stellar counterpart in survey-depth ground-based optical imaging. Deeper ground- and space-based imaging reveals very low surface brightness optical counterparts in both systems. The resulting M_HI/L_B ratios are among the highest ever measured for individual galaxies. Here we combine VLA and WSRT imaging of these two systems, allowing us to preserve surface brightness sensitivity while working at high angular resolution. The resulting maps of HI mass surface density, velocity field, and velocity dispersion are compared to deep optical and ultraviolet imaging. In both systems the highest column density HI gas is clumpy and resolved into multiple components. In the case of AGC229385, the kinematics are inconsistent with a simple rotating disk and may be the result of either an infall episode or an interaction between two HI-rich disks.Support for this work was provided by NSF grant 1211683 to JMC at Macalester College.

  12. Lyα-emitting galaxies as a probe of reionization: large-scale bubble morphology and small-scale absorbers

    NASA Astrophysics Data System (ADS)

    Kakiichi, Koki; Dijkstra, Mark; Ciardi, Benedetta; Graziani, Luca

    2016-12-01

    The visibility of Lyα-emitting galaxies during the Epoch of Reionization is controlled by both diffuse H I patches in large-scale bubble morphology and small-scale absorbers. To investigate their impacts on Lyα transfer, we apply a novel combination of analytic modelling and cosmological hydrodynamical, radiative transfer simulations to three reionization models: (I) the `bubble' model, where only diffuse H I outside ionized bubbles is present; (II) the `web' model, where H I exists only in overdense self-shielded gas; and (III) the hybrid `web-bubble' model. The three models can explain the observed Lyα luminosity function equally well, but with very different H I fractions. This confirms a degeneracy between the ionization topology of the intergalactic medium (IGM) and the H I fraction inferred from Lyα surveys. We highlight the importance of the clustering of small-scale absorbers around galaxies. A combined analysis of the Lyα luminosity function and the Lyα fraction can break this degeneracy and provide constraints on the reionization history and its topology. Constraints can be improved by analysing the full MUV-dependent redshift evolution of the Lyα fraction of Lyman break galaxies. We find that the IGM-transmission probability distribution function is unimodal for bubble models and bimodal in web models. Comparing our models to observations, we infer that the neutral fraction at z ˜ 7 is likely to be of the order of tens of per cent when interpreted with bubble or web-bubble models, with a conservative lower limit ˜1 per cent when interpreted with web models.

  13. Unification of X-ray Winds in Seyfert Galaxies: From Ultra-fast Outflows to Warm Absorbers

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco; Cappi, M.; Reeves, J.; Nemmen, R.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-04-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60%, consistent with previous studies. The fraction of sources with UFOs is >34%, >67% of which also show WAs. The large dynamic range obtained when considering all the absorbers together allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. The absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. This strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The observed parameters and correlations are consistent with both radiation pressure through Compton scattering and MHD processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, have a sufficiently high mechanical power to significantly contribute to the AGN feedback.

  14. The formation and evolution of high-redshift dusty galaxies

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Gonzalez, Anthony H.; Ge, Jian; Vieira, Joaquin D.; Prochaska, Jason X.; Spilker, Justin; Strandet, Maria; Ashby, Matthew; Noterdaeme, Pasquier; Lundgren, Britt; Zhao, Yinan; Ji, Tuo; Zhang, Shaohua; Caucal, Paul; SPT SMG Collaboration

    2017-01-01

    Star formation and chemical evolution are among the biggest questions in galaxy formation and evolution. High-redshift dusty galaxies are the best sites to investigate mass assembly and growth, star formation rates, star formation history, chemical enrichment, and physical conditions. My thesis is based on two populations of high-redshift dusty galaxies, submillimeter galaxies (SMGs) and quasar 2175 Å dust absorbers, which are selected by dust emission and dust absorption, respectively.For the SMG sample, I have worked on the gravitationally lensed dusty, star-forming galaxies (DSFGs) at 2.8 < z < 5.7, which were first discovered by the South Pole Telescope (SPT) and further confirmed by ALMA. My thesis is focused on the stellar masses and star formation rates of these objects by means of multi-wavelength spectral energy distribution (SED) modelling. The data include HST/WFC3, Spitzer/IRAC, Herschel/PACS, Herschel/SPIRE, APEX/Laboca and SPT. Compared to the star-forming main sequence (MS), these DSFGs have specific SFRs that lie above the MS, suggesting that we are witnessing ongoing strong starburst events that may be driven by major mergers. SPT0346-52 at z = 5.7, the most extraordinary source in the SPT survey for which we obtained Chandra X-ray and ATCA radio data, was confirmed to have the highest star formation surface density of any known galaxy at high-z.The other half of my thesis is focused on a new population of quasar absorption line systems, 2175 Å dust absorbers, which are excellent probes of gas and dust properties, chemical evolution and physical conditions in the absorbing galaxies. This sample was selected from the SDSS and BOSS surveys and followed up with the Echelle Spectrographs and Imager on the Keck-II telescope, the Red & Blue Channel Spectrograph on the Multiple Mirror Telescope, and the Ultraviolet and Visible Echelle Spectrograph onboard the Very Large Telescope. We found a correlation between the presence of the 2175 Å bump and other

  15. Quasar 2175 Å dust absorbers - I. Metallicity, depletion pattern and kinematics

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Ge, Jian; Zhao, Yinan; Prochaska, J. Xavier; Zhang, Shaohua; Ji, Tuo; Schneider, Donald P.

    2017-12-01

    We present 13 new 2175 Å dust absorbers at zabs = 1.0-2.2 towards background quasars from the Sloan Digital Sky Survey. These absorbers are examined in detail using data from the Echelle Spectrograph and Imager (ESI) on the Keck II telescope. Many low-ionization lines including Fe II, Zn II, Mg II, Si II, Al II, Ni II, Mn II, Cr II, Ti II and Ca II are present in the same absorber that gives rise to the 2175 Å bump. The relative metal abundances (with respect to Zn) demonstrate that the depletion patterns of our 2175 Å dust absorbers resemble that of the Milky Way clouds although some are disc-like and some are halo-like. The 2175 Å dust absorbers have significantly higher depletion levels compared to literature damped Lyman α absorbers (DLAs) and sub-DLAs. The dust depletion level indicator [Fe/Zn] tends to anticorrelate with bump strengths. The velocity profiles from the Keck/ESI spectra also provide kinematical information on the dust absorbers. The dust absorbers are found to have multiple velocity components with velocity widths extending from ∼100 to ∼600 km s-1, which are larger than those of most DLAs and sub-DLAs. Assuming the velocity width is a reliable tracer of stellar mass, the host galaxies of 2175 Å dust absorbers are expected to be more massive than DLA/sub-DLA hosts. Not all of the 2175 Å dust absorbers are intervening systems towards background quasars. The absorbers towards quasars J1006+1538 and J1047+3423 are proximate systems that could be associated with the quasar itself or the host galaxy.

  16. Simultaneous UV and X-ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I: Physical Conditions in the UV Absorbers

    NASA Technical Reports Server (NTRS)

    Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K. C.; Brinkman, A. C.; Dunn, J. P.; George, I. M.; Liedahl, D. A.; Paerels, F. B. S.

    2003-01-01

    We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, which we obtained with the Space Telescope Imaging Spectrograph at high spectral resolution, in conjunction with simultaneous Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner, high-ionization narrow-line region (NLR). We find nonunity covering factors in the cores of several kinematic components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9 over the full-covering case; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous N V and C IV columns for component 1 (at -1040 km/s), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim based on nonsimultaneous observations. We find that models of the absorbers based on solar abundances severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include either enhanced nitrogen (twice solar) or dust, with strong depletion of carbon in either case, are successful in matching all of the observed ionic columns. These models result in substantially lower ionization parameters and total column densities compared to dust-free solar-abundance models, and produce little O VII or O VIII, indicating that none of the UV absorbers are X-ray warm absorbers.

  17. Adaptive Optics Imaging Survey of Luminous Infrared Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laag, E A; Canalizo, G; van Breugel, W

    2006-03-13

    We present high resolution imaging observations of a sample of previously unidentified far-infrared galaxies at z < 0.3. The objects were selected by cross-correlating the IRAS Faint Source Catalog with the VLA FIRST catalog and the HST Guide Star Catalog to allow for adaptive optics observations. We found two new ULIGs (with L{sub FIR} {ge} 10{sup 12} L{sub {circle_dot}}) and 19 new LIGs (with L{sub FIR} {ge} 10{sup 11} L{sub {circle_dot}}). Twenty of the galaxies in the sample were imaged with either the Lick or Keck adaptive optics systems in H or K{prime}. Galaxy morphologies were determined using the twomore » dimensional fitting program GALFIT and the residuals examined to look for interesting structure. The morphologies reveal that at least 30% are involved in tidal interactions, with 20% being clear mergers. An additional 50% show signs of possible interaction. Line ratios were used to determine powering mechanism; of the 17 objects in the sample showing clear emission lines--four are active galactic nuclei and seven are starburst galaxies. The rest exhibit a combination of both phenomena.« less

  18. Infrared images of distant 3C radio galaxies

    NASA Technical Reports Server (NTRS)

    Eisenhardt, Peter; Chokshi, Arati

    1990-01-01

    J (1.2-micron) and K (2.2 micron) images have been obtained for eight 3CR radio galaxies with redshifts from 0.7 to 1.8. Most of the objects were known to have extended asymmetric optical continuum or line emission aligned with the radio lobe axis. In general, the IR morphologies of these galaxies are just as peculiar as their optical morphologies. For all the galaxies, when asymmetric structure is present in the optical, structure with the same orientation is seen in the IR and must be accounted for in any model to explain the alignment of optical and radio emission.

  19. Deep Imaging of Extremely Metal-Poor Galaxies

    NASA Astrophysics Data System (ADS)

    Corbin, Michael

    2006-07-01

    Conflicting evidence exists regarding whether the most metal-poor and actively star-forming galaxies in the local universe such as I Zw 18 contain evolved stars. We propose to help settle this issue by obtaining deep ACS/HRC U, narrow-V, I, and H-alpha images of nine nearby {z < 0.01} extremely metal-poor {12 + O/H < 7.65} galaxies selected from the Sloan Digital Sky Survey. These objects are only marginally resolved from the ground and appear uniformly blue, strongly motivating HST imaging. The continuum images will establish: 1.} If underlying populations of evolved stars are present, by revealing the objects' colors on scales 10 pc, and 2.} The presence of any faint tidal features, dust lanes, and globular or super star clusters, all of which constrain the objects' evolutionary states. The H-alpha images, in combination with ground-based echelle spectroscopy, will reveal 1.} Whether the objects are producing "superwinds" that are depleting them of their metals; ground-based images of some of them indeed show large halos of ionized gas, and 2.} The correspondence of their nebular and stellar emission on scales of a few parsecs, which is important for understanding the "feedback" process by which supernovae and stellar winds regulate star formation. One of the sample objects, CGCG 269-049, lies only 2 Mpc away, allowing the detection of individual red giant stars in it if any are present. We have recently obtained Spitzer images and spectra of this galaxy to determine its dust content and star formation history, which will complement the proposed HST observations. [NOTE: THIS PROPOSAL WAS REDUCED TO FIVE ORBITS, AND ONLY ONE OF THE ORIGINAL TARGETS, CGCG 269-049, AFTER THE PHASE I REVIEW

  20. Discovery of a Damped Lyα Absorber at z = 3.3 along a Galaxy Sight-line in the SSA22 Field

    NASA Astrophysics Data System (ADS)

    Mawatari, K.; Inoue, A. K.; Kousai, K.; Hayashino, T.; Cooke, R.; Prochaska, J. X.; Yamada, T.; Matsuda, Y.

    2016-02-01

    Using galaxies as background light sources to map the Lyα absorption lines is a novel approach to study Damped Lyα Absorbers (DLAs). We report the discovery of an intervening z = 3.335 ± 0.007 DLA along a galaxy sight-line identified among 80 Lyman Break Galaxy (LBG) spectra obtained with our Very Large Telescope/Visible Multi-Object Spectrograph survey in the SSA22 field. The measured DLA neutral hydrogen (H I) column density is log(NH I/cm-2) = 21.68 ± 0.17. The DLA covering fraction over the extended background LBG is >70% (2σ), yielding a conservative constraint on the DLA area of ≳1 kpc2. Our search for a counterpart galaxy hosting this DLA concludes that there is no counterpart galaxy with star formation rate larger than a few M⊙ yr-1, ruling out an unobscured violent star formation in the DLA gas cloud. We also rule out the possibility that the host galaxy of the DLA is a passive galaxy with M* ≳ 5 × 1010M⊙ or a heavily dust-obscured galaxy with E(B - V) ≳ 2. The DLA may coincide with a large-scale overdensity of the spectroscopic LBGs. The occurrence rate of the DLA is compatible with that of DLAs found in QSO sight-lines.

  1. PROPERTIES OF QSO METAL-LINE ABSORPTION SYSTEMS AT HIGH REDSHIFTS: NATURE AND EVOLUTION OF THE ABSORBERS AND NEW EVIDENCE ON ESCAPE OF IONIZING RADIATION FROM GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boksenberg, Alec; Sargent, Wallace L. W., E-mail: boksy@ast.cam.ac.uk

    2015-05-15

    Using Voigt-profile-fitting procedures on Keck High Resolution Spectrograph spectra of nine QSOs, we identify 1099 C IV absorber components clumped in 201 systems outside the Lyman forest over 1.6 ≲ z ≲ 4.4. With associated Si IV, C II, Si II  and N V where available, we investigate the bulk statistical and ionization properties of the components and systems and find no significant change in redshift for C IV and Si IV while C II, Si II  and N V change substantially. The C IV components exhibit strong clustering, but no clustering is detected for systems on scales from 150 kmmore » s{sup –1} out to 50,000 km s{sup –1}. We conclude that the clustering is due entirely to the peculiar velocities of gas present in the circumgalactic media of galaxies. Using specific combinations of ionic ratios, we compare our observations with model ionization predictions for absorbers exposed to the metagalactic ionizing radiation background augmented by proximity radiation from their associated galaxies and find that the generally accepted means of radiative escape by transparent channels from the internal star-forming sites is spectrally not viable for our stronger absorbers. We develop an active scenario based on runaway stars with resulting changes in the efflux of radiation that naturally enable the needed spectral convergence, and in turn provide empirical indicators of morphological evolution in the associated galaxies. Together with a coexisting population of relatively compact galaxies indicated by the weaker absorbers in our sample, the collective escape of radiation is sufficient to maintain the intergalactic medium ionized over the full range 1.9 < z ≲ 4.4.« less

  2. Imaging of High Redshift Starburst galaxies in the light of Lyman alpha

    NASA Astrophysics Data System (ADS)

    Beckwith, Steven

    1997-07-01

    line. Most of the objects are a few seco nds of arc in extent suggesting th a t they are galaxies at the redshifts of the damped Lyman alpha absorbers. Two of these objects, Q1623+268A & Q1623+268B, were serendipitously observed by HST in an independent program to study quasars with absorption lines {by Steidel; we retrieved these images from the HST archive}. The HST images resolve the objects showing they are spiral galaxies. It is only with the HST images that a morphological identification can be made. {nB: I can make these images available as TIFF or GIF files, but I do not know how to do this via the web page for DDT}. Because our first survey targeted at the redshifts of quasars themselves uncovered only one emission- line galaxy in a larger volume, the results imply substantial clustering of young galaxies or formation within filaments or sheets whose locations are indicated by the redshifts of strong Lyman alpha line absorption along the lines of sight to more distant quasars. Our eighteen emission-line objects are unique in highlighti ng these sheets from an infrared-s elected sample. The proposed HST observations have two goals. The first is to resolve the objects that have not been observed with HST to determine the types of underlying galaxies. Our ground-based observations in the infrared and R band {WIYN telescope} are sufficient to show that most of these objects are between 1 and 3 seconds of arc across, large enough to be galaxies at high redshifts but too small to study the distribution of light from the ground. The two extent HST images of Q1623+268 A & B show clearly how HST uncovers the nature of these galaxies. The second goal is to measure the amount of Lyman alpha emission to compare the morphology of the regions producing Lyman alpha to the continuum. Such a comparison is important to understand what fraction of a young galaxy's light is produced in the starburst population, what fraction in the old population, and what fraction might be

  3. Hubble Space Telescope Imaging of Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Laine, Seppo; van der Marel, Roeland P.; Lauer, Tod R.; Postman, Marc; O'Dea, Christopher P.; Owen, Frazer N.

    2003-02-01

    We used the Hubble Space Telescope Wide Field Planetary Camera 2 to obtain I-band images of the centers of 81 brightest cluster galaxies (BCGs), drawn from a volume-limited sample of nearby BCGs. The images show a rich variety of morphological features, including multiple or double nuclei, dust, stellar disks, point-source nuclei, and central surface brightness depressions. High-resolution surface brightness profiles could be inferred for 60 galaxies. Of those, 88% have well-resolved cores. The relationship between core size and galaxy luminosity for BCGs is indistinguishable from that of Faber et al. (published in 1997, hereafter F97) for galaxies within the same luminosity range. However, the core sizes of the most luminous BCGs fall below the extrapolation of the F97 relationship rb~L1.15V. A shallower relationship, rb~L0.72V, fits both the BCGs and the core galaxies presented in F97. Twelve percent of the BCG sample lacks a well-resolved core; all but one of these BCGs have ``power law'' profiles. Some of these galaxies have higher luminosities than any power-law galaxy identified by F97 and have physical upper limits on rb well below the values observed for core galaxies of the same luminosity. These results support the idea that the central structure of early-type galaxies is bimodal in its physical properties but also suggest that there exist high-luminosity galaxies with power-law profiles (or unusually small cores). The BCGs in the latter category tend to fall at the low end of the BCG luminosity function and tend to have low values of the quantity α (the logarithmic slope of the metric luminosity as a function of radius, at 10 kpc). Since theoretical calculations have shown that the luminosities and α-values of BCGs grow with time as a result of accretion, this suggests a scenario in which elliptical galaxies evolve from power-law profiles to core profiles through accretion and merging. This is consistent with theoretical scenarios that invoke the

  4. Galaxies Probing Galaxies in PRIMUS. I. Sample, Spectroscopy, and Characteristics of the z\\sim 0.5 Mg II–absorbing Circumgalactic Medium

    NASA Astrophysics Data System (ADS)

    Rubin, Kate H. R.; Diamond-Stanic, Aleksandar M.; Coil, Alison L.; Crighton, Neil H. M.; Moustakas, John

    2018-01-01

    The spectroscopy of background QSO sightlines passing close to foreground galaxies is a potent technique for studying the circumgalactic medium (CGM). However, QSOs are effectively point sources, limiting their potential to constrain the size of circumgalactic gaseous structures. Here we present the first large Keck/Low-resolution Imaging Spectrometer (LRIS) and Very Large Telescope (VLT)/Focal Reducer/Low-dispersion Spectrograph 2 (FORS2) spectroscopic survey of bright ({B}{AB}< 22.3) background galaxies whose lines of sight probe Mg II λ λ 2796,2803 absorption from the CGM around close projected foreground galaxies at transverse distances 10 {kpc}< {R}\\perp < 150 {kpc}. Our sample of 72 projected pairs, drawn from the PRIsm MUlti-object Survey, includes 48 background galaxies that do not host bright active galactic nuclei, and both star-forming and quiescent foreground galaxies with stellar masses of 9.0< {log}{M}* /{M}ȯ < 11.2 at redshifts of 0.35< {z}{{f}/{{g}}}< 0.8. We detect Mg II absorption associated with these foreground galaxies with equivalent widths of 0.25 \\mathring{{A}} < {W}2796< 2.6 \\mathring{{A}} at > 2σ significance in 20 individual background sightlines passing within {R}\\perp < 50 {kpc} and place 2σ upper limits on W 2796 of ≲ 0.5 \\mathring{{A}} in an additional 11 close sightlines. Within {R}\\perp < 50 {kpc}, W 2796 is anticorrelated with R ⊥, consistent with analyses of Mg II absorption detected along background QSO sightlines. Subsamples of these foreground hosts divided at {log}{M}* /{M}ȯ =9.9 exhibit statistically inconsistent W 2796 distributions at 30 {kpc}< {R}\\perp < 50 {kpc}, with the higher-M * galaxies yielding a larger median W 2796 by 0.9 \\mathring{{A}} . Finally, we demonstrate that foreground galaxies with similar stellar masses exhibit the same median W 2796 at a given R ⊥ to within < 0.2 \\mathring{{A}} toward both background galaxies and toward QSO sightlines drawn from the literature. Analysis of these

  5. Dwarf Galaxy Gives Giant Surprise

    NASA Astrophysics Data System (ADS)

    2005-01-01

    An astronomer studying small irregular galaxies discovered a remarkable feature in one galaxy that may provide key clues to understanding how galaxies form and the relationship between the gas and the stars within galaxies. Liese van Zee of Indiana University, using the National Science Foundation's Very Large Array (VLA) radio telescope, found that a small galaxy 16 million light-years from Earth is surrounded by a huge disk of hydrogen gas that has not been involved in the galaxy's star-formation processes and may be primordial material left over from the galaxy's formation. UGC 5288 Radio/Optical Image of UGC 5288 Bright white center object is visible-light image; Purple is giant hydrogen-gas disk seen with VLA CREDIT: Van Zee, NOAO, NRAO/AUI/NSF (Click on Image for Larger Version) "The lack of interaction between the large gas disk and the inner, star-forming region of this galaxy is a perplexing situation. When we figure out how this has happened, we'll undoubtedly learn more about how galaxies form," van Zee said. She presented her findings to the American Astronomical Society's meeting in San Diego, CA. The galaxy van Zee studied, called UGC 5288, had been regarded as just one ordinary example of a very numerous type of galaxy called dwarf irregular galaxies. As part of a study of such galaxies, she had earlier made a visible-light image of it at Kitt Peak National Observatory. When she observed it later using the VLA, she found that the small galaxy is embedded in a huge disk of atomic hydrogen gas. In visible light, the elongated galaxy is about 6000 by 4000 light-years, but the hydrogen-gas disk, seen with the VLA, is about 41,000 by 28,000 light-years. The hydrogen disk can be seen by radio telescopes because hydrogen atoms emit and absorb radio waves at a frequency of 1420 MHz, a wavelength of about 21 centimeters. A few other dwarf galaxies have large gas disks, but unlike these, UGC 5288's disk shows no signs that the gas was either blown out of the

  6. Imaging the host galaxies of high-redshift radio-quiet QSOs

    NASA Technical Reports Server (NTRS)

    Lowenthal, James D.; Heckman, Timothy M.; Lehnert, Matthew, D.; Elias, J. H.

    1995-01-01

    We present new deep K-band and optical images of four radio-quiet QSOs at z approximately = 1 and six radio-quiet QSOs at z approximately = 2.5, as well as optical images only of six more at z approximately = 2.5. We have examined the images carefully for evidence of extended 'fuzz' from any putative QSO host galaxy. None of the z approximately = 2.5 QSOs shows any extended emission, and only two of the z approximately = 1 QSOs show marginal evidence for extended emission. Our 3 sigma detection limits in the K images, m(sub K) approximately = 21 for an isolated source, would correspond approximately to an unevolved L(sup star) elliptical galaxy at z = 2.5 or 2-3 mag fainter than an L(sup star) elliptical at z = 1, although our limits on host galaxy light are weaker than this due to the difficulty of separating galaxy light from QSO light. We simulate simple models of disk and elliptical host galaxies, and find that the marginal emission around the two z approximately = 1 QSOs can be explained by disks or bulges that are approximately 1-2 mag brighter than an unevolved L(sup star) galaxy in one case and approximately 1.5-2.5 mag brighter than L(sub star) in the other. For two other z approximately = 1 QSOs, we have only upper limits (L approximately = L(sup star)). The hosts of the high-redshift sample must be no brighter than about 3 mag above an unevolved L(sup star) galaxy, and are at least 1 magnitude fainter than the hosts of radio-loud QSOs at the same redshift. If the easily detected K-band light surrounding a previous sample of otherwise similar but radio-loud QSOs is starlight, then it must evolve on timescales of greater than or approximately equal to 10(exp 8) yr (e.g., Chambers & Charlot 1990); therefore our non-detection of host galaxy fuzz around radio-quiet QSOs supports the view that high-redshift radio-quiet and radio-loud QSOs inhabit different host objects, rather than being single types of objects that turn their radio emission on and off over

  7. High-Resolution Imaging of Colliding and Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Whitmore, Brad

    1991-07-01

    We propose to obtain high-resolution images, using the WF/PC, of two colliding and merging galaxies (i.e., NGC 4038/4039 = "The Antennae" and NGC 7252 ="Atoms-for-Peace Galaxy". Our goal is to use HST to make critical observations of each object in order to gain a better understanding of the various phases of the merger process. Our primary objective is to determine whether globular clusters are formed during mergers\\?

  8. The z = 0.8596 damped Ly-alpha absorbing galaxy toward PKS 0454+039

    NASA Technical Reports Server (NTRS)

    Steidel, Charles C.; Bowen, David V.; Blades, J. Chris; Dickenson, Mark

    1995-01-01

    We present Hubble Space Telescope (HST) and ground-based data on the Z(sub abs) = 0.8596 metal-line absorption system along the line of sight to PKS 0454+0356. The system is a moderate-redshift damped Ly-alpha system, with N(H I) = (5.7 +/- 0.3) x 10(exp 20)/sq cm as measured from the Faint Object Spectrograph (FOS) spectrum. We also present ground-based images which we use to identify the galaxy which most probably gives rise to the damped system; the most likely candidate is relatively underluminous by QSO absorber standards M(sub B) approximately -19.0 for A(sub 0) = 0.5 and H(sub 0) = 50 km/s/Mpc) and lies approximately 8.5/h kpc in projection from the QSO sight line. Ground-based measurements of Zn II, Cr II, and Fe II absorption lines from this system allow us to infer abundances of (Zn/H) = -1.1, (Cr/H) = -1.2, and (Fe/H) = -1.2 indicating overall metallicity similar to damped systems at z is greater than 2, and that the depletion of Cr and Fe onto dust grains may be even less important than in many of the high-redshift systems of comparable metallicity. Limits previously placed on the 21 cm optical depth in the z = 0.8596 system, together with our new N(H I) measurement, suggest a very high spin temperature for the H I, T(sub s) is greater than 580 K.

  9. Mining MaNGA for Merging Galaxies: A New Imaging and Kinematic Technique from Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Nevin, Becky; Comerford, Julia M.; Blecha, Laura

    2018-06-01

    Merging galaxies play a key role in galaxy evolution, and progress in our understanding of galaxy evolution is slowed by the difficulty of making accurate galaxy merger identifications. Mergers are typically identified using imaging alone, which has its limitations and biases. With the growing popularity of integral field spectroscopy (IFS), it is now possible to use kinematic signatures to improve galaxy merger identifications. I use GADGET-3 hydrodynamical simulations of merging galaxies with the radiative transfer code SUNRISE, the later of which enables me to apply the same analysis to simulations and observations. From the simulated galaxies, I have developed the first merging galaxy classification scheme that is based on kinematics and imaging. Utilizing a Linear Discriminant Analysis tool, I have determined which kinematic and imaging predictors are most useful for identifying mergers of various merger parameters (such as orientation, mass ratio, gas fraction, and merger stage). I will discuss the strengths and limitations of the classification technique and then my initial results for applying the classification to the >10,000 observed galaxies in the MaNGA (Mapping Nearby Galaxies at Apache Point) IFS survey. Through accurate identification of merging galaxies in the MaNGA survey, I will advance our understanding of supermassive black hole growth in galaxy mergers and other open questions related to galaxy evolution.

  10. Measurements of Morphology in Strongly Lensed Galaxies in the Image Plane

    NASA Astrophysics Data System (ADS)

    Florian, Michael Kenneth

    2017-02-01

    The peak of star formation in the universe, the so-called "cosmic noon", occurs around redshift 2. Therefore, to study the physical mechanisms driving galaxy assembly and star formation, and thus the bulk morphological appearances of present day galaxies, we must look to galaxies at this redshift and greater. Unfortunately, even with current space-based telescopes, the internal structures of these galaxies cannot be resolved. The point spread function of the Hubble Space Telescope (HST), for example, corresponds to scales of about 0.5 kpc at redshift 2. Even the next generation of telescopes (e.g., the James Webb Space Telescope, the Wide-Field Infrared Survey Telescope, and the new thirty meter class of ground-based telescopes) will not be able to access the spatial scales--tens of parsecs or less--on which star formation has been shown to occur in the local universe. Fortunately, strong gravitational lensing can magnify these spatial scales to angular scales comparable to, or larger than, the HST point spread function. However, this increased access to small scales comes at the cost of strong distortions of the underlying image. To deal with this, I use simulations to show that some morphological measurements (e.g., the Gini coefficient) are preserved by gravitational lensing and can be measured in the image plane. I further show how such measurements can aid image family identification and thus improve lens models and source reconstructions. I explore a method to measure the fraction of a lensed galaxy's light that is contained in star-forming clumps in the image plane, which would bypass the need for lens modeling and source reconstruction to carry out similar measurements. I present a proof of concept for a simple case, and show where the major uncertainties lie--uncertainties that will need to be dealt with in order to expand this technique for use on more image configurations and tighten the relationship between the intrinsic values and the measured values

  11. High-Resolution Imaging of the Multiphase Interstellar Thick Disk in Two Edge-On Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Rueff, K.

    2009-01-01

    We present broadband and narrow-band images, acquired from Hubble Space Telescope WFPC2 and WIYN 3.5 m telescope respectively, of two edge-on spiral galaxies, NGC 4302 and NGC 4013. These high-resolution images (BVI + H-alpha) provide a detailed view of the thick disk interstellar medium (ISM) in these galaxies. Both galaxies show prominent extraplanar dust-bearing clouds viewed in absorption against the background stellar light. Individual clouds are found to z 2 kpc in each galaxy. These clouds each contain >10^4 to >10^5 solar masses of gas. Both galaxies have extraplanar diffuse ionized gas (DIG), as seen in our H-alpha images and earlier work. In addition to the DIG, discrete H II regions are found at heights up to 1 kpc from both galaxies. We compare the morphologies of the dusty clouds with the DIG in these galaxies and discuss the relationship between these components of the thick disk ISM.

  12. Galaxy NGC 55

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the 'local group' of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy.

  13. Chandra X-Ray Observatory Image of the Distant Galaxy, 3C294

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This most distant x-ray cluster of galaxies yet has been found by astronomers using Chandra X-ray Observatory (CXO). Approximately 10 billion light-years from Earth, the cluster 3C294 is 40 percent farther than the next most distant x-ray galaxy cluster. The existence of such a faraway cluster is important for understanding how the universe evolved. CXO's image reveals an hourglass-shaped region of x-ray emissions centered on the previously known central radio source (seen in this image as the blue central object) that extends outward for 60,000 light- years. The vast clouds of hot gas that surround such galaxies in clusters are thought to be heated by collapse toward the center of the cluster. Until CXO, x-ray telescopes have not had the needed sensitivity to identify such distant clusters of galaxies. Galaxy clusters are the largest gravitationally bound structures in the universe. The intensity of the x-rays in this CXO image of 3C294 is shown as red for low energy x-rays, green for intermediate, and blue for the most energetic x-rays. (Photo credit: NASA/loA/A. Fabian et al)

  14. Spitzer Imaging of Strongly lensed Herschel-selected Dusty Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Ma, Brian; Cooray, Asantha; Calanog, J. A.; Nayyeri, H.; Timmons, N.; Casey, C.; Baes, M.; Chapman, S.; Dannerbauer, H.; da Cunha, E.; De Zotti, G.; Dunne, L.; Farrah, D.; Fu, Hai; Gonzalez-Nuevo, J.; Magdis, G.; Michałowski, M. J.; Oteo, I.; Riechers, D. A.; Scott, D.; Smith, M. W. L.; Wang, L.; Wardlow, J.; Vaccari, M.; Viaene, S.; Vieira, J. D.

    2015-11-01

    We present the rest-frame optical spectral energy distribution (SED) and stellar masses of six Herschel-selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5 μm. Due to the spatial resolution of the IRAC observations at the level of 2″, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5 μm, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical SED of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 × 1010-4 × 1011 M⊙ and star formation rates of around 100 M⊙ yr-1. This puts these lensed submillimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.

  15. Simultaneous UV and X-ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I. Evidence for Dust in the UV Absorbers

    NASA Astrophysics Data System (ADS)

    Kraemer, S. B.; Crenshaw, D. M.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K.; George, I. M.; Turner, T. J.; Yaqoob, T.; Dunn, J. P.

    2002-12-01

    We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, obtained with the Space Telescope Imaging Spectrograph at high spectral resolution (λ /Δ λ = 30,000 - 46,000), simultaneously with Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner high-ionization narrow-line region (NLR). Assuming the NLR is fully covered, we find nonunity covering factors in the cores of several components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous C IV and N V columns for component 1 (at -1040 km s-1), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim (based on nonsimultaneous observations of N V and C IV). We find that dust-free models of the absorbers severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include dust (and thereby heavily deplete carbon) are successful in matching all of the observed ionic columns, and result in substantially lower ionization parameters and total column densities compared to dust-free models. Interestingly, these models yield the exact amount of dust needed to produce the observed reddening of the inner NLR, assuming a Galactic dust to gas ratio. The models produce little O VII and O VIII, indicating that none of the dusty UV absorbers is associated with a classic X-ray warm absorber.

  16. DISCOVERY OF A DAMPED Lyα ABSORBER AT z = 3.3 ALONG A GALAXY SIGHT-LINE IN THE SSA22 FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mawatari, K.; Inoue, A. K.; Kousai, K.

    2016-02-01

    Using galaxies as background light sources to map the Lyα absorption lines is a novel approach to study Damped Lyα Absorbers (DLAs). We report the discovery of an intervening z = 3.335 ± 0.007 DLA along a galaxy sight-line identified among 80 Lyman Break Galaxy (LBG) spectra obtained with our Very Large Telescope/Visible Multi-Object Spectrograph survey in the SSA22 field. The measured DLA neutral hydrogen (H i) column density is log(N{sub H} {sub i}/cm{sup −2}) = 21.68 ± 0.17. The DLA covering fraction over the extended background LBG is >70% (2σ), yielding a conservative constraint on the DLA area of ≳1 kpc{sup 2}. Our search for a counterpartmore » galaxy hosting this DLA concludes that there is no counterpart galaxy with star formation rate larger than a few M{sub ⊙} yr{sup −1}, ruling out an unobscured violent star formation in the DLA gas cloud. We also rule out the possibility that the host galaxy of the DLA is a passive galaxy with M{sub *} ≳ 5 × 10{sup 10}M{sub ⊙} or a heavily dust-obscured galaxy with E(B − V) ≳ 2. The DLA may coincide with a large-scale overdensity of the spectroscopic LBGs. The occurrence rate of the DLA is compatible with that of DLAs found in QSO sight-lines.« less

  17. First neutral atomic hydrogen images of quasar host galaxies.

    NASA Astrophysics Data System (ADS)

    Lim, J.; Ho, P. T. P.

    1999-12-01

    Violent galactic encounters or mergers are the leading contenders for triggering luminous quasar activity at low redshifts: such interactions can lead to the concentration of gas in the host galactic nucleus, thus fueling the suspected central supermassive black hole. Here the authors image quasar host galaxies in the redshifted 21-cm line emission of neutral atomic hydrogen (H I) gas, which in nearby galaxies has proven to be a particularly sensitive as well as enduring tracer of tidal interactions. The three quasars studied have different optical environments normally seen around low-redshift quasars, ranging from a perhaps mildly interacting system to a relatively undisturbed host with a projected neighbouring galaxy to an isolated and apparently serene host galaxy. By contrast with their optical appearences, all three quasar host galaxies exhibit ongoing or remnant tidal H I disruptions tracing galactic encounters or mergers. These observations provide a better understanding of the likely stage of their interaction.

  18. Outskirts of Distant Galaxies in Absorption

    NASA Astrophysics Data System (ADS)

    Chen, Hsiao-Wen

    QSO absorption spectroscopy provides a sensitive probe of both the neutral medium and diffuse ionized gas in the distant Universe. It extends 21 cm maps of gaseous structures around low-redshift galaxies both to lower gas column densities and to higher redshifts. Combining galaxy surveys with absorption-line observations of gas around galaxies enables comprehensive studies of baryon cycles in galaxy outskirts over cosmic time. This chapter presents a review of the empirical understanding of the cosmic neutral gas reservoir from studies of damped Lyα absorbers (DLAs). It describes the constraints on the star formation relation and chemical enrichment history in the outskirts of distant galaxies from DLA studies. A brief discussion of available constraints on the ionized circumgalactic gas from studies of lower column density Lyα absorbers and associated ionic absorption transitions is presented at the end.

  19. Properties of QSO Metal-line Absorption Systems at High Redshifts: Nature and Evolution of the Absorbers and New Evidence on Escape of Ionizing Radiation from Galaxies

    NASA Astrophysics Data System (ADS)

    Boksenberg, Alec; Sargent, Wallace L. W.

    2015-05-01

    Using Voigt-profile-fitting procedures on Keck High Resolution Spectrograph spectra of nine QSOs, we identify 1099 C IV absorber components clumped in 201 systems outside the Lyman forest over 1.6 <~ z <~ 4.4. With associated Si IV, C II, Si II and N V where available, we investigate the bulk statistical and ionization properties of the components and systems and find no significant change in redshift for C IV and Si IV while C II, Si II and N V change substantially. The C IV components exhibit strong clustering, but no clustering is detected for systems on scales from 150 km s-1 out to 50,000 km s-1. We conclude that the clustering is due entirely to the peculiar velocities of gas present in the circumgalactic media of galaxies. Using specific combinations of ionic ratios, we compare our observations with model ionization predictions for absorbers exposed to the metagalactic ionizing radiation background augmented by proximity radiation from their associated galaxies and find that the generally accepted means of radiative escape by transparent channels from the internal star-forming sites is spectrally not viable for our stronger absorbers. We develop an active scenario based on runaway stars with resulting changes in the efflux of radiation that naturally enable the needed spectral convergence, and in turn provide empirical indicators of morphological evolution in the associated galaxies. Together with a coexisting population of relatively compact galaxies indicated by the weaker absorbers in our sample, the collective escape of radiation is sufficient to maintain the intergalactic medium ionized over the full range 1.9 < z <~ 4.4. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck

  20. Galaxy NGC 55

    NASA Image and Video Library

    2003-12-10

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the "local group" of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA04923

  1. A near-infrared imaging survey of interacting galaxies - The small angular-size Arp systems

    NASA Technical Reports Server (NTRS)

    Bushouse, Howard A.; Stanford, S. A.

    1992-01-01

    Near-IR images of a large sample of interacting galaxies selected from the Atlas of Peculiar Galaxies by Arp (1966) have been obtained. Approximately 180 systems have been imaged in at least two, and usually three of the standard JHK bands. The survey and the observing and data reduction procedures, are described, and contour plots and aperture photometry are presented. Future papers will analyze the imaging data by groupings based on interaction type, stage, and progenitors. The goals of the analysis are to explore the relationships between galaxy interactions, activity, and morphology by studying the structure of the near-IR luminosity distribution, where extinction effects are much reduced relative to the optical and the major stellar mass component of galaxies dominates the observed light.

  2. Chandra and Hubble Composite Image of Spiral Galaxy NGC 4631

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image shows the central region of the spiral galaxy NGC 4631 as seen edge-on from the Chandra X-Ray Observatory (CXO) and the Hubble Space Telescope (HST). The Chandra data, shown in blue and purple, provide the first unambiguous evidence for a halo of hot gas surrounding a galaxy that is very similar to our Milky Way. The structure across the middle of the image and the extended faint filaments, shown in orange, represent the observation from the HST that reveals giant bursting bubbles created by clusters of massive stars. Scientists have debated for more than 40 years whether the Milky Way has an extended corona, or halo, of hot gas. Observations of NGC 4631 and similar galaxies provide astronomers with an important tool in the understanding our own galactic environment. A team of astronomers, led by Daniel Wang of the University of Massachusetts at Amherst, observed NGC 4631 with CXO's Advanced Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS). The observation took place on April 15, 2000, and its duration was approximately 60,000 seconds.

  3. Galaxy NGC 300

    NASA Image and Video Library

    2003-12-10

    This image of the nearby spiral galaxy NGC 300 was taken by Galaxy Evolution Explorer in a single orbit exposure of 27 minutes on October 10, 2003. NGC 300 lies 7 million light years from our Milky Way galaxy and is one of a group of galaxies in the constellation Sculptor. NGC 300 is often used as a prototype of a spiral galaxy because in optical images it displays flowing spiral arms and a bright central region of older (and thus redder) stars. The Galaxy Evolution Explorer image taken in ultraviolet light shows us that NGC 300 is an efficient star-forming galaxy. The bright blue regions in the Galaxy Evolution Explorer image reveal new stars forming all the way into the nucleus of NGC 300. http://photojournal.jpl.nasa.gov/catalog/PIA04924

  4. Galaxy NGC 247

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the dwarf spiral galaxy NGC 247 was taken by Galaxy Evolution Explorer on October 13, 2003, in a single orbit exposure of 1600 seconds. The region that looks like a 'hole' in the upper part of the galaxy is a location with a deficit of gas and therefore a lower star formation rate and ultraviolet brightness. Optical images of this galaxy show a bright star on the southern edge. This star is faint and red in the Galaxy Evolution Explorer ultraviolet image, revealing that it is a foreground star in our Milky Way galaxy. The string of background galaxies to the North-East (upper left) of NGC 247 is 355 million light years from our Milky Way galaxy whereas NGC 247 is a mere 9 million light years away. The faint blue light that can be seen in the Galaxy Evolution Explorer image of the upper two of these background galaxies may indicate that they are in the process of merging together.

  5. Fermi gamma-ray imaging of a radio galaxy.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, Ł; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D

    2010-05-07

    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.

  6. Deep HST imaging of distant weak radio and field galaxies

    NASA Technical Reports Server (NTRS)

    Windhorst, R. A.; Gordon, J. M.; Pascarelle, S. M.; Schmidtke, P. C.; Keel, W. C.; Burkey, J. M.; Dunlop, J. S.

    1994-01-01

    We present deep Hubble Space Telescope (HST) Wide-Field Camera (WFC) V- and I-band images of three distant weak radio galaxies with z = 0.311-2.390 and seven field galaxies with z = 0.131-0.58. The images were deconvolved with both the Lucy and multiresolution CLEAN methods, which yield a restoring Full Width at Half Maximum (FWHM) of less than or equal to 0.2 sec, (nearly) preserve photons and signal-to-noise ratio at low spatial frequencies, and produce consistent light profiles down to our 2 sigma surface brightness sensitivity limit of V approximately 27.2 and I approximately 25.9 mag/sq arcsec. Multi-component image modeling was used to provide deconvolution-independent estimates of structural parameters for symmetric galaxies. We present 12-band (m(sub 2750) UBVRIgriJHK) photometry for a subset of the galaxies and bootstrap the unknown FOC/48 zero point at 2750 A in three independent ways (yielding m(sub 2750) = 21.34 +/- 0.09 mag for 1.0 e(-)/s). Two radio galaxies with z = 0.311 and 0.528, as well as one field galaxy with z = 0.58, have the colors and spectra of early-type galaxies, and a(exp 1/4)-like light profiles in the HST images. The two at z greater than 0.5 have little or no color gradients in V - I and are likely giant ellipticals, while the z = 0.311 radio galaxy has a dim exponential disk and is likely an S0. Six of the seven field galaxies have light profiles that indicate (small) inner bulges following a(exp 1/4) laws and outer exponential disks, both with little or no color gradients. These are (early-type) spiral galaxies with z = 0.131-0.528. About half have faint companions or bars. One shows lumpy structure, possibly a merger. The compact narrow-line galaxy 53W002 at z = 2.390 has less than or = 30% +/- 10% of its HST V and I flux in the central kiloparsec (due to its weak Active Galactic Nucleus (AGN)). Most of its light (V approximately equal to 23.3) occurs in a symmetric envelope with a regular a(exp 1/4)-like profile of effective

  7. Relation between star formation and AGN activity in typical elliptical galaxies: Analysis of the 2MASS K-band galaxy images

    NASA Astrophysics Data System (ADS)

    Pierce, Katherine

    2014-01-01

    We are carrying out a program of aperture photometry on typical elliptical galaxies. While there are many ways to calculate the and magnitude, we are going to use the Aperture Photometry Tool (APT) GUI and the program IRAF (Image Reduction and Analysis Facility). By looking at a sample of 236 galaxies from the 2MASS survey k-band, it was determined that 68 of the galaxies needed some sort of a pixel blocking technique due to unwanted background stars or galaxies that may interfere with our readings. My job is to determine a way to block out these pixels while not compromising the true from the galaxy.

  8. A Deep Search for Faint Galaxies Associated with Very Low Redshift C IV Absorbers. III. The Mass- and Environment-dependent Circumgalactic Medium

    NASA Astrophysics Data System (ADS)

    Burchett, Joseph N.; Tripp, Todd M.; Bordoloi, Rongmon; Werk, Jessica K.; Prochaska, J. Xavier; Tumlinson, Jason; Willmer, C. N. A.; O'Meara, John; Katz, Neal

    2016-12-01

    Using Hubble Space Telescope Cosmic Origins Spectrograph observations of 89 QSO sightlines through the Sloan Digital Sky Survey footprint, we study the relationships between C IV absorption systems and the properties of nearby galaxies, as well as the large-scale environment. To maintain sensitivity to very faint galaxies, we restrict our sample to 0.0015\\lt z\\lt 0.015, which defines a complete galaxy survey to L≳ 0.01 L\\ast or stellar mass {M}* ≳ {10}8 {M}⊙ . We report two principal findings. First, for galaxies with impact parameter ρ \\lt 1 {r}{vir}, C IV detection strongly depends on the luminosity/stellar mass of the nearby galaxy. C IV is preferentially associated with galaxies with {M}* \\gt {10}9.5 {M}⊙ ; lower-mass galaxies rarely exhibit significant C IV absorption (covering fraction {f}C={9}-6+12 % for 11 galaxies with {M}* \\lt {10}9.5 {M}⊙ ). Second, C IV detection within the {M}* \\gt {10}9.5 {M}⊙ population depends on environment. Using a fixed-aperture environmental density metric for galaxies with ρ < 160 kpc at z\\lt 0.055, we find that {57}-13+12 % (8/14) of galaxies in low-density regions (regions with fewer than seven L\\gt 0.15 L\\ast galaxies within 1.5 Mpc) have affiliated C IV absorption; however, none (0/7) of the galaxies in denser regions show C IV. Similarly, the C IV detection rate is lower for galaxies residing in groups with dark matter halo masses of {M}{halo}\\gt {10}12.5 {M}⊙ . In contrast to C IV, H I is pervasive in the circumgalactic medium without regard to mass or environment. These results indicate that C IV absorbers with {log} N({{C}} {{IV}})≳ 13.5 {{cm}}-2 trace the halos of {M}* \\gt {10}9.5 {M}⊙ galaxies but also reflect larger-scale environmental conditions.

  9. VLA neutral hydrogen imaging of compact groups of galaxies. II - HCG 31, 44, and 79

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, B.A.; Mcmahon, P.M.; Van gorkom, J.H.

    1991-06-01

    Neutral hydrogen images of three compact groups of galaxies are presented: HCG 31, 44, and 79. The images were obtained with the very large array (VLA), an on-line Hanning smoothing was applied to the data, and the H I spectral channel was isolated. The images were made on the Pipeline, and were produced by means of a method described by Gorkon and Ekers (1988). The images of HCG 44 are compared with earlier Arecibo observations. The H I emission in HCG 44 is discovered within the galaxies, whereas the emission in 31 and 79 can be found throughout the groupmore » in clouds that are larger than the galaxies. Evidence of a relationship between the compact groups is found in the H I data, and the groups are considered to be merging into a single object. Some of the groups are theorized to be young amorphous galaxies where the H I is still bound to individual galaxies, and which have just begun to condense from the intergalactic medium. The kinematics of the gas are shown to vary, and a common gaseous envelope contains the dwarf galaxies. 42 refs.« less

  10. Galaxy NGC 247

    NASA Image and Video Library

    2003-12-10

    This image of the dwarf spiral galaxy NGC 247 was taken by Galaxy Evolution Explorer on October 13, 2003, in a single orbit exposure of 1600 seconds. The region that looks like a "hole" in the upper part of the galaxy is a location with a deficit of gas and therefore a lower star formation rate and ultraviolet brightness. Optical images of this galaxy show a bright star on the southern edge. This star is faint and red in the Galaxy Evolution Explorer ultraviolet image, revealing that it is a foreground star in our Milky Way galaxy. The string of background galaxies to the North-East (upper left) of NGC 247 is 355 million light years from our Milky Way galaxy whereas NGC 247 is a mere 9 million light years away. The faint blue light that can be seen in the Galaxy Evolution Explorer image of the upper two of these background galaxies may indicate that they are in the process of merging together. http://photojournal.jpl.nasa.gov/catalog/PIA04922

  11. Simultaneous Ultraviolet and X-Ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I. Physical Conditions in the Ultraviolet Absorbers

    NASA Astrophysics Data System (ADS)

    Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K. C.; Brinkman, A. C.; Dunn, J. P.; George, I. M.; Liedahl, D. A.; Paerels, F. B. S.; Turner, T. J.; Yaqoob, T.

    2003-09-01

    We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, which we obtained with the Space Telescope Imaging Spectrograph at high spectral resolution, in conjunction with simultaneous Chandra X-Ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner, high-ionization narrow-line region (NLR). We find nonunity covering factors in the cores of several kinematic components, which increase the column density measurements of N V and C IV by factors of 1.2-1.9 over the full-covering case; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous N V and C IV columns for component 1 (at -1040 km s-1) and find that this component cannot be an X-ray warm absorber, contrary to our previous claim based on nonsimultaneous observations. We find that models of the absorbers based on solar abundances severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectroscopic Explorer and present arguments that this is not likely due to variability. However, models that include either enhanced nitrogen (twice solar) or dust, with strong depletion of carbon in either case, are successful in matching all of the observed ionic columns. These models result in substantially lower ionization parameters and total column densities compared to dust-free solar-abundance models and produce little O VII or O VIII, indicating that none of the UV absorbers are X-ray warm absorbers. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations are associated with proposal 9279.

  12. Fermi Gamma-Ray Imaging of a Radio Galaxy

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-04-01

    The Fermi Gamma-ray Space Telescope has detected the γ-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved γ-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy γ-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The γ-ray emission from the lobes is interpreted as inverse Compton–scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. In conclusion, these measurements provide γ-raymore » constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.« less

  13. Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    This image is a Galaxy Evolution Explorer observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way. Andromeda is the nearest large galaxy to our own. The image is a mosaic of 10 separate Galaxy Evolution Explorer images taken in September, 2003. The color image (with near ultraviolet shown by red and far ultraviolet shown by blue) shows blue regions of young, hot, high mass stars tracing out the spiral arms where star formation is occurring, and the central orange-white 'bulge' of old, cooler stars formed long ago. The star forming arms of Messier 31 are unusual in being quite circular rather than the usual spiral shape. Several companion galaxies can also be seen. These include Messier 32, a dwarf elliptical galaxy directly below the central bulge and just outside the spiral arms, and Messier 110 (M110), which is above and to the right of the center. M110 has an unusual far ultraviolet bright core in an otherwise 'red,' old star halo. Many other regions of star formation can be seen far outside the main body of the galaxy.

  14. Photo-induced ultrasound microscopy for photo-acoustic imaging of non-absorbing specimens

    NASA Astrophysics Data System (ADS)

    Tcarenkova, Elena; Koho, Sami V.; Hänninen, Pekka E.

    2017-08-01

    Photo-Acoustic Microscopy (PAM) has raised high interest in in-vivo imaging due to its ability to preserve the near-diffraction limited spatial resolution of optical microscopes, whilst extending the penetration depth to the mm-range. Another advantage of PAM is that it is a label-free technique - any substance that absorbs PAM excitation laser light can be viewed. However, not all sample structures desired to be observed absorb sufficiently to provide contrast for imaging. This work describes a novel imaging method that makes it possible to visualize optically transparent samples that lack intrinsic photo-acoustic contrast, without the addition of contrast agents. A thin, strongly light absorbing layer next to sample is used to generate a strong ultrasonic signal. This signal, when recorded from opposite side, contains ultrasonic transmission information of the sample and thus the method can be used to obtain an ultrasound transmission image on any PAM.

  15. Deep Imaging of the HCG 95 Field. I. Ultra-diffuse Galaxies

    NASA Astrophysics Data System (ADS)

    Shi, Dong Dong; Zheng, Xian Zhong; Zhao, Hai Bin; Pan, Zhi Zheng; Li, Bin; Zou, Hu; Zhou, Xu; Guo, KeXin; An, Fang Xia; Li, Yu Bin

    2017-09-01

    We present a detection of 89 candidates of ultra-diffuse galaxies (UDGs) in a 4.9 degree2 field centered on the Hickson Compact Group 95 (HCG 95) using deep g- and r-band images taken with the Chinese Near Object Survey Telescope. This field contains one rich galaxy cluster (Abell 2588 at z = 0.199) and two poor clusters (Pegasus I at z = 0.013 and Pegasus II at z = 0.040). The 89 candidates are likely associated with the two poor clusters, giving about 50-60 true UDGs with a half-light radius {r}{{e}}> 1.5 {kpc} and a central surface brightness μ (g,0)> 24.0 mag arcsec-2. Deep z\\prime -band images are available for 84 of the 89 galaxies from the Dark Energy Camera Legacy Survey (DECaLS), confirming that these galaxies have an extremely low central surface brightness. Moreover, our UDG candidates are spread over a wide range in g - r color, and ˜26% are as blue as normal star-forming galaxies, which is suggestive of young UDGs that are still in formation. Interestingly, we find that one UDG linked with HCG 95 is a gas-rich galaxy with H I mass 1.1× {10}9 M ⊙ detected by the Very Large Array, and has a stellar mass of {M}\\star ˜ 1.8× {10}8 M ⊙. This indicates that UDGs at least partially overlap with the population of nearly dark galaxies found in deep H I surveys. Our results show that the high abundance of blue UDGs in the HCG 95 field is favored by the environment of poor galaxy clusters residing in H I-rich large-scale structures.

  16. Galaxies Collide to Create Hot, Huge Galaxy

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This image of a pair of colliding galaxies called NGC 6240 shows them in a rare, short-lived phase of their evolution just before they merge into a single, larger galaxy. The prolonged, violent collision has drastically altered the appearance of both galaxies and created huge amounts of heat turning NGC 6240 into an 'infrared luminous' active galaxy.

    A rich variety of active galaxies, with different shapes, luminosities and radiation profiles exist. These galaxies may be related astronomers have suspected that they may represent an evolutionary sequence. By catching different galaxies in different stages of merging, a story emerges as one type of active galaxy changes into another. NGC 6240 provides an important 'missing link' in this process.

    This image was created from combined data from the infrared array camera of NASA's Spitzer Space Telescope at 3.6 and 8.0 microns (red) and visible light from NASA's Hubble Space Telescope (green and blue).

  17. Generative adversarial networks recover features in astrophysical images of galaxies beyond the deconvolution limit

    NASA Astrophysics Data System (ADS)

    Schawinski, Kevin; Zhang, Ce; Zhang, Hantian; Fowler, Lucas; Santhanam, Gokula Krishnan

    2017-05-01

    Observations of astrophysical objects such as galaxies are limited by various sources of random and systematic noise from the sky background, the optical system of the telescope and the detector used to record the data. Conventional deconvolution techniques are limited in their ability to recover features in imaging data by the Shannon-Nyquist sampling theorem. Here, we train a generative adversarial network (GAN) on a sample of 4550 images of nearby galaxies at 0.01 < z < 0.02 from the Sloan Digital Sky Survey and conduct 10× cross-validation to evaluate the results. We present a method using a GAN trained on galaxy images that can recover features from artificially degraded images with worse seeing and higher noise than the original with a performance that far exceeds simple deconvolution. The ability to better recover detailed features such as galaxy morphology from low signal to noise and low angular resolution imaging data significantly increases our ability to study existing data sets of astrophysical objects as well as future observations with observatories such as the Large Synoptic Sky Telescope (LSST) and the Hubble and James Webb space telescopes.

  18. HST images of very compact blue galaxies at z approximately 0.2

    NASA Technical Reports Server (NTRS)

    Koo, David C.; Bershady, Matthew A.; Wirth, Gregory D.; Stanford, S. Adam; Majewski, Steven R.

    1994-01-01

    We present the results of Hubble Space Telescope (HST) Wide-Field Camera (WFC) imaging of seven very compact, very blue galaxies with B less than or equal to 21 and redshifts z approximately 0.1 to 0.35. Based on deconvolved images, we estimate typical half-light diameters of approximately 0.65 sec, corresponding to approximately 1.4 h(exp -1) kpc at redshifts z approximately 0.2. The average rest frame surface brightness within this diameter is mu(sub v) approximately 20.5 mag arcsec(exp -2), approximately 1 mag brighter than that of typical late-type blue galaxies. Ground-based spectra show strong, narrow emission lines indicating high ionization; their very blue colors suggest recent bursts of star-formation; their typical luminosities are approximately 4 times fainter than that of field galaxies. These characteristics suggest H II galaxies as likely local counterparts of our sample, though our most luminous targets appear to be unusually compact for their luminosities.

  19. Polar ring galaxies in the Galaxy Zoo

    NASA Astrophysics Data System (ADS)

    Finkelman, Ido; Funes, José G.; Brosch, Noah

    2012-05-01

    We report observations of 16 candidate polar-ring galaxies (PRGs) identified by the Galaxy Zoo project in the Sloan Digital Sky Survey (SDSS) data base. Deep images of five galaxies are available in the SDSS Stripe82 data base, while to reach similar depth we observed the remaining galaxies with the 1.8-m Vatican Advanced Technology Telescope. We derive integrated magnitudes and u-r colours for the host and ring components and show continuum-subtracted Hα+[N II] images for seven objects. We present a basic morphological and environmental analysis of the galaxies and discuss their properties in comparison with other types of early-type galaxies. Follow-up photometric and spectroscopic observations will allow a kinematic confirmation of the nature of these systems and a more detailed analysis of their stellar populations.

  20. Chandra X-Ray Observatory Image of Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Chandra X-Ray Observatory took this first x-ray picture of the Andromeda Galaxy (M31) on October 13, 1999. The blue dot in the center of the image is a 'cool' million-degree x-ray source where a supermassive black hole with the mass of 30-million suns is located. The x-rays are produced by matter furneling toward the black hole. Numerous other hotter x-ray sources are also apparent. Most of these are probably due to x-ray binary systems, in which a neutron star or black hole is in close orbit around a normal star. While the gas falling into the central black hole is cool, it is only cool by comparison to the 100 other x-ray sources in the Andromeda Galaxy. To be detected by an x-ray telescope, the gas must have a temperature of more than a million degrees. The Andromeda Galaxy is our nearest neighbor spiral galaxy at a distance of two million light years. It is similar to our own Milky Way in size, shape, and also contains a supermassive black hole at the center. (Photo Credit: NASA/CXC/SAO/S. Murray, M. Garcia)

  1. Understanding the dust properties in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Decleir, Marjorie; Baes, Maarten; De Looze, Ilse; Camps, Peter

    2018-04-01

    Dust is a crucial component in the interstellar medium of galaxies. It regulates several physical and chemical processes. Dust grains are also efficient at absorbing and scattering ultraviolet/optical photons and then re-radiating the absorbed energy in the infrared/submm wavelength range. The spatial distribution and properties of dust in galaxies can hence be investigated in two complementary ways: by its attenuation effects at short wavelengths, and by its thermal emission at long wavelengths. Both approaches have their advantages and challenges. In this contribution, we discuss a number of recent interesting results on interstellar dust in nearby galaxies, obtained by our research group at Ghent University.

  2. A Hubble Space Telescope imaging study of four FeLoBAL quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Lawther, D.; Vestergaard, M.; Fan, X.

    2018-04-01

    We study the host galaxies of four Iron Low-Ionization Broad Absorption-line Quasars (FeLoBALs), using Hubble Space Telescope imaging data, investigating the possibility that they represent a transition between an obscured active galactic nucleus (AGN) and an ordinary optical quasar. In this scenario, the FeLoBALs represent the early stage of merger-triggered accretion, in which case their host galaxies are expected to show signs of an ongoing or recent merger. Using PSF subtraction techniques, we decompose the images into host galaxy and AGN components at rest-frame ultraviolet and optical wavelengths. The ultraviolet is sensitive to young stars, while the optical probes stellar mass. In the ultraviolet we image at the BAL absorption trough wavelengths so as to decrease the contrast between the quasar and host galaxy emission. We securely detect an extended source for two of the four FeLoBALs in the rest-frame optical; a third host galaxy is marginally detected. In the rest-frame UV we detect no host emission; this constrains the level of unobscured star formation. Thus, the host galaxies have observed properties that are consistent with those of non-BAL quasars with the same nuclear luminosity, i.e. quiescent or moderately star-forming elliptical galaxies. However, we cannot exclude starbursting hosts that have the stellar UV emission obscured by modest amounts of dust reddening. Thus, our findings also allow the merger-induced young quasar scenario. For three objects, we identify possible close companion galaxies that may be gravitationally interacting with the quasar hosts.

  3. The application of infrared speckle interferometry to the imaging of remote galaxies and AGN

    NASA Technical Reports Server (NTRS)

    Olivares, Robert O.

    1995-01-01

    A 1.5 meter reflector, used for both infrared and optical astronomy, is also being used for infrared speckle interferometry and CCD imaging. The application of these imaging techniques to remote galaxies and active galactic nuclei are discussed. A simple model for the origin of speckle in coherent imaging systems is presented. Very careful photometry of the continuum of the galaxy M31 is underway using CCD images. It involves extremely intensive data reduction because the object itself is very large and has low surface brightness.

  4. Andromeda Galaxy

    NASA Image and Video Library

    2003-12-10

    This image is from NASA Galaxy Evolution Explorer is an observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way.

  5. Evidence for a Circum-Nuclear and Ionised Absorber in the X-ray Obscured Broad Line Radio Galaxy 3C 445

    NASA Technical Reports Server (NTRS)

    Braito, V.; Reeves, J. N.; Sambruna, R. M.; Gofford, J.

    2012-01-01

    Here we present the results of a Suzaku observation of the Broad Line Radio Galaxy 3C 445. We confirm the results obtained with the previous X-ray observations which unveiled the presence of several soft X-ray emission lines and an overall X-ray emission which strongly resembles a typical Seyfert 2 despite of the optical classification as an unobscured AGN. The broad band spectrum allowed us to measure for the first time the amount of reflection (R approximately 0.9) which together with the relatively strong neutral Fe Ka emission line (EW approximately 100 eV) strongly supports a scenario where a Compton-thick mirror is present. The primary X ray continuum is strongly obscured by an absorber with a column density of NH = 2 - 3 x 10(exp 23) per square centimeter. Two possible scenarios are proposed for the absorber: a neutral partial covering or a mildly ionised absorber with an ionisation parameter log xi approximately 1.0 erg centimeter per second. A comparison with the past and more recent X-ray observations of 3C 445 performed with XMM-Newton and Chandra is presented, which provided tentative evidence that the ionised and outflowing absorber varied. We argue that the absorber is probably associated with an equatorial diskwind located within the parsec scale molecular torus.

  6. The gas and stellar mass of low-redshift damped Lyman-α absorbers

    NASA Astrophysics Data System (ADS)

    Kanekar, Nissim; Neeleman, Marcel; Prochaska, J. Xavier; Ghosh, Tapasi

    2018-01-01

    We report Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet and Arecibo Telescope H I 21 cm spectroscopy of six damped and sub-damped Lyman-α absorbers (DLAs and sub-DLAs, respectively) at z ≲ 0.1, which have yielded estimates of their H I column density, metallicity and atomic gas mass. This significantly increases the number of DLAs with gas mass estimates, allowing the first comparison between the gas masses of DLAs and local galaxies. Including three absorbers from the literature, we obtain H I masses ≈(0.24-5.2) × 109 M⊙, lower than the knee of the local H I mass function. This implies that massive galaxies do not dominate the absorption cross-section for low-z DLAs. We use Sloan Digital Sky Survey photometry and spectroscopy to identify the likely hosts of four absorbers, obtaining low stellar masses, ≈107-108.4 M⊙, in all cases, consistent with the hosts being dwarf galaxies. We obtain high H I 21 cm or CO emission line widths, ΔV20 ≈ 100-290 km s-1, and high gas fractions, fH I ≈ 5-100, suggesting that the absorber hosts are gas-rich galaxies with low star formation efficiencies. However, the H I 21 cm velocity spreads (≳100 km s-1) appear systematically larger than the velocity spreads in typical dwarf galaxies.

  7. Distance determinations to shield galaxies from Hubble space telescope imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Cannon, John M.

    The Survey of H I in Extremely Low-mass Dwarf (SHIELD) galaxies is an ongoing multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies. The galaxies were selected from the first ∼10% of the H I Arecibo Legacy Fast ALFA (ALFALFA) survey based on their inferred low H I mass and low baryonic mass, and all systems have recent star formation. Thus, the SHIELD sample probes the faint end of the galaxy luminosity function for star-forming galaxies. Here, we measure the distances to the 12 SHIELD galaxies to be between 5 and 12 Mpc bymore » applying the tip of the red giant method to the resolved stellar populations imaged by the Hubble Space Telescope. Based on these distances, the H I masses in the sample range from 4 × 10{sup 6} to 6 × 10{sup 7} M {sub ☉}, with a median H I mass of 1 × 10{sup 7} M {sub ☉}. The tip of the red giant branch distances are up to 73% farther than flow-model estimates in the ALFALFA catalog. Because of the relatively large uncertainties of flow-model distances, we are biased toward selecting galaxies from the ALFALFA catalog where the flow model underestimates the true distances. The measured distances allow for an assessment of the native environments around the sample members. Five of the galaxies are part of the NGC 672 and NGC 784 groups, which together constitute a single structure. One galaxy is part of a larger linear ensemble of nine systems that stretches 1.6 Mpc from end to end. Three galaxies reside in regions with 1-9 neighbors, and four galaxies are truly isolated with no known system identified within a radius of 1 Mpc.« less

  8. The Two-Phase, Two-Velocity Ionized Absorber in the Seyfert 1 Galaxy NGC 5548

    NASA Astrophysics Data System (ADS)

    Andrade-Velázquez, Mercedes; Krongold, Yair; Elvis, Martin; Nicastro, Fabrizio; Brickhouse, Nancy; Binette, Luc; Mathur, Smita; Jiménez-Bailón, Elena

    2010-03-01

    We present an analysis of X-ray high-quality grating spectra of the Seyfert 1 galaxy NGC 5548 using archival Chandra-High Energy Transmission Grating Spectrometer and Low Energy Transmission Grating Spectrometer observations for a total exposure time of 800 ks. The continuum emission (between 0.2 keV and 8 keV) is well represented by a power law (Γ = 1.6) plus a blackbody component (kT = 0.1 keV). We find that the well-known X-ray warm absorber (WA) in this source consists of two different outflow velocity systems. One absorbing system has a velocity of -1110 ± 150 km s-1 and the other of -490 ± 150 km s-1. Recognizing the presence of these kinematically distinct components allows each system to be fitted independently, each with two absorption components with different ionization levels. The high-velocity system consists of two components, one with a temperature of 2.7 ± 0.6 × 106 K, log U = 1.23, and another with a temperature of 5.8 ± 1.0 × 105 K, log U = 0.67. The high-velocity, high-ionization component produces absorption by charge states Fe XXI-XXIV, while the high-velocity, low-ionization component produces absorption by Ne IX-X, Fe XVII-XX, and O VII-VIII. The low-velocity system also required two absorbing components, one with a temperature of 5.8 ± 0.8 × 105 K, log U = 0.67, producing absorption by Ne IX-X, Fe XVII-XX, and O VII-VIII, and the other with a lower temperature of 3.5 ± 0.35 × 104 K and a lower ionization of log U = -0.49, producing absorption by O VI-VII and the Fe VII-XII M-shell Unresolved Transitions Array. Once these components are considered, the data do not require any further absorbers. In particular, a model consisting of a continuous radial range of ionization structures (as suggested by a previous analysis) is not required. The two absorbing components in each velocity system are in pressure equilibrium with each other. This suggests that each velocity system consists of a multi-phase medium. This is the first time that

  9. GALAXY CLUSTERS IN THE LINE OF SIGHT TO BACKGROUND QUASARS. III. MULTI-OBJECT SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, H.; Barrientos, L. F.; Padilla, N.

    2013-09-01

    We present Gemini/GMOS-S multi-object spectroscopy of 31 galaxy cluster candidates at redshifts between 0.2 and 1.0 and centered on QSO sight lines taken from Lopez et al. The targets were selected based on the presence of an intervening Mg II absorption system at a similar redshift to that of a galaxy cluster candidate lying at a projected distance <2 h{sub 71}{sup -1} Mpc from the QSO sight line (a {sup p}hotometric hit{sup )}. The absorption systems span rest-frame equivalent widths between 0.015 and 2.028 A. Our aim was three-fold: (1) to identify the absorbing galaxies and determine their impact parameters,more » (2) to confirm the galaxy cluster candidates in the vicinity of each quasar sightline, and (3) to determine whether the absorbing galaxies reside in galaxy clusters. In this way, we are able to characterize the absorption systems associated with cluster members. Our main findings are as follows. (1) We identified 10 out of 24 absorbing galaxies with redshifts between 0.2509 {<=} z{sub gal} {<=} 1.0955, up to an impact parameter of 142 h{sub 71}{sup -1} kpc and a maximum velocity difference of 280 km s{sup -1}. (2) We spectroscopically confirmed 20 out of 31 cluster/group candidates, with most of the confirmed clusters/groups at z < 0.7. This relatively low efficiency results from the fact that we centered our observations on the QSO location, and thus occasionally some of the cluster centers were outside the instrument field of view. (3) Following from the results above, we spectroscopically confirmed of 10 out of 14 photometric hits within {approx}650 km s{sup -1} from galaxy clusters/groups, in addition to two new ones related to galaxy group environments. These numbers imply efficiencies of 71% in finding such systems with MOS spectroscopy. This is a remarkable result since we defined a photometric hit as those cluster-absorber pairs having a redshift difference {Delta}z = 0.1. The general population of our confirmed absorbing galaxies have

  10. High-Resolution X-Ray Imaging of Colliding Radio-Jet Galaxies

    NASA Technical Reports Server (NTRS)

    Born, Kirk D.; Whitmore, Brad

    1996-01-01

    We received ROSAT data for four program objects:3C31,3C278,3C449,and NGC1044. The first three sources were observed with the ROSAT HRI instrument. Our plan was to use the HRI to image the hot gas distribution in a few pairs of strongly disturbed interacting elliptical galaxies which are also strong radio sources having a bent-jet source morphology. The PSPC was used for NGC1044 in order to obtain a flux measurement to use in planning future High Resolution Imager (HRI) observations of that source. Though we never requested such HRI observations of NGC1044, others have used those archival PSPC data from our project for other research projects and analyses. The goal of the program was to elucidate the detailed distribution of hot gas into which the jets flow. The X-ray data were consequently analyzed in conjunction with existing VLA radio maps, optical broad-band and H-alpha Charge Couple device (CCD) images, and optical kinematic data to constrain models for the propagation of ballistic jets in interacting galaxies. We were able to test and validate the claimed causal connection between tidal interaction, the presence of gas, and the onset of activity in galaxies. The full multi-wavelength multi-observatory analyses described here are still on-going and will be published in the future. Because of the relevance of this research to on-going work in the field of active galaxies, the grant was used to support travel to several scientific meetings where our x-ray analysis, numerical modeling, and related radio results were presented and discussed.

  11. CMU DeepLens: deep learning for automatic image-based galaxy-galaxy strong lens finding

    NASA Astrophysics Data System (ADS)

    Lanusse, François; Ma, Quanbin; Li, Nan; Collett, Thomas E.; Li, Chun-Liang; Ravanbakhsh, Siamak; Mandelbaum, Rachel; Póczos, Barnabás

    2018-01-01

    Galaxy-scale strong gravitational lensing can not only provide a valuable probe of the dark matter distribution of massive galaxies, but also provide valuable cosmological constraints, either by studying the population of strong lenses or by measuring time delays in lensed quasars. Due to the rarity of galaxy-scale strongly lensed systems, fast and reliable automated lens finding methods will be essential in the era of large surveys such as Large Synoptic Survey Telescope, Euclid and Wide-Field Infrared Survey Telescope. To tackle this challenge, we introduce CMU DeepLens, a new fully automated galaxy-galaxy lens finding method based on deep learning. This supervised machine learning approach does not require any tuning after the training step which only requires realistic image simulations of strongly lensed systems. We train and validate our model on a set of 20 000 LSST-like mock observations including a range of lensed systems of various sizes and signal-to-noise ratios (S/N). We find on our simulated data set that for a rejection rate of non-lenses of 99 per cent, a completeness of 90 per cent can be achieved for lenses with Einstein radii larger than 1.4 arcsec and S/N larger than 20 on individual g-band LSST exposures. Finally, we emphasize the importance of realistically complex simulations for training such machine learning methods by demonstrating that the performance of models of significantly different complexities cannot be distinguished on simpler simulations. We make our code publicly available at https://github.com/McWilliamsCenter/CMUDeepLens.

  12. Galaxy–Galaxy Weak-lensing Measurements from SDSS. I. Image Processing and Lensing Signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Wentao; Yang, Xiaohu; Zhang, Jun

    We present our image processing pipeline that corrects the systematics introduced by the point-spread function (PSF). Using this pipeline, we processed Sloan Digital Sky Survey (SDSS) DR7 imaging data in r band and generated a galaxy catalog containing the shape information. Based on our shape measurements of the galaxy images from SDSS DR7, we extract the galaxy–galaxy (GG) lensing signals around foreground spectroscopic galaxies binned in different luminosities and stellar masses. We estimated the systematics, e.g., selection bias, PSF reconstruction bias, PSF dilution bias, shear responsivity bias, and noise rectification bias, which in total is between −9.1% and 20.8% atmore » 2 σ levels. The overall GG lensing signals we measured are in good agreement with Mandelbaum et al. The reduced χ {sup 2} between the two measurements in different luminosity bins are from 0.43 to 0.83. Larger reduced χ {sup 2} from 0.60 to 1.87 are seen for different stellar mass bins, which is mainly caused by the different stellar mass estimator. The results in this paper with higher signal-to-noise ratio are due to the larger survey area than SDSS DR4, confirming that more luminous/massive galaxies bear stronger GG lensing signals. We divide the foreground galaxies into red/blue and star-forming/quenched subsamples and measure their GG lensing signals. We find that, at a specific stellar mass/luminosity, the red/quenched galaxies have stronger GG lensing signals than their counterparts, especially at large radii. These GG lensing signals can be used to probe the galaxy–halo mass relations and their environmental dependences in the halo occupation or conditional luminosity function framework.« less

  13. Starburst Galaxies. II. Imaging and Spectroscopy of a Radio-selected Sample

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Herter, Terry; Haynes, Martha P.; Beichman, C. A.; Gautier, T. N., III

    1996-06-01

    We present J-, H-, and K-band images and low-resolution K-band spectra of the 20 most luminous starburst galaxies from the survey of Condon, Frayer, & Broderick. Optical rotation curves are also shown for 10 of these galaxies. Near-infrared colors, optical depths, CO indices, and dynamical masses are calculated. The near-infrared colors of the starburst nuclei are significantly redder than those observed in "normal" galaxies. Together, the Brγ and radio fluxes available for five of the galaxies imply that the starbursts are heavily obscured; an average extinction of A_V_~ 25 is derived. Strong CO absorption features indicate that late-type evolved stars are present in many of the starbursts. The average dynamical mass of the starburst region is found to be (1.0 +/- 0.4) x 10^9^ M_sun_.

  14. O VI ABSORBERS TRACING HOT GAS ASSOCIATED WITH A PAIR OF GALAXIES AT z = 0.167

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, B. D.; Narayanan, A.; Wakker, B. P.

    2010-08-20

    High signal-to-noise observations of the QSO PKS 0405-123 (z {sub em} = 0.572) with the Cosmic Origins Spectrograph from 1134 to 1796 A with a resolution of {approx}17 km s{sup -1} are used to study the multi-phase partial Lyman limit system (LLS) at z = 0.16716, which has previously been studied using relatively low signal-to-noise spectra from STIS and FUSE. The LLS and an associated H I-free broad O VI absorber likely originate in the circumgalactic gas associated with a pair of galaxies at z = 0.1688 and 0.1670 with impact parameters of 116 h {sup -1} {sub 70} andmore » 99 h {sup -1} {sub 70}. The broad and symmetric O VI absorption is detected in the z = 0.16716 rest frame with v = -278 {+-} 3 km s{sup -1}, log N(O VI) = 13.90 {+-} 0.03, and b = 52 {+-} 2 km s{sup -1}. This absorber is not detected in H I or other species with the possible exception of N V. The broad, symmetric O VI profile and the absence of corresponding H I absorption indicate that the circumgalactic gas in which the collisionally ionized O VI arises is hot (log T {approx} 5.8-6.2). The absorber may represent a rare but important new class of low-z intergalactic medium absorbers. The LLS has strong asymmetrical O VI absorption with log N(O VI) = 14.72 {+-} 0.02 spanning a velocity range from -200 to +100 km s{sup -1}. The high and low ions in the LLS have properties resembling those found for Galactic highly ionized high-velocity clouds where the O VI is likely produced in the conductive and turbulent interfaces between cool and hot gas.« less

  15. GalaxyGAN: Generative Adversarial Networks for recovery of galaxy features

    NASA Astrophysics Data System (ADS)

    Schawinski, Kevin; Zhang, Ce; Zhang, Hantian; Fowler, Lucas; Krishnan Santhanam, Gokula

    2017-02-01

    GalaxyGAN uses Generative Adversarial Networks to reliably recover features in images of galaxies. The package uses machine learning to train on higher quality data and learns to recover detailed features such as galaxy morphology by effectively building priors. This method opens up the possibility of recovering more information from existing and future imaging data.

  16. COS-Weak: probing the CGM using analogues of weak Mg II absorbers at z < 0.3

    NASA Astrophysics Data System (ADS)

    Muzahid, S.; Fonseca, G.; Roberts, A.; Rosenwasser, B.; Richter, P.; Narayanan, A.; Churchill, C.; Charlton, J.

    2018-06-01

    We present a sample of 34 weak metal line absorbers at z < 0.3 selected by the simultaneous >3σ detections of the Si IIλ1260 and C IIλ1334 absorption lines, with Wr(Si II)<0.2 Å and Wr(C II)<0.3 Å, in archival HST/COS spectra. Our sample increases the number of known low-z `weak absorbers' by a factor of >5. The column densities of H I and low-ionization metal lines obtained from Voigt profile fitting are used to build simple photoionization models. The inferred densities and line-of-sight thicknesses of the absorbers are in the ranges of -3.3 < log nH/cm-3 < -2.4 and ˜1 pc-50 kpc (median ≈500 pc), respectively. Most importantly, 85 per cent (50 per cent) of these absorbers show a metallicity of [Si/H] > -1.0 (0.0). The fraction of systems showing near-/supersolar metallicity in our sample is significantly higher than in the H I-selected sample of Wotta et al., and the galaxy-selected sample of Prochaska et al., of absorbers probing the circum-galactic medium at similar redshift. A search for galaxies has revealed a significant galaxy-overdensity around these weak absorbers compared to random positions with a median impact parameter of 166 kpc from the nearest galaxy. Moreover, we find the presence of multiple galaxies in ≈80 per cent of the cases, suggesting group environments. The observed dN/dz of 0.8 ± 0.2 indicates that such metal-enriched, compact, dense structures are ubiquitous in the haloes of low-z group galaxies. We suggest that these are transient structures that are related to galactic outflows and/or stripping of metal-rich gas from galaxies.

  17. PROFIT: Bayesian profile fitting of galaxy images

    NASA Astrophysics Data System (ADS)

    Robotham, A. S. G.; Taranu, D. S.; Tobar, R.; Moffett, A.; Driver, S. P.

    2017-04-01

    We present PROFIT, a new code for Bayesian two-dimensional photometric galaxy profile modelling. PROFIT consists of a low-level C++ library (libprofit), accessible via a command-line interface and documented API, along with high-level R (PROFIT) and PYTHON (PyProFit) interfaces (available at github.com/ICRAR/libprofit, github.com/ICRAR/ProFit, and github.com/ICRAR/pyprofit, respectively). R PROFIT is also available pre-built from CRAN; however, this version will be slightly behind the latest GitHub version. libprofit offers fast and accurate two-dimensional integration for a useful number of profiles, including Sérsic, Core-Sérsic, broken-exponential, Ferrer, Moffat, empirical King, point-source, and sky, with a simple mechanism for adding new profiles. We show detailed comparisons between libprofit and GALFIT. libprofit is both faster and more accurate than GALFIT at integrating the ubiquitous Sérsic profile for the most common values of the Sérsic index n (0.5 < n < 8). The high-level fitting code PROFIT is tested on a sample of galaxies with both SDSS and deeper KiDS imaging. We find good agreement in the fit parameters, with larger scatter in best-fitting parameters from fitting images from different sources (SDSS versus KiDS) than from using different codes (PROFIT versus GALFIT). A large suite of Monte Carlo-simulated images are used to assess prospects for automated bulge-disc decomposition with PROFIT on SDSS, KiDS, and future LSST imaging. We find that the biggest increases in fit quality come from moving from SDSS- to KiDS-quality data, with less significant gains moving from KiDS to LSST.

  18. [C ii] 158-μm emission from the host galaxies of damped Lyman-alpha systems.

    PubMed

    Neeleman, Marcel; Kanekar, Nissim; Prochaska, J Xavier; Rafelski, Marc; Carilli, Chris L; Wolfe, Arthur M

    2017-03-24

    Gas surrounding high-redshift galaxies has been studied through observations of absorption line systems toward background quasars for decades. However, it has proven difficult to identify and characterize the galaxies associated with these absorbers due to the intrinsic faintness of the galaxies compared with the quasars at optical wavelengths. Using the Atacama Large Millimeter/Submillimeter Array, we report on detections of [C ii] 158-μm line and dust-continuum emission from two galaxies associated with two such absorbers at a redshift of z ~ 4. Our results indicate that the hosts of these high-metallicity absorbers have physical properties similar to massive star-forming galaxies and are embedded in enriched neutral hydrogen gas reservoirs that extend well beyond the star-forming interstellar medium of these galaxies. Copyright © 2017, American Association for the Advancement of Science.

  19. Hubble Peers at the Heart of a Spiral Galaxy

    NASA Image and Video Library

    2014-03-21

    This new Hubble image is centered on NGC 5793, a spiral galaxy over 150 million light-years away in the constellation of Libra. This galaxy has two particularly striking features: a beautiful dust lane and an intensely bright center — much brighter than that of our own galaxy, or indeed those of most spiral galaxies we observe. NGC 5793 is a Seyfert galaxy. These galaxies have incredibly luminous centers that are thought to be caused by hungry supermassive black holes — black holes that can be billions of times the size of the sun — that pull in and devour gas and dust from their surroundings. This galaxy is of great interest to astronomers for many reasons. For one, it appears to house objects known as masers. Whereas lasers emit visible light, masers emit microwave radiation. The term "masers" comes from the acronym Microwave Amplification by Stimulated Emission of Radiation. Maser emission is caused by particles that absorb energy from their surroundings and then re-emit this in the microwave part of the spectrum. Naturally occurring masers, like those observed in NGC 5793, can tell us a lot about their environment; we see these kinds of masers in areas where stars are forming. In NGC 5793 there are also intense mega-masers, which are thousands of times more luminous than the sun. Credit: NASA, ESA, and E. Perlman (Florida Institute of Technology) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. VizieR Online Data Catalog: Galaxy structural parameters from 3.6um images (Kim+, 2014)

    NASA Astrophysics Data System (ADS)

    Kim, T.; Gadotti, D. A.; Sheth, K.; Athanassoula, E.; Bosma, A.; Lee, M. G.; Madore, B. F.; Elmegreen, B.; Knapen, J. H.; Zaritsky, D.; Ho, L. C.; Comeron, S.; Holwerda, B.; Hinz, J. L.; Munoz-Mateos, J.-C.; Cisternas, M.; Erroz-Ferrer, S.; Buta, R.; Laurikainen, E.; Salo, H.; Laine, J.; Menendez-Delmestre, K.; Regan, M. W.; de Swardt, B.; Gil de Paz, A.; Seibert, M.; Mizusawa, T.

    2016-03-01

    We select our samples from the Spitzer Survey of Stellar Structure in Galaxies (S4G; Sheth et al. 2010, cat. J/PASP/122/1397). We chose galaxies that had already been processed by the first three S4G pipelines (Pipelines 1, 2, and 3; Sheth et al. 2010, cat. J/PASP/122/1397) at the moment of this study (2011 November). In brief, Pipeline processes images and provides science-ready images. Pipeline 2 prepares mask images (to exclude foreground and background objects) for further analysis, and Pipeline 3 derives surface brightness profiles and total magnitudes using IRAF ellipse fits. We excluded highly inclined (b/a<0.5), significantly disturbed, very faint, or irregular galaxies. Galaxies were also discarded if their images are unsuitable for decomposition due to contamination such as a bright foreground star or significant stray light from stars in the IRAC scattering zones. Then we chose barred galaxies from all Hubble types from S0 to Sdm using the numerical Hubble types from Hyperleda (Paturel et al. 2003, cat. VII/237, VII/238). The assessment of the presence of a bar was done visually by K. Sheth, T. Kim, and B. de Swardt. Later, we also confirmed the presence of a bar by checking the mid-infrared classification (Buta et al. 2010, cat. J/ApJS/190/147; Buta et al. 2015, cat. J/ApJS/217/32). A total of 144 barred galaxies were selected that satisfy our criteria, and we list our sample in Table1 with basic information. Table2 presents the measures of structural parameters for all galaxies in the sample obtained from the 2D model fit with BUDDA (BUlge/disk Decomposition Analysis, de Souza et al., 2004ApJS..153..411D; Gadotti, 2008MNRAS.384..420G) code. (2 data files).

  1. CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATE z Almost-Equal-To 11 GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coe, Dan; Postman, Marc; Bradley, Larry

    2013-01-01

    We present a candidate for the most distant galaxy known to date with a photometric redshift of z = 10.7{sup +0.6} {sub -0.4} (95% confidence limits; with z < 9.5 galaxies of known types ruled out at 7.2{sigma}). This J-dropout Lyman break galaxy, named MACS0647-JD, was discovered as part of the Cluster Lensing and Supernova survey with Hubble (CLASH). We observe three magnified images of this galaxy due to strong gravitational lensing by the galaxy cluster MACSJ0647.7+7015 at z = 0.591. The images are magnified by factors of {approx}80, 7, and 2, with the brighter two observed at {approx}26th magnitudemore » AB ({approx}0.15 {mu}Jy) in the WFC3/IR F160W filter ({approx}1.4-1.7 {mu}m) where they are detected at {approx}>12{sigma}. All three images are also confidently detected at {approx}>6{sigma} in F140W ({approx}1.2-1.6 {mu}m), dropping out of detection from 15 lower wavelength Hubble Space Telescope filters ({approx}0.2-1.4 {mu}m), and lacking bright detections in Spitzer/IRAC 3.6 {mu}m and 4.5 {mu}m imaging ({approx}3.2-5.0 {mu}m). We rule out a broad range of possible lower redshift interlopers, including some previously published as high-redshift candidates. Our high-redshift conclusion is more conservative than if we had neglected a Bayesian photometric redshift prior. Given CLASH observations of 17 high-mass clusters to date, our discoveries of MACS0647-JD at z {approx} 10.8 and MACS1149-JD at z {approx} 9.6 are consistent with a lensed luminosity function extrapolated from lower redshifts. This would suggest that low-luminosity galaxies could have reionized the universe. However, given the significant uncertainties based on only two galaxies, we cannot yet rule out the sharp drop-off in number counts at z {approx}> 10 suggested by field searches.« less

  2. High resolution CO images of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Meixner, M.; Puchalsky, R.; Blitz, L.; Wright, M.

    1990-01-01

    The CO (J = 1-0) emission of three Seyfert galaxies, NGC 3227, NGC 7469, and NGC 5033 was imaged. The CO emission in NGC 3227 and NGC 7469 appears as compact structures centered on the active nuclei, containing substantial fractions of the single-dish flux. In NGC 3227, 10 percent of the CO flux detected by the interferometer is contained within the ionized narrow-line region. The unresolved molecular gas concentrations in the nucleus of NGC 3227 imply a CO mass of 65 million solar masses concentrated within a diameter less than 50 pc. The CO emission in NGC 5033 is not detected at this resolution, implying a CO structure size of 20 to 60 arcsec. Continuum emission at 2.7 mm is not detected in any of the three galaxies. In the center of NGC 7469, the H2 mass is comparable to the dynamical mass. Kinematic studies of the detected gas reveal a rotational motion of the gas in NGC 3227 and NGC 7469, allowing identification of the gas in NGC 7469 with a nuclear starburst. These data are consistent with the idea that interactions between galaxies cause gas to concentrate in their nuclei thereby feeding starburst and Seyfert activity.

  3. Galaxy NGC5398

    NASA Image and Video Library

    2003-07-25

    This is an ultraviolet color image of the galaxy NGC5398 taken by NASA Galaxy Evolution Explorer on June 7, 2003. NGC5398 is a barred spiral galaxy located 60 million light-years from Earth. The star formation is concentrated in the two bright regions of the image. http://photojournal.jpl.nasa.gov/catalog/PIA04633

  4. The JCMT Nearby Galaxies Legacy Survey - VII. Hα imaging and massive star formation properties

    NASA Astrophysics Data System (ADS)

    Sánchez-Gallego, J. R.; Knapen, J. H.; Wilson, C. D.; Barmby, P.; Azimlu, M.; Courteau, S.

    2012-06-01

    We present Hα fluxes, star formation rates (SFRs) and equivalent widths (EWs) for a sample of 156 nearby galaxies observed in the 12CO J= 3-2 line as part of the James Clerk Maxwell Telescope Nearby Galaxies Legacy Survey. These are derived from images and values in the literature and from new Hα images for 72 galaxies which we publish here. We describe the sample, observations and procedures to extract the Hα fluxes and related quantities. We discuss the SFR properties of our sample and confirm the well-known correlation with galaxy luminosity, albeit with high dispersion. Our SFRs range from 0.1 to 11 M⊙ yr-1 with a median SFR value for the complete sample of 0.2 M⊙ yr-1. This median value is somewhat lower than similar published measurements, which we attribute, in part, to our sample being H I selected and, thus, not biased towards high SFRs as has frequently been the case in previous studies. Additionally, we calculate internal absorptions for the Hα line, A(Hα), which are lower than many of those used in previous studies. Our derived EWs, which range from 1 to 880 Å with a median value of 27 Å, show little dependence on luminosity but rise by a factor of 5 from early- to late-type galaxies. This paper is the first in a series aimed at comparing SFRs obtained from Hα imaging of galaxies with information derived from other tracers of star formation and atomic and molecular gas.

  5. Featured Image: H I Gas in the Triangulum Galaxy

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-08-01

    These spectacular images are of M33, otherwise known as the Triangulum Galaxy a spiral galaxy roughly 3 million light-years away. The views on the left and in the center are different Wide-field Infrared Survey Explorer (WISE) filters, and the view on the right is a full-resolution look at the H I gas distribution in M33s inner disk, made with data from the Dominion Radio Astrophysical Observatory (DRAO) Synthesis Telescope and Arecibo. In a new study, a team of authors led by Zacharie Sie Kam (University of Ouagadougou, Burkina Faso; University of Montreal, Canada) uses the H I gas observations to explore how the mass is distributed throughout M33 and how the gas moves as the galaxys disk rotates. To read more about what they learned, check out the paper below.CitationS. Z. Kam et al 2017 AJ 154 41. doi:10.3847/1538-3881/aa79f3

  6. Ultracompact Blue Dwarf Galaxies: Hubble Space Telescope Imaging and Stellar Population Analysis

    NASA Astrophysics Data System (ADS)

    Corbin, Michael R.; Vacca, William D.; Cid Fernandes, Roberto; Hibbard, John E.; Somerville, Rachel S.; Windhorst, Rogier A.

    2006-11-01

    We present deep Hubble Space Telescope (HST) Advanced Camera for Surveys/High Resolution Channel U-, narrow-V-, and I-band images of nine ``ultracompact'' blue dwarf galaxies (UCBDs) selected from the Sloan Digital Sky Survey (SDSS). We define UCBDs as local (z<0.01) star-forming galaxies having angular diameters less than 6" and physical diameters <1 kpc. They are also among the most metal-poor galaxies known, including objects having 12+log(O/H)<7.65, and are found to reside within voids. Both the HST images and the objects' SDSS optical spectra reveal that they are composites of young (~1-10 Myr) populations that dominate their light and older (~10 Gyr) populations that dominate their stellar masses, which we estimate to be ~107-108 Msolar. An intermediate-age (~107-109 yr) population is also indicated in most objects. The objects do not appear to be as dynamically disturbed as the prototype UCBD, POX 186, but the structure of several of them suggests that their current star formation has been triggered by the collisions/mergers of smaller clumps of stars. In one case, HS 0822+3542, the images resolve what may be two small (~100 pc) components that have recently collided, supporting this interpretation. In six of the objects much of the star formation is concentrated in young massive clusters, contributing to their compactness in ground-based images. The evidence that the galaxies consist mainly of ~10 Gyr old stars establishes that they are not protogalaxies, forming their first generation of stars. Their low metallicities are more likely to be the result of the escape of supernova ejecta, rather than youth.

  7. The dwarf galaxy population of nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Lisker, Thorsten; Wittmann, Carolin; Pak, Mina; Janz, Joachim; Bialas, Daniel; Peletier, Reynier; Grebel, Eva; Falcon Barroso, Jesus; Toloba, Elisa; Smakced Collaboration, Focus Collaboration

    2015-01-01

    The Fornax, Virgo, Ursa Major and Perseus galaxy clusters all have very different characteristics, in terms of their density, mass, and large-scale environment. We can regard these clusters as laboratories for studying environmental influence on galaxy evolution, using the sensitive low-mass galaxies as probes for external mechanisms. Here we report on recent and ongoing observational studies of the said clusters with imaging and spectroscopy, as well as on the interpretation of present-day cluster galaxy populations with the aid of cosmological simulations.Multicolor imaging data allow us to identify residual star formation in otherwise red early-type dwarf galaxies, which hold clues to the strength of gas stripping processes. Major-axis spectra and 2D kinematical maps provide insight regarding the amount of rotational support and how much dynamical heating a dwarf galaxy may have experienced. To this end, dedicated N-body simulations that follow the evolution of galaxies since early epochs reveal their path through parameter space, and can be compared to observations in order to understand the time-integrated effect of environmental influence.

  8. Metals and dust in the neutral ISM: the Galaxy, Magellanic Clouds, and damped Lyman-α absorbers

    NASA Astrophysics Data System (ADS)

    De Cia, Annalisa

    2018-05-01

    Context. The presence of dust in the neutral interstellar medium (ISM) dramatically changes the metal abundances that we measure. Understanding the metal content in the neutral ISM, and a direct comparison between different environments, has been hampered to date because of the degeneracy to the observed ISM abundances caused by the effects of metallicity, the presence of dust, and nucleosynthesis. Aims: We study the metal and dust content in the neutral ISM consistently in different environments, and assess the universality of recently discovered sequences of relative abundances. We also intend to assess the validity of [Zn/Fe] as a tracer of dust in the ISM. This has recently been cast into doubt based on observations of stellar abundances, and needs to be addressed before we can safely use it to study the ISM. Methods: In this letter we present a simple comparison of relative abundances observed in the neutral ISM in the Galaxy, the Magellanic Clouds, and damped Lyman-α absorbers (DLAs). The main novelty in this comparison is the inclusion of the Magellanic Clouds. Results: The same sequences of relative abundances are valid for the Galaxy, Magellanic Clouds, and DLAs. These sequences are driven by the presence of dust in the ISM and seem "universal". Conclusions: The metal and dust properties in the neutral ISM appear to follow a similar behaviour in different environments. This suggests that a dominant fraction of the dust budget is built up from grain growth in the ISM depending of the physical conditions and regardless of the star formation history of the system. In addition, the DLA gas behaves like the neutral ISM, at least from a chemical point of view. Finally, despite the deviations in [Zn/Fe] observed in stellar abundances, [Zn/Fe] is a robust dust tracer in the ISM of different environments, from the Galaxy to DLAs.

  9. Lights All Askew: Systematics in Galaxy Images from Megaparsecs to Microns

    NASA Astrophysics Data System (ADS)

    Bradshaw, Andrew Kenneth

    The stars and galaxies are not where they seem. In the process of imaging and measurement, the light from distant objects is distorted, blurred, and skewed by several physical effects on scales from megaparsecs to microns. Charge-coupled devices (CCDs) provide sensitive detection of this light, but introduce their own problems in the form of systematic biases. Images of these stars and galaxies are formed in CCDs when incoming light generates photoelectrons which are then collected in a pixel's potential well and measured as signal. However, these signal electrons can be diverted from purely parallel paths toward the pixel wells by transverse fields sourced by structural elements of the CCD, accidental imperfections in fabrication, or dynamic electric fields induced by other collected charges. These charge transport anomalies lead to measurable systematic errors in the images which bias cosmological inferences based on them. The physics of imaging therefore deserves thorough investigation, which is performed in the laboratory using a unique optical beam simulator and in computer simulations of charge transport. On top of detector systematics, there are often biases in the mathematical analysis of pixelized images; in particular, the location, shape, and orientation of stars and galaxies. Using elliptical Gaussians as a toy model for galaxies, it is demonstrated how small biases in the computed image moments lead to observable orientation patterns in modern survey data. Also presented are examples of the reduction of data and fitting of optical aberrations of images in the lab and on the sky which are modeled by physically or mathematically-motivated methods. Finally, end-to-end analysis of the weak gravitational lensing signal is presented using deep sky data as well as in N-body simulations. It is demonstrated how measured weak lens shear can be transformed by signal matched filters which aid in the detection of mass overdensities and separate signal from noise. A

  10. Galaxy Clusters in the Line of Sight to Background Quasars. III. Multi-object Spectroscopy

    NASA Astrophysics Data System (ADS)

    Andrews, H.; Barrientos, L. F.; López, S.; Lira, P.; Padilla, N.; Gilbank, D. G.; Lacerna, I.; Maureira, M. J.; Ellingson, E.; Gladders, M. D.; Yee, H. K. C.

    2013-09-01

    We present Gemini/GMOS-S multi-object spectroscopy of 31 galaxy cluster candidates at redshifts between 0.2 and 1.0 and centered on QSO sight lines taken from López et al. The targets were selected based on the presence of an intervening Mg II absorption system at a similar redshift to that of a galaxy cluster candidate lying at a projected distance <2 h_{71}^{-1} Mpc from the QSO sight line (a "photometric hit"). The absorption systems span rest-frame equivalent widths between 0.015 and 2.028 Å. Our aim was three-fold: (1) to identify the absorbing galaxies and determine their impact parameters, (2) to confirm the galaxy cluster candidates in the vicinity of each quasar sightline, and (3) to determine whether the absorbing galaxies reside in galaxy clusters. In this way, we are able to characterize the absorption systems associated with cluster members. Our main findings are as follows. (1) We identified 10 out of 24 absorbing galaxies with redshifts between 0.2509 <= z gal <= 1.0955, up to an impact parameter of 142\\ h_{71}^{-1} kpc and a maximum velocity difference of 280 km s-1. (2) We spectroscopically confirmed 20 out of 31 cluster/group candidates, with most of the confirmed clusters/groups at z < 0.7. This relatively low efficiency results from the fact that we centered our observations on the QSO location, and thus occasionally some of the cluster centers were outside the instrument field of view. (3) Following from the results above, we spectroscopically confirmed of 10 out of 14 photometric hits within ~650 km s-1 from galaxy clusters/groups, in addition to two new ones related to galaxy group environments. These numbers imply efficiencies of 71% in finding such systems with MOS spectroscopy. This is a remarkable result since we defined a photometric hit as those cluster-absorber pairs having a redshift difference Δz = 0.1. The general population of our confirmed absorbing galaxies have luminosities L_{B} \\sim L_{B}^{\\ast } and mean rest

  11. Can Low-Luminosity Galaxies Reionize the Universe?

    NASA Astrophysics Data System (ADS)

    Ferguson, Harry

    2017-08-01

    The prevailing wisdom is that low-luminosity galaxies are responsible for cosmic reionization. If this is true, then low-luminosity galaxies at high redshift have to be different from most of the low-luminosity galaxies studied to date at low redshift, which absorb too much of their ionizing radiation. While it is possible that high-z dwarf galaxies have the same metallicity at fixed mass and star-formation rate as low-redshift galaxies, they are different in one key respect. At fixed dark-halo mass, they are probably much denser (having collapsed earlier). This could lead to higher star-formation surface densities more capable of creating cavities in the ISM. But the denser halos of surrounding gas could be harder to clear. There is a critical need for further observations to validate and test physical models for the trends of escaping ionizing continuum with redshift, luminosity, and surface density. JWST will not be able to measure ionizing radiation during the epoch of reionization because the IGM absorbs most of the photons. To prepare for JWST, we need to use the ultraviolet capabilities of HST to measure diverse samples of galaxies at z<3, where we can see the photons and quantify the trends with other galaxy properties. As a complement to other studies, we propose to constrain the Lyman-continuum emission from 8 relatively low-luminosity strongly-lensed galaxies at 1

  12. Astrophysics. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens.

    PubMed

    Kelly, Patrick L; Rodney, Steven A; Treu, Tommaso; Foley, Ryan J; Brammer, Gabriel; Schmidt, Kasper B; Zitrin, Adi; Sonnenfeld, Alessandro; Strolger, Louis-Gregory; Graur, Or; Filippenko, Alexei V; Jha, Saurabh W; Riess, Adam G; Bradac, Marusa; Weiner, Benjamin J; Scolnic, Daniel; Malkan, Matthew A; von der Linden, Anja; Trenti, Michele; Hjorth, Jens; Gavazzi, Raphael; Fontana, Adriano; Merten, Julian C; McCully, Curtis; Jones, Tucker; Postman, Marc; Dressler, Alan; Patel, Brandon; Cenko, S Bradley; Graham, Melissa L; Tucker, Bradley E

    2015-03-06

    In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster's gravitational potential also creates multiple images of the z = 1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses. Copyright © 2015, American Association for the Advancement of Science.

  13. Galaxy Messier 83

    NASA Image and Video Library

    2003-07-25

    This image of the spiral galaxy Messier 83 was taken by NASA's Galaxy Evolution Explorer on June 7, 2003. Located 15 million light years from Earth and known as the Southern Pinwheel Galaxy, Messier 83 displays significant amounts of ultraviolet emissions far from the optically bright portion of the galaxy. It is also known to have an extended hydrogen disc that appears to radiate a faint ultraviolet emission. The red stars in the foreground of the image are Milky Way stars. http://photojournal.jpl.nasa.gov/catalog/PIA04629

  14. Deep Generative Models of Galaxy Images for the Calibration of the Next Generation of Weak Lensing Surveys

    NASA Astrophysics Data System (ADS)

    Lanusse, Francois; Ravanbakhsh, Siamak; Mandelbaum, Rachel; Schneider, Jeff; Poczos, Barnabas

    2017-01-01

    Weak gravitational lensing has long been identified as one of the most powerful probes to investigate the nature of dark energy. As such, weak lensing is at the heart of the next generation of cosmological surveys such as LSST, Euclid or WFIRST.One particularly crititcal source of systematic errors in these surveys comes from the shape measurement algorithms tasked with estimating galaxy shapes. GREAT3, the last community challenge to assess the quality of state-of-the-art shape measurement algorithms has in particular demonstrated that all current methods are biased to various degrees and, more importantly, that these biases depend on the details of the galaxy morphologies. These biases can be measured and calibrated by generating mock observations where a known lensing signal has been introduced and comparing the resulting measurements to the ground-truth. Producing these mock observations however requires input galaxy images of higher resolution and S/N than the simulated survey, which typically implies acquiring extremely expensive space-based observations.The goal of this work is to train a deep generative model on already available Hubble Space Telescope data which can then be used to sample new galaxy images conditioned on parameters such as magnitude, size or redshift and exhibiting complex morphologies. Such model can allow us to inexpensively produce large set of realistic realistic images for calibration purposes.We implement a conditional generative model based on state-of-the-art deep learning methods and fit it to deep galaxy images from the COSMOS survey. The quality of the model is assessed by computing an extensive set of galaxy morphology statistics on the generated images. Beyond simple second moment statistics such as size and ellipticity, we apply more complex statistics specifically designed to be sensitive to disturbed galaxy morphologies. We find excellent agreement between the morphologies of real and model generated galaxies.Our results

  15. A deconvolution technique to correct deep images of galaxies from instrumental scattered light

    NASA Astrophysics Data System (ADS)

    Karabal, E.; Duc, P.-A.; Kuntschner, H.; Chanial, P.; Cuillandre, J.-C.; Gwyn, S.

    2017-05-01

    Deep imaging of the diffuse light that is emitted by stellar fine structures and outer halos around galaxies is often now used to probe their past mass assembly. Because the extended halos survive longer than the relatively fragile tidal features, they trace more ancient mergers. We use images that reach surface brightness limits as low as 28.5-29 mag arcsec-2 (g-band) to obtain light and color profiles up to 5-10 effective radii of a sample of nearby early-type galaxies. These were acquired with MegaCam as part of the CFHT MATLAS large programme. These profiles may be compared to those produced using simulations of galaxy formation and evolution, once corrected for instrumental effects. Indeed they can be heavily contaminated by the scattered light caused by internal reflections within the instrument. In particular, the nucleus of galaxies generates artificial flux in the outer halo, which has to be precisely subtracted. We present a deconvolution technique to remove the artificial halos that makes use of very large kernels. The technique, which is based on PyOperators, is more time efficient than the model-convolution methods that are also used for that purpose. This is especially the case for galaxies with complex structures that are hard to model. Having a good knowledge of the point spread function (PSF), including its outer wings, is critical for the method. A database of MegaCam PSF models corresponding to different seeing conditions and bands was generated directly from the deep images. We show that the difference in the PSFs in different bands causes artificial changes in the color profiles, in particular a reddening of the outskirts of galaxies having a bright nucleus. The method is validated with a set of simulated images and applied to three representative test cases: NGC 3599, NGC 3489, and NGC 4274, which exhibits a prominent ghost halo for two of them. This method successfully removes this. The library of PSFs (FITS files) is only available at the

  16. A near-infrared imaging survey of interacting galaxies - The disk-disk merger candidates subset

    NASA Technical Reports Server (NTRS)

    Stanford, S. A.; Bushouse, H. A.

    1991-01-01

    Near-infrared imaging obtained for systems believed to be advanced disk-disk mergers are presented and discussed. These systems were chosen from a sample of approximately 170 objects from the Arp Atlas of Peculiar Galaxies which have been imaged in the JHK bands as part of an investigation into the stellar component of interacting galaxies. Of the eight remnants which show optical signs of a disk-disk merger, the near-infrared surface brightness profiles are well-fitted by an r exp 1/4 law over all measured radii in four systems, and out to radii of about 3 kpc in three systems. These K band profiles indicate that most of the remnants in the sample either have finished or are in the process of relaxing into a mass distribution like that of normal elliptical galaxies.

  17. Environmental Effects on Galaxy Evolution. II. Quantifying the Tidal Features in NIR Images of the Cluster Abell 85

    NASA Astrophysics Data System (ADS)

    Venkatapathy, Y.; Bravo-Alfaro, H.; Mayya, Y. D.; Lobo, C.; Durret, F.; Gamez, V.; Valerdi, M.; Granados-Contreras, A. P.; Navarro-Poupard, F.

    2017-12-01

    This work is part of a series of papers devoted to investigating the evolution of cluster galaxies during their infall. In the present article, we image in NIR a selected sample of galaxies throughout the massive cluster Abell 85 (z = 0.055). We obtain (JHK‧) photometry for 68 objects, reaching ˜1 mag arcsec-2 deeper than 2MASS. We use these images to unveil asymmetries in the outskirts of a sample of bright galaxies and develop a new asymmetry index, {α }{An}, which allows us to quantify the degree of disruption by the relative area occupied by the tidal features on the plane of the sky. We measure the asymmetries for a subsample of 41 large-area objects, finding clear asymmetries in 10 galaxies; most of these are in groups and pairs projected at different clustercentric distances, and some of them are located beyond R 500. Combining information on the H I gas content of blue galaxies and the distribution of substructures across Abell 85 with the present NIR asymmetry analysis, we obtain a very powerful tool to confirm that tidal mechanisms are indeed present and are currently affecting a fraction of galaxies in Abell 85. However, when comparing our deep NIR images with UV blue images of two very disrupted (jellyfish) galaxies in this cluster, we discard the presence of tidal interactions down to our detection limit. Our results suggest that ram-pressure stripping is at the origin of such spectacular disruptions. We conclude that across a complex cluster like Abell 85, environmental mechanisms, both gravitational and hydrodynamical, are playing an active role in driving galaxy evolution.

  18. Galaxy Centaurus A

    NASA Image and Video Library

    2003-07-25

    This image of the active galaxy Centaurus A was taken by NASA's Galaxy Evolution Explorer on June 7, 2003. The galaxy is located 30 million light-years from Earth and is seen edge on, with a prominent dust lane across the major axis. In this image the near ultraviolet emission is represented as green, and the far ultraviolet emission as blue. The galaxy exhibits jets of high energy particles, which were traced by the X-ray emission and measured by NASA's Chandra X-ray Observatory. These X-ray emissions are seen as red in the image. Several regions of ultraviolet emission can be seen where the jets of high energy particles intersect with hydrogen clouds in the upper left corner of the image. The emission shown may be the result of recent star formation triggered by the compression of gas by the jet. http://photojournal.jpl.nasa.gov/catalog/PIA04624

  19. Fast radio burst tied to distant dwarf galaxy (Image 2)

    NSF Multimedia

    2017-06-07

    Radio telescope at Arecibo only localized the fast radio burst to the area inside the two circles in this image, but the Very Large Array was able to pinpoint it as a dwarf galaxy within the square (shown at intersection of cross hairs in enlarged box)

  20. Galaxy NGC5962

    NASA Image and Video Library

    2003-07-25

    NASA Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5962 on June 7, 2003. This spiral galaxy is located 90 million light-years from Earth. http://photojournal.jpl.nasa.gov/catalog/PIA04635

  1. High resolution imaging of galaxy cores

    NASA Technical Reports Server (NTRS)

    Crane, P.; Stiavelli, M.; King, I. R.; Deharveng, J. M.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Boksenberg, A.; Disney, M. J.; Jakobsen, P.

    1993-01-01

    Surface photometry data obtained with the Faint Object Camera of the Hubble Space Telescope in the cores of ten galaxies is presented. The major results are: (1) none of the galaxies show truly 'isothermal' cores, (2) galaxies with nuclear activity show very similar light profiles, (3) all objects show central mass densities above 10 exp 3 solar masses/cu pc3, and (4) four of the galaxies (M87, NGC 3862, NGC 4594, NGC 6251) show evidence for exceptional nuclear mass concentrations.

  2. Edge-on Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Hubble Space Telescope has imaged an unusual edge-on galaxy, revealing remarkable details of its warped dusty disc and showing how colliding galaxies trigger the birth of new stars.

    The image, taken by Hubble's Wide Field and Planetary Camera 2 (WFPC2), is online at http://heritage.stsci.edu and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. During observations of the galaxy, the camera passed a milestone, taking its 100,000th image since shuttle astronauts installed it in Hubble in 1993.

    The dust and spiral arms of normal spiral galaxies, like our Milky Way, look flat when seen edge- on. The new image of the galaxy ESO 510-G13 shows an unusual twisted disc structure, first seen in ground-based photographs taken at the European Southern Observatory in Chile. ESO 510-G13 lies in the southern constellation Hydra, some 150 million light-years from Earth. Details of the galaxy's structure are visible because interstellar dust clouds that trace its disc are silhouetted from behind by light from the galaxy's bright, smooth central bulge.

    The strong warping of the disc indicates that ESO 510-G13 has recently collided with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort galaxies as their stars, gas, and dust merge over millions of years. When the disturbances die out, ESO 510-G13 will be a single galaxy.

    The galaxy's outer regions, especially on the right side of the image, show dark dust and bright clouds of blue stars. This indicates that hot, young stars are forming in the twisted disc. Astronomers believe star formation may be triggered when galaxies collide and their interstellar clouds are compressed.

    The Hubble Heritage Team used WFPC2 to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty

  3. The core of the nearby S0 galaxy NGC 7457 imaged with the HST planetary camera

    NASA Technical Reports Server (NTRS)

    Lauer, Tod R.; Faber, S. M.; Holtzman, Jon A.; Baum, William A.; Currie, Douglas G.; Ewald, S. P.; Groth, Edward J.; Hester, J. Jeff; Kelsall, T.

    1991-01-01

    A brief analysis is presented of images of the nearby S0 galaxy NGC 7457 obtained with the HST Planetary Camera. While the galaxy remains unresolved with the HST, the images reveal that any core most likely has r(c) less than 0.052 arcsec. The light distribution is consistent with a gamma = -1.0 power law inward to the resolution limit, with a possible stellar nucleus with luminosity of 10 million solar. This result represents the first observation outside the Local Group of a galaxy nucleus at this spatial resolution, and it suggests that such small, high surface brightness cores may be common.

  4. HUBBLE'S 100,000TH EXPOSURE CAPTURES IMAGE OF DISTANT QUASAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Hubble Space Telescope achieved its 100,000th exposure June 22 with a snapshot of a quasar that is about 9 billion light-years from Earth. The Wide Field and Planetary Camera 2 clicked this image of the quasar, the bright object in the center of the photo. The fainter object just above it is an elliptical galaxy. Although the two objects appear to be close to each other, they are actually separated by about 2 billion light-years. Located about 7 billion light-years away, the galaxy is almost directly in front of the quasar. Astronomer Charles Steidel of the California Institute of Technology in Pasadena, Calif., indirectly discovered the galaxy when he examined the quasar's light, which contained information about the galaxy's chemical composition. The reason, Steidel found, was that the galaxy was absorbing the light at certain frequencies. The astronomer is examining other background quasars to determine which kinds of galaxies absorb light at the same frequencies. Steidel also was somewhat surprised to discover that the galaxy is an elliptical, rather than a spiral. Elliptical galaxies are generally believed to contain very little gas. However, this elliptical has a gaseous 'halo' and contains no visible stars. Part of the halo is directly in front of the quasar. The bright object to the right of the quasar is a foreground star. The quasar and star are separated by billions of light-years. The quasar looks as bright as the star because it produces a tremendous amount of light from a compact source. The 'disturbed-looking' double spiral galaxy above the quasar also is in the foreground. Credit: Charles Steidel (California Institute of Technology, Pasadena, CA) and NASA. Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from ftp.stsci.edu in /pubinfo.

  5. THE GINI COEFFICIENT AS A MORPHOLOGICAL MEASUREMENT OF STRONGLY LENSED GALAXIES IN THE IMAGE PLANE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florian, Michael K.; Li, Nan; Gladders, Michael D.

    2016-12-01

    Characterization of the morphology of strongly lensed galaxies is challenging because images of such galaxies are typically highly distorted. Lens modeling and source plane reconstruction is one approach that can provide reasonably undistorted images from which morphological measurements can be made, though at the expense of a highly spatially variable telescope point-spread function (PSF) when mapped back to the source plane. Unfortunately, modeling the lensing mass is a time- and resource-intensive process, and in many cases there are too few constraints to precisely model the lensing mass. If, however, useful morphological measurements could be made in the image plane rathermore » than the source plane, it would bypass this issue and obviate the need for a source reconstruction process for some applications. We examine the use of the Gini coefficient as one such measurement. Because it depends on the cumulative distribution of the light of a galaxy, but not the relative spatial positions, the fact that surface brightness is conserved by lensing means that the Gini coefficient may be well preserved by strong gravitational lensing. Through simulations, we test the extent to which the Gini coefficient is conserved, including by effects due to PSF convolution and pixelization, to determine whether it is invariant enough under lensing to be used as a measurement of galaxy morphology that can be made in the image plane.« less

  6. The GINI coefficient as a morphological measurement of strongly lensed galaxies in the image plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florian, Michael K.; Li, Nan; Gladders, Michael D.

    2016-11-30

    Characterization of the morphology of strongly lensed galaxies is challenging because images of such galaxies are typically highly distorted. Lens modeling and source plane reconstruction is one approach that can provide reasonably undistorted images from which morphological measurements can be made, though at the expense of a highly spatially variable telescope point-spread function (PSF) when mapped back to the source plane. Unfortunately, modeling the lensing mass is a time-and resource-intensive process, and in many cases there are too few constraints to precisely model the lensing mass. If, however, useful morphological measurements could be made in the image plane rather thanmore » the source plane, it would bypass this issue and obviate the need for a source reconstruction process for some applications. We examine the use of the Gini coefficient as one such measurement. Because it depends on the cumulative distribution of the light of a galaxy, but not the relative spatial positions, the fact that surface brightness is conserved by lensing means that the Gini coefficient may be well preserved by strong gravitational lensing. Through simulations, we test the extent to which the Gini coefficient is conserved, including by effects due to PSF convolution and pixelization, to determine whether it is invariant enough under lensing to be used as a measurement of galaxy morphology that can be made in the image plane.« less

  7. The morphology of faint galaxies in Medium Deep Survey images using WFPC2

    NASA Technical Reports Server (NTRS)

    Griffiths, R. E.; Casertano, S.; Ratnatunga, K. U.; Neuschaefer, L. W.; Ellis, R. S.; Gilmore, G. F.; Glazebrook, K.; Santiago, B.; Huchra, J. P.; Windhorst, R. A.

    1994-01-01

    First results from Hubble Space Telescope (HST) Medium Deep Survey images taken with Wide Field/Planetary Camera-2 (WFPC2) demonstrate that galaxy classifications can be reliably performed to magnitudes I814 approximately less than 22.0 in the F815W band. Published spectroscopic surveys to this depth indicate a mean redshift of bar-z approximately 0.5. We have classified over 200 galaxies in nine WFPC2 fields according to a basic morphological scheme. The majority of these faint galaxies appear to be similar to regular Hubble-sequence examples observed at low redshift. To the precision of our classification scheme, the relative proportion of spheroidal and disk systems of normal appearance is as expected from nearby samples, indicating that the bulk of the local galaxy population was in place at half the Hubble time. However, the most intriguing result is the relatively high proportion (approximately 40%) of objects which are in some way anomalous, and which may be of relevance in understanding the origin of the familiar excess population of faint galaxies established by others. These diverse objects include apparently interacting pairs whose multiple structure is only revealed with HST's angular resolution, galaxies with superluminous star-forming regions, diffuse low surface brightness galaxies of various forms, and compact galaxies. These anomalous galaxies contribute a substantial fraction of the excess counts at our limiting magnitude, and may provide insights into the 'faint blue galaxy' problem.

  8. Star-Forming Galaxies in the Hercules Cluster: Hα Imaging of A2151

    NASA Astrophysics Data System (ADS)

    Cedrés, Bernabé; Iglesias-Páramo, Jorge; Vílchez, José Manuel; Reverte, Daniel; Petropoulou, Vasiliki; Hernández-Fernández, Jonathan

    2009-09-01

    This paper presents the first results of an Hα imaging survey of galaxies in the central regions of the A2151 cluster. A total of 50 sources were detected in Hα, from which 41 were classified as secure members of the cluster and 2 as likely members based on spectroscopic and photometric redshift considerations. The remaining seven galaxies were classified as background contaminants and thus excluded from our study on the Hα properties of the cluster. The morphologies of the 43 Hα selected galaxies range from grand design spirals and interacting galaxies to blue compacts and tidal dwarfs or isolated extragalactic H II regions, spanning a range of magnitudes of -21 <= MB <= -12.5 mag. From these 43 galaxies, 7 have been classified as active galactic nucleus (AGN) candidates. These AGN candidates follow the L(Hα) versus MB relationship of the normal galaxies, implying that the emission associated with the nuclear engine has a rather secondary impact on the total Hα emission of these galaxies. A comparison with the clusters Coma and A1367 and a sample of field galaxies has shown the presence of cluster galaxies with L(Hα) lower than expected for their MB , a consequence of the cluster environment. This fact results in differences in the L(Hα) versus EW(Hα) and L(Hα) distributions of the clusters with respect to the field, and in cluster-to-cluster variations of these quantities, which we propose are driven by a global cluster property as the total mass. In addition, the cluster Hα emitting galaxies tend to avoid the central regions of the clusters, again with different intensity depending on the cluster total mass. For the particular case of A2151, we find that most Hα emitting galaxies are located close to the regions with the higher galaxy density, offset from the main X-ray peak. Overall, we conclude that both the global cluster environment and the cluster merging history play a non-negligible role in the integral star formation properties of clusters of

  9. The association between gas and galaxies - II. The two-point correlation function

    NASA Astrophysics Data System (ADS)

    Wilman, R. J.; Morris, S. L.; Jannuzi, B. T.; Davé, R.; Shone, A. M.

    2007-02-01

    We measure the two-point correlation function, ξAG, between galaxies and quasar absorption-line systems at z < 1, using the data set of Morris & Jannuzi on 16 lines-of-sight (LOS) with ultraviolet (UV) spectroscopy and galaxy multi-object spectroscopy (Paper I). The measurements are made in 2D redshift space out to π = 20h-1 Mpc (comoving) along the LOS and out to σ = 2h-1 Mpc projected; as a function of HI column density in the range NHI = 1013-1019cm-2, also for CIV absorption systems, and as a function of galaxy spectral type. This extends the absorber-galaxy pair analysis of Paper I. We find that the amplitude of the peak in ξAG at the smallest separations increases slowly as the lower limit on NHI is increased from 1013 to 1016cm-2, and then jumps sharply (albeit with substantial uncertainties) for NHI > 1017cm-2. For CIV absorbers, the peak strength of ξAG is roughly comparable to that of HI absorbers with NHI > 1016.5cm-2, consistent with the finding that the CIV absorbers are associated with strong HI absorbers. We do not reproduce the differences reported by Chen et al. between 1D ξAG measurements using galaxy subsamples of different spectral types. However, the full impact on the measurements of systematic differences in our samples is hard to quantify. We compare the observations with smoothed particle hydrodynamical (SPH) simulations and discover that in the observations ξAG is more concentrated to the smallest separations than in the simulations. The latter also display a `finger of god' elongation of ξAG along the LOS in redshift space, which is absent from our data, but similar to that found by Ryan-Weber for the cross-correlation of quasar absorbers and HI-emission-selected galaxies. The physical origin of these `fingers of god' is unclear, and we thus highlight several possible areas for further investigation.

  10. Amazing Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The many 'personalities' of our great galactic neighbor, the Andromeda galaxy, are exposed in this new composite image from NASA's Galaxy Evolution Explorer and the Spitzer Space Telescope.

    The wide, ultraviolet eyes of Galaxy Evolution Explorer reveal Andromeda's 'fiery' nature -- hotter regions brimming with young and old stars. In contrast, Spitzer's super-sensitive infrared eyes show Andromeda's relatively 'cool' side, which includes embryonic stars hidden in their dusty cocoons.

    Galaxy Evolution Explorer detected young, hot, high-mass stars, which are represented in blue, while populations of relatively older stars are shown as green dots. The bright yellow spot at the galaxy's center depicts a particularly dense population of old stars.

    Swaths of red in the galaxy's disk indicate areas where Spitzer found cool, dusty regions where stars are forming. These stars are still shrouded by the cosmic clouds of dust and gas that collapsed to form them.

    Together, Galaxy Evolution Explorer and Spitzer complete the picture of Andromeda's swirling spiral arms. Hints of pinkish purple depict regions where the galaxy's populations of hot, high-mass stars and cooler, dust-enshrouded stars co-exist.

    Located 2.5 million light-years away, the Andromeda is our largest nearby galactic neighbor. The galaxy's entire disk spans about 260,000 light-years, which means that a light beam would take 260,000 years to travel from one end of the galaxy to the other. By comparison, our Milky Way galaxy's disk is about 100,000 light-years across.

    This image is a false color composite comprised of data from Galaxy Evolution Explorer's far-ultraviolet detector (blue), near-ultraviolet detector (green), and Spitzer's multiband imaging photometer at 24 microns (red).

  11. Mysterious Blob Galaxies Revealed

    NASA Image and Video Library

    2005-01-11

    This image composite shows a giant galactic blob (red) and the three merging galaxies NASA's Spitzer Space Telescope discovered within it (yellow). Blobs are intensely glowing clouds of hot hydrogen gas that envelop faraway galaxies. They are about 10 times as large as the galaxies they surround. Visible-light images reveal the vast extent of blobs, but don't provide much information about their host galaxies. Using its heat-seeking infrared eyes, Spitzer was able to see the dusty galaxies tucked inside one well-known blob located 11 billion light-years away. The findings reveal three monstrously bright galaxies, trillions of times brighter than the Sun, in the process of merging together. Spitzer also observed three other blobs located in the same cosmic neighborhood, all of which were found to be glaringly bright. One of these blobs is also known to be a galactic merger, only between two galaxies instead of three. It remains to be seen whether the final two blobs studied also contain mergers. The Spitzer data were acquired by its multiband imaging photometer. The visible-light image was taken by the Blanco Telescope at the Cerro Tololo Inter-American Observatory, Chile. http://photojournal.jpl.nasa.gov/catalog/PIA07220

  12. Galaxy M101

    NASA Image and Video Library

    2003-07-25

    This three-color image of galaxy M101 was taken by NASA's Galaxy Evolution Explorer on June 20, 2003. The far ultraviolet emissions are shown in blue, the near ultraviolet emissions are green, and the red emissions, which were taken from NASA's Digital Sky Survey, represent visible light. This image combines short, medium, and long "exposure" pictures to best display the evolution of star formation in a spiral galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA04630

  13. Hubble Views a Young Elliptical Galaxy

    NASA Image and Video Library

    2017-12-08

    At the center of this amazing Hubble image is the elliptical galaxy NGC 3610. Surrounding the galaxy are a wealth of other galaxies of all shapes. There are spiral galaxies, galaxies with a bar in their central regions, distorted galaxies and elliptical galaxies, all visible in the background. In fact, almost every bright dot in this image is a galaxy — the few foreground stars are clearly distinguishable due to the diffraction spikes (lines radiating from bright light sources in reflecting telescope images) that overlay their images. NGC 3610 is of course the most prominent object in this image — and a very interesting one at that! Discovered in 1793 by William Herschel, it was later found that this elliptical galaxy contains a disk. This is very unusual, as disks are one of the main distinguishing features of a spiral galaxy. And the disk in NGC 3610 is remarkably bright. The reason for the peculiar shape of NGC 3610 stems from its formation history. When galaxies form, they usually resemble our galaxy, the Milky Way, with flat disks and spiral arms where star formation rates are high and which are therefore very bright. An elliptical galaxy is a much more disordered object which results from the merging of two or more disk galaxies. During these violent mergers most of the internal structure of the original galaxies is destroyed. The fact that NGC 3610 still shows some structure in the form of a bright disk implies that it formed only a short time ago. The galaxy’s age has been put at around four billion years and it is an important object for studying the early stages of evolution in elliptical galaxies. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge

  14. The Multiwavelength Survey by Yale-Chile (MUSYC): Deep Near-Infrared Imaging and the Selection of Distant Galaxies

    NASA Astrophysics Data System (ADS)

    Quadri, Ryan; Marchesini, Danilo; van Dokkum, Pieter; Gawiser, Eric; Franx, Marijn; Lira, Paulina; Rudnick, Gregory; Urry, C. Megan; Maza, José; Kriek, Mariska; Barrientos, L. Felipe; Blanc, Guillermo A.; Castander, Francisco J.; Christlein, Daniel; Coppi, Paolo S.; Hall, Patrick B.; Herrera, David; Infante, Leopoldo; Taylor, Edward N.; Treister, Ezequiel; Willis, Jon P.

    2007-09-01

    We present deep near-infrared JHK imaging of four 10' × 10' fields. The observations were carried out as part of the Multiwavelength Survey by Yale-Chile (MUSYC) with ISPI on the CTIO 4 m telescope. The typical point-source limiting depths are J ~ 22.5, H ~ 21.5, and K ~ 21 (5 σ Vega). The effective seeing in the final images is ~1.0″. We combine these data with MUSYC UBVRIz imaging to create K-selected catalogs that are unique for their uniform size, depth, filter coverage, and image quality. We investigate the rest-frame optical colors and photometric redshifts of galaxies that are selected using common color selection techniques, including distant red galaxies (DRGs), star-forming and passive BzKs, and the rest-frame UV-selected BM, BX, and Lyman break galaxies (LBGs). These techniques are effective at isolating large samples of high-redshift galaxies, but none provide complete or uniform samples across the targeted redshift ranges. The DRG and BM/BX/LBG criteria identify populations of red and blue galaxies, respectively, as they were designed to do. The star-forming BzKs have a very wide redshift distribution, extending down to z ~ 1, a wide range of colors, and may include galaxies with very low specific star formation rates. In comparison, the passive BzKs are fewer in number, have a different distribution of K magnitudes, and have a somewhat different redshift distribution. By combining either the DRG and BM/BX/LBG criteria, or the star-forming and passive BzK criteria, it appears possible to define a reasonably complete sample of galaxies to our flux limit over specific redshift ranges. However, the redshift dependence of both the completeness and sampled range of rest-frame colors poses an ultimate limit to the usefulness of these techniques.

  15. Timing the warm absorber in NGC4051

    NASA Astrophysics Data System (ADS)

    Silva, C.; Uttley, P.; Costantini, E.

    2015-07-01

    In this work we have combined spectral and timing analysis in the characterization of highly ionized outflows in Seyfert galaxies, the so-called warm absorbers. Here, we present our results on the extensive ˜600ks of XMM-Newton archival observations of the bright and highly variable Seyfert 1 galaxy NGC4051, whose spectrum has revealed a complex multi-component wind. Working simultaneously with RGS and PN data, we have performed a detailed analysis using a time-dependent photoionization code in combination with spectral and Fourier timing techniques. This method allows us to study in detail the response of the gas due to variations in the ionizing flux of the central source. As a result, we will show the contribution of the recombining gas to the time delays of the most highly absorbed energy bands relative to the continuum (Silva, Uttley & Costantini in prep.), which is also vital information for interpreting the continuum lags associated with propagation and reverberation effects in the inner emitting regions. Furthermore, we will illustrate how this powerful method can be applied to other sources and warm-absorber configurations, allowing for a wide range of studies.

  16. Uncertainty analysis for absorbed dose from a brain receptor imaging agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydogan, B.; Miller, L.F.; Sparks, R.B.

    Absorbed dose estimates are known to contain uncertainties. A recent literature search indicates that prior to this study no rigorous investigation of uncertainty associated with absorbed dose has been undertaken. A method of uncertainty analysis for absorbed dose calculations has been developed and implemented for the brain receptor imaging agent {sup 123}I-IPT. The two major sources of uncertainty considered were the uncertainty associated with the determination of residence time and that associated with the determination of the S values. There are many sources of uncertainty in the determination of the S values, but only the inter-patient organ mass variation wasmore » considered in this work. The absorbed dose uncertainties were determined for lung, liver, heart and brain. Ninety-five percent confidence intervals of the organ absorbed dose distributions for each patient and for a seven-patient population group were determined by the ``Latin Hypercube Sampling`` method. For an individual patient, the upper bound of the 95% confidence interval of the absorbed dose was found to be about 2.5 times larger than the estimated mean absorbed dose. For the seven-patient population the upper bound of the 95% confidence interval of the absorbed dose distribution was around 45% more than the estimated population mean. For example, the 95% confidence interval of the population liver dose distribution was found to be between 1.49E+0.7 Gy/MBq and 4.65E+07 Gy/MBq with a mean of 2.52E+07 Gy/MBq. This study concluded that patients in a population receiving {sup 123}I-IPT could receive absorbed doses as much as twice as large as the standard estimated absorbed dose due to these uncertainties.« less

  17. Barred Ring Galaxy NGC 1291

    NASA Image and Video Library

    2005-05-05

    This ultraviolet image left and visual image right from NASA Galaxy Evolution Explorer is of the barred ring galaxy NGC 1291. The VIS image is dominated by the inner disk and bar. The UV image is dominated by the low surface brightness outer arms.

  18. Galaxy NGC5474

    NASA Image and Video Library

    2003-07-25

    NASA Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5474 on June 7, 2003. NGC5474 is located 20 million light-years from Earth and is within a group of galaxies dominated by the Messier 101 galaxy. Star formation in this galaxy shows some evidence of a disturbed spiral pattern, which may have been induced by tidal interactions with Messier 101. http://photojournal.jpl.nasa.gov/catalog/PIA04634

  19. Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN

    NASA Astrophysics Data System (ADS)

    Aalto, S.; Martín, S.; Costagliola, F.; González-Alfonso, E.; Muller, S.; Sakamoto, K.; Fuller, G. A.; García-Burillo, S.; van der Werf, P.; Neri, R.; Spaans, M.; Combes, F.; Viti, S.; Mühle, S.; Armus, L.; Evans, A.; Sturm, E.; Cernicharo, J.; Henkel, C.; Greve, T. R.

    2015-12-01

    We present high resolution (0.̋4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (ν2 = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r< 17-70 pc) nuclei that have very high implied mid-infrared surface brightness > 5 × 1013 L⊙ kpc-2. These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, ν2 = 1, lines of HCN are excited by intense 14 μm mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H2 column densities exceed 1024 cm-2. It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (ν = 0), J = 3-2and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self- and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions - possibly in the form of in- or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback. Based on observations carried out with the IRAM Plateau de Bure and ALMA Interferometers. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). ALMA is a partnership of ESO (representing its member states

  20. Optical time-of-flight and absorbance imaging of biologic media.

    PubMed

    Benaron, D A; Stevenson, D K

    1993-03-05

    Imaging the interior of living bodies with light may assist in the diagnosis and treatment of a number of clinical problems, which include the early detection of tumors and hypoxic cerebral injury. An existing picosecond time-of-flight and absorbance (TOFA) optical system has been used to image a model biologic system and a rat. Model measurements confirmed TOFA principles in systems with a high degree of photon scattering; rat images, which were constructed from the variable time delays experienced by a fixed fraction of early-arriving transmitted photons, revealed identifiable internal structure. A combination of light-based quantitative measurement and TOFA localization may have applications in continuous, noninvasive monitoring for structural imaging and spatial chemometric analysis in humans.

  1. Optical Time-of-Flight and Absorbance Imaging of Biologic Media

    NASA Astrophysics Data System (ADS)

    Benaron, David A.; Stevenson, David K.

    1993-03-01

    Imaging the interior of living bodies with light may assist in the diagnosis and treatment of a number of clinical problems, which include the early detection of tumors and hypoxic cerebral injury. An existing picosecond time-of-flight and absorbance (TOFA) optical system has been used to image a model biologic system and a rat. Model measurements confirmed TOFA principles in systems with a high degree of photon scattering; rat images, which were constructed from the variable time delays experienced by a fixed fraction of early-arriving transmitted photons, revealed identifiable internal structure. A combination of light-based quantitative measurement and TOFA localization may have applications in continuous, noninvasive monitoring for structural imaging and spatial chemometric analysis in humans.

  2. Galaxy UGC10445

    NASA Image and Video Library

    2003-07-25

    This ultraviolet color image of the galaxy UGC10445 was taken by NASA Galaxy Evolution Explorer on June 7 and June 14, 2003. UGC10445 is a spiral galaxy located 40 million light-years from Earth. http://photojournal.jpl.nasa.gov/catalog/PIA04623

  3. Image quality and absorbed dose comparison of single- and dual-source cone-beam computed tomography.

    PubMed

    Miura, Hideharu; Ozawa, Shuichi; Okazue, Toshiya; Kawakubo, Atsushi; Yamada, Kiyoshi; Nagata, Yasushi

    2018-05-01

    Dual-source cone-beam computed tomography (DCBCT) is currently available in the Vero4DRT image-guided radiotherapy system. We evaluated the image quality and absorbed dose for DCBCT and compared the values with those for single-source CBCT (SCBCT). Image uniformity, Hounsfield unit (HU) linearity, image contrast, and spatial resolution were evaluated using a Catphan phantom. The rotation angle for acquiring SCBCT and DCBCT images is 215° and 115°, respectively. The image uniformity was calculated using measurements obtained at the center and four peripheral positions. The HUs of seven materials inserted into the phantom were measured to evaluate HU linearity and image contrast. The Catphan phantom was scanned with a conventional CT scanner to measure the reference HU for each material. The spatial resolution was calculated using high-resolution pattern modules. Image quality was analyzed using ImageJ software ver. 1.49. The absorbed dose was measured using a 0.6-cm 3 ionization chamber with a 16-cm-diameter cylindrical phantom, at the center and four peripheral positions of the phantom, and calculated using weighted cone-beam CT dose index (CBCTDI w ). Compared with that of SCBCT, the image uniformity of DCBCT was slightly reduced. A strong linear correlation existed between the measured HU for DCBCT and the reference HU, although the linear regression slope was different from that of the reference HU. DCBCT had poorer image contrast than did SCBCT, particularly with a high-contrast material. There was no significant difference between the spatial resolutions of SCBCT and DCBCT. The absorbed dose for DCBCT was higher than that for SCBCT, because in DCBCT, the two x-ray projections overlap between 45° and 70°. We found that the image quality was poorer and the absorbed dose was higher for DCBCT than for SCBCT in the Vero4DRT. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of

  4. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  5. How Do Inflows and Outflows from Galaxies Create Their Inner Circumgalactic Medium?

    NASA Astrophysics Data System (ADS)

    Bowen, David

    2017-08-01

    We propose using COS to observe 7 QSO sightlines within half a virial radius each of two galaxies in order to probe their circumgalactic mediums (CGMs) along multiple sightlines. Results from higher redshift QSO absorption line surveys suggest that this is the region where most metal line absorbing gas clouds reside, but their origin remains controversial. The two spiral galaxies studied in this proposal are NGC 4565 (the Needle Galaxy) which is highly inclined (i=86 degrees), and NGC 3184, which has a very low inclination (i=9 degrees). Their orientation makes them ideal targets for looking for kinematic and metallicity signatures from outflows along the minor axis, or inflows into the disk along the major axis. For both galaxies, we will measure how HI and metal line column densities change globally with radius, and how the ionzation structure of the absorbers varies with position. We predict that the HI column densities we detect will be similar to the Lyman Limit, or partial-Lyman Limit systems, and that we will be able to measure the gas metallicity in these clouds. These measurements can be used to infer whether the absorbing gas is flowing into the galaxy from the IGM (where the metallicity is lower than in the galaxy) or out of the galaxy (which should be metal enriched). Given that LLS and pLLS have been shown to have a bimodal distribution in their metallicity, we will see which of the two regimes the gas in our galaxies belong to, and even whether the bimodality can be seen in a single galaxy towards different sightlines.

  6. Evidence for a Population of High-Redshift Submillimeter Galaxies from Interferometric Imaging

    NASA Astrophysics Data System (ADS)

    Younger, Joshua D.; Fazio, Giovanni G.; Huang, Jia-Sheng; Yun, Min S.; Wilson, Grant W.; Ashby, Matthew L. N.; Gurwell, Mark A.; Lai, Kamson; Peck, Alison B.; Petitpas, Glen R.; Wilner, David J.; Iono, Daisuke; Kohno, Kotaro; Kawabe, Ryohei; Hughes, David H.; Aretxaga, Itziar; Webb, Tracy; Martínez-Sansigre, Alejo; Kim, Sungeun; Scott, Kimberly S.; Austermann, Jason; Perera, Thushara; Lowenthal, James D.; Schinnerer, Eva; Smolčić, Vernesa

    2007-12-01

    We have used the Submillimeter Array to image a flux-limited sample of seven submillimeter galaxies, selected by the AzTEC camera on the JCMT at 1.1 mm, in the COSMOS field at 890 μm with ~2" resolution. All of the sources-two radio-bright and five radio-dim-are detected as single point sources at high significance (>6 σ), with positions accurate to ~0.2" that enable counterpart identification at other wavelengths observed with similarly high angular resolution. All seven have IRAC counterparts, but only two have secure counterparts in deep HST ACS imaging. As compared to the two radio-bright sources in the sample, and those in previous studies, the five radio-dim sources in the sample (1) have systematically higher submillimeter-to-radio flux ratios, (2) have lower IRAC 3.6-8.0 μm fluxes, and (3) are not detected at 24 μm. These properties, combined with size constraints at 890 μm (θ<~1.2''), suggest that the radio-dim submillimeter galaxies represent a population of very dusty starbursts, with physical scales similar to local ultraluminous infrared galaxies, with an average redshift higher than radio-bright sources.

  7. An Exploration of Dusty Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    Submillimeter galaxies i.e., galaxies that we detect in the submillimeter wavelength range are mysterious creatures. Its only within the last couple decades that weve had telescope technology capable of observing them, and were only now getting to the point where angular resolution limits allow us to examine them closely. A new study has taken advantage of new capabilities to explore the properties of a sample of 52 of thesegalaxies.Dusty Star FormationSubmillimeter galaxies are generally observed in the early universe. Though theyre faint in other wavebands, theyre extremely luminous in infrared and submillimeter their infrared luminosities are typically trillions of times the Suns luminosity. This is thought to be because these galaxies are very actively forming stars at rates of hundreds of times that of the Milky Way!Example 10 10 true-color images of ten submillimeter galaxies in the authors ALMA-identified sample. [Simpson et al. 2017]Submillimeter galaxies are also extremely dusty, so we dont see their star formation directly in optical wavelengths. Instead, we see the stellar light after its been absorbed and reemitted by interstellar dust lanes were indirectly observing heavily obscured star formation.Why look for submillimeter galaxies? Studying them can help us to learn about galaxy and star formation early in our universes history, and help us to understand how the universe has evolved into what we see locally today.Submillimeter StrugglesDue to angular resolution limitations in the past, we often couldnt pin down the exact locations of submillimeter galaxies, preventing us from examining them properly. But now a team of scientists has used the Atacama Large Millimeter/submillimeter array (ALMA) to precisely locate 52 submillimeter galaxies identified by the Submillimeter Common-User Bolometer Array (SCUBA-2) in the UKIDSS Ultra Deep Survey field.The precise locations made possible by ALMA allowed the team led by James Simpson (University of Edinburgh

  8. Galaxy Centaurus A

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the active galaxy Centaurus A was taken by NASA's Galaxy Evolution Explorer on June 7, 2003. The galaxy is located 30 million light-years from Earth and is seen edge on, with a prominent dust lane across the major axis. In this image the near ultraviolet emission is represented as green, and the far ultraviolet emission as blue. The galaxy exhibits jets of high energy particles, which were traced by the X-ray emission and measured by NASA's Chandra X-ray Observatory. These X-ray emissions are seen as red in the image. Several regions of ultraviolet emission can be seen where the jets of high energy particles intersect with hydrogen clouds in the upper left corner of the image. The emission shown may be the result of recent star formation triggered by the compression of gas by the jet.

    The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.

  9. Hubble Space Telescope Imaging of the Circumnuclear Environments of the CfA Seyfert Galaxies: Nuclear Spirals and Fueling

    NASA Technical Reports Server (NTRS)

    Pogge, Richard W.; Martini, Paul

    2002-01-01

    We present archival Hubble Space Telescope (HST) images of the nuclear regions of 43 of the 46 Seyfert galaxies found in the volume limited,spectroscopically complete CfA Redshift Survey sample. Using an improved method of image contrast enhancement, we created detailed high-quality " structure maps " that allow us to study the distributions of dust, star clusters, and emission-line gas in the circumnuclear regions (100-1000 pc scales) and in the associated host galaxy. Essentially all of these Seyfert galaxies have circumnuclear dust structures with morphologies ranging from grand-design two-armed spirals to chaotic dusty disks. In most Seyfert galaxies there is a clear physical connection between the nuclear dust spirals on hundreds of parsec scales and large-scale bars and spiral arms in the host galaxies proper. These connections are particularly striking in the interacting and barred galaxies. Such structures are predicted by numerical simulations of gas flows in barred and interacting galaxies and may be related to the fueling of active galactic nuclei by matter inflow from the host galaxy disks. We see no significant differences in the circumnuclear dust morphologies of Seyfert 1s and 2s, and very few Seyfert 2 nuclei are obscured by large-scale dust structures in the host galaxies. If Sevfert 2s are obscured Sevfert Is, then the obscuration must occur on smaller scales than those probed by HST.

  10. Gravitational Lensing by Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Tyson, J.; Murdin, P.

    2000-11-01

    CLUSTERS OF GALAXIES are massive and relatively rare objects containing hundreds of galaxies. Their huge mass—dominated by DARK MATTER—bends light from all background objects, systematically distorting the images of thousands of distant galaxies (shear). This observed gravitational lens distortion can be inverted to produce an `image' of the mass in the foreground cluster of galaxies. Most of the...

  11. Smokin Hot Galaxy animation

    NASA Image and Video Library

    2006-03-16

    This infrared image from NASA Spitzer Space Telescope shows a galaxy that appears to be sizzling hot, with huge plumes of smoke swirling around it. The galaxy is known as Messier 82 or the Cigar galaxy.

  12. Whirlpool Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Scientists are seeing unprecedented detail of the spiral arms and dust clouds in the nearby Whirlpool galaxy, thanks to a new Hubble Space Telescope image, available at http://www.jpl.nasa.gov/pictures/wfpc/wfpc.html. The image uses data collected January 15 and 24, 1995, and July 21, 1999, by Hubble's Wide Field and Planetary Camera 2, designed and built by JPL. Using the image, a research group led by Dr. Nick Scoville of the California Institute of Technology, Pasadena, clearly defined the structure of the galaxy's cold dust clouds and hot hydrogen, and they linked star clusters within the galaxy to their parent dust clouds.

    The Whirlpool galaxy is one of the most photogenic galaxies. This celestial beauty is easily seen and photographed with smaller telescopes and studied extensively from large ground- and space-based observatories. The new composite image shows visible starlight and light from the emission of glowing hydrogen, which is associated with the most luminous young stars in the spiral arms.

    The galaxy is having a close encounter with a nearby companion galaxy, NGC 5195, just off the upper edge of the image. The companion's gravitational pull is triggering star formation in the main galaxy, lit up by numerous clusters of young and energetic stars in brilliant detail. Luminous clusters are highlighted in red by their associated emission from glowing hydrogen gas.

    This image was composed by the Hubble Heritage Team from Hubble archive data and was superimposed onto data taken by Dr. Travis Rector of the National Optical Astronomy Observatory at the .9-meter (35-inch) telescope at the National Science Foundation's Kitt Peak National Observatory, Tucson, Ariz. Scoville's team includes M. Polletta of the University of Geneva, Switzerland; S. Ewald and S. Stolovy of Caltech; and R. Thompson and M. Rieke of the University of Arizona, Tucson.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space

  13. 'Death Star' Galaxy Black Hole Fires at Neighboring Galaxy

    NASA Astrophysics Data System (ADS)

    2008-12-01

    This "death star" galaxy was discovered through the combined efforts of both space and ground-based telescopes. NASA's Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope were part of the effort. The Very Large Array telescope, Socorro, N.M., and the Multi-Element Radio Linked Interferometer Network (MERLIN) telescopes in the United Kingdom also were needed for the finding. Illustration of Jet Striking Galaxy (unlabeled) Illustration of Jet Striking Galaxy (unlabeled) "We've seen many jets produced by black holes, but this is the first time we've seen one punch into another galaxy like we're seeing here," said Dan Evans, a scientist at the Harvard-Smithsonian Center for Astrophysics and leader of the study. "This jet could be causing all sorts of problems for the smaller galaxy it is pummeling." Jets from super massive black holes produce high amounts of radiation, especially high-energy X-rays and gamma-rays, which can be lethal in large quantities. The combined effects of this radiation and particles traveling at almost the speed of light could severely damage the atmospheres of planets lying in the path of the jet. For example, protective layers of ozone in the upper atmosphere of planets could be destroyed. X-ray & Radio Full Field Image of 3C321 X-ray & Radio Full Field Image of 3C321 Jets produced by super massive black holes transport enormous amounts of energy far from black holes and enable them to affect matter on scales vastly larger than the size of the black hole. Learning more about jets is a key goal for astrophysical research. "We see jets all over the Universe, but we're still struggling to understand some of their basic properties," said co-investigator Martin Hardcastle of the University of Hertfordshire, United Kingdom. "This system of 3C321 gives us a chance to learn how they're affected when they slam into something - like a galaxy - and what they do after that." Optical Image of 3C321 Optical Image of 3C321 The

  14. 'Death Star' Galaxy Black Hole Fires at Neighboring Galaxy

    NASA Astrophysics Data System (ADS)

    2007-12-01

    This "death star" galaxy was discovered through the combined efforts of both space and ground-based telescopes. NASA's Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope were part of the effort. The Very Large Array telescope, Socorro, N.M., and the Multi-Element Radio Linked Interferometer Network (MERLIN) telescopes in the United Kingdom also were needed for the finding. Illustration of Jet Striking Galaxy (unlabeled) Illustration of Jet Striking Galaxy (unlabeled) "We've seen many jets produced by black holes, but this is the first time we've seen one punch into another galaxy like we're seeing here," said Dan Evans, a scientist at the Harvard-Smithsonian Center for Astrophysics and leader of the study. "This jet could be causing all sorts of problems for the smaller galaxy it is pummeling." Jets from super massive black holes produce high amounts of radiation, especially high-energy X-rays and gamma-rays, which can be lethal in large quantities. The combined effects of this radiation and particles traveling at almost the speed of light could severely damage the atmospheres of planets lying in the path of the jet. For example, protective layers of ozone in the upper atmosphere of planets could be destroyed. X-ray & Radio Full Field Image of 3C321 X-ray & Radio Full Field Image of 3C321 Jets produced by super massive black holes transport enormous amounts of energy far from black holes and enable them to affect matter on scales vastly larger than the size of the black hole. Learning more about jets is a key goal for astrophysical research. "We see jets all over the Universe, but we're still struggling to understand some of their basic properties," said co-investigator Martin Hardcastle of the University of Hertfordshire, United Kingdom. "This system of 3C321 gives us a chance to learn how they're affected when they slam into something - like a galaxy - and what they do after that." Optical Image of 3C321 Optical Image of 3C321 The

  15. Extended Source/Galaxy All Sky 1

    NASA Image and Video Library

    2003-03-27

    This panoramic view of the entire sky reveals the distribution of galaxies beyond our Milky Way galaxy, which astronomers call extended sources, as observed by Two Micron All-Sky Survey. The image is constructed from a database of over 1.6 million galaxies listed in the survey's Extended Source Catalog; more than half of the galaxies have never before been catalogued. The image is a representation of the relative brightnesses of these million-plus galaxies, all observed at a wavelength of 2.2 microns. The brightest and nearest galaxies are represented in blue, and the faintest, most distant ones are in red. This color scheme gives insights into the three dimensional large-scale structure of the nearby universe with the brightest, closest clusters and superclusters showing up as the blue and bluish-white features. The dark band in this image shows the area of the sky where our Milky Way galaxy blocks our view of distant objects, which, in this projection, lies predominantly along the edges of the image. http://photojournal.jpl.nasa.gov/catalog/PIA04252

  16. Galaxy Zoo: secular evolution of barred galaxies from structural decomposition of multiband images

    NASA Astrophysics Data System (ADS)

    Kruk, Sandor J.; Lintott, Chris J.; Bamford, Steven P.; Masters, Karen L.; Simmons, Brooke D.; Häußler, Boris; Cardamone, Carolin N.; Hart, Ross E.; Kelvin, Lee; Schawinski, Kevin; Smethurst, Rebecca J.; Vika, Marina

    2018-02-01

    We present the results of two-component (disc+bar) and three-component (disc+bar+bulge) multiwavelength 2D photometric decompositions of barred galaxies in five Sloan Digital Sky Survey (SDSS) bands (ugriz). This sample of ∼3500 nearby (z < 0.06) galaxies with strong bars selected from the Galaxy Zoo citizen science project is the largest sample of barred galaxies to be studied using photometric decompositions that include a bar component. With detailed structural analysis, we obtain physical quantities such as the bar- and bulge-to-total luminosity ratios, effective radii, Sérsic indices and colours of the individual components. We observe a clear difference in the colours of the components, the discs being bluer than the bars and bulges. An overwhelming fraction of bulge components have Sérsic indices consistent with being pseudo-bulges. By comparing the barred galaxies with a mass-matched and volume-limited sample of unbarred galaxies, we examine the connection between the presence of a large-scale galactic bar and the properties of discs and bulges. We find that the discs of unbarred galaxies are significantly bluer compared to the discs of barred galaxies, while there is no significant difference in the colours of the bulges. We find possible evidence of secular evolution via bars that leads to the build-up of pseudo-bulges and to the quenching of star formation in the discs. We identify a subsample of unbarred galaxies with an inner lens/oval and find that their properties are similar to barred galaxies, consistent with an evolutionary scenario in which bars dissolve into lenses. This scenario deserves further investigation through both theoretical and observational work.

  17. The Extragalactic Lens VLBI Imaging Survey (ELVIS): Investigating galaxy cores and black holes with gravitational lens central images

    NASA Astrophysics Data System (ADS)

    Boyce, Edward R.

    This thesis describes the Extragalactic Lens VLBI Imaging Survey (ELVIS), a search for central images in gravitational lenses. We present the first four ELVIS targets, for which we have radio VLBI observations with resolutions of a few milli-arcseconds and sensitivities of 15 - 38mJy. For PMN J1838-3427, CLASS B0739+366 and CLASS B0445+123 we have not detected any central images, but have set stringent upper limits on their flux densities. For CLASS B2319+051 we have made a tentative detection of a third radio source, which may be either a central image or radio emission from the lens galaxy. Using the upper limits on the central image flux densities, we gain new information about the matter distributions in the lens galaxies of these systems. We fit a broken power law model for the matter profile, and constrain the allowed break radii and inner index of this model. To demagnify the central images to the observed level the matter profiles must be slightly shallower than or steeper than isothermal, which is consistent with previous studies of early type galaxy profiles. The presence of a super-massive black hole weakens the constraints somewhat, but the profiles are still close to isothermal. Relative to previous work, we reduce the maximum sizes of shallow cores by factors of 2 to 3, and raise the indices of r 0( r -g central cusps by g = 0.05 - 0.35. If we take the source in B2319+051 to be a central image, then we select a narrow band of allowed break radii and inner indices, finding that a constant density core has size 150--380 pc, and a pure power law has index g = 1.5 - 1.67. Our constraints still allow sufficiently shallow profiles that some super-massive black holes may form central image pairs rather than eliminating the central image, and these image pairs may be detected with future instruments. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  18. Constructing a WISE High Resolution Galaxy Atlas

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; hide

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  19. Seeing Baby Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible/DSS Click on image for larger version Ultraviolet/GALEX Click on image for larger version Poster Version Click on image for larger version

    The unique ultraviolet vision of NASA's Galaxy Evolution Explorer reveals, for the first time, dwarf galaxies forming out of nothing more than pristine gas likely leftover from the early universe. Dwarf galaxies are relatively small collections of stars that often orbit around larger galaxies like our Milky Way.

    The forming dwarf galaxies shine in the far ultraviolet spectrum, rendered as blue in the call-out on the right hand side of this image. Near ultraviolet light, also obtained by the Galaxy Evolution Explorer, is displayed in green, and visible light from the blue part of the spectrum here is represented by red. The clumps (in circles) are distinctively blue, indicating they are primarily detected in far ultraviolet light.

    The faint blue overlay traces the outline of the Leo Ring, a huge cloud of hydrogen and helium that orbits around two massive galaxies in the constellation Leo (left panel). The cloud is thought likely to be a primordial object, an ancient remnant of material that has remained relatively unchanged since the very earliest days of the universe. Identified about 25 years ago by radio waves, the ring cannot be seen in visible light.

    Only a portion of the Leo Ring has been imaged in the ultraviolet, but this section contains the telltale ultraviolet signature of recent massive star formation within this ring of pristine gas. Astronomers have previously only seen dwarf galaxies form out of gas that has already been cycled through a galaxy and enriched with metals elements heavier than helium produced as stars evolve.

    The visible data come from the Digitized Sky Survey of the Space Telescope Science Institute in Baltimore, Md. The

  20. A MINUET OF GALAXIES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This troupe of four galaxies, known as Hickson Compact Group 87 (HCG 87), is performing an intricate dance orchestrated by the mutual gravitational forces acting between them. The dance is a slow, graceful minuet, occurring over a time span of hundreds of millions of years. The Wide Field and Planetary Camera 2 on NASA's Hubble Space Telescope (HST) provides a striking improvement in resolution over previous ground-based imaging. In particular, this image reveals complex details in the dust lanes of the group's largest galaxy member (HCG 87a), which is actually disk-shaped, but tilted so that we see it nearly edge-on. Both 87a and its elliptically shaped nearest neighbor (87b) have active galactic nuclei which are believed to harbor black holes that are consuming gas. A third group member, the nearby spiral galaxy 87c, may be undergoing a burst of active star formation. Gas flows within galaxies can be intensified by the gravitational tidal forces between interacting galaxies. So interactions can provide fresh fuel for both active nuclei and starburst phenomena. These three galaxies are so close to each other that gravitational forces disrupt their structure and alter their evolution. From the analysis of its spectra, the small spiral near the center of the group could either be a fourth member or perhaps an unrelated background object. The HST image was made by combining images taken in four different color filters in order to create a three-color picture. Regions of active star formation are blue (hot stars) and also pinkish if hot hydrogen gas is present. The complex dark bands across the large edge-on disk galaxy are due to interstellar dust silhouetted against the galaxy's background starlight. A faint tidal bridge of stars can be seen between the edge-on and elliptical galaxies. HCG 87 was selected for Hubble imaging by members of the public who visited the Hubble Heritage website (http://heritage.stsci.edu) during the month of May and registered their votes

  1. Galaxy with a view

    NASA Image and Video Library

    2015-07-06

    This little-known galaxy, officially named J04542829-6625280, but most often referred to as LEDA 89996, is a classic example of a spiral galaxy. The galaxy is much like our own galaxy, the Milky Way. The disc-shaped galaxy is seen face on, revealing the winding structure of the spiral arms. Dark patches in these spiral arms are in fact dust and gas — the raw materials for new stars. The many young stars that form in these regions make the spiral arms appear bright and bluish. The galaxy sits in a vibrant area of the night sky within the constellation of Dorado (The Swordfish), and appears very close to the Large Magellanic Cloud  — one of the satellite galaxies of the Milky Way. The observations were carried out with the high resolution channel of Hubble’s Advanced Camera for Surveys. This instrument has delivered some of the sharpest views of the Universe so far achieved by mankind. This image covers only a tiny patch of sky — about the size of a one cent euro coin held 100 metres away! A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by flickr user c.claude.

  2. The Thousand-Ruby Galaxy

    NASA Astrophysics Data System (ADS)

    2008-09-01

    ESO's Wide Field Imager has captured the intricate swirls of the spiral galaxy Messier 83, a smaller look-alike of our own Milky Way. Shining with the light of billions of stars and the ruby red glow of hydrogen gas, it is a beautiful example of a barred spiral galaxy, whose shape has led to it being nicknamed the Southern Pinwheel. Messier 83, M83 ESO PR Photo 25/08 Spiral Galaxy Messier 83 This dramatic image of the galaxy Messier 83 was captured by the Wide Field Imager at ESO's La Silla Observatory, located high in the dry desert mountains of the Chilean Atacama Desert. Messier 83 lies roughly 15 million light-years away towards the huge southern constellation of Hydra (the sea serpent). It stretches over 40 000 light-years, making it roughly 2.5 times smaller than our own Milky Way. However, in some respects, Messier 83 is quite similar to our own galaxy. Both the Milky Way and Messier 83 possess a bar across their galactic nucleus, the dense spherical conglomeration of stars seen at the centre of the galaxies. This very detailed image shows the spiral arms of Messier 83 adorned by countless bright flourishes of ruby red light. These are in fact huge clouds of glowing hydrogen gas. Ultraviolet radiation from newly born, massive stars is ionising the gas in these clouds, causing the great regions of hydrogen to glow red. These star forming regions are contrasted dramatically in this image against the ethereal glow of older yellow stars near the galaxy's central hub. The image also shows the delicate tracery of dark and winding dust streams weaving throughout the arms of the galaxy. Messier 83 was discovered by the French astronomer Nicolas Louis de Lacaille in the mid 18th century. Decades later it was listed in the famous catalogue of deep sky objects compiled by another French astronomer and famous comet hunter, Charles Messier. Recent observations of this enigmatic galaxy in ultraviolet light and radio waves have shown that even its outer desolate regions

  3. A Super Special Galaxy

    NASA Image and Video Library

    2011-03-24

    There something special going on in the nearby Circinus galaxy, as revealed by this image from NASA WISE telescope. The Circinus galaxy is located in the constellation of Circinus and is obscured by the plane of our Milky Way galaxy.

  4. Morphology classification of galaxies in CL 0939+4713 using a ground-based telescope image

    NASA Technical Reports Server (NTRS)

    Fukugita, M.; Doi, M.; Dressler, A.; Gunn, J. E.

    1995-01-01

    Morphological classification is studied for galaxies in cluster CL 0939+4712 at z = 0.407 using simple photometric parameters obtained from a ground-based telescope image with seeing of 1-2 arcseconds full width at half maximim (FWHM). By ploting the galaxies in a plane of the concentration parameter versus mean surface brightness, we find a good correlation between the location on the plane and galaxy colors, which are known to correlate with morphological types from a recent Hubble Space Telescope (HST) study. Using the present method, we expect a success rate of classification into early and late types of about 70% or possibly more.

  5. Ca II and Na I absorption in the QSO S4 0248 + 430 due to an intervening galaxy

    NASA Technical Reports Server (NTRS)

    Womble, Donna S.; Junkkarinen, Vesa T.; Cohen, Ross D.; Burbidge, E. Margaret

    1990-01-01

    Observations of the QSO S4 0248 + 430 and a nearby anonymous galaxy are presented. Two absorption components are found in both Ca II H and K and Na I D1 and D2 at z(a) = 0.0515, 0.0523. Column densities of log N(Ca II) = 13.29, 13.50, and log N(Na I) = 13.79, 14.18 are found for z(a) = 0.0515, 0.0523 absorption systems, respectively. The column density ratios imply considerable calcium depletion and disk-type absorbing gas. At least one and possibly both absorption components are produced by high-velocity gas. A broadband image of the field shows an asymmetrical armlike feature or possible tidal tail covering and extending past the position of the QSO. The presence of this extended feature and the apparent difference between the absorption velocities and galaxy rotation velocity suggest that the absorbing gas is not ordinary disk gas, but rather is a result of tidal disruption.

  6. The Two-faced Whirlpool Galaxy

    NASA Image and Video Library

    2017-12-08

    NASA image release January 13, 2011 These images by NASA's Hubble Space Telescope show off two dramatically different face-on views of the spiral galaxy M51, dubbed the Whirlpool Galaxy. The image here, taken in visible light, highlights the attributes of a typical spiral galaxy, including graceful, curving arms, pink star-forming regions, and brilliant blue strands of star clusters. In the image above, most of the starlight has been removed, revealing the Whirlpool's skeletal dust structure, as seen in near-infrared light. This new image is the sharpest view of the dense dust in M51. The narrow lanes of dust revealed by Hubble reflect the galaxy's moniker, the Whirlpool Galaxy, as if they were swirling toward the galaxy's core. To map the galaxy's dust structure, researchers collected the galaxy's starlight by combining images taken in visible and near-infrared light. The visible-light image captured only some of the light; the rest was obscured by dust. The near-infrared view, however, revealed more starlight because near-infrared light penetrates dust. The researchers then subtracted the total amount of starlight from both images to see the galaxy's dust structure. The red color in the near-infrared image traces the dust, which is punctuated by hundreds of tiny clumps of stars, each about 65 light-years wide. These stars have never been seen before. The star clusters cannot be seen in visible light because dense dust enshrouds them. The image reveals details as small as 35 light-years across. Astronomers expected to see large dust clouds, ranging from about 100 light-years to more than 300 light-years wide. Instead, most of the dust is tied up in smooth and diffuse dust lanes. An encounter with another galaxy may have prevented giant clouds from forming. Probing a galaxy's dust structure serves as an important diagnostic tool for astronomers, providing invaluable information on how the gas and dust collapse to form stars. Although Hubble is providing incisive

  7. The Two-faced Whirlpool Galaxy

    NASA Image and Video Library

    2011-01-13

    NASA image release January 13, 2011 These images by NASA's Hubble Space Telescope show off two dramatically different face-on views of the spiral galaxy M51, dubbed the Whirlpool Galaxy. The image above, taken in visible light, highlights the attributes of a typical spiral galaxy, including graceful, curving arms, pink star-forming regions, and brilliant blue strands of star clusters. In the image here, most of the starlight has been removed, revealing the Whirlpool's skeletal dust structure, as seen in near-infrared light. This new image is the sharpest view of the dense dust in M51. The narrow lanes of dust revealed by Hubble reflect the galaxy's moniker, the Whirlpool Galaxy, as if they were swirling toward the galaxy's core. To map the galaxy's dust structure, researchers collected the galaxy's starlight by combining images taken in visible and near-infrared light. The visible-light image captured only some of the light; the rest was obscured by dust. The near-infrared view, however, revealed more starlight because near-infrared light penetrates dust. The researchers then subtracted the total amount of starlight from both images to see the galaxy's dust structure. The red color in the near-infrared image traces the dust, which is punctuated by hundreds of tiny clumps of stars, each about 65 light-years wide. These stars have never been seen before. The star clusters cannot be seen in visible light because dense dust enshrouds them. The image reveals details as small as 35 light-years across. Astronomers expected to see large dust clouds, ranging from about 100 light-years to more than 300 light-years wide. Instead, most of the dust is tied up in smooth and diffuse dust lanes. An encounter with another galaxy may have prevented giant clouds from forming. Probing a galaxy's dust structure serves as an important diagnostic tool for astronomers, providing invaluable information on how the gas and dust collapse to form stars. Although Hubble is providing incisive

  8. The SAMI Galaxy Survey: the intrinsic shape of kinematically selected galaxies

    NASA Astrophysics Data System (ADS)

    Foster, C.; van de Sande, J.; D'Eugenio, F.; Cortese, L.; McDermid, R. M.; Bland-Hawthorn, J.; Brough, S.; Bryant, J.; Croom, S. M.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J.; López-Sánchez, Á. R.; Medling, A. M.; Owers, M. S.; Richards, S. N.; Scott, N.; Taranu, D. S.; Tonini, C.; Zafar, T.

    2017-11-01

    Using the stellar kinematic maps and ancillary imaging data from the Sydney AAO Multi Integral field (SAMI) Galaxy Survey, the intrinsic shape of kinematically selected samples of galaxies is inferred. We implement an efficient and optimized algorithm to fit the intrinsic shape of galaxies using an established method to simultaneously invert the distributions of apparent ellipticities and kinematic misalignments. The algorithm output compares favourably with previous studies of the intrinsic shape of galaxies based on imaging alone and our re-analysis of the ATLAS3D data. Our results indicate that most galaxies are oblate axisymmetric. We show empirically that the intrinsic shape of galaxies varies as a function of their rotational support as measured by the 'spin' parameter proxy λ _{R_e}. In particular, low-spin systems have a higher occurrence of triaxiality, while high-spin systems are more intrinsically flattened and axisymmetric. The intrinsic shape of galaxies is linked to their formation and merger histories. Galaxies with high-spin values have intrinsic shapes consistent with dissipational minor mergers, while the intrinsic shape of low-spin systems is consistent with dissipationless multimerger assembly histories. This range in assembly histories inferred from intrinsic shapes is broadly consistent with expectations from cosmological simulations.

  9. The role of black holes in galaxy formation and evolution.

    PubMed

    Cattaneo, A; Faber, S M; Binney, J; Dekel, A; Kormendy, J; Mushotzky, R; Babul, A; Best, P N; Brüggen, M; Fabian, A C; Frenk, C S; Khalatyan, A; Netzer, H; Mahdavi, A; Silk, J; Steinmetz, M; Wisotzki, L

    2009-07-09

    Virtually all massive galaxies, including our own, host central black holes ranging in mass from millions to billions of solar masses. The growth of these black holes releases vast amounts of energy that powers quasars and other weaker active galactic nuclei. A tiny fraction of this energy, if absorbed by the host galaxy, could halt star formation by heating and ejecting ambient gas. A central question in galaxy evolution is the degree to which this process has caused the decline of star formation in large elliptical galaxies, which typically have little cold gas and few young stars, unlike spiral galaxies.

  10. The Host Galaxy and Central Engine of the Dwarf Active Galactic Nucleus POX 52

    NASA Astrophysics Data System (ADS)

    Thornton, Carol E.; Barth, Aaron J.; Ho, Luis C.; Rutledge, Robert E.; Greene, Jenny E.

    2008-10-01

    We present new multiwavelength observations of the dwarf Seyfert 1 galaxy POX 52 in order to investigate the properties of the host galaxy and the active nucleus and to examine the mass of its black hole, previously estimated to be ~105 M⊙. HST ACS HRC images show that the host galaxy has a dwarf elliptical morphology (MI = - 18.4 mag, Sérsic index n = 4.3) with no detected disk component or spiral structure, confirming previous results from ground-based imaging. X-ray observations from both Chandra and XMM-Newton show strong (factor of 2) variability over timescales as short as 500 s, as well as a dramatic decrease in the absorbing column density over a 9 month period. We attribute this change to a partial covering absorber, with a 94% covering fraction and NH = 58+ 8.4-9.2 × 1021 cm -2, that moved out of the line of sight in between the XMM-Newton and Chandra observations. Combining these data with observations from the VLA, Spitzer, and archival data from 2MASS and GALEX, we examine the SED of the active nucleus. Its shape is broadly similar to typical radio-quiet quasar SEDs, despite the very low bolometric luminosity of Lbol = 1.3 × 1043 ergs s-1. Finally, we compare black hole mass estimators, including methods based on X-ray variability, and optical scaling relations using the broad Hβ line width and AGN continuum luminosity, finding a range of black hole mass from all methods to be MBH = (2.2-4.2) × 105 M⊙, with an Eddington ratio of Lbol/LEdd ≈ 0.2-0.5.

  11. Hubble Space Telescope Medium Deep Survey. 2: Deconvolution of Wide Field Camera field galaxy images in the 13 hour + 43 deg field

    NASA Technical Reports Server (NTRS)

    Windhorst, R. A.; Schmidtke, P. C.; Pascarelle, S. M.; Gordon, J. M.; Griffiths, R. E.; Ratnatunga, K. U.; Neuschaefer, L. W.; Ellis, R. S.; Gilmore, G.; Glazebrook, K.

    1994-01-01

    We present isophotal profiles of six faint field galaxies from some of the first deep images taken for the Hubble Space Telescope (HST) Medium Deep Survey (MDS). These have redshifts in the range z = 0.126 to 0.402. The images were taken with the Wide Field Camera (WFC) in `parallel mode' and deconvolved with the Lucy method using as the point-spread function nearby stars in the image stack. The WFC deconvolutions have a dynamic range of 16 to 20 dB (4 to 5 mag) and an effective resolution approximately less than 0.2 sec (FWHM). The multiorbit HST images allow us to trace the morphology, light profiles, and color gradients of faint field galaxies down to V approximately equal to 22 to 23 mag at sub-kpc resolution, since the redshift range covered is z = 0.1 to 0.4. The goals of the MDS are to study the sub-kpc scale morphology, light profiles, and color gradients for a large samole of faint field galaxies down to V approximately equal to 23 mag, and to trace the fraction of early to late-type galaxies as function of cosmic time. In this paper we study the brighter MDS galaxies in the 13 hour + 43 deg MDS field in detail, and investigate to what extent model fits with pure exponential disks or a(exp 1/4) bulges are justified at V approximately less than 22 mag. Four of the six field galaxies have light profiles that indicate (small) inner bulges following r(exp 1/4) laws down to 0.2 sec resolution, plus a dominant surrounding exponential disk with little or no color gradients. Two occur in a group at z = 0.401, two are barred spiral galaxies at z = 0.179 and z = 0.302, and two are rather subluminous (and edge-on) disk galaxies at z = 0.126 and z = 0.179. Our deep MDS images can detect galaxies down to V, I approximately less than 25 to 26 mag, and demonstrate the impressive potential of HST--even with its pre-refurbished optics--to resolve morphological details in galaxies at cosmologically significant distances (v approximately less than 23 mag). Since the median

  12. Effects of rubber shock absorber on the flywheel micro vibration in the satellite imaging system

    NASA Astrophysics Data System (ADS)

    Deng, Changcheng; Mu, Deqiang; Jia, Xuezhi; Li, Zongxuan

    2016-12-01

    When a satellite is in orbit, its flywheel will generate micro vibration and affect the imaging quality of the camera. In order to reduce this effect, a rubber shock absorber is used, and a numerical model and an experimental setup are developed to investigate its effect on the micro vibration in the study. An integrated model is developed for the system, and a ray tracing method is used in the modeling. The spot coordinates and displacements of the image plane are obtained, and the modulate transfer function (MTF) of the system is calculated. A satellite including a rubber shock absorber is designed, and the experiments are carried out. Both simulation and experiments results show that the MTF increases almost 10 %, suggesting the rubber shock absorber is useful to decrease the flywheel vibration.

  13. 3C 220.3: A Radio Galaxy Lensing a Submillimeter Galaxy

    NASA Astrophysics Data System (ADS)

    Haas, Martin; Leipski, Christian; Barthel, Peter; Wilkes, Belinda J.; Vegetti, Simona; Bussmann, R. Shane; Willner, S. P.; Westhues, Christian; Ashby, Matthew L. N.; Chini, Rolf; Clements, David L.; Fassnacht, Christopher D.; Horesh, Assaf; Klaas, Ulrich; Koopmans, Léon V. E.; Kuraszkiewicz, Joanna; Lagattuta, David J.; Meisenheimer, Klaus; Stern, Daniel; Wylezalek, Dominika

    2014-07-01

    Herschel Space Observatory photometry and extensive multiwavelength follow-up have revealed that the powerful radio galaxy (PRG) 3C 220.3 at z = 0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z = 2.221. At an observed wavelength of 1 mm, the SMG is lensed into three distinct images. In the observed near infrared, these images are connected by an arc of ~1''.8 radius forming an Einstein half-ring centered near the radio galaxy. In visible light, only the arc is apparent. 3C 220.3 is the only known instance of strong galaxy-scale lensing by a PRG not located in a galaxy cluster and therefore it offers the potential to probe the dark matter content of the radio galaxy host. Lens modeling rejects a single lens, but two lenses centered on the radio galaxy host A and a companion B, separated by 1''.5, provide a fit consistent with all data and reveal faint candidates for the predicted fourth and fifth images. The model does not require an extended common dark matter halo, consistent with the absence of extended bright X-ray emission on our Chandra image. The projected dark matter fractions within the Einstein radii of A (1''.02) and B (0''.61) are about 0.4 ± 0.3 and 0.55 ± 0.3. The mass to i-band light ratios of A and B, M/Li ˜ 8 +/- 4 M⊙ L⊙ -1, appear comparable to those of radio-quiet lensing galaxies at the same redshift in the CfA-Arizona Space Telescope LEns Survey, Lenses Structure and Dynamics, and Strong Lenses in the Legacy Survey samples. The lensed SMG is extremely bright with observed f(250 μm) = 440 mJy owing to a magnification factor μ ~ 10. The SMG spectrum shows luminous, narrow C IV λ1549 Å emission, revealing that the SMG houses a hidden quasar in addition to a violent starburst. Multicolor image reconstruction of the SMG indicates a bipolar morphology of the emitted ultraviolet (UV) light suggestive of cones through which UV light escapes a dust-enshrouded nucleus.

  14. Record-breaking ancient galaxy clusters

    NASA Astrophysics Data System (ADS)

    2003-12-01

    A tale of two record-breaking clusters hi-res Size hi-res: 768 kb Credits: for RDCS1252: NASA, ESA, J.Blakeslee (Johns Hopkins Univ.), M.Postman (Space Telescope Science Inst.) and P.Rosati, Chris Lidman & Ricardo Demarco (European Southern Observ.) for TNJ1338: NASA, ESA, G.Miley (Leiden Observ.) and R.Overzier (Leiden Obs) A tale of two record-breaking clusters Looking back in time to when the universe was in its formative youth, the Advanced Camera for Surveys (ACS) aboard the NASA/ESA Hubble Space Telescope captured these revealing images of two galaxy clusters. The image at left, which is made with an additional infrared exposure taken with the European Southern Observatory’s Very Large Telescope, shows mature galaxies in a massive cluster that existed when the cosmos was 5000 million years old. The cluster, called RDCS1252.9-2927, is as massive as ‘300 trillion’ suns and is the most massive known cluster for its epoch. The image reveals the core of the cluster and is part of a much larger mosaic of the entire cluster. Dominating the core are a pair of large, reddish elliptical galaxies [near centre of image]. Their red colour indicates an older population of stars. Most of the stars are at least 1000 million years old. The two galaxies appear to be interacting and may eventually merge to form a larger galaxy that is comparable to the brightest galaxies seen in present-day clusters. The red galaxies surrounding the central pair are also cluster members. The cluster probably contains many thousands of galaxies, but only about 50 can be seen in this image. The full mosaic (heic0313d) reveals several hundred cluster members. Many of the other galaxies in the image, including several of the blue galaxies, are foreground or background galaxies. The colour-composite image was assembled from two observations (through i and z filters) taken between May and June 2002 by the ACS Wide Field Camera, and one image with the ISAAC instrument on the VLT taken in 2002

  15. Inferring the photometric and size evolution of galaxies from image simulations. I. Method

    NASA Astrophysics Data System (ADS)

    Carassou, Sébastien; de Lapparent, Valérie; Bertin, Emmanuel; Le Borgne, Damien

    2017-09-01

    Context. Current constraints on models of galaxy evolution rely on morphometric catalogs extracted from multi-band photometric surveys. However, these catalogs are altered by selection effects that are difficult to model, that correlate in non trivial ways, and that can lead to contradictory predictions if not taken into account carefully. Aims: To address this issue, we have developed a new approach combining parametric Bayesian indirect likelihood (pBIL) techniques and empirical modeling with realistic image simulations that reproduce a large fraction of these selection effects. This allows us to perform a direct comparison between observed and simulated images and to infer robust constraints on model parameters. Methods: We use a semi-empirical forward model to generate a distribution of mock galaxies from a set of physical parameters. These galaxies are passed through an image simulator reproducing the instrumental characteristics of any survey and are then extracted in the same way as the observed data. The discrepancy between the simulated and observed data is quantified, and minimized with a custom sampling process based on adaptive Markov chain Monte Carlo methods. Results: Using synthetic data matching most of the properties of a Canada-France-Hawaii Telescope Legacy Survey Deep field, we demonstrate the robustness and internal consistency of our approach by inferring the parameters governing the size and luminosity functions and their evolutions for different realistic populations of galaxies. We also compare the results of our approach with those obtained from the classical spectral energy distribution fitting and photometric redshift approach. Conclusions: Our pipeline infers efficiently the luminosity and size distribution and evolution parameters with a very limited number of observables (three photometric bands). When compared to SED fitting based on the same set of observables, our method yields results that are more accurate and free from

  16. Hubble Identifies Source of Ultraviolet Light in an Old Galaxy

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This videotape is comprised of four segments: (1) a Video zoom in on galaxy M32 using ground images, (2) Hubble images of galaxy M32, (3) Ground base color image of galaxies M31 and M32, and (4) Black and white ground based images of galaxy M32.

  17. STAR-FORMING GALAXIES IN THE HERCULES CLUSTER: H{alpha} IMAGING OF A2151

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cedres, Bernabe; Iglesias-Paramo, Jorge; VIlchez, Jose Manuel

    2009-09-15

    This paper presents the first results of an H{alpha} imaging survey of galaxies in the central regions of the A2151 cluster. A total of 50 sources were detected in H{alpha}, from which 41 were classified as secure members of the cluster and 2 as likely members based on spectroscopic and photometric redshift considerations. The remaining seven galaxies were classified as background contaminants and thus excluded from our study on the H{alpha} properties of the cluster. The morphologies of the 43 H{alpha} selected galaxies range from grand design spirals and interacting galaxies to blue compacts and tidal dwarfs or isolated extragalacticmore » H II regions, spanning a range of magnitudes of -21 {<=} M{sub B} {<=} -12.5 mag. From these 43 galaxies, 7 have been classified as active galactic nucleus (AGN) candidates. These AGN candidates follow the L(H{alpha}) versus M{sub B} relationship of the normal galaxies, implying that the emission associated with the nuclear engine has a rather secondary impact on the total H{alpha} emission of these galaxies. A comparison with the clusters Coma and A1367 and a sample of field galaxies has shown the presence of cluster galaxies with L(H{alpha}) lower than expected for their M{sub B} , a consequence of the cluster environment. This fact results in differences in the L(H{alpha}) versus EW(H{alpha}) and L(H{alpha}) distributions of the clusters with respect to the field, and in cluster-to-cluster variations of these quantities, which we propose are driven by a global cluster property as the total mass. In addition, the cluster H{alpha} emitting galaxies tend to avoid the central regions of the clusters, again with different intensity depending on the cluster total mass. For the particular case of A2151, we find that most H{alpha} emitting galaxies are located close to the regions with the higher galaxy density, offset from the main X-ray peak. Overall, we conclude that both the global cluster environment and the cluster merging

  18. Hyperspectral photoacoustic spectroscopy of highly-absorbing samples for diagnostic ocular imaging applications

    NASA Astrophysics Data System (ADS)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2017-01-01

    Photoacoustic spectroscopy has been used to measure optical absorption coefficient and the application of tens of wavelength bands in photoacoustic spectroscopy was reported. Using optical methods, absorption-related information is, generally, derived from reflectance or transmittance values. Hence measurement accuracy is limited for highly absorbing samples where the reflectance or transmittance is too low to give reasonable signal-to-noise ratio. In this context, this paper proposes and illustrates a hyperspectral photoacoustic spectroscopy system to measure the absorption-related properties of highly absorbing samples directly. The normalized optical absorption coefficient spectrum of the highly absorbing iris is acquired using an optical absorption coefficient standard. The proposed concepts and the feasibility of the developed diagnostic medical imaging system are demonstrated using fluorescent microsphere suspensions and porcine eyes as test samples.

  19. Analyzing the Pieces of a Warped Galaxy

    NASA Image and Video Library

    2010-11-04

    This image composite shows a warped and magnified view of a galaxy discovered by the Herschel Space Observatory, one of five such galaxies uncovered by the infrared telescope. The galaxy, referred to as SDP 81 is the yellow dot in the left image.

  20. Galaxy Messier 51

    NASA Image and Video Library

    2003-07-25

    NASA's Galaxy Evolution Explorer took this image of the spiral galaxy Messier 51 on June 19 and 20, 2003. Messier 51 is located 27 million light-years from Earth. Due to a lack of star formation, the companion galaxy in the top of the picture is barely visible as a near ultraviolet object. http://photojournal.jpl.nasa.gov/catalog/PIA04628

  1. The column density distribution of hard X-ray radio galaxies

    NASA Astrophysics Data System (ADS)

    Panessa, F.; Bassani, L.; Landi, R.; Bazzano, A.; Dallacasa, D.; La Franca, F.; Malizia, A.; Venturi, T.; Ubertini, P.

    2016-09-01

    In order to investigate the role of absorption in active galactic nuclei (AGN) with jets, we have studied the column density distribution of a hard X-ray selected sample of radio galaxies, derived from the INTEGRAL/Imager on Board the Integral Satellite (IBIS) and Swift/The Burst Alert Telescope (BAT) AGN catalogues (˜7-10 per cent of the total AGN population). The 64 radio galaxies have a typical FR II radio morphology and are characterized by high 20-100 keV luminosities (from 1042 to 1046 erg s-1) and high Eddington ratios (log LBol/LEdd typically larger than ˜0.01). The observed fraction of absorbed AGN (NH > 1022 cm-2) is around 40 per cent among the total sample, and ˜75 per cent among type 2 AGN. The majority of obscured AGN are narrow-line objects, while unobscured AGN are broad-line objects, obeying to the zeroth-order predictions of unified models. A significant anti-correlation between the radio core dominance parameter and the X-ray column density is found. The observed fraction of Compton thick AGN is ˜2-3 per cent, in comparison with the 5-7 per cent found in radio-quiet hard X-ray selected AGN. We have estimated the absorption and Compton thick fractions in a hard X-ray sample containing both radio galaxies and non-radio galaxies and therefore affected by the same selection biases. No statistical significant difference was found in the absorption properties of radio galaxies and non-radio galaxies sample. In particular, the Compton thick objects are likely missing in both samples and the fraction of obscured radio galaxies appears to decrease with luminosity as observed in hard X-ray non-radio galaxies.

  2. The Hidden Galaxy

    NASA Image and Video Library

    2011-01-18

    Maffei 2 is the poster child for an infrared galaxy that is almost invisible to optical telescopes. But this infrared image from NASA Spitzer Space Telescope penetrates the dust to reveal the galaxy in all its glory.

  3. Deep Keck u-Band Imaging of the Hubble Ultra Deep Field: A Catalog of z ~ 3 Lyman Break Galaxies

    NASA Astrophysics Data System (ADS)

    Rafelski, Marc; Wolfe, Arthur M.; Cooke, Jeff; Chen, Hsiao-Wen; Armandroff, Taft E.; Wirth, Gregory D.

    2009-10-01

    We present a sample of 407 z ~ 3 Lyman break galaxies (LBGs) to a limiting isophotal u-band magnitude of 27.6 mag in the Hubble Ultra Deep Field. The LBGs are selected using a combination of photometric redshifts and the u-band drop-out technique enabled by the introduction of an extremely deep u-band image obtained with the Keck I telescope and the blue channel of the Low Resolution Imaging Spectrometer. The Keck u-band image, totaling 9 hr of integration time, has a 1σ depth of 30.7 mag arcsec-2, making it one of the most sensitive u-band images ever obtained. The u-band image also substantially improves the accuracy of photometric redshift measurements of ~50% of the z ~ 3 LBGs, significantly reducing the traditional degeneracy of colors between z ~ 3 and z ~ 0.2 galaxies. This sample provides the most sensitive, high-resolution multi-filter imaging of reliably identified z ~ 3 LBGs for morphological studies of galaxy formation and evolution and the star formation efficiency of gas at high redshift.

  4. NASA Hubble Sees Sparring Antennae Galaxies

    NASA Image and Video Library

    2013-11-15

    The NASA/ESA Hubble Space Telescope has snapped the best ever image of the Antennae Galaxies. Hubble has released images of these stunning galaxies twice before, once using observations from its Wide Field and Planetary Camera 2 (WFPC2) in 1997, and again in 2006 from the Advanced Camera for Surveys (ACS). Each of Hubble’s images of the Antennae Galaxies has been better than the last, due to upgrades made during the famous servicing missions, the last of which took place in 2009. The galaxies — also known as NGC 4038 and NGC 4039 — are locked in a deadly embrace. Once normal, sedate spiral galaxies like the Milky Way, the pair have spent the past few hundred million years sparring with one another. This clash is so violent that stars have been ripped from their host galaxies to form a streaming arc between the two. In wide-field images of the pair the reason for their name becomes clear — far-flung stars and streamers of gas stretch out into space, creating long tidal tails reminiscent of antennae. This new image of the Antennae Galaxies shows obvious signs of chaos. Clouds of gas are seen in bright pink and red, surrounding the bright flashes of blue star-forming regions — some of which are partially obscured by dark patches of dust. The rate of star formation is so high that the Antennae Galaxies are said to be in a state of starburst, a period in which all of the gas within the galaxies is being used to form stars. This cannot last forever and neither can the separate galaxies; eventually the nuclei will coalesce, and the galaxies will begin their retirement together as one large elliptical galaxy. This image uses visible and near-infrared observations from Hubble’s Wide Field Camera 3 (WFC3), along with some of the previously-released observations from Hubble’s Advanced Camera for Surveys (ACS). Credit: NASA/European Space Agency NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors

  5. Probing the mass assembly of massive nearby galaxies with deep imaging

    NASA Astrophysics Data System (ADS)

    Duc, P.-A.; Cuillandre, J.-C.; Alatalo, K.; Blitz, L.; Bois, M.; Bournaud, F.; Bureau, M.; Cappellari, M.; Côté, P.; Davies, R. L.; Davis, T. A.; de Zeeuw, P. T.; Emsellem, E.; Ferrarese, L.; Ferriere, E.; Gwyn, S.; Khochfar, S.; Krajnovic, D.; Kuntschner, H.; Lablanche, P.-Y.; McDermid, R. M.; Michel-Dansac, L.; Morganti, R.; Naab, T.; Oosterloo, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.; Young, L. M.

    2013-07-01

    According to a popular scenario supported by numerical models, the mass assembly and growth of massive galaxies, in particular the Early-Type Galaxies (ETGs), is, below a redshift of 1, mainly due to the accretion of multiple gas-poor satellites. In order to get observational evidence of the role played by minor dry mergers, we are obtaining extremely deep optical images of a complete volume limited sample of nearby ETGs. These observations, done with the CFHT as part of the ATLAS3D, NGVS and MATLAS projects, reach a stunning 28.5 - 29 mag.arcsec-2 surface brightness limit in the g' band. They allow us to detect the relics of past collisions such as faint stellar tidal tails as well as the very extended stellar halos which keep the memory of the last episodes of galactic accretion. Images and preliminary results from this on-going survey are presented, in particular a possible correlation between the fine structure index (which parametrizes the amount of tidal perturbation) of the ETGs, their stellar mass, effective radius and gas content.

  6. Fundamental Properties of the SHIELD Galaxies

    NASA Astrophysics Data System (ADS)

    Cannon, John; Adams, Betsey; Giovanelli, Riccardo; Haynes, Martha; Jones, Michael; McQuinn, Kristen; Rhode, Katherine; Salzer, John; Skillman, Evan

    2018-05-01

    The ALFALFA survey has significantly advanced our knowledge of the HI mass function (HIMF), particularly at the low mass end. From the ALFALFA survey, we have constructed a sample of all of the galaxies with HI masses less than 20 million solar masses. Observations of this 82 galaxy sample allow, for the first time, a characterization of the lowest HI mass galaxies at redshift zero. Specifically, this sample can be used to determine the low HI-mass ends of various fundamental scaling relations, including the critical baryonic Tully Fisher relation (BTFR) and the mass-metallicity (M-Z) relation. The M-Z relation and the BTFR are cosmologically important, but current samples leave the low-mass parameter spaces severely underpopulated. A full understanding of these relationships depends critically on accurate stellar masses of this complete sample of uniformly-selected galaxies. Here, we request imaging of the 70 galaxies in our sample that have not been observed with Spitzer. The proposed imaging will allow us to measure stellar masses and inclinations of the sample galaxies using a uniform observational approach. Comparison with (existing and in progress) interferometric HI imaging and with ground-based optical imaging and spectroscopy will enable a robust mass decomposition in each galaxy and accurate placements on the aforementioned scaling relationships. The observations proposed here will allow us to populate the mass continuum between mini-halos and bona fide dwarf galaxies, and to address a range of fundamental questions in galaxy formation and near-field cosmology.

  7. Large-scale galaxy bias

    NASA Astrophysics Data System (ADS)

    Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian

    2018-02-01

    This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy statistics. We then review the excursion-set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  8. Lyman Break Galaxies in the Hubble Ultra Deep Field through Deep U-Band Imaging

    NASA Astrophysics Data System (ADS)

    Rafelski, Marc; Wolfe, A. M.; Cooke, J.; Chen, H. W.; Armandroff, T. E.; Wirth, G. D.

    2009-12-01

    We introduce an extremely deep U-band image taken of the Hubble Ultra Deep Field (HUDF), with a one sigma depth of 30.7 mag arcsec-2 and a detection limiting magnitude of 28 mag arcsec-2. The observations were carried out on the Keck I telescope using the LRIS-B detector. The U-band image substantially improves the accuracy of photometric redshift measurements of faint galaxies in the HUDF at z=[2.5,3.5]. The U-band for these galaxies is attenuated by lyman limit absorption, allowing for more reliable selections of candidate Lyman Break Galaxies (LBGs) than from photometric redshifts without U-band. We present a reliable sample of 300 LBGs at z=[2.5,3.5] in the HUDF. Accurate redshifts of faint galaxies at z=[2.5,3.5] are needed to obtain empirical constraints on the star formation efficiency of neutral gas at high redshift. Wolfe & Chen (2006) showed that the star formation rate (SFR) density in damped Ly-alpha absorption systems (DLAs) at z=[2.5,3.5] is significantly lower than predicted by the Kennicutt-Schmidt law for nearby galaxies. One caveat to this result that we wish to test is whether LBGs are embedded in DLAs. If in-situ star formation is occurring in DLAs, we would see it as extended low surface brightness emission around LBGs. We shall use the more accurate photometric redshifts to create a sample of LBGs around which we will look for extended emission in the more sensitive and higher resolution HUDF images. The absence of extended emission would put limits on the SFR density of DLAs associated with LBGs at high redshift. On the other hand, detection of faint emission on scales large compared to the bright LBG cores would indicate the presence of in situ star formation in those DLAs. Such gas would presumably fuel the higher star formation rates present in the LBG cores.

  9. Spatially Resolved Patchy Lyα Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    NASA Astrophysics Data System (ADS)

    Bayliss, Matthew B.; Sharon, Keren; Acharyya, Ayan; Gladders, Michael D.; Rigby, Jane R.; Bian, Fuyan; Bordoloi, Rongmon; Runnoe, Jessie; Dahle, Hakon; Kewley, Lisa; Florian, Michael; Johnson, Traci; Paterno-Mahler, Rachel

    2017-08-01

    We report the detection of extended Lyα emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Lyα in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ˜200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Lyα emission to its physical origin on one side of the host galaxy at radii ˜0.5-2 kpc from the central AGN. There are clear morphological differences between the Lyα and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Lyα, host galaxy Lyα, and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.

  10. Spatially Resolved Patchy Ly α Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, Matthew B.; Bordoloi, Rongmon; Sharon, Keren

    We report the detection of extended Ly α emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Ly α in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ∼200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Ly α emission tomore » its physical origin on one side of the host galaxy at radii ∼0.5–2 kpc from the central AGN. There are clear morphological differences between the Ly α and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Ly α , host galaxy Ly α , and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.« less

  11. Structural analysis of star-forming blue early-type galaxies. Merger-driven star formation in elliptical galaxies

    NASA Astrophysics Data System (ADS)

    George, Koshy

    2017-02-01

    Context. Star-forming blue early-type galaxies at low redshift can give insight to the stellar mass growth of L⋆ elliptical galaxies in the local Universe. Aims: We wish to understand the reason for star formation in these otherwise passively evolving red and dead stellar systems. The fuel for star formation can be acquired through recent accretion events such as mergers or flyby. The signatures of such events should be evident from a structural analysis of the galaxy image. Methods: We carried out structural analysis on SDSS r-band imaging data of 55 star-forming blue elliptical galaxies, derived the structural parameters, analysed the residuals from best-fit to surface brightness distribution, and constructed the galaxy scaling relations. Results: We found that star-forming blue early-type galaxies are bulge-dominated systems with axial ratio >0.5 and surface brightness profiles fitted by Sérsic profiles with index (n) mostly >2. Twenty-three galaxies are found to have n< 2; these could be hosting a disc component. The residual images of the 32 galaxy surface brightness profile fits show structural features indicative of recent interactions. The star-forming blue elliptical galaxies follow the Kormendy relation and show the characteristics of normal elliptical galaxies as far as structural analysis is concerned. There is a general trend for high-luminosity galaxies to display interaction signatures and high star formation rates. Conclusions: The star-forming population of blue early-type galaxies at low redshifts could be normal ellipticals that might have undergone a recent gas-rich minor merger event. The star formation in these galaxies will shut down once the recently acquired fuel is consumed, following which the galaxy will evolve to a normal early-type galaxy.

  12. Improved mass constraints for two nearby strong-lensing elliptical galaxies from Hubble Space Telescope imaging

    NASA Astrophysics Data System (ADS)

    Collier, William P.; Smith, Russell J.; Lucey, John R.

    2018-01-01

    We analyse newly obtained Hubble Space Telescope imaging for two nearby strong lensing elliptical galaxies, SNL-1 (z = 0.03) and SNL-2 (z = 0.05), in order to improve the lensing mass constraints. The imaging reveals previously unseen structure in both the lens galaxies and lensed images. For SNL-1, which has a well resolved source, we break the mass-versus-shear degeneracy using the relative magnification information, and measure a lensing mass of 9.49 ± 0.15 × 1010 M⊙, a 7 per cent increase on the previous estimate. For SNL-2, the imaging reveals a bright unresolved component to the source and this presents additional complexity due to possible active galactic nucleus microlensing or variability. We tentatively use the relative magnification information to constrain the contribution from SNL-2's nearby companion galaxy, measuring a lensing mass of 12.59 ± 0.30 × 1010 M⊙, a 9 per cent increase in mass. Our improved lens modelling reduces the mass uncertainty from 5 and 10 per cent to 2 and 3 per cent, respectively. Our results support the conclusions of the previous analysis, with newly measured mass excess parameters of 1.17 ± 0.09 and 0.96 ± 0.10 for SNL-1 and SNL-2, relative to a Milky Way like (Kroupa) initial mass function.

  13. Images From Hubbles's ACS Tell A Tale Of Two Record-Breaking Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    2004-01-01

    Baltimore, Md. Optical Image of RDCS 1252.9-2927 HST Optical Image of RDCS 1252.9-2927 The second Hubble study uncovered, for the first time, a proto-cluster of "infant galaxies" that existed more than 12 billion years ago (at redshift 4.1). These galaxies are so young that astronomers can still see a flurry of stars forming within them. The galaxies are grouped around one large galaxy. These results will be published in the Jan. 1, 2004 issue of Nature. The paper's lead author is George Miley of Leiden Observatory in the Netherlands. "Until recently people didn't think that clusters existed when the universe was only about 5 billion years old," Blakeslee explained. "Even if there were such clusters," Miley added, "until recently astronomers thought it was almost impossible to find clusters that existed 8 billion years ago. In fact, no one really knew when clustering began. Now we can witness it." Both studies led the astronomers to conclude that these systems are the progenitors of the galaxy clusters seen today. "The cluster RDCS 1252 looks like a present-day cluster," said Marc Postman of the Space Telescope Science Institute in Baltimore, Md., and co-author of both research papers. "In fact, if you were to put it next to a present-day cluster, you wouldn't know which is which." A Tale of Two Clusters How can galaxies grow so fast after the big bang? "It is a case of the rich getting richer," Blakeslee said. "These clusters grew quickly because they are located in very dense regions, so there is enough material to build up the member galaxies very fast." This idea is strengthened by X-ray observations of the massive cluster RDCS 1252. Chandra and the European Space Agency's XMM-Newton provided astronomers with the most accurate measurements to date of the properties of an enormous cloud of hot gas that pervades the massive cluster. This 160-million-degree Fahrenheit (70-million-degree Celsius) gas is a reservoir of most of the heavy elements in the cluster and an

  14. High-resolution Imaging of PHIBSS z ˜ 2 Main-sequence Galaxies in CO J = 1 → 0

    NASA Astrophysics Data System (ADS)

    Bolatto, A. D.; Warren, S. R.; Leroy, A. K.; Tacconi, L. J.; Bouché, N.; Förster Schreiber, N. M.; Genzel, R.; Cooper, M. C.; Fisher, D. B.; Combes, F.; García-Burillo, S.; Burkert, A.; Bournaud, F.; Weiss, A.; Saintonge, A.; Wuyts, S.; Sternberg, A.

    2015-08-01

    We present Karl Jansky Very Large Array observations of the CO J=1-0 transition in a sample of four z˜ 2 main-sequence galaxies. These galaxies are in the blue sequence of star-forming galaxies at their redshift, and are part of the IRAM Plateau de Bure HIgh-z Blue Sequence Survey which imaged them in CO J=3-2. Two galaxies are imaged here at high signal-to-noise, allowing determinations of their disk sizes, line profiles, molecular surface densities, and excitation. Using these and published measurements, we show that the CO and optical disks have similar sizes in main-sequence galaxies, and in the galaxy where we can compare CO J=1-0 and J=3-2 sizes we find these are also very similar. Assuming a Galactic CO-to-H2 conversion, we measure surface densities of {{{Σ }}}{mol}˜ 1200 {M}⊙ pc-2 in projection and estimate {{{Σ }}}{mol}˜ 500-900 {M}⊙ pc-2 deprojected. Finally, our data yields velocity-integrated Rayleigh-Jeans brightness temperature line ratios r31 that are approximately at unity. In addition to the similar disk sizes, the very similar line profiles in J=1-0 and J=3-2 indicate that both transitions sample the same kinematics, implying that their emission is coextensive. We conclude that in these two main-sequence galaxies there is no evidence for significant excitation gradients or a large molecular reservoir that is diffuse or cold and not involved in active star formation. We suggest that r31 in very actively star-forming galaxies is likely an indicator of how well-mixed the star formation activity and the molecular reservoir are.

  15. Statistical properties of Faraday rotation measure in external galaxies - I. Intervening disc galaxies

    NASA Astrophysics Data System (ADS)

    Basu, Aritra; Mao, S. A.; Fletcher, Andrew; Kanekar, Nissim; Shukurov, Anvar; Schnitzeler, Dominic; Vacca, Valentina; Junklewitz, Henrik

    2018-06-01

    Deriving the Faraday rotation measure (RM) of quasar absorption line systems, which are tracers of high-redshift galaxies intervening background quasars, is a powerful tool for probing magnetic fields in distant galaxies. Statistically comparing the RM distributions of two quasar samples, with and without absorption line systems, allows one to infer magnetic field properties of the intervening galaxy population. Here, we have derived the analytical form of the probability distribution function (PDF) of RM produced by a single galaxy with an axisymmetric large-scale magnetic field. We then further determine the PDF of RM for one random sight line traversing each galaxy in a population with a large-scale magnetic field prescription. We find that the resulting PDF of RM is dominated by a Lorentzian with a width that is directly related to the mean axisymmetric large-scale field strength of the galaxy population if the dispersion of B0 within the population is smaller than . Provided that RMs produced by the intervening galaxies have been successfully isolated from other RM contributions along the line of sight, our simple model suggests that in galaxies probed by quasar absorption line systems can be measured within ≈50 per cent accuracy without additional constraints on the magneto-ionic medium properties of the galaxies. Finally, we discuss quasar sample selection criteria that are crucial to reliably interpret observations, and argue that within the limitations of the current data base of absorption line systems, high-metallicity damped Lyman-α absorbers are best suited to study galactic dynamo action in distant disc galaxies.

  16. Imaging the Heart of Our Galaxy

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    New radio images of the center of the Milky Way are providing an unprecedented view of the structure and processes occurring in the Galactic center.JVLA images of Sgr A at 5.5 GHz. The large-scale, bright ring structure is Sgr A East, a supernova remnant. The mini-spiral structure along the lower-right edge of the ring is Sgr A West, and Sgr A* is located near the center of the mini-spiral structure. Click for a closer look! [Zhao et al. 2016]Improved Radio ViewA recent study led by Jun-Hui Zhao (Harvard-Smithsonian Center for Astrophysics) presents new images of the Galactic center using the Jansky Very Large Array (JVLA) at 5.5 GHz. The images center on the radio-bright zone at the core of our galaxy, with the field of view covering the central 13 of the Milky Way equivalent to a physical size of ~100 light-years.Due to recent hardware and software improvements in the VLA, these images are much deeper than any previously obtained of the Galactic center, reaching an unprecedented 100,000:1 dynamic range. Not only do these observations provide a detailed view of previously known structures within the Sagittarius A radio complex in the Milky Ways heart, but they also reveal new features that can help us understand the processes that formed this bright complex.Features in Sagittarius ASgr A consists of three main components nested within each other: the supernova remnant Sgr A East, the mini-spiral structure Sgr A West (located off-center within the Sgr A East structure), and the compact radio source Sgr A* (located near the center of the mini-spiral). Sgr A* is the supermassive black hole that resides at the very center of the Milky Way.The newest JVLA images reveal numerous filamentary sources that trace out two radio lobes, oriented nearly perpendicular to the Galactic plane and ~50 light-years in size. These are smaller radio counterparts to the enormous (on the scale of 30,000 light-years!) gamma-ray Fermi bubbles that have been observed to extend from the

  17. Getting to Know the Neighbors: Deep Imaging of the Andromeda Satellite Dwarf Galaxy Cassiopeia III with WIYN pODI

    NASA Astrophysics Data System (ADS)

    Smith, Madison; Rhode, Katherine L.; Janowiecki, Steven

    2016-01-01

    We present results from WIYN pODI imaging of Cassiopeia III/Andromeda XXXII (Cas III/And XXXII), an Andromeda satellite dwarf galaxy recently discovered by Martin et al. (2013) in Pan-STARRS1 survey data. Detailed studies of satellite dwarf galaxies in the Local Group and its environs provide important insight into how low-mass galaxies form and evolve as well as how more massive galaxies are assembled in a hierarchical universe. The goal of this project is to obtain deep, wide-field photometry of Cas III in order to study its stellar population in more detail. The images used for this analysis were taken in October 2013 with the 24' x 24' pODI camera on the WIYN 3.5-m telescope in the SDSS g and i filters. Calibrated photometry was performed on all point sources in the g and i images and then used to quantify the radial distribution of stars in Cas III and to construct a color-magnitude diagram (CMD). We present this CMD along with a map of the resolved stellar population and measurements of the galaxy magnitude and structural properties. This research was supported by the NSF Research Experiences for Undergraduates program (grant number AST-1358980).

  18. Spiral Galaxies Stripped Bare

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Six spectacular spiral galaxies are seen in a clear new light in images from ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The pictures were taken in infrared light, using the impressive power of the HAWK-I camera, and will help astronomers understand how the remarkable spiral patterns in galaxies form and evolve. HAWK-I [1] is one of the newest and most powerful cameras on ESO's Very Large Telescope (VLT). It is sensitive to infrared light, which means that much of the obscuring dust in the galaxies' spiral arms becomes transparent to its detectors. Compared to the earlier, and still much-used, VLT infrared camera ISAAC, HAWK-I has sixteen times as many pixels to cover a much larger area of sky in one shot and, by using newer technology than ISAAC, it has a greater sensitivity to faint infrared radiation [2]. Because HAWK-I can study galaxies stripped bare of the confusing effects of dust and glowing gas it is ideal for studying the vast numbers of stars that make up spiral arms. The six galaxies are part of a study of spiral structure led by Preben Grosbøl at ESO. These data were acquired to help understand the complex and subtle ways in which the stars in these systems form into such perfect spiral patterns. The first image shows NGC 5247, a spiral galaxy dominated by two huge arms, located 60-70 million light-years away. The galaxy lies face-on towards Earth, thus providing an excellent view of its pinwheel structure. It lies in the zodiacal constellation of Virgo (the Maiden). The galaxy in the second image is Messier 100, also known as NGC 4321, which was discovered in the 18th century. It is a fine example of a "grand design" spiral galaxy - a class of galaxies with very prominent and well-defined spiral arms. About 55 million light-years from Earth, Messier 100 is part of the Virgo Cluster of galaxies and lies in the constellation of Coma Berenices (Berenice's Hair, named after the ancient Egyptian queen Berenice II). The third

  19. Hubble Views a Dwarf Galaxy

    NASA Image and Video Library

    2017-12-08

    The constellation of Ursa Major (The Great Bear) is home to Messier 101, the Pinwheel Galaxy. Messier 101 is one of the biggest and brightest spiral galaxies in the night sky. Like the Milky Way, Messier 101 is not alone, with smaller dwarf galaxies in its neighborhood. NGC 5477, one of these dwarf galaxies in the Messier 101 group, is the subject of this image from the NASA/ESA Hubble Space Telescope. Without obvious structure, but with visible signs of ongoing star birth, NGC 5477 looks much like an typical dwarf irregular galaxy. The bright nebulae that extend across much of the galaxy are clouds of glowing hydrogen gas in which new stars are forming. These glow pinkish red in real life, although the selection of green and infrared filters through which this image was taken makes them appear almost white. The observations were taken as part of a project to measure accurate distances to a range of galaxies within about 30 million light-years from Earth, by studying the brightness of red giant stars. In addition to NGC 5477, the image includes numerous galaxies in the background, including some that are visible right through NGC 5477. This serves as a reminder that galaxies, far from being solid, opaque objects, are actually largely made up of the empty space between their stars. This image is a combination of exposures taken through green and infrared filters using Hubble's Advanced Camera for Surveys. The field of view is approximately 3.3 by 3.3 arcminutes. ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Observational Tracers of Hot and Cold Gas in Isolated Galaxy Simulations

    NASA Astrophysics Data System (ADS)

    Brzycki, Bryan; Silvia, Devin

    2018-01-01

    We present results from an analysis comparing simulations of isolated spiral galaxies with recent observations of the circumgalactic medium (CGM). As the interface containing inflows and outflows between the interstellar and intergalactic media, the CGM plays an important role in the composition and evolution of galaxies. Using a set of isolated galaxy simulations over different initial conditions and star formation and feedback parameters, we investigate the evolution of CGM gas. Specifically, in light of recent observational studies, we compute the radial column density profiles and covering fractions of various observable ion species (H I, C IV, O VI, Mg II, Si III) for each simulated galaxy. Taking uniformly random sightlines through the CGM of each simulated galaxy, we find the abundance of gas absorbers and analyze their contribution to the overall column density along each sightline. By identifying the prevalence of high column density absorbers, we seek to characterize the distribution and evolution of observable ion species in the CGM. We also highlight a subset of our isolated galaxy simulations that produce and maintain a stable precipitating CGM that fuels high rates of sustained star formation. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  1. Two Galaxies for a Unique Event

    NASA Astrophysics Data System (ADS)

    2009-04-01

    To celebrate the 100 Hours of Astronomy, ESO is sharing two stunning images of unusual galaxies, both belonging to the Sculptor group of galaxies. The images, obtained at two of ESO's observatories at La Silla and Paranal in Chile, illustrate the beauty of astronomy. ESO PR Photo 14a/09 Irregular Galaxy NGC 55 ESO PR Photo 14b/09 Spiral Galaxy NGC 7793 As part of the International Year of Astronomy 2009 Cornerstone project, 100 Hours of Astronomy, the ambitious "Around the World in 80 Telescopes" event is a unique live webcast over 24 hours, following night and day around the globe to some of the most advanced observatories on and off the planet. To provide a long-lasting memory of this amazing world tour, observatories worldwide are revealing wonderful, and previously unseen, astronomical images. For its part, ESO is releasing outstanding pictures of two galaxies, observed with telescopes at the La Silla and Paranal observatories. The first of these depicts the irregular galaxy NGC 55, a member of the prominent Sculptor group of galaxies in the southern constellation of Sculptor. The galaxy is about 70 000 light-years across, that is, a little bit smaller than our own Milky Way. NGC 55 actually resembles more our galactic neighbour, the Large Magellanic Cloud (LMC), although the LMC is seen face-on, whilst NGC 55 is edge-on. By studying about 20 planetary nebulae in this image, a team of astronomers found that NGC 55 is located about 7.5 million light-years away. They also found that the galaxy might be forming a bound pair with the gorgeous spiral galaxy NGC 300 . Planetary nebulae are the final blooming of Sun-like stars before their retirement as white dwarfs. This striking image of NGC 55, obtained with the Wide Field Imager on the 2.2-metre MPG/ESO telescope at La Silla, is dusted with a flurry of reddish nebulae, created by young, hot massive stars. Some of the more extended ones are not unlike those seen in the LMC, such as the Tarantula Nebula. The quality

  2. Hα3: an Hα imaging survey of HI selected galaxies from ALFALFA. IV. Structure of galaxies in the Local and Coma superclusters

    NASA Astrophysics Data System (ADS)

    Fossati, M.; Gavazzi, G.; Savorgnan, G.; Fumagalli, M.; Boselli, A.; Gutiérrez, L.; Hernández Toledo, H.; Giovanelli, R.; Haynes, M. P.

    2013-05-01

    Context. We present the analysis of the galaxy structural parameters from Hα3, an Hα narrow-band imaging follow-up survey of ~800 galaxies selected from the HI Arecibo Legacy Fast ALFA Survey (ALFALFA) in the Local supercluster, including the Virgo cluster, and in the Coma supercluster. Aims: Taking advantage of Hα3, which provides the complete census of the recent star-forming, HI-rich galaxies in the local universe, we aim to investigate the structural parameters of the young (<10 Myr) and the old (>1 Gyr) stellar populations. By comparing the sizes of these stellar components, we investigated the spatial scale on which galaxies are growing at the present cosmological epoch and the role of the environment in quenching the star-formation activity. Methods: We computed the concentration, asymmetry, and clumpiness (CAS) structural parameters for recently born and old stars. To quantify the sizes we computed half-light radii and a new parameter dubbed EW/r based on the half-light radius of the Hα equivalent width map. To highlight the environmental perturbation, we adopt an updated calibration of the HI-deficiency parameter (DefHI) that we use to divide the sample in unperturbed galaxies (DefHI ≤ 0.3) and perturbed galaxies (DefHI > 0.3). Results: The concentration index computed in the r band depends on the stellar mass and on the Hubble type these variables are related because most massive galaxies are bulge dominated therefore highly concentrated. Going toward later spirals and irregulars the concentration index and the mass decrease along with the bulge-to-disk ratio. Blue compact dwarfs (BCDs) are an exception because they have similar mass, but they are more concentrated than dwarf irregulars. The asymmetry and the clumpiness increase along the spiral sequence up to Sc-Sd, but they decrease going in the dwarf regime, where the light distribution is smooth and more symmetric. When measured on Hα images, the CAS parameters show no obvious correlations with

  3. NASA's Hubble Spots Embryonic Galaxy SPT0615-JD

    NASA Image and Video Library

    2018-01-11

    This Hubble Space Telescope image shows the farthest galaxy yet seen in an image that has been stretched and amplified by a phenomenon called gravitational lensing. The embryonic galaxy, named SPT0615-JD, existed when the universe was just 500 million years old. Though a few other primitive galaxies have been seen at this early epoch, they have essentially all looked like red dots, given their small size and tremendous distances. However, in this case, the gravitational field of a massive foreground galaxy cluster, called SPT-CL J0615-5746, not only amplified the light from the background galaxy but also smeared the image of it into an arc (about 2 arcseconds long). Image analysis shows that the galaxy weighs in at no more than 3 billion solar masses (roughly 1/100th the mass of our fully grown Milky Way galaxy). It is less than 2,500 light-years across, half the size of the Small Magellanic Cloud, a satellite galaxy of our Milky Way. The object is considered prototypical of young galaxies that emerged during the epoch shortly after the big bang. https://photojournal.jpl.nasa.gov/catalog/PIA22079

  4. Discovery of a transparent sightline at ρ ≲ 20 kpc from an interacting pair of galaxies

    NASA Astrophysics Data System (ADS)

    Johnson, Sean D.; Chen, Hsiao-Wen; Mulchaey, John S.; Tripp, Todd M.; Prochaska, J. Xavier; Werk, Jessica K.

    2014-03-01

    We report the discovery of a transparent sightline at projected distances of ρ ≲ 20 kpc to an interacting pair of mature galaxies at z = 0.12. The sightline of the UV-bright quasar PG 1522+101 at zem = 1.328 passes at ρ = 11.5 kpc from the higher mass galaxy (M* = 1010.6 M⊙) and ρ = 20.4 kpc from the lower mass one (M* = 1010.0 M⊙). The two galaxies are separated by 9 kpc in projected distance and 30 km s-1 in line-of-sight velocity. Deep optical images reveal tidal features indicative of close interactions. Despite the small projected distances, the quasar sightline shows little absorption associated with the galaxy pair with a total H I column density no greater than log N({H I})/cm^{-2}=13.65. This limiting H I column density is already two orders of magnitude less than what is expected from previous halo gas studies. In addition, we detect no heavy-element absorption features associated with the galaxy pair with 3σ limits of log N({Mg II})/cm^{-2} < 12.2 and log N({O VI})/cm^{-2} < 13.7. The probability of seeing such little absorption in a sightline passing at a small projected distance from two non-interacting galaxies is 0.2 per cent. The absence of strong absorbers near the close galaxy pair suggests that the cool gas reservoirs of the galaxies have been significantly depleted by the galaxy interaction. These observations therefore underscore the potential impact of galaxy interactions on the gaseous haloes around galaxies.

  5. Census of the Local Universe (CLU): Classification of Galaxy Candidates in Narrowband Images Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Zhang, Chaoran; Van Sistine, Anglea; Kaplan, David; Brady, Patrick; Cook, David O.; Kasliwal, Mansi

    2018-01-01

    A complete catalog of galaxies in the local universe is critical for efficient electromagnetic follow-up of gravitational wave events (EMGW). The Census of the Local Universe (CLU; Cook et al. 2017, in preparation) aims to provide a galaxy catalog out to 200 Mpc that is as complete as possible. CLU has recently completed an Hα survey of ~3π of the sky with the goal of cataloging those galaxies that are likely hosts of EMGW events. Here, we present a tool we developed using machine learning technology to classify sources extracted from the Hα narrowband images within 200Mpc. In this analysis we find we are able to recover more galaxies compared to selections based on Hα colors alone.

  6. Galaxy NGC 4013

    NASA Image and Video Library

    1999-12-15

    An amazing edge-on view of a spiral galaxy 55 million light years from Earth has been captured by the Hubble Space Telescope. The image reveals in great detail huge clouds of dust and gas extending along and above the galaxy main disk.

  7. Astronomers Set a New Galaxy Distance Record

    NASA Image and Video Library

    2015-05-06

    This is a Hubble Space Telescope image of the farthest spectroscopically confirmed galaxy observed to date (inset). It was identified in this Hubble image of a field of galaxies in the CANDELS survey (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey). NASA’s Spitzer Space Telescope also observed the unique galaxy. The W. M. Keck Observatory was used to obtain a spectroscopic redshift (z=7.7), extending the previous redshift record. Measurements of the stretching of light, or redshift, give the most reliable distances to other galaxies. This source is thus currently the most distant confirmed galaxy known, and it appears to also be one of the brightest and most massive sources at that time. The galaxy existed over 13 billion years ago. The near-infrared light image of the galaxy (inset) has been colored blue as suggestive of its young, and hence very blue, stars. The CANDELS field is a combination of visible-light and near-infrared exposures. Credits: NASA, ESA, P. Oesch (Yale U.)

  8. Morphology of Our Galaxy Twin

    NASA Image and Video Library

    2004-06-28

    NASA's Spitzer Space Telescope has captured these infrared images of a nearby spiral galaxy that resembles our own Milky Way. The targeted galaxy, known as NGC 7331 and sometimes referred to as our galaxy's twin, is found in the constellation Pegasus at a distance of 50 million light-years. This inclined galaxy was discovered in 1784 by William Herschel, who also discovered infrared light. The evolution of this galaxy is a story that depends significantly on the amount and distribution of gas and dust, the locations and rates of star formation, and on how the energy from star formation is recycled by the local environment. The new Spitzer images are allowing astronomers to "read" this story by dissecting the galaxy into its separate components. The image, measuring 12.6 by 8.2 arcminutes, was obtained by Spitzer's infrared array camera. It is a four-color composite of invisible light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (yellow) and 8.0 microns (red). These wavelengths are roughly 10 times longer than those seen by the human eye. The infrared light seen in this image originates from two very different sources. At shorter wavelengths (3.6 to 4.5 microns), the light comes mainly from stars, particularly ones that are older and cooler than our Sun. This starlight fades at longer wavelengths (5.8 to 8.0 microns), where instead we see the glow from clouds of interstellar dust. This dust consists mainly of a variety of carbon-based organic molecules known collectively as polycyclic aromatic hydrocarbons. Wherever these compounds are found, there will also be dust granules and gas, which provide a reservoir of raw materials for future star formation. One feature that stands out in the Spitzer image is the ring of actively forming stars that surrounds the galaxy center (yellow). This ring, with a radius of nearly 20,000 light-years, is invisible at shorter wavelengths, yet has been detected at sub-millimeter and radio

  9. Morphology of Our Galaxy's 'Twin'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Spitzer Space Telescope has captured these infrared images of a nearby spiral galaxy that resembles our own Milky Way. The targeted galaxy, known as NGC 7331 and sometimes referred to as our galaxy's twin, is found in the constellation Pegasus at a distance of 50 million light-years. This inclined galaxy was discovered in 1784 by William Herschel, who also discovered infrared light.

    The evolution of this galaxy is a story that depends significantly on the amount and distribution of gas and dust, the locations and rates of star formation, and on how the energy from star formation is recycled by the local environment. The new Spitzer images are allowing astronomers to 'read' this story by dissecting the galaxy into its separate components.

    The image, measuring 12.6 by 8.2 arcminutes, was obtained by Spitzer's infrared array camera. It is a four-color composite of invisible light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (yellow) and 8.0 microns (red). These wavelengths are roughly 10 times longer than those seen by the human eye.

    The infrared light seen in this image originates from two very different sources. At shorter wavelengths (3.6 to 4.5 microns), the light comes mainly from stars, particularly ones that are older and cooler than our Sun. This starlight fades at longer wavelengths (5.8 to 8.0 microns), where instead we see the glow from clouds of interstellar dust. This dust consists mainly of a variety of carbon-based organic molecules known collectively as polycyclic aromatic hydrocarbons. Wherever these compounds are found, there will also be dust granules and gas, which provide a reservoir of raw materials for future star formation.

    One feature that stands out in the Spitzer image is the ring of actively forming stars that surrounds the galaxy center (yellow). This ring, with a radius of nearly 20,000 light-years, is invisible at shorter wavelengths, yet has been detected at

  10. Coma cluster of galaxies

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  11. Large-scale galaxy bias

    NASA Astrophysics Data System (ADS)

    Jeong, Donghui; Desjacques, Vincent; Schmidt, Fabian

    2018-01-01

    Here, we briefly introduce the key results of the recent review (arXiv:1611.09787), whose abstract is as following. This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy (or halo) statistics. We then review the excursion set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  12. DISTANT CLUSTER OF GALAXIES [left

    NASA Technical Reports Server (NTRS)

    2002-01-01

    One of the deepest images to date of the universe, taken with NASA's Hubble Space Telescope (HST), reveals thousands of faint galaxies at the detection limit of present day telescopes. Peering across a large volume of the observable cosmos, Hubble resolves thousands of galaxies from five to twelve billion light-years away. The light from these remote objects has taken billions of years to cross the expanding universe, making these distant galaxies fossil evidence' of events that happened when the universe was one-third its present age. A fraction of the galaxies in this image belong to a cluster located nine billion light-years away. Though the field of view (at the cluster's distance) is only two million light-years across, it contains a multitude of fragmentary objects. (By comparison, the two million light-years between our Milky Way galaxy and its nearest large companion galaxy, in the constellation Andromeda, is essentially empty space!) Very few of the cluster's members are recognizable as normal spiral galaxies (like our Milky Way), although some elongated members might be edge-on disks. Among this zoo of odd galaxies are ``tadpole-like'' objects, disturbed and apparently merging systems dubbed 'train-wrecks,' and a multitude of faint, tiny shards and fragments, dwarf galaxies or possibly an unknown population of objects. However, the cluster also contains red galaxies that resemble mature examples of today's elliptical galaxies. Their red color comes from older stars that must have formed shortly after the Big Bang. The image is the full field view of the Wide Field and Planetary Camera-2. The picture was taken in intervals between May 11 and June 15, 1994 and required an 18-hour long exposure, over 32 orbits of HST, to reveal objects down to 29th magnitude. [bottom right] A close up view of the peculiar radio galaxy 3C324 used to locate the cluster. The galaxy is nine billion light-years away as measured by its spectral redshift (z=1.2), and located in the

  13. Hubble Spies Spiral Galaxy

    NASA Image and Video Library

    2017-12-08

    Spiral galaxy NGC 3274 is a relatively faint galaxy located over 20 million light-years away in the constellation of Leo (The Lion). This NASA/ESA Hubble Space Telescope image comes courtesy of Hubble's Wide Field Camera 3 (WFC3), whose multi-color vision allows astronomers to study a wide range of targets, from nearby star formation to galaxies in the most remote regions of the cosmos. This image combines observations gathered in five different filters, bringing together ultraviolet, visible and infrared light to show off NGC 3274 in all its glory. NGC 3274 was discovered by Wilhelm Herschel in 1783. The galaxy PGC 213714 is also visible on the upper right of the frame, located much farther away from Earth. Image Credit: ESA/Hubble & NASA, D. Calzetti NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Classic Galaxy with Glamour

    NASA Image and Video Library

    2005-04-11

    Young hot blue stars dominate the outer spiral arms of nearby galaxy NGC 300, while the older stars congregate in the nuclear regions which appear yellow-green in this image from NASA Galaxy Evolution Explorer.

  15. The Secret Lives of Galaxies

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The ground-based image in visible light locates the hub imaged with the Hubble Space Telescope. This barred galaxy feeds material into its hub, igniting star birth. The Hubble NICMOS instrument penetrates beneath the dust to reveal clusters of young stars. Footage shows ground-based, WFPC2, and NICMOS images of NGS 1365. An animation of a large spiral galaxy zooms from the edge to the galactic bulge.

  16. A Study of Galaxies and Quasars in the Background of the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Dhara, Atirath; McConnell, Kaela; Guhathakurta, Puragra; Roy, Namrata; Waite, Jurij

    2018-01-01

    The SPLASH (Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo) survey is based on wide-field ground-based optical images (KPNO 4-m/Mosaic, CFHT 3.6-m/MegaCam imager, and Subaru 8-m/Suprime-Cam), deep Hubble Space Telescope ultraviolet/optical/near infrared images (ACS and WFC3), and medium resolution spectra (Keck II 10-m/DEIMOS). The SPLASH survey data set contains two main categories of (non-M31) contaminants (SPLASH trash, if you will): foreground Milky Way stars and compact background galaxies/quasars. In this poster, we present the discovery and characterization of galaxies and quasars behind M31. Such objects were identified based on the presence of redshifted emission lines and other galaxy/quasar spectral features (e.g., Ca H+K absorption and IGM absorption). The redshift of each galaxy was measured by cross-correlating its spectrum against an emission line galaxy spectral template. The cross-correlation results (spectrum and best-fit template) were visually inspected to identify cases of incorrect matching of emission lines. Many of these incorrect redshift estimates were corrected by using the second or third highest cross-correlation peak. Quasar redshifts were determined based on cross-correlation against a quasar spectral template. Most of the galaxies in our sample are star forming galaxies with strong emission lines. We analyze their emission line flux ratios in a BPT diagram to learn more about the ionization source and metallicity. Finally, the properties of these compact galaxies behind M31 are compared to those of galaxies selected in a more standard way in the DEEP2 redshift survey to explore the effects of morphological pre-selection (compact vs. extended) on the properties of the resulting galaxy sample.This research was supported by NASA/STScI and the National Science Foundation. Most of this work was carried out by high school students working under the auspices of the Science Internship Program (SIP) at UC Santa Cruz.

  17. The dwarf galaxy UGC 5272 and its small companion galaxy

    NASA Technical Reports Server (NTRS)

    Hopp, U.; Schulte-Ladbeck, R. E.

    1991-01-01

    The present study of optical images and spectroscopy of the dwarf irregular galaxy UGC 5272 notes the presence, at 3.6 kpc, of a small neighboring galaxy which is also of irregular type and has a Holmberg diameter of 0.6 kpc. Attention is given to the possibility that the two galaxies, which are resolved into single stars, may form a physical pair. It is suggested that the blue-to-red supergiant ratio of UGC 5272 is high due to its low metallicity. While its extremely blue colors are suggestive of a recent starburst, the structural parameters of the galaxy are surprisingly normal. The gas contribution to total mass is high.

  18. Hubble Space Telescope and Spitzer Imaging of Red and Blue Galaxies at z ~ 2.5: A Correlation between Size and Star Formation Activity from Compact Quiescent Galaxies to Extended Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Toft, S.; van Dokkum, P.; Franx, M.; Labbe, I.; Förster Schreiber, N. M.; Wuyts, S.; Webb, T.; Rudnick, G.; Zirm, A.; Kriek, M.; van der Werf, P.; Blakeslee, J. P.; Illingworth, G.; Rix, H.-W.; Papovich, C.; Moorwood, A.

    2007-12-01

    We present HST NICMOS+ACS and Spitzer IRAC+MIPS observations of 41 galaxies at 2galaxies are very compact (effective radii re<1 kpc) at rest-frame optical wavelengths; the others are extended (1 kpcgalaxies from quiescent galaxies by modeling their rest-frame UV-NIR SEDs. The star-forming galaxies span the full range of sizes, while the quiescent galaxies all have re<2 kpc. In the redshift range where MIPS 24 μm imaging is a sensitive probe of reradiated dust emission (z<2.5), the 24 μm fluxes confirm that the light of the small quiescent galaxies is dominated by old stars, rather than dust-enshrouded star formation or AGN activity. The inferred surface mass densities and velocity dispersions for the quiescent galaxies are very high compared to those in local galaxies. The galaxies follow a Kormendy relation (between surface brightness and size) with approximately the same slope as locally, but shifted to brighter surface brightnesses, consistent with a mean stellar formation redshift of zf~5. This paper demonstrates a direct relation between star formation activity and size at z~2.5 and the existence of a significant population of massive, extremely dense, old stellar systems without readily identifiable counterparts in the local universe. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555 observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407; and observations collected at the European Southern Observatory, Paranal, Chile (ESO Program 164.O-0612).

  19. Hubble Captures Massive Dead Disk Galaxy that Challenges Theories of Galaxy Evolution

    NASA Image and Video Library

    2017-12-08

    By combining the power of a "natural lens" in space with the capability of NASA's Hubble Space Telescope, astronomers made a surprising discovery—the first example of a compact yet massive, fast-spinning, disk-shaped galaxy that stopped making stars only a few billion years after the big bang. Finding such a galaxy early in the history of the universe challenges the current understanding of how massive galaxies form and evolve, say researchers. Read more: go.nasa.gov/2sWwKkc caption: Acting as a “natural telescope” in space, the gravity of the extremely massive foreground galaxy cluster MACS J2129-0741 magnifies, brightens, and distorts the far-distant background galaxy MACS2129-1, shown in the top box. The middle box is a blown-up view of the gravitationally lensed galaxy. In the bottom box is a reconstructed image, based on modeling that shows what the galaxy would look like if the galaxy cluster were not present. The galaxy appears red because it is so distant that its light is shifted into the red part of the spectrum. Credits: NASA, ESA, M. Postman (STScI), and the CLASH team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Photometric redshift requirements for lens galaxies in galaxy-galaxy lensing analyses

    NASA Astrophysics Data System (ADS)

    Nakajima, R.; Mandelbaum, R.; Seljak, U.; Cohn, J. D.; Reyes, R.; Cool, R.

    2012-03-01

    Weak gravitational lensing is a valuable probe of galaxy formation and cosmology. Here we quantify the effects of using photometric redshifts (photo-z) in galaxy-galaxy lensing, for both sources and lenses, both for the immediate goal of using galaxies with photo-z as lenses in the Sloan Digital Sky Survey (SDSS) and as a demonstration of methodology for large, upcoming weak lensing surveys that will by necessity be dominated by lens samples with photo-z. We calculate the bias in the lensing mass calibration as well as consequences for absolute magnitude (i.e. k-corrections) and stellar mass estimates for a large sample of SDSS Data Release 8 (DR8) galaxies. The redshifts are obtained with the template-based photo-z code ZEBRA on the SDSS DR8 ugriz photometry. We assemble and characterize the calibration samples (˜9000 spectroscopic redshifts from four surveys) to obtain photometric redshift errors and lensing biases corresponding to our full SDSS DR8 lens and source catalogues. Our tests of the calibration sample also highlight the impact of observing conditions in the imaging survey when the spectroscopic calibration covers a small fraction of its footprint; atypical imaging conditions in calibration fields can lead to incorrect conclusions regarding the photo-z of the full survey. For the SDSS DR8 catalogue, we find σΔz/(1+z)= 0.096 and 0.113 for the lens and source catalogues, with flux limits of r= 21 and 21.8, respectively. The photo-z bias and scatter is a function of photo-z and template types, which we exploit to apply photo-z quality cuts. By using photo-z rather than spectroscopy for lenses, dim blue galaxies and L* galaxies up to z˜ 0.4 can be used as lenses, thus expanding into unexplored areas of parameter space. We also explore the systematic uncertainty in the lensing signal calibration when using source photo-z, and both lens and source photo-z; given the size of existing training samples, we can constrain the lensing signal calibration (and

  1. NGC 3934: a shell galaxy in a compact galaxy environment

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Galletta, G.; Rampazzo, R.; Marino, A.; Mazzei, P.; Buson, L. M.

    2011-10-01

    Context. Mergers/accretions are considered the main drivers of the evolution of galaxies in groups. We investigate the NGC 3933 poor galaxy association that contains NGC 3934, which is classified as a polar-ring galaxy. Aims: The multi-band photometric analysis of NGC 3934 allows us to investigate the nature of this galaxy and to re-define the NGC 3933 group members with the aim to characterize the group's dynamical properties and its evolutionary phase. Methods: We imaged the group in the far (FUV, λeff = 1539 Å) and near (NUV, λeff = 2316 Å) ultraviolet (UV) bands of the Galaxy Evolution Explorer (GALEX). From the deep optical imaging we determined the fine structure of NGC 3934. We measured the recession velocity of PGC 213894 which shows that it belongs to the NGC 3933 group. We derived the spectral energy distribution (SED) from FUV to far-IR emission of the two brightest members of the group. We compared a grid of smooth particle hydrodynamical (SPH) chemo-photometric simulations with the SED and the integrated properties of NGC 3934 and NGC 3933 to devise their possible formation/evolutionary scenarios. Results: The NGC 3933 group has six bright members: a core composed of five galaxies, which have Hickson's compact group characteristics, and a more distant member, PGC 37112. The group velocity dispersion is relatively low (157 ± 44 km s-1). The projected mass, from the NUV photometry, is ~7 × 1012 M⊙ with a crossing time of 0.04 Hubble times, suggesting that at least in the center the group is virialized. We do not find evidence that NGC 3934 is a polar-ring galaxy, as suggested by the literature, but find that it is a disk galaxy with a prominent dust-lane structure and a wide type-II shell structure. Conclusions: NGC 3934 is a quite rare example of a shell galaxy in a likely dense galaxy region. The comparison between physically motivated SPH simulations with multi-band integrated photometry suggests that NGC 3934 is the product of a major merger.

  2. The Multiwavelength Survey by Yale-Chile (MUSYC): Wide K-Band Imaging, Photometric Catalogs, Clustering, and Physical Properties of Galaxies at z {approx} 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanc, Guillermo A.; Lira, Paulina; Francke, Harold

    2008-07-10

    We present K-band imaging of two {approx}30{sup '} x 30{sup '} fields covered by the Multiwavelength Survey by Yale-Chile (MUSYC) Wide NIR Survey. The SDSS 1030+05 and Cast 1255 fields were imaged with the Infrared Side Port Imager (ISPI) on the 4 m Blanco telescope at the Cerro Tololo Inter-American Observatory (CTIO) to a 5 {sigma} point-source limiting depth of K {approx} 20 (Vega). Combining these data with the MUSYC optical UBVRIz imaging, we created multiband K-selected source catalogs for both fields. These catalogs, together with the MUSYC K-band catalog of the Extended Chandra Deep Field South (ECDF-S) field, weremore » used to select K < 20 BzK galaxies over an area of 0.71 deg{sup 2}. This is the largest area ever surveyed for BzK galaxies. We present number counts, redshift distributions, and stellar masses for our sample of 3261 BzK galaxies (2502 star-forming [sBzK] and 759 passively evolving [pBzK]), as well as reddening and star formation rate estimates for the star-forming BzK systems. We also present two-point angular correlation functions and spatial correlation lengths for both sBzK and pBzK galaxies and show that previous estimates of the correlation function of these galaxies were affected by cosmic variance due to the small areas surveyed. We have measured correlation lengths r{sub 0} of 8.89 {+-} 2.03 and 10.82 {+-} 1.72 Mpc for sBzK and pBzK galaxies, respectively. This is the first reported measurement of the spatial correlation function of passive BzK galaxies. In the {lambda}CDM scenario of galaxy formation, these correlation lengths at z {approx} 2 translate into minimum masses of {approx}4 x 10{sup 12} and {approx}9 x 10{sup 12} M{sub sun} for the dark matter halos hosting sBzK and pBzK galaxies, respectively. The clustering properties of the galaxies in our sample are consistent with their being the descendants of bright Lyman break galaxies at z {approx} 3, and the progenitors of present-day >1L{sup *} galaxies.« less

  3. Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions

    NASA Astrophysics Data System (ADS)

    Loveday, J.; Norberg, P.; Baldry, I. K.; Driver, S. P.; Hopkins, A. M.; Peacock, J. A.; Bamford, S. P.; Liske, J.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.

    2012-02-01

    Galaxy and Mass Assembly (GAMA) is a project to study galaxy formation and evolution, combining imaging data from ultraviolet to radio with spectroscopic data from the AAOmega spectrograph on the Anglo-Australian Telescope. Using data from Phase 1 of GAMA, taken over three observing seasons, and correcting for various minor sources of incompleteness, we calculate galaxy luminosity functions (LFs) and their evolution in the ugriz passbands. At low redshift, z < 0.1, we find that blue galaxies, defined according to a magnitude-dependent but non-evolving colour cut, are reasonably well fitted over a range of more than 10 magnitudes by simple Schechter functions in all bands. Red galaxies, and the combined blue plus red sample, require double power-law Schechter functions to fit a dip in their LF faintwards of the characteristic magnitude M* before a steepening faint end. This upturn is at least partly due to dust-reddened disc galaxies. We measure the evolution of the galaxy LF over the redshift range 0.002 < z < 0.5 both by using a parametric fit and by measuring binned LFs in redshift slices. The characteristic luminosity L* is found to increase with redshift in all bands, with red galaxies showing stronger luminosity evolution than blue galaxies. The comoving number density of blue galaxies increases with redshift, while that of red galaxies decreases, consistent with prevailing movement from blue cloud to red sequence. As well as being more numerous at higher redshift, blue galaxies also dominate the overall luminosity density beyond redshifts z≃ 0.2. At lower redshifts, the luminosity density is dominated by red galaxies in the riz bands, and by blue galaxies in u and g.

  4. The Most Luminous Object in the Universe: Shrouded Quasar or Proto-Galaxy

    NASA Technical Reports Server (NTRS)

    Heckman, Timothy M.

    1999-01-01

    We have used ASCA to observe the IRAS source FSC 10214+4724, which is identified with a galaxy at a redshift of 2.286. When first discovered, it was believed to be the most luminous object in the universe. Subsequent HST images have established that it is gravitationally-lensed by a foreground cluster. It is still a very powerful object, but not extraordinarily so. Observations at other wavebands have not established whether it is a dust-shrouded quasar or a young, massive galaxy in the process of formation. Since quasars are strong emitters of hard X-rays, while proto-galaxies would not be, and since the opacity of gas and dust is relatively small in the energy regime probed by ASCA (3 to 30 keV in the galaxy rest frame), we undertook these observations to search for a heavily shrouded quasar that might be invisible at lower energies. However, the observations did not detect any emission from this object. This either means that the galaxy is in fact powered by a starburst or that the putative quasar is located behind a very high column density of absorbing gas (N_H > 10(exp 25)/sq cm), so that not even hard X-rays are transmitted. A hidden quasar should be visible in reflected light in X-ray data of higher sensitivity. Observations with NASA's Chandra X-ray Observatory or ESA's XMM are required to settle the matter. No publication resulted from our null result.

  5. False-color image of the near-infrared sky as seen by the DIRBE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    False-color image of the near-infrared sky as seen by the DIRBE. Data at 1.25, 2.2, and 3.5 Aum wavelengths are represented respectively as blue, green and red colors. The image is presented in Galactic coordinates, with the plane of the Milky Way Galaxy horizontal across the middle and the Galactic center at the center. The dominant sources of light at these wavelengths are stars within our Galaxy. The image shows both the thin disk and central bulge populations of stars in our spiral galaxy. Our Sun, much closer to us than any other star, lies in the disk (which is why the disk appears edge-on to us) at a distance of about 28,000 light years from the center. The image is redder in directions where there is more dust between the stars absorbing starlight from distant stars. This absorption is so strong at visible wavelengths that the central part of the Milky Way cannot be seen. DIRBE data will facilitate studies of the content, energetics and large scale structure of the Galaxy, as well as the nature and distribution of dust within the Solar System. The data also will be studied for evidence of a faint, uniform infrared background, the residual radiation from the first stars and galaxies formed following the Big Bang.

  6. Beyond the Borders of a Galaxy

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view

    The outlying regions around the Southern Pinwheel galaxy, or M83, are highlighted in this composite image from NASA's Galaxy Evolution Explorer and the National Science Foundation's Very Large Array in New Mexico. The blue and pink pinwheel in the center is the galaxy's main stellar disk, while the flapping, ribbon-like structures are its extended arms.

    The Galaxy Evolution Explorer is an ultraviolet survey telescope. Its observations, shown here in blue and green, highlight the galaxy's farthest-flung clusters of young stars up to 140,000 light-years from its center. The Very Large Array observations show the radio emission in red. They highlight gaseous hydrogen atoms, or raw ingredients for stars, which make up the lengthy, extended arms.

    Astronomers are excited that the clusters of baby stars match up with the extended arms, because this helps them better understand how stars can be created out in the 'backwoods' of a galaxy.

    In this image, far-ultraviolet light is blue, near-ultraviolet light is green and radio emission at a wavelength of 21 centimeters is red.

    What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms.

    The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to

  7. Deep IR imaging of Submillimeter Galaxies detected by SMA: Unambiguously Identifying SMGs at High Redshifts

    NASA Astrophysics Data System (ADS)

    Huang, Jiasheng; Aretxaga, Itziar; Ashby, Mat; Fazio, Giovanni; Hughes, David; Ilbert, Olivier; Le Floc'h, Emeric; Lowenthal, James; Sanders, David; Scoville, Nick; Webb, Tracy; Wilner, David; Wilson, Grant; Yan, Lin; Younger, Joshua; Yun, Min

    2007-05-01

    In 2007 January, we detected no fewer than five AzTEC 1.1 mm galaxies via high-resolution interferometric imaging with the Sub-Millimeter Array (SMA) atop Mauna Kea at 890 microns. Despite the fact that these sources are all radio-quiet SMGs, with the high S/N SMA detections in the narrow SMA beam we unambiguously determine the position of the AzTEC galaxies with subarcsecond accuracy. All the counterparts, which lie in the SCOSMOS survey, are detected by IRAC at 3.6 and 4.5 microns in the existing SCOSMOS mosaics. Only two are detected at the longer IRAC wavelengths, however, and none are detected in the existing 24 micron data. Furthermore, only two are detected at optical wavelengths. These sources thus present (incomplete) SEDs that appear consistent with their being either 1. deeply dust-enshrouded galaxies at z=2, or 2. a distant z=4 population of very luminous objects. Because they are so optically faint, only broadband imaging such as Spitzer can provide will permit construction of their rest-frame optical-near-IR SEDs. This appears to be the only way to discriminate between the two possibilities for the origin of SMGs that are radio-quiet. Accordingly, we ask for 37.4 h to carry out a very deep imaging program utilizing all three Spitzer instruments to construct the SEDs for the four SMGs in our sample.

  8. MULTIPLE GALAXY COLLISIONS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Here is a sampling of 15 ultraluminous infrared galaxies viewed by NASA's Hubble Space Telescope. Hubble's sharp vision reveals more complexity within these galaxies, which astronomers are interpreting as evidence of a multiple-galaxy pileup. These images, taken by the Wide Field and Planetary Camera 2, are part of a three-year study of 123 galaxies within 3 billion light-years of Earth. The study was conducted in 1996, 1997, and 1999. False colors were assigned to these photos to enhance fine details within these coalescing galaxies. Credits: NASA, Kirk Borne (Raytheon and NASA Goddard Space Flight Center, Greenbelt, Md.), Luis Colina (Instituto de Fisica de Cantabria, Spain), and Howard Bushouse and Ray Lucas (Space Telescope Science Institute, Baltimore, Md.)

  9. A High Definition View of AGN Feedback: Chandra Imaging of Nearby Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Fabbiano, G.; Risaliti, G.; Elvis, M.; Karovska, M.; Zezas, A.; Mundell, C. G.

    2010-03-01

    To improve the physics of AGN feedback, it is crucial to evaluate the true role of outflows on galaxy evolution observationally. I will present new results from Chandra spectral imaging of nearby Seyfert galaxies, which offer unique opportunities to examine feedback in action in much greater detail than at high redshift. Exploiting Chandra's highest possible resolution, we are able to study structures in NGC 4151 on spatial scales of 0.5 arcsec (30 pc), showing an extended X-ray morphology overall consistent with the optical NLR. We find that most of the NLR clouds in NGC 4151 have [OIII] to soft X-ray ratio consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii. We examine various X-ray emission mechanisms of the radio jet and consider thermal emission from interaction between radio outflow and the NLR clouds the most probable origin for the X-ray emission associated with the jet.

  10. Mass decomposition of galaxies using DECA software package

    NASA Astrophysics Data System (ADS)

    Mosenkov, A. V.

    2014-01-01

    The new DECA software package, which is designed to perform photometric analysis of the images of disk and elliptical galaxies having a regular structure, is presented. DECA is written in Python interpreted language and combines the capabilities of several widely used packages for astronomical data processing such as IRAF, SExtractor, and the GALFIT code used to perform two-dimensional decomposition of galaxy images into several photometric components (bulge+disk). DECA has the advantage that it can be applied to large samples of galaxies with different orientations with respect to the line of sight (including edge-on galaxies) and requires minimum human intervention. Examples of using the package to study a sample of simulated galaxy images and a sample of real objects are shown to demonstrate that DECA can be a reliable tool for the study of the structure of galaxies.

  11. GLACiAR: GaLAxy survey Completeness AlgoRithm

    NASA Astrophysics Data System (ADS)

    Carrasco, Daniela; Trenti, Michele; Mutch, Simon; Oesch, Pascal

    2018-05-01

    GLACiAR (GaLAxy survey Completeness AlgoRithm) estimates the completeness and selection functions in galaxy surveys. Tailored for multiband imaging surveys aimed at searching for high-redshift galaxies through the Lyman Break technique, the code can nevertheless be applied broadly. GLACiAR generates artificial galaxies that follow Sérsic profiles with different indexes and with customizable size, redshift and spectral energy distribution properties, adds them to input images, and measures the recovery rate.

  12. Astronomers Set a New Galaxy Distance Record

    NASA Image and Video Library

    2015-05-06

    This is a Hubble Space Telescope image of the farthest spectroscopically confirmed galaxy observed to date (inset). It was identified in this Hubble image of a field of galaxies in the CANDELS survey (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey). NASA’s Spitzer Space Telescope also observed the unique galaxy. The W. M. Keck Observatory was used to obtain a spectroscopic redshift (z=7.7), extending the previous redshift record. Measurements of the stretching of light, or redshift, give the most reliable distances to other galaxies. This source is thus currently the most distant confirmed galaxy known, and it appears to also be one of the brightest and most massive sources at that time. The galaxy existed over 13 billion years ago. The near-infrared light image of the galaxy (inset) has been colored blue as suggestive of its young, and hence very blue, stars. The CANDELS field is a combination of visible-light and near-infrared exposures. Read more: www.nasa.gov/feature/goddard/astronomers-set-a-new-galaxy... Credits: NASA, ESA, P. Oesch (Yale U.) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Detection of low-metallicity warm plasma in a galaxy overdensity environment at z ˜ 0.2

    NASA Astrophysics Data System (ADS)

    Narayanan, Anand; Savage, Blair D.; Mishra, Preetish K.; Wakker, Bart P.; Khaire, Vikram; Wadadekar, Yogesh

    2018-04-01

    We present results from the analysis of a multiphase O VI-broad Ly α (BLA) absorber at z = 0.19236 in the HubbleSpaceTelescope/Cosmic Origins Spectrograph spectrum of PG 1121 + 422. The low and intermediate ionization metal lines in this absorber have a single narrow component, whereas the Ly α has a possible broad component with b({H {I}}) ˜ 71 km s-1. Ionization models favour the low and intermediate ions coming from a T ˜ 8500 K, moderately dense (n H ˜ 10 - 3 cm-3) photoionized gas with near solar metallicities. The weak O VI requires a separate gas phase that is collisionally ionized. The O VI coupled with BLA suggests T ˜ 3.2 × 105 K, with significantly lower metal abundance and ˜1.8 orders of magnitude higher total hydrogen column density compared to the photoionized phase. Sloan Digitial Sky Survey (SDSS) shows 12 luminous (>L*) galaxies in the ρ ≤ 5 Mpc, |Δv| ≤ 800 km s-1 region surrounding the absorber, with the absorber outside the virial bounds of the nearest galaxy. The warm phase of this absorber is consistent with being transition temperature plasma either at the interface regions between the hot intragroup gas and cooler photoionized clouds within the group, or associated with high velocity gas in the halo of a ≲L* galaxy. The absorber highlights the advantage of O VI-BLA absorbers as ionization model independent probes of warm baryon reserves.

  14. Fire within the Antennae Galaxies

    NASA Image and Video Library

    2004-09-07

    This false-color image composite from NASA's Spitzer Space Telescope reveals hidden populations of newborn stars at the heart of the colliding "Antennae" galaxies. These two galaxies, known individually as NGC 4038 and 4039, are located around 68 million light-years away and have been merging together for about the last 800 million years. The latest Spitzer observations provide a snapshot of the tremendous burst of star formation triggered in the process of this collision, particularly at the site where the two galaxies overlap. The image is a composite of infrared data from Spitzer and visible-light data from Kitt Peak National Observatory, Tucson, Ariz. Visible light from stars in the galaxies (blue and green) is shown together with infrared light from warm dust clouds heated by newborn stars (red). The two nuclei, or centers, of the merging galaxies show up as yellow-white areas, one above the other. The brightest clouds of forming stars lie in the overlap region between and left of the nuclei. Throughout the sky, astronomers have identified many of these so-called "interacting" galaxies, whose spiral discs have been stretched and distorted by their mutual gravity as they pass close to one another. The distances involved are so large that the interactions evolve on timescales comparable to geologic changes on Earth. Observations of such galaxies, combined with computer models of these collisions, show that the galaxies often become forever bound to one another, eventually merging into a single, spheroidal-shaped galaxy. Wavelengths of 0.44 microns are represented in blue, .70 microns in green and 8.0 microns in red. This image was taken on Dec. 24, 2003. http://photojournal.jpl.nasa.gov/catalog/PIA06854

  15. DEEP CHANDRA X-RAY IMAGING OF A NEARBY RADIO GALAXY 4C+29.30: X-RAY/RADIO CONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemiginowska, Aneta; Aldcroft, Thomas L.; Burke, D. J.

    2012-05-10

    We report results from our deep Chandra X-ray observations of a nearby radio galaxy, 4C+29.30 (z = 0.0647). The Chandra image resolves structures on sub-arcsec to arcsec scales, revealing complex X-ray morphology and detecting the main radio features: the nucleus, a jet, hotspots, and lobes. The nucleus is absorbed (N{sub H} {approx_equal} 3.95{sup +0.27}{sub -0.33} Multiplication-Sign 10{sup 23} cm{sup -2}) with an unabsorbed luminosity of L{sub 2-10keV} {approx_equal} (5.08 {+-} 0.52) Multiplication-Sign 10{sup 43} erg s{sup -1} characteristic of Type 2 active galactic nuclei. Regions of soft (<2 keV) X-ray emission that trace the hot interstellar medium (ISM) are correlatedmore » with radio structures along the main radio axis, indicating a strong relation between the two. The X-ray emission extends beyond the radio source and correlates with the morphology of optical-line-emitting regions. We measured the ISM temperature in several regions across the galaxy to be kT {approx_equal} 0.5 keV, with slightly higher temperatures (of a few keV) in the center and in the vicinity of the radio hotspots. Assuming that these regions were heated by weak shocks driven by the expanding radio source, we estimated the corresponding Mach number of 1.6 in the southern regions. The thermal pressure of the X-ray-emitting gas in the outermost regions suggests that the hot ISM is slightly underpressured with respect to the cold optical-line-emitting gas and radio-emitting plasma, which both seem to be in a rough pressure equilibrium. We conclude that 4C+29.30 displays a complex view of interactions between the jet-driven radio outflow and host galaxy environment, signaling feedback processes closely associated with the central active nucleus.« less

  16. HUBBLE AND KECK DISCOVER GALAXY BUILDING BLOCK

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image shows a very small, faint galaxy 'building block' newly discovered by a unique collaboration between ground- and space-based telescopes. Hubble and the 10-meter Keck Telescopes in Hawaii joined forces, using a galaxy cluster which acts as gravitational lens to detect what scientists believe is one of the smallest very distant objects ever found. The galaxy cluster Abell 2218 was used by a team of European and American astronomers led by Richard Ellis (Caltech) in their systematic search for intrinsically faint distant star-forming systems. Without help from Abell 2218's exceptional magnifying power to make objects appear about 30 times brighter, the galaxy building block would have been undetectable. In the image to the right, the object is seen distorted into two nearly identical, very red 'images' by the gravitational lens. The image pair represents the magnified result of a single background object gravitationally lensed by Abell 2218 and viewed at a distance of 13.4 billion light-years. The intriguing object contains only one million stars, far fewer than a mature galaxy, and scientists believe it is very young. Such young star-forming systems of low mass at early cosmic times are likely to be the objects from which present-day galaxies have formed. In the image to the left, the full overview of the galaxy cluster Abell 2218 is seen. This image was taken by Hubble in 1999 at the completion of Hubble Servicing Mission 3A. Credit: NASA, ESA, Richard Ellis (Caltech) and Jean-Paul Kneib (Observatoire Midi-Pyrenees, France) Acknowledgment: NASA, A. Fruchter and the ERO Team (STScI and ST-ECF)

  17. Hubble Views Two Galaxies Merging

    NASA Image and Video Library

    2017-12-08

    This image, taken with the Wide Field Planetary Camera 2 on board the NASA/ESA Hubble Space Telescope, shows the galaxy NGC 6052, located around 230 million light-years away in the constellation of Hercules. It would be reasonable to think of this as a single abnormal galaxy, and it was originally classified as such. However, it is in fact a “new” galaxy in the process of forming. Two separate galaxies have been gradually drawn together, attracted by gravity, and have collided. We now see them merging into a single structure. As the merging process continues, individual stars are thrown out of their original orbits and placed onto entirely new paths, some very distant from the region of the collision itself. Since the stars produce the light we see, the “galaxy” now appears to have a highly chaotic shape. Eventually, this new galaxy will settle down into a stable shape, which may not resemble either of the two original galaxies. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt

  18. Photometry of compact galaxies.

    NASA Technical Reports Server (NTRS)

    Shen, B. S. P.; Usher, P. D.; Barrett, J. W.

    1972-01-01

    Photometric histories of the N galaxies 3C 390.3 and PKS 0521-36. Four other compact galaxies, Markarian 9, I Zw 92, 2 Zw 136, and III Zw 77 showed no evidence of variability. The photometric histories were obtained from an exhaustive study of those plates of the Harvard collection taken with large aperture cameras. The images of all galaxies reported were indistinguishable from stars due to the camera f-ratios and low surface brightness of the outlying nebulosities of the galaxies. Standard techniques for the study of variable stars are therefore applicable.

  19. Hubble Spots a Secluded Starburst Galaxy

    NASA Image and Video Library

    2017-12-08

    This image was taken by the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys (ACS) and shows a starburst galaxy named MCG+07-33-027. This galaxy lies some 300 million light-years away from us, and is currently experiencing an extraordinarily high rate of star formation — a starburst. Normal galaxies produce only a couple of new stars per year, but starburst galaxies can produce a hundred times more than that. As MCG+07-33-027 is seen face-on, the galaxy’s spiral arms and the bright star-forming regions within them are clearly visible and easy for astronomers to study. In order to form newborn stars, the parent galaxy has to hold a large reservoir of gas, which is slowly depleted to spawn stars over time. For galaxies in a state of starburst, this intense period of star formation has to be triggered somehow — often this happens due to a collision with another galaxy. MCG+07-33-027, however, is special; while many galaxies are located within a large cluster of galaxies, MCG+07-33-027 is a field galaxy, which means it is rather isolated. Thus, the triggering of the starburst was most likely not due to a collision with a neighboring or passing galaxy and astronomers are still speculating about the cause. The bright object to the right of the galaxy is a foreground star in our own galaxy. Image credit: ESA/Hubble & NASA and N. Grogin (STScI)

  20. Far-infrared line images of dwarf galaxies

    NASA Technical Reports Server (NTRS)

    Poglitsch, A.; Geis, N.; Herrmann, F.; Madden, S. C.; Stacey, G. J.; Townes, C. H.; Genzel, R.

    1993-01-01

    Irregular dwarf galaxies are about ten times more widespread in the universe than regular spiral galaxies. They are characterized by a relatively low metallicity, i.e., lower abundance of the heavier elements (metals) with respect to hydrogen than in the solar neighborhood. These heavier elements in the form of molecules, atoms, or ions, which have radiative transitions in the infrared play a decisive role in the energy balance of the ISM and thereby for the formation of stars. Dwarf galaxies are thus model cases for the physical conditions in the early phase of the universe. Large Magellanic Cloud: 30 Doradus. The two nearest dwarf galaxies are the Magellanic clouds at a distance approximately 50 kpc. The LMC contains 30 Dor, a region with young, extremely massive stars which strongly interact with the surrounding ISM on account of their stellar winds and intense UV radiation. 30 Dor is the brightest object in the LMC at almost all wavelengths.

  1. An intriguing young-looking dwarf galaxy

    NASA Image and Video Library

    2015-03-16

    The bright streak of glowing gas and stars in this NASA/ESA Hubble Space Telescope image is known as PGC 51017, or SBSG 1415+437. It is type of galaxy known as a blue compact dwarf. This particular dwarf is well studied and has an interesting star formation history. Astronomers initially thought that SBS 1415+437 was a very young galaxy currently undergoing its very first burst of star formation, but more recent studies have suggested that the galaxy is in fact a little older, containing stars over 1.3 billion years old. Starbursts are an area of ongoing research for astronomers — short-lived and intense periods of star formation, during which huge amounts of gas within a galaxy are hungrily used up to form newborn stars. They have been seen in gas-rich disc galaxies, and in some lower-mass dwarfs. However, it is still unclear whether all dwarf galaxies experience starbursts as part of their evolution. It is possible that dwarf galaxies undergo a star formation cycle, with bursts occurring repeatedly over time. SBS 1415+437 is an interesting target for another reason. Dwarf galaxies like this are thought to have formed early in the Universe, producing some of the very first stars before merging together to create more massive galaxies. Dwarf galaxies which contain very few of the heavier elements formed from having several generations of stars, like SBS 1415+437, remain some of the best places to study star-forming processes similar to those thought to occur in the early Universe. However, it seems that our nearby patch of the Universe may not contain any galaxies that are currently undergoing their first burst of star formation. A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by contestant Nick Rose.

  2. Extinction in SC galaxies

    NASA Astrophysics Data System (ADS)

    Giovanelli, Riccardo; Haynes, Martha P.; Salzer, John J.; Wegner, Gary; da Costa, Luiz N.; Freudling, Wolfram

    1994-06-01

    We analyze the photometric properties of a sample of Sbc-Sc galaxies with known redshifts, single-dish H I profiles, and Charge Coupled Device (CCD) I band images. We derive laws that relate the measured isophotal radius at muI = 23.5, magnitude, scale length, and H I flux to the face-on aspect. We find spiral galaxies to be substantially less transparent than suggested in most previous determinations, but not as opaque as claimed by Valentijn (1990). Regions in the disk farther than two or three scale lengths from the center are close to completely transparent. In addition to statistically derived relations for the inclination dependence of photometric parameters, we present the results of a modeling exercise that utilizes the 'triplex' model of Disney et al. (1989) to obtain upper limits of the disk opacity. Within the framework of that model, and with qualitative consideration of the effects of scattering on extinction, we estimate late spiral disks at I band to have central optical depths tauI(0) less than 5 and dust absorbing layers with scale heights on the order of half that of the stellar component or less. We discuss our results in light of previous determinations of internal extinction relations and point out the substantial impact of internal extinction on the scatter of the Tully-Fisher relation. We also find that the visual diameters by which large catalogs are constructed (UGC, ESO-Uppsala) are nearly proportional to face-on isophotal diameters.

  3. Rotation-invariant convolutional neural networks for galaxy morphology prediction

    NASA Astrophysics Data System (ADS)

    Dieleman, Sander; Willett, Kyle W.; Dambre, Joni

    2015-06-01

    Measuring the morphological parameters of galaxies is a key requirement for studying their formation and evolution. Surveys such as the Sloan Digital Sky Survey have resulted in the availability of very large collections of images, which have permitted population-wide analyses of galaxy morphology. Morphological analysis has traditionally been carried out mostly via visual inspection by trained experts, which is time consuming and does not scale to large (≳104) numbers of images. Although attempts have been made to build automated classification systems, these have not been able to achieve the desired level of accuracy. The Galaxy Zoo project successfully applied a crowdsourcing strategy, inviting online users to classify images by answering a series of questions. Unfortunately, even this approach does not scale well enough to keep up with the increasing availability of galaxy images. We present a deep neural network model for galaxy morphology classification which exploits translational and rotational symmetry. It was developed in the context of the Galaxy Challenge, an international competition to build the best model for morphology classification based on annotated images from the Galaxy Zoo project. For images with high agreement among the Galaxy Zoo participants, our model is able to reproduce their consensus with near-perfect accuracy (>99 per cent) for most questions. Confident model predictions are highly accurate, which makes the model suitable for filtering large collections of images and forwarding challenging images to experts for manual annotation. This approach greatly reduces the experts' workload without affecting accuracy. The application of these algorithms to larger sets of training data will be critical for analysing results from future surveys such as the Large Synoptic Survey Telescope.

  4. Observations of Superwinds in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Marlowe, A. T.; Heckman, T. M.; Wyse, R.; Schommer, R.

    1993-12-01

    Dwarf galaxies are important in developing our understanding of the formation and evolution of galaxies, and of the structure in the universe. The concept of supernova-driven mass outflows is a vital ingredient in theories of the structure and evolution of dwarfs galaxies. We have begun a detailed multi-waveband search for outflows in starbursting dwarf galaxies, and have obtained Fabry-Perot images and Echelle spectra of 20 nearby actively-star-forming dwarf galaxies. In about half the sample, the Fabry-Perot Hα images show loops and filaments with sizes of one to a few kpc. The Echelle spectra taken through the loops and filaments show kinematics consistent with expanding bubble-like structures. We describe these data, and present seven dwarfs in our sample that have the strongest evidence of outflows.

  5. Galaxy Packs Big Star-Making Punch

    NASA Image and Video Library

    2013-04-23

    The tiny red spot in this image is one of the most efficient star-making galaxies ever observed, converting gas into stars at the maximum possible rate. The galaxy is shown here is from NASA WISE, which first spotted the rare galaxy in infrared light.

  6. BREAKS IN THIN AND THICK DISKS OF EDGE-ON GALAXIES IMAGED IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comeron, Sebastien; Salo, Heikki; Laurikainen, Eija

    2012-11-10

    Breaks in the radial luminosity profiles of galaxies have until now been mostly studied averaged over disks. Here, we study separately breaks in thin and thick disks in 70 edge-on galaxies using imaging from the Spitzer Survey of Stellar Structure in Galaxies. We built luminosity profiles of the thin and thick disks parallel to midplanes and we found that thin disks often truncate (77%). Thick disks truncate less often (31%), but when they do, their break radius is comparable with that in the thin disk. This suggests either two different truncation mechanisms-one of dynamical origin affecting both disks simultaneously andmore » another one only affecting the thin disk-or a single mechanism that creates a truncation in one disk or in both depending on some galaxy property. Thin disks apparently antitruncate in around 40% of galaxies. However, in many cases, these antitruncations are an artifact caused by the superposition of a thin disk and a thick disk, with the latter having a longer scale length. We estimate the real thin disk antitruncation fraction to be less than 15%. We found that the ratio of the thick and thin stellar disk mass is roughly constant (0.2 < M{sub T} /M{sub t} < 0.7) for circular velocities v{sub c} > 120 km s{sup -1}, but becomes much larger at smaller velocities. We hypothesize that this is due to a combination of a high efficiency of supernova feedback and a slower dynamical evolution in lower-mass galaxies causing stellar thin disks to be younger and less massive than in higher-mass galaxies.« less

  7. Hubble Space Telescope Imaging of the Active Dwarf Galaxy RGG 118

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne F.; Reines, Amy E.; Gallo, Elena; Greene, Jenny E.

    2017-12-01

    RGG 118 (SDSS 1523+1145) is a nearby (z = 0.0243), dwarf disk galaxy ({M}* ≈ 2× {10}9 {M}⊙ ) that is found to host an active ˜50,000 solar mass black hole at its core. RGG 118 is one of a growing collective sample of dwarf galaxies known to contain active galactic nuclei (AGNs)—a group that, until recently, contained only a handful of objects. Here, we report on new Hubble Space Telescope Wide Field Camera 3 UVIS and IR imaging of RGG 118, with the main goal of analyzing its structure. Using 2D parametric modeling, we find that the morphology of RGG 118 is best described by an outer spiral disk, an inner component consistent with a pseudobulge, and a central point-spread function (PSF). The luminosity of the PSF is consistent with the central point source that is being dominated by the AGN. We measure the luminosity and the mass of the “pseudobulge” and confirm that the central black hole in RGG 118 is under-massive, with respect to the {M}{BH}{--}{M}{bulge} and {M}{BH}{--}{L}{bulge} relations. This result is consistent with a picture in which black holes in disk-dominated galaxies grow primarily through secular processes.

  8. Classifying bent radio galaxies from a mixture of point-like/extended images with Machine Learning.

    NASA Astrophysics Data System (ADS)

    Bastien, David; Oozeer, Nadeem; Somanah, Radhakrishna

    2017-05-01

    The hypothesis that bent radio sources are supposed to be found in rich, massive galaxy clusters and the avalibility of huge amount of data from radio surveys have fueled our motivation to use Machine Learning (ML) to identify bent radio sources and as such use them as tracers for galaxy clusters. The shapelet analysis allowed us to decompose radio images into 256 features that could be fed into the ML algorithm. Additionally, ideas from the field of neuro-psychology helped us to consider training the machine to identify bent galaxies at different orientations. From our analysis, we found that the Random Forest algorithm was the most effective with an accuracy rate of 92% for a classification of point and extended sources as well as an accuracy of 80% for bent and unbent classification.

  9. Galaxy And Mass Assembly (GAMA): detection of low-surface-brightness galaxies from SDSS data

    NASA Astrophysics Data System (ADS)

    Williams, Richard P.; Baldry, I. K.; Kelvin, L. S.; James, P. A.; Driver, S. P.; Prescott, M.; Brough, S.; Brown, M. J. I.; Davies, L. J. M.; Holwerda, B. W.; Liske, J.; Norberg, P.; Moffett, A. J.; Wright, A. H.

    2016-12-01

    We report on a search for new low-surface-brightness galaxies (LSBGs) using Sloan Digital Sky Survey (SDSS) data within the Galaxy And Mass Assembly (GAMA) equatorial fields. The search method consisted of masking objects detected with SDSS PHOTO, combining gri images weighted to maximize the expected signal-to-noise ratio, and smoothing the images. The processed images were then run through a detection algorithm that finds all pixels above a set threshold and groups them based on their proximity to one another. The list of detections was cleaned of contaminants such as diffraction spikes and the faint wings of masked objects. From these, selecting potentially the brightest in terms of total flux, a list of 343 LSBGs was produced having been confirmed using VISTA Kilo-degree Infrared Galaxy Survey (VIKING) imaging. The photometry of this sample was refined using the deeper VIKING Z band as the aperture-defining band. Measuring their g - I and J - K colours shows that most are consistent with being at redshifts less than 0.2. The photometry is carried out using an AUTO aperture for each detection giving surface brightnesses of μr ≳ 25 mag arcsec-2 and magnitudes of r > 19.8 mag. None of these galaxies are bright enough to be within the GAMA main survey limit but could be part of future deeper surveys to measure the low-mass end of the galaxy stellar mass function.

  10. VIVA (VLA Imaging of Virgo in Atomic gas): H I Stripping in Virgo Galaxies

    NASA Astrophysics Data System (ADS)

    Chung, A.; van Gorkom, J. H.; Crowl, H.; Kenney, J. D. P.; Vollmer, B.

    2008-08-01

    We present results of a new Very Large Array survey of 53 Virgo galaxies (48 spirals and 5 dwarf/irregular systems). The goal is to study how the H I gas properties are affected by the cluster environment. The survey covers galaxies in a wide range of densities from the center of the cluster to more than 3 Mpc from M 87. The gas is imaged down to a column-density sensitivity of a few times 1019cm-2. We find examples of gas stripping at all stages. Within ˜0.5 Mpc from M 87, most galaxies are severely H I stripped. The H I disks are truncated to well within the optical disks. While the H I looks asymmetric, the outer stellar disks look undisturbed. The fact that only the gas and not the stars has been stripped suggests that those galaxies have been affected by the hot and dense cluster gas. Interestingly we also find a few truncated disks at large projected distances from the center. Although some of these may have been stripped while crossing the cluster core, a detailed population-synthesis study of the outer disk of one of these shows that star formation was terminated recently. The time since stripping is too short for the galaxy to have traveled from the core to its current location. So at least one galaxy has lost its gas from the outer disk by another mechanism than ram-pressure stripping in the dense cluster core. At intermediate- to low-density regions (>0.6 Mpc) we find H I tails with various lengths. We find seven galaxies with long one-sided H I tails pointing away from M 87. The galaxies are at 0.6-1 Mpc from M 87. Since these galaxies are only mildly H I deficient and the tails point away from M 87, these galaxies are probably falling into the cluster for the first time on highly radial orbits. For all but two of the galaxies the estimated ram pressure at their location in the cluster would be sufficient to pull out the H I in the very outer disks. One galaxy also looks optically disturbed and a simulation suggests that a combination of ram pressure

  11. Galaxy Zoo: Comparing the visual morphology of synthetic galaxies from the Illustris simulation with those in the real Universe.

    NASA Astrophysics Data System (ADS)

    Dickinson, Hugh; Lintott, Chris; Scarlata, Claudia; Fortson, Lucy; Bamford, Steven; Cardamone, Carolin; Keel, William C.; Kruk, Sandor; Masters, Karen; Simmons, Brooke D.; Vogelsberger, Mark; Torrey, Paul; Snyder, Gregory; Galaxy Zoo Science Team

    2018-01-01

    We present a comparision between the Illustris simulations and classifications from Galaxy Zoo, aiming to test the ability of modern large-scale cosmological simulations to accurately reproduce the local galaxy population. This comparison is enabled by the increasingly high spatial and temporal resolution obtained by such surveys.Using classifications that were accumulated via the Galaxy Zoo citizen science interface, we compare the visual morphologies for simulated images of Illustris galaxies with a compatible sample of images drawn from the Sloan Digital Sky Survey (SDSS) Legacy Survey.For simulated galaxies with stellar masses less than 1011 M⊙, significant differences are identified, which are most likely due to the limited resolution of the simulation, but could be revealing real differences in the dynamical evolution of populations of galaxies in the real and model universes. Above 1011 M⊙, Illustris galaxy morphologies correspond better with those of their SDSS counterparts, although even in this mass range the simulation appears to underproduce obviously disk-like galaxies. Morphologies of Illustris galaxies less massive than 1011 M⊙ should be treated with care.

  12. Hubble Spotlight on Irregular Galaxy

    NASA Image and Video Library

    2017-12-08

    This delicate blue group of stars — actually an irregular galaxy named IC 3583 — sits some 30 million light-years away in the constellation of Virgo (The Virgin). It may seem to have no discernable structure, but IC 3583 has been found to have a bar of stars running through its center. These structures are common throughout the Universe, and are found within the majority of spiral, many irregular, and some lenticular galaxies. Two of our closest cosmic neighbors, the Large and Small Magellanic Clouds, are barred, indicating that they may have once been barred spiral galaxies that were disrupted or torn apart by the gravitational pull of the Milky Way. Researchers at the University of Leicester, England note there are two types of irregular galaxy. Type I's are usually single galaxies of peculiar appearance. They contain a large fraction of young stars, and show the luminous nebulae that are also visible in spiral galaxies. Type II irregulars include the group known as interacting or disrupting galaxies, in which the strange appearance is due to two or more galaxies colliding, merging or otherwise interacting gravitationally. Something similar might be happening with IC 3583. This small galaxy is thought to be gravitationally interacting with one of its neighbors, the spiral Messier 90. Together, the duo form a pairing known as Arp 76. It’s still unclear whether these flirtations are the cause of IC 3583’s irregular appearance — but whatever the cause, the galaxy makes for a strikingly delicate sight in this NASA/ESA Hubble Space Telescope image, glimmering in the blackness of space. Image Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on

  13. HUBBLE'S INFRARED GALAXY GALLERY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have used the NASA Hubble Space Telescope to produce an infrared 'photo essay' of spiral galaxies. By penetrating the dust clouds swirling around the centers of these galaxies, the telescope's infrared vision is offering fresh views of star birth. These six images, taken with the Near Infrared Camera and Multi-Object Spectrometer, showcase different views of spiral galaxies, from a face-on image of an entire galaxy to a close-up of a core. The top row shows spirals at diverse angles, from face-on, (left); to slightly tilted, (center); to edge-on, (right). The bottom row shows close-ups of the hubs of three galaxies. In these images, red corresponds to glowing hydrogen, the raw material for star birth. The red knots outlining the curving spiral arms in NGC 5653 and NGC 3593, for example, pinpoint rich star-forming regions where the surrounding hydrogen gas is heated by intense ultraviolet radiation from young, massive stars. In visible light, many of these regions can be hidden from view by the clouds of gas and dust in which they were born. The glowing hydrogen found inside the cores of these galaxies, as in NGC 6946, may be due to star birth; radiation from active galactic nuclei (AGN), which are powered by massive black holes; or a combination of both. White is light from middle-age stars. Clusters of stars appear as white dots, as in NGC 2903. The galaxy cores are mostly white because of their dense concentration of stars. The dark material seen in these images is dust. These galaxies are part of a Hubble census of about 100 spiral galaxies. Astronomers at Space Telescope Science Institute took these images to fill gaps in the scheduling of a campaign using the NICMOS-3 camera. The data were non-proprietary, and were made available to the entire astronomical community. Filters: Three filters were used: red, blue, and green. Red represents emission at the Paschen Alpha line (light from glowing hydrogen) at a wavelength of 1.87 microns. Blue shows the

  14. Extended Source/Galaxy All Sky 2

    NASA Image and Video Library

    2003-03-27

    This panoramic view encompasses the entire sky and reveals the distribution of galaxies beyond the Milky Way galaxy, which astronomers call extended sources, as observed by Two Micron All-Sky Survey. The image is assembled from a database of over 1.6 million galaxies listed in the survey’s All-Sky Survey Extended Source Catalog; more than half of the galaxies have never before been catalogued. The colors represent how the many galaxies appear at three distinct wavelengths of infrared light (blue at 1.2 microns, green at 1.6 microns, and red at 2.2 microns). Quite evident are the many galactic clusters and superclusters, as well as some streamers composing the large-scale structure of the nearby universe. The blue overlay represents the very close and bright stars from our own Milky Way galaxy. In this projection, the bluish Milky Way lies predominantly toward the upper middle and edges of the image. http://photojournal.jpl.nasa.gov/catalog/PIA04251

  15. Galaxies at the Extremes: Ultradiffuse Galaxies in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Mihos, Chris

    2017-08-01

    The ultradiffuse galaxies (UDGs) recently discovered in massive galaxy clusters presents both challenges and opportunities for our understanding of galaxy evolution in dense clusters. Such large, low density galaxies should be most vulnerable to gravitational destruction within the cluster environment. Thus their presence in cluster cores argues either that they must be stabilized by massive dark halos or else be short-lived objects undergoing rapid transformation, perhaps leading to the formation of ultracompact dwarf galaxies (UCDs) if their destruction leaves only a compact nucleus behind. We propose deep imaging of four Virgo Cluster UDGs to probe their local environment within Virgo via accurate tip of the red giant branch (TRGB) distances. With a distance precision of 1 Mpc, we will accurately place the objects in the Virgo core, cluster outskirts, or intervening field. When coupled with our extant kinematic data, we can determine whether they are infalling objects or instead have already passed through the cluster core. We will also compare their compact nuclei to Virgo UCDs, and study their globular cluster (GC) populations in detail. Probing three magnitudes beyond the turnover in the GC luminosity function, we will construct larger and cleaner GC samples than possible with ground-based imaging, using the total mass and radial extent of the globular cluster systems to estimate the dark halo mass and tidal radius for each UDG. The new information provided by HST about the local environment and intrinsic properties of these Virgo UDGs will be used in conjunction with simulation data to study cluster-driven evolution and transformation of low density galaxies.

  16. H I OBSERVATIONS OF THE Ca II ABSORBING GALAXIES Mrk 1456 AND SDSS J211701.26-002633.7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherinka, B.; Schulte-Ladbeck, R. E.; Rosenberg, J. L.

    2009-12-15

    In an effort to study Damped Ly{alpha} (DLA) galaxies at low redshift, we have been using the Sloan Digital Sky Survey (SDSS) to identify galaxies projected onto quasi-stellar object (QSO) sight lines and to characterize their optical properties. For low-redshift galaxies, the H I 21 cm emission line can be used as an alternate tool for identifying possible DLA galaxies, since H I-emitting galaxies typically exhibit H I columns that are larger than the classical DLA limit. Here, we report on follow-up H I 21 cm emission-line observations of two DLA candidates that are both low-redshift spiral galaxies, Mrk 1456more » and SDSS J211701.26-002633.7. The observations were made using the Green Bank Telescope (GBT) and Arecibo telescope, respectively. Analysis of their H I properties reveal the galaxies to be about one and two M*{sub HI} galaxies, respectively, and to have average H I mass, gas richness, and gas-mass fraction for their morphological types. We consider Mrk 1456 and SDSS J211701.26-002633.7 to be candidate DLA systems based upon the strength of the Ca II absorption lines they cause in their QSO's spectra, and impact parameters to the QSO that are smaller than the stellar disk. Compared to the small numbers of other H I detected DLA and candidate DLA galaxies, Mrk 1456 and SDSS J211701.26-002633.7 have high H I masses. Mrk 1456 and SDSS J211701.26-002633.7 have also been found to lie in galaxy groups that are high in H I gas mass compared to the group containing SBS 1543+593, the only DLA galaxy previously known to be situated in a galaxy group. When compared with the expected properties of low-z DLAs from an H I-detected sample of galaxies, Mrk 1456 and SDSS J211701.26-002633.7 fall within the ranges for impact parameter and M{sub B} ; and the H I mass distribution for the H I-detected DLAs agrees with that of the expected H I mass distribution for low-z DLAs. Our observations support galaxy-evolution models in which high-mass galaxies make up an

  17. QSO Lyalpha Absorption Lines in Galaxy Superclusters and Voids

    NASA Astrophysics Data System (ADS)

    Stocke, J. T.; Shull, J. M.; Penton, S.; Burks, G.; Donahue, M.

    1993-12-01

    We have used the Hubble Space Telescope (HST) Goddard High Resolution Spectrograph (GHRS) to search for Lyalpha absorption clouds in nearby galaxy voids (cz <= 10,000 km s(-1) ). Thus far, we have obtained GHRS spectra (G160M, 1225 -- 1255 Angstroms, 0.25 Angstroms resolution) of three very bright Active Galactic Nuclei, Mrk 501, I Zw I, and Mrk 335, at V <= 14.5. We find 4 probable (4.0 sigma - 4.5 sigma ) and 4 definite (5 sigma - 16 sigma ) Lyalpha absorption lines, with equivalent widths W_λ = 50 - 200 m Angstroms, corresponding to column densities N(H I) = 10(13) -- 10(14) cm(-2) , assuming a typical Doppler parameter of b = 25 km s(-1) . Based on an updated version of the CfA redshift survey (Huchra and Clemens, private communication), most of these Lyalpha systems appear to be associated with supercluster - sized ``strings'' of galaxies similar to the ``Great Wall''. Toward Mrk 501, the nearest bright galaxy at the redshift of the strongest (200 m Angstroms) Lyalpha cloud lies 500 h75(-1) kpc off the line of sight. Models of H I disks exposed to the intergalactic ionizing radiation field (Dove & Shull 1994, ApJ, 423, in press) show that the N(H I) = 10(13) cm(-2) contour in a typical spiral galaxy is reached at 100 kpc radial extent. Thus, the Lyalpha absorbers associated with galaxy-string systems may be the result of H I in an extended halo, in dwarf satellite galaxies (M_B > -15), or in tidally-stripped gas. Most importantly for cosmological origins of baryons, one (4.3 sigma ) Lyalpha absorption line in the spectrum of Mrk 501 lies within the galaxy void in the foreground of the ``Great Wall''. The nearest bright galaxy, to a level M_B <= -18.5 for H_0 = 75 km s(-1) Mpc(-1) , is more than 5 Mpc away. A pencil-beam survey of faint galaxies to M_B = -16.0 finds no galaxy within 100 h75(-1) kpc of the line of sight, at or near the absorber redshift.

  18. Hubble's Megamaser Galaxy

    NASA Image and Video Library

    2017-12-08

    Feast your eyes on Hubble's Megamaser galaxy! Phenomena across the Universe emit radiation spanning the entire electromagnetic spectrum — from high-energy gamma rays, which stream out from the most energetic events in the cosmos, to lower-energy microwaves and radio waves. Microwaves, the very same radiation that can heat up your dinner, are produced by a multitude of astrophysical sources, including strong emitters known as masers (microwave lasers), even stronger emitters with the somewhat villainous name of megamasers and the centers of some galaxies. Especially intense and luminous galactic centers are known as active galactic nuclei. They are in turn thought to be driven by the presence of supermassive black holes, which drag surrounding material inwards and spit out bright jets and radiation as they do so. The two galaxies shown here, imaged by the NASA/ESA Hubble Space Telescope, are named MCG+01-38-004 (the upper, red-tinted one) and MCG+01-38-005 (the lower, blue-tinted one). MCG+01-38-005 (also known as NGC 5765B) is a special kind of megamaser; the galaxy’s active galactic nucleus pumps out huge amounts of energy, which stimulates clouds of surrounding water. Water’s constituent atoms of hydrogen and oxygen are able to absorb some of this energy and re-emit it at specific wavelengths, one of which falls within the microwave regime, invisible to Hubble but detectable by microwave telescopes. MCG+01-38-005 is thus known as a water megamaser! Astronomers can use such objects to probe the fundamental properties of the Universe. The microwave emissions from MCG+01-38-005 were used to calculate a refined value for the Hubble constant, a measure of how fast the Universe is expanding. This constant is named after the astronomer whose observations were responsible for the discovery of the expanding Universe and after whom the Hubble Space Telescope was named, Edwin Hubble.

  19. A Pool of Distant Galaxies

    NASA Astrophysics Data System (ADS)

    2008-11-01

    Anyone who has wondered what it might be like to dive into a pool of millions of distant galaxies of different shapes and colours, will enjoy the latest image released by ESO. Obtained in part with the Very Large Telescope, the image is the deepest ground-based U-band image of the Universe ever obtained. It contains more than 27 million pixels and is the result of 55 hours of observations with the VIMOS instrument. A Sea of Galaxies ESO PR Photo 39/08 A Pool of Distant Galaxies This uniquely beautiful patchwork image, with its myriad of brightly coloured galaxies, shows the Chandra Deep Field South (CDF-S), arguably the most observed and best studied region in the entire sky. The CDF-S is one of the two regions selected as part of the Great Observatories Origins Deep Survey (GOODS), an effort of the worldwide astronomical community that unites the deepest observations from ground- and space-based facilities at all wavelengths from X-ray to radio. Its primary purpose is to provide astronomers with the most sensitive census of the distant Universe to assist in their study of the formation and evolution of galaxies. The new image released by ESO combines data obtained with the VIMOS instrument in the U- and R-bands, as well as data obtained in the B-band with the Wide-Field Imager (WFI) attached to the 2.2 m MPG/ESO telescope at La Silla, in the framework of the GABODS survey. The newly released U-band image - the result of 40 hours of staring at the same region of the sky and just made ready by the GOODS team - is the deepest image ever taken from the ground in this wavelength domain. At these depths, the sky is almost completely covered by galaxies, each one, like our own galaxy, the Milky Way, home of hundreds of billions of stars. Galaxies were detected that are a billion times fainter than the unaided eye can see and over a range of colours not directly observable by the eye. This deep image has been essential to the discovery of a large number of new galaxies

  20. On the Origins of Starburst and Poststarburst Galaxies in Nearby Clusters

    NASA Astrophysics Data System (ADS)

    Caldwell, Nelson; Rose, James A.; Dendy, Kristi

    1999-01-01

    Hubble Space Telescope (HST) Wide Field Planetary Camera 2 images in B (F450W) and I (F814W) have been obtained for three starburst (SB) and two poststarburst (PSB) galaxies in the Coma Cluster and for three such galaxies in the cluster DC 048-52. V (F555W) and I images for an additional PSB galaxy in Coma have been extracted from the HST archive. Six of these galaxies were previously classified as E/S0 on the basis of ground-based images, two as Sa, and the other as an irregular. The HST images reveal these SB/PSB galaxies to be heterogeneous in morphology. Nevertheless, a common theme is that many of them, especially the SB galaxies, tend to have centralized spiral structure that appears simply as a bright ``bulge'' on ground-based images. In addition, while some PSB galaxies exhibit distinct spiral structure, on the whole they have smoother morphologies than the SB galaxies. The morphologies and luminosity profiles are generally consistent with substantial starbursts, in the form of centralized spiral structure (the SB galaxies), that fade into smoother morphologies (the PSB galaxies), with lingering spectroscopic evidence for past central starbursts. An important point is that the PSB galaxies retain disks; i.e., they have not evolved into spheroidal systems. While the morphologies revealed in the HST images are heterogeneous, and thus may not fit well into a single picture, we see evidence in several cases that the morphologies and centralized star formation have been driven by external tidal perturbations. We discuss several physical mechanisms for inducing star formation in cluster galaxies with a view toward explaining the particular morphologies seen in the HST images.

  1. Rare Ultra-blue Stars Found in Neighboring Galaxy's Hub

    NASA Image and Video Library

    2017-12-08

    Image release January 11, 2012 A new Hubble Space Telescope image centers on the 100-million-solar-mass black hole at the hub of the neighboring spiral galaxy M31, or the Andromeda galaxy, one of the few galaxies outside the Milky Way visible to the naked eye and the only other giant galaxy in the Local Group. This is the sharpest visible-light image ever made of the nucleus of an external galaxy. The Hubble image is being presented today at the meeting of the American Astronomical Society in Austin, Texas. To read more go to: www.nasa.gov/mission_pages/hubble/science/ultra-blue.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. New Eyes for Galaxies Investigation

    NASA Astrophysics Data System (ADS)

    D'Onofrio, Mauro; Zaggia, Simone; Rampazzo, Roberto; Vallenari, Antonella; Gilmore, Gerald F.; Marziani, Paola; Stiavelli, Massimo; Calzetti, Daniela; Bianchi, Luciana; Trinchieri, Ginevra; Bromm, Volker; Bland-Hawthorn, Jonathan; Kaifu, Norio; Combes, Françoise; Moss, David L.; Paturel, George

    The observational data for the extragalactic research are evolved across this century. While the first studies on galaxies were essentially based on images and spectra taken in the optical waveband and registered after hours of work at the telescope on glass photographic plates, today we receive pre-reduced multiwavelength images and spectra directly on our computers. The work of astronomers is changed completely with the technological progress. Only 30 years ago, 4-5 photographic images of galaxies, or a few spectra, were the best one can hope to get after a night of hard work at the telescope. Today, space and ground-based telescopes with big diameters and field of view are pointed toward the sky every night, collecting gigabytes of data for thousand of galaxies, that we bring with us in our laptop computers.

  3. HUBBLE VIEWS DISTANT GALAXIES THROUGH A COSMIC LENS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image of the rich galaxy cluster, Abell 2218, is a spectacular example of gravitational lensing. The arc-like pattern spread across the picture like a spider web is an illusion caused by the gravitational field of the cluster. The cluster is so massive and compact that light rays passing through it are deflected by its enormous gravitational field, much as an optical lens bends light to form an image. The process magnifies, brightens and distorts images of objects that lie far beyond the cluster. This provides a powerful 'zoom lens' for viewing galaxies that are so far away they could not normally be observed with the largest available telescopes. Hubble's high resolution reveals numerous arcs which are difficult to detect with ground-based telescopes because they appear to be so thin. The arcs are the distorted images of a very distant galaxy population extending 5-10 times farther than the lensing cluster. This population existed when the universe was just one quarter of its present age. The arcs provide a direct glimpse of how star forming regions are distributed in remote galaxies, and other clues to the early evoution of galaxies. Hubble also reveals multiple imaging, a rarer lensing event that happens when the distortion is large enough to produce more than one image of the same galaxy. Abell 2218 has an unprecedented total of seven multiple systems. The abundance of lensing features in Abell 2218 has been used to make a detailed map of the distribution of matter in the cluster's center. From this, distances can be calculated for a sample of 120 faint arclets found on the Hubble image. These arclets represent galaxies that are 50 times fainter than objects that can be seen with ground-based telescopes. Studies of remote galaxies viewed through well-studied lenses like Abell 2218 promise to reveal the nature of normal galaxies at much earlier epochs than was previously possible. The technique is a powerful combination of Hubble

  4. Hubble Observes Galaxies' Evolution in Slow Motion

    NASA Image and Video Library

    2017-12-08

    It is known today that merging galaxies play a large role in the evolution of galaxies and the formation of elliptical galaxies in particular. However there are only a few merging systems close enough to be observed in depth. The pair of interacting galaxies seen here — known as NGC 3921 — is one of these systems. NGC 3921 — found in the constellation of Ursa Major (The Great Bear) — is an interacting pair of disk galaxies in the late stages of its merger. Observations show that both of the galaxies involved were about the same mass and collided about 700 million years ago. You can see clearly in this image the disturbed morphology, tails and loops characteristic of a post-merger. The clash of galaxies caused a rush of star formation and previous Hubble observations showed over 1,000 bright, young star clusters bursting to life at the heart of the galaxy pair. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. The environment of x ray selected BL Lacs: Host galaxies and galaxy clustering

    NASA Technical Reports Server (NTRS)

    Wurtz, Ron; Stocke, John T.; Ellingson, Erica; Yee, Howard K. C.

    1993-01-01

    Using the Canada-France-Hawaii Telescope, we have imaged a complete, flux-limited sample of Einstein Medium Sensitivity Survey BL Lacertae objects in order to study the properties of BL Lac host galaxies and to use quantitative methods to determine the richness of their galaxy cluster environments.

  6. Integrated Properties of Nearby Seyfert Galaxies Measured by 2-D Spectroscopy

    NASA Astrophysics Data System (ADS)

    Xia, Junjie; Malkan, Matthew Arnold

    2017-01-01

    We present our measurements of mosaicing long-slit spectra of 12 nearby Seyfert galaxies. We obtained these data cubes at ~6‧‧ spatial resolution using the Kast double spectrograph on the 3-m Shane telescope of Lick Observatory. We have measured the integrated emission lines of [O III], Hβ, Hα, [N II], and [S II]. We compare the relative strength of these lines from the galaxy nucleus with the total emission from the entire galaxy. In classification line ratio diagrams (BPT), the individual galaxy moves from the Seyfert region to the composite/star-forming locus as the effective absorbing aperture grows. This trend means that Seyfert galaxies observed at higher redshifts will become increasingly misclassified. We use our sample to quantify this systematic trend. We also estimate the rates of star formation in the host galaxies based on the emission lines.

  7. Merging Galaxies Create a Binary Quasar

    NASA Astrophysics Data System (ADS)

    2010-02-01

    Astronomers have found the first clear evidence of a binary quasar within a pair of actively merging galaxies. Quasars are the extremely bright centers of galaxies surrounding super-massive black holes, and binary quasars are pairs of quasars bound together by gravity. Binary quasars, like other quasars, are thought to be the product of galaxy mergers. Until now, however, binary quasars have not been seen in galaxies that are unambiguously in the act of merging. But images of a new binary quasar from the Carnegie Institution's Magellan telescope in Chile show two distinct galaxies with "tails" produced by tidal forces from their mutual gravitational attraction. "This is really the first case in which you see two separate galaxies, both with quasars, that are clearly interacting," says Carnegie astronomer John Mulchaey who made observations crucial to understanding the galaxy merger. Most, if not all, large galaxies, such as our galaxy the Milky Way, host super-massive black holes at their centers. Because galaxies regularly interact and merge, astronomers have assumed that binary super-massive black holes have been common in the Universe, especially during its early history. Black holes can only be detected as quasars when they are actively accreting matter, a process that releases vast amounts of energy. A leading theory is that galaxy mergers trigger accretion, creating quasars in both galaxies. Because most such mergers would have happened in the distant past, binary quasars and their associated galaxies are very far away and therefore difficult for most telescopes to resolve. The binary quasar, labeled SDSS J1254+0846, was initially detected by the Sloan Digital Sky Survey, a large scale astronomical survey of galaxies and over 120,000 quasars. Further observations by Paul Green of the Harvard-Smithsonian Center for Astrophysics and colleagues* using NASA's Chandra's X-ray Observatory and telescopes at Kitt Peak National Observatory in Arizona and Palomar

  8. Hα3: an Hα imaging survey of HI selected galaxies from ALFALFA. II. Star formation properties of galaxies in the Virgo cluster and surroundings

    NASA Astrophysics Data System (ADS)

    Gavazzi, G.; Fumagalli, M.; Fossati, M.; Galardo, V.; Grossetti, F.; Boselli, A.; Giovanelli, R.; Haynes, M. P.

    2013-05-01

    Context. We present the analysis of Hα3, an Hα narrow-band imaging follow-up survey of 409 galaxies selected from the HI Arecibo Legacy Fast ALFA Survey (ALFALFA) in the Local Supercluster, including the Virgo cluster, in the region 11h < RA < 16h ; 4o < Dec < 16°; 350 < cz < 2000 km s-1. Aims: Taking advantage of Hα3, which provides the complete census of the recent massive star formation rate (SFR) in HI-rich galaxies in the local Universe and of ancillary optical data from SDSS we explore the relations between the stellar mass, the HI mass, and the current, massive SFR of nearby galaxies in the Virgo cluster. We compare these with those of isolated galaxies in the Local Supercluster, and we investigate the role of the environment in shaping the star formation properties of galaxies at the present cosmological epoch. Methods: By using the Hα hydrogen recombination line as a tracer of recent star formation, we investigated the relationships between atomic neutral gas and newly formed stars in different environments (cluster and field), for many morphological types (spirals and dwarfs), and over a wide range of stellar masses (107.5 to 1011.5 M⊙). To quantify the degree of environmental perturbation, we adopted an updated calibration of the HI deficiency parameter which we used to divide the sample into three classes: unperturbed galaxies (DefHI ≤ 0.3), perturbed galaxies (0.3 < DefHI < 0.9), and highly perturbed galaxies (DefHI ≥ 0.9). Results: Studying the mean properties of late-type galaxies in the Local Supercluster, we find that galaxies in increasing dense local galaxy conditions (or decreasing projected angular separation from M 87) show a significant decrease in the HI content and in the mean specific SFR, along with a progressive reddening of their stellar populations. The gradual quenching of the star formation occurs outside-in, consistently with the predictions of the ram pressure model. Once considered as a whole, the Virgo cluster is

  9. The brightest galaxies in the first 700 Myr: Building Hubble's legacy of large area IR imaging for JWST and beyond

    NASA Astrophysics Data System (ADS)

    Trenti, Michele

    2017-08-01

    Hubble's WFC3 has been a game changer for the study of early galaxy formation in the first 700 Myr after the Big Bang. Reliable samples of sources to redshift z 11, which can be discovered only from space, are now constraining the evolution of the galaxy luminosity function into the epoch of reionization. Unexpectedly but excitingly, the recent spectroscopic confirmations of L>L* galaxies at z>8.5 demonstrate that objects brighter than our own Galaxy are already present 500 Myr after the Big Bang, creating a challenge to current theoretical/numerical models that struggle to explain how galaxies can grow so luminous so quickly. Yet, the existing HST observations do not cover sufficient area, nor sample a large enough diversity of environments to provide an unbiased sample of sources, especially at z 9-11 where only a handful of bright candidates are known. To double this currently insufficient sample size, to constrain effectively the bright-end of the galaxy luminosity function at z 9-10, and to provide targets for follow-up imaging and spectroscopy with JWST, we propose a large-area pure-parallel survey that will discover the Brightest of Reionizing Galaxies (BoRG[4JWST]). We will observe 580 arcmin^2 over 125 sightlines in five WFC3 bands (0.35 to 1.7 micron) using high-quality pure-parallel opportunities available in the cycle (3 orbits or longer). These public observations will identify more than 80 intrinsically bright galaxies at z 8-11, investigate the connection between halo mass, star formation and feedback in progenitors of groups and clusters, and build HST lasting legacy of large-area, near-IR imaging.

  10. A relationship of polycyclic aromatic hydrocarbon features with galaxy merger in star-forming galaxies at z < 0.2

    NASA Astrophysics Data System (ADS)

    Murata, Katsuhiro L.; Yamada, Rika; Oyabu, Shinki; Kaneda, Hidehiro; Ishihara, Daisuke; Yamagishi, Mitsuyoshi; Kokusho, Takuma; Takeuchi, Tsutomu T.

    2017-11-01

    Using the AKARI, Wide-field Infrared Survey Explorer (WISE), Infrared Astronomical Satellite (IRAS), Sloan Digital Sky Survey (SDSS) and Hubble Space Telescope (HST) data, we investigated the relation of polycyclic aromatic hydrocarbon (PAH) mass (MPAH), very small grain mass (MVSG), big grain mass (MBG) and stellar mass (Mstar) with galaxy merger for 55 star-forming galaxies at redshift z < 0.2. Using the SDSS image at z < 0.1 and the HST image at z > 0.1, we divided the galaxies into merger galaxies and non-merger galaxies with the morphological parameter asymmetry A, and quantified merging stages of galaxies based on the morphological indicators, the second-order momentum of the brightest 20 per cent region M20 and the Gini coefficient. We find that MPAH/MBG of merger galaxies tend to be lower than that of non-merger galaxies and there are no systematic differences of MVSG/MBG and MBG/Mstar between merger galaxies and non-merger galaxies. We find that galaxies with very low MPAH/MBG seem to be merger galaxies at late stages. These results suggest that PAHs are partly destroyed at late stages of merging processes. Furthermore, we investigated MPAH/MBG variations in radiation field intensity strength G0 and the emission line ratio of [O I] λ 6300/Hα that is a shock tracer for merger galaxies and find that MPAH/MBG decreases with increasing both G0 and [O I]/Hα. PAH destruction is likely to be caused by two processes: strong radiation fields and large-scale shocks during merging processes of galaxies.

  11. Multi-conjugated adaptive optics imaging of distant galaxies - a comparison of Gemini/GSAOI and VLT/HAWK-I data

    NASA Astrophysics Data System (ADS)

    Schirmer, Mischa; Garrel, Vincent; Sivo, Gaetano; Marin, Eduardo; Carrasco, Eleazar R.

    2017-11-01

    Multi-conjugated adaptive optics (MCAO) yield nearly diffraction-limited images at 2 μm wavelengths. Currently, Gemini Multi-Conjugate Adaptive Optics System (GeMS)/Gemini South Adaptive Optics Imager (GSAOI) at Gemini South is the only MCAO facility instrument at an 8-m telescope. Using real data, and for the first time, we investigate the gain in depth and signal-to-noise ratios (S/N) when MCAO is employed for Ks-band observations of distant galaxies. Our analysis is based on the Frontier Fields cluster MACS J0416.1-2403, observed with GeMS/GSAOI (near diffraction-limited) and compared against Very Large Telescope/HAWK-I (natural seeing) data. Using galaxy number counts, we show that the substantially increased thermal background and lower optical throughput of the MCAO unit are fully compensated for by the wavefront correction because the galaxy images can be measured in smaller apertures with less sky noise. We also performed a direct comparison of the S/N of sources detected in both data sets. For objects with intrinsic angular sizes corresponding to half the HAWK-I image seeing, the gain in S/N is 40 per cent. Even smaller objects experience a boost in S/N by up to a factor of 2.5 despite our suboptimal natural guide star configuration. The depth of the near diffraction limited images is more difficult to quantify than that of seeing limited images, due to a strong dependence on the intrinsic source profiles. Our results emphasize the importance of cooled MCAO systems for Ks-band observations with future, extremely large telescopes.

  12. Using Neural Networks to Classify Digitized Images of Galaxies

    NASA Astrophysics Data System (ADS)

    Goderya, S. N.; McGuire, P. C.

    2000-12-01

    Automated classification of Galaxies into Hubble types is of paramount importance to study the large scale structure of the Universe, particularly as survey projects like the Sloan Digital Sky Survey complete their data acquisition of one million galaxies. At present it is not possible to find robust and efficient artificial intelligence based galaxy classifiers. In this study we will summarize progress made in the development of automated galaxy classifiers using neural networks as machine learning tools. We explore the Bayesian linear algorithm, the higher order probabilistic network, the multilayer perceptron neural network and Support Vector Machine Classifier. The performance of any machine classifier is dependant on the quality of the parameters that characterize the different groups of galaxies. Our effort is to develop geometric and invariant moment based parameters as input to the machine classifiers instead of the raw pixel data. Such an approach reduces the dimensionality of the classifier considerably, and removes the effects of scaling and rotation, and makes it easier to solve for the unknown parameters in the galaxy classifier. To judge the quality of training and classification we develop the concept of Mathews coefficients for the galaxy classification community. Mathews coefficients are single numbers that quantify classifier performance even with unequal prior probabilities of the classes.

  13. The Topsy-Turvy Galaxy

    NASA Astrophysics Data System (ADS)

    2006-11-01

    The captivating appearance of this image of the starburst galaxy NGC 1313, taken with the FORS instrument at ESO's Very Large Telescope, belies its inner turmoil. The dense clustering of bright stars and gas in its arms, a sign of an ongoing boom of star births, shows a mere glimpse of the rough times it has seen. Probing ever deeper into the heart of the galaxy, astronomers have revealed many enigmas that continue to defy our understanding. ESO PR Photo 43a/06 ESO PR Photo 43a/06 The Topsy-Turvy Galaxy NGC 1313 This FORS image of the central parts of NGC 1313 shows a stunning natural beauty. The galaxy bears some resemblance to some of the Milky Way's closest neighbours, the Magellanic Clouds. NGC 1313 has a barred spiral shape, with the arms emanating outwards in a loose twist from the ends of the bar. The galaxy lies just 15 million light-years away from the Milky Way - a mere skip on cosmological scales. The spiral arms are a hotbed of star-forming activity, with numerous young clusters of hot stars being born continuously at a staggering rate out of the dense clouds of gas and dust. Their light blasts through the surrounding gas, creating an intricately beautiful pattern of light and dark nebulosity. But NGC 1313 is not just a pretty picture. A mere scratch beneath the elegant surface reveals evidence of some of the most puzzling problems facing astronomers in the science of stars and galaxies. Starburst galaxies are fascinating objects to study in their own right; in neighbouring galaxies, around one quarter of all massive stars are born in these powerful engines, at rates up to a thousand times higher than in our own Milky Way Galaxy. In the majority of starbursts the upsurge in star's births is triggered when two galaxies merge, or come too close to each other. The mutual attraction between the galaxies causes immense turmoil in the gas and dust, causing the sudden 'burst' in star formation. ESO PR Photo 43b/06 ESO PR Photo 43b/06 Larger View of NGC 1313

  14. Simulations of dust in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Jonsson, Patrik

    This dissertation studies the effects of dust in N-body simulations of interacting galaxies. A new Monte-Carlo radiative-transfer code, Sunrise , is used in conjunction with hydrodynamic simulations. Results from radiative- transfer calculations in over 20 SPH simulations of disk-galaxy major mergers (Cox, 2004) are presented. Dust has a profound effect on the appearance of these simulations. At peak luminosities, 90% of the bolometric luminosity is absorbed by dust. The dust obscuration increases with luminosity in such a way that the brightness at UV/ visual wavelengths remains roughly constant. A general relationship between the fraction of energy absorbed and the ratio of bolometric luminosity to baryonic mass is found to hold in galaxies with metallicities >0.7 [Special characters omitted.] over a factor of 50 in mass. The accuracy to which the simulations describe observed starburst galaxies is evaluated by comparing them to observations by Meurer et al. (1999) and Heckman et al. (1998). The simulations are found to follow a relation similar to the IRX-b relation found by Meurer et al. (1999) when similar luminosity objects are considered. The highest-luminosity simulated galaxies depart from this relation and occupy the region where local LIRGs/ULIRGs are found. Comparing to the Heckman et al. (1998) sample, the simulations are found to obey the same relations between UV luminosity, UV color, IR luminosity, absolute blue magnitude and metallicity as the observations. This agreement is contingent on the presence of a realistic mass-metallicity relation, and Milky-Way-like dust. SMC-like dust results in far too red a UV continuum slope. On the whole, the agreement between the simulated and observed galaxies is impressive considering that the simulations have not been fit to agree with the observations, and we conclude that the simulations provide a realistic replication of the real universe. The simulations are used to study the performance of star

  15. The Space Density of Luminous Dusty Star-forming Galaxies at z > 4: SCUBA-2 and LABOCA Imaging of Ultrared Galaxies from Herschel-ATLAS

    NASA Astrophysics Data System (ADS)

    Ivison, R. J.; Lewis, A. J. R.; Weiss, A.; Arumugam, V.; Simpson, J. M.; Holland, W. S.; Maddox, S.; Dunne, L.; Valiante, E.; van der Werf, P.; Omont, A.; Dannerbauer, H.; Smail, Ian; Bertoldi, F.; Bremer, M.; Bussmann, R. S.; Cai, Z.-Y.; Clements, D. L.; Cooray, A.; De Zotti, G.; Eales, S. A.; Fuller, C.; Gonzalez-Nuevo, J.; Ibar, E.; Negrello, M.; Oteo, I.; Pérez-Fournon, I.; Riechers, D.; Stevens, J. A.; Swinbank, A. M.; Wardlow, J.

    2016-11-01

    Until recently, only a handful of dusty, star-forming galaxies (DSFGs) were known at z > 4, most of them significantly amplified by gravitational lensing. Here, we have increased the number of such DSFGs substantially, selecting galaxies from the uniquely wide 250, 350, and 500 μm Herschel-ATLAS imaging survey on the basis of their extremely red far-infrared colors and faint 350 and 500 μm flux densities, based on which, they are expected to be largely unlensed, luminous, rare, and very distant. The addition of ground-based continuum photometry at longer wavelengths from the James Clerk Maxwell Telescope and the Atacama Pathfinder Experiment allows us to identify the dust peak in their spectral energy distributions (SEDs), with which we can better constrain their redshifts. We select the SED templates that are best able to determine photometric redshifts using a sample of 69 high-redshift, lensed DSFGs, then perform checks to assess the impact of the CMB on our technique, and to quantify the systematic uncertainty associated with our photometric redshifts, σ = 0.14 (1 + z), using a sample of 25 galaxies with spectroscopic redshifts, each consistent with our color selection. For Herschel-selected ultrared galaxies with typical colors of S 500/S 250 ˜ 2.2 and S 500/S 350 ˜ 1.3 and flux densities, S 500 ˜ 50 mJy, we determine a median redshift, {\\hat{z}}{phot}=3.66, an interquartile redshift range, 3.30-4.27, with a median rest-frame 8-1000 μm luminosity, {\\hat{L}}{IR}, of 1.3 × 1013 L ⊙. A third of the galaxies lie at z > 4, suggesting a space density, ρ z > 4, of ≈6 × 10-7 Mpc-3. Our sample contains the most luminous known star-forming galaxies, and the most overdense cluster of starbursting proto-ellipticals found to date.

  16. Astronomers Discover Spectacular Structure in Distant Galaxy

    NASA Astrophysics Data System (ADS)

    1999-01-01

    Researchers using the National Science Foundation's Very Large Array (VLA) radio telescope have imaged a "spectacular and complex structure" in a galaxy 50 million light-years away. Their work both resolves a decades-old observational mystery and revises current theories about the origin of X-ray emission coming from gas surrounding the galaxy. The new VLA image is of the galaxy M87, which harbors at its core a supermassive black hole spewing out jets of subatomic particles at nearly the speed of light and also is the central galaxy of the Virgo Cluster of galaxies. The VLA image is the first to show detail of a larger structure that originally was detected by radio astronomers more than a half-century ago. Analysis of the new image indicates that astronomers will have to revise their ideas about the physics of what causes X-ray emission in the cores of many galaxy clusters. Frazer Owen of the National Radio Astronomy Observatory (NRAO) in Socorro, NM; Jean Eilek of the New Mexico Institute of Mining and Technology (NM Tech) in Socorro, NM; and Namir Kassim of the Naval Research Laboratory in Washington, DC, announced their discovery at the American Astronomical Society's meeting today in Austin, TX. The new observations show two large, bubble-like lobes, more than 200,000 light-years across, that emit radio waves. These lobes, which are intricately detailed, apparently are powered by gravitational energy released from the black hole at the galaxy's center. "We think that material is flowing outward from the galaxy's core into these large, bright, radio-emitting 'bubbles,'" Owen said. The newly-discovered "bubbles" sit inside a region of the galaxy known to be emitting X-rays. Theorists have speculated that this X-ray emission arises when gas that originally was part of the Virgo Cluster of galaxies, cools and falls inwards onto M87 itself, at the center of the cluster. Such "cooling flows" are commonly thought to be responsible for strong X-ray emission in many

  17. GLOBULAR CLUSTER SYSTEMS OF SPIRAL AND S0 GALAXIES: RESULTS FROM WIYN IMAGING OF NGC 1023, NGC 1055, NGC 7332, AND NGC 7339

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Michael D.; Dowell, Jessica L.; Rhode, Katherine L., E-mail: youngmd@indiana.edu, E-mail: jlwind@astro.indiana.edu, E-mail: rhode@astro.indiana.edu

    We present results from a study of the globular cluster (GC) systems of four spiral and S0 galaxies imaged as part of an ongoing wide-field survey of the GC systems of giant galaxies. The target galaxies-the SB0 galaxy NGC 1023, the SBb galaxy NGC 1055, and an isolated pair comprised of the Sbc galaxy NGC 7339 and the S0 galaxy NGC 7332-were observed in BVR filters with the WIYN 3.5 m telescope and Minimosaic camera. For two of the galaxies, we combined the WIYN imaging with previously published data from the Hubble Space Telescope and the Keck Observatory to helpmore » characterize the GC distribution in the central few kiloparsecs. We determine the radial distribution (surface density of GCs versus projected radius) of each galaxy's GC system and use it to calculate the total number of GCs (N{sub GC}). We find N{sub GC} = 490 {+-} 30, 210 {+-} 40, 175 {+-} 15, and 75 {+-} 10 for NGC 1023, NGC 1055, NGC 7332, and NGC 7339, respectively. We also calculate the GC specific frequency (N{sub GC} normalized by host galaxy luminosity or mass) and find values typical of those of the other spiral and E/S0 galaxies in the survey. The two lenticular galaxies have sufficient numbers of GC candidates for us to perform statistical tests for bimodality in the GC color distributions. We find evidence at a high confidence level (>95%) for two populations in the B - R distribution of the GC system of NGC 1023. We find weaker evidence for bimodality (>81% confidence) in the GC color distribution of NGC 7332. Finally, we identify eight GC candidates that may be associated with the Magellanic dwarf galaxy NGC 1023A, which is a satellite of NGC 1023.« less

  18. Giant Radio Jet Coming From Wrong Kind of Galaxy

    NASA Astrophysics Data System (ADS)

    2003-01-01

    Giant jets of subatomic particles moving at nearly the speed of light have been found coming from thousands of galaxies across the Universe, but always from elliptical galaxies or galaxies in the process of merging -- until now. Using the combined power of the Hubble Space Telescope, the Very Large Array (VLA) and the 8-meter Gemini-South Telescope, astronomers have discovered a huge jet coming from a spiral galaxy similar to our own Milky Way. Radio-optical view of galaxy Combined HST and VLA image of the galaxy 0313-192. Optical HST image shows the galaxy edge-on; VLA image, shown in red, reveals giant jet of speeding particles. For more images, see this link below. CREDIT: Keel, Ledlow & Owen; STScI,NRAO/AUI/NSF, NASA "We've always thought spirals were the wrong kind of galaxy to generate these huge jets, but now we're going to have to re-think some of our ideas on what produces these jets," said William Keel, a University of Alabama astronomer who led the research team. Keel worked with Michael Ledlow of Gemini Observatory and Frazer Owen of the National Radio Astronomy Observatory. The scientists reported their findings at the American Astronomical Society's meeting in Seattle, Washington. "Further study of this galaxy may provide unique insights on just what needs to happen in a galaxy to produce these powerful jets of particles," Keel said. In addition, Owen said, "The loose-knit nature of the cluster of galaxies in which this galaxy resides may play a part in allowing this particular spiral to produce jets." Astronomers believe such jets originate at the cores of galaxies, where supermassive black holes provide the tremendous gravitational energy to accelerate particles to nearly the speed of light. Magnetic fields twisted tightly by spinning disks of material being sucked into the black hole are presumed to narrow the speeding particles into thin jets, like a nozzle on a garden hose. Both elliptical and spiral galaxies are believed to harbor supermassive

  19. Distant Galaxy Bursts with Stars

    NASA Image and Video Library

    2011-12-21

    This image from NASA Hubble telescope shows one of the most distant galaxies known, called GN-108036, dating back to 750 million years after the Big Bang that created our universe. The galaxy light took 12.9 billion years to reach us.

  20. A study of star formation by Hα emission of galaxies in the galaxy group NGC 4213

    NASA Astrophysics Data System (ADS)

    Maungkorn, Sakdawoot; Kriwattanawong, Wichean

    2017-09-01

    This research aims to study hydrogen alpha emission, corresponding to star formation of galaxies in the NGC 4213 group that has an average recession velocity of 6,821 km/s. The imaging observations with broad-band filters (B, V and RC) and narrow-band filters ([S II] and Red-continuum) were carried out from the 2.4-m reflecting telescope at Thai National Observatory (TNO). There are 11 sample galaxies in this study, consisting of 2 elliptical, 2 lenticular and 7 spiral galaxies. It was found that the late-type galaxies tend to be bluer than early-type galaxies, due to these galaxies consist of relatively high proportion of blue stars. Furthermore, the equivalent width of hydrogen alpha (EW(Hα)) tends to increase as a function of morphological type. This indicates that star formation in late-type galaxies taking place more than the early-type galaxies. Furthermore, a ratio of the star formation rate to galaxy mass also increases slightly with the galaxy type. This could be due to the interaction between galaxy-galaxy or tidal interaction occurring within the galaxy group.

  1. Galactic wind shells and high redshift radio galaxies. On the nature of associated absorbers

    NASA Astrophysics Data System (ADS)

    Krause, M.

    2005-06-01

    A jet is simulated on the background of a galactic wind headed by a radiative bow shock. The wind shell, which is due to the radiative bow shock, is effectively destroyed by the impact of the jet cocoon, thanks to Rayleigh-Taylor instabilities. Associated strong HI absorption, and possibly also molecular emission, in high redshift radio galaxies which is observed preferentially in the smaller ones may be explained by that model, which is an improvement of an earlier radiative bow shock model. The model requires temperatures of ≈106 K in the proto-clusters hosting these objects, and may be tested by high resolution spectroscopy of the Lyα line. The simulations show that - before destruction - the jet cocoon fills the wind shell entirely for a considerable time with intact absorption system. Therefore, radio imaging of sources smaller than the critical size should reveal the round central bubbles, if the model is correct.

  2. Environmental influences on galaxy evolution

    NASA Technical Reports Server (NTRS)

    Zepf, Stephen E.; Whitmore, Bradley C.

    1993-01-01

    We investigate the role of mergers and interactions in the evolution of galaxies by studying galaxies in compact groups. Compact groups of galaxies have high spatial densities and low velocity dispersions making these regions ideal laboratories in which to study the effect of interactions and mergers. Based on a detailed spectroscopic and multi-color imaging study, we find that both the isophotal shapes and the stellar kinematics indicate that many of the elliptical galaxies in compact groups have been affected by tidal interactions. At the same time, however, we find that only a few elliptical galaxies in compact groups have evidence for the young stellar populations that would be expected if they are the result of recent merger of two spiral galaxies. Therefore, we conclude that tidal interactions affect galaxy properties at the current epoch, but the bulk of basic galaxy formation and transformation must have occurred at much higher redshift.

  3. Hubble Sees Galaxies Spiraling around Leo

    NASA Image and Video Library

    2014-04-18

    Shown here is a spiral galaxy known as NGC 3455, which lies some 65 million light-years away from us in the constellation of Leo (the Lion). Galaxies are classified into different types according to their structure and appearance. This classification system is known as the Hubble Sequence, named after its creator Edwin Hubble. In this image released 14, April, 2014, NGC 3455 is known as a type SB galaxy — a barred spiral. Barred spiral galaxies account for approximately two thirds of all spirals. Galaxies of this type appear to have a bar of stars slicing through the bulge of stars at their center. The SB classification is further sub-divided by the appearance of a galaxy's pinwheeling spiral arms; SBa types have more tightly wound arms, whereas SBc types have looser ones. SBb types, such as NGC 3455, lie in between. NGC 3455 is part of a pair of galaxies — its partner, NGC 3454, lies out of frame. This cosmic duo belong to a group known as the NGC 3370 group, which is in turn one of the Leo II groups, a large collection of galaxies scattered some 30 million light-years to the right of the Virgo cluster. This image is from Hubble's Advanced Camera for Surveys. Credit: ESA/Hubble & NASA, Acknowledgement: Nick Rose NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. A Giant Gathering of Galaxies

    NASA Image and Video Library

    2015-11-03

    The galaxy cluster called MOO J1142+1527 can be seen here as it existed when light left it 8.5 billion years ago. The red galaxies at the center of the image make up the heart of the galaxy cluster. This color image is constructed from multi-wavelength observations: Infrared observations from NASA's Spitzer Space Telescope are shown in red; near-infrared and visible light captured by the Gemini Observatory atop Mauna Kea in Hawaii is green and blue; and radio light from the Combined Array for Research in Millimeter-wave Astronomy (CARMA), near Owens Valley in California, is purple. In addition to galaxies, clusters also contain a reservoir of hot gas with temperatures in the tens of millions of degrees Celsius/Kelvin. CARMA was used to detect this gas, and to determine the mass of this cluster. http://photojournal.jpl.nasa.gov/catalog/PIA20052

  5. Watching the Birth of a Galaxy Cluster?

    NASA Astrophysics Data System (ADS)

    1999-07-01

    First Visiting Astronomers to VLT ANTU Observe the Early Universe When the first 8.2-m VLT Unit Telescope (ANTU) was "handed over" to the scientists on April 1, 1999, the first "visiting astronomers" at Paranal were George Miley and Huub Rottgering from the Leiden Observatory (The Netherlands) [1]. They obtained unique pictures of a distant exploding galaxy known as 1138 - 262 . These images provide new information about how massive galaxies and clusters of galaxies may have formed in the early Universe. Formation of clusters of galaxies An intriguing question in modern astronomy is how the first galaxies and groupings or clusters of galaxies emerged from the primeval gas produced in the Big Bang. Some theories predict that giant galaxies, often found at the centres of rich galaxy clusters, are built up through a step-wise process. Clumps develop in this gas and stars condense out of those clumps to form small galaxies. Finally these small galaxies merge together to form larger units. An enigmatic class of objects important for investigating such scenarios are galaxies which emit intense radio emission from explosions that occur deep in their nuclei. The explosions are believed to be triggered when material from the merging swarm of smaller galaxies is fed into a rotating black hole located in the central regions. There is strong evidence that these distant radio galaxies are amongst the oldest and most massive galaxies in the early Universe and are often located at the heart of rich clusters of galaxies. They can therefore help pinpoint regions of the Universe in which large galaxies and clusters of galaxies are being formed. The radio galaxy 1138-262 The first visiting astronomers pointed ANTU towards a particularly important radio galaxy named 1138-262 . It is located in the southern constellation Hydra (The Water Snake). This galaxy was discovered some years ago using ESO's 3.5-m New Technology Telescope (NTT) at La Silla. Because 1138-262 is at a distance of

  6. Beyond the Borders of a Galaxy

    NASA Image and Video Library

    2008-04-16

    The outlying regions around the Southern Pinwheel galaxy, or M83, are highlighted in this composite image from NASA Galaxy Evolution Explorer and the National Science Foundation Very Large Array in New Mexico.

  7. ARCHANGEL: Galaxy Photometry System

    NASA Astrophysics Data System (ADS)

    Schombert, James

    2011-07-01

    ARCHANGEL is a Unix-based package for the surface photometry of galaxies. While oriented for large angular size systems (i.e. many pixels), its tools can be applied to any imaging data of any size. The package core contains routines to perform the following critical galaxy photometry functions: sky determination; frame cleaning; ellipse fitting; profile fitting; and total and isophotal magnitudes. The goal of the package is to provide an automated, assembly-line type of reduction system for galaxy photometry of space-based or ground-based imaging data. The procedures outlined in the documentation are flux independent, thus, these routines can be used for non-optical data as well as typical imaging datasets. ARCHANGEL has been tested on several current OS's (RedHat Linux, Ubuntu Linux, Solaris, Mac OS X). A tarball for installation is available at the download page. The main routines are Python and FORTRAN based, therefore, a current installation of Python and a FORTRAN compiler are required. The ARCHANGEL package also contains Python hooks to the PGPLOT package, an XML processor and network tools which automatically link to data archives (i.e. NED, HST, 2MASS, etc) to download images in a non-interactive manner.

  8. The DART Imaging And CaT Survey of the Fornax Dwarf Spheroidal Galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battaglia, Giuseppina; Tolstoy, E.; Helmi, A.

    2006-08-28

    As part of the DART project we have used the ESO/2.2m Wide Field Imager in conjunction with the VLT/FLAMES* GIRAFFE spectrograph to study the detailed properties of the resolved stellar population of the Fornax dwarf spheroidal galaxy out to and beyond its tidal radius. Fornax dSph has had a complicated evolution and contains significant numbers of young, intermediate age and old stars. We investigate the relation between these different components by studying their photometric, kinematic and abundance distributions. We re-derived the structural parameters of the Fornax dwarf spheroidal using our wide field imaging covering the galaxy out to its tidalmore » radius, and analyzed the spatial distribution of the Fornax stars of different ages as selected from Colour-Magnitude Diagram analysis. We have obtained accurate velocities and metallicities from spectra in the Ca II triplet wavelength region for 562 Red Giant Branch stars which have velocities consistent with membership in Fornax dwarf spheroidal. We have found evidence for the presence of at least three distinct stellar components: a young population (few 100 Myr old) concentrated in the center of the galaxy, visible as a Main Sequence in the Colour-Magnitude Diagram; an intermediate age population (2-8 Gyr old); and an ancient population (> 10Gyr), which are distinguishable from each other kinematically, from the metallicity distribution and in the spatial distribution of stars found in the Colour-Magnitude Diagram. From our spectroscopic analysis we find that the ''metal rich'' stars ([Fe/H] > -1.3) show a less extended and more concentrated spatial distribution, and display a colder kinematics than the ''metal poor'' stars ([Fe/H] < -1.3). There is tentative evidence that the ancient stellar population in the center of Fornax does not exhibit equilibrium kinematics. This could be a sign of a relatively recent accretion of external material, such as the merger of another galaxy or other means of gas

  9. Hubble’s Hidden Galaxy

    NASA Image and Video Library

    2017-12-08

    IC 342 is a challenging cosmic target. Although it is bright, the galaxy sits near the equator of the Milky Way’s galactic disk, where the sky is thick with glowing cosmic gas, bright stars, and dark, obscuring dust. In order for astronomers to see the intricate spiral structure of IC 342, they must gaze through a large amount of material contained within our own galaxy — no easy feat! As a result IC 342 is relatively difficult to spot and image, giving rise to its intriguing nickname: the “Hidden Galaxy.” Located very close (in astronomical terms) to the Milky Way, this sweeping spiral galaxy would be among the brightest in the sky were it not for its dust-obscured location. The galaxy is very active, as indicated by the range of colors visible in this NASA/ESA Hubble Space Telescope image, depicting the very central region of the galaxy. A beautiful mixture of hot, blue star-forming regions, redder, cooler regions of gas, and dark lanes of opaque dust can be seen, all swirling together around a bright core. In 2003, astronomers confirmed this core to be a specific type of central region known as an HII nucleus — a name that indicates the presence of ionized hydrogen — that is likely to be creating many hot new stars. Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Warm absorbers in X-rays (WAX), a comprehensive high-resolution grating spectral study of a sample of Seyfert galaxies - I. A global view and frequency of occurrence of warm absorbers.

    NASA Astrophysics Data System (ADS)

    Laha, Sibasish; Guainazzi, Matteo; Dewangan, Gulab C.; Chakravorty, Susmita; Kembhavi, Ajit K.

    2014-07-01

    We present results from a homogeneous analysis of the broad-band 0.3-10 keV CCD resolution as well as of the soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. Our goal is to characterize warm absorbers (WAs) along the line of sight to the active nucleus. We significantly detect WAs in 65 per cent of the sample sources. Our results are consistent with WAs being present in at least half of the Seyfert galaxies in the nearby Universe, in agreement with previous estimates. We find a gap in the distribution of the ionization parameter in the range 0.5 < log ξ < 1.5 which we interpret as a thermally unstable region for WA clouds. This may indicate that the WA flow is probably constituted by a clumpy distribution of discrete clouds rather than a continuous medium. The distribution of the WA column densities for the sources with broad Fe Kα lines are similar to those sources which do not have broadened emission lines. Therefore, the detected broad Fe Kα emission lines are bona fide and not artefacts of ionized absorption in the soft X-rays. The WA parameters show no correlation among themselves, with the exception of the ionization parameter versus column density. The shallow slope of the log ξ versus log vout linear regression (0.12 ± 0.03) is inconsistent with the scaling laws predicted by radiation or magnetohydrodynamic-driven winds. Our results also suggest that WA and ultra fast outflows do not represent extreme manifestation of the same astrophysical system.

  11. Hubble Spies a Loopy Galaxy

    NASA Image and Video Library

    2015-02-02

    This NASA Hubble Space Telescope photo of NGC 7714 presents an especially striking view of the galaxy's smoke-ring-like structure. The golden loop is made of sun-like stars that have been pulled deep into space, far from the galaxy's center. The galaxy is located approximately 100 million light-years from Earth in the direction of the constellation Pisces. The universe is full of such galaxies that are gravitationally stretched and pulled and otherwise distorted in gravitational tug-o'-wars with bypassing galaxies. The companion galaxy doing the "taffy pulling" in this case, NGC 7715, lies just out of the field of view in this image. A very faint bridge of stars extends to the unseen companion. The close encounter has compressed interstellar gas to trigger bursts of star formation seen in bright blue arcs extending around NGC 7714's center. The gravitational disruption of NGC 7714 began between 100 million and 200 million years ago, at the epoch when dinosaurs ruled the Earth. The image was taken with the Wide Field Camera 3 and the Advanced Camera for Surveys in October 2011. Credit: NASA and ESA. Acknowledgment: A. Gal-Yam (Weizmann Institute of Science) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Faint Compact Galaxy in the Early Universe

    NASA Image and Video Library

    2015-12-03

    This is a Hubble Space Telescope view of a very massive cluster of galaxies, MACS J0416.1-2403, located roughly 4 billion light-years away and weighing as much as a million billion suns. The cluster's immense gravitational field magnifies the image of galaxies far behind it, in a phenomenon called gravitational lensing. The inset is an image of an extremely faint and distant galaxy that existed only 400 million years after the big bang. It was discovered by Hubble and NASA's Spitzer Space Telescope. The gravitational lens makes the galaxy appear 20 times brighter than normal. The galaxy is comparable in size to the Large Magellanic Cloud (LMC), a diminutive satellite galaxy of our Milky Way. It is rapidly making stars at a rate ten times faster than the LMC. This might be the growing core of what was to eventually evolve into a full-sized galaxy. The research team has nicknamed the object Tayna, which means "first-born" in Aymara, a language spoken in the Andes and Altiplano regions of South America. http://photojournal.jpl.nasa.gov/catalog/PIA20054

  13. Life at the Intersection of Colliding Galaxies

    NASA Image and Video Library

    2004-09-07

    This false-color image from NASA's Spitzer Space Telescope reveals hidden populations of newborn stars at the heart of the colliding "Antennae" galaxies. These two galaxies, known individually as NGC 4038 and 4039, are located around 68 million light-years away and have been merging together for about the last 800 million years. The latest Spitzer observations provide a snapshot of the tremendous burst of star formation triggered in the process of this collision, particularly at the site where the two galaxies overlap. The image was taken by Spitzer's infrared array camera and is a combination of infrared light ranging from 3.6 microns (shown in blue) to 8.0 microns (shown in red). The dust emission (red) is by far the strongest feature in this image. Starlight was systematically subtracted from the longer wavelength data (red) to enhance dust features. The two nuclei, or centers, of the merging galaxies show up as white areas, one above the other. The brightest clouds of forming stars lie in the overlap region between and left of the nuclei. Throughout the sky, astronomers have identified many of these so-called "interacting" galaxies, whose spiral discs have been stretched and distorted by their mutual gravity as they pass close to one another. The distances involved are so large that the interactions evolve on timescales comparable to geologic changes on Earth. Observations of such galaxies, combined with computer models of these collisions, show that the galaxies often become forever bound to one another, eventually merging into a single, spheroidal-shaped galaxy. Wavelengths of 3.6 microns are represented in blue, 4.5 microns in green and 5.8-8.0 microns in red. This image was taken on Dec. 24, 2003. http://photojournal.jpl.nasa.gov/catalog/PIA06853

  14. X-Ray Characteristics of Megamaser Galaxies

    NASA Astrophysics Data System (ADS)

    Leiter, K.; Kadler, M.; Wilms, J.; Braatz, J.; Grossberger, C.; Krauss, F.; Kreikenbohm, A.; Langejahn, M.; Litzinger, E.; Markowitz, A.

    2017-10-01

    Water megamaser galaxies are a rare subclass of Active Galactic Nuclei (AGN). They play a key role in modern cosmology, providing a significant improvement for measuring geometrical distances with high precision. Megamaser studies presently measure H_{0} to about 5%. The goal of modern programs is to reach 3%, which strongly constrains the equation of state of dark energy. An increasing number of independent measurements of suitable water masers is providing the statistics necessary to decrease the uncertainties. X-ray studies of maser galaxies yield important constraints on target-selection criteria for future surveys, increasing their detection rate. We studied the X-ray properties of a homogeneous sample of Type 2 AGN with water maser activity observed by XMM-Newton to investigate the properties of megamaser-hosting galaxies compared to a control sample of non-maser galaxies. Comparing the luminosity distributions confirm previous results that water maser galaxies appear more luminous than non-maser sources. The maser phenomenon goes along with more complex X-ray spectra, higher column densities and higher equivalent widths of the Fe Kα line. Both a sufficiently luminous X-ray source and a high absorbing column density in the line of sight are necessary prerequisites to favour the appearance of the water megamaser phenomenon in AGN.

  15. The Statistical Properties of Galaxies Containing Ultraluminous X-Ray Objects

    NASA Astrophysics Data System (ADS)

    Ptak, A.; Colbert, E.

    2004-05-01

    We present a statistical analysis of the properties of galaxies containing ultraluminous X-ray objects (ULXs). Our primary goal is to establish the fraction of galaxies containing a ULX as a function of ULX luminosity. Our sample is based on ROSAT HRI observations of galaxies. We find that ~12% of galaxies contain at least one ULX with LX>1039 ergs s-1, and ~1% of galaxies contain at least one ULX with LX>1040 ergs s-1. These ULX frequencies are lower limits, since ROSAT HRI observations would miss absorbed ULXs (i.e., with NH>~1021cm-2) and those within ~10" of the nucleus (due to the positional error circle of the ROSAT HRI). The Hubble type distribution of galaxies with a ULX differs significantly from the distribution of types for nearby Third Reference Catalog galaxies but does not differ significantly from the galaxy type distribution of galaxies observed by the HRI in general. We find no increase in the mean far-infrared (FIR) luminosity or FIR/K-band luminosity ratio for galaxies with a ULX relative to galaxies observed by the HRI in general; however, this result is also most likely biased by the soft bandpass of the HRI and the relatively low number of high star formation rate galaxies observed by the HRI with enough sensitivity to detect a ULX.

  16. Southern Pinwheel Galaxy M83

    NASA Image and Video Library

    2005-05-05

    Ultraviolet images such as this one from NASA's Galaxy Evolution Explorer suggest the M83 has unusual pockets of star formation separated by large distances from the spiral arms in the main disk of the galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA07903

  17. Galaxy Classifications with Deep Learning

    NASA Astrophysics Data System (ADS)

    Lukic, Vesna; Brüggen, Marcus

    2017-06-01

    Machine learning techniques have proven to be increasingly useful in astronomical applications over the last few years, for example in object classification, estimating redshifts and data mining. One example of object classification is classifying galaxy morphology. This is a tedious task to do manually, especially as the datasets become larger with surveys that have a broader and deeper search-space. The Kaggle Galaxy Zoo competition presented the challenge of writing an algorithm to find the probability that a galaxy belongs in a particular class, based on SDSS optical spectroscopy data. The use of convolutional neural networks (convnets), proved to be a popular solution to the problem, as they have also produced unprecedented classification accuracies in other image databases such as the database of handwritten digits (MNIST †) and large database of images (CIFAR ‡). We experiment with the convnets that comprised the winning solution, but using broad classifications. The effect of changing the number of layers is explored, as well as using a different activation function, to help in developing an intuition of how the networks function and to see how they can be applied to radio galaxy images.

  18. Why Are Galaxies So Smooth?

    NASA Image and Video Library

    2009-04-30

    This image from NASA's Spitzer Space Telescope shows the spiral galaxy NGC 2841, located about 46 million light-years from Earth in the constellation Ursa Major. The galaxy is helping astronomers solve one of the oldest puzzles in astronomy: Why do galaxies look so smooth, with stars sprinkled evenly throughout? An international team of astronomers has discovered that rivers of young stars flow from their hot, dense stellar nurseries, dispersing out to form large, smooth distributions. This image is a composite of three different wavelengths from Spitzer's infrared array camera. The shortest wavelengths are displayed inblue, and mostly show the older stars in NGC 2841, as well as foreground stars in our own Milky Way galaxy. The cooler areas are highlighted in red, and show the dusty, gaseous regions of the galaxy. Blue shows infrared light of 3.6 microns, green represents 4.5-micron light and red, 8.0-micron light. The contribution from starlight measured at 3.6 microns has been subtracted from the 8.0-micron data to enhance the visibility of the dust features.The shortest wavelengths are displayed inblue, and mostly show the older stars in NGC 2841, as well as foreground stars in our own Milky Way galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA12001

  19. Galaxy Zoo: quantitative visual morphological classifications for 48 000 galaxies from CANDELS

    NASA Astrophysics Data System (ADS)

    Simmons, B. D.; Lintott, Chris; Willett, Kyle W.; Masters, Karen L.; Kartaltepe, Jeyhan S.; Häußler, Boris; Kaviraj, Sugata; Krawczyk, Coleman; Kruk, S. J.; McIntosh, Daniel H.; Smethurst, R. J.; Nichol, Robert C.; Scarlata, Claudia; Schawinski, Kevin; Conselice, Christopher J.; Almaini, Omar; Ferguson, Henry C.; Fortson, Lucy; Hartley, William; Kocevski, Dale; Koekemoer, Anton M.; Mortlock, Alice; Newman, Jeffrey A.; Bamford, Steven P.; Grogin, N. A.; Lucas, Ray A.; Hathi, Nimish P.; McGrath, Elizabeth; Peth, Michael; Pforr, Janine; Rizer, Zachary; Wuyts, Stijn; Barro, Guillermo; Bell, Eric F.; Castellano, Marco; Dahlen, Tomas; Dekel, Avishai; Ownsworth, Jamie; Faber, Sandra M.; Finkelstein, Steven L.; Fontana, Adriano; Galametz, Audrey; Grützbauch, Ruth; Koo, David; Lotz, Jennifer; Mobasher, Bahram; Mozena, Mark; Salvato, Mara; Wiklind, Tommy

    2017-02-01

    We present quantified visual morphologies of approximately 48 000 galaxies observed in three Hubble Space Telescope legacy fields by the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and classified by participants in the Galaxy Zoo project. 90 per cent of galaxies have z ≤ 3 and are observed in rest-frame optical wavelengths by CANDELS. Each galaxy received an average of 40 independent classifications, which we combine into detailed morphological information on galaxy features such as clumpiness, bar instabilities, spiral structure, and merger and tidal signatures. We apply a consensus-based classifier weighting method that preserves classifier independence while effectively down-weighting significantly outlying classifications. After analysing the effect of varying image depth on reported classifications, we also provide depth-corrected classifications which both preserve the information in the deepest observations and also enable the use of classifications at comparable depths across the full survey. Comparing the Galaxy Zoo classifications to previous classifications of the same galaxies shows very good agreement; for some applications, the high number of independent classifications provided by Galaxy Zoo provides an advantage in selecting galaxies with a particular morphological profile, while in others the combination of Galaxy Zoo with other classifications is a more promising approach than using any one method alone. We combine the Galaxy Zoo classifications of `smooth' galaxies with parametric morphologies to select a sample of featureless discs at 1 ≤ z ≤ 3, which may represent a dynamically warmer progenitor population to the settled disc galaxies seen at later epochs.

  20. HUBBLE REVEALS STELLAR FIREWORKS ACCOMPANYING GALAXY COLLISION

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Hubble Space Telescope image provides a detailed look at a brilliant 'fireworks show' at the center of a collision between two galaxies. Hubble has uncovered over 1,000 bright, young star clusters bursting to life as a result of the head-on wreck. [Left] A ground-based telescopic view of the Antennae galaxies (known formally as NGC 4038/4039) - so named because a pair of long tails of luminous matter, formed by the gravitational tidal forces of their encounter, resembles an insect's antennae. The galaxies are located 63 million light-years away in the southern constellation Corvus. [Right] The respective cores of the twin galaxies are the orange blobs, left and right of image center, crisscrossed by filaments of dark dust. A wide band of chaotic dust, called the overlap region, stretches between the cores of the two galaxies. The sweeping spiral- like patterns, traced by bright blue star clusters, shows the result of a firestorm of star birth activity which was triggered by the collision. This natural-color image is a composite of four separately filtered images taken with the Wide Field Planetary Camera 2 (WFPC2), on January 20, 1996. Resolution is 15 light-years per pixel (picture element). Credit: Brad Whitmore (STScI), and NASA

  1. EGG: Empirical Galaxy Generator

    NASA Astrophysics Data System (ADS)

    Schreiber, C.; Elbaz, D.; Pannella, M.; Merlin, E.; Castellano, M.; Fontana, A.; Bourne, N.; Boutsia, K.; Cullen, F.; Dunlop, J.; Ferguson, H. C.; Michałowski, M. J.; Okumura, K.; Santini, P.; Shu, X. W.; Wang, T.; White, C.

    2018-04-01

    The Empirical Galaxy Generator (EGG) generates fake galaxy catalogs and images with realistic positions, morphologies and fluxes from the far-ultraviolet to the far-infrared. The catalogs are generated by egg-gencat and stored in binary FITS tables (column oriented). Another program, egg-2skymaker, is used to convert the generated catalog into ASCII tables suitable for ingestion by SkyMaker (ascl:1010.066) to produce realistic high resolution images (e.g., Hubble-like), while egg-gennoise and egg-genmap can be used to generate the low resolution images (e.g., Herschel-like). These tools can be used to test source extraction codes, or to evaluate the reliability of any map-based science (stacking, dropout identification, etc.).

  2. CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications.

    PubMed

    Grant, James; Kenney, Mitchell; Shah, Yash D; Escorcia-Carranza, Ivonne; Cumming, David R S

    2018-04-16

    We experimentally demonstrate a CMOS compatible medium wave infrared metal-insulator-metal (MIM) metamaterial absorber structure where for a single dielectric spacer thickness at least 93% absorption is attained for 10 separate bands centred at 3.08, 3.30, 3.53, 3.78, 4.14, 4.40, 4.72, 4.94, 5.33, 5.60 μm. Previous hyperspectral MIM metamaterial absorber designs required that the thickness of the dielectric spacer layer be adjusted in order to attain selective unity absorption across the band of interest thereby increasing complexity and cost. We show that the absorption characteristics of the hyperspectral metamaterial structures are polarization insensitive and invariant for oblique incident angles up to 25° making them suitable for practical implementation in an imaging system. Finally, we also reveal that under TM illumination and at certain oblique incident angles there is an extremely narrowband Fano resonance (Q > 50) between the MIM absorber mode and the surface plasmon polariton mode that could have applications in hazardous/toxic gas identification and biosensing.

  3. POX 186: A Dwarf Galaxy Under Construction?

    NASA Astrophysics Data System (ADS)

    Corbin, M. R.; Vacca, W. D.

    2000-12-01

    We have obtained deep images of the ultracompact ( ~ 3'') blue compact dwarf galaxy POX 186 in the F336W, F555W, and F814W filters of the Planetary Camera of the Hubble Space Telescope. We have additionally obtained a low-resolution near ultraviolet spectrum of the object with STIS and combine this with a ground-based spectrum covering the visible continuum and emission lines. Our images confirm this object to be highly compact, with a maximum projected size of only ~ 240 pc, making it one of the smallest galaxies known. We also confirm that the outer regions of the galaxy consist of an evolved stellar population, ruling out earlier speculations that POX 186 is a protogalaxy. However, the PC images reveal the galaxy to have a highly irregular morphology, with a pronounced tidal arm on its western side. This morphology is strongly suggestive of a recent collision between two smaller components which has in turn triggered the central starburst. The F336W image also shows that the material in this tidal stream is actively star forming. Given the very small ( ~ 100 pc) sizes of the colliding components, POX 186 may be a dwarf galaxy in the early stages of formation, which would be consistent with current ``downsizing'' models of galaxy formation in which the least massive objects are the last to form. This work is supported by NASA and the Space Telescope Science Institute.

  4. CFHT and VLT Identify Extremely Remote Galaxy

    NASA Astrophysics Data System (ADS)

    2003-05-01

    the 920nm image, but not at all in the other images. The most probable explanation for an object with such an unusual colour is that it is a very distant galaxy for which the observed wavelength of the strong Lyman-alpha emission line is close to 920 nm, due to the redshift. Any light emitted by the galaxy at wavelengths shorter than Lyman-alpha is strongly absorbed by intervening interstellar and intergalactic hydrogen gas; this is the reason that the object is not visible in all the other filters. The VLT spectrum ESO PR Photo 13c/03 ESO PR Photo 13c/03 [Preview - JPEG: 756 x 300 pix - 68k [Normal - JPEG: 1512 x 600 pix - 552k] ESO PR Photo 13d/03 ESO PR Photo 13d/03 [Preview - JPEG: 479 x 400 pix - 41k [Normal - JPEG: 957 x 800 pix - 272k] Captions : PR Photo 13c/03 shows a spectroscopic image (between the horizontal arrows) of the very distant galaxy z6VDF J022803-041618 at the center of PR Photo 13b/03 , obtained with the multi-mode FORS2 instrument at the 8.2-m VLT YEPUN telescope at the ESO Paranal Observatory. The horizontal axis shows the dispersed light, with wavelengths increasing from left to right. In this spectral image, the bright emission lines from OH molecules in the terrestrial atmosphere, cf. PR Photo 13a/03 , have been subtracted, but they still leave residual "imprints", visible as strong and "noisy" vertical bars. The "window" at wavelength 920 nm is clearly visible on the right side of the image; in this region, there is much less "noise" from the OH-lines. The dark spot at the bottom left of the image is the Lyman-alpha line of the object. The adjacent "continuum" emission from the object, although very faint, is clearly visible on the long-wavelength side (to the right) of the Lyman-alpha line. There is no such continuum emission detected on the short-wavelength side (to the left) of the Lyman alpha line. Together with the observed asymmetry of the line, this is a clear spectral fingerprint of the redshifted Lyman-alpha emission line from a

  5. spiral galaxy M83

    NASA Image and Video Library

    2017-12-08

    JANUARY 9, 2014: The vibrant magentas and blues in this Hubble image of the barred spiral galaxy M83 reveal that the galaxy is ablaze with star formation. The galactic panorama unveils a tapestry of the drama of stellar birth and death. The galaxy, also known as the Southern Pinwheel, lies 15 million light-years away in the constellation Hydra. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) Acknowledgement: W. Blair (STScI/Johns Hopkins University) and R. O'Connell (University of Virginia) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Watching a Cannibal Galaxy Dine

    NASA Astrophysics Data System (ADS)

    2009-11-01

    A new technique using near-infrared images, obtained with ESO's 3.58-metre New Technology Telescope (NTT), allows astronomers to see through the opaque dust lanes of the giant cannibal galaxy Centaurus A, unveiling its "last meal" in unprecedented detail - a smaller spiral galaxy, currently twisted and warped. This amazing image also shows thousands of star clusters, strewn like glittering gems, churning inside Centaurus A. Centaurus A (NGC 5128) is the nearest giant, elliptical galaxy, at a distance of about 11 million light-years. One of the most studied objects in the southern sky, by 1847 the unique appearance of this galaxy had already caught the attention of the famous British astronomer John Herschel, who catalogued the southern skies and made a comprehensive list of nebulae. Herschel could not know, however, that this beautiful and spectacular appearance is due to an opaque dust lane that covers the central part of the galaxy. This dust is thought to be the remains of a cosmic merger between a giant elliptical galaxy and a smaller spiral galaxy full of dust. Between 200 and 700 million years ago, this galaxy is indeed believed to have consumed a smaller spiral, gas-rich galaxy - the contents of which appear to be churning inside Centaurus A's core, likely triggering new generations of stars. First glimpses of the "leftovers" of this meal were obtained thanks to observations with the ESA Infrared Space Observatory , which revealed a 16 500 light-year-wide structure, very similar to that of a small barred galaxy. More recently, NASA's Spitzer Space Telescope resolved this structure into a parallelogram, which can be explained as the remnant of a gas-rich spiral galaxy falling into an elliptical galaxy and becoming twisted and warped in the process. Galaxy merging is the most common mechanism to explain the formation of such giant elliptical galaxies. The new SOFI images, obtained with the 3.58-metre New Technology Telescope at ESO's La Silla Observatory

  7. Hubble Sees Galaxy Hiding in the Night Sky

    NASA Image and Video Library

    2017-12-08

    This striking NASA/ESA Hubble Space Telescope image captures the galaxy UGC 477, located just over 110 million light-years away in the constellation of Pisces (The Fish). UGC 477 is a low surface brightness (LSB) galaxy. First proposed in 1976 by Mike Disney, the existence of LSB galaxies was confirmed only in 1986 with the discovery of Malin 1. LSB galaxies like UGC 477 are more diffusely distributed than galaxies such as Andromeda and the Milky Way. With surface brightnesses up to 250 times fainter than the night sky, these galaxies can be incredibly difficult to detect. Most of the matter present in LSB galaxies is in the form of hydrogen gas, rather than stars. Unlike the bulges of normal spiral galaxies, the centers of LSB galaxies do not contain large numbers of stars. Astronomers suspect that this is because LSB galaxies are mainly found in regions devoid of other galaxies, and have therefore experienced fewer galactic interactions and mergers capable of triggering high rates of star formation. LSB galaxies such as UGC 477 instead appear to be dominated by dark matter, making them excellent objects to study to further our understanding of this elusive substance. However, due to an underrepresentation in galactic surveys — caused by their characteristic low brightness — their importance has only been realized relatively recently. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Hubble tracks down a galaxy cluster's dark matter

    NASA Astrophysics Data System (ADS)

    2003-07-01

    Unique mass map hi-res Size hi-res: 495 kb Credits: European Space Agency, NASA and Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, USA) Unique mass map This is a mass map of galaxy cluster Cl0024+1654 derived from an extensive Hubble Space Telescope campaign. The colour image is made from two images: a dark-matter map (the blue part of the image) and a 'luminous-matter' map determined from the galaxies in the cluster (the red part of the image). They were constructed by feeding Hubble and ground-based observations into advanced mathematical mass-mapping models. The map shows that dark matter is present where the galaxies clump together. The mass of the galaxies is shown in red, the mass of the dark matter in blue. The dark matter behaves like a 'glue', holding the cluster together. The dark-matter distribution in the cluster is not spherical. A secondary concentration of dark-matter mass is shown in blue to the upper right of the main concentration. Sky around galaxy cluster Cl0024+1654 hi-res Size hi-res: 3742 kb Credits: European Space Agency, NASA and Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, USA) Sky around galaxy cluster Cl0024+1654 This is a 2.5-degree field around galaxy cluster Cl0024+1654. The cluster galaxies are visible in the centre of the image in yellow. The image is a colour composite constructed from three Digitized Sky Survey 2 images: Blue (shown in blue), Red (shown in green), and Infrared (shown in red). HST observes shapes of more than 7000 faint background galaxies hi-res Size hi-res: 5593 kb Credits: European Space Agency, NASA and Jean-Paul Kneib (Observatoire Midi-Pyrénées, France/Caltech, USA) Hubble observes shapes of more than 7000 faint background galaxies Five days of observations produced the altogether 39 Hubble Wide Field and Planetary Camera 2 (WFPC2) images required to map the mass of the galaxy cluster Cl0024+1654. Each WFPC2 image has a size of about 1/150 the diameter of the full Moon. In

  9. Chandra X-Ray Spectroscopic Imaging of Sagittarius A* and the Central Parsec of the Galaxy

    NASA Astrophysics Data System (ADS)

    Baganoff, F. K.; Maeda, Y.; Morris, M.; Bautz, M. W.; Brandt, W. N.; Cui, W.; Doty, J. P.; Feigelson, E. D.; Garmire, G. P.; Pravdo, S. H.; Ricker, G. R.; Townsley, L. K.

    2003-07-01

    We report the results of the first-epoch observation with the ACIS-I instrument on the Chandra X-Ray Observatory of Sagittarius A* (Sgr A*), the compact radio source associated with the supermassive black hole (SMBH) at the dynamical center of the Milky Way. This observation produced the first X-ray (0.5-7 keV) spectroscopic image with arcsecond resolution of the central 17'×17' (40pc×40pc) of the Galaxy. We report the discovery of an X-ray source, CXOGC J174540.0-290027, coincident with Sgr A* within 0.27"+/-0.18". The probability of a false match is estimated to be <~0.5%. The spectrum is well fitted either by an absorbed power law with photon index Γ~2.7 or by an absorbed optically thin thermal plasma with kT~1.9 keV and column density NH~1×1023 cm-2. The observed flux in the 2-10 keV band is ~1.3×10-13 ergs cm-2 s-1, and the absorption-corrected luminosity is ~2.4×1033 ergs s-1. The X-ray emission at the position of Sgr A* is extended, with an intrinsic size of ~1.4" (FWHM), consistent with the Bondi accretion radius for a 2.6×106 Msolar black hole. A compact component within the source flared by up to a factor of 3 over a period of ~1 hr at the start of the observation. The search for Kα line emission from iron was inconclusive, yielding an upper limit on the equivalent width of 2.2 keV. Several potential stellar origins for the X-ray emission at Sgr A* are considered, but we conclude that the various properties of the source favor accretion onto the SMBH as the origin for the bulk of the emission. These data are inconsistent with ``standard'' advection-dominated accretion flow (ADAF) models or Bondi models, unless the accretion rate from stellar winds is much lower than anticipated. The central parsec of the Galaxy contains an ~1.3 keV plasma with electron density ne~26η-1/2fcm-3, where ηf is the filling factor. This plasma should supply ~10-6 Msolar yr-1 of material to the accretion flow at the Bondi radius, whereas measurements of linear

  10. Galaxy clusters in the cosmic web

    NASA Astrophysics Data System (ADS)

    Acebrón, A.; Durret, F.; Martinet, N.; Adami, C.; Guennou, L.

    2014-12-01

    Simulations of large scale structure formation in the universe predict that matter is essentially distributed along filaments at the intersection of which lie galaxy clusters. We have analysed 9 clusters in the redshift range 0.4imaging and spectroscopic data, in order to detect filaments and/or structures around these clusters. Based on colour-magnitude diagrams, we have selected the galaxies likely to be in the cluster redshift range and studied their spatial distribution. We detect a number of structures and filaments around several clusters, proving that colour-magnitude diagrams are a reliable method to detect filaments around galaxy clusters. Since this method excludes blue (spiral) galaxies at the cluster redshift, we also apply the LePhare software to compute photometric redshifts from BVRIZ images to select galaxy cluster members and study their spatial distribution. We then find that, if only galaxies classified as early-type by LePhare are considered, we obtain the same distribution than with a red sequence selection, while taking into account late-type galaxies just pollutes the background level and deteriorates our detections. The photometric redshift based method therefore does not provide any additional information.

  11. Hubble peeks at a spiral galaxy

    NASA Image and Video Library

    2015-07-10

    This little-known galaxy, officially named J04542829-6625280, but most often referred to as LEDA 89996, is a classic example of a spiral galaxy. The galaxy is much like our own galaxy, the Milky Way. The disk-shaped galaxy is seen face on, revealing the winding structure of the spiral arms. Dark patches in these spiral arms are in fact dust and gas — the raw materials for new stars. The many young stars that form in these regions make the spiral arms appear bright and bluish. The galaxy sits in a vibrant area of the night sky within the constellation of Dorado (The Swordfish), and appears very close to the Large Magellanic Cloud — one of the satellite galaxies of the Milky Way. The observations were carried out with the high resolution channel of Hubble’s Advanced Camera for Surveys. Image credit: ESA/Hubble & NASA, Acknowledgement: Flickr user C. Claude NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Study of the Lynx-Cancer void galaxies. - V. The extremely isolated galaxy UGC 4722

    NASA Astrophysics Data System (ADS)

    Chengalur, J. N.; Pustilnik, S. A.; Makarov, D. I.; Perepelitsyna, Y. A.; Safonova, E. S.; Karachentsev, I. D.

    2015-04-01

    We present a detailed study of the extremely isolated Sdm galaxy UGC 4722 (MB = -17.4) located in the nearby Lynx-Cancer void. UGC 4722 is a member of the Catalogue of Isolated Galaxies, and has also been identified as one of the most isolated galaxies in the Local Supercluster. Optical images of the galaxy however show that it has a peculiar morphology with an elongated ˜14 kpc-long plume. New observations with the Russian 6-m telescope (BTA) and the Giant Metrewave Radio Telescope (GMRT) of the ionized and neutral gas in UGC 4722 reveal the second component responsible for the disturbed morphology of the system. This is a small, almost completely destroyed, very gas-rich dwarf (MB = -15.2, M(H I)/LB ˜ 4.3) We estimate the oxygen abundance for both galaxies to be 12 + log (O/H) ˜ 7.5-7.6 which is two to three times lower than what is expected from the luminosity-metallicity relation for similar galaxies in denser environments. The ugr colours of the plume derived from Sloan Digital Sky Survey (SDSS) images are consistent with a simple stellar population with a post starburst age of 0.45-0.5 Gyr. This system hence appears to be the first known case of a minor merger with a prominent tidal feature consisting of a young stellar population.

  13. Near-infrared properties of quasar and Seyfert host galaxies

    NASA Astrophysics Data System (ADS)

    McLeod, Kim Katris

    1994-01-01

    We present near-infrared images of nearly 100 host galaxies of Active Galactic Nuclei (AGN). Our quasar sample is comprised of the 50 quasars from the Palomar Green Bright Quasar Survey with redshifts z less than or equal to 0.3. We have restricted the redshift range to ensure adequate spatial resolution, galaxy detectability, and minimal distance-dependent effects, while still giving a large sample of objects. For lower-luminosity AGN we have chosen to image the CfA Seyfert sample. This sample is composed of 48 Seyferts, roughly equally divided among types 1, 1.5-1.9, and 2. This sample was spectroscopically selected, and, therefore, is not biased towards Seyferts with significant star formation. Taken together, these samples allow a statistical look at the continuity of host galaxy properties over a factor of 10,000 in nuclear luminosity. We find the near-infrared light to be a good tracer of luminous mass in these galaxies. The Seyferts are found in galaxies of type SO to Sc. The radio quiet quasars live in similar kinds of galaxies spanning the same range of mass centered around L(*). However, for the most luminous quasars, there is a correlation between the minimum host galaxy mass and the luminosity of the active nucleus. Radio-loud quasars are generally found in hosts more massive than an L(*) galaxy. We also detect a population of low mass host galaxies with very low luminosity Seyfert nuclei. The low luminosity quasars and the Seyferts both tend to lie in host galaxies seen preferentially face-on, which suggests there is a substantial amount of obscuration coplanar with the galaxian disk. The obscuration must be geometrically thick (thickness-to-radius approximately 1) and must cover a significant fraction of the narrow line region (r greater than 100 pc). We have examined our images for signs of perturbations that could drive fuel toward the galaxy nucleus, but there are none we can identify at a significant level. The critical element for fueling is

  14. Near-Infrared Properties of Quasar and Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    McLeod, Kim Katris

    1995-01-01

    We present near-infrared images of nearly 100 host galaxies of Active Galactic Nuclei (AGN). Our quasar sample is comprised of the 50 quasars from the Palomar Green Bright Quasar Survey with redshifts z\\<= 0.3. We have restricted the redshift range to ensure adequate spatial resolution, galaxy detectability, and minimal distance-dependent effects, while still giving a large sample of objects. For lower-luminosity AGN we have chosen to image the CfA Seyfert sample. This sample is composed of 48 Seyferts, roughly equally divided among types 1, 1.5-1.9, and 2. This sample was spectroscopically selected, and, therefore, is not biased towards Seyferts with significant star formation. Taken together, these samples allow a statistical look at the continuity of host-galaxy properties over a factor of 10,000 in nuclear luminosity. We find the near-infrared light to be a good tracer of luminous mass in these galaxies. The Seyferts are found in galaxies of type S0 to Sc. The radio quiet quasars live in similar kinds of galaxies spanning the same range of mass centered around L*. However, for the most luminous quasars, there is a correlation between the minimum host-galaxy mass and the luminosity of the active nucleus. Radio-loud quasars are generally found in hosts more massive than an L* galaxy. We also detect a population of low-mass host galaxies with very low-luminosity Seyfert nuclei. The low luminosity quasars and the Seyferts both tend to lie in host galaxies seen preferentially face-on, which suggests there is a substantial amount of obscuration coplanar with the galaxian disk. The obscuration must be geometrically thick (thickness-to-radius ~1) and must cover a significant fraction of the narrow line region (r>100 pc). We have examined our images for signs of perturbations that could drive fuel toward the galaxy nucleus, but there are none we can identify at a significant level. The critical element for fueling is evidently not reflected clearly in the large scale

  15. The galaxy builders

    NASA Astrophysics Data System (ADS)

    Cho, Adrian

    2018-06-01

    Philip Hopkins, a theoretical astrophysicist at the California Institute of Technology in Pasadena, likes to prank his colleagues. An expert in simulating the formation of galaxies, Hopkins sometimes begins his talks by projecting images of his creations next to photos of real galaxies and defying his audience to tell them apart. "We can even trick astronomers," Hopkins says. For decades, scientists have tried to simulate how the trillions of galaxies in the observable universe arose from clouds of gas after the big bang. But only in the past few years have the simulations begun to reproduce both the details of individual galaxies and their distribution of masses and shapes. As the fake universes improve, their role is also changing. Previously, information flowed one way: from the astronomers studying real galaxies to the modelers trying to simulate them. Now, insight is flowing the other way, too, with the models helping guide astronomers and astrophysicists. The models suggest that the earliest galaxies were oddly pickle-shaped, that wafer-thin spiral galaxies are surprisingly rugged in the face of collisions, and, perhaps most important, that galaxies must form stars far more slowly than astrophysicists expected. Progress is coming so fast, says Tiziana Di Matteo, a numerical cosmologist at Carnegie Mellon University in Pittsburgh, Pennsylvania, that "the whole thing has reached this little golden age."

  16. Deep WFPC2 and Ground-Based Imaging of a Complete Sample of 3C Quasars and Galaxies

    NASA Technical Reports Server (NTRS)

    Ridgway, Susan E.; Stockton, Alan

    1997-01-01

    We present the results of an HST and ground-based imaging study of a complete 3C sample of zeta approx. equal to 1 sources, comprising 5 quasars and 5 radio galaxies. We have observed all of the sample in essentially line-free bands at rest-frame 0.33 micrometers with WFPC2 and in rest-frame 1 micrometer images from the ground; we have also observed most of the sample in narrow-band filters centered on [O II]. We resolve continuum structure around all of our quasars in the high-resolution WFPC2 images, and in four of the five ground-based K' images. All of the quasars have some optical continuum structure that is aligned with the radio axis. In at least 3 of these cases, some of this optical structure is directly coincident with a portion of the radio structure, including optical counterparts to radio jets in 3C212 and 3C245 and an optical counterpart to a radio lobe in 3C2. These are most likely due to optical synchrotron radiation, and the radio and optical spectral indices in the northern lobe of 3C2 are consistent with this interpretation. The fact that we see a beamed optical synchotron component in the quasars but not in the radio galaxies complicates both the magnitude and the alignment comparisons. Nonetheless, the total optical and K' flux densities of the quasar hosts are consistent with those of the radio galaxies within the observed dispersion in our sample. The distributions of K' flux densities of both radio galaxies and quasar hosts exhibit similar mean and dispersion to that found for other radio galaxies at this redshift, and the average host galaxy luminosity is equivalent to, or a little fainter than, L*. The formal determination of the alignment in the optical and infrared in the two subsamples yields no significant difference between the radio galaxy and quasar subsamples, and the quasars 3C 196 and 3C 336 have aligned continuum and emission-line structure that is probably not due to beamed optical synchrotron emission. Very blue and/or edge

  17. GETTING TO THE HEART OF A GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This collage of images in visible and infrared light reveals how the barred spiral galaxy NGC 1365 is feeding material into its central region, igniting massive star birth and probably causing its bulge of stars to grow. The material also is fueling a black hole in the galaxy's core. A galaxy's bulge is a central, football-shaped structure composed of stars, gas, and dust. The black-and-white image in the center, taken by a ground-based telescope, displays the entire galaxy. But the telescope's resolution is not powerful enough to reveal the flurry of activity in the galaxy's hub. The blue box in the galaxy's central region outlines the area observed by the NASA Hubble Space Telescope's visible-light camera, the Wide Field and Planetary Camera 2 (WFPC2). The red box pinpoints a narrower view taken by the Hubble telescope's infrared camera, the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). A barred spiral is characterized by a lane of stars, gas, and dust slashing across a galaxy's central region. It has a small bulge that is dominated by a disk of material. The spiral arms begin at both ends of the bar. The bar is funneling material into the hub, which triggers star formation and feeds the bulge. The visible-light picture at upper left is a close-up view of the galaxy's hub. The bright yellow orb is the nucleus. The dark material surrounding the orb is gas and dust that is being funneled into the central region by the bar. The blue regions pinpoint young star clusters. In the infrared image at lower right, the Hubble telescope penetrates the dust seen in the WFPC2 picture to reveal more clusters of young stars. The bright blue dots represent young star clusters; the brightest of the red dots are young star clusters enshrouded in dust and visible only in the infrared image. The fainter red dots are older star clusters. The WFPC2 image is a composite of three filters: near-ultraviolet (3327 Angstroms), visible (5552 Angstroms), and near-infrared (8269

  18. Probing the Evolution of the Galaxy Interaction/Merger Rate Using Distant Collisional Ring Galaxies

    NASA Astrophysics Data System (ADS)

    Lavery, Russell J.; Remijan, Anthony J.

    We present the initial results from our long-term program of identifying distant collisional ring galaxies (CRGS) in deep HST WFPC-2 images. The unique morphological characteristics of these galaxies make them easily identifiable out to a redshift of z = 1. To date, we have visually scanned 100 WFPC-2 fields and identified 14 excellent collisional ring galaxy (CRG) candidates. Based on estimated redshifts, these 14 galaxies are expected to lie in the redshift interval of 0.1 to 1. We have used this sample of CRGs to estimate the evolution of the galaxy interaction/merger rate with redshift. To account for the number of CRGs we have identified in these fields, the galaxy interaction/merger rate, parameterized as (1 + z)m, must increase steeply with redshift, with m = 5.7 +/- 1.5. We can rule out a non-evolving galaxy merger rate (m = 0) at greater than the 3σ level. We compare our results with other programs to determine the value of m using the evolution of galaxy pairs.

  19. Absorbed dose measurements for kV-cone beam computed tomography in image-guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Hioki, Kazunari; Araki, Fujio; Ohno, Takeshi; Nakaguchi, Yuji; Tomiyama, Yuuki

    2014-12-01

    In this study, we develope a novel method to directly evaluate an absorbed dose-to-water for kilovoltage-cone beam computed tomography (kV-CBCT) in image-guided radiation therapy (IGRT). Absorbed doses for the kV-CBCT systems of the Varian On-Board Imager (OBI) and the Elekta X-ray Volumetric Imager (XVI) were measured by a Farmer ionization chamber with a 60Co calibration factor. The chamber measurements were performed at the center and four peripheral points in body-type (30 cm diameter and 51 cm length) and head-type (16 cm diameter and 33 cm length) cylindrical water phantoms. The measured ionization was converted to the absorbed dose-to-water by using a 60Co calibration factor and a Monte Carlo (MC)-calculated beam quality conversion factor, kQ, for 60Co to kV-CBCT. The irradiation for OBI and XVI was performed with pelvis and head modes for the body- and the head-type phantoms, respectively. In addition, the dose distributions in the phantom for both kV-CBCT systems were calculated with MC method and were compared with measured values. The MC-calculated doses were calibrated at the center in the water phantom and compared with measured doses at four peripheral points. The measured absorbed doses at the center in the body-type phantom were 1.96 cGy for OBI and 0.83 cGy for XVI. The peripheral doses were 2.36-2.90 cGy for OBI and 0.83-1.06 cGy for XVI. The doses for XVI were lower up to approximately one-third of those for OBI. Similarly, the measured doses at the center in the head-type phantom were 0.48 cGy for OBI and 0.21 cGy for XVI. The peripheral doses were 0.26-0.66 cGy for OBI and 0.16-0.30 cGy for XVI. The calculated peripheral doses agreed within 3% in the pelvis mode and within 4% in the head mode with measured doses for both kV-CBCT systems. In addition, the absorbed dose determined in this study was approximately 4% lower than that in TG-61 but the absorbed dose by both methods was in agreement within their combined

  20. Galactic rings revisited - I. CVRHS classifications of 3962 ringed galaxies from the Galaxy Zoo 2 Database

    NASA Astrophysics Data System (ADS)

    Buta, Ronald J.

    2017-11-01

    Rings are important and characteristic features of disc-shaped galaxies. This paper is the first in a series that re-visits galactic rings with the goals of further understanding the nature of the features and for examining their role in the secular evolution of galaxy structure. The series begins with a new sample of 3962 galaxies drawn from the Galaxy Zoo 2 citizen science data base, selected because zoo volunteers recognized a ring-shaped pattern in the morphology as seen in Sloan Digital Sky Survey colour images. The galaxies are classified within the framework of the Comprehensive de Vaucouleurs revised Hubble-Sandage system. It is found that zoo volunteers cued on the same kinds of ring-like features that were recognized in the 1995 Catalogue of Southern Ringed Galaxies. This paper presents the full catalogue of morphological classifications, comparisons with other sources of classifications and some histograms designed mainly to highlight the content of the catalogue. The advantages of the sample are its large size and the generally good quality of the images; the main disadvantage is the low physical resolution that limits the detectability of linearly small rings such as nuclear rings. The catalogue includes mainly inner and outer disc rings and lenses. Cataclysmic (`encounter-driven') rings (such as ring and polar ring galaxies) are recognized in less than 1 per cent of the sample.

  1. Galaxy Evolution Explorer Spies Band of Stars

    NASA Image and Video Library

    2007-06-20

    Globular star cluster NGC 362, in a false-color image from NASA's Galaxy Evolution Explorer. Image credit: NASA/JPL-Caltech/Univ. of Virginia The Galaxy Evolution Explorer's ultraviolet eyes have captured a globular star cluster, called NGC 362, in our own Milky Way galaxy. In this new image, the cluster appears next to stars from a more distant neighboring galaxy, known as the Small Magellanic Cloud. "This image is so interesting because it allows a study of the final stages of evolution of low-mass stars in NGC 362, as well as the history of star formation in the Small Magellanic Cloud," said Ricardo Schiavon of the University of Virginia, Charlottesville, Va. Globular clusters are densely packed bunches of old stars scattered in galaxies throughout the universe. NGC 362, located 30,000 light-years away, can be spotted as the dense collection of mostly yellow-tinted stars surrounding a large white-yellow spot toward the top-right of this image. The white spot is actually the core of the cluster, which is made up of stars so closely packed together that the Galaxy Evolution Explorer cannot see them individually. The light blue dots surrounding the cluster core are called extreme horizontal branch stars. These stars used to be very similar to our sun and are nearing the end of their lives. They are very hot, with temperatures reaching up to about four times that of the surface of our sun (25,000 Kelvin or 45,500 degrees Fahrenheit). A star like our sun spends most of its life fusing hydrogen atoms in its core into helium. When the star runs out of hydrogen in its core, its outer envelope will expand. The star then becomes a red giant, which burns hydrogen in a shell surrounding its inner core. Throughout its life as a red giant, the star loses a lot of mass, then begins to burn helium at its core. Some stars will have lost so much mass at the end of this process, up to 85 percent of their envelopes, that most of the envelope is gone. What is left is a very hot

  2. Molecular imaging using light-absorbing imaging agents and a clinical optical breast imaging system--a phantom study.

    PubMed

    van de Ven, Stephanie M W Y; Mincu, Niculae; Brunette, Jean; Ma, Guobin; Khayat, Mario; Ikeda, Debra M; Gambhir, Sanjiv S

    2011-04-01

    The aim of the study was to determine the feasibility of using a clinical optical breast scanner with molecular imaging strategies based on modulating light transmission. Different concentrations of single-walled carbon nanotubes (SWNT; 0.8-20.0 nM) and black hole quencher-3 (BHQ-3; 2.0-32.0 µM) were studied in specifically designed phantoms (200-1,570 mm(3)) with a clinical optical breast scanner using four wavelengths. Each phantom was placed in the scanner tank filled with optical matching medium. Background scans were compared to absorption scans, and reproducibility was assessed. All SWNT phantoms were detected at four wavelengths, with best results at 684 nm. Higher concentrations (≥8.0 µM) were needed for BHQ-3 detection, with the largest contrast at 684 nm. The optical absorption signal was dependent on phantom size and concentration. Reproducibility was excellent (intraclass correlation 0.93-0.98). Nanomolar concentrations of SWNT and micromolar concentrations of BHQ-3 in phantoms were reproducibly detected, showing the potential of light absorbers, with appropriate targeting ligands, as molecular imaging agents for clinical optical breast imaging.

  3. On the origin of the warm-hot absorbers in the Milky Way's halo

    NASA Astrophysics Data System (ADS)

    Marasco, A.; Marinacci, F.; Fraternali, F.

    2013-08-01

    Disc galaxies like the Milky Way are expected to be surrounded by massive coronae of hot plasma that may contain a significant fraction of the so-called missing baryons. We investigate whether the local (|vLSR| < 400 km s-1) warm-hot absorption features observed towards extra-Galactic sources or halo stars are consistent with being produced by the cooling of the Milky Way's corona. In our scheme, cooling occurs at the interface between the disc and the corona and it is triggered by positive supernova feedback. We combine hydrodynamical simulations with a dynamical 3D model of the galactic fountain to predict the all-sky distribution of this cooling material, and we compare it with the observed distribution of detections for different `warm' (Si III, Si IV, C II, C IV) and `hot' (O VI) ionized species. The model reproduces the position-velocity distribution and the column densities of the vast majority of warm absorbers and about half of O VI absorbers. We conclude that the warm-hot gas responsible for most of the detections lies within a few kiloparsec from the Galactic plane, where high-metallicity material from the disc mixes efficiently with the hot corona. This process provides an accretion of a few M⊙ yr- 1 of fresh gas that can easily feed the star formation in the disc of the Galaxy. The remaining O VI detections are likely to be a different population of absorbers, located in the outskirts of the Galactic corona and/or in the circumgalactic medium of nearby galaxies.

  4. Galaxy Evolution Explorer Celebrates Five Years in Space

    NASA Image and Video Library

    2008-04-28

    Since its launch five years ago, the Galaxy Evolution Explorer has photographed hundreds of millions of galaxies in ultraviolet light. M106 is one of those galaxies, 22 light years away, it strikes a pose in blue and gold for this new commemorative portrait. The galaxy's extended arms are the blue filaments that curve around its edge, creating its outer disk. Tints of blue in M106's arms reveal hot, young massive stars. Traces of gold toward the center show an older stellar population and indicate the presence of obscuring dust. From 24 million light-years away, neighboring galaxy NGC 4248 also makes a memorable appearance, sitting just right of M106. The irregular galaxy looks like a yellow smudge, with a bluish-white bar in the center. The galaxy's outer golden glow indicates a population of older stars, while the blue central region shows a younger stellar demographic. Dwarf galaxy UGC 7365 emerges at the bottom center of this image, as a faint yellow smudge directly below M106. This galaxy is not forming any new stars, and looks much smaller than M106 despite being closer to Earth, at 14 million light-years away. Over the past five years, the Galaxy Evolution Explorer has imaged half a billion objects over 27,000 square degrees of sky —equivalent to an area that would be covered by 138,000 full moons. The telescope orbits Earth every 94 minutes and travels approximately 408,470 million miles per day. Its overarching question is: how do galaxies grow and change over 10 billion years of cosmic history? M106, also known as NGC 4258, is located in the constellation Canes Venatici. This image is a two-color composite, where far-ultraviolet light is blue, and near-ultraviolet light is red. http://photojournal.jpl.nasa.gov/catalog/PIA10600

  5. Galaxy morphology - An unsupervised machine learning approach

    NASA Astrophysics Data System (ADS)

    Schutter, A.; Shamir, L.

    2015-09-01

    Structural properties poses valuable information about the formation and evolution of galaxies, and are important for understanding the past, present, and future universe. Here we use unsupervised machine learning methodology to analyze a network of similarities between galaxy morphological types, and automatically deduce a morphological sequence of galaxies. Application of the method to the EFIGI catalog show that the morphological scheme produced by the algorithm is largely in agreement with the De Vaucouleurs system, demonstrating the ability of computer vision and machine learning methods to automatically profile galaxy morphological sequences. The unsupervised analysis method is based on comprehensive computer vision techniques that compute the visual similarities between the different morphological types. Rather than relying on human cognition, the proposed system deduces the similarities between sets of galaxy images in an automatic manner, and is therefore not limited by the number of galaxies being analyzed. The source code of the method is publicly available, and the protocol of the experiment is included in the paper so that the experiment can be replicated, and the method can be used to analyze user-defined datasets of galaxy images.

  6. Supernova Blast Bonanza in Nearby Galaxy

    NASA Image and Video Library

    2004-02-03

    The nearby dwarf galaxy NGC 1569 is a hotbed of vigorous star birth activity, which blows huge bubbles that riddle the galaxy main body. The image was taken by the WPF2 camera, designed and built by JPL, on NASA Hubble.

  7. STAR-GALAXY CLASSIFICATION IN MULTI-BAND OPTICAL IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fadely, Ross; Willman, Beth; Hogg, David W.

    2012-11-20

    Ground-based optical surveys such as PanSTARRS, DES, and LSST will produce large catalogs to limiting magnitudes of r {approx}> 24. Star-galaxy separation poses a major challenge to such surveys because galaxies-even very compact galaxies-outnumber halo stars at these depths. We investigate photometric classification techniques on stars and galaxies with intrinsic FWHM <0.2 arcsec. We consider unsupervised spectral energy distribution template fitting and supervised, data-driven support vector machines (SVMs). For template fitting, we use a maximum likelihood (ML) method and a new hierarchical Bayesian (HB) method, which learns the prior distribution of template probabilities from the data. SVM requires training datamore » to classify unknown sources; ML and HB do not. We consider (1) a best-case scenario (SVM{sub best}) where the training data are (unrealistically) a random sampling of the data in both signal-to-noise and demographics and (2) a more realistic scenario where training is done on higher signal-to-noise data (SVM{sub real}) at brighter apparent magnitudes. Testing with COSMOS ugriz data, we find that HB outperforms ML, delivering {approx}80% completeness, with purity of {approx}60%-90% for both stars and galaxies. We find that no algorithm delivers perfect performance and that studies of metal-poor main-sequence turnoff stars may be challenged by poor star-galaxy separation. Using the Receiver Operating Characteristic curve, we find a best-to-worst ranking of SVM{sub best}, HB, ML, and SVM{sub real}. We conclude, therefore, that a well-trained SVM will outperform template-fitting methods. However, a normally trained SVM performs worse. Thus, HB template fitting may prove to be the optimal classification method in future surveys.« less

  8. Tracing the growth of Milky Way-like galaxies

    NASA Image and Video Library

    2013-11-15

    This composite image shows examples of galaxies similar to our Milky Way at various stages of construction over a time span of 11 billion years. The galaxies are arranged according to time. Those on the left reside nearby; those at far right existed when the cosmos was about 2 billion years old. The bluish glow from young stars dominates the color of the galaxies on the right. The galaxies at left are redder from the glow of older stellar populations. Astronomers found the distant galaxies in two Hubble Space Telescope surveys: 3D-HST and the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, or CANDELS. The observations were made in visible and near-infrared light by Hubble's Wide Field Camera 3 and Advanced Camera for Surveys. The nearby galaxies were taken from the Sloan Digital Sky Survey. This image traces Milky Way-like galaxies over most of cosmic history, revealing how they evolve over time. Hubble's sharp vision resolved the galaxies' shapes, showing that their bulges and disks grew simultaneously. Credit: NASA, ESA, P. van Dokkum (Yale University), S. Patel (Leiden University), and the 3D-HST Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. The impact of ΛCDM substructure and baryon-dark matter transition on the image positions of quad galaxy lenses

    NASA Astrophysics Data System (ADS)

    Gomer, Matthew R.; Williams, Liliya L. R.

    2018-04-01

    The positions of multiple images in galaxy lenses are related to the galaxy mass distribution. Smooth elliptical mass profiles were previously shown to be inadequate in reproducing the quad population. In this paper, we explore the deviations from such smooth elliptical mass distributions. Unlike most other work, we use a model-free approach based on the relative polar image angles of quads, and their position in 3D space with respect to the fundamental surface of quads (FSQ). The FSQ is defined by quads produced by elliptical lenses. We have generated thousands of quads from synthetic populations of lenses with substructure consistent with Lambda cold dark matter (ΛCDM) simulations, and found that such perturbations are not sufficient to match the observed distribution of quads relative to the FSQ. The result is unchanged even when subhalo masses are increased by a factor of 10, and the most optimistic lensing selection bias is applied. We then produce quads from galaxies created using two components, representing baryons and dark matter. The transition from the mass being dominated by baryons in inner radii to being dominated by dark matter in outer radii can carry with it asymmetries, which would affect relative image angles. We run preliminary experiments using lenses with two elliptical mass components with non-identical axial ratios and position angles, perturbations from ellipticity in the form of non-zero Fourier coefficients a4 and a6, and artificially offset ellipse centres as a proxy for asymmetry at image radii. We show that combination of these effects is a promising way of accounting for quad population properties. We conclude that the quad population provides a unique and sensitive tool for constraining detailed mass distribution in the centres of galaxies.

  10. Hubble Peers at a Distinctly Disorganized Dwarf Galaxy

    NASA Image and Video Library

    2017-12-08

    Despite being less famous than their elliptical and spiral galactic cousins, irregular dwarf galaxies, such as the one captured in this NASA/ESA Hubble Space Telescope image, are actually one of the most common types of galaxy in the universe. Known as UGC 4459, this dwarf galaxy is located approximately 11 million light-years away in the constellation of Ursa Major (The Great Bear), a constellation that is also home to the Pinwheel Galaxy (M101), the Owl Nebula (M97), Messier 81, Messier 82 and several other galaxies all part of the M81 group. UGC 4459’s diffused and disorganized appearance is characteristic of an irregular dwarf galaxy. Lacking a distinctive structure or shape, irregular dwarf galaxies are often chaotic in appearance, with neither a nuclear bulge — a huge, tightly packed central group of stars — nor any trace of spiral arms — regions of stars extending from the center of the galaxy. Astronomers suspect that some irregular dwarf galaxies were once spiral or elliptical galaxies, but were later deformed by the gravitational pull of nearby objects. Rich with young blue stars and older red stars, UGC 4459 has a stellar population of several billion. Though seemingly impressive, this is small when compared to the 200 to 400 billion stars in the Milky Way! Observations with Hubble have shown that because of their low masses of dwarf galaxies like UGC 4459, star formation is very low compared to larger galaxies. Only very little of their original gas has been turned into stars. Thus, these small galaxies are interesting to study to better understand primordial environments and the star formation process. Image Credit: ESA/Hubble and NASA; Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific

  11. The early phase of the SMBH-galaxy coevolution in low-z "young" galaxies

    NASA Astrophysics Data System (ADS)

    Nagao, Tohru

    2014-01-01

    It is now widely recognized that most galaxies have a supermassive black hole (SMBH) in their nucleus, and the evolution of SMBHs is closely related with that of their host galaxies (the SMBH-galaxy coevolution). This is suggested by the correlation in the mass of SMBHs and their host galaxies, that has been observed in low redshifts. However, the physics of the coevolution is totally unclear, that prevents us from complete understandings of the galaxy evolution. One possible strategy to tackle this issue is measuring the mass ratio between SMBHs and their host galaxies (M_BH/M_host) at high redshifs, since different scenarios predict different evolution of the ratio ofMBH/Mhost. However it is extremely challenging to measure the mass of the host of high-z quasars, given the faint surface brightness of the host at close to the glaring quasar nucleus. Here we propose a brand-new approach to assess the early phase of the SMBH-galaxy coevolution, by focusing on low-z AGN-hosting "young" galaxies. Specifically, we focus on some very metal-poor galaxies with broadline Balmer lines at z ~ 0.1 - 0.3. By examining the SMBH scaling relations in some low-z metal-poor AGNs through high-resolution IRCS imaging observations, we will discriminate various scenarios for the SMBH-galaxy coevolution.

  12. Galaxies Gather at Great Distances

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Distant Galaxy Cluster Infrared Survey Poster [figure removed for brevity, see original site] [figure removed for brevity, see original site] Bird's Eye View Mosaic Bird's Eye View Mosaic with Clusters [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] 9.1 Billion Light-Years 8.7 Billion Light-Years 8.6 Billion Light-Years

    Astronomers have discovered nearly 300 galaxy clusters and groups, including almost 100 located 8 to 10 billion light-years away, using the space-based Spitzer Space Telescope and the ground-based Mayall 4-meter telescope at Kitt Peak National Observatory in Tucson, Ariz. The new sample represents a six-fold increase in the number of known galaxy clusters and groups at such extreme distances, and will allow astronomers to systematically study massive galaxies two-thirds of the way back to the Big Bang.

    A mosaic portraying a bird's eye view of the field in which the distant clusters were found is shown at upper left. It spans a region of sky 40 times larger than that covered by the full moon as seen from Earth. Thousands of individual images from Spitzer's infrared array camera instrument were stitched together to create this mosaic. The distant clusters are marked with orange dots.

    Close-up images of three of the distant galaxy clusters are shown in the adjoining panels. The clusters appear as a concentration of red dots near the center of each image. These images reveal the galaxies as they were over 8 billion years ago, since that's how long their light took to reach Earth and Spitzer's infrared eyes.

    These pictures are false-color composites, combining ground-based optical images captured by the Mosaic-I camera on the Mayall 4-meter telescope at Kitt Peak, with infrared pictures taken by Spitzer's infrared array camera. Blue and green represent visible light at wavelengths of 0

  13. Dwarf Galaxies Swimming in Tidal Tails

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This false-color infrared image from NASA's Spitzer Space Telescope shows little 'dwarf galaxies' forming in the 'tails' of two larger galaxies that are colliding together. The big galaxies are at the center of the picture, while the dwarfs can be seen as red dots in the red streamers, or tidal tails. The two blue dots above the big galaxies are stars in the foreground.

    Galaxy mergers are common occurrences in the universe; for example, our own Milky Way galaxy will eventually smash into the nearby Andromeda galaxy. When two galaxies meet, they tend to rip each other apart, leaving a trail, called a tidal tail, of gas and dust in their wake. It is out of this galactic debris that new dwarf galaxies are born.

    The new Spitzer picture demonstrates that these particular dwarfs are actively forming stars. The red color indicates the presence of dust produced in star-forming regions, including organic molecules called polycyclic aromatic hydrocarbons. These carbon-containing molecules are also found on Earth, in car exhaust and on burnt toast, among other places. Here, the molecules are being heated up by the young stars, and, as a result, shine in infrared light.

    This image was taken by the infrared array camera on Spitzer. It is a 4-color composite of infrared light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange), and 8.0 microns (red). Starlight has been subtracted from the orange and red channels in order to enhance the dust features.

  14. An optical imaging study of 0.4 ≤ z ≤ 0.8 quasar host galaxies . II. Analysis and interpretation

    NASA Astrophysics Data System (ADS)

    Örndahl, E.; Rönnback, J.

    2005-11-01

    We performed optical imaging of 102 radio-loud and radio-quiet quasars at z=0.4{-}0.8, of which 91 fields were found suitable for host galaxy analysis after the deselection of saturated and otherwise flawed images. The data sets were obtained mainly in the R band, but also in the V and I or Gunn i band, and were presented in Rönnback et al.(1996, MNRAS, 283, 282) and Örndahl et al. (2003, A&A, 404, 883). In this paper we combine the two above-mentioned samples and also separately discuss additional hosts, extracted from data taken by Wold et al. (2000, MNRAS, 316, 267; 2001, MNRAS, 323, 231). The joint sample forms a sizeable fraction of the to-date total number of observed sources at intermediate redshifts and increases the number of resolved radio-quiet hosts at z>0.4 considerably. Equal numbers of radio-loud and radio-quiet objects were observed, resulting in a detection rate of 79% for the radio-loud hosts and 66% for the radio-quiet hosts. Profile fitting could only be carried out for a minority of the sample, but it results in predominantly elliptical morphologies. This is consistent with the mean values of the axial ratios, for which we find b/a⪆0.8 for both radio-quiet and radio-loud hosts, just as in the case of normal elliptical galaxies. The mean absolute magnitudes of the radio-loud and radio-quiet hosts is M_R=-23.5 in both cases. This similarity between the mean magnitudes of the two types of host galaxy is also seen in the other imaged bands. While the radio-loud host absolute R magnitudes are correlated with redshift, only a weak trend of the same sort is seen for the radio-quiet host magnitudes. Note, however, that the sample is not fully resolved and that the detection limit, in combination with the relationship between host and nuclear luminosity, may conspire in creating the illusion of an upturn in magnitude. The average nucleus-to-host galaxy luminosity ratios of the radio-loud and radio-quiet objects do not differ significantly in any

  15. The Least Luminous Galaxies in the Universe

    NASA Astrophysics Data System (ADS)

    Willman, Beth

    2011-05-01

    In the past six years, more than two dozen dwarf galaxies have been discovered around the Milky Way and M31. Many of these discoveries are 100 times less luminous than any galaxy previously known, and a million times less luminous than the Milky Way itself. These discoveries have made astronomers question the very meaning of the word "galaxy", and hint that such ultra-faint dwarf galaxies may be the most numerous type of galaxy in the universe. This talk will highlight i. how we can see galaxies that are effectively invisible in images of the sky, ii. the brewing controversy over the definition of the term "galaxy", and iii. what ultra-faint galaxies can reveal about the distribution of dark matter in our Universe.

  16. A Search for Low Surface Brightness Galaxies in the Ultraviolet with GALEX

    NASA Astrophysics Data System (ADS)

    Wyder, Ted K.; GALEX Science Team

    2006-12-01

    Low surface brightness (LSB) galaxies have traditionally been difficult to detect at visible wavelengths due to their low contrast with the night sky and their low numbers per deg2. We describe a new search for LSB galaxies using UV images from the Galaxy Evolution Explorer (GALEX) satellite. The images are from the GALEX Medium Imaging Survey targeting mainly areas of the sky within the Sloan Digital Sky Survey (SDSS) footprint. Due to the UV sky background at high Galactic latitudes reaching levels of only approximately 28 mag arcsec-2 as well as the relatively large sky coverage from GALEX, we can potentially search for LSB galaxies that would be difficult to detect optically.After first convolving the images with a suitable kernel, we select a diameter limited set of objects which we then inspect manually in order to remove image artifacts and other spurious detections. Red galaxies that have high optical surface brightness can be identified using either the ratio of far-UV to near-UV flux or via comparison to SDSS images. We quantify our selection limits using a set of artificial galaxy tests. Our goal is to find blue, ultra-LSB galaxies that would be virtually undetectable in large optical imaging surveys. GALEX is a NASA Small Explorer, launched in April 2003. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission.

  17. Hubble's deepest view ever of the Universe unveils earliest galaxies

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Hubble sees galaxies galore hi-res Size hi-res: 446 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble sees galaxies galore Galaxies, galaxies everywhere - as far as the NASA/ESA Hubble Space Telescope can see. This view of nearly 10,000 galaxies is the deepest visible-light image of the cosmos. Called the Hubble Ultra Deep Field, this galaxy-studded view represents a ‘deep’ core sample of the universe, cutting across billions of light-years. Hubble reveals galactic drama hi-res Size hi-res: 879 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble reveals galactic drama A galactic brawl. A close encounter with a spiral galaxy. Blue wisps of galaxies. These close-up snapshots of galaxies in the Hubble Ultra Deep Field reveal the drama of galactic life. Here three galaxies just below centre are enmeshed in battle, their shapes distorted by the brutal encounter. Hubble reveals galactic drama hi-res Size hi-res: 886 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble reveals galactic drama A galactic brawl. A close encounter with a spiral galaxy. Blue wisps of galaxies. These close-up snapshots of galaxies in the Hubble Ultra Deep Field reveal the drama of galactic life. Here three galaxies just below centre are enmeshed in battle, their shapes distorted by the brutal encounter. Hubble reveals galactic drama hi-res Size hi-res: 892 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble reveals galactic drama A galactic brawl. A close encounter with a spiral galaxy. Blue wisps of galaxies. These close-up snapshots of galaxies in the Hubble Ultra Deep Field reveal the drama of galactic life. The galaxies in this panel were plucked from a harvest of nearly 10,000 galaxies in the Ultra Deep Field, the deepest visible-light image of the cosmos. This historic new view is actually made up by two separate images taken by Hubble's Advanced Camera for Surveys (ACS) and the Near Infrared Camera and

  18. Dissection of a Galaxy

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Sometimes, the best way to understand how something works is to take it apart. The same is true for galaxies like NGC 300, which NASA's Spitzer Space Telescope has divided into its various parts. NGC 300 is a face-on spiral galaxy located 7.5 million light-years away in the southern constellation Sculptor.

    This false-color image taken by the infrared array camera on Spitzer readily distinguishes the main star component of the galaxy (blue) from its dusty spiral arms (red). The star distribution peaks strongly in the central bulge where older stars congregate, and tapers off along the arms where younger stars reside.

    Thanks to Spitzer's unique ability to sense the heat or infrared emission from dust, astronomers can now clearly trace the embedded dust structures within NGC 300's arms. When viewed at visible wavelengths, the galaxy's dust appears as dark lanes, largely overwhelmed by bright starlight. With Spitzer, the dust - in particular organic compounds called polycyclic aromatic hydrocarbons - can be seen in vivid detail (red). These organic molecules are produced, along with heavy elements, by the stellar nurseries that pepper the arms.

    The findings provide a better understanding of spiral galaxy mechanics and, in the future, will help decipher more distant galaxies, whose individual components cannot be resolved.

    This image was taken on Nov. 21, 2003 and is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

  19. Dissection of a Galaxy

    NASA Image and Video Library

    2004-05-11

    Sometimes, the best way to understand how something works is to take it apart. The same is true for galaxies like NGC 300, which NASA's Spitzer Space Telescope has divided into its various parts. NGC 300 is a face-on spiral galaxy located 7.5 million light-years away in the southern constellation Sculptor. This false-color image taken by the infrared array camera on Spitzer readily distinguishes the main star component of the galaxy (blue) from its dusty spiral arms (red). The star distribution peaks strongly in the central bulge where older stars congregate, and tapers off along the arms where younger stars reside. Thanks to Spitzer's unique ability to sense the heat or infrared emission from dust, astronomers can now clearly trace the embedded dust structures within NGC 300's arms. When viewed at visible wavelengths, the galaxy's dust appears as dark lanes, largely overwhelmed by bright starlight. With Spitzer, the dust - in particular organic compounds called polycyclic aromatic hydrocarbons - can be seen in vivid detail (red). These organic molecules are produced, along with heavy elements, by the stellar nurseries that pepper the arms. The findings provide a better understanding of spiral galaxy mechanics and, in the future, will help decipher more distant galaxies, whose individual components cannot be resolved. This image was taken on Nov. 21, 2003 and is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). http://photojournal.jpl.nasa.gov/catalog/PIA05879

  20. A Cluster and a Sea of Galaxies

    NASA Astrophysics Data System (ADS)

    2010-05-01

    A new wide-field image released today by ESO displays many thousands of distant galaxies, and more particularly a large group belonging to the massive galaxy cluster known as Abell 315. As crowded as it may appear, this assembly of galaxies is only the proverbial "tip of the iceberg", as Abell 315 - like most galaxy clusters - is dominated by dark matter. The huge mass of this cluster deflects light from background galaxies, distorting their observed shapes slightly. When looking at the sky with the unaided eye, we mostly only see stars within our Milky Way galaxy and some of its closest neighbours. More distant galaxies are just too faint to be perceived by the human eye, but if we could see them, they would literally cover the sky. This new image released by ESO is both a wide-field and long-exposure one, and reveals thousands of galaxies crowding an area on the sky roughly as large as the full Moon. These galaxies span a vast range of distances from us. Some are relatively close, as it is possible to distinguish their spiral arms or elliptical halos, especially in the upper part of the image. The more distant appear just like the faintest of blobs - their light has travelled through the Universe for eight billion years or more before reaching Earth. Beginning in the centre of the image and extending below and to the left, a concentration of about a hundred yellowish galaxies identifies a massive galaxy cluster, designated with the number 315 in the catalogue compiled by the American astronomer George Abell in 1958 [1]. The cluster is located between the faint, red and blue galaxies and the Earth, about two billion light-years away from us. It lies in the constellation of Cetus (the Whale). Galaxy clusters are some of the largest structures in the Universe held together by gravity. But there is more in these structures than the many galaxies we can see. Galaxies in these giants contribute to only ten percent of the mass, with hot gas in between galaxies

  1. Classification of galaxy type from images using Microsoft R Server

    NASA Astrophysics Data System (ADS)

    de Vries, Andrie

    2017-06-01

    Many astronomers working in the field of AstroInformatics write code as part of their work. Although the programming language of choice is Python, a small number (8%) use R. R has its specific strengths in the domain of statistics, and is often viewed as limited in the size of data it can handle. However, Microsoft R Server is a product that removes these limitations by being able to process much larger amounts of data. I present some highlights of R Server, by illustrating how to fit a convolutional neural network using R. The specific task is to classify galaxies, using only images extracted from the Sloan Digital Skyserver.

  2. The galaxy-subhalo connection in low-redshift galaxy clusters from weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Sifón, Cristóbal; Herbonnet, Ricardo; Hoekstra, Henk; van der Burg, Remco F. J.; Viola, Massimo

    2018-07-01

    We measure the gravitational lensing signal around satellite galaxies in a sample of galaxy clusters at z < 0.15 by combining high-quality imaging data from the Canada-France-Hawaii Telescope with a large sample of spectroscopically confirmed cluster members. We use extensive image simulations to assess the accuracy of shape measurements of faint, background sources in the vicinity of bright satellite galaxies. We find a small but significant bias, as light from the lenses makes the shapes of background galaxies appear radially aligned with the lens. We account for this bias by applying a correction that depends on both lens size and magnitude. We also correct for contamination of the source sample by cluster members. We use a physically motivated definition of subhalo mass, namely the mass bound to the subhalo, mbg, similar to definitions used by common subhalo finders in numerical simulations. Binning the satellites by stellar mass we provide a direct measurement of the subhalo-to-stellar-mass relation, log mbg/M⊙ = (11.54 ± 0.05) + (0.95 ± 0.10)log [m⋆/(2 × 1010 M⊙)]. This best-fitting relation implies that, at a stellar mass m⋆ ˜ 3 × 1010 M⊙, subhalo masses are roughly 50 per cent of those of central galaxies, and this fraction decreases at higher stellar masses. We find some evidence for a sharp change in the total-to-stellar mass ratio around the clusters' scale radius, which could be interpreted as galaxies within the scale radius having suffered more strongly from tidal stripping, but remain cautious regarding this interpretation.

  3. The galaxy-subhalo connection in low-redshift galaxy clusters from weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Sifón, Cristóbal; Herbonnet, Ricardo; Hoekstra, Henk; van der Burg, Remco F. J.; Viola, Massimo

    2018-05-01

    We measure the gravitational lensing signal around satellite galaxies in a sample of galaxy clusters at z < 0.15 by combining high-quality imaging data from the Canada-France-Hawaii Telescope with a large sample of spectroscopically-confirmed cluster members. We use extensive image simulations to assess the accuracy of shape measurements of faint, background sources in the vicinity of bright satellite galaxies. We find a small but significant bias, as light from the lenses makes the shapes of background galaxies appear radially aligned with the lens. We account for this bias by applying a correction that depends on both lens size and magnitude. We also correct for contamination of the source sample by cluster members. We use a physically-motivated definition of subhalo mass, namely the mass bound to the subhalo, mbg, similar to definitions used by common subhalo finders in numerical simulations. Binning the satellites by stellar mass we provide a direct measurement of the subhalo-to-stellar-mass relation, log mbg/M⊙ = (11.54 ± 0.05) + (0.95 ± 0.10)log [m⋆/(2 × 1010M⊙)]. This best-fitting relation implies that, at a stellar mass m⋆ ˜ 3 × 1010 M⊙, subhalo masses are roughly 50 per cent of those of central galaxies, and this fraction decreases at higher stellar masses. We find some evidence for a sharp change in the total-to-stellar mass ratio around the clusters' scale radius, which could be interpreted as galaxies within the scale radius having suffered more strongly from tidal stripping, but remain cautious regarding this interpretation.

  4. WISE Beholds a Pair of Dancing Galaxies

    NASA Image and Video Library

    2011-01-13

    This image from NASA Wide-Field Infrared Explorer features two stunning galaxies engaged in an intergalactic dance. The galaxies, Messier 81 and Messier 82, swept by each other a few hundred million years ago.

  5. Distributions of Gas and Galaxies from Galaxy Clusters to Larger Scales

    NASA Astrophysics Data System (ADS)

    Patej, Anna

    2017-01-01

    We address the distributions of gas and galaxies on three scales: the outskirts of galaxy clusters, the clustering of galaxies on large scales, and the extremes of the galaxy distribution. In the outskirts of galaxy clusters, long-standing analytical models of structure formation and recent simulations predict the existence of density jumps in the gas and dark matter profiles. We use these features to derive models for the gas density profile, obtaining a simple fiducial model that is in agreement with both observations of cluster interiors and simulations of the outskirts. We next consider the galaxy density profiles of clusters; under the assumption that the galaxies in cluster outskirts follow similar collisionless dynamics as the dark matter, their distribution should show a steep jump as well. We examine the profiles of a low-redshift sample of clusters and groups, finding evidence for the jump in some of these clusters. Moving to larger scales where massive galaxies of different types are expected to trace the same large-scale structure, we present a test of this prediction by measuring the clustering of red and blue galaxies at z 0.6, finding low stochasticity between the two populations. These results address a key source of systematic uncertainty - understanding how target populations of galaxies trace large-scale structure - in galaxy redshift surveys. Such surveys use baryon acoustic oscillations (BAO) as a cosmological probe, but are limited by the expense of obtaining sufficiently dense spectroscopy. With the intention of leveraging upcoming deep imaging data, we develop a new method of detecting the BAO in sparse spectroscopic samples via cross-correlation with a dense photometric catalog. This method will permit the extension of BAO measurements to higher redshifts than possible with the existing spectroscopy alone. Lastly, we connect galaxies near and far: the Local Group dwarfs and the high redshift galaxies observed by Hubble and Spitzer. We

  6. HUBBLE PHOTOGRAPHS WARPED GALAXY AS CAMERA PASSES MILESTONE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has captured an image of an unusual edge-on galaxy, revealing remarkable details of its warped dusty disk and showing how colliding galaxies spawn the formation of new generations of stars. The dust and spiral arms of normal spiral galaxies, like our own Milky Way, appear flat when viewed edge-on. This month's Hubble Heritage image of ESO 510-G13 shows a galaxy that, by contrast, has an unusual twisted disk structure, first seen in ground-based photographs obtained at the European Southern Observatory (ESO) in Chile. ESO 510-G13 lies in the southern constellation Hydra, roughly 150 million light-years from Earth. Details of the structure of ESO 510-G13 are visible because the interstellar dust clouds that trace its disk are silhouetted from behind by light from the galaxy's bright, smooth central bulge. The strong warping of the disk indicates that ESO 510-G13 has recently undergone a collision with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort the structures of the galaxies as their stars, gas, and dust merge together in a process that takes millions of years. Eventually the disturbances will die out, and ESO 510-G13 will become a normal-appearing single galaxy. In the outer regions of ESO 510-G13, especially on the right-hand side of the image, we see that the twisted disk contains not only dark dust, but also bright clouds of blue stars. This shows that hot, young stars are being formed in the disk. Astronomers believe that the formation of new stars may be triggered by collisions between galaxies, as their interstellar clouds smash together and are compressed. The Heritage Team used Hubble's Wide Field Planetary Camera 2 (WFPC2) to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty spiral arms, the bright bulge, and the blue star-forming regions. During the

  7. Galaxy Cluster Abell 1689

    NASA Image and Video Library

    2017-12-08

    Image release August 19, 2010 An international team of astronomers using gravitational lensing observations from the NASA/ESA Hubble Space Telescope has taken an important step forward in the quest to solve the riddle of dark energy, a phenomenon which mysteriously appears to power the Universe's accelerating expansion. Their results appear in the 20 August 2010 issue of the journal Science. This image shows the galaxy cluster Abell 1689, with the mass distribution of the dark matter in the gravitational lens overlaid (in purple). The mass in this lens is made up partly of normal (baryonic) matter and partly of dark matter. Distorted galaxies are clearly visible around the edges of the gravitational lens. The appearance of these distorted galaxies depends on the distribution of matter in the lens and on the relative geometry of the lens and the distant galaxies, as well as on the effect of dark energy on the geometry of the Universe. Credit: NASA, ESA, E. Jullo (JPL/LAM), P. Natarajan (Yale) and J-P. Kneib (LAM). To view a video of this image go to: www.flickr.com/photos/gsfc/4909967467 NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook To read more go to: www.spacetelescope.org/news/heic1014/?utm_source=feedburn...

  8. Measuring Extinction in Local Group Galaxies Using Background Galaxies

    NASA Astrophysics Data System (ADS)

    Wyder, T. K.; Hodge, P. W.

    1999-05-01

    Knowledge of the distribution and quantity of dust in galaxies is important for understanding their structure and evolution. The goal of our research is to measure the total extinction through Local Group galaxies using measured properties of background galaxies. Our method relies on the SExtractor software as an objective and automated method of detecting background galaxies. In an initial test, we have explored two WFPC2 fields in the SMC and two in M31 obtained from the HST archives. The two pointings in the SMC are fields around the open clusters L31 and B83 while the two M31 fields target the globular clusters G1 and G170. Except for the G1 observations of M31, the fields chosen are very crowded (even when observed with HST) and we chose them as a particularly stringent test of the method. We performed several experiments using a series of completeness tests that involved superimposing comparison fields, adjusted to the equivalent exposure time, from the HST Medium-Deep and Groth-Westphal surveys. These tests showed that for crowded fields, such as the two in the core of the SMC and the one in the bulge of M31, this automated method of detecting galaxies can be completely dominated by the effects of crowding. For these fields, only a small fraction of the added galaxies was recovered. However, in the outlying G1 field in M31, almost all of the added galaxies were recovered. The numbers of actual background galaxies in this field are consistent with zero extinction. As a follow-up experiment, we used image processing techniques to suppress stellar objects while enhancing objects with non-stellar, more gradual luminosity profiles. This method yielded significant numbers of background galaxies in even the most crowded fields, which we are now analyzing to determine the total extinction and reddening caused by the foreground galaxy.

  9. NASA Telescopes Help Discover Surprisingly Young Galaxy

    NASA Image and Video Library

    2017-12-08

    NASA image release April 12, 2011 Astronomers have uncovered one of the youngest galaxies in the distant universe, with stars that formed 13.5 billion years ago, a mere 200 million years after the Big Bang. The finding addresses questions about when the first galaxies arose, and how the early universe evolved. NASA's Hubble Space Telescope was the first to spot the newfound galaxy. Detailed observations from the W.M. Keck Observatory on Mauna Kea in Hawaii revealed the observed light dates to when the universe was only 950 million years old; the universe formed about 13.7 billion years ago. Infrared data from both Hubble and NASA's Spitzer Space Telescope revealed the galaxy's stars are quite mature, having formed when the universe was just a toddler at 200 million years old. The galaxy's image is being magnified by the gravity of a massive cluster of galaxies (Abell 383) parked in front of it, making it appear 11 times brighter. This phenomenon is called gravitational lensing. Hubble imaged the lensing galaxy Abell 383 with the Wide Field Camera 3 and the Advanced Camera for Surveys in November 2010 through March 2011. Credit: NASA, ESA, J. Richard (Center for Astronomical Research/Observatory of Lyon, France), and J.-P. Kneib (Astrophysical Laboratory of Marseille, France) NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  10. Into the Epoch of Galaxy Formation

    NASA Astrophysics Data System (ADS)

    2000-02-01

    first of the four 8.2-m VLT Unit Telescopes. A first analysis of the new observations indicates that "evolved" galaxies were already present when the Universe was only 4 billion years old. This information is of great importance to our understanding of how the matter in the early Universe condensed and the first galaxies and stars came into being. While in the nearby Universe evolved galaxies are preferentially located in denser environments such as groups and clusters of galaxies, little is currently known about the distribution in space of such objects at early cosmic epochs. In order to be able to see such obscured and/or "evolved" galaxies in the early Universe, and to look for hitherto unknown galaxies beyond the limits of "deep-field" imaging in visible spectral bands, it is necessary to employ other observing techniques. The astronomers must search for such objects on large-field, very long-exposure sky images obtained in the near-infrared (NIR, wavelength 1-2 µm) region of the electromagnetic spectrum and at even longer wavelengths (> 10 µm) in the far-IR and in the sub-mm range. Such observations are beyond the capability of the infrared cameras installed on the world's 4-m class telescopes. However, the advent of the ISAAC instrument at the 8.2-m ANTU telescope has now opened new and exciting research opportunities in this direction for European astronomers. With ISAAC , it is possible to obtain "deep" NIR images in an unprecedentedly wide field of view, covering a sky area about 7 times larger than with the best instruments previously available on very large telescopes. Such observations also benefit greatly from the very good optical quality provided by the active optics control of the VLT, as well as the excellent Paranal site. The ISAAC/ANTU observations ESO PR Photo 06a/00 ESO PR Photo 06a/00 [Preview - JPEG: 400 x 427pix - 69k] [Normal - JPEG: 800 x 853 pix - 195k] [Full-Res - JPEG: 942 x 1004 pix - 635k] Caption : ESO PR Photo 06a/00 displays a 4

  11. A New Perspective on Galaxy Evolution from the Low Density Outskirts of Galaxies

    NASA Astrophysics Data System (ADS)

    Emery Watkins, Aaron

    2017-01-01

    In order to investigate the nature of galaxy outskirts, we carried out a deep imaging campaign of several nearby ($D\\lesssim$10Mpc) galaxies, across a range of environments. We found that most of the galaxies we imaged show red and non-star-forming outer disks, implying evolved stellar populations. Such populations in outer disks are expected as the result of radial migration, yet through Fourier analysis we found no evidence of extended spiral structure in these galaxies. Without star formation or outer spiral structure, it is difficult to determine how these outer disks formed. To investigate the effects of interactions on outer disks, we also observed the Leo I Group; however, while group environments are expected to promote frequent interactions, we found only three extremely faint tidal streams, implying a calm interaction history. As Leo I is fairly low density, this implies that loose groups are ineffective at producing intragroup light (IGL). In the famous interacting system M51, we found that its extended tidal features show similarly red colors as the typical outer disks we observed, implying that M51 had a similar outer disk prior to the interaction, and that the interaction induced no extended star formation, including in the system's HI tail. Therefore, to investigate the nature of star formation in low-density environments, we carried out deep narrow-band H$\\alpha$ imaging of M101 and M51.

  12. HUBBLE'S ULTRAVIOLET VIEWS OF NEARBY GALAXIES YIELD CLUES TO EARLY UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers are using these three NASA Hubble Space Telescope images to help tackle the question of why distant galaxies have such odd shapes, appearing markedly different from the typical elliptical and spiral galaxies seen in the nearby universe. Do faraway galaxies look weird because they are truly weird? Or, are they actually normal galaxies that look like oddballs, because astronomers are getting an incomplete picture of them, seeing only the brightest pieces? Light from these galaxies travels great distances (billions of light-years) to reach Earth. During its journey, the light is 'stretched' due to the expansion of space. As a result, the light is no longer visible, but has been shifted to the infrared where present instruments are less sensitive. About the only light astronomers can see comes from regions where hot, young stars reside. These stars emit mostly ultraviolet light. But this light is stretched, appearing as visible light by the time it reaches Earth. Studying these distant galaxies is like trying to put together a puzzle with some of the pieces missing. What, then, do distant galaxies really look like? Astronomers studied 37 nearby galaxies to find out. By viewing these galaxies in ultraviolet light, astronomers can compare their shapes with those of their distant relatives. These three Hubble telescope pictures, taken with the Wide Field and Planetary Camera 2, represent a sampling from that survey. Astronomers observed the galaxies in ultraviolet and visible light to study all the stars that make up these 'cities of stars.' The results of their survey support the idea that astronomers are detecting the 'tip of the iceberg' of very distant galaxies. Based on these Hubble ultraviolet images, not all the faraway galaxies necessarily possess intrinsically odd shapes. The results are being presented today at the 197th meeting of the American Astronomical Society in San Diego, CA. The central region of the 'star-burst' spiral galaxy at far left

  13. A Galaxy for Science and Research

    NASA Astrophysics Data System (ADS)

    2007-11-01

    During his visit to ESO's Very Large Telescope at Paranal, the European Commissioner for Science and Research, Janez Potočnik, participated in an observing sequence and took images of a beautiful spiral galaxy. ESO PR Photo 43/07 ESO PR Photo 49/07 Twisted Spiral Galaxy NGC 134 The visit took place on 27 October and the Commissioner observed with one of the FORS instruments on Antu, the first 8.2-m Unit Telescope of the VLT. "Two hours bus ride from the nearest town, Antofagasta, in the middle of nowhere and at 2 600 m altitude, rises a state of the art astronomical observatory at which scientists from across Europe venture to exploit some of the most advanced technologies and sophisticated techniques available within astronomy. One of the facilities is the VLT, the Very Large Telescope, with which, together with the other telescopes, scientists can study objects at the far edge of the Universe," wrote Potočnik on his blog. Known until now as a simple number in a catalogue, NGC 134, the 'Island in the Universe' that was observed by the Commissioner is replete with remarkable attributes, and the VLT has clapped its eyes on them. Just like our own Galaxy, NGC 134 is a barred spiral with its spiral arms loosely wrapped around a bright, bar-shaped central region. One feature that stands out is its warped disc. While a galaxy's disc is often pictured as a flat structure of gas and stars surrounding the galaxy's centre, a warped disc is a structure that, when viewed sideways, resembles a bent record album left out too long in the burning Sun. Warps are actually not atypical. More than half of the spiral galaxies do show warps one way or another, and our own Milky Way also has a small warp. Many theories exist to explain warps. One possibility is that warps are the aftermath of interactions or collisions between galaxies. These can also produce tails of material being pulled out from the galaxy. The VLT image reveals that NGC 134 also appears to have a tail of gas

  14. Interacting Group of Galaxies Known as Stephan Quintet

    NASA Image and Video Library

    2005-05-05

    This ultraviolet image from NASA Galaxy Evolution Explorer is of the interacting group of galaxies known as Stephan Quintet NGC 7317, NGC 7318A, NGC 7318B, NGC 7319, NGC 7320, lower left. Of the five galaxies in this tightly packed group, NGC 7320 (the large spiral in the group) is probably a foreground galaxy and not associated with the other four. The spiral galaxy in the upper right is NGC 7331. http://photojournal.jpl.nasa.gov/catalog/PIA07905

  15. Galaxy-galaxy and galaxy-cluster lensing with the SDSS and FIRST surveys

    NASA Astrophysics Data System (ADS)

    Demetroullas, C.; Brown, M. L.

    2018-01-01

    We perform a galaxy-galaxy lensing study by correlating the shapes of ∼2.7 × 105 galaxies selected from the VLA FIRST (Faint Images of the Radio Sky at Twenty centimetres) radio survey with the positions of ∼38.5 million Sloan Digital Sky Survey (SDSS) galaxies, ∼132 000 Brightest Cluster Galaxies (BCGs) and ∼78 000 SDSS galaxies that are also detected in the VLA FIRST survey. The measurements are conducted on angular scales θ ≲ 1200 arcsec. On scales θ ≲ 200 arcsec, we find that the measurements are corrupted by residual systematic effects associated with the instrumental beam of the VLA data. Using simulations, we show that we can successfully apply a correction for these effects. Using the three lens samples (the SDSS DR10 sample, the BCG sample and the SDSS-FIRST matched object sample), we measure a tangential shear signal that is inconsistent with 0 at the 10.2σ, 3.8σ and 9σ levels, respectively. Fitting an NFW model to the detected signals, we find that the ensemble mass profile of the BCG sample agrees with the values in the literature. However, the mass profiles of the SDSS DR10 and the SDSS-FIRST matched object samples are found to be shallower and steeper than results in the literature, respectively. The best-fitting Virial masses for the SDSS DR10, BCG and SDSS-FIRST matched samples, derived using an NFW model and allowing for a varying concentration factor, are M_{200}^SDSS-DR10 = (1.2 ± 0.4) × 10^{12} M_{⊙}, M_{200}^BCG = (1.4 ± 1.3) × 10^{13} M_{⊙} and M_{200}^SDSS-FIRST =8.0 ± 4.2 × 10^{13} M_{⊙}, respectively. These results are in good agreement (within ∼2σ) with values in the literature. Our findings suggest that for galaxies to be bright both in the radio and in the optical, they must be embedded in very dense environment on scales R ≲ 1 Mpc.

  16. Detection of Lyman-alpha Emission from a Triply Imaged z = 6.85 Galaxy behind MACS J2129.4-0741

    NASA Astrophysics Data System (ADS)

    Huang, Kuang-Han; Lemaux, Brian C.; Schmidt, Kasper B.; Hoag, Austin; Bradač, Maruša; Treu, Tommaso; Dijkstra, Mark; Fontana, Adriano; Henry, Alaina; Malkan, Matthew; Mason, Charlotte; Morishita, Takahiro; Pentericci, Laura; Ryan, Russell E., Jr.; Trenti, Michele; Wang, Xin

    2016-05-01

    We report the detection of Lyα emission at ˜9538 Å in the Keck/DEIMOS and Hubble Space Telescope WFC3 G102 grism data from a triply imaged galaxy at z=6.846+/- 0.001 behind galaxy cluster MACS J2129.4-0741. Combining the emission line wavelength with broadband photometry, line ratio upper limits, and lens modeling, we rule out the scenario that this emission line is [O II] at z = 1.57. After accounting for magnification, we calculate the weighted average of the intrinsic Lyα luminosity to be ˜ 1.3× {10}42 {erg} {{{s}}}-1 and Lyα equivalent width to be 74 ± 15 Å. Its intrinsic UV absolute magnitude at 1600 Å is -18.6 ± 0.2 mag and stellar mass (1.5+/- 0.3)× {10}7\\quad {M}⊙ , making it one of the faintest (intrinsic {L}{UV}˜ 0.14 {L}{UV}\\ast ) galaxies with Lyα detection at z˜ 7 to date. Its stellar mass is in the typical range for the galaxies thought to dominate the reionization photon budget at z≳ 7; the inferred Lyα escape fraction is high (≳ 10%), which could be common for sub-L* z≳ 7 galaxies with Lyα emission. This galaxy offers a glimpse of the galaxy population that is thought to drive reionization, and it shows that gravitational lensing is an important avenue for probing the sub-L* galaxy population.

  17. Hubble View of a Galaxy Resembling an Atomic Nucleus

    NASA Image and Video Library

    2017-12-08

    The spiral galaxy NGC 7252 has a superficial resemblance to an atomic nucleus surrounded by the loops of electronic orbits, and was informally dubbed the "Atoms for Peace" galaxy. These loops are well visible in a wider field of view image. This nickname is quite ironic, as the galaxy’s past was anything but peaceful. Its peculiar appearance is the result of a collision between two galaxies that took place about a billion years ago, which ripped both galaxies apart. The loop-like outer structures, likely made up of dust and stars flung outwards by the crash, but recalling orbiting electrons in an atom, are partly responsible for the galaxy’s nickname. This NASA/ESA Hubble Space Telescope image shows the inner parts of the galaxy, revealing a pinwheel-shaped disk that is rotating in a direction opposite to the rest of the galaxy. This disk resembles a spiral galaxy like our own galaxy, the Milky Way, but is only about 10,000 light-years across — about a tenth of the size of the Milky Way. It is believed that this whirling structure is a remnant of the galactic collision. It will most likely have vanished in a few billion years’ time, when NGC 7252 will have completed its merging process. Image credit: NASA & ESA, Acknowledgements: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Deep g'r'i'z' GMOS Imaging of the Dwarf Irregular Galaxy Kar 50

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2002-11-01

    Images obtained with the Gemini Multi-Object Spectrograph (GMOS) are used to investigate the stellar content and distance of the dwarf irregular galaxy Kar 50. The brightest object is an H II region, and the bright stellar content is dominated by stars with g'-r'<0. The tips of the main sequence and the red giant branch (RGB) are tentatively identified near r'=24.9 and i'=25.5, respectively. The galaxy has a blue integrated color and no significant color gradient, and we conclude that Kar 50 has experienced a recent galaxy-wide episode of star formation. The distance estimated from the brightest blue stars indicates that Kar 50 is behind the M81 group, and this is consistent with the tentative RGB-tip brightness. Kar 50 has a remarkably flat central surface brightness profile, even at wavelengths approaching 1 μm, although there is no evidence of a bar. In the absence of another large star-forming episode, Kar 50 will evolve into a very low surface brightness galaxy. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council of Canada (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).

  19. Whirlpool Galaxy

    NASA Image and Video Library

    1999-12-04

    The image from NASA Hubble Telescope shows spiral arms and dust clouds in the nearby Whirlpool galaxy. Visible starlight and light from the emission of glowing hydrogen is seen, which is associated with the most luminous young stars in the spiral arms.

  20. Morphology and Structures of Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Seo, Mira; Ann, H. B.

    2016-08-01

    We applied GALFIT and STARLIGHT to the r-band images and spectra, respectively, of ~1,100 dwarf galaxies to analyze the structural properties and stellar populations. In most cases, single component with n = 1 ~ 1.5 well describes the luminosity distribution of dwarf galaxies. However, a large fraction of dS0, dE bc , and dE blue galaxies show sub-structures such as spiral arms and rings. There is a bimodal distributions of stellar ages in dS0 galaxies. But other sub-types of dwarf galaxies show a single peak in the stellar distributions.

  1. An analysis of absorbing image on the Indonesian text by using color matching

    NASA Astrophysics Data System (ADS)

    Hutagalung, G. A.; Tulus; Iryanto; Lubis, Y. F. A.; Khairani, M.; Suriati

    2018-03-01

    The insertion of messages in an image is performed by inserting per character message in some pixels. One way of inserting a message into an image is by inserting the ASCII decimal value of a character to the decimal value of the primary color of the image. Messages that use characters in letters, numbers or symbols, where the use of letters of each word is different in number and frequency of use, as well as the use of letters in various messages within each language. In Indonesian language, the use of the letter A to be the most widely used, and the use of other letters greatly affect the clarity of a message or text presented in the language. This study aims to determine the capacity to absorb the message in Indonesian language from an image and what are the things that affect the difference. The data used in this study consists of several images in JPG or JPEG format can be obtained from the image drawing software or hardware of the image makers at different image sizes. The results of testing on four samples of a color image have been obtained by using an image size of 1200 X 1920.

  2. Destruction and survival of polycyclic aromatic hydrocarbons in active galaxies

    NASA Technical Reports Server (NTRS)

    Voit, G. M.

    1992-01-01

    Infrared spectra of dusty galactic environments often contain emission features attributed to polycyclic aromatic hydrocarbons or PAHs, which can be considered to be very small grains or very large molecules. Although IR spectra of starburst galaxies almost always show these emission features, similar spectra of active galaxies are usually featureless. Even in those active galaxies that do exhibit PAH emission, the PAHs still appear to be eradicated from the nuclear region. This dichotomy suggests that PAHs are destroyed by the intense hard radiation field from an AGN. Laboratory experiments show that certain PAHs are, in fact, so effectively destroyed by individual EUV and X-ray photons that they cannot survive even at kiloparsec distances from active nuclei. Regions within active galaxies that do show PAH emission must therefore be shielded from the central X-ray source by a substantial column density of X-ray absorbing gas.

  3. Unifying X-ray winds in radio galaxies with Chandra HETG

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco

    2013-09-01

    X-ray winds are routinely observed in the spectra of Seyfert galaxies. They can be classified as warm absorbers (WAs), with v~100-1,000km/s, and ultra-fast outflows (UFOs), with v>10,000km/s. In stark contrast, the lack of sensitive enough observations allowed the detection of WAs or UFOs only in very few radio galaxies. Therefore, we propose to observe a small sample of three radio galaxies with the Chandra HETG - 3C111 for 150ks, 3C390.3 for 150ks and 3C120 for 200ks - to detect and study in detail their WAs. We will quantify the importance of mechanical feedback from winds in radio galaxies and compare them to the radio jet power. We will also test whether WAs and UFOs can be unified in a single, multi-phase and multi-scale outflow, as recently reported for Seyferts.

  4. Revealing H I gas in emission and absorption on pc to kpc scales in a galaxy at z ˜ 0.017

    NASA Astrophysics Data System (ADS)

    Gupta, N.; Srianand, R.; Farnes, J. S.; Pidopryhora, Y.; Vivek, M.; Paragi, Z.; Noterdaeme, P.; Oosterloo, T.; Petitjean, P.

    2018-05-01

    We present a detailed study of the quasar-galaxy pair: J1243+4043-UGC 07904. The sight line of the background quasar ( zq = 1.5266) passes through a region of the galaxy (zg = 0.0169) at an impact parameter of 6.9 kpc with high metallicity (0.5 Z⊙) and negligible dust extinction. We detect H I 21-cm absorption from the foreground galaxy at arcsecond and milliarcsecond scales. For typical cold neutral medium (CNM) temperatures in the Milky Way, this 21-cm absorber can be classified as a damped Lyα absorber (DLA). We infer the harmonic mean spin temperature of the gas to be ˜400 K and for a simple two-phase medium we estimate the CNM fraction to be fCNM = 0.27. This is remarkably consistent with the CNM fraction observed in the Galaxy and less than that of high-redshift DLAs. The quasar exhibits a core-jet morphology on milliarcsecond scales, corresponding to an overall extent of ˜9 pc at zg. We show that the size of CNM absorbing clouds associated with the foreground galaxy is >5 pc and they may be part of cold gas structures that extend beyond ˜35 pc. Interestingly, the rotation measure of quasar J1243+4043 is higher than any other source in samples of quasars with high-z DLAs. However, we do not find any detectable differences in rotation measures and polarization fraction of sight lines with or without high-z (z ≥ 2) DLAs or low-z (z ≤ 0.3) 21-cm absorbers. Finally, the foreground galaxy UGC 07904 is also part of a galaxy group. We serendipitously detect H I 21-cm emission from four members of the group, and an ˜80 kpc long H I bridge connecting two of the other members. The latter, together with the properties of the group members, suggests that the group is a highly interactive environment.

  5. VizieR Online Data Catalog: Dwarf galaxies surface brightness profiles. II. (Herrmann+, 2016)

    NASA Astrophysics Data System (ADS)

    Herrmann, K. A.; Hunter, D. A.; Elmegreen, B. G.

    2016-07-01

    Our galaxy sample (see Table1) is derived from the survey of nearby (>30Mpc) late-type galaxies conducted by Hunter & Elmegreen 2006 (cat. J/ApJS/162/49). The full survey includes 94 dwarf Irregulars (dIms), 26 Blue Compact Dwarfs (BCDs), and 20 Magellanic-type spirals (Sms). The 141 dwarf sample presented in the first paper of the present series (Paper I; Herrmann et al. 2013, Cat. J/AJ/146/104) contains one fewer Sm galaxy and two additional dIm systems than the original survey. A multi-wavelength data set has been assembled for these galaxies. The data include Hα images (129 galaxies with detections) to trace star formation over the past 10Myr (Hunter & Elmegreen 2004, Cat. J/AJ/128/2170) and satellite UV images (61 galaxies observed) obtained with the Galaxy Evolution Explorer (GALEX) to trace star formation over the past ~200Myr. The GALEX data include images from two passbands with effective wavelengths of 1516Å (FUV) and 2267Å (NUV) and resolutions of 4'' and 5.6'', respectively. Three of the galaxies in our sample with NUV data do not have FUV data. To trace older stars we have UBV images, which are sensitive to stars formed over the past 1Gyr for on-going star formation, and images in at least one band of JHK for 40 galaxies in the sample, which integrates the star formation over the galaxy's lifetime. Note that nine dwarfs are missing UB data and three more are missing U-band data. In addition we made use of 3.6μm images (39 galaxies) obtained with the Infrared Array Camera (IRAC) in the Spitzer archives also to probe old stars. (3 data files).

  6. Directly Imaging Damped Ly-Alpha Galaxies at Redshifts Greater Than 2. III: The Star Formation Rates of Neutral Gas Reservoirs at Redshifts of Approximately 2.7

    NASA Technical Reports Server (NTRS)

    Fumagalli, Michele; OMeara, John M.; Prochaska, J. Xavier; Rafelski, Marc; Kanekar, Nissim

    2014-01-01

    We present results from a survey designed to probe the star formation properties of 32 damped Ly alpha systems (DLAs) at redshifts of approximately 2.7. By using the "double-DLA" technique that eliminates the glare of the bright background quasars, we directly measure the rest-frame FUV flux from DLAs and their neighbouring galaxies. At the position of the absorbing gas, we place stringent constraints on the unobscured star formation rates (SFRs) of DLAs to 2 sigma limits of psi less than 0.09-0.27 solar mass yr(exp -1), corresponding to SFR surface densities sigma(sub sfr) less than 10(exp -2.6)-10(exp -1.5) solar mass yr(exp -1) kpc(exp -2). The implications of these limits for the star formation law, metal enrichment, and cooling rates of DLAs are examined. By studying the distribution of impact parameters as a function of SFRs for all the galaxies detected around these DLAs, we place new direct constraints on the bright end of the UV luminosity function of DLA hosts. We find that less than or equal to 13% of the hosts have psi greater than or equal to 2 solar mass yr(exp -1) at impact parameters b(sub dla) less than or equal to (psi/solar mass yr(exp -1))(exp 0.8) + 6 kpc, differently from current samples of confirmed DLA galaxies. Our observations also disfavor a scenario in which the majority of DLAs arise from bright LBGs at distances 20 less than or equal to b(sub dla) less than 100 kpc. These new findings corroborate a picture in which DLAs do not originate from highly star forming systems that are coincident with the absorbers, and instead suggest that DLAs are associated with faint, possibly isolated, star-forming galaxies. Potential shortcomings of this scenario and future strategies for further investigation are discussed.

  7. Watching Galaxy Evolution in High Definition

    NASA Technical Reports Server (NTRS)

    Rigby, Jane

    2011-01-01

    As Einstein predicted, mass deflects light. In hundreds of known cases, "gravitational lenses" have deflected, distorted, and amplified images of galaxies or quasars behind them. As such, gravitational lensing is a way to "cheat" at studying how galaxies evolve, because lensing can magnify galaxies by factors of 10--100 times, transforming them from objects we can barely detect to bright objects we can study in detail. I'll summarize new results from a comprehensive program, using multi-wavelength, high-quality spectroscopy, to study how galaxies formed stars at redshifts of 1--3, the epoch when most of the Universe's stars were formed.

  8. Watching Galaxy Evolution in High Definition

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2012-01-01

    As Einstein predicted, mass deflects light. In hundreds of known cases, "gravitational lenses" have deflected, distorted, and amplified images of galaxies or quasars behind them. As such, gravitational lensing is a way to "cheat" at studying how galaxies evolve, because lensing can magnify galaxies by factors of 10-100 times, transforming them from objects we can barely detect to bright objects we can study in detail. I'll summarize new results from a comprehensive program, using multi-wavelength, high-quality spectroscopy, to study how galaxies formed stars at redshifts of 1-3, the epoch when most of the Universe's stars were formed.

  9. An atlas of high-resolution IRAS maps on nearby galaxies

    NASA Technical Reports Server (NTRS)

    Rice, Walter

    1993-01-01

    An atlas of far-infrared IRAS maps with near 1 arcmin angular resolution of 30 optically large galaxies is presented. The high-resolution IRAS maps were produced with the Maximum Correlation Method (MCM) image construction and enhancement technique developed at IPAC. The MCM technique, which recovers the spatial information contained in the overlapping detector data samples of the IRAS all-sky survey scans, is outlined and tests to verify the structural reliability and photometric integrity of the high-resolution maps are presented. The infrared structure revealed in individual galaxies is discussed. The atlas complements the IRAS Nearby Galaxy High-Resolution Image Atlas, the high-resolution galaxy images encoded in FITS format, which is provided to the astronomical community as an IPAC product.

  10. Hubble's High-Definition Panoramic View of the Andromeda Galaxy

    NASA Image and Video Library

    2017-12-08

    Zoom into the Andromeda galaxy. The largest NASA Hubble Space Telescope image ever assembled, this sweeping view of a portion of the Andromeda galaxy (M31) is the sharpest large composite image ever taken of our galactic neighbor. Though the galaxy is over 2 million light-years away, the Hubble telescope is powerful enough to resolve individual stars in a 61,000-light-year-long section of the galaxy's pancake-shaped disk. It's like photographing a beach and resolving individual grains of sand. And, there are lots of stars in this sweeping view — over 100 million, with some of them in thousands of star clusters seen embedded in the disk. This ambitious photographic cartography of the Andromeda galaxy represents a new benchmark for precision studies of large spiral galaxies which dominate the universe's population of over 100 billion galaxies. Never before have astronomers been able to see individual stars over a major portion of an external spiral galaxy. Most of the stars in the universe live inside such majestic star cities, and this is the first data that reveal populations of stars in context to their home galaxy. Credit: NASA, ESA, and G. Bacon (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Galaxy Evolution Explorer Celebrates Five Years in Space

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Poster Version

    Since its launch five years ago, the Galaxy Evolution Explorer has photographed hundreds of millions of galaxies in ultraviolet light. M106 is one of those galaxies, and from 22 light years away, it strikes a pose in blue and gold for this new commemorative portrait.

    The galaxy's extended arms are the blue filaments that curve around its edge, creating its outer disk. Tints of blue in M106's arms reveal hot, young massive stars. Traces of gold toward the center show an older stellar population and indicate the presence of obscuring dust.

    From 24 million light-years away, neighboring galaxy NGC 4248 also makes a memorable appearance, sitting just right of M106. The irregular galaxy looks like a yellow smudge, with a bluish-white bar in the center. The galaxy's outer golden glow indicates a population of older stars, while the blue central region shows a younger stellar demographic.

    Dwarf galaxy UGC 7365 emerges at the bottom center of this image, as a faint yellow smudge directly below M106. This galaxy is not forming any new stars, and looks much smaller than M106 despite being closer to Earth, at 14 million light-years away.

    Over the past five years, the Galaxy Evolution Explorer has imaged half a billion objects over 27,000 square degrees of sky equivalent to an area that would be covered by 138,000 full moons. The telescope orbits Earth every 94 minutes and travels approximately 408,470 million miles per day. Its overarching question is: how do galaxies grow and change over 10 billion years of cosmic history?

    M106, also known as NGC 4258, is located in the constellation Canes Venatici. This image is a two-color composite, where far-ultraviolet light is blue, and near-ultraviolet light is red.

  12. Featured Image: A Molecular Cloud Outside Our Galaxy

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-06-01

    What do molecular clouds look like outside of our own galaxy? See for yourself in the images above and below of N55, a molecular cloud located in the Large Magellanic Cloud (LMC). In a recent study led by Naslim Neelamkodan (Academia Sinica Institute of Astronomy and Astrophysics, Taiwan), a team of scientists explore N55 to determine how its cloud properties differ from clouds within the Milky Way. The image above reveals the distribution of infrared-emitting gas and dust observed in three bands by the Spitzer Space Telescope. Overplotted in cyan are observations from the Atacama Submillimeter Telescope Experiment tracing the clumpy, warm molecular gas. Below, new observations from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the sub-parsec-scale molecular clumps in greater detail, showing the correlation of massive clumps with Spitzer-identified young stellar objects (crosses). The study presented here indicates that this cloud in the LMC is the site of massive star formation, with properties similar to equivalent clouds in the Milky Way. To learn more about the authors findings, check out the article linked below.CitationNaslim N. et al 2018 ApJ 853 175. doi:10.3847/1538-4357/aaa5b0

  13. Galaxy Zoo: Motivations of Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Raddick, Jordan; Lintott, C.; Bamford, S.; Land, K.; Locksmith, D.; Murray, P.; Nichol, B.; Schawinski, K.; Slosar, A.; Szalay, A.; Thomas, D.; Vandenberg, J.; Andreescu, D.

    2008-05-01

    We have developed Galaxy Zoo, a citizen science project in which volunteers classify images of galaxies by shape. The site has been hugely successful in reaching large numbers of people - more than 125,000 people have signed up. As a result, each galaxy has been classified more than 30 times, resulting in high-quality science results. We are studying the motivations of these volunteers to determine what about our site made it so captivating. We have some ideas - people enjoy helping science, looking at beautiful galaxy images, and the "game" nature of the interface. But we want to study the motivations systematically, to learn who thinks what, and how this affects what they do. We have designed a methodology in which we begin with interviews, asking open-ended questions of volunteers about their motivation. Then, we design a survey to collect motivation data for a larger sample. Lastly, for volunteers who agreed to give us their site username, we examine how they classified galaxies to look for correlations between motivation and behavior. In this poster, we describe our methodology and present preliminary results of our research.

  14. VizieR Online Data Catalog: Galaxy Zoo 2: new classification (Hart+, 2016)

    NASA Astrophysics Data System (ADS)

    Hart, R. E.; Bamford, S. P.; Willett, K. W.; Masters, K. L.; Cardamone, C.; Lintott, C. J.; Mackay, R. J.; Nichol, R. C.; Rosslowe, C. K.; Simmons, B. D.; Smethurst, R. J.

    2017-11-01

    We make use of morphological information from the public data release of Galaxy Zoo 2. The galaxies classified by GZ2 were taken from the SDSS Data Release 7 (DR7; Abazajian et al. 2009ApJS..182..543A). The SDSS main galaxy sample is an r-band selected sample of galaxies in the legacy imaging area targeted for spectroscopic follow-up (Strauss et al., 2002AJ....124.1810S) The GZ2 sample contains essentially all well-resolved galaxies in DR7 down to a limiting absolute magnitude of mr<=17, supplemented by additional sets of galaxies in Stripe 82 for which deeper, co-added imaging exists (see W13 (Willett et al., 2013MNRAS.435.2835W, Cat. J/MNRAS/435/2835) for details). In this paper, we only consider galaxies with mr<=17 that were classified in normal-depth SDSS imaging and which have DR7 spectroscopic redshifts. We refer to this as our full sample, containing 228201 galaxies, to which the debiasing procedure described in Section 3.3 is applied. (1 data file).

  15. Hubble's Hockey Stick Galaxy

    NASA Image and Video Library

    2017-12-08

    The star of this NASA/ESA Hubble Space Telescope image is a galaxy known as NGC 4656, located in the constellation of Canes Venatici (The Hunting Dogs). However, it also has a somewhat more interesting and intriguing name: the Hockey Stick Galaxy! The reason for this is a little unclear from this partial view, which shows the bright central region, but the galaxy is actually shaped like an elongated, warped stick, stretching out through space until it curls around at one end to form a striking imitation of a celestial hockey stick. This unusual shape is thought to be due to an interaction between NGC 4656 and a couple of near neighbors, NGC 4631 (otherwise known as The Whale Galaxy) and NGC 4627 (a small elliptical). Galactic interactions can completely reshape a celestial object, shifting and warping its constituent gas, stars, and dust into bizarre and beautiful configurations. Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. High-performance mushroom plasmonic metamaterial absorbers for infrared polarimetric imaging

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinpei; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Kuboyama, Takafumi; Kimata, Masafumi

    2017-02-01

    Infrared (IR) polarimetric imaging is a promising approach to enhance object recognition with conventional IR imaging for applications such as artificial object recognition from the natural environment and facial recognition. However, typical infrared polarimetric imaging requires the attachment of polarizers to an IR camera or sensor, which leads to high cost and lower performance caused by their own IR radiation. We have developed asymmetric mushroom plasmonic metamaterial absorbers (A-MPMAs) to address this challenge. The A-MPMAs have an all-Al construction that consists of micropatches and a reflector layer connected with hollow rectangular posts. The asymmetric-shaped micropatches lead to strong polarization-selective IR absorption due to localized surface plasmon resonance at the micropatches. The operating wavelength region can be controlled mainly by the micropatch and the hollow rectangular post size. AMPMAs are complicated three-dimensional structures, the fabrication of which is challenging. Hollow rectangular post structures are introduced to enable simple fabrication using conventional surface micromachining techniques, such as sacrificial layer etching, with no degradation of the optical properties. The A-MPMAs have a smaller thermal mass than metal-insulator-metal based metamaterials and no influence of the strong non-linear dispersion relation of the insulator materials constant, which produces a gap in the wavelength region and additional absorption insensitive to polarization. A-MPMAs are therefore promising candidates for uncooled IR polarimetric image sensors in terms of both their optical properties and ease of fabrication. The results presented here are expected to contribute to the development of highperformance polarimetric uncooled IR image sensors that do not require polarizers.

  17. Dusty Sunrise at Core of Galaxy Artist Concept

    NASA Image and Video Library

    2015-05-21

    This artist's concept depicts the current record holder for the most luminous galaxy in the universe. The galaxy, named WISE J224607.57-052635.0, is erupting with light equal to more than 300 trillion suns. It was discovered by NASA's Wide-Field Infrared Survey Explorer, or WISE. The galaxy is smaller than the Milky Way, yet puts out 10,000 times more energy. Scientists think that a supermassive black hole at the center of this dusty galaxy is busily consuming gaseous material in a colossal growth spurt. As the gas is dragged toward the black hole, it heats up and blasts out visible, ultraviolet and X-ray light. The dust swaddling the galaxy absorbs this light and heats up, radiating longer-wavelength, infrared light. The dust also blocks our view of shorter, visible-light wavelengths, while letting longer-wavelengths through. This is similar to what happens when sunlight streams through our dusty atmosphere, producing a brilliant red sunrise. In fact, more than 99 percent of the light escaping from this dusty galaxy is infrared. As a result, it is much harder to see with optical telescopes. Because light from the galaxy hosting the black hole has traveled 12.5 billion years to reach us, astronomers are seeing the object as it was in the distant past. During this epoch, galaxies would have been more than five times closer together than they are now, as illustrated in the background of the artist's concept. This is due to the expansion of space -- space itself and the galaxies in it are stretching apart from each other at ever-increasing speeds. http://photojournal.jpl.nasa.gov/catalog/PIA19339

  18. A Narrowband Imaging Search for [O III] Emission from Galaxies at z > 3

    NASA Astrophysics Data System (ADS)

    Teplitz, Harry I.; Malkan, Matthew A.; McLean, Ian S.

    1999-03-01

    We present the results of a narrowband survey of quasi-stellar-object (QSO) fields at redshifts that place the [O III] (5007 Å) emission line in the Δλ/λ~1% 2.16 μm filter. We have observed 3 arcmin2 and detected one emission-line candidate object in the field around PC 1109+4642. We discuss the possibilities that this object is a star-forming galaxy at the QSO redshift, zem=3.313, or a Seyfert galaxy. In the former case, we infer a star formation rate of 170 Msolar yr-1 for this K'=21.3 object. The galaxy has a compact but resolved morphology, with an FWHM=0.6" or 4.2 kpc at z=3.313 (H0=50 km s-1 Mpc-1 and q0=0.5). The comoving density of such objects in QSO environments appears to be 0.0033 Mpc-3, marginally lower (<=3 σ) than the density observed for Hα-emitters in absorption-line fields at z~2.5 but similar to the density of Lyman-break galaxies at z~3. If, on the other hand, most of the line emission is [O III] from a Seyfert 2 nucleus at z=3.31, then the high inferred volume density could imply a large evolution in the Seyfert 2 luminosity function from the current epoch. We find the field containing the object to also contain many faint extended objects in the K' image but little significant excess over the expected number-magnitude relation. We discuss the implication of the emission line being a longer wavelength line at a lower redshift.

  19. Large Face on Spiral Galaxy NGC 3344

    NASA Image and Video Library

    2005-05-05

    This ultraviolet image from NASA Galaxy Evolution Explorer is of the large face on spiral galaxy NGC 3344. The inner spiral arms are wrapped so tightly that they are difficult to distinguish. http://photojournal.jpl.nasa.gov/catalog/PIA07904

  20. Environmental Dependence of Warps in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae; Bae, Hyun Jeong

    2016-12-01

    We determined the warp parameters of 192 warped galaxies which are selected from 340 edge-on galaxies using color images as well as r-band isophotal maps. We derive the local background density (Σ_{n}) to examine the dependence of the warp amplitudes on the galaxy environment. We find a clear trend that strongly warped galaxies are likely to be found in high density regions where tidal interactions are supposed to be frequent. However, the correlation between α_{w} and Σ_{n} is too weak for weakly warped galaxies (α_{w} < 4°) and the cumulative distributions of weakly warped galaxies are not significantly different from those of galaxies with no detectable warps. This suggests that tidal interactions do not play a decisive role in the formation of weak warps.}

  1. GALAXY GROWTH BY MERGING IN THE NEARBY UNIVERSE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Tao; Hogg, David W.; Blanton, Michael R., E-mail: david.hogg@nyu.edu

    2012-11-10

    We measure the mass growth rate by merging for a wide range of galaxy types. We present the small-scale (0.014 h {sup -1} {sub 70} Mpc < r < 11 h {sub 70} {sup -1} Mpc) projected cross-correlation functions w(r {sub p}) of galaxy subsamples from the spectroscopic sample of the NYU Value-Added Galaxy Catalog (5 Multiplication-Sign 10{sup 5} galaxies of redshifts 0.03 < z < 0.15) with galaxy subsamples from the Sloan Digital Sky Survey imaging (4 Multiplication-Sign 10{sup 7} galaxies). We use smooth fits to de-project the two-dimensional functions w(r {sub p}) to obtain smooth three-dimensional real-space cross-correlationmore » functions {xi}(r) for each of several spectroscopic subsamples with each of several imaging subsamples. Because close pairs are expected to merge, the three-space functions and dynamical evolution time estimates provide galaxy accretion rates. We find that the accretion onto massive blue galaxies and onto red galaxies is dominated by red companions, and that onto small-mass blue galaxies, red and blue galaxies make comparable contributions. We integrate over all types of companions and find that at fixed stellar mass, the total fractional accretion rates onto red galaxies ({approx}3 h {sub 70} percent per Gyr) are greater than that onto blue galaxies ({approx}1 h {sub 70} percent per Gyr). These rates are almost certainly overestimates because we have assumed that all close pairs merge as quickly as the merger time that we used. One conclusion of this work is that if the total growth of red galaxies from z = 1 to z = 0 is mainly due to merging, the merger rates must have been higher in the past.« less

  2. GOODS Far Infrared Imaging with Herschel

    NASA Astrophysics Data System (ADS)

    Frayer, David T.; Elbaz, D.; Dickinson, M.; GOODS-Herschel Team

    2010-01-01

    Most of the stars in galaxies formed at high redshift in dusty environments, where their energy was absorbed and re-radiated at infrared wavelengths. Similarly, much of the growth of nuclear black holes in active galactic nuclei (AGN) was also obscured from direct view at UV/optical and X-ray wavelengths. The Great Observatories Origins Deep Survey Herschel (GOODS-H) open time key program will obtain the deepest far-infrared view of the distant universe, mapping the history of galaxy growth and AGN activity over a broad swath of cosmic time. GOODS-H will image the GOODS-North field with the PACS and SPIRE instruments at 100 to 500 microns, matching the deep survey of GOODS-South in the guaranteed time key program. GOODS-H will also observe an ultradeep sub-field within GOODS-South with PACS, reaching the deepest flux limits planned for Herschel (0.6 mJy at 100 microns with S/N=5). GOODS-H data will detect thousands of luminous and ultraluminous infrared galaxies out to z=4 or beyond, measuring their far-infrared luminosities and spectral energy distributions, and providing the best constraints on star formation rates and AGN activity during this key epoch of galaxy and black hole growth in the young universe.

  3. The Ultra-Luminous X-ray Source Population from the Chandra Archive of Galaxies

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Ghosh, Kajal K.; Tennant, Allen F.; Wu, Kinwah

    2004-01-01

    One hundred fifty-four discrete non-nuclear Ultra-Luminous X-ray (ULX) sources, with spectroscopically-determined intrinsic X-ray luminosities greater than 1 e39 ergs/s, are identified in 82 galaxies observed with Chandra's Advanced CCD Imaging Spectrometer. Source positions, X-ray luminosities, and spectral and timing characteristics are tabulated. Statistical comparisons between these X-ray properties and those of the weaker discrete sources in the same fields (mainly neutron star and stellar-mass black hole binaries) are made. Sources above approximately le38 ergs per second display similar spatial, spectral, color, and variability distributions. In particular, there is no compelling evidence in the sample for a new and distinct class of X-ray object such as the intermediate-mass black holes. 83% of ULX candidates have spectra that can be described as absorbed power laws with index = 1.74 and column density = 2.24e21 l per square centimeter, or approximately 5 times the average Galactic column. About 20% of the ULX's have much steeper indices indicative of a soft, and likely thermal, spectrum. The locations of ULXs in their host galaxies are strongly peaked towards their galaxy centers. The deprojected radial distribution of the ULX candidates is somewhat steeper than an exponential disk, indistinguishable from that of the weaker sources. About 5--15% of ULX candidates are variable during the Chandra observations (which average 39.5 ks). Comparison of the cumulative X-ray luminosity functions of the ULXs to Chandra Deep Field results suggests approximately 25% of the sources may be background objects including 14% of the ULX candidates in the sample of spiral galaxies and 44% of those in elliptical galaxies implying the elliptical galaxy ULX population is severely compromised by background active galactic nuclei. Correlations with host galaxy properties confirm the number and total X-ray luminosity of the ULXs are associated with recent star formation

  4. A BIRD'S EYE VIEW OF A GALAXY COLLISION

    NASA Technical Reports Server (NTRS)

    2002-01-01

    What appears as a bird's head, leaning over to snatch up a tasty meal, is a striking example of a galaxy collision in NGC 6745. A large spiral galaxy, with its nucleus still intact, peers at the smaller passing galaxy (nearly out of the field of view at lower right), while a bright blue beak and bright whitish-blue top feathers show the distinct path taken during the smaller galaxy's journey. These galaxies did not merely interact gravitationally as they passed one another, they actually collided. When galaxies collide, the stars that normally comprise the major portion of the luminous mass of each of the two galaxies will almost never collide with each other, but will pass rather freely between each other with little damage. This occurs because the physical size of individual stars is tiny compared to their typical separations, making the chance of physical encounter relatively small. In our own Milky Way galaxy, the space between our Sun and our nearest stellar neighbor, Proxima Centauri (part of the Alpha Centauri triple system), is a vast 4.3 light-years. However, the situation is quite different for the interstellar media in the above two galaxies - material consisting largely of clouds of atomic and molecular gases and of tiny particles of matter and dust, strongly coupled to the gas. Wherever the interstellar clouds of the two galaxies collide, they do not freely move past each other without interruption but, rather, suffer a damaging collision. High relative velocities cause ram pressures at the surface of contact between the interacting interstellar clouds. This pressure, in turn, produces material densities sufficiently extreme as to trigger star formation through gravitational collapse. The hot blue stars in this image are evidence of this star formation. This image was created by the Hubble Heritage Team using NASA Hubble Space Telescope archive data taken with the Wide Field Planetary Camera 2 in March 1996. Members of the science team, which include

  5. Gravitational lensing frequencies - Galaxy cross-sections and selection effects

    NASA Technical Reports Server (NTRS)

    Fukugita, Masataka; Turner, Edwin L.

    1991-01-01

    Four issues - (1) the best currently available data on the galaxy velocity-dispersion distribution, (2) the effects of finite core radii potential ellipticity on lensing cross sections, (3) the predicted distribution of lens image separations compared to observational angular resolutions, and (4) the preferential inclusion of lens systems in flux limited samples - are considered in order to facilitate more realistic predictions of multiple image galaxy-quasar lensing frequencies. It is found that (1) the SIS lensing parameter F equals 0.047 +/-0.019 with almost 90 percent contributed by E and S0 galaxies, (2) observed E and S0 core radii are remarkably small, yielding a factor of less than about 2 reduction in total lensing cross sections, (3) 50 percent of galaxy-quasar lenses have image separations greater than about 1.3 arcsec, and (4) amplification bias factors are large and must be carefully taken into account. It is concluded that flat universe models excessively dominated by the cosmological constant are not favored by the small observed galaxy-quasar lensing rate.

  6. VISTA Views the Sculptor Galaxy

    NASA Astrophysics Data System (ADS)

    2010-06-01

    A spectacular new image of the Sculptor Galaxy (NGC 253) has been taken with the ESO VISTA telescope at the Paranal Observatory in Chile as part of one of its first major observational campaigns. By observing in infrared light VISTA's view is less affected by dust and reveals a myriad of cooler stars as well as a prominent bar of stars across the central region. The VISTA image provides much new information on the history and development of the galaxy. The Sculptor Galaxy (NGC 253) lies in the constellation of the same name and is one of the brightest galaxies in the sky. It is prominent enough to be seen with good binoculars and was discovered by Caroline Herschel from England in 1783. NGC 253 is a spiral galaxy that lies about 13 million light-years away. It is the brightest member of a small collection of galaxies called the Sculptor Group, one of the closest such groupings to our own Local Group of galaxies. Part of its visual prominence comes from its status as a starburst galaxy, one in the throes of rapid star formation. NGC 253 is also very dusty, which obscures the view of many parts of the galaxy (eso0902). Seen from Earth, the galaxy is almost edge on, with the spiral arms clearly visible in the outer parts, along with a bright core at its centre. VISTA, the Visible and Infrared Survey Telescope for Astronomy, the latest addition to ESO's Paranal Observatory in the Chilean Atacama Desert, is the world's largest survey telescope. After being handed over to ESO at the end of 2009 (eso0949) the telescope was used for two detailed studies of small sections of the sky before it embarked on the much larger surveys that are now in progress. One of these "mini surveys" was a detailed study of NGC 253 and its environment. As VISTA works at infrared wavelengths it can see right through most of the dust that is such a prominent feature of the Sculptor Galaxy when viewed in visible light. Huge numbers of cooler stars that are barely detectable with visible

  7. Strong Lensing Analysis of the Galaxy Cluster MACS J1319.9+7003 and the Discovery of a Shell Galaxy

    NASA Astrophysics Data System (ADS)

    Zitrin, Adi

    2017-01-01

    We present a strong-lensing (SL) analysis of the galaxy cluster MACS J1319.9+7003 (z = 0.33, also known as Abell 1722), as part of our ongoing effort to analyze massive clusters with archival Hubble Space Telescope (HST) imaging. We spectroscopically measured with Keck/Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE) two galaxies multiply imaged by the cluster. Our analysis reveals a modest lens, with an effective Einstein radius of {θ }e(z=2)=12+/- 1\\prime\\prime , enclosing 2.1+/- 0.3× {10}13 M⊙. We briefly discuss the SL properties of the cluster, using two different modeling techniques (see the text for details), and make the mass models publicly available (ftp://wise-ftp.tau.ac.il/pub/adiz/MACS1319/). Independently, we identified a noteworthy, young shell galaxy (SG) system forming around two likely interacting cluster members, 20″ north of the brightest cluster galaxy. SGs are rare in galaxy clusters, and indeed, a simple estimate reveals that they are only expected in roughly one in several dozen, to several hundred, massive galaxy clusters (the estimate can easily change by an order of magnitude within a reasonable range of characteristic values relevant for the calculation). Taking advantage of our lens model best-fit, mass-to-light scaling relation for cluster members, we infer that the total mass of the SG system is ˜ 1.3× {10}11 {M}⊙ , with a host-to-companion mass ratio of about 10:1. Despite being rare in high density environments, the SG constitutes an example to how stars of cluster galaxies are efficiently redistributed to the intra-cluster medium. Dedicated numerical simulations for the observed shell configuration, perhaps aided by the mass model, might cast interesting light on the interaction history and properties of the two galaxies. An archival HST search in galaxy cluster images can reveal more such systems.

  8. Warm Absorber Diagnostics of AGN Dynamics

    NASA Astrophysics Data System (ADS)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  9. A Lot of Galaxies Need Guarding in this NASA Hubble View

    NASA Image and Video Library

    2017-12-08

    Much like the eclectic group of space rebels in the upcoming film Guardians of the Galaxy Vol. 2, NASA’s Hubble Space Telescope has some amazing superpowers, specifically when it comes to observing innumerable galaxies flung across time and space. A stunning example is a galaxy cluster called Abell 370 that contains an astounding assortment of several hundred galaxies tied together by the mutual pull of gravity. That’s a lot of galaxies to be guarding, and just in this one cluster! Read more: go.nasa.gov/2paAitl Photo caption: Galaxy cluster Abell 370 contains several hundred galaxies tied together by the mutual pull of gravity. Photographed in a combination of visible and near-infrared light, the brightest and largest galaxies are the yellow-white, massive, elliptical galaxies containing many hundreds of billions of stars each. Spiral galaxies have younger populations of stars and are bluish. Mysterious-looking arcs of blue light are distorted images of remote galaxies behind the cluster. The cluster acts as a huge lens in space that magnifies and stretches images of background galaxies like a funhouse mirror. Photo Credit: NASA, ESA, and J. Lotz and the HFF Team (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. 3; Measurement for URSA Minor

    NASA Technical Reports Server (NTRS)

    Piatek, Slawomir; Pryor, Carlton; Bristow, Paul; Olszewski, Edward W.; Harris, Hugh C.; Mateo, Mario; Minniti, Dante; Tinney, Christopher G.

    2005-01-01

    This article presents a measurement of the proper motion of the Ursa Minor dwarf spheroidal galaxy determined from images taken with the Hubble Space Telescope in two distinct fields. Each field contains a quasi-stellar object that serves as the "reference point". Integrating the motion of Ursa Minor in a realistic potential for the Milky Way produces orbital elements. The perigalacticon and apogalacticon are 40 (10, 76) and 89 (78, 160) kpc, respectively, where the values in the parentheses represent the 95% confidence intervals derived from Monte Carlo experiments. The eccentricity of the orbit is 0.39 (0.09, 0.79), and the orbital period is 1.5 (1.1, 2.7) Gyr. The orbit is retrograde and inclined by 124 degrees (94 deg, 36 deg ) to the Galactic plane. Ursa Minor is not a likely member of a proposed stream of galaxies on similar orbits around the Milky Way, nor is the plane of its orbit coincident with a recently proposed planar alignment of galaxies around the Milky Way. Comparing the orbits of Ursa Minor and Carina shows no reason for the different star formation histories of these two galaxies. Ursa Minor must contain dark matter to have a high probability of having survived disruption by the Galactic tidal force until the present.

  11. Star Formation Properties of Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Hunter, D. A.; Elmegreen, B. G.

    2003-12-01

    What regulates star formation in gas-rich dwarf galaxies on global and local scales? To address this question, we have conducted a survey of a large sample of reasonably normal, relatively nearby, non-interacting galaxies without spiral arms. The sample includes 94 Im galaxies, 26 Blue Compact Dwarfs, and 20 Sm systems. The data consist of UBV and Hα images for the entire sample, and JHK images, HI maps, CO observations, and HII region spectrophotometry for a sub-sample. The Hα , UBV, and JHK image sets act as probes of star formation on three different times scales: Hα images trace the most recent star formation (≤10 Myrs) through the ionization of natal clouds by the short-lived massive stars; UBV, while a more complicated clue, integrates over the past Gyr; and JHK integrates over the lifetime of the galaxy where even in Im galaxies global JHK colors are characteristic of old stellar populations. These data are being used to determine the nature and distribution of the star formation activity, to characterize the interstellar medium out of which the clouds and stars are forming, and to develop models that describe the important processes that drive star formation in these tiny systems. Here we present the Hα data: integrated star formation rates, azimuthally-averaged Hα surface brightnesses, and extents of star formation, and explore the relationship of the star formation properties to other integrated parameters of the galaxies. One TI CCD used in this work was provided to Lowell by the National Science Foundation and another was on loan from the U. S. Naval Observatory in Flagstaff. The Hα filters were purchased with funds provided by a Small Research Grant from the American Astronomical Society, National Science Foundation grant AST-9022046, and grant 960355 from JPL. Funding for carrying out this work was provided by the Lowell Research Fund and by the National Science Foundation through grants AST-0204922 to DAH and AST-0205097 to BGE.

  12. Star-formation complexes in the `galaxy-sized' supergiant shell of the galaxy Holmberg I

    NASA Astrophysics Data System (ADS)

    Egorov, Oleg V.; Lozinskaya, Tatiana A.; Moiseev, Alexei V.; Smirnov-Pinchukov, Grigory V.

    2018-05-01

    We present the results of observations of the galaxy Holmberg I carried out at the Russian 6-m telescope in the narrow-band imaging, long-slit spectroscopy, and scanning Fabry-Perot interferometer modes. A detailed analysis of gas kinematics, ionization conditions, and metallicity of star-forming regions in the galaxy is presented. The aim of the paper is to analyse the propagation of star formation in the galaxy and to understand the role of the ongoing star formation in the evolution of the central `galaxy-sized' supergiant H I shell (SGS), where all regions of star formation are observed. We show that star formation in the galaxy occurs in large unified complexes rather than in individual giant H II regions. Evidence of the triggered star formation is observed both on scales of individual complexes and of the whole galaxy. We identified two supernova-remnant candidates and one late-type WN star and analysed their spectrum and surrounding-gas kinematics. We provide arguments indicating that the SGS in Holmberg I is destructing by the influence of star formation occurring on its rims.

  13. The host galaxy/AGN connection in nearby early-type galaxies. Is there a miniature radio-galaxy in every "core" galaxy?

    NASA Astrophysics Data System (ADS)

    Balmaverde, B.; Capetti, A.

    2006-02-01

    This is the second of a series of three papers exploring the connection between the multiwavelength properties of AGN in nearby early-type galaxies and the characteristics of their hosts. We selected two samples with 5 GHz VLA radio flux measurements down to 1 mJy, reaching levels of radio luminosity as low as 1036 erg s-1. In Paper I we presented a study of the surface brightness profiles for the 65 objects with available archival HST images out of the 116 radio-detected galaxies. We classified early-type galaxies into "core" and "power-law" galaxies, discriminating on the basis of the slope of their nuclear brightness profiles, following the Nukers scheme. Here we focus on the 29 core galaxies (hereafter CoreG). We used HST and Chandra data to isolate their optical and X-ray nuclear emission. The CoreG invariably host radio-loud nuclei, with an average radio-loudness parameter of Log R = L5 {GHz} / LB ˜ 3.6. The optical and X-ray nuclear luminosities correlate with the radio-core power, smoothly extending the analogous correlations already found for low luminosity radio-galaxies (LLRG) toward even lower power, by a factor of ˜ 1000, covering a combined range of 6 orders of magnitude. This supports the interpretation of a common non-thermal origin of the nuclear emission also for CoreG. The luminosities of the nuclear sources, most likely dominated by jet emission, set firm upper limits, as low as L/L_Edd ˜ 10-9 in both the optical and X-ray band, on any emission from the accretion process. The similarity of CoreG and LLRG when considering the distributions host galaxies luminosities and black hole masses, as well as of the surface brightness profiles, indicates that they are drawn from the same population of early-type galaxies. LLRG represent only the tip of the iceberg associated with (relatively) high activity levels, with CoreG forming the bulk of the population. We do not find any relationship between radio-power and black hole mass. A minimum black hole

  14. STScI-PRC02-11a FARAWAY GALAXIES PROVIDE A STUNNING 'WALLPAPER' BACKDROP FOR A RUNAWAY GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Against a stunning backdrop of thousands of galaxies, this odd-looking galaxy with the long streamer of stars appears to be racing through space, like a runaway pinwheel firework. This picture of the galaxy UGC 10214 was taken by the Advanced Camera for Surveys (ACS), which was installed aboard NASA's Hubble Space Telescope in March during Servicing Mission 3B. Dubbed the 'Tadpole,' this spiral galaxy is unlike the textbook images of stately galaxies. Its distorted shape was caused by a small interloper, a very blue, compact galaxy visible in the upper left corner of the more massive Tadpole. The Tadpole resides about 420 million light-years away in the constellation Draco. Seen shining through the Tadpole's disk, the tiny intruder is likely a hit-and-run galaxy that is now leaving the scene of the accident. Strong gravitational forces from the interaction created the long tail of debris, consisting of stars and gas that stretch out more than 280,000 light-years. Numerous young blue stars and star clusters, spawned by the galaxy collision, are seen in the spiral arms, as well as in the long 'tidal' tail of stars. Each of these clusters represents the formation of up to about a million stars. Their color is blue because they contain very massive stars, which are 10 times hotter and 1 million times brighter than our Sun. Once formed, the star clusters become redder with age as the most massive and bluest stars exhaust their fuel and burn out. These clusters will eventually become old globular clusters similar to those found in essentially all halos of galaxies, including our own Milky Way. Two prominent clumps of young bright blue stars in the long tail are separated by a 'gap' -- a section that is fainter than the rest of the tail. These clumps of stars will likely become dwarf galaxies that orbit in the Tadpole's halo. The galactic carnage and torrent of star birth are playing out against a spectacular backdrop: a 'wallpaper pattern' of 6,000 galaxies. These

  15. Automatic Approach to Morphological Classification of Galaxies With Analysis of Galaxy Populations in Clusters

    NASA Astrophysics Data System (ADS)

    Sultanova, Madina; Barkhouse, Wayne; Rude, Cody

    2018-01-01

    The classification of galaxies based on their morphology is a field in astrophysics that aims to understand galaxy formation and evolution based on their physical differences. Whether structural differences are due to internal factors or a result of local environment, the dominate mechanism that determines galaxy type needs to be robustly quantified in order to have a thorough grasp of the origin of the different types of galaxies. The main subject of my Ph.D. dissertation is to explore the use of computers to automatically classify and analyze large numbers of galaxies according to their morphology, and to analyze sub-samples of galaxies selected by type to understand galaxy formation in various environments. I have developed a computer code to classify galaxies by measuring five parameters from their images in FITS format. The code was trained and tested using visually classified SDSS galaxies from Galaxy Zoo and the EFIGI data set. I apply my morphology software to numerous galaxies from diverse data sets. Among the data analyzed are the 15 Abell galaxy clusters (0.03 < z < 0.184) from Rude et al. 2017 (in preparation), which were observed by the Canada-France-Hawaii Telescope. Additionally, I studied 57 galaxy clusters from Barkhouse et al. (2007), 77 clusters from the WINGS survey (Fasano et al. 2006), and the six Hubble Space Telescope (HST) Frontier Field galaxy clusters. The high resolution of HST allows me to compare distant clusters with those nearby to look for evolutionary changes in the galaxy cluster population. I use the results from the software to examine the properties (e.g. luminosity functions, radial dependencies, star formation rates) of selected galaxies. Due to the large amount of data that will be available from wide-area surveys in the future, the use of computer software to classify and analyze the morphology of galaxies will be extremely important in terms of efficiency. This research aims to contribute to the solution of this problem.

  16. An Elegant Galaxy in an Unusual Light

    NASA Astrophysics Data System (ADS)

    2010-09-01

    A new image taken with the powerful HAWK-I camera on ESO's Very Large Telescope at Paranal Observatory in Chile shows the beautiful barred spiral galaxy NGC 1365 in infrared light. NGC 1365 is a member of the Fornax cluster of galaxies, and lies about 60 million light-years from Earth. NGC 1365 is one of the best known and most studied barred spiral galaxies and is sometimes nicknamed the Great Barred Spiral Galaxy because of its strikingly perfect form, with the straight bar and two very prominent outer spiral arms. Closer to the centre there is also a second spiral structure and the whole galaxy is laced with delicate dust lanes. This galaxy is an excellent laboratory for astronomers to study how spiral galaxies form and evolve. The new infrared images from HAWK-I are less affected by the dust that obscures parts of the galaxy than images in visible light (potw1037a) and they reveal very clearly the glow from vast numbers of stars in both the bar and the spiral arms. These data were acquired to help astronomers understand the complex flow of material within the galaxy and how it affects the reservoirs of gas from which new stars can form. The huge bar disturbs the shape of the gravitational field of the galaxy and this leads to regions where gas is compressed and star formation is triggered. Many huge young star clusters trace out the main spiral arms and each contains hundreds or thousands of bright young stars that are less than ten million years old. The galaxy is too remote for single stars to be seen in this image and most of the tiny clumps visible in the picture are really star clusters. Over the whole galaxy, stars are forming at a rate of about three times the mass of our Sun per year. While the bar of the galaxy consists mainly of older stars long past their prime, many new stars are born in stellar nurseries of gas and dust in the inner spiral close to the nucleus. The bar also funnels gas and dust gravitationally into the very centre of the galaxy

  17. Hubble’s Hunting Dog Galaxy

    NASA Image and Video Library

    2017-12-08

    Tucked away in the small northern constellation of Canes Venatici (The Hunting Dogs) is the galaxy NGC 4242, shown here as seen by the NASA/ESA Hubble Space Telescope. The galaxy lies some 30 million light-years from us. At this distance from Earth, actually not all that far on a cosmic scale, NGC 4242 is visible to anyone armed with even a basic telescope, as British astronomer William Herschel found when he discovered the galaxy in 1788. This image shows the galaxy’s bright center and the surrounding dimmer and more diffuse “fuzz.” Despite appearing to be relatively bright in this image, studies have found that NGC 4242 is actually relatively dim (it has a moderate-to-low surface brightness and low luminosity) and also supports a low rate of star formation. The galaxy also seems to have a weak bar of stars cutting through its asymmetric center, and a very faint and poorly-defined spiral structure throughout its disk. But if NGC 4242 is not all that remarkable, as with much of the Universe, it is still a beautiful and ethereal sight. Credit: ESA/Hubble & NASA

  18. HUBBLE REVEALS THE HEART OF THE WHIRLPOOL GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    New images from NASA's Hubble Space Telescope are helping researchers view in unprecedented detail the spiral arms and dust clouds of a nearby galaxy, which are the birth sites of massive and luminous stars. The Whirlpool galaxy, M51, has been one of the most photogenic galaxies in amateur and professional astronomy. Easily photographed and viewed by smaller telescopes, this celestial beauty is studied extensively in a range of wavelengths by large ground- and space-based observatories. This Hubble composite image shows visible starlight as well as light from the emission of glowing hydrogen, which is associated with the most luminous young stars in the spiral arms. M51, also known as NGC 5194, is having a close encounter with a nearby companion galaxy, NGC 5195, just off the upper edge of this image. The companion's gravitational pull is triggering star formation in the main galaxy, as seen in brilliant detail by numerous, luminous clusters of young and energetic stars. The bright clusters are highlighted in red by their associated emission from glowing hydrogen gas. This Wide Field Planetary Camera 2 image enables a research group, led by Nick Scoville (Caltech), to clearly define the structure of both the cold dust clouds and the hot hydrogen and link individual clusters to their parent dust clouds. Team members include M. Polletta (U. Geneva); S. Ewald and S. Stolovy (Caltech); R. Thompson and M. Rieke (U. of Arizona). Intricate structure is also seen for the first time in the dust clouds. Along the spiral arms, dust 'spurs' are seen branching out almost perpendicular to the main spiral arms. The regularity and large number of these features suggests to astronomers that previous models of 'two-arm' spiral galaxies may need to be revisited. The new images also reveal a dust disk in the nucleus, which may provide fuel for a nuclear black hole. The team is also studying this galaxy at near-infrared wavelengths with the NICMOS instrument onboard Hubble. At these

  19. Near-Infrared Continuum and 3.3um PAH Imaging of the Starburst Ring in the Type I Seyfert Galaxy NGC 7469

    NASA Technical Reports Server (NTRS)

    Mazzarella, J.; Voit, G.; Soifer, B.; Matthews, K.; Graham, J.; Armus, L.; Shupe, D.

    1993-01-01

    High resolution near-infrared images of the type 1 Seyfert Galaxy NGC 7469 have been obtained to probe its dusty nuclear environment. Direct images are relatively featureless, but residual images created by subtacting a smooth model based on best-fitting elliptical isoophotes reveal a tight inner spiral whose high surface-brightness portions correspond to a previously detected 3.

  20. A COLLISION IN THE HEART OF A GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has uncovered a collision between two spiral galaxies in the heart of the peculiar galaxy called Arp 220. The collision has provided the spark for a burst of star formation. The NICMOS image captures bright knots of stars forming in the heart of Arp 220. The bright, crescent moon-shaped object is a remnant core of one of the colliding galaxies. The core is a cluster of 1 billion stars. The core's half-moon shape suggests that its bottom half is obscured by a disk of dust about 300 light-years across. This disk is embedded in the core and may be swirling around a black hole. The core of the other colliding galaxy is the bright round object to the left of the crescent moon-shaped object. Both cores are about 1,200 light-years apart and are orbiting each other. Arp 220, located 250 million light-years away in the constellation Serpens, is the 220th object in Halton Arp's Atlas of Peculiar Galaxies. The image was taken with three filters. The colors have been adjusted so that, in this infrared image, blue corresponds to shorter wavelengths, red to longer wavelengths. The image was taken April 5, 1997. Credits: Rodger Thompson, Marcia Rieke, Glenn Schneider (University of Arizona) and Nick Scoville (California Institute of Technology), and NASA Image files in GIF and JPEG format and captions may be accessed on the Internet via anonymous ftp from ftp.stsci.edu in /pubinfo.

  1. Star-dust geometries in galaxies: The effect of interstellar matter distributions on optical and infrared properties of late-type galaxies

    NASA Technical Reports Server (NTRS)

    Capuano, J. M., Jr.; Thronson, H. A., Jr.; Witt, A. N.

    1993-01-01

    The presence of substantial amounts of interstellar dust in late-type galaxies affects observable parameters such as the optical surface brightness, the color, and the ratio of far-infrared to optical luminosity of these galaxies. We conducted radiative transfer calculations for late-type galaxy environments to examine two different scenarios: (1) the effects of increasing amounts of dust in two fixed geometries with different star distributions; and (2) the effects of an evolving dust-star geometry in which the total amount of dust is held constant, for three different star distributions. The calculations were done for ten photometric bands, ranging from the far-ultraviolet to the near-infrared (K), and scattered light was included in the galactic surface brightness at each wavelength. The energy absorbed throughout these ten photometric bands was assumed to re-emerge in the far-infrared as thermal dust emission. We also considered the evolutionary contraction of a constant amount of dust relative to pre-existing star distributions.

  2. Constraining MHD Disk-Winds with X-ray Absorbers

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Tombesi, F.; Shrader, C. R.; Kazanas, D.; Contopoulos, J.; Behar, E.

    2014-01-01

    From the state-of-the-art spectroscopic observations of active galactic nuclei (AGNs) the robust features of absorption lines (e.g. most notably by H/He-like ions), called warm absorbers (WAs), have been often detected in soft X-rays (< 2 keV). While the identified WAs are often mildly blueshifted to yield line-of-sight velocities up to ~100-3,000 km/sec in typical X-ray-bright Seyfert 1 AGNs, a fraction of Seyfert galaxies such as PG 1211+143 exhibits even faster absorbers (v/ 0.1-0.2) called ultra-fast outflows (UFOs) whose physical condition is much more extreme compared with the WAs. Motivated by these recent X-ray data we show that the magnetically- driven accretion-disk wind model is a plausible scenario to explain the characteristic property of these X-ray absorbers. As a preliminary case study we demonstrate that the wind model parameters (e.g. viewing angle and wind density) can be constrained by data from PG 1211+143 at a statistically significant level with chi-squared spectral analysis. Our wind models can thus be implemented into the standard analysis package, XSPEC, as a table spectrum model for general analysis of X-ray absorbers.

  3. A Picture-perfect Pure-disc Galaxy

    NASA Astrophysics Data System (ADS)

    2011-02-01

    The bright galaxy NGC 3621, captured here using the Wide Field Imager on the 2.2-metre telescope at ESO's La Silla Observatory in Chile, appears to be a fine example of a classical spiral. But it is in fact rather unusual: it does not have a central bulge and is therefore described as a pure-disc galaxy. NGC 3621 is a spiral galaxy about 22 million light-years away in the constellation of Hydra (The Sea Snake). It is comparatively bright and can be seen well in moderate-sized telescopes. This picture was taken using the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. The data were selected from the ESO archive by Joe DePasquale as part of the Hidden Treasures competition [1]. Joe's picture of NGC 3621 was ranked fifth in the competition. This galaxy has a flat pancake shape, indicating that it hasn't yet come face to face with another galaxy as such a galactic collision would have disturbed the thin disc of stars, creating a small bulge in its centre. Most astronomers think that galaxies grow by merging with other galaxies, in a process called hierarchical galaxy formation. Over time, this should create large bulges in the centres of spirals. Recent research, however, has suggested that bulgeless, or pure-disc, spiral galaxies like NGC 3621 are actually fairly common. This galaxy is of further interest to astronomers because its relative proximity allows them to study a wide range of astronomical objects within it, including stellar nurseries, dust clouds, and pulsating stars called Cepheid variables, which astronomers use as distance markers in the Universe [2]. In the late 1990s, NGC 3621 was one of 18 galaxies selected for a Key Project of the Hubble Space Telescope: to observe Cepheid variables and measure the rate of expansion of the Universe to a higher accuracy than had been possible before. In the successful project, 69 Cepheid variables were observed in this galaxy alone. Multiple monochrome images taken through

  4. A Comparison of Galaxy Bulge+Disk Decomposition Between Pan-STARRS and SDSS

    NASA Astrophysics Data System (ADS)

    Lokken, Martine Elena; McPartland, Conor; Sanders, David B.

    2018-01-01

    Measurements of the size and shape of bulges in galaxies provide key constraints for models of galaxy evolution. A comprehensive catalog of bulge measurements for Sloan Digital Sky Survey (SDSS) DR7 galaxies is currently available to the public. However, the Pan-STARRS1 (PS1) 3π survey now covers the same region with ~1-2 mag deeper photometry, a ~10-30% smaller PSF, and additional coverage in y-band. To test how much improvement in galaxy parameter measurements (e.g. bulge + disk) can be achieved using the new PS1 data, we make use of ultra-deep imaging data from the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP). We fit bulge+disk models to images of 372 bright (mi < 18.5) galaxies detected in all three surveys. Comparison of galaxy parameters derived from SDSS and PS1 images with those measured from HSC-SSP images shows a tighter correlation between PS1 and SSP measurements for both bulge and disk parameters. Bulge parameters, such as bulge-to-total fraction and bulge radius, show the strongest improvement. However, measurements of all parameters degrade for galaxies with total r-band magnitude below the SDSS spectroscopic limit, mr = 17.7. We plan to use the PS1 3π survey data to produce an updated catalog of bulge+disk decomposition measurements for the entire SDSS DR7 spectroscopic galaxy sample.

  5. The Hooked Galaxy

    NASA Astrophysics Data System (ADS)

    2006-06-01

    Life is not easy, even for galaxies. Some indeed get so close to their neighbours that they get rather distorted. But such encounters between galaxies have another effect: they spawn new generations of stars, some of which explode. ESO's VLT has obtained a unique vista of a pair of entangled galaxies, in which a star exploded. Because of the importance of exploding stars, and particularly of supernovae of Type Ia [1], for cosmological studies (e.g. relating to claims of an accelerated cosmic expansion and the existence of a new, unknown, constituent of the universe - the so called 'Dark Energy'), they are a preferred target of study for astronomers. Thus, on several occasions, they pointed ESO's Very Large Telescope (VLT) towards a region of the sky that portrays a trio of amazing galaxies. MCG-01-39-003 (bottom right) is a peculiar spiral galaxy, with a telephone number name, that presents a hook at one side, most probably due to the interaction with its neighbour, the spiral galaxy NGC 5917 (upper right). In fact, further enhancement of the image reveals that matter is pulled off MCG-01-39-003 by NGC 5917. Both these galaxies are located at similar distances, about 87 million light-years away, towards the constellation of Libra (The Balance). ESO PR Photo 22/06 ESO PR Photo 22/06 The Hooked Galaxy and its Companion NGC 5917 (also known as Arp 254 and MCG-01-39-002) is about 750 times fainter than can be seen by the unaided eye and is about 40,000 light-years across. It was discovered in 1835 by William Herschel, who strangely enough, seems to have missed its hooked companion, only 2.5 times fainter. As seen at the bottom left of this exceptional VLT image, a still fainter and nameless, but intricately beautiful, barred spiral galaxy looks from a distance the entangled pair, while many 'island universes' perform a cosmic dance in the background. But this is not the reason why astronomers look at this region. Last year, a star exploded in the vicinity of the hook

  6. Morphology and Structures of Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Seo, Mira; Ann, HongBae

    2015-08-01

    We performed an analysis of the structure of nearby dwarf galaxies based on a 2-dimensional decomposition of galaxy images using GALFIT. The present sample consists of ~1,100 dwarf galaxies with redshift less than z = 0.01, which is is derived from the morphology catalog of the Visually classified galaxies in the local universe (Ann, Seo, and Ha 2015). In this catalog, dwarf galaxies are divided into 5 subtypes: dS0, dE, dSph, dEbc, dEblue with distinction of the presence of nucleation in dE, dSph, and dS0. We found that dSph and dEblue galaxies are fainter than other subtypes of dwarf galaxies. In most cases, single component, represented by the Sersic profile with n=1~1.5, well describes the luminosity distribution of dwarf galaxies in the present sample. However, a significant fraction of dS0, dEbc, and dEbue galaxies show sub-structures such as spiral arms and rings. We will discuss the morphology dependent evolutionary history of the local dwarf galaxies.

  7. Calibration of HST wide field camera for quantitative analysis of faint galaxy images

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Griffiths, Richard E.; Casertano, Stefano; Neuschaefer, Lyman W.; Wyckoff, Eric W.

    1994-01-01

    We present the methods adopted to optimize the calibration of images obtained with the Hubble Space Telescope (HST) Wide Field Camera (WFC) (1991-1993). Our main goal is to improve quantitative measurement of faint images, with special emphasis on the faint (I approximately 20-24 mag) stars and galaxies observed as a part of the Medium-Deep Survey. Several modifications to the standard calibration procedures have been introduced, including improved bias and dark images, and a new supersky flatfield obtained by combining a large number of relatively object-free Medium-Deep Survey exposures of random fields. The supersky flat has a pixel-to-pixel rms error of about 2.0% in F555W and of 2.4% in F785LP; large-scale variations are smaller than 1% rms. Overall, our modifications improve the quality of faint images with respect to the standard calibration by about a factor of five in photometric accuracy and about 0.3 mag in sensitivity, corresponding to about a factor of two in observing time. The relevant calibration images have been made available to the scientific community.

  8. The Superwind Galaxy NGC 4666

    NASA Astrophysics Data System (ADS)

    2010-09-01

    The galaxy NGC 4666 takes pride of place at the centre of this new image, made in visible light with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. NGC 4666 is a remarkable galaxy with very vigorous star formation and an unusual "superwind" of out-flowing gas. It had previously been observed in X-rays by the ESA XMM-Newton space telescope, and the image presented here was taken to allow further study of other objects detected in the earlier X-ray observations. The prominent galaxy NGC 4666 in the centre of the picture is a starburst galaxy, about 80 million light-years from Earth, in which particularly intense star formation is taking place. The starburst is thought to be caused by gravitational interactions between NGC 4666 and its neighbouring galaxies, including NGC 4668, visible to the lower left. These interactions often spark vigorous star-formation in the galaxies involved. A combination of supernova explosions and strong winds from massive stars in the starburst region drives a vast flow of gas from the galaxy into space - a so-called "superwind". The superwind is huge in scale, coming from the bright central region of the galaxy and extending for tens of thousands of light-years. As the superwind gas is very hot it emits radiation mostly as X-rays and in the radio part of the spectrum and cannot be seen in visible light images such as the one presented here. This image was made as part of a follow-up to observations made with the ESA XMM-Newton space telescope in X-rays. NGC 4666 was the target of the original XMM-Newton observations, but thanks to the telescope's wide field-of-view many other X-ray sources were also seen in the background. One such serendipitous detection is a faint galaxy cluster seen close to the bottom edge of the image, right of centre. This cluster is much further away from us than NGC 4666, at a distance of about three billion light-years. In order to fully understand the nature of

  9. Hubble Views 'Third Kind' of Galaxy

    NASA Image and Video Library

    2017-12-08

    The subject of this image is NGC 6861, a galaxy discovered in 1826 by the Scottish astronomer James Dunlop. Almost two centuries later we now know that NGC 6861 is the second brightest member of a group of at least a dozen galaxies called the Telescopium Group — otherwise known as the NGC 6868 Group — in the small constellation of Telescopium (The Telescope). This NASA/ESA Hubble Space Telescope view shows some important details of NGC 6861. One of the most prominent features is the disk of dark bands circling the centre of the galaxy. These dust lanes are a result of large clouds of dust particles obscuring the light emitted by the stars behind them. Dust lanes are very useful for working out whether we are seeing the galaxy disk edge-on, face-on or, as is the case for NGC 6861, somewhat in the middle. Dust lanes like these are typical of a spiral galaxy. The dust lanes are embedded in a white oval shape, which is made up of huge numbers of stars orbiting the center of the galaxy. This oval is, rather puzzlingly, typical of an elliptical galaxy. So which is it — spiral or elliptical? The answer is neither! NGC 6861 does not belong to either the spiral or the elliptical family of galaxies. It is a lenticular galaxy, a family which has features of both spirals and ellipticals. The relationships between these three kinds of galaxies are not yet well understood. A lenticular galaxy could be a faded spiral that has run out of gas and lost its arms, or the result of two galaxies merging. Being part of a group increases the chances for galactic mergers, so this could be the case for NGC 6861. Credit: ESA/Hubble & NASA; acknowledgement: J. Barrington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency

  10. Era of Galaxy and Black Hole Growth Spurt Discovered

    NASA Astrophysics Data System (ADS)

    2005-04-01

    Distant galaxies undergoing intense bursts of star formation have been shown by NASA's Chandra X-ray Observatory to be fertile growing grounds for the largest black holes in the Universe. Collisions between galaxies in the early Universe may be the ultimate cause for both the accelerated star formation and black hole growth. By combining the deepest X-ray image ever obtained with submillimeter and optical observations, an international team of scientists has found evidence that some extremely luminous adolescent galaxies and their central black holes underwent a phenomenal spurt of growth more than 10 billion years ago. This concurrent black hole and galaxy growth spurt is only seen in these galaxies and may have set the stage for the birth of quasars - distant galaxies that contain the largest and most active black holes in the Universe. Simulation of a Galaxy Collision Simulation of a Galaxy Collision "The extreme distances of these galaxies allow us to look back in time, and take a snapshot of how today's largest galaxies looked when they were producing most of their stars and growing black holes," said David Alexander of the University of Cambridge, UK, and lead author of a paper in the April 7, 2005 issue of Nature that describes this work. The galaxies studied by Alexander and his colleagues are known as submillimeter galaxies, so-called because they were originally identified by the James Clerk Maxwell submillimeter telescope (JCMT) on Mauna Kea in Hawaii. The submillimeter observations along with optical data from Keck indicate these galaxies had an unusually large amount of gas. The gas in each galaxy was forming into stars at a rate of about one per day, or 100 times the present rate in the Milky Way galaxy. The Chandra X-ray data show that the supermassive black holes in the galaxies were also growing at the same time. Chandra X-ray Image of CDFN Chandra X-ray Image of CDFN These galaxies are very faint and it is only with the deepest observations of the

  11. ALMA Imaging of Gas and Dust in a Galaxy Protocluster at Redshift 5.3: [C II] Emission in "Typical" Galaxies and Dusty Starbursts ≈1 Billion Years after the Big Bang

    NASA Astrophysics Data System (ADS)

    Riechers, Dominik A.; Carilli, Christopher L.; Capak, Peter L.; Scoville, Nicholas Z.; Smolčić, Vernesa; Schinnerer, Eva; Yun, Min; Cox, Pierre; Bertoldi, Frank; Karim, Alexander; Yan, Lin

    2014-12-01

    We report interferometric imaging of [C II](2 P 3/2→2 P 1/2) and OH(2Π1/2 J = 3/2→1/2) emission toward the center of the galaxy protocluster associated with the z = 5.3 submillimeter galaxy (SMG) AzTEC-3, using the Atacama Large (sub)Millimeter Array (ALMA). We detect strong [C II], OH, and rest-frame 157.7 μm continuum emission toward the SMG. The [C II](2 P 3/2→2 P 1/2) emission is distributed over a scale of 3.9 kpc, implying a dynamical mass of 9.7 × 1010 M ⊙, and a star formation rate (SFR) surface density of ΣSFR = 530 M ⊙ yr-1 kpc-2. This suggests that AzTEC-3 forms stars at ΣSFR approaching the Eddington limit for radiation pressure supported disks. We find that the OH emission is slightly blueshifted relative to the [C II] line, which may indicate a molecular outflow associated with the peak phase of the starburst. We also detect and dynamically resolve [C II](2 P 3/2→2 P 1/2) emission over a scale of 7.5 kpc toward a triplet of Lyman-break galaxies with moderate UV-based SFRs in the protocluster at ~95 kpc projected distance from the SMG. These galaxies are not detected in the continuum, suggesting far-infrared SFRs of <18-54 M ⊙ yr-1, consistent with a UV-based estimate of 22 M ⊙ yr-1. The spectral energy distribution of these galaxies is inconsistent with nearby spiral and starburst galaxies, but resembles those of dwarf galaxies. This is consistent with expectations for young starbursts without significant older stellar populations. This suggests that these galaxies are significantly metal-enriched, but not heavily dust-obscured, "normal" star-forming galaxies at z > 5, showing that ALMA can detect the interstellar medium in "typical" galaxies in the very early universe.

  12. CANDELS: A Cosmic Quest for Distant Galaxies Offering Live Views of Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Koo, David C.; CANDELS

    2017-06-01

    For decades, the study of distant galaxies has been pushing the frontiers of extra-galactic research, with observations from the best suite of telescopes and instruments and with theory from the most advanced computer simulations. This talk will focus on observations taken within the CANDELS fields to reveal the richness and complexity of this still-growing field. CANDELS (Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey) itself is the largest project ever taken by Hubble and is composed of optical and near-infrared images of five tiny regions of sky containing over 200,000 distant galaxies. All these regions, two of which are GOODS North and South, were already outstanding in possessing years of prior surveys taken by many teams worldwide and have continued to attract more and better spectra and panchromatic images from Keck, Hubble, Chandra, Spitzer, and other telescopes ranging from X-ray to radio. Combined together, the rich data within the CANDELS fields offer live views of galaxy evolution from “Cosmic Dawn” when the first infant galaxies and cosmic black holes were born, through “Cosmic Noon” during the peak of galaxy and black hole growth, and then to “Cosmic Afternoon” when star formation and black hole activities, morphologies, motions, and contents settled to those of our Milky Way and its zoo of cousins today. The talk will highlight some interesting discoveries from the last two periods and close with new mysteries challenging our field in the 21st century and future prospects for solving them.

  13. GROUND-BASED Paα NARROW-BAND IMAGING OF LOCAL LUMINOUS INFRARED GALAXIES. I. STAR FORMATION RATES AND SURFACE DENSITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tateuchi, Ken; Konishi, Masahiro; Motohara, Kentaro

    2015-03-15

    Luminous infrared galaxies (LIRGs) are enshrouded by a large amount of dust produced by their active star formation, and it is difficult to measure their activity in optical wavelengths. We have carried out Paα narrow-band imaging observations of 38 nearby star forming galaxies including 33 LIRGs listed in the IRAS Revised Bright Galaxy Sample catalog with the Atacama Near InfraRed camera on the University of Tokyo Atacama Observatory (TAO) 1.0 m telescope (miniTAO). Star formation rates (SFRs) estimated from the Paα fluxes, corrected for dust extinction using the Balmer decrement method (typically A{sub V} ∼ 4.3 mag), show a good correlation with thosemore » from the bolometric infrared luminosity of the IRAS data within a scatter of 0.27 dex. This suggests that the correction of dust extinction for the Paα flux is sufficient in our sample. We measure the physical sizes and surface densities of infrared luminosities (Σ{sub L(IR)}) and the SFR (Σ{sub SFR}) of star forming regions for individual galaxies, and we find that most of the galaxies follow a sequence of local ultra-luminous or luminous infrared galaxies (U/LIRGs) on the L(IR)-Σ{sub L(IR)} and SFR-Σ{sub SFR} plane. We confirm that a transition of the sequence from normal galaxies to U/LIRGs is seen at L(IR) = 8 × 10{sup 10} L {sub ☉}. Also, we find that there is a large scatter in physical size, different from normal galaxies or ULIRGs. Considering the fact that most U/LIRGs are merging or interacting galaxies, this scatter may be caused by strong external factors or differences in their merging stages.« less

  14. Two-dimensional and 3-D images of thick tissue using time-constrained times-of-flight and absorbance spectrophotometry

    NASA Astrophysics Data System (ADS)

    Benaron, David A.; Lennox, M.; Stevenson, David K.

    1992-05-01

    Reconstructing deep-tissue images in real time using spectrophotometric data from optically diffusing thick tissues has been problematic. Continuous wave applications (e.g., pulse oximetry, regional cerebral saturation) ignore both the multiple paths traveled by the photons through the tissue and the effects of scattering, allowing scalar measurements but only under limited conditions; interferometry works poorly in thick, highly-scattering media; frequency- modulated approaches may not allow full deconvolution of scattering and absorbance; and pulsed-light techniques allow for preservation of information regarding the multiple paths taken by light through the tissue, but reconstruction is both computation intensive and limited by the relative surface area available for detection of photons. We have developed a picosecond times-of-flight and absorbance (TOFA) optical system, time-constrained to measure only photons with a narrow range of path lengths and arriving within a narrow angel of the emitter-detector axis. The delay until arrival of the earliest arriving photons is a function of both the scattering and absorbance of the tissues in a direct line between the emitter and detector, reducing the influence of surrounding tissues. Measurement using a variety of emitter and detector locations produces spatial information which can be analyzed in a standard 2-D grid, or subject to computer reconstruction to produce tomographic images representing 3-D structure. Using such a technique, we have been able to demonstrate the principles of tc-TOFA, detect and localize diffusive and/or absorptive objects suspended in highly scattering media (such as blood admixed with yeast), and perform simple 3-D reconstructions using phantom objects. We are now attempting to obtain images in vivo. Potential future applications include use as a research tool, and as a continuous, noninvasive, nondestructive monitor in diagnostic imaging, fetal monitoring, neurologic and cardiac

  15. LoCuSS: pre-processing in galaxy groups falling into massive galaxy clusters at z = 0.2

    NASA Astrophysics Data System (ADS)

    Bianconi, M.; Smith, G. P.; Haines, C. P.; McGee, S. L.; Finoguenov, A.; Egami, E.

    2018-01-01

    We report direct evidence of pre-processing of the galaxies residing in galaxy groups falling into galaxy clusters drawn from the Local Cluster Substructure Survey (LoCuSS). 34 groups have been identified via their X-ray emission in the infall regions of 23 massive ( = 1015 M⊙) clusters at 0.15 < z < 0.3. Highly complete spectroscopic coverage combined with 24 μm imaging from Spitzer allows us to make a consistent and robust selection of cluster and group members including star-forming galaxies down to a stellar mass limit of M⋆ = 2 × 1010 M⊙. The fraction fSF of star-forming galaxies in infalling groups is lower and with a flatter trend with respect to clustercentric radius when compared to the rest of the cluster galaxy population. At R ≈ 1.3 r200, the fraction of star-forming galaxies in infalling groups is half that in the cluster galaxy population. This is direct evidence that star-formation quenching is effective in galaxies already prior to them settling in the cluster potential, and that groups are favourable locations for this process.

  16. Galaxy mergers and gravitational lens statistics

    NASA Technical Reports Server (NTRS)

    Rix, Hans-Walter; Maoz, Dan; Turner, Edwin L.; Fukugita, Masataka

    1994-01-01

    We investigate the impact of hierarchical galaxy merging on the statistics of gravitational lensing of distant sources. Since no definite theoretical predictions for the merging history of luminous galaxies exist, we adopt a parameterized prescription, which allows us to adjust the expected number of pieces comprising a typical present galaxy at z approximately 0.65. The existence of global parameter relations for elliptical galaxies and constraints on the evolution of the phase space density in dissipationless mergers, allow us to limit the possible evolution of galaxy lens properties under merging. We draw two lessons from implementing this lens evolution into statistical lens calculations: (1) The total optical depth to multiple imaging (e.g., of quasars) is quite insensitive to merging. (2) Merging leads to a smaller mean separation of observed multiple images. Because merging does not reduce drastically the expected lensing frequency, it cannot make lambda-dominated cosmologies compatible with the existing lensing observations. A comparison with the data from the Hubble Space Telescope (HST) Snapshot Survey shows that models with little or no evolution of the lens population are statistically favored over strong merging scenarios. A specific merging scenario proposed to Toomre can be rejected (95% level) by such a comparison. Some versions of the scenario proposed by Broadhurst, Ellis, & Glazebrook are statistically acceptable.

  17. Faint Dwarf Galaxies in Hickson Compact Group 90

    NASA Astrophysics Data System (ADS)

    Ordenes-Briceño, Y.; Taylor, M. A.; Puzia, T. H.; Muñoz, R. P.

    2017-07-01

    We report the discovery of a very diverse set of five low-surface brightness (LSB) dwarf galaxy candidates in Hickson Compact Group 90 (HCG 90) detected in deep U- and I-band images obtained with VLT/VIMOS. These are the first LSB dwarf galaxy candidates found in a compact group of galaxies, which share properties with dwarf galaxies found throughout the Local Volume and in nearby galaxy clusters such as Fornax. Among them, we find a pair of candidates with ˜2 kpc projected separation and a nucleated dwarf candidate, with nucleus size of reff≅46-63 pc.

  18. Photoacoustic contrast imaging of biological tissues with nanodiamonds fabricated for high near-infrared absorbance

    PubMed Central

    Zhang, Ti; Cui, Huizhong; Fang, Chia-Yi; Su, Long-Jyun; Ren, Shenqiang; Chang, Huan-Cheng; Yang, Xinmai

    2013-01-01

    Abstract. Radiation-damaged nanodiamonds (DNDs) are potentially ideal optical contrast agents for photoacoustic (PA) imaging in biological tissues due to their low toxicity and high optical absorbance. PA imaging contrast agents have been limited to quantum dots and gold particles, since most existing carbon-based nanoparticles, including fluorescent nanodiamonds, do not have sufficient optical absorption in the near-infrared (NIR) range. A new DND by He+ ion beam irradiation with very high NIR absorption was synthesized. These DNDs produced a 71-fold higher PA signal on a molar basis than similarly dimensioned gold nanorods, and 7.1 fmol of DNDs injected into rodents could be clearly imaged 3 mm below the skin surface with PA signal enhancement of 567% using an 820-nm laser wavelength. PMID:23400417

  19. Groth Deep Locations Image

    NASA Image and Video Library

    2003-07-25

    NASA's Galaxy Evolution Explorer photographed this ultraviolet color blowup of the Groth Deep Image on June 22 and June 23, 2003. Hundreds of galaxies are detected in this portion of the image, and the faint red galaxies are believed to be 6 billion light years away. The white boxes show the location of these distant galaxies, of which more than a 100 can be detected in this image. NASA astronomers expect to detect 10,000 such galaxies after extrapolating to the full image at a deeper exposure level. http://photojournal.jpl.nasa.gov/catalog/PIA04626

  20. Dark Spot and Jovian Galaxy

    NASA Image and Video Library

    2017-03-24

    This enhanced-color image of a mysterious dark spot on Jupiter seems to reveal a Jovian "galaxy" of swirling storms. Juno acquired this JunoCam image on Feb. 2, 2017, at 5:13 a.m. PDT (8:13 a.m. EDT), at an altitude of 9,000 miles (14,500 kilometers) above the giant planet's cloud tops. This publicly selected target was simply titled "Dark Spot." In ground-based images it was difficult to tell that it is a dark storm. Citizen scientist Roman Tkachenko enhanced the color to bring out the rich detail in the storm and surrounding clouds. Just south of the dark storm is a bright, oval-shaped storm with high, bright, white clouds, reminiscent of a swirling galaxy. As a final touch, he rotated the image 90 degrees, turning the picture into a work of art. http://photojournal.jpl.nasa.gov/catalog/PIA21386

  1. Imaging Cold Gas to 1 kpc scales in high-redshift galaxies with the ngVLA

    NASA Astrophysics Data System (ADS)

    Casey, Caitlin; Narayanan, Desika; Dave, Romeel; Hung, Chao-Ling; Champagne, Jaclyn; Carilli, Chris Luke; Decarli, Roberto; Murphy, Eric J.; Popping, Gergo; Riechers, Dominik; Somerville, Rachel S.; Walter, Fabian

    2017-01-01

    The next generation Very Large Array (ngVLA) will revolutionize our understanding of the distant Universe via the detection of cold molecular gas in the first galaxies. Its impact on studies of galaxy characterization via detailed gas dynamics will provide crucial insight on dominant physical drivers for star-formation in high redshift galaxies, including the exchange of gas from scales of the circumgalactic medium down to resolved clouds on mass scales of ~10^5 M_sun. In this study, we employ a series of high-resolution, cosmological, hydrodynamic zoom simulations from the MUFASA simulation suite and a CASA simulator to generate mock ngVLA observations. Based on a direct comparison between the inferred results from our mock observations and the cosmological simulations, we investigate the capabilities of ngVLA to constrain the mode of star formation, dynamical mass, and molecular gas kinematics in individual high-redshift galaxies using cold gas tracers like CO(1-0) and CO(2-1). Using the Despotic radiative transfer code that encompasses simultaneous thermal and statistical equilibrium in calculating the molecular and atomic level populations, we generate parallel mock observations of high-J transitions of CO and C+ from ALMA for comparison. The factor of 100 times improvement in mapping speed for the ngVLA beyond the Jansky VLA and the proposed ALMA Band 1 will make these detailed, high-resolution imaging and kinematic studies routine at z=2 and beyond.

  2. Blueberry Galaxies: The Lowest Mass Young Starbursts

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Malhotra, Sangeeta; Rhoads, James E.; Wang, Junxian

    2017-09-01

    Searching for extreme emission line galaxies allows us to find low-mass metal-poor galaxies that are good analogs of high redshift Lyα emitting galaxies. These low-mass extreme emission line galaxies are also potential Lyman-continuum leakers. Finding them at very low redshifts (z≲ 0.05) allows us to be sensitive to even lower stellar masses and metallicities. We report on a sample of extreme emission line galaxies at z≲ 0.05 (blueberry galaxies). We selected them from SDSS broadband images on the basis of their broadband colors and studied their properties with MMT spectroscopy. From the entire SDSS DR12 photometric catalog, we found 51 photometric candidates. We spectroscopically confirm 40 as blueberry galaxies. (An additional seven candidates are contaminants, and four remain without spectra.) These blueberries are dwarf starburst galaxies with very small sizes (<1 kpc) and very high ionization ([O III]/[O II] ˜ 10-60). They also have some of the lowest stellar masses ({log}(M/{M}⊙ )˜ 6.5{--}7.5) and lowest metallicities (7.1< 12+{log}({{O}}/{{H}})< 7.8) of starburst galaxies. Thus, they are small counterparts to green pea galaxies and high redshift Lyα emitting galaxies.

  3. Einstein observations of active galaxies

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.

    1980-01-01

    X-ray observations of Cen A (NGC 5128) and seven other X-ray emitting active galaxies are discussed which were made with the imaging proportional counter and the high-resolution imager aboard the Einstein Observatory. In addition to Cen A, the sources observed were the N-type galaxy 3C 120, the quasars OX 169 and 3C 273, and four Class 1 Seyfert galaxies, viz., Mkn 509, Mkn 79, NGC 6814, and NGC 4151. For Cen A, it is found that the X-ray data are dominated by a central point source of about 2 cts/sec, that X-ray elongations (possibly associated with the inner radio lobes) extend in the NE and SW directions, and that an X-ray jet exists which is aligned with the optical jet. The results for the other sources are used to derive emitting-region sizes and black-hole masses for models based on an accreting central black hole.

  4. An automatic taxonomy of galaxy morphology using unsupervised machine learning

    NASA Astrophysics Data System (ADS)

    Hocking, Alex; Geach, James E.; Sun, Yi; Davey, Neil

    2018-01-01

    We present an unsupervised machine learning technique that automatically segments and labels galaxies in astronomical imaging surveys using only pixel data. Distinct from previous unsupervised machine learning approaches used in astronomy we use no pre-selection or pre-filtering of target galaxy type to identify galaxies that are similar. We demonstrate the technique on the Hubble Space Telescope (HST) Frontier Fields. By training the algorithm using galaxies from one field (Abell 2744) and applying the result to another (MACS 0416.1-2403), we show how the algorithm can cleanly separate early and late type galaxies without any form of pre-directed training for what an 'early' or 'late' type galaxy is. We then apply the technique to the HST Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) fields, creating a catalogue of approximately 60 000 classifications. We show how the automatic classification groups galaxies of similar morphological (and photometric) type and make the classifications public via a catalogue, a visual catalogue and galaxy similarity search. We compare the CANDELS machine-based classifications to human-classifications from the Galaxy Zoo: CANDELS project. Although there is not a direct mapping between Galaxy Zoo and our hierarchical labelling, we demonstrate a good level of concordance between human and machine classifications. Finally, we show how the technique can be used to identify rarer objects and present lensed galaxy candidates from the CANDELS imaging.

  5. The WFIRST Galaxy Survey Exposure Time Calculator

    NASA Technical Reports Server (NTRS)

    Hirata, Christopher M.; Gehrels, Neil; Kneib, Jean-Paul; Kruk, Jeffrey; Rhodes, Jason; Wang, Yun; Zoubian, Julien

    2013-01-01

    This document describes the exposure time calculator for the Wide-Field Infrared Survey Telescope (WFIRST) high-latitude survey. The calculator works in both imaging and spectroscopic modes. In addition to the standard ETC functions (e.g. background and SN determination), the calculator integrates over the galaxy population and forecasts the density and redshift distribution of galaxy shapes usable for weak lensing (in imaging mode) and the detected emission lines (in spectroscopic mode). The source code is made available for public use.

  6. What lensed galaxies say about winds and physical conditions in high-z galaxies

    NASA Astrophysics Data System (ADS)

    Rigby, Jane; Gladders, Michael; Sharon, Keren; Wuyts, Eva; Bayliss, Matthew B.; Bordoloi, Rongmon

    2015-08-01

    Gravitational lensing can magnify galaxies by factors of 10--100 times, transforming them from objects we can barely detect to bright objects we can study in detail. I'll summarize new results from a comprehensive program, using imaging from Hubble and Spitzer, and high-quality spectroscopy from Keck, Magellan, and Hubble, to study how galaxies formed stars at redshifts of 1--3, the epoch when most of the Universe's stars were formed. In particularly favorable cases, the imaging and spectra measure variations in physical and wind properties over spatial scales down to ~200 pc. My talk will include results from Bayliss et al. 2014, Wuyts et al. 2014, Whitaker et al. 2014, and Rigby et al. 2014, as well as results not yet published.

  7. Traces de l'interaction entre galaxies

    NASA Astrophysics Data System (ADS)

    Duc, Pierre-Alain

    2016-08-01

    Within a galaxy, collisions between stars are exceptional; collisions between galaxies are themselves much more frequent. They are even supposed to play a major role in the formation of structures according to the standard hierarchical cosmological model. Gravitational interactions, tidal forces and following mergers shape the morphology of galaxies, and leave vestiges which can survive for a few Gyr. They consist of stellar shells, streams, tails and plumes which emit a diffuse and extended optical light. Several deep imaging projects use telescopes of all sizes to try to detect this light. We detail here what the census of collisional debris can tel us about the past history of galaxies and about the models and simulations supposedly accounting for it.

  8. SUZAKU VIEW OF X-RAY SPECTRAL VARIABILITY OF THE RADIO GALAXY CENTAURUS A: PARTIAL COVERING ABSORBER, REFLECTOR, AND POSSIBLE JET COMPONENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukazawa, Yasushi; Hiragi, Kazuyoshi; Yamazaki, Syoko

    2011-12-20

    We observed a nearby radio galaxy, Centaurus A (Cen A), three times with Suzaku in 2009 and measured the wide-band X-ray spectral variability more accurately than previous measurements. The Cen A was in an active phase in 2009, and the flux became higher by a factor of 1.5-2.0 and the spectrum became harder than that in 2005. The Fe-K line intensity increased by 20%-30% from 2005 to 2009. The correlation of the count rate between the XIS 3-8 keV and PIN 15-40 keV band showed a complex behavior with a deviation from a linear relation. The wide-band X-ray continuum inmore » 2-200 keV can be fitted with an absorbed power-law model plus a reflection component, or a power law with a partial covering Compton-thick absorption. The difference spectra between high and low flux periods in each observation were reproduced by a power law with a partial covering Compton-thick absorption. Such a Compton-thick partial covering absorber was observed for the first time in Cen A. The power-law photon index of the difference spectra in 2009 is almost the same as that of the time-averaged spectra in 2005, but steeper by {approx}0.2 than that of the time-averaged spectra in 2009. This suggests an additional hard power-law component with a photon index of <1.6 in 2009. This hard component could be a lower part of the inverse-Compton-scattered component from the jet, whose gamma-ray emission has recently been detected with the Fermi Large Area Telescope.« less

  9. Pitch Angles Of Artificially Redshifted Galaxies

    NASA Astrophysics Data System (ADS)

    Shields, Douglas W.; Davis, B.; Johns, L.; Berrier, J. C.; Kennefick, D.; Kennefick, J.; Seigar, M.

    2012-05-01

    We present the pitch angles of several galaxies that have been artificially redshifted using Barden et al’s FERENGI software. The (central black hole mass)-(spiral arm pitch angle) relation has been used on a statistically complete sample of local galaxies to determine the black hole mass function of local spiral galaxies. We now measure the pitch angles at increasing redshifts by operating on the images pixel-by-pixel. The results will be compared to the pitch angle function as measured in the GOODS field. This research was funded in part by NASA / EPScOR.

  10. Simultaneous Multi-band Detection of Low Surface Brightness Galaxies with Markovian Modeling

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Perret, B.; Petremand, M.; Lavigne, F.; Collet, Ch.; van Driel, W.; Bonnarel, F.; Louys, M.; Sabatini, S.; MacArthur, L. A.

    2013-02-01

    We present to the astronomical community an algorithm for the detection of low surface brightness (LSB) galaxies in images, called MARSIAA (MARkovian Software for Image Analysis in Astronomy), which is based on multi-scale Markovian modeling. MARSIAA can be applied simultaneously to different bands. It segments an image into a user-defined number of classes, according to their surface brightness and surroundings—typically, one or two classes contain the LSB structures. We have developed an algorithm, called DetectLSB, which allows the efficient identification of LSB galaxies from among the candidate sources selected by MARSIAA. The application of the method to two and three bands simultaneously was tested on simulated images. Based on our tests, we are confident that we can detect LSB galaxies down to a central surface brightness level of only 1.5 times the standard deviation from the mean pixel value in the image background. To assess the robustness of our method, the method was applied to a set of 18 B- and I-band images (covering 1.3 deg2 in total) of the Virgo Cluster to which Sabatini et al. previously applied a matched-filter dwarf LSB galaxy search algorithm. We have detected all 20 objects from the Sabatini et al. catalog which we could classify by eye as bona fide LSB galaxies. Our method has also detected four additional Virgo Cluster LSB galaxy candidates undetected by Sabatini et al. To further assess the completeness of the results of our method, both MARSIAA, SExtractor, and DetectLSB were applied to search for (1) mock Virgo LSB galaxies inserted into a set of deep Next Generation Virgo Survey (NGVS) gri-band subimages and (2) Virgo LSB galaxies identified by eye in a full set of NGVS square degree gri images. MARSIAA/DetectLSB recovered ~20% more mock LSB galaxies and ~40% more LSB galaxies identified by eye than SExtractor/DetectLSB. With a 90% fraction of false positives from an entirely unsupervised pipeline, a completeness of 90% is reached

  11. The role of submillimetre galaxies in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Pope, Erin Alexandra

    2007-08-01

    This thesis presents a comprehensive study of high redshift submillimetre galaxies (SMGs) using the deepest multi-wavelength observations. The submm sample consists of galaxies detected at 850 mm with the Submillimetre Common User Bolometer Array (SCUBA) in the Great Observatories Origins Deep Survey- North region. Using the deep Spitzer Space Telescope images and new data and reductions of the Very Large Array radio data, I find statistically secure counterparts for 60% of the submm sample, and identify tentative counterparts for most of the remaining objects. This is the largest sample of submm galaxies with statistically secure counterparts detected in the radio and with Spitzer . This thesis presents spectral energy distributions (SEDs), Spitzer colours, and infrared (IR) luminosities for the SMGs. A composite rest-frame SED shows that the submm sources peak at longer wavelengths than those of local ultraluminous IR galaxies (ULIRGs), i.e. they appear to be cooler than local ULIRGs of the same luminosity. This demonstrates the strong selection effects, both locally and at high redshift, which may lead to an incomplete census of the ULIRG population. The SEDs of submm galaxies are also different from those of their high redshift neighbours, the near-IR selected BzK galaxies, whose mid-IR to radio SEDs are more like those of local ULIRGs. I fit templates that span the mid-IR through radio to derive the integrated 1R luminosities of the submm galaxies and find a median value of L IR (8-1000 mm) = 6.0 x 10 12 [Special characters omitted.] . I also find that submm flux densities by themselves systematically overpredict L IR when using templates which obey the local ULIRG temperature-luminosity relation. The SED fits show that SMGs are consistent with the correlation between radio and IR luminosity observed in local galaxies. Because the shorter Spitzer wavelengths sample the stellar bump at the redshifts of the submm sources, one can obtain a model independent

  12. The Thick Disk in the Galaxy NGC 4244 from S4G Imaging

    NASA Astrophysics Data System (ADS)

    Comerón, Sébastien; Knapen, Johan H.; Sheth, Kartik; Regan, Michael W.; Hinz, Joannah L.; Gil de Paz, Armando; Menéndez-Delmestre, Karín; Muñoz-Mateos, Juan-Carlos; Seibert, Mark; Kim, Taehyun; Athanassoula, E.; Bosma, Albert; Buta, Ronald J.; Elmegreen, Bruce G.; Ho, Luis C.; Holwerda, Benne W.; Laurikainen, Eija; Salo, Heikki; Schinnerer, Eva

    2011-03-01

    If thick disks are ubiquitous and a natural product of disk galaxy formation and/or evolution processes, all undisturbed galaxies that have evolved during a significant fraction of a Hubble time should have a thick disk. The late-type spiral galaxy NGC 4244 has been reported as the only nearby edge-on galaxy without a confirmed thick disk. Using data from the Spitzer Survey of Stellar Structure in Galaxies (S4G) we have identified signs of two disk components in this galaxy. The asymmetries between the light profiles on both sides of the mid-plane of NGC 4244 can be explained by a combination of the galaxy not being perfectly edge-on and a certain degree of opacity of the thin disk. We argue that the subtlety of the thick disk is a consequence of either a limited secular evolution in NGC 4244, a small fraction of stellar material in the fragments which built the galaxy, or a high amount of gaseous accretion after the formation of the galaxy.

  13. Hubble Catches a Galaxy Duo by the "Hare"

    NASA Image and Video Library

    2017-12-08

    This image from the NASA/ESA Hubble Space Telescope shows the unusual galaxy IRAS 06076-2139, found in the constellation Lepus (The Hare). Hubble’s Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) instruments observed the galaxy from a distance of 500 million light-years. This particular object stands out from the crowd by actually being composed of two separate galaxies rushing past each other at about 2 million kilometers (1,243,000 miles) per hour. This speed is most likely too fast for them to merge and form a single galaxy. However, because of their small separation of only about 20,000 light-years, the galaxies will distort one another through the force of gravity while passing each other, changing their structures on a grand scale. Such galactic interactions are a common sight for Hubble, and have long been a field of study for astronomers. The intriguing behaviors of interacting galaxies take many forms; galactic cannibalism, galaxy harassment and even galaxy collisions. The Milky Way itself will eventually fall victim to the latter, merging with the Andromeda Galaxy in about 4.5 billion years. The fate of our galaxy shouldn’t be alarming though: while galaxies are populated by billions of stars, the distances between individual stars are so large that hardly any stellar collisions will occur. Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Detection of two intervening Ne viii absorbers probing warm gas at z ˜ 0.6

    NASA Astrophysics Data System (ADS)

    Pachat, Sachin; Narayanan, Anand; Khaire, Vikram; Savage, Blair D.; Muzahid, Sowgat; Wakker, Bart P.

    2017-10-01

    We report on the detection of two Ne viii absorbers, at z = 0.619 07 and 0.570 52 in the Hubble Space Telescope/Cosmic Origins Spectrograph spectrum of background quasars SDSS J080908.13 + 461925.6 and SBS 1122 + 594, respectively. The Ne viii 770 line is at ˜3σ significance. In both instances, the Ne viii is found to be tracing gas with T ≳ 105 K, predominantly collisionally ionized, with moderate densities of n_{H} ≲ 10^{-4} cm-3, sub-solar metallicities and total hydrogen column densities of N(H) ≳ 1019 cm-2. In the z = 0.619 07 absorber, the low, intermediate ions and O VI are consistent with origin in photoionized gas, with the O VI potentially having some contribution from the warm collisional phase traced by Ne viii. The z = 0.570 52 system has H I absorption in at least three kinematically distinct components, with one of them having b({H I}) = 49 {± } 11 km s-1. The intermediate-ionization lines, O VI and Ne viii, are coincident in velocity with this component. Their different line widths suggest warm temperatures of T = (0.5-1.5) × 105 K. Both absorbers are residing in regions where there are several luminous (≳L★) galaxies. The absorber at z = 0.570 52 is within the virial radius of a 2.6L★ galaxy, possibly associated with shock-heated circumgalactic material.

  15. a Snapshot Survey of X-Ray Selected Central Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Edge, Alastair

    1999-07-01

    Central cluster galaxies are the most massive stellar systems known and have been used as standard candles for many decades. Only recently have central cluster galaxies been recognised to exhibit a wide variety of small scale {<100 pc} features that can only be reliably detected with HST resolution. The most intriguing of these are dust lanes which have been detected in many central cluster galaxies. Dust is not expected to survive long in the hostile cluster environment unless shielded by the ISM of a disk galaxy or very dense clouds of cold gas. WFPC2 snapshot images of a representative subset of the central cluster galaxies from an X-ray selected cluster sample would provide important constraints on the formation and evolution of dust in cluster cores that cannot be obtained from ground-based observations. In addition, these images will allow the AGN component, the frequency of multiple nuclei, and the amount of massive-star formation in central cluster galaxies to be ass es sed. The proposed HST observatio ns would also provide high-resolution images of previously unresolved gravitational arcs in the most massive clusters in our sample resulting in constraints on the shape of the gravitational potential of these systems. This project will complement our extensive multi-frequency work on this sample that includes optical spectroscopy and photometry, VLA and X-ray images for the majority of the 210 targets.

  16. SpIOMM and SITELLE: Wide-field Imaging FTS for the Study of Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Drissen, Laurent; Bernier, Anne-Pier; Robert, Carmelle; Robert

    2011-12-01

    SpIOMM, a wide-field Imaging Fourier Transform Spectrometer attached to the Mont Mégantic 1.6-m telescope, is capable of obtaining the visible spectrum of every source of light in a 12 arcminute field of view, with a spectral resolution ranging from R = 1 (wide-band image) to R = 25 000, resulting in 1.7 million spectra with a spatial resolution of one arcsecond. SITELLE will be a similar instrument attached to the Canada-France-Hawaii telescope, and will be in operation in early 2013. We present a short description of these instruments and illustrate their capabilities to study nearby galaxies with the results of a data cube of M51.

  17. Fantastic Four Galaxies with Planet (Artist Concept)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This artist's concept shows what the night sky might look like from a hypothetical planet around a star tossed out of an ongoing four-way collision between big galaxies (yellow blobs). NASA's Spitzer Space Telescope spotted this 'quadruple merger' of galaxies within a larger cluster of galaxies located nearly 5 billion light-years away.

    Though the galaxies appear intact, gravitational disturbances have caused them to stretch and twist, flinging billions of stars into space -- nearly three times as many stars as are in our Milky Way galaxy. The tossed stars are visible in the large plume emanating from the central, largest galaxy. If any of these stars have planets, their night skies would be filled with the monstrous merger, along with other galaxies in the cluster (smaller, bluish blobs).

    This cosmic smash-up is the largest known merger between galaxies of a similar size. While three of the galaxies are about the size of our Milky Way galaxy, the fourth (center of image) is three times as big. All four of the galaxies, as well as most other galaxies in the huge cluster, are blob-shaped ellipticals instead of spirals like the Milky Way.

    Ultimately, in about one hundred million years or so, the four galaxies E will unite into one. About half of the stars kicked out during the merger will fall back and join the new galaxy, making it one of the biggest galaxies in the universe.

  18. The Structure and Kinematics of Little Blue Spheroid Galaxies

    NASA Astrophysics Data System (ADS)

    Moffett, Amanda J.; Phillipps, Steven; Robotham, Aaron; Driver, Simon; Bremer, Malcolm; GAMA survey team, SAMI survey team

    2018-01-01

    A population of blue, morphologically early-type galaxies, dubbed "Little Blue Spheroids" (LBSs), has been identified as a significant contributor to the low redshift galaxy population in the GAMA survey. Using deep, high-resolution optical imaging from KiDS and the new Bayesian, two-dimensional galaxy profile modelling code PROFIT, we examine the detailed structural characteristics of LBSs, including low surface brightness components not detected in previous SDSS imaging. We find that these LBS galaxies combine features typical of early-type and late-type populations, with structural properties similar to other low-mass early types and star formation rates similar to low-mass late types. We further consider the environments and SAMI-derived IFU kinematics of LBSs in order to investigate the conditions of their formation and the current state of their dynamical evolution.

  19. Spiral Arm Morphology of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae; Lee, Hyun-Rok

    2013-06-01

    We analyze the spiral structure of 1725 nearby spiral galaxies with redshift less than 0.02. We use the color images provided by the Sloan Digital Sky Survey. We determine the arm classes (grand design, multiple-arm, flocculent) and the broad Hubble types (early, intermediate, late) as well as the bar types (SA, SAB, SB) by visual inspection. We find that flocculent galaxies are mostly of late Hubble type while multiple-arm galaxies are likely to be of early Hubble type. The fractional distribution of grand design galaxies is nearly constant along the Hubble type. The dependence of arm class on bar type is not as strong as that of the Hubble type. However, there is about a three times larger fraction of grand design spirals in SB galaxies than in SA galaxies, with nearly constant fractions of multiple-arm galaxies. However, if we consider the Hubble type and bar type together, grand design spirals are more frequent in early types than in late types for SA and SAB galaxies, while they are almost constant along the Hubble type for SB galaxies. There are clear correlations between spiral structures and the local background density: strongly barred, early-type, grand design spirals favor high-density regions, while non-barred, late-type, flocculent galaxies are likely to be found in low-density regions.

  20. PdBI cold dust imaging of two extremely red H – [4.5] > 4 galaxies discovered with SEDS and CANDELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caputi, K. I.; Popping, G.; Spaans, M.

    2014-06-20

    We report Plateau de Bure Interferometer (PdBI) 1.1 mm continuum imaging toward two extremely red H – [4.5] > 4 (AB) galaxies at z > 3, which we have previously discovered making use of Spitzer SEDS and Hubble Space Telescope CANDELS ultra-deep images of the Ultra Deep Survey field. One of our objects is detected on the PdBI map with a 4.3σ significance, corresponding to S{sub ν}(1.1 mm)=0.78±0.18 mJy. By combining this detection with the Spitzer 8 and 24 μm photometry for this source, and SCUBA2 flux density upper limits, we infer that this galaxy is a composite active galacticmore » nucleus/star-forming system. The infrared (IR)-derived star formation rate is SFR ≈ 200 ± 100 M {sub ☉} yr{sup –1}, which implies that this galaxy is a higher-redshift analogue of the ordinary ultra-luminous infrared galaxies more commonly found at z ∼ 2-3. In the field of the other target, we find a tentative 3.1σ detection on the PdBI 1.1 mm map, but 3.7 arcsec away of our target position, so it likely corresponds to a different object. In spite of the lower significance, the PdBI detection is supported by a close SCUBA2 3.3σ detection. No counterpart is found on either the deep SEDS or CANDELS maps, so, if real, the PdBI source could be similar in nature to the submillimeter source GN10. We conclude that the analysis of ultra-deep near- and mid-IR images offers an efficient, alternative route to discover new sites of powerful star formation activity at high redshifts.« less

  1. Unravelling Galaxy Components

    NASA Astrophysics Data System (ADS)

    Kennedy, Rebecca

    2017-06-01

    This thesis aims to understand more about the developmental histories of galaxies and their internal components by studying the wavelength dependence of their spatial structure. I use a large sample of low-redshift galaxies with optical–near-IR imaging from the GAMA survey, which have been fitted with Sérsic and Sérsic + exponential functions in nine wavebands simultaneously, using software developed by the MegaMorph project. The first section of this thesis examines how the sizes and radial profiles of galaxies vary with wavelength. To quantify the wavelength dependence of effective radius I use the ratio, R, of measurements in two restframe bands. The dependence of Sérsic index on wavelength, N, is computed correspondingly. I show that accounting for different redshift and luminosity selections partly reconciles variations between several recent studies. Dividing galaxies by visual morphology confirms the behaviour inferred using morphological proxies, although our quantitative measurements allow me to study larger and fainter samples. I then demonstrate that varying dust opacity and disc inclination can account for features of the joint distribution of R and N for late-type galaxies. However, dust does not appear to explain the highest values of R and N. The bulge-disc nature of galaxies must also contribute to the wavelength-dependence of their structure. The second section of this thesis studies radial colour gradients across the galaxy population. I use the multi-wavelength information provided by MegaMorph analysis of galaxy light profiles to calculate intrinsic colour gradients, and divide into six subsamples split by overall Sérsic index (n) and galaxy colour. I find a bimodality in the colour gradients of high- and low-n galaxies in all wavebands which varies with overall galaxy luminosity. Global trends in colour gradients therefore result from combining the contrasting behaviour of a number of different galaxy populations. The ubiquity of strong

  2. The Evolution of Galaxies Through the Spatial Distribution of Their Globular Clusters: the Brightest Galaxies in Fornax

    NASA Astrophysics Data System (ADS)

    Zegeye, David W.

    2018-01-01

    We present a study of the evolution of the 10 brightest galaxies in the Fornax Cluster, as reconstructed through their Globular Cluster (GC) populations. GCs can be characterized by their projected two-dimensional (2D) spatial distribution. Over- or under-densities in the GC distribution, can be linked to events in the host galaxy assembly history, and used to constrain the properties of their progenitors. With HST/ACS imaging, we identified significant structures in the GC distribution of the 10 galaxies investigated, with some of the galaxies possessing structures with >10-sigma significance. GC over-densities have been found within the galaxies, with significant differences between the red and blue GC population. For elongated galaxies, structures are preferentially to be aligned along the major axis. Fornax Cluster galaxies appear to be more dynamically relaxed than the Virgo Cluster galaxies previously investigated with the same methodology by D'Abrusco et al. (2016). However, from these observations, the evident imprints left in the spatial distribution of GCs in these galaxies suggest a similarly intense history of interactions.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.

  3. The shell galaxy NGC4104 in an X-ray group

    NASA Astrophysics Data System (ADS)

    Lima Neto, G. B.; Durret, F.; Laganá, T.; Machado, R. E. G.; Martinet, N.

    2017-07-01

    Groups of galaxies are expected to collapse early in the history of the universe, in particular the so-called Fossil Groups, with a central galaxy that grows at the bottom of the gravitational potential well by cannibalizing smaller galaxies and/or by major mergers. An evidence of galactic cannibalism is the feature known as shells or ripples in early-type galaxies Shell galaxies are believed to be the result of a minor merger of a dwarf with an elliptical galaxy, resulting in a series of faint concentric ripples in surface brightness observed throughout the main stellar component. This contribution presents very deep r and g imaging of NGC 4104 - the brightest galaxy of an X-ray emitting group - obtained with MegaCam on the 3.6 m CFHT. Using both iraf/ellipse and galfit 2D image-fitting programs, we show the presence of strong shell features and an extended stellar halo around the group brightest galaxy. We have run a series of N-body simulations in order to gain insight on the dynamical process that shaped NGC 4104. Numerical modeling suggests a recent (around 5 Gyrs ago) collision occurred with a dwarf galaxy, which may have also led to a central absorption feature observed in the galaxy center. Moreover, given the magnitude gap between the first and second brightest galaxies, it seems that we are witnessing the formation of an object that falls within the fossil group classification.

  4. HIGHEST REDSHIFT IMAGE OF NEUTRAL HYDROGEN IN EMISSION: A CHILES DETECTION OF A STARBURSTING GALAXY AT z = 0.376

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández, Ximena; Gim, Hansung B.; Yun, Min S.

    2016-06-10

    Our current understanding of galaxy evolution still has many uncertainties associated with the details of the accretion, processing, and removal of gas across cosmic time. The next generation of radio telescopes will image the neutral hydrogen (H i) in galaxies over large volumes at high redshifts, which will provide key insights into these processes. We are conducting the COSMOS H i Large Extragalactic Survey (CHILES) with the Karl G. Jansky Very Large Array, which is the first survey to simultaneously observe H i from z = 0 to z ∼ 0.5. Here, we report the highest redshift H i 21more » cm detection in emission to date of the luminous infrared galaxy COSMOS J100054.83+023126.2 at z = 0.376 with the first 178 hr of CHILES data. The total H i mass is (2.9 ± 1.0) × 10{sup 10} M {sub ⊙} and the spatial distribution is asymmetric and extends beyond the galaxy. While optically the galaxy looks undisturbed, the H i distribution suggests an interaction with a candidate companion. In addition, we present follow-up Large Millimeter Telescope CO observations that show it is rich in molecular hydrogen, with a range of possible masses of (1.8–9.9) × 10{sup 10} M {sub ⊙}. This is the first study of the H i and CO in emission for a single galaxy beyond z ∼ 0.2.« less

  5. A new giant luminous arc gravitational lens associated with a z = 0.62 galaxy cluster, and the environments of distant radio galaxies

    NASA Technical Reports Server (NTRS)

    Dickinson, Mark

    1993-01-01

    In the course of a survey investigating the cluster environments of distant 3CR radio galaxies, I have identified a previously unknown 'giant luminous arc' gravitational lens. The lensing cluster is associated with the radio galaxy 3C 220.1 at z = 0.62 and is the most distant cluster now known to produce such arcs. I present imaging and spectroscopic observations of the cluster and the arc, and discuss the implications for the cluster mass. At z greater than 0.6 the cluster velocity dispersions implied by such giant arcs may provide an interesting constraint on theories of large scale structure formation. The parent investigation in which this arc was identified concerns galaxy clusters and radio galaxy environments at 0.35 less than z less than 0.8. At the present epoch, powerful FR 2 radio galaxies tend to be found in environments of poor or average galaxy density. In contrast, at the higher redshifts investigated here, richer group and cluster environments are common. I present additional data on other clusters from this survey, and discuss its extension to z greater than 1 through a program of near-infrared and optical imaging.

  6. The Nature of Accreting Black Holes in Nearby Galaxy Nuclei

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Mushotzky, R. F.

    1999-04-01

    We have found compact X-ray sources in the center of 21 (54%) of 39 nearby face-on spiral and elliptical galaxies with available ROSAT HRI data. ROSAT X-ray luminosities (0.2 - 2.4 keV) of these compact X-ray sources are ~ 10(37) -10(40) erg s(-1) (with a mean of 3 x 10(39) erg s(-1) ). The mean displacement between the location of the compact X-ray source and the optical photometric center of the galaxy is ~ 390 pc. The fact that compact nuclear sources were found in nearly all (five of six) galaxies with previous evidence for a black hole or an AGN indicates that at least some of the X-ray sources are accreting supermassive black holes. ASCA spectra of six of the 21 galaxies show the presence of a hard component with relatively steep (Gamma ~ 2.5) spectral slope. A multicolor disk blackbody model fits the data from the spiral galaxies well, suggesting that the X-ray object in these galaxies may be similar to a Black Hole Candidate in its soft (high) state. ASCA data from the elliptical galaxies indicate that hot (kT ~ 0.7 keV) gas dominates the emission. The fact that (for both spiral and elliptical galaxies) the spectral slope is steeper than in normal type 1 AGNs and that relatively low absorbing columns (N_H ~ 10(21) cm(-2) ) were found to the power-law component indicates that these objects are somehow geometrically and/or physically different from AGNs in normal active galaxies. The X-ray sources in the spiral and elliptical galaxies may be black hole X-ray binaries, low-luminosity AGNs, or possibly young X-ray luminous supernovae. Assuming the sources in the spiral galaxies are accreting black holes in their soft state, we estimate black hole masses ~ 10(2) -10(4) M_sun.

  7. The Nature of Accreting Black Holes in Nearby Galaxy Nuclei

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Mushotzky, R. F.

    1999-05-01

    We have found compact X-ray sources in the center of 21 (54%) of 39 nearby face-on spiral and elliptical galaxies with available ROSAT HRI data. ROSAT X-ray luminosities (0.2 - 2.4 keV) of these compact X-ray sources are ~ 10(37) -10(40) erg s(-1) (with a mean of 3 x 10(39) erg s(-1) ). The mean displacement between the location of the compact X-ray source and the optical photometric center of the galaxy is ~ 390 pc. The fact that compact nuclear sources were found in nearly all (five of six) galaxies with previous evidence for a black hole or an AGN indicates that at least some of the X-ray sources are accreting supermassive black holes. ASCA spectra of six of the 21 galaxies show the presence of a hard component with relatively steep (Gamma ~ 2.5) spectral slope. A multicolor disk blackbody model fits the data from the spiral galaxies well, suggesting that the X-ray object in these galaxies may be similar to a Black Hole Candidate in its soft (high) state. ASCA data from the elliptical galaxies indicate that hot (kT ~ 0.7 keV) gas dominates the emission. The fact that (for both spiral and elliptical galaxies) the spectral slope is steeper than in normal type 1 AGNs and that relatively low absorbing columns (N_H ~ 10(21) cm(-2) ) were found to the power-law component indicates that these objects are somehow geometrically and/or physically different from AGNs in normal active galaxies. The X-ray sources in the spiral and elliptical galaxies may be black hole X-ray binaries, low-luminosity AGNs, or possibly young X-ray luminous supernovae. Assuming the sources in the spiral galaxies are accreting black holes in their soft state, we estimate black hole masses ~ 10(2) -10(4) M_sun.

  8. Resolving z ~2 galaxy using adaptive coadded source plane reconstruction

    NASA Astrophysics Data System (ADS)

    Sharma, Soniya; Richard, Johan; Kewley, Lisa; Yuan, Tiantian

    2018-06-01

    Natural magnification provided by gravitational lensing coupled with Integral field spectrographic observations (IFS) and adaptive optics (AO) imaging techniques have become the frontier of spatially resolved studies of high redshift galaxies (z>1). Mass models of gravitational lenses hold the key for understanding the spatially resolved source–plane (unlensed) physical properties of the background lensed galaxies. Lensing mass models very sensitively control the accuracy and precision of source-plane reconstructions of the observed lensed arcs. Effective source-plane resolution defined by image-plane (observed) point spread function (PSF) makes it challenging to recover the unlensed (source-plane) surface brightness distribution.We conduct a detailed study to recover the source-plane physical properties of z=2 lensed galaxy using spatially resolved observations from two different multiple images of the lensed target. To deal with PSF’s from two data sets on different multiple images of the galaxy, we employ a forward (Source to Image) approach to merge these independent observations. Using our novel technique, we are able to present a detailed analysis of the source-plane dynamics at scales much better than previously attainable through traditional image inversion methods. Moreover, our technique is adapted to magnification, thus allowing us to achieve higher resolution in highly magnified regions of the source. We find that this lensed system is highly evident of a minor merger. In my talk, I present this case study of z=2 lensed galaxy and also discuss the applications of our algorithm to study plethora of lensed systems, which will be available through future telescopes like JWST and GMT.

  9. Galaxy Classification using Machine Learning

    NASA Astrophysics Data System (ADS)

    Fowler, Lucas; Schawinski, Kevin; Brandt, Ben-Elias; widmer, Nicole

    2017-01-01

    We present our current research into the use of machine learning to classify galaxy imaging data with various convolutional neural network configurations in TensorFlow. We are investigating how five-band Sloan Digital Sky Survey imaging data can be used to train on physical properties such as redshift, star formation rate, mass and morphology. We also investigate the performance of artificially redshifted images in recovering physical properties as image quality degrades.

  10. Galaxy NGC 1448 with Active Galactic Nucleus

    NASA Image and Video Library

    2017-01-07

    NGC 1448, a galaxy with an active galactic nucleus, is seen in this image combining data from the Carnegie-Irvine Galaxy Survey in the optical range and NuSTAR in the X-ray range. This galaxy contains an example of a supermassive black hole hidden by gas and dust. X-ray emissions from NGC 1448, as seen by NuSTAR and Chandra, suggests for the first time that, like IC 3639 in PIA21087, there must be a thick layer of gas and dust hiding the active black hole in this galaxy from our line of sight. http://photojournal.jpl.nasa.gov/catalog/PIA21086

  11. Globular Clusters for Faint Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    The origin of ultra-diffuse galaxies (UDGs) has posed a long-standing mystery for astronomers. New observations of several of these faint giants with the Hubble Space Telescope are now lending support to one theory.Faint-Galaxy MysteryHubble images of Dragonfly 44 (top) and DFX1 (bottom). The right panels show the data with greater contrast and extended objects masked. [van Dokkum et al. 2017]UDGs large, extremely faint spheroidal objects were first discovered in the Virgo galaxy cluster roughly three decades ago. Modern telescope capabilities have resulted in many more discoveries of similar faint galaxies in recent years, suggesting that they are a much more common phenomenon than we originally thought.Despite the many observations, UDGs still pose a number of unanswered questions. Chief among them: what are UDGs? Why are these objects the size of normal galaxies, yet so dim? There are two primary models that explain UDGs:UDGs were originally small galaxies, hence their low luminosity. Tidal interactions then puffed them up to the large size we observe today.UDGs are effectively failed galaxies. They formed the same way as normal galaxies of their large size, but something truncated their star formation early, preventing them from gaining the brightness that we would expect for galaxies of their size.Now a team of scientists led by Pieter van Dokkum (Yale University) has made some intriguing observations with Hubble that lend weight to one of these models.Globulars observed in 16 Coma-cluster UDGs by Hubble. The top right panel shows the galaxy identifications. The top left panel shows the derived number of globular clusters in each galaxy. [van Dokkum et al. 2017]Globulars GaloreVan Dokkum and collaborators imaged two UDGs with Hubble: Dragonfly 44 and DFX1, both located in the Coma galaxy cluster. These faint galaxies are both smooth and elongated, with no obvious irregular features, spiral arms, star-forming regions, or other indications of tidal interactions

  12. ALMA imaging of gas and dust in a galaxy protocluster at redshift 5.3: [C II] emission in 'typical' galaxies and dusty starbursts ≈1 billion years after the big bang

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riechers, Dominik A.; Carilli, Christopher L.; Capak, Peter L.

    2014-12-01

    We report interferometric imaging of [C II]({sup 2} P {sub 3/2}→{sup 2} P {sub 1/2}) and OH({sup 2}Π{sub 1/2} J = 3/2→1/2) emission toward the center of the galaxy protocluster associated with the z = 5.3 submillimeter galaxy (SMG) AzTEC-3, using the Atacama Large (sub)Millimeter Array (ALMA). We detect strong [C II], OH, and rest-frame 157.7 μm continuum emission toward the SMG. The [C II]({sup 2} P {sub 3/2}→{sup 2} P {sub 1/2}) emission is distributed over a scale of 3.9 kpc, implying a dynamical mass of 9.7 × 10{sup 10} M {sub ☉}, and a star formation rate (SFR)more » surface density of Σ{sub SFR} = 530 M {sub ☉} yr{sup –1} kpc{sup –2}. This suggests that AzTEC-3 forms stars at Σ{sub SFR} approaching the Eddington limit for radiation pressure supported disks. We find that the OH emission is slightly blueshifted relative to the [C II] line, which may indicate a molecular outflow associated with the peak phase of the starburst. We also detect and dynamically resolve [C II]({sup 2} P {sub 3/2}→{sup 2} P {sub 1/2}) emission over a scale of 7.5 kpc toward a triplet of Lyman-break galaxies with moderate UV-based SFRs in the protocluster at ∼95 kpc projected distance from the SMG. These galaxies are not detected in the continuum, suggesting far-infrared SFRs of <18-54 M {sub ☉} yr{sup –1}, consistent with a UV-based estimate of 22 M {sub ☉} yr{sup –1}. The spectral energy distribution of these galaxies is inconsistent with nearby spiral and starburst galaxies, but resembles those of dwarf galaxies. This is consistent with expectations for young starbursts without significant older stellar populations. This suggests that these galaxies are significantly metal-enriched, but not heavily dust-obscured, 'normal' star-forming galaxies at z > 5, showing that ALMA can detect the interstellar medium in 'typical' galaxies in the very early universe.« less

  13. Ultraviolet Imaging Telescope observations of the ScI galaxy NGC 628 (M74)

    NASA Technical Reports Server (NTRS)

    Chen, Peter C.; Cornett, Robert H.; Roberts, Morton S.; Bohlin, Ralph C.; Neff, Susan G.; O'Connell, Robert W.; Parise, Ronald A.; Smith, Andrew M.; Stecher, Theodore P.

    1992-01-01

    Ultraviolet images of NGC 628 at 1520 and 2490 A show that the nucleus has an oblong appearance and that the arms and disk exhibit features not seen in blue or H-alpha images. Aperture photometry of the nucleus gives results that are compatible with observations in other bandpasses and with models. The spiral arms appear more symmetrical in the UV than in other colors; in particular, two gaps are seen on either side of the nucleus. Combined UV and radio data appear to support a large-scale collective phenomenon, perhaps a quasi-static spiral structure mechanism, as being the dominant mode of spiral formation in this galaxy. We report the detection of a low surface brightness object at a distance of 7.6 arcmin southwest of the nucleus.

  14. Orphan Stars Found in Long Galaxy Tail

    NASA Astrophysics Data System (ADS)

    2007-09-01

    Astronomers have found evidence that stars have been forming in a long tail of gas that extends well outside its parent galaxy. This discovery suggests that such "orphan" stars may be much more prevalent than previously thought. The comet-like tail was observed in X-ray light with NASA's Chandra X-ray Observatory and in optical light with the Southern Astrophysical Research (SOAR) telescope in Chile. The feature extends for more than 200,000 light years and was created as gas was stripped from a galaxy called ESO 137-001 that is plunging toward the center of Abell 3627, a giant cluster of galaxies. "This is one of the longest tails like this we have ever seen," said Ming Sun of Michigan State University, who led the study. "And, it turns out that this is a giant wake of creation, not of destruction." Chandra X-ray Image of ESO 137-001 and Tail in Abell 3627 Chandra X-ray Image of ESO 137-001 and Tail in Abell 3627 The observations indicate that the gas in the tail has formed millions of stars. Because the large amounts of gas and dust needed to form stars are typically found only within galaxies, astronomers have previously thought it unlikely that large numbers of stars would form outside a galaxy. "This isn't the first time that stars have been seen to form between galaxies," said team member Megan Donahue, also of MSU. "But the number of stars forming here is unprecedented." The evidence for star formation in this tail includes 29 regions of ionized hydrogen glowing in optical light, thought to be from newly formed stars. These regions are all downstream of the galaxy, located in or near the tail. Two Chandra X-ray sources are near these regions, another indication of star formation activity. The researchers believe the orphan stars formed within the last 10 million years or so. The stars in the tail of this fast-moving galaxy, which is some 220 million light years away, would be much more isolated than the vast majority of stars in galaxies. H-alpha Image of

  15. Intergalactic Hydrogen Clouds at Low Redshift: Connections to Voids and Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Stocke, John T.; Penton, Steve

    1996-01-01

    We provide new post-COSTAR data on one sightline (Mrk 421) and updated data from another (I Zw 1) from our Hubble Space Telescope (HST) survey of intergalactic Ly(alpha) clouds located along sightlines to four bright quasars passing through well-mapped galaxy voids (16000 km/s pathlength) and superclusters (18000 km/s). We report two more definite detections of low-redshift Ly(alpha) clouds in voids: one at 3047 km/s (heliocentric) toward Mrk 421 and a second just beyond the Local Supercluster at 2861 km/s toward I Zw 1, confirming our earlier discovery of Ly(alpha) absorption clouds in voids (Stocke et al., ApJ, 451, 24). We have now identified ten definite and one probable low-redshift neutral hydrogen absorption clouds toward four targets, a frequency of approximately one absorber every 3400 km/s above 10(exp 12.7/sq cm column density. Of these ten absorption systems, three lie within voids; the probable absorber also lies in a void. Thus, the tendency of Ly(alpha) absorbers to 'avoid the voids' is not as clear as we found previously. If the Ly(alpha) clouds are approximated as homogeneous spheres of 100 kpc radius, their masses are approximately 10(exp 9)solar mass (about 0.01 times that of bright L* galaxies) and they are 40 times more numerous, comparable to the density of dwarf galaxies and of low-mass halos in numerical CDM simulations. The Ly(alpha) clouds contribute a fraction Omega(sub cl)approximately equals 0.003/h(sub 75) to the closure density of the universe, comparable to that of luminous matter. These clouds probably require a substantial amount of nonbaryonic dark matter for gravitational binding. They may represent extended haloes of low-mass protogalaxies which have not experienced significant star formation or low-mass dwarf galaxies whose star formation ceased long ago, but blew out significant gaseous material.

  16. Galaxy Zoo: An Experiment in Public Science Participation

    NASA Astrophysics Data System (ADS)

    Raddick, Jordan; Lintott, C. J.; Schawinski, K.; Thomas, D.; Nichol, R. C.; Andreescu, D.; Bamford, S.; Land, K. R.; Murray, P.; Slosar, A.; Szalay, A. S.; Vandenberg, J.; Galaxy Zoo Team

    2007-12-01

    An interesting question in modern astrophysics research is the relationship between a galaxy's morphology (appearance) and its formation and evolutionary history. Research into this question is complicated by the fact that to get a study sample, researchers must first assign a shape to a large number of galaxies. Classifying a galaxy by shape is nearly impossible for a computer, but easy for a human - however, looking at one million galaxies, one at a time, would take an enormous amount of time. To create such a research sample, we turned to citizen science. We created a web site called Galaxy Zoo (www.galaxyzoo.org) that invites the public to classify the galaxies. New members see a short tutorial and take a short skill test where they classify galaxies of known types. Once they pass the test, they begin to work with the entire sample. The site's interface shows the user an image of a single galaxy from the Sloan Digital Sky Survey. The user clicks a button to classify it. Each classification is stored in a database, associated with the galaxy that it describes. The site has become enormously popular with amateur astronomers, teachers, and others interested in astronomy. So far, more than 110,000 users have joined. We have started a forum where users share images of their favorite galaxies, ask science questions of each other and the "zookeepers," and share classification advice. In a separate poster, we will share science results from the site's first six months of operation. In this poster, we will describe the site as an experiment in public science outreach. We will share user feedback, discuss our plans to study the user community more systematically, and share advice on how to work with citizen science projects to the mutual benefit of both professional and citizen scientists.

  17. How Do Galaxies Grow?

    NASA Astrophysics Data System (ADS)

    2008-08-01

    Astronomers have caught multiple massive galaxies in the act of merging about 4 billion years ago. This discovery, made possible by combining the power of the best ground- and space-based telescopes, uniquely supports the favoured theory of how galaxies form. ESO PR Photo 24/08 ESO PR Photo 24/08 Merging Galaxies in Groups How do galaxies form? The most widely accepted answer to this fundamental question is the model of 'hierarchical formation', a step-wise process in which small galaxies merge to build larger ones. One can think of the galaxies forming in a similar way to how streams merge to form rivers, and how these rivers, in turn, merge to form an even larger river. This theoretical model predicts that massive galaxies grow through many merging events in their lifetime. But when did their cosmological growth spurts finish? When did the most massive galaxies get most of their mass? To answer these questions, astronomers study massive galaxies in clusters, the cosmological equivalent of cities filled with galaxies. "Whether the brightest galaxies in clusters grew substantially in the last few billion years is intensely debated. Our observations show that in this time, these galaxies have increased their mass by 50%," says Kim-Vy Tran from the University of Zürich, Switzerland, who led the research. The astronomers made use of a large ensemble of telescopes and instruments, including ESO's Very Large Telescope (VLT) and the Hubble Space Telescope, to study in great detail galaxies located 4 billion light-years away. These galaxies lie in an extraordinary system made of four galaxy groups that will assemble into a cluster. In particular, the team took images with VIMOS and spectra with FORS2, both instruments on the VLT. From these and other observations, the astronomers could identify a total of 198 galaxies belonging to these four groups. The brightest galaxies in each group contain between 100 and 1000 billion of stars, a property that makes them comparable

  18. "Missing Mass" Found in Recycled Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    2007-05-01

    Astronomers studying dwarf galaxies formed from the debris of a collision of larger galaxies found the dwarfs much more massive than expected, and think the additional material is "missing mass" that theorists said should not be present in this kind of dwarf galaxy. Multiwavelength Image of NGC 5291 Multiwavelength image of NGC 5291 and dwarf galaxies around it. CREDIT: P-A Duc, CEA-CNRS/NRAO/AUI/NSF/NASA. Click on image for page of more graphics and full information The scientists used the National Science Foundation's Very Large Array (VLA) radio telescope to study a galaxy called NGC 5291, 200 million light-years from Earth. This galaxy collided with another 360 million years ago, and the collision shot streams of gas and stars outward. Later, the dwarf galaxies formed from the ejected debris. "Our detailed studies of three 'recycled' dwarf galaxies in this system showed that the dwarfs have twice as much unseen matter as visible matter. This was surprising, because they were expected to have very little unseen matter," said Frederic Bournaud, of the French astrophysics laboratory AIM of the French CEA and CNRS. Bournaud and his colleagues announced their discovery in the May 10 online issue of the journal Science. "Dark matter," which astronomers can detect only by its gravitational effects, comes, they believe, in two basic forms. One form is the familiar kind of matter seen in stars, planets, and humans -- called baryonic matter -- that does not emit much light or other type of radiation. The other form, called non-baryonic dark matter, comprises nearly a third of the Universe but its nature is unknown. The visible portion of spiral galaxies, like our own Milky Way, lies mostly in a flattened disk, usually with a bulge in the center. This visible portion, however, is surrounded by a much larger halo of dark matter. When spiral galaxies collide, the material expelled outward by the interaction comes from the galaxies' disks. For this reason, astronomers did

  19. Probing Galaxy Formation and Evolution with Space Born Sub-Millimeter Telescopes

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Arendt, Richard G.; Moseley, Harvey; Benford, Dominic; Shafer, Richard; Mather, John; Oegerle, William (Technical Monitor)

    2002-01-01

    A major unresolved question in cosmology is how the complex system of galaxies we see in the present universe evolved from an almost perfectly smooth beginning. Multiwavelength observations of galaxies have revealed that a significant fraction of their UV-visible starlight is absorbed and reradiated by dust at infrared JR) and submillimeter wavelengths. The cumulative IR-submm. emission from galaxies since the epoch of recombination, the cosmic IR background, has recently been recorded by the COBE satellite. The COBE observations in combination with recent submm surveys conducted with the SCUBA on the 15 m JCMT have shown that most of the radiation from star formation that has taken place in the early stages of galaxy evolution is reradiated by dust at submm wavelengths. Therefore, submm telescopes offer a unique probe of the early stages of galaxy formation and evolution. This talk will: (1) consider the impact of telescope diameter on the depth of the survey (what redshift can be probed) at different wavelengths; (2) discuss the relative scientific merits of high-resolution narrow-field surveys versus lower resolution deep surveys; and (3) show how both strategies offer complementary information crucial to our understanding of the structure and evolution of galaxies in the universe.

  20. Hubble’s High-Definition Panoramic View of the Andromeda Galaxy

    NASA Image and Video Library

    2017-12-08

    The largest NASA Hubble Space Telescope image ever assembled, this sweeping bird’s-eye view of a portion of the Andromeda galaxy (M31) is the sharpest large composite image ever taken of our galactic next-door neighbor. Though the galaxy is over 2 million light-years away, The Hubble Space Telescope is powerful enough to resolve individual stars in a 61,000-light-year-long stretch of the galaxy’s pancake-shaped disk. It's like photographing a beach and resolving individual grains of sand. And there are lots of stars in this sweeping view -- over 100 million, with some of them in thousands of star clusters seen embedded in the disk. This ambitious photographic cartography of the Andromeda galaxy represents a new benchmark for precision studies of large spiral galaxies that dominate the universe's population of over 100 billion galaxies. Never before have astronomers been able to see individual stars inside an external spiral galaxy over such a large contiguous area. Most of the stars in the universe live inside such majestic star cities, and this is the first data that reveal populations of stars in context to their home galaxy. Hubble traces densely packed stars extending from the innermost hub of the galaxy seen at the left. Moving out from this central galactic bulge, the panorama sweeps from the galaxy's central bulge across lanes of stars and dust to the sparser outer disk. Large groups of young blue stars indicate the locations of star clusters and star-forming regions. The stars bunch up in the blue ring-like feature toward the right side of the image. The dark silhouettes trace out complex dust structures. Underlying the entire galaxy is a smooth distribution of cooler red stars that trace Andromeda’s evolution over billions of years. Because the galaxy is only 2.5 million light-years from Earth, it is a much bigger target in the sky than the myriad galaxies Hubble routinely photographs that are billions of light-years away. This means that the Hubble

  1. HUBBLE SPIES GLOBULAR CLUSTER IN NEIGHBORING GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hubble Space Telescope has captured a view of a globular cluster called G1, a large, bright ball of light in the center of the photograph consisting of at least 300,000 old stars. G1, also known as Mayall II, orbits the Andromeda galaxy (M31), the nearest major spiral galaxy to our Milky Way. Located 130,000 light-years from Andromeda's nucleus, G1 is the brightest globular cluster in the Local Group of galaxies. The Local Group consists of about 20 nearby galaxies, including the Milky Way. The crisp image is comparable to ground-based telescope views of similar clusters orbiting the Milky Way. The Andromeda cluster, however, is nearly 100 times farther away. A glimpse into the cluster's finer details allow astronomers to see its fainter helium-burning stars whose temperatures and brightnesses show that this cluster in Andromeda and the oldest Milky Way clusters have approximately the same age. These clusters probably were formed shortly after the beginning of the universe, providing astronomers with a record of the earliest era of galaxy formation. During the next two years, astronomers will use Hubble to study about 20 more globular clusters in Andromeda. The color picture was assembled from separate images taken in visible and near-infrared wavelengths taken in July of 1994. CREDIT: Michael Rich, Kenneth Mighell, and James D. Neill (Columbia University), and Wendy Freedman (Carnegie Observatories), and NASA Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.

  2. BULGELESS GIANT GALAXIES CHALLENGE OUR PICTURE OF GALAXY FORMATION BY HIERARCHICAL CLUSTERING ,

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kormendy, John; Cornell, Mark E.; Drory, Niv

    2010-11-01

    To better understand the prevalence of bulgeless galaxies in the nearby field, we dissect giant Sc-Scd galaxies with Hubble Space Telescope (HST) photometry and Hobby-Eberly Telescope (HET) spectroscopy. We use the HET High Resolution Spectrograph (resolution R {identical_to} {lambda}/FWHM {approx_equal} 15, 000) to measure stellar velocity dispersions in the nuclear star clusters and (pseudo)bulges of the pure-disk galaxies M 33, M 101, NGC 3338, NGC 3810, NGC 6503, and NGC 6946. The dispersions range from 20 {+-} 1 km s{sup -1} in the nucleus of M 33 to 78 {+-} 2 km s{sup -1} in the pseudobulge of NGC 3338.more » We use HST archive images to measure the brightness profiles of the nuclei and (pseudo)bulges in M 101, NGC 6503, and NGC 6946 and hence to estimate their masses. The results imply small mass-to-light ratios consistent with young stellar populations. These observations lead to two conclusions. (1) Upper limits on the masses of any supermassive black holes are M{sub .} {approx}< (2.6 {+-} 0.5) x 10{sup 6} M{sub sun} in M 101 and M{sub .} {approx}< (2.0 {+-} 0.6) x 10{sup 6} M{sub sun} in NGC 6503. (2) We show that the above galaxies contain only tiny pseudobulges that make up {approx}<3% of the stellar mass. This provides the strongest constraints to date on the lack of classical bulges in the biggest pure-disk galaxies. We inventory the galaxies in a sphere of radius 8 Mpc centered on our Galaxy to see whether giant, pure-disk galaxies are common or rare. We find that at least 11 of 19 galaxies with V{sub circ} > 150 km s{sup -1}, including M 101, NGC 6946, IC 342, and our Galaxy, show no evidence for a classical bulge. Four may contain small classical bulges that contribute 5%-12% of the light of the galaxy. Only four of the 19 giant galaxies are ellipticals or have classical bulges that contribute {approx}1/3 of the galaxy light. We conclude that pure-disk galaxies are far from rare. It is hard to understand how bulgeless galaxies could form as the

  3. H I absorption in nearby compact radio galaxies

    NASA Astrophysics Data System (ADS)

    Glowacki, M.; Allison, J. R.; Sadler, E. M.; Moss, V. A.; Curran, S. J.; Musaeva, A.; Deng, C.; Parry, R.; Sligo, M. C.

    2017-05-01

    H I absorption studies yield information on both active galactic nucleus (AGN) feeding and feedback processes. This AGN activity interacts with the neutral gas in compact radio sources, which are believed to represent the young or recently re-triggered AGN population. We present the results of a survey for H I absorption in a sample of 66 compact radio sources at 0.040 < z < 0.096 with the Australia Telescope Compact Array. In total, we obtained seven detections, five of which are new, with a large range of peak optical depths (3-87 per cent). Of the detections, 71 per cent exhibit asymmetric, broad (ΔvFWHM > 100 km s-1) features, indicative of disturbed gas kinematics. Such broad, shallow and offset features are also found within low-excitation radio galaxies which is attributed to disturbed circumnuclear gas, consistent with early-type galaxies typically devoid of a gas-rich disc. Comparing mid-infrared colours of our galaxies with H I detections indicates that narrow and deep absorption features are preferentially found in late-type and high-excitation radio galaxies in our sample. These features are attributed to gas in galactic discs. By combining XMM-Newton archival data with 21-cm data, we find support that absorbed X-ray sources may be good tracers of H I content within the host galaxy. This sample extends previous H I surveys in compact radio galaxies to lower radio luminosities and provides a basis for future work exploring the higher redshift universe.

  4. Galaxy and Mass Assembly (GAMA): variation in galaxy structure across the green valley

    NASA Astrophysics Data System (ADS)

    Kelvin, Lee S.; Bremer, Malcolm N.; Phillipps, Steven; James, Philip A.; Davies, Luke J. M.; De Propris, Roberto; Moffett, Amanda J.; Percival, Susan M.; Baldry, Ivan K.; Collins, Chris A.; Alpaslan, Mehmet; Bland-Hawthorn, Joss; Brough, Sarah; Cluver, Michelle; Driver, Simon P.; Hashemizadeh, Abdolhosein; Holwerda, Benne W.; Laine, Jarkko; Lara-Lopez, Maritza A.; Liske, Jochen; Maciejewski, Witold; Napolitano, Nicola R.; Penny, Samantha J.; Popescu, Cristina C.; Sansom, Anne E.; Sutherland, Will; Taylor, Edward N.; van Kampen, Eelco; Wang, Lingyu

    2018-07-01

    Using a sample of 472 local Universe (z < 0.06) galaxies in the stellar mass range 10.25 {<} log {M}_{\\star }/{M}_{⊙} {<} 10.75, we explore the variation in galaxy structure as a function of morphology and galaxy colour. Our sample of galaxies is subdivided into red, green, and blue colour groups and into elliptical and non-elliptical (disk-type) morphologies. Using Kilo-Degree Survey (KiDS) and Visible and Infrared Survey Telescope for Astronomy (VISTA) Kilo-Degree Infrared Galaxy Survey (VIKING) derived postage stamp images, a group of eight volunteers visually classified bars, rings, morphological lenses, tidal streams, shells, and signs of merger activity for all systems. We find a significant surplus of rings (2.3σ) and lenses (2.9σ) in disk-type galaxies as they transition across the green valley. Combined, this implies a joint ring/lens green valley surplus significance of 3.3σ relative to equivalent disk-types within either the blue cloud or the red sequence. We recover a bar fraction of {˜ }44 per cent which remains flat with colour, however, we find that the presence of a bar acts to modulate the incidence of rings and (to a lesser extent) lenses, with rings in barred disk-type galaxies more common by ˜20-30 percentage points relative to their unbarred counterparts, regardless of colour. Additionally, green valley disk-type galaxies with a bar exhibit a significant 3.0σ surplus of lenses relative to their blue/red analogues. The existence of such structures rules out violent transformative events as the primary end-of-life evolutionary mechanism, with a more passive scenario the favoured candidate for the majority of galaxies rapidly transitioning across the green valley.

  5. Faint Submillimeter Galaxies Behind Lensing Clusters

    NASA Astrophysics Data System (ADS)

    Hsu, Li-Yen; Lauchlan Cowie, Lennox; Barger, Amy J.; Desai, Vandana; Murphy, Eric J.

    2017-01-01

    Faint submillimeter galaxies are the major contributors to the submillimeter extragalactic background light and hence the dominant star-forming population in the dusty universe. Determining how much these galaxies overlap the optically selected samples is critical to fully account for the cosmic star formation history. Observations of massive cluster fields are the best way to explore this faint submillimeter population, thanks to gravitational lensing effects. We have been undertaking a lensing cluster survey with the SCUBA-2 camera on the James Clerk Maxwell Telescope to map nine galaxy clusters, including the northern five clusters in the HST Frontier Fields program. We have also been using the Submillimeter Array and the Very Large Array to determine the accurate positions of our detected sources. Our observations have discovered high-redshift dusty galaxies with far-infrared luminosities similar to that of the Milky Way or luminous infrared galaxies. Some of these galaxies are still undetected in deep optical and near-infrared images. These results suggest that a substantial amount of star formation in even the faint submillimeter population may be hidden from rest-frame optical surveys.

  6. Gamma-ray bursts, QSOs and active galaxies.

    PubMed

    Burbidge, Geoffrey

    2007-05-15

    The similarity of the absorption spectra of gamma-ray burst (GRB) sources or afterglows with the absorption spectra of quasars (QSOs) suggests that QSOs and GRB sources are very closely related. Since most people believe that the redshifts of QSOs are of cosmological origin, it is natural to assume that GRBs or their afterglows also have cosmological redshifts. For some years a few of us have argued that there is much optical evidence suggesting a very different model for QSOs, in which their redshifts have a non-cosmological origin, and are ejected from low-redshift active galaxies. In this paper I extend these ideas to GRBs. In 2003, Burbidge (Burbidge 2003 Astrophys. J. 183, 112-120) showed that the redshift periodicity in the spectra of QSOs appears in the redshift of GRBs. This in turn means that both the QSOs and the GRB sources are similar objects ejected from comparatively low-redshift active galaxies. It is now clear that many of the GRBs of low redshift do appear in, or very near, active galaxies.A new and powerful result supporting this hypothesis has been produced by Prochter et al. (Prochter et al. 2006 Astrophys. J. Lett. 648, L93-L96). They show that in a survey for strong MgII absorption systems along the sightlines to long-duration GRBs, nearly every sightline shows at least one absorber. If the absorbers are intervening clouds or galaxies, only a small fraction should show absorption of this kind. The number found by Prochter et al. is four times higher than that normally found for the MgII absorption spectra of QSOs. They believe that this result is inconsistent with the intervening hypothesis and would require a statistical fluctuation greater than 99.1% probability. This is what we expect if the absorption is intrinsic to the GRBs and the redshifts are not associated with their distances. In this case, the absorption must be associated with gas ejected from the QSO. This in turn implies that the GRBs actually originate in comparatively low

  7. Precise weak lensing constraints from deep high-resolution Ks images: VLT/HAWK-I analysis of the super-massive galaxy cluster RCS2 J 232727.7-020437 at z = 0.70

    NASA Astrophysics Data System (ADS)

    Schrabback, Tim; Schirmer, Mischa; van der Burg, Remco F. J.; Hoekstra, Henk; Buddendiek, Axel; Applegate, Douglas; Bradač, Maruša; Eifler, Tim; Erben, Thomas; Gladders, Michael D.; Hernández-Martín, Beatriz; Hildebrandt, Hendrik; Hoag, Austin; Klaes, Dominik; von der Linden, Anja; Marchesini, Danilo; Muzzin, Adam; Sharon, Keren; Stefanon, Mauro

    2018-03-01

    We demonstrate that deep good-seeing VLT/HAWK-I Ks images complemented with g + z-band photometry can yield a sensitivity for weak lensing studies of massive galaxy clusters at redshifts 0.7 ≲ z ≲ 1.1, which is almost identical to the sensitivity of HST/ACS mosaics of single-orbit depth. Key reasons for this good performance are the excellent image quality frequently achievable for Ks imaging from the ground, a highly effective photometric selection of background galaxies, and a galaxy ellipticity dispersion that is noticeably lower than for optically observed high-redshift galaxy samples. Incorporating results from the 3D-HST and UltraVISTA surveys we also obtained a more accurate calibration of the source redshift distribution than previously achieved for similar optical weak lensing data sets. Here we studied the extremely massive galaxy cluster RCS2 J232727.7-020437 (z = 0.699), combining deep VLT/HAWK-I Ks images (point spread function with a 0.''35 full width at half maximum) with LBT/LBC photometry. The resulting weak lensing mass reconstruction suggests that the cluster consists of a single overdensity, which is detected with a peak significance of 10.1σ. We constrained the cluster mass to M200c/(1015 M⊙) = 2.06-0.26+0.28(stat.) ± 0.12(sys.) assuming a spherical Navarro, Frenk & White model and simulation-based priors on the concentration, making it one of the most massive galaxy clusters known in the z ≳ 0.7 Universe. We also cross-checked the HAWK-I measurements through an analysis of overlapping HST/ACS images, yielding fully consistent estimates of the lensing signal. Based on observations conducted with the ESO Very Large Telescope, the Large Binocular Telescope, and the NASA/ESA Hubble Space Telescope, as detailed in the acknowledgements.

  8. Rebuilding Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    2005-01-01

    occurring in less than 1,000 million years, the existence of such a large fraction of these LIRGs in the past Universe has important consequences on the total stellar formation rate. As François Hammer (Paris Observatory, France), leader of the team, states: "We are thus led to the conclusion that during the time span from roughly 8,000 million to 4,000 million years ago, intermediate mass galaxies converted about half of their total mass into stars. Moreover, this star formation must have taken place in very intense bursts when galaxies were emitting huge amount of infrared radiation and appeared as LIRGs." Another result could be secured using the spectra obtained with the Very Large Telescope: the astronomers measured the chemical abundances in several of the observed galaxies (PR Photo 02a/05). They find that galaxies with large redshifts show oxygen abundances two times lower than present-day spirals. As it is stars which produce oxygen in a galaxy, this again gives support to the fact that these galaxies have been actively forming stars in the period between 8,000 and 4,000 million years ago. And because it is believed that galaxy collisions and mergers play an important role in triggering such phases of enhanced star-forming activity, these observations indicate that galaxy merging still occurred frequently less than 8,000 million years ago. Spiral Rebuilding ESO PR Photo 02b/05 ESO PR Photo 02b/05 The Spiral Rebuilding Scenario [Preview - JPEG: 471 x 400 pix - 80k] [Normal - JPEG: 941 x 800 pix - 207k] Caption: ESO PR Photo 02b/05: Schematic representation of the newly proposed scenario of "spiral galaxy rebuilding": galaxies collide (1), then merge (2), inducing a burst of stellar formation activity. After the merging, the gas and the stars fall towards the centre in a very compact structure (3). Part of the gas which did not fall back initially, gradually rebuilds a disc around the compact structure, making a new spiral galaxy (4 and 5). The images are pictures

  9. What do you gain from deconvolution? - Observing faint galaxies with the Hubble Space Telescope Wide Field Camera

    NASA Technical Reports Server (NTRS)

    Schade, David J.; Elson, Rebecca A. W.

    1993-01-01

    We describe experiments with deconvolutions of simulations of deep HST Wide Field Camera images containing faint, compact galaxies to determine under what circumstances there is a quantitative advantage to image deconvolution, and explore whether it is (1) helpful for distinguishing between stars and compact galaxies, or between spiral and elliptical galaxies, and whether it (2) improves the accuracy with which characteristic radii and integrated magnitudes may be determined. The Maximum Entropy and Richardson-Lucy deconvolution algorithms give the same results. For medium and low S/N images, deconvolution does not significantly improve our ability to distinguish between faint stars and compact galaxies, nor between spiral and elliptical galaxies. Measurements from both raw and deconvolved images are biased and must be corrected; it is easier to quantify and remove the biases for cases that have not been deconvolved. We find no benefit from deconvolution for measuring luminosity profiles, but these results are limited to low S/N images of very compact (often undersampled) galaxies.

  10. The shape of galaxy dark matter halos in massive galaxy clusters: Insights from strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Jauzac, Mathilde; Harvey, David; Massey, Richard

    2018-04-01

    We assess how much unused strong lensing information is available in the deep Hubble Space Telescope imaging and VLT/MUSE spectroscopy of the Frontier Field clusters. As a pilot study, we analyse galaxy cluster MACS J0416.1-2403 (z=0.397, M(R < 200 kpc)=1.6×1014M⊙), which has 141 multiple images with spectroscopic redshifts. We find that many additional parameters in a cluster mass model can be constrained, and that adding even small amounts of extra freedom to a model can dramatically improve its figures of merit. We use this information to constrain the distribution of dark matter around cluster member galaxies, simultaneously with the cluster's large-scale mass distribution. We find tentative evidence that some galaxies' dark matter has surprisingly similar ellipticity to their stars (unlike in the field, where it is more spherical), but that its orientation is often misaligned. When non-coincident dark matter and stellar halos are allowed, the model improves by 35%. This technique may provide a new way to investigate the processes and timescales on which dark matter is stripped from galaxies as they fall into a massive cluster. Our preliminary conclusions will be made more robust by analysing the remaining five Frontier Field clusters.

  11. The Galaxy Cluster Merger Catalog: An Online Repository of Mock Observations from Simulated Galaxy Cluster Mergers

    NASA Astrophysics Data System (ADS)

    ZuHone, J. A.; Kowalik, K.; Öhman, E.; Lau, E.; Nagai, D.

    2018-01-01

    We present the “Galaxy Cluster Merger Catalog.” This catalog provides an extensive suite of mock observations and related data for N-body and hydrodynamical simulations of galaxy cluster mergers and clusters from cosmological simulations. These mock observations consist of projections of a number of important observable quantities in several different wavebands, as well as along different lines of sight through each simulation domain. The web interface to the catalog consists of easily browsable images over epoch and projection direction, as well as download links for the raw data and a JS9 interface for interactive data exploration. The data are presented within a consistent format so that comparison between simulations is straightforward. All of the data products are provided in the standard Flexible Image Transport System file format. The data are being stored on the yt Hub (http://hub.yt), which allows for remote access and analysis using a Jupyter notebook server. Future versions of the catalog will include simulations from a number of research groups and a variety of research topics related to the study of interactions of galaxy clusters with each other and with their member galaxies. The catalog is located at http://gcmc.hub.yt.

  12. The shape of galaxy dark matter haloes in massive galaxy clusters: insights from strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Jauzac, Mathilde; Harvey, David; Massey, Richard

    2018-07-01

    We assess how much unused strong lensing information is available in the deep Hubble Space Telescope imaging and Very Large Telescope/Multi Unit Spectroscopic Explorer spectroscopy of the Frontier Field clusters. As a pilot study, we analyse galaxy cluster MACS J0416.1-2403 (z = 0.397, M(R < 200 kpc) = 1.6 × 1014 M⊙), which has 141 multiple images with spectroscopic redshifts. We find that many additional parameters in a cluster mass model can be constrained, and that adding even small amounts of extra freedom to a model can dramatically improve its figures of merit. We use this information to constrain the distribution of dark matter around cluster member galaxies, simultaneously with the cluster's large-scale mass distribution. We find tentative evidence that some galaxies' dark matter has surprisingly similar ellipticity to their stars (unlike in the field, where it is more spherical), but that its orientation is often misaligned. When non-coincident dark matter and stellar haloes are allowed, the model improves by 35 per cent. This technique may provide a new way to investigate the processes and time-scales on which dark matter is stripped from galaxies as they fall into a massive cluster. Our preliminary conclusions will be made more robust by analysing the remaining five Frontier Field clusters.

  13. Galaxy and Mass Assembly (GAMA): Variation in Galaxy Structure Across the Green Valley

    NASA Astrophysics Data System (ADS)

    Kelvin, Lee S.; Bremer, Malcolm N.; Phillipps, Steven; James, Philip A.; Davies, Luke J. M.; De Propris, Roberto; Moffett, Amanda J.; Percival, Susan M.; Baldry, Ivan K.; Collins, Chris A.; Alpaslan, Mehmet; Bland-Hawthorn, Joss; Brough, Sarah; Cluver, Michelle; Driver, Simon P.; Hashemizadeh, Abdolhosein; Holwerda, Benne W.; Laine, Jarkko; Lara-Lopez, Maritza A.; Liske, Jochen; Maciejewski, Witold; Napolitano, Nicola R.; Penny, Samantha J.; Popescu, Cristina C.; Sansom, Anne E.; Sutherland, Will; Taylor, Edward N.; van Kampen, Eelco; Wang, Lingyu

    2018-04-01

    Using a sample of 472 local Universe (z < 0.06) galaxies in the stellar mass range 10.25< log M_{\\star }/M_{⊙}<10.75, we explore the variation in galaxy structure as a function of morphology and galaxy colour. Our sample of galaxies is sub-divided into red, green and blue colour groups and into elliptical and non-elliptical (disk-type) morphologies. Using KiDS and VIKING derived postage stamp images, a group of eight volunteers visually classified bars, rings, morphological lenses, tidal streams, shells and signs of merger activity for all systems. We find a significant surplus of rings (2.3σ) and lenses (2.9σ) in disk-type galaxies as they transition across the green valley. Combined, this implies a joint ring/lens green valley surplus significance of 3.3σ relative to equivalent disk-types within either the blue cloud or the red sequence. We recover a bar fraction of ˜44% which remains flat with colour, however, we find that the presence of a bar acts to modulate the incidence of rings and (to a lesser extent) lenses, with rings in barred disk-type galaxies more common by ˜20 - 30 percentage points relative to their unbarred counterparts, regardless of colour. Additionally, green valley disk-type galaxies with a bar exhibit a significant 3.0σ surplus of lenses relative to their blue/red analogues. The existence of such structures rules out violent transformative events as the primary end-of-life evolutionary mechanism, with a more passive scenario the favoured candidate for the majority of galaxies rapidly transitioning across the green valley.

  14. Hubble Scopes Out a Galaxy of Stellar Birth

    NASA Image and Video Library

    2017-12-08

    This image displays a galaxy known as ESO 486-21 (with several other background galaxies and foreground stars visible in the field as well). ESO 486-21 is a spiral galaxy — albeit with a somewhat irregular and ill-defined structure — located some 30 million light-years from Earth. The NASA/ESA (European Space Agency) Hubble Space Telescope observed this object while performing a survey — the Legacy ExtraGalactic UV Survey (LEGUS) — of 50 nearby star-forming galaxies. The LEGUS sample was selected to cover a diverse range of galactic morphologies, star formation rates, galaxy masses and more. Astronomers use such data to understand how stars form and evolve within clusters, and how these processes affect both their home galaxy and the wider universe. ESO 486-21 is an ideal candidate for inclusion in such a survey because it is known to be in the process of forming new stars, which are created when large clouds of gas and dust (seen here in pink) within the galaxy crumple inwards upon themselves. Credit: NASA/ESA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. The Nature of LSB galaxies revealed by their Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kissler-Patig, Markus

    2005-07-01

    Low Surface Brightness {LSB} galaxies encompass many of the extremes in galaxy properties. Their understanding is essential to complete our picture of galaxy formation and evolution. Due to their historical under-representation on galaxy surveys, their importance to many areas of astronomy has only recently began to be realized. Globular clusters are superb tracers of the formation histories of galaxies and have been extensively used as such in high surface brightness galaxies. We propose to investigate the nature of massive LSB galaxies by studying their globular cluster systems. No globular cluster study has been reported for LSB galaxies to date. Yet, both the presence or absence of globular clusters set very strong constraints on the conditions prevailing during LSB galaxy formation and evolution. Both in dwarf and giant high surface brightness {HSB} galaxies, globular clusters are known to form as a constant fraction of baryonic mass. Their presence/absence immediately indicates similarities or discrepancies in the formation and evolution conditions of LSB and HSB galaxies. In particular, the presence/absence of metal-poor halo globular clusters infers similarities/differences in the halo formation and assembly processes of LSB vs. HSB galaxies, while the presence/absence of metal-rich globular clusters can be used to derive the occurrence and frequency of violent events {such as mergers} in the LSB galaxy assembly history. Two band imaging with ACS will allow us to identify the globular clusters {just resolved at the selected distance} and to determine their metallicity {potentially their rough age}. The composition of the systems will be compared to the extensive census built up on HSB galaxies. Our representative sample of six LSB galaxies {cz < 2700 km/s} are selected such, that a large system of globular clusters is expected. Globular clusters will constrain phases of LSB galaxy formation and evolution that can currently not be probed by other means. HST

  16. Hubble's makes a double galaxy gaze

    NASA Image and Video Library

    2017-12-08

    Some astronomical objects have endearing or quirky nicknames, inspired by mythology or their own appearance. Take, for example, the constellation of Orion (The Hunter), the Sombrero Galaxy, the Horsehead Nebula, or even the Milky Way. However, the vast majority of cosmic objects appear in astronomical catalogs and are given rather less poetic names based on the order of their discovery. Two galaxies are clearly visible in this Hubble image, the larger of which is NGC 4424. This galaxy is cataloged in the New General Catalog of Nebulae and Clusters of Stars (NGC), which was compiled in 1888. The NGC is one of the largest astronomical catalogs, which is why so many Hubble Pictures of the Week feature NGC objects. In total there are 7,840 entries in the catalog and they are also generally the larger, brighter, and more eye-catching objects in the night sky, and hence the ones more easily spotted by early stargazers. The smaller, flatter, bright galaxy sitting just below NGC 4424 is named LEDA 213994. The Lyon-Meudon Extragalactic Database (LEDA) is far more modern than the NGC and contains millions of objects. Many NGC objects still go by their initial names simply because they were christened within the NGC first. However, since astronomers can't resist a good acronym and “Leda” is more appealing than “the LMED,” the smaller galaxy is called "Leda." Leda was a princess in Ancient Greek mythology. Image credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Ultraluminous infrared galaxies

    NASA Technical Reports Server (NTRS)

    Sanders, D. B.; Soifer, B. T.; Neugebauer, G.; Scoville, N. Z.; Madore, B. F.; Danielson, G. E.; Elias, J. H.; Matthews, K.; Persson, C. J.; Persson, S. E.

    1987-01-01

    The IRAS survey of the local universe has revealed the existence of a class of ultraluminous infrared galaxies with L(8 to 1000 micrometer) greater than 10 to the 12th L sub 0 that are slightly more numerous, and as luminous as optically selected quasars at similar redshift. Optical CCD images of these infrared galaxies show that nearly all are advanced mergers. Millimeter wave CO observations indicate that these interacting systems are extremely rich in molecular gas with total H2 masses 1 to 3 x 10 to the 10th power M sub 0. Nearly all of the ultraluminous infrared galaxies show some evidence in their optical spectra for nonthermal nuclear activity. It is proposed that their infrared luminosity is powered by an embedded active nucleus and a nuclear starburst both of which are fueled by the tremendous reservoir of molecular gas. Once these merger nuclei shed their obscuring dust, allowing the AGN to visually dominate the decaying starburst, they become the optically selected quasars.

  18. Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data

    NASA Astrophysics Data System (ADS)

    Strateva, Iskra; Ivezić, Željko; Knapp, Gillian R.; Narayanan, Vijay K.; Strauss, Michael A.; Gunn, James E.; Lupton, Robert H.; Schlegel, David; Bahcall, Neta A.; Brinkmann, Jon; Brunner, Robert J.; Budavári, Tamás; Csabai, István; Castander, Francisco Javier; Doi, Mamoru; Fukugita, Masataka; Győry, Zsuzsanna; Hamabe, Masaru; Hennessy, Greg; Ichikawa, Takashi; Kunszt, Peter Z.; Lamb, Don Q.; McKay, Timothy A.; Okamura, Sadanori; Racusin, Judith; Sekiguchi, Maki; Schneider, Donald P.; Shimasaku, Kazuhiro; York, Donald

    2001-10-01

    We study the optical colors of 147,920 galaxies brighter than g*=21, observed in five bands by the Sloan Digital Sky Survey (SDSS) over ~100 deg2 of high Galactic latitude sky along the celestial equator. The distribution of galaxies in the g*-r* versus u*-g* color-color diagram is strongly bimodal, with an optimal color separator of u*-r*=2.22. We use visual morphology and spectral classification of subsamples of 287 and 500 galaxies, respectively, to show that the two peaks correspond roughly to early- (E, S0, and Sa) and late-type (Sb, Sc, and Irr) galaxies, as expected from their different stellar populations. We also find that the colors of galaxies are correlated with their radial profiles, as measured by the concentration index and by the likelihoods of exponential and de Vaucouleurs' profile fits. While it is well known that late-type galaxies are bluer than early-type galaxies, this is the first detection of a local minimum in their color distribution. In all SDSS bands, the counts versus apparent magnitude relations for the two color types are significantly different and demonstrate that the fraction of blue galaxies increases toward the faint end.

  19. VLT Smashes the Record of the Farthest Known Galaxy

    NASA Astrophysics Data System (ADS)

    2004-03-01

    gathering power of the VLT and the excellent sky conditions prevailing at Paranal. Searching for distant galaxies The hunt for such faint, elusive objects demands a particular approach. First of all, very deep images of a cluster of galaxies named Abell 1835 were taken using the ISAAC near-infrared instrument on the VLT. Such relatively nearby massive clusters are able to bend and amplify the light of background sources - a phenomenon called Gravitational Lensing and predicted by Einstein's theory of General Relativity. This natural amplification allows the astronomers to peer at galaxies which would otherwise be too faint to be seen. In the case of the newly discovered galaxy, the light is amplified approximately 25 to 100 times! Combined with the power of the VLT it has thereby been possible to image and even to take a spectrum of this galaxy. Indeed, the natural amplification effectively increases the aperture of the VLT from 8.2-m to 40-80 m. The deep near-IR images taken at different wavelengths have allowed the astronomers to characterise the properties of a few thousand galaxies in the image and to select a handful of them as potentially very distant galaxies. Using previously obtained images taken at the Canada-France-Hawaii Telescope (CFHT) on Mauna Kea and images from the Hubble Space Telescope, it has then been verified that these galaxies are indeed not seen in the optical. In this way, six candidate high redshift galaxies were recognised whose light may have been emitted when the Universe was less than 700 million years old. To confirm and obtain a more precise determination of the distance of one of these galaxies, the astronomers obtained Director's Discretionary Time to use again ISAAC on the VLT, but this time in its spectroscopic mode. After several months of careful analysis of the data, the astronomers are convinced to have detected a weak but clear spectral feature in the near-infrared domain. The astronomers have made a strong case that this feature is

  20. Mass Loss from the Nuclei of Active Galaxies

    NASA Technical Reports Server (NTRS)

    Crenshaw, Michael; Kraemer, Steven B.; George, Ian M.

    2003-01-01

    Blueshifted absorption lines in the UV and X-ray spectra of active galaxies reveal the presence of massive outflows of ionized gas from their nuclei. The intrinsic UV and X-ray absorbers show large global covering factors of the central continuum source, and the inferred mass loss rates are comparable to the mass accretion rates. Many absorbers show variable ionic column densities which are attributed to a combination of variable ionizing flux and motion of gas into and out of the line of sight . Detailed studies of the intrinsic absorbers. with the assistance of monitoring observations and photoionization models. provide constraints on their kinematics] physical conditions. and locations relative to the central continuum source. which range from the inner nucleus (approx.0.01 pc) to the galactic disk or halo (approx.10 kpc) . Dynamical models that make use of thermal winds. radiation pressure. and/or hydromagnetic flows have reached a level of sophistication that permits comparisons with the observational constraints .