Sample records for absorbing iron-complexed colorants

  1. Iron Determination in Meat Using Ferrozine Assay

    NASA Astrophysics Data System (ADS)

    Carpenter, Charles; Ward, Robert

    Chromogens are chemicals that react with compounds of interest and form colored products that can be quantified using spectroscopy. Several chromogens that selectively react with minerals are available. In this lab, ferrozine is used to measure ferrous iron in an ashed food sample. The relationship between the absorbance of the chromogen-mineral complex is described by Beer's Law; in this procedure, a standard curve is generated with a stock iron solution to quantify the mineral in beef samples.

  2. Magnetic bead-based enzyme-chromogenic substrate system for ultrasensitive colorimetric immunoassay accompanying cascade reaction for enzymatic formation of squaric acid-iron(III) chelate.

    PubMed

    Lai, Wenqiang; Tang, Dianping; Zhuang, Junyang; Chen, Guonan; Yang, Huanghao

    2014-05-20

    This work reports on a simple and feasible colorimetric immunoassay with signal amplification for sensitive determination of prostate-specific antigen (PSA, used as a model) at an ultralow concentration by using a new enzyme-chromogenic substrate system. We discovered that glucose oxidase (GOx), the enzyme broadly used in enzyme-linked immunosorbent assay (ELISA), has the ability to stimulate in situ formation of squaric acid (SQA)-iron(III) chelate. GOx-catalyzed oxidization of glucose leads to the formation of gluconic acid and hydrogen peroxide (H2O2). The latter can catalytically oxidize iron(II) to iron(III), which can rapidly (<1 min) coordinate with the SQA. Formation of the iron-squarate complex causes the color of the solution to change from bluish purple to bluish red accompanying the increasing absorbance with the increment of iron(III) concentration. On the basis of the SQA-iron(III) system, a new immunoassay protocol with GOx-labeled anti-PSA detection antibody can be designed for the detection of target PSA on capture antibody-functionalized magnetic immunosensing probe, monitored by recording the color or absorbance (λ = 468 nm) of the generated SQA-iron(III) chelate. The absorbance intensity shows to be dependent on the concentration of target PSA. A linear dependence between the absorbance and target PSA concentration is obtained under optimal conditions in the range from 1.0 pg mL(-1) to 30 ng mL(-1) with a detection limit (LOD) of 0.5 pg mL(-1) (0.5 ppt) estimated at the 3Sblank level. The sensitivity displays to be 3-5 orders of magnitude better than those of most commercialized human PSA ELISA kits. In addition, the developed colorimetric immunoassay was validated by assaying 12 human serum samples, receiving in good accordance with those obtained by the commercialized PSA ELISA kit. Importantly, the SQA-based immunosensing system can be further extended for the detection of other low-abundance proteins or biomarkers by controlling the target antibody.

  3. Spectrophotometric study of the thorium-morin mixed-color system

    USGS Publications Warehouse

    Fletcher, M.H.; Milkey, R.G.

    1956-01-01

    A spectrophotometric study was made of the thoriummorin reaction to evaluate the suitability of morin as a reagent for the determination of trace amounts of thorium. At pH 2, the equilibrium constant for the reaction is 1 ?? 106, and a single complex having a thorium-morin ratio of 1 to 2 is formed. The complex shows maximum absorbance at a wave length of 410 m??, and its absorbance obeys Beer's law. The absorbance readings are highly reproducible, and the sensitivity is relatively high, an absorbance difference of 0.001 being equivalent to 0.007 ?? of ThO2 per sq. cm. The effects of acid, alcohol, and morin concentration, time, temperature, and age of the morin reagent as well as the behavior of morin with zirconium(IV), iron(III), aluminum(III), ytterbium(III), yttrium(III), uranium(VI), praseodymium(III), lead(II), lanthanum(III), and calcium(II) ions are discussed. A method is presented for the determination of thorium in pure solutions. Appropriate separations for the isolation of thorium may extend the usefulness of the method and permit the determination of trace amounts of thorium in complex materials.

  4. Synthesis of thin film containing 4-amino-1,2,4-triazole iron(II) complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onggo, Djulia, E-mail: djulia@Chem.itb.ac.id

    The Iron(II) complex with 4-amino-1,2,4 triazole (NH{sub 2}-trz) ligand has potential applications as smart material since the compounds show a distinct color change from lilac at low temperature to colorless at high temperature. The lilac color of the complex represent the diamagnetic low spin state while the colorless correspond to the paramagnetic high spin state of iron(II). The transition between the two states could be tuned by changing the anionic group. Generally, the complex was synthesized directly from aqueous solution of iron(II) salt with considerable amounts of NH{sub 2}-trz solution produced solid powder compound. For application as an electronic molecularmore » device, the complex should be obtained as a thin film. The transparent [Fe(NH{sub 2}trz){sub 3}]-Nafion film has been successfully obtained, however, no anion variation can be produced since the nafion is an anionic resin. In this work, the [Fe(NH{sub 2}trz){sub 3}]-complexes with several anions have been synthesized inside nata de coco membrane that commonly used as a medium for deposition metal nano-particles. After drying the membrane containing the complex became a thin film. At room temperature, the film containing iron(II) complexes of sulphate and nitrate salts show lilac color, similar to that of the original complexes in the powder form. On heating, the color of the complex film changed to colorless and this color change was observed reversibly. In contrast, the films containing perchlorate and tetrafluoroborate iron(II) complexes are colorless at room temperature and changed to lilac on cooling. The significant color changing of the iron(II)complexes in the nata de coco film can be used for demonstration thermo chromic effect of smart materials with relatively small amount of the compounds.« less

  5. Absorption of Iron from Ferritin Is Independent of Heme Iron and Ferrous Salts in Women and Rat Intestinal Segments123

    PubMed Central

    Chen, Huijun; Miranda, Constanza; Janser, Heinz; Elsenhans, Bernd; Núñez, Marco T.; Pizarro, Fernando; Schümann, Klaus

    2012-01-01

    Ferritin iron from food is readily bioavailable to humans and has the potential for treating iron deficiency. Whether ferritin iron absorption is mechanistically different from iron absorption from small iron complexes/salts remains controversial. Here, we studied iron absorption (RBC 59Fe) from radiolabeled ferritin iron (0.5 mg) in healthy women with or without non-ferritin iron competitors, ferrous sulfate, or hemoglobin. A 9-fold excess of non-ferritin iron competitor had no significant effect on ferritin iron absorption. Larger amounts of iron (50 mg and a 99-fold excess of either competitor) inhibited iron absorption. To measure transport rates of iron that was absorbed inside ferritin, rat intestinal segments ex vivo were perfused with radiolabeled ferritin and compared to perfusion with ferric nitrilotriacetic (Fe-NTA), a well-studied form of chelated iron. Intestinal transport of iron absorbed inside exogenous ferritin was 14.8% of the rate measured for iron absorbed from chelated iron. In the steady state, endogenous enterocyte ferritin contained >90% of the iron absorbed from Fe-NTA or ferritin. We found that ferritin is a slow release source of iron, readily available to humans or animals, based on RBC iron incorporation. Ferritin iron is absorbed by a different mechanism than iron salts/chelates or heme iron. Recognition of a second, nonheme iron absorption process, ferritin endocytosis, emphasizes the need for more mechanistic studies on ferritin iron absorption and highlights the potential of ferritin present in foods such as legumes to contribute to solutions for global iron deficiency. PMID:22259191

  6. Effect of tannic acid on iron absorption in straw-colored fruit bats (Eidolon helvum).

    PubMed

    Lavin, Shana R; Chen, Zhensheng; Abrams, Steven A

    2010-01-01

    Excessive absorption and subsequent storage of dietary iron has been found in a variety of captively held birds and mammals, including fruit bats. It is thought that feeding a diet that is low in iron can prevent the onset of this disease; however, manufacturing a diet with commonly available foodstuffs that contains a sufficiently low iron concentration is difficult. An alternative is to feed captive animals that may be susceptible to this disease potential iron chelators such as tannins that may bind to iron and block its absorption. Using stable isotope methods established in humans, we measured iron bioavailability in straw-colored fruit bats (Eidolon helvum) and tested whether tannic acid significantly reduced the extent of iron absorption. Regardless of dose, tannic acid significantly reduced iron absorption (by 40%) and in the absence of tannic acid, iron absorption was extensive in this species (up to 30%), more so than in humans. Species susceptible to iron storage disease may efficiently absorb iron in the gut regardless of iron status, and supplementing these species with tannic acid in captivity may provide an alternative or additional means of preventing the development of this disease. (c) 2009 Wiley-Liss, Inc.

  7. PHOTOCHEICAL PRODUCTION OF HYDROXYL RADICAL IN NATURAL WATER - THE ROLE OF IRON AND DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    Photochemical hydroxyl radical (OH) production was measured in several natural waters to investigate the importance of colored dissolved organic matter (CDOM) and iron-CDOM complexes as sources of OH. High rates of OH photoproduction in highly colored, iron-rich, acidic waters a...

  8. Specific expression of the vacuolar iron transporter, TgVit, causes iron accumulation in blue-colored inner bottom segments of various tulip petals.

    PubMed

    Momonoi, Kazumi; Tsuji, Toshiaki; Kazuma, Kohei; Yoshida, Kumi

    2012-01-01

    Several flowers of Tulipa gesneriana exhibit a blue color in the bottom segments of the inner perianth. We have previously reported the inner-bottom tissue-specific iron accumulation and expression of the vacuolar iron transporter, TgVit1, in tulip cv. Murasakizuisho. To clarify whether the TgVit1-dependent iron accumulation and blue-color development in tulip petals are universal, we analyzed anthocyanin, its co-pigment components, iron contents and the expression of TgVit1 mRNA in 13 cultivars which show a blue color in the bottom segments of the inner perianth accompanying yellow- and white-colored inner-bottom petals. All of the blue bottom segments contained the same anthocyanin component, delphinidin 3-rutinoside. The flavonol composition varied with cultivar and tissue part. The major flavonol in the bottom segments of the inner perianth was rutin. The iron content in the upper part was less than that in the bottom segments of the inner perianth. The iron content in the yellow and white petals was higher in the bottom segment of the inner perianth than in the upper tissues. TgVit1 mRNA expression was apparent in all of the bottom tissues of the inner perianth. The result of a reproduction experiment by mixing the constituents suggests that the blue coloration in tulip petals is generally caused by iron complexation to delphinidin 3-rutinoside and that the iron complex is solubilized and stabilized by flavonol glycosides. TgVit1-dependent iron accumulation in the bottom segments of the inner perianth might be controlled by an unknown system that differentiated the upper parts and bottom segments of the inner perianth.

  9. Utilization of oxidation reactions for the spectrophotometric determination of captopril using brominating agents

    NASA Astrophysics Data System (ADS)

    El-Didamony, Akram M.; Erfan, Eman A. H.

    2010-03-01

    Three simple, accurate and sensitive methods (A-C) for the spectrophotometric assay of captopril (CPL) in bulk drug, in dosage forms and in the presence of its oxidative degradates have been described. The methods are based on the bromination of captopril with a solution of excess brominating mixture in hydrochloric acid medium. After bromination, the excess brominating mixture is followed by the estimation of surplus bromine by three different reaction schemes. In the first method (A), the determination of the residual bromine is based on its ability to bleach the indigo carmine dye and measuring the absorbance at 610 nm. Method B, involves treating the unreacted bromine with a measured excess of iron(II) and the remaining iron(II) is complexed with 1,10-phenanthroline and the increase in absorbance is measured at 510 nm. In method (C), the surplus bromine is treated with excess of iron(II) and the resulting iron(III) is complexed with thiocyanate and the absorbance is measured at 478 nm. In all the methods, the amount of bromine reacted corresponds to the drug content. The different experimental parameters affecting the development and stability of the color are carefully studied and optimized. Beer's law is valid within a concentration range of 0.4-6.0, 0.4-2.8 and 1.2-4.8 μg mL -1 for methods A, B and C, respectively. The calculated apparent molar absorptivity was found to be 5.16 × 10 4, 9.95 × 10 4 and 1.74 × 10 5 L mol -1 cm -1, for methods A, B and C, respectively. Sandell's sensitivity, correlation coefficients, detection and quantification limits are also reported. No interference was observed from common additives found in pharmaceutical preparations. The proposed methods are successfully applied to the determination of CPL in the tablet formulations with mean recoveries of 99.94-100.11% and the results were statistically compared with those of a reference method by applying Student's t- and F-test.

  10. Utilization of oxidation reactions for the spectrophotometric determination of captopril using brominating agents.

    PubMed

    El-Didamony, Akram M; Erfan, Eman A H

    2010-03-01

    Three simple, accurate and sensitive methods (A-C) for the spectrophotometric assay of captopril (CPL) in bulk drug, in dosage forms and in the presence of its oxidative degradates have been described. The methods are based on the bromination of captopril with a solution of excess brominating mixture in hydrochloric acid medium. After bromination, the excess brominating mixture is followed by the estimation of surplus bromine by three different reaction schemes. In the first method (A), the determination of the residual bromine is based on its ability to bleach the indigo carmine dye and measuring the absorbance at 610 nm. Method B, involves treating the unreacted bromine with a measured excess of iron(II) and the remaining iron(II) is complexed with 1,10-phenanthroline and the increase in absorbance is measured at 510 nm. In method (C), the surplus bromine is treated with excess of iron(II) and the resulting iron(III) is complexed with thiocyanate and the absorbance is measured at 478 nm. In all the methods, the amount of bromine reacted corresponds to the drug content. The different experimental parameters affecting the development and stability of the color are carefully studied and optimized. Beer's law is valid within a concentration range of 0.4-6.0, 0.4-2.8 and 1.2-4.8 microg mL(-1) for methods A, B and C, respectively. The calculated apparent molar absorptivity was found to be 5.16x10(4), 9.95x10(4) and 1.74x10(5)L mol(-1) cm(-1), for methods A, B and C, respectively. Sandell's sensitivity, correlation coefficients, detection and quantification limits are also reported. No interference was observed from common additives found in pharmaceutical preparations. The proposed methods are successfully applied to the determination of CPL in the tablet formulations with mean recoveries of 99.94-100.11% and the results were statistically compared with those of a reference method by applying Student's t- and F-test. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Magneto-optical Kerr rotation and color in ultrathin lossy dielectric

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Wang, Hai; Qu, Xin; Zhou, Yun song; Li, Li na

    2017-05-01

    Ultra-thin optical coating comprising nanometer-thick silicon absorbing films on iron substrates can display strong optical interference effects. A resonance peak of ∼1.6^\\circ longitudinal Kerr rotation with the silicon thickness of ∼47 \\text{nm} was found at the wavelength of 660 nm. The optical properties of silicon thin films were well controlled by the sputtering power. Non-iridescence color exhibition and Kerr rotation enhancement can be manipulated and encoded individually.

  12. A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation.

    PubMed

    Momonoi, Kazumi; Yoshida, Kumi; Mano, Shoji; Takahashi, Hideyuki; Nakamori, Chihiro; Shoji, Kazuaki; Nitta, Akira; Nishimura, Mikio

    2009-08-01

    Blue color in flowers is due mainly to anthocyanins, and a considerable part of blue coloration can be attributed to metal-complexed anthocyanins. However, the mechanism of metal ion transport into vacuoles and subsequent flower color development has yet to be fully explored. Previously, we studied the mechanism of blue color development specifically at the bottom of the inner perianth in purple tulip petals of Tulipa gesneriana cv. Murasakizuisho. We found that differences in iron content were associated with the development of blue- and purple-colored cells. Here, we identify a vacuolar iron transporter in T. gesneriana (TgVit1), and characterize the localization and function of this transporter protein in tulip petals. The amino acid sequence of TgVit1 is 85% similar that of the Arabidopsis thaliana vacuolar iron transporter AtVIT1, and also showed similarity to the AtVIT1 homolog in yeast, Ca(2+)-sensitive cross-complementer 1 (CCC1). The gene TgVit1 was expressed exclusively in blue-colored epidermal cells, and protein levels increased with increasing mRNA expression and blue coloration. Transient expression experiments revealed that TgVit1 localizes to the vacuolar membrane, and is responsible for the development of the blue color in purple cells. Expression of TgVit1 in yeast rescued the growth defect of ccc1 mutant cells in the presence of high concentrations of FeSO(4). Our results indicate that TgVit1 plays an essential role in blue coloration as a vacuolar iron transporter in tulip petals. These results suggest a new role for involvement of a vacuolar iron transporter in blue flower color development.

  13. Smart absorbing property of composites with MWCNTs and carbonyl iron as the filler

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Yuan, Liming; Cai, Jun; Zhang, Deyuan

    2013-10-01

    A smart absorbing composite was prepared by mixing silicone rubber, multi-walled carbon nanotubes (MWCNTs) and flaky carbonyl iron particles (CIPs) in a two-roll mixer. The complex permittivity and permeability of composites with variable compression strain was measured by the transmission method and dc electric conductivity was measured by the standard four-point contact method, then the reflection loss (RL) could be calculated to evaluate the microwave absorbing ability. The results showed that the applied compression strain made the complex permittivity decrease but not obviously due to the broken original conductive network. The enforcement of the strain on the complex permeability was attributed to the orientation of flaky CIPs. With the compressing strain applied on the composites with thickness 1 mm or 1.5 mm, the RL value decreased (minimum -13.2 dB and -25.1 dB) and the absorbing band (RL<-10 dB) was widened (5.2-10.6 GHz and 4.0-8.4 GHz). While as the composite thickness decreased caused by the compression strain, the RL value still decreased (minimum -12.4 dB and -18.6 dB) and the absorbing band was also broadened (6.5-10.7 GHz and 4.4-10.0 GHz). Thus the smart absorbing property was effective on preparing absorbers with wide absorption band and high absorption ratio.

  14. Real-Time Studies of Iron Oxalate-Mediated Oxidation of Glycolaldehyde as a Model for Photochemical Aging of Aqueous Tropospheric Aerosols.

    PubMed

    Thomas, Daniel A; Coggon, Matthew M; Lignell, Hanna; Schilling, Katherine A; Zhang, Xuan; Schwantes, Rebecca H; Flagan, Richard C; Seinfeld, John H; Beauchamp, J L

    2016-11-15

    The complexation of iron(III) with oxalic acid in aqueous solution yields a strongly absorbing chromophore that undergoes efficient photodissociation to give iron(II) and the carbon dioxide anion radical. Importantly, iron(III) oxalate complexes absorb near-UV radiation (λ > 350 nm), providing a potentially powerful source of oxidants in aqueous tropospheric chemistry. Although this photochemical system has been studied extensively, the mechanistic details associated with its role in the oxidation of dissolved organic matter within aqueous aerosol remain largely unknown. This study utilizes glycolaldehyde as a model organic species to examine the oxidation pathways and evolution of organic aerosol initiated by the photodissociation of aqueous iron(III) oxalate complexes. Hanging droplets (radius 1 mm) containing iron(III), oxalic acid, glycolaldehyde, and ammonium sulfate (pH ∼3) are exposed to irradiation at 365 nm and sampled at discrete time points utilizing field-induced droplet ionization mass spectrometry (FIDI-MS). Glycolaldehyde is found to undergo rapid oxidation to form glyoxal, glycolic acid, and glyoxylic acid, but the formation of high molecular weight oligomers is not observed. For comparison, particle-phase experiments conducted in a laboratory chamber explore the reactive uptake of gas-phase glycolaldehyde onto aqueous seed aerosol containing iron and oxalic acid. The presence of iron oxalate in seed aerosol is found to inhibit aerosol growth. These results suggest that photodissociation of iron(III) oxalate can lead to the formation of volatile oxidation products in tropospheric aqueous aerosols.

  15. Dyeing of γ-irradiated cotton with natural flavonoid dye extracted from irradiated onion shells (Allium cepa) powder

    NASA Astrophysics Data System (ADS)

    Rehman, Fazal-ur; Adeel, Shahid; Shahid, Muhammad; Bhatti, Ijaz Ahmad; Nasir, Faiza; Akhtar, Nasim; Ahmad, Zulfiqar

    2013-11-01

    Powder of Onion shells as a source of natural flavonoid dye (Quercetin) and cotton fabrics were exposed to absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. Irradiated and un-irradiated dye powder was used for extraction of quercetin as well as antibacterial, hemolytic and antioxidant activities were also determined to observe the effect of radiation. Furthermore, color strength and colourfastness of irradiated fabrics were improved by using pre and post-mordants such as alum and iron. It is found that 4 kGy is the optimal absorbed dose for extraction of natural quercetin extracted from onion shells while maximum color strength and acceptable fastness properties are obtained on dyeing of irradiated fabric at 60 °C keeping M:L of 1:30 using 10% alum as pre-mordant and 6% alum as post-mordant. Gamma irradiation has not only improved the color strength of the dye using irradiated cotton but also that of colourfastness properties.

  16. Speciation and Determination of Low Concentration of Iron in Beer Samples by Cloud Point Extraction

    ERIC Educational Resources Information Center

    Khalafi, Lida; Doolittle, Pamela; Wright, John

    2018-01-01

    A laboratory experiment is described in which students determine the concentration and speciation of iron in beer samples using cloud point extraction and absorbance spectroscopy. The basis of determination is the complexation between iron and 2-(5-bromo-2- pyridylazo)-5-diethylaminophenol (5-Br-PADAP) as a colorimetric reagent in an aqueous…

  17. Formation mechanism and biological activity of novel thiolated human-like collagen iron complex.

    PubMed

    Zhu, Chenhui; Liu, Lingyun; Deng, Jianjun; Ma, Xiaoxuan; Hui, Junfeng; Fan, Daidi

    2016-03-01

    To develop an iron supplement that is effectively absorbed and utilized, thiolated human-like collagen was created to improve the iron binding capacity of human-like collagen. A thiolated human-like collagen-iron complex was prepared in a phosphate buffer, and one mole of thiolated human-like collagen-iron possessed approximately 28.83 moles of iron. The characteristics of thiolated human-like collagen-iron were investigated by ultraviolet-visible absorption spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and differential scanning calorimetry. The results showed that the thiolated human-like collagen-iron complex retained the secondary structure of human-like collagen and had greater thermodynamic stability than human-like collagen, although interactions between iron ions and human-like collagen occurred during the formation of the complex. In addition, to evaluate the bioavailability of thiolated human-like collagen-iron, an in vitro Caco-2 cell model and an in vivo iron deficiency anemia mouse model were employed. The data demonstrated that the thiolated human-like collagen-iron complex exhibited greater bioavailability and was more easily utilized than FeSO4, ferric ammonium citrate, or ferrous glycinate. These results indicated that the thiolated human-like collagen-iron complex is a potential iron supplement in the biomedical field. © The Author(s) 2016.

  18. Simultaneous Determination of Iron, Copper and Cobalt in Food Samples by CCD-diode Array Detection-Flow Injection Analysis with Partial Least Squares Calibration Model

    NASA Astrophysics Data System (ADS)

    Mi, Jiaping; Li, Yuanqian; Zhou, Xiaoli; Zheng, Bo; Zhou, Ying

    2006-01-01

    A flow injection-CCD diode array detection spectrophotometry with partial least squares (PLS) program for simultaneous determination of iron, copper and cobalt in food samples has been established. The method was based on the chromogenic reaction of the three metal ions and 2- (5-Bromo-2-pyridylazo)-5-diethylaminophenol, 5-Br-PADAP in acetic acid - sodium acetate buffer solution (pH5) with Triton X-100 and ascorbic acid. The overlapped spectra of the colored complexes were collected by charge-coupled device (CCD) - diode array detector and the multi-wavelength absorbance data was processed using partial least squares (PLS) algorithm. Optimum reaction conditions and parameters of flow injection analysis were investigated. The samples of tea, sesame, laver, millet, cornmeal, mung bean and soybean powder were determined by the proposed method. The average recoveries of spiked samples were 91.80%~100.9% for Iron, 92.50%~108.0% for Copper, 93.00%~110.5% for Cobalt, respectively with relative standard deviation (R.S.D) of 1.1%~12.1%. The sampling rate is 45 samples h-1. The determination results of the food samples were in good agreement between the proposed method and ICP-AES.

  19. Complexation equilibria and spectrophotometric determination of iron(III) with 1-amino-4-hydroxyanthraquinone.

    PubMed

    Abu-Bakr, M S; Sedaira, H; Hashem, E Y

    1994-10-01

    The complex equilibria of iron(III) with 1-amino-4-hydroxyanthraquinone (AMHA) were studied spectrophotometrically in 40% (v/v) ethanol and an ionic strength of 0.1M (NaClO(4)). The complexation reactions were demonstrated and characterized using graphical logarithmic analysis of the absorbance-pH graphs. A simple, rapid, selective and sensitive method for the spectrophotometric determination of trace amounts of Fe(III) is developed based on the formation of Fe(AMHA) complex at pH 2.5 (lambda(max) = 640 nm, epsilon approximately = 2.1 x 10(4) L. mol(-1) . cm(-1)) in the presence of a large number of foreign ions. Interferences caused by palladium(II) was masked by the addition of cyanide ions. The method has been applied to the determination of iron in some synthetic samples and polymetallic iron ores.

  20. Salicylate Detection by Complexation with Iron(III) and Optical Absorbance Spectroscopy: An Undergraduate Quantitative Analysis Experiment

    ERIC Educational Resources Information Center

    Mitchell-Koch, Jeremy T.; Reid, Kendra R.; Meyerhoff, Mark E.

    2008-01-01

    An experiment for the undergraduate quantitative analysis laboratory involving applications of visible spectrophotometry is described. Salicylate, a component found in several medications, as well as the active by-product of aspirin decomposition, is quantified. The addition of excess iron(III) to a solution of salicylate generates a deeply…

  1. Microwave absorbing property of silicone rubber composites with added carbonyl iron particles and graphite platelet

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Zhang, Deyuan; Cai, Jun; Yuan, Liming; Zhang, Wenqiang

    2013-02-01

    Silicone rubber composites filled with carbonyl iron particles (CIPs) and graphite platelet (GP) were prepared using non-coating or coating processes. The complex permittivity and permeability of the composites were measured using a vector network analyzer in the frequency range of 1-18 GHz and dc electric conductivity was measured by the standard four-point contact method. The results showed that CIPs/GP composites fabricated in the coating process had the highest permittivity and permeability due to the particle orientation and interactions between the two absorbents. The coating process resulted in a decreased effective eccentricity of the absorbents, and the dc conductivity increased according to Neelakanta's equations. The reflection loss (RL) value showed that the composites had an excellent absorbing property in the L-band, minimum -11.85 dB at 1.5 mm and -15.02 dB at 2 mm. Thus, GP could be an effective additive in preparing thin absorbing composites in the L-band.

  2. Color Richness in Cephalopod Chromatophores Originating from High Refractive Index Biomolecules.

    PubMed

    Dinneen, Sean R; Osgood, Richard M; Greenslade, Margaret E; Deravi, Leila F

    2017-01-05

    Cephalopods are arguably one of the most photonically sophisticated marine animals, as they can rapidly adapt their dermal color and texture to their surroundings using both structural and pigmentary coloration. Their chromatophore organs facilitate this process, but the molecular mechanism potentiating color change is not well understood. We hypothesize that the pigments, which are localized within nanostructured granules in the chromatophore, enhance the scattering of light within the dermal tissue. To test this, we extracted the phenoxazone-based pigments from the chromatophore and extrapolated their complex refractive index (RI) from experimentally determined real and approximated imaginary portions of the RI. Mie theory was used to calculate the absorbance and scattering cross sections (cm 2 /particle) across a broad diameter range at λ = 589 nm. We observed that the pigments were more likely to scatter attenuated light than absorb it and that these characteristics may contribute to the color richness of cephalopods.

  3. A potential new biosignature of life in iron-rich extreme environments: An iron (III) complex of scytonemin and proposal for its identification using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Varnali, Tereza; Edwards, Howell G. M.

    2013-07-01

    Scytonemin is a cyanobacterial sheath pigment with potent UV absorbing (UV-A, UV-B and UV-C) properties. The importance of this biomolecule is its photoprotective function which is one of the major survival strategies adopted by extremophiles to combat high energy radiation insolation in environmentally stressed conditions. Also, iron (III) oxides offering an additional UV-protecting facility to subsurface biological colonization as well as banded iron formations with zones of iron depletion in rock matrices have attracted attention with special interest in the mobilisation and transportation of iron compounds through the rock. This study represents a novel proposal that an iron-scytonemin complex could facilitate the movement of iron through the subsurface rock as part of the this extremophilic survival strategy. The predicted Raman wavenumbers for the proposed scytonemin complex of iron(III) are derived computationally using DFT calculations. Comparison of the experimentally observed Raman spectra of scytonemin with the theoretically predicted Raman spectra of the iron-scytonemin complex show that the latter may be discriminated and the expected characteristic bands are reported in relation to structural changes that are effected upon complexation. This information will inform the future search for experimental evidence for an iron-scytonemin complex, which has not been recognised hitherto and which could provide a novel biosignature for the extremophilic colonization of terrestrial iron-rich geological matrices. Such a terrestrial scenario would be potentially of significance for the remote robotic analytical exploration of the iron-rich surface and immediate subsurface of Mars.

  4. [Simple method for precognition of drug interaction between oral iron and phenolic hydroxyl group-containing drugs].

    PubMed

    Sunagane, Nobuyoshi; Yoshinobu, Etsuko; Murayama, Nobuko; Terawaki, Yasufumi; Kamimura, Naoki; Uruno, Tsutomu

    2005-02-01

    In the present study, we devised a simple method for detecting the drug interaction between oral iron preparations and phenolic hydroxyl group-containing drugs, using the coloring reaction as indicator, due to the formation of complexes or chelates. In the method, oral iron preparations and test drugs in amounts as much as single dose for adults were added to 10 ml of purified water to make sample suspensions for testing. Thirty minutes after mixing an oral iron suspension and a test drug suspension, the change of color in the mixture was observed macroscopically and graded as 0 to 3, with a marked color change judged as grade 3 and no color change as grade 0. Screening of 14 test drugs commonly used orally was carried out. When using sodium ferrous citrate preparations as oral iron, 5 were classified as grade 3, 2 as grade 2, 4 as grade 1, and 3 as grade 0, respectively. To verify usefulness of the method, the interactions suggested by screening were pharmacokinetically assessed by measuring serum concentrations of the drug in mice. When a levodopa or droxidopa preparation, judged as grade 3 in screening, was concomitantly administered with an iron preparation, a significant reduction in bioavailability of the test drug was observed, indicating possible drug interaction between the test drug and oral iron. Combined administration of an acetaminophen preparation, judged as grade 1, and oral iron preparation showed no influence on the bioavailability of the test drug, implying no detectable interactions between them. In conclusion, the simple method devised in the present study is useful for precognition of drug interactions between oral iron preparations and phenolic hydroxyl group-containing drugs, and the drugs with a higher grade in screening may induce drug interactions with oral iron.

  5. Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black

    NASA Astrophysics Data System (ADS)

    Liu, Lidong; Duan, Yuping; Ma, Lixin; Liu, Shunhua; Yu, Zhen

    2010-11-01

    To prevent serious electromagnetic interference, a single-layer wave-absorbing coating employing complex absorbents composed of carbonyl-iron powder (CIP) and carbon black (CB) with epoxy resin as matrix was prepared. The morphologies of CIP and CB were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), respectively. The electromagnetic parameters of CIP and CB were measured in the frequency range of 2-18 GHz by transmission/reflection technology, and the electromagnetic loss mechanisms of the two particles were discussed, respectively. The microwave absorption properties of the coatings were investigated by measuring reflection loss (RL) using arch method. The effects of CIP ratio, CB content and thickness on the microwave absorption properties were discussed, respectively. The results showed that the higher thickness, CIP or CB content could make the absorption band shift towards the lower frequency range. Significantly, the wave-absorbing coating could be applied in different frequency ranges according to actual demand by controlling the content of CIP or CB in composites.

  6. Colorful solar selective absorber integrated with different colored units.

    PubMed

    Chen, Feiliang; Wang, Shao-Wei; Liu, Xingxing; Ji, Ruonan; Li, Zhifeng; Chen, Xiaoshuang; Chen, Yuwei; Lu, Wei

    2016-01-25

    Solar selective absorbers are the core part for solar thermal technologies such as solar water heaters, concentrated solar power, solar thermoelectric generators and solar thermophotovoltaics. Colorful solar selective absorber can provide new freedom and flexibility beyond energy performance, which will lead to wider utilization of solar technologies. In this work, we present a monolithic integration of colored solar absorber array with different colors on a single substrate based on a multilayered structure of Cu/TiN(x)O(y)/TiO(2)/Si(3)N(4)/SiO(2). A colored solar absorber array with 16 color units is demonstrated experimentally by using combinatorial deposition technique via changing the thickness of SiO(2) layer. The solar absorptivity and thermal emissivity of all the color units is higher than 92% and lower than 5.5%, respectively. The colored solar selective absorber array can have colorful appearance and designable patterns while keeping high energy performance at the same time. It is a new candidate for a number of solar applications, especially for architecture integration and military camouflage.

  7. Novel atomic absorption spectrometric and rapid spectrophotometric methods for the quantitation of paracetamol in saliva: application to pharmacokinetic studies.

    PubMed

    Issa, M M; Nejem, R M; El-Abadla, N S; Al-Kholy, M; Saleh, Akila A

    2008-01-01

    A novel atomic absorption spectrometric method and two highly sensitive spectrophotometric methods were developed for the determination of paracetamol. These techniques based on the oxidation of paracetamol by iron (III) (method I); oxidation of p-aminophenol after the hydrolysis of paracetamol (method II). Iron (II) then reacts with potassium ferricyanide to form Prussian blue color with a maximum absorbance at 700 nm. The atomic absorption method was accomplished by extracting the excess iron (III) in method II and aspirates the aqueous layer into air-acetylene flame to measure the absorbance of iron (II) at 302.1 nm. The reactions have been spectrometrically evaluated to attain optimum experimental conditions. Linear responses were exhibited over the ranges 1.0-10, 0.2-2.0 and 0.1-1.0 mug/ml for method I, method II and atomic absorption spectrometric method, respectively. A high sensitivity is recorded for the proposed methods I and II and atomic absorption spectrometric method value indicate: 0.05, 0.022 and 0.012 mug/ml, respectively. The limit of quantitation of paracetamol by method II and atomic absorption spectrometric method were 0.20 and 0.10 mug/ml. Method II and the atomic absorption spectrometric method were applied to demonstrate a pharmacokinetic study by means of salivary samples in normal volunteers who received 1.0 g paracetamol. Intra and inter-day precision did not exceed 6.9%.

  8. Novel Atomic Absorption Spectrometric and Rapid Spectrophotometric Methods for the Quantitation of Paracetamol in Saliva: Application to Pharmacokinetic Studies

    PubMed Central

    Issa, M. M.; Nejem, R. M.; El-Abadla, N. S.; Al-Kholy, M.; Saleh, Akila. A.

    2008-01-01

    A novel atomic absorption spectrometric method and two highly sensitive spectrophotometric methods were developed for the determination of paracetamol. These techniques based on the oxidation of paracetamol by iron (III) (method I); oxidation of p-aminophenol after the hydrolysis of paracetamol (method II). Iron (II) then reacts with potassium ferricyanide to form Prussian blue color with a maximum absorbance at 700 nm. The atomic absorption method was accomplished by extracting the excess iron (III) in method II and aspirates the aqueous layer into air-acetylene flame to measure the absorbance of iron (II) at 302.1 nm. The reactions have been spectrometrically evaluated to attain optimum experimental conditions. Linear responses were exhibited over the ranges 1.0-10, 0.2-2.0 and 0.1-1.0 μg/ml for method I, method II and atomic absorption spectrometric method, respectively. A high sensitivity is recorded for the proposed methods I and II and atomic absorption spectrometric method value indicate: 0.05, 0.022 and 0.012 μg/ml, respectively. The limit of quantitation of paracetamol by method II and atomic absorption spectrometric method were 0.20 and 0.10 μg/ml. Method II and the atomic absorption spectrometric method were applied to demonstrate a pharmacokinetic study by means of salivary samples in normal volunteers who received 1.0 g paracetamol. Intra and inter-day precision did not exceed 6.9%. PMID:20046743

  9. Iron (III) Matrix Effects on Mineralization and Immobilization of Actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cynthia-May S. Gong; Tyler A. Sullens; Kenneth R. Czerwinski

    2006-01-01

    Abstract - A number of models for the Yucca Mountain Project nuclear waste repository use studies of actinide sorption onto well-defined iron hydroxide materials. In the case of a waste containment leak, however, a complex interaction between dissolved waste forms and failed containment vessel components can lead to immediate precipitation of migratory iron and uranyl in the silicate rich near-field environment. Use of the Fe(III) and UO22+ complexing agent acetohydroxamic acid (AHA) as a colorimetric agent for visible spectrophotometry is well-known. Using the second derivative of these spectra a distinct shift in iron complexation in the presence of silicate ismore » seen that is not seen with uranyl or alone. Silica also decreases the ability of uranyl and ferric solutions to absorb hydroxide, hastening precipitation. These ferric silicate precipitates are highly amorphous and soluble. Precipitates formed in the presence of uranyl below ~1 mol% exhibit lower solubility than precipitates from up to 50 mol % and of uranyl silicates alone.« less

  10. Magnetic Iron Oxide Nanoparticles and a Polydiacetylene Coating to Create a Biocompatible and Stable Molecule for Use in Cancer Diagnostics and Early Detection in Molecular Medicine

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Shweta

    Earlier cancer detection and diagnosis is essential to prevent cancer mortality in nanomedicine and nanotechnology. Fluorescence and magnetic signals provide a way for earlier detection through imaging systems. Magnetic iron oxide nanoparticles have a superparamagnetism feature that allows them to act as contrast agents that can be detected through a magnetic resonance imaging system. These iron oxide cores have a polymer coating around them to provide stability, prevent aggregation, and allow for biocompatibility within the body. In addition, these functional coatings can have ligands and peptides for detection and therapy purposes. One functional coating is a polydiacetylene coating due to its chromatic and optical properties. When polymerized, it has the ability to change color in the visible spectrum to blue (not a fluorescent signal) and when heated, it changes to a red color (fluorescent signal). This way a strong and stable layer is formed around the iron oxide cores. These coatings are placed on the iron cores using a modified dual solvent exchange method, in which DMSO is slowly replaced by water without the use of organic solvents previous used. In addition, these nanoparticles can then be PEGylated, which provides a more stable and water soluble compound in aqueous solutions. Measurements can be taken through dynamic light scattering for size distributions and zeta potential and the Nanodrop for absorbance. Ideal sizes are about 30 nm for MNPs. Moreover, for future directions, there can be more molecules attached to the coated layers to use for molecular detection and analysis.

  11. Alternative expression of vacuolar iron transporter and ferritin genes leads to blue/purple coloration of flowers in tulip cv. 'Murasakizuisho'.

    PubMed

    Shoji, Kazuaki; Momonoi, Kazumi; Tsuji, Tosiaki

    2010-02-01

    Flowers of tulip cv. 'Murasakizuisho' have a purple perianth except for the bottom region, which is blue in color even though it has the same anthocyanin, delphinidin 3-O-rutinoside, as the entire perianth. The development of the blue coloration in the perianth bottom is due to complexation by anthocyanin, flavonol and iron (Fe), as well as a vacuolar iron transporter, TgVit1. Although transient expression of TgVit1 in the purple cells led to a color change to light blue, the coloration of the transformed cells did not coincide with the dark blue color of the cells of the perianth bottom. We thought that another factor is required for the blue coloration of the cells of perianth bottom. To examine the effect of ferritin (FER), an Fe storage protein, on blue color development, we cloned an FER gene (TgFER1) and performed expression analyses. TgFER1 transcripts were found in the cells located in the upper region of the petals along with purple color development by anthocyanin and were not found in the blue cells of the perianth bottom. This gene expression is in contrast to that of TgVit1, expressed only in the cells of the perianth bottom. Co-expression of TgVIT1 and TgFER-RNAi, constructed for suppressing endogenous TgFER1 by RNA interference (RNAi), changed the purple petal cells to a dark blue color similar to that of the natural perianth bottom. These results strongly suggest that TgVit1 expression and TgFER1 suppression are critical for the development of blue color in the perianth bottom.

  12. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide

    DOE PAGES

    Wheeler, Lance M.; Moore, David T.; Ihly, Rachelle; ...

    2017-11-23

    Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer - composed of a metal halide perovskite-methylamine complex - from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning themore » absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. In conclusion, this work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.« less

  13. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide.

    PubMed

    Wheeler, Lance M; Moore, David T; Ihly, Rachelle; Stanton, Noah J; Miller, Elisa M; Tenent, Robert C; Blackburn, Jeffrey L; Neale, Nathan R

    2017-11-23

    Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer-composed of a metal halide perovskite-methylamine complex-from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning the absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. This work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.

  14. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, Lance M.; Moore, David T.; Ihly, Rachelle

    Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer - composed of a metal halide perovskite-methylamine complex - from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning themore » absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. In conclusion, this work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.« less

  15. Transgenic Petunia with the Iron(III)-Phytosiderophore Transporter Gene Acquires Tolerance to Iron Deficiency in Alkaline Environments

    PubMed Central

    Murata, Yoshiko; Itoh, Yoshiyuki; Iwashita, Takashi; Namba, Kosuke

    2015-01-01

    Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III) to iron(II) and the uptake of iron(II) by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III). Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III)-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III)-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III)-2′-deoxymugineic acid complex, free 2′-deoxymugineic acid and its iron(III) complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III)-2′-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems to diverse plant species that are found in areas with alkaline conditions. PMID:25781941

  16. Transgenic petunia with the iron(III)-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments.

    PubMed

    Murata, Yoshiko; Itoh, Yoshiyuki; Iwashita, Takashi; Namba, Kosuke

    2015-01-01

    Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III) to iron(II) and the uptake of iron(II) by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III). Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III)-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III)-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III)-2'-deoxymugineic acid complex, free 2'-deoxymugineic acid and its iron(III) complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III)-2'-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems to diverse plant species that are found in areas with alkaline conditions.

  17. Recalibrated mariner 10 color mosaics: Implications for mercurian volcanism

    USGS Publications Warehouse

    Robinson, M.S.; Lucey, P.G.

    1997-01-01

    Recalibration of Mariner 10 color image data allows the identification of distinct color units on the mercurian surface. We analyze these data in terms of opaque mineral abundance, iron content, and soil maturity and find color units consistent with the presence of volcanic deposits on Mercury's surface. Additionally, materials associated with some impact craters have been excavated from a layer interpreted to be deficient in opaque minerals within the crust, possibly analogous to the lunar anorthosite crust. These observations suggest that Mercury has undergone complex differentiation like the other terrestrial planets and the Earth's moon.

  18. Photochemistry of iron citrates initiated by UV-VIS light

    NASA Astrophysics Data System (ADS)

    Corral Arroyo, Pablo; Dou, Jing; Alpert, Peter; Krieger, Ulrich; Ammann, Markus

    2017-04-01

    Aerosol aging refers to the multitude of physical and chemical transformation atmospheric particles undergo, which play an important role in the impact of aerosols on climate, air quality and health. Aging processes may be started by chromophores, which act as photocatalysts that induce the oxidation of non-absorbing molecules [1]. Iron (Fe(III)) carboxylate complexes absorb light below about 500 nm, which is followed by ligand to metal charge transfer (LMCT) resulting in the reduction of iron to Fe(II) and oxidation of the carboxylate ligands, a process that represents an important sink of organic acids in the troposphere [2]. Our goal is to investigate how these photochemical processes contribute to the change of chemical and physical properties of the aerosol particles. To achieve this scope, we carry out coated wall flow tube experiments, exposing films with iron citrate to UV light, which will give information about the radical and LVOC production (connecting the CWFT to a Chemiluminescent Detector or PTR-TOF-MS respectively). From extracting and analyzing the films after irradiation with UV light, we obtain a profile of low-volatility products evolving from the photochemistry of iron citrates. By Scanning Transmission X-Ray Microspectroscopy (STXM) we analyze changes in the C K-edge and Fe L-edge in particles loaded with iron citrate upon exposure to light and follow their chemical and structural evolution upon photochemical oxidation in situ to investigate the degradation kinetics under varying environmental conditions. [1] George G., Ammann M., D'Anna B., Donaldson D. J., Nizkorodov S. A., Heterogeneous photochemistry in the Atmosphere, Chem. Rev., 2015, 115 (10), pp 4218-4258 [2] Weller, C., Horn, S., and Herrmann, H.: Photolysis of Fe(III) carboxylate complexes: Fe(II) quantum yields and reaction mechanisms, Photochemistry and Photobiology A: Chemistry, 268, 24-36, 2013.

  19. The Assessment of Skin Color and Iron Levels in Pediatric Patients with β-Thalassemia Major Using a Visual Skin Color Chart.

    PubMed

    Bucak, Ibrahim H; Almis, Habip; Benli, Samet; Turgut, Mehmet

    2017-03-01

    Patients with β-thalassemia major (β-TM), a disease that emerges due to disorder of hemoglobin (Hb) synthesis, require life-long erythrocyte transfusion. The purpose of this study was to evaluate skin color and iron levels of patients with β-TM using a visual skin color chart. Each patient's skin color was matched on a skin color chart under a fluorescent lamp by the same physician on each occasion. Iron, iron binding capacity, ferritin and complete blood count (CBC) were studied for each patient enrolled. Colors marked on the visual skin color chart were compared with the laboratory results. Thirty-five patients being monitored at our hospital were included, 19 (54.3%) males and 16 (45.7%) females. The colors marked on the chart darkened as patients aged (p = 0.002, r = 0.49), the frequency of annual transfusions (p = 0.022, r = 0.385), ferritin levels (p < 0.001, r = 0.72) and iron levels increased (p = 0.001, r = 0.538) and as total iron binding capacity (TIBC) decreased (p < 0.001, r = -0.709). On the basis of this study, iron deposition in patients with β-TM was correlated with the colors on the chart.

  20. Spectrophotometric Determination of Iron(III)-Glycine Formation Constant in Aqueous Medium Using Competitive Ligand Binding

    ERIC Educational Resources Information Center

    Prasad, Rajendra; Prasad, Surendra

    2009-01-01

    The formation constant of iron(III) complex with glycine (Gly) ligand in aqueous acidic medium (0.2 M HNO[subscript 3], I = 0.2 M at 28 plus or minus 1 degree C) was determined spectrophotometrically in which a competing color reaction between Fe(III) and SCN[superscript -] was used as an indicator reaction. Under the specified conditions Fe(III)…

  1. The Effect of Different Tea Varieties on Iron Chelation

    NASA Astrophysics Data System (ADS)

    Truong, S. K.; Karim, R.

    2016-12-01

    The chief objectives of this experiment are to distinguish which type of tea of four variants, pomegranate blackberry green, green, lemon chamomile (herbal), and earl grey (black), are capable of chelating the most iron (III) chloride (FeCl3) through titration. We hypothesized that if each tea variety chelates differing amounts of iron chloride, and if we conduct an experiment in which four different teas are mixed in the same amount of water, iron chloride, and iron chloride indicator EDTA, then the pomegranate blackberry green tea will bind to the most iron due to its large amount of fruit antioxidants. To summarize our methodology, we prepared three solutions of each tea, dissolved with 1 gram of FeCl3 to test three trials per tea variety. The chelation process took place overnight as teas cooled. Six drops of iron chloride indicator added to each solution began the titration. The necessary amount of 0.1M EDTA (ethylenediaminetetraacetic acid) drops required for each solution to turn to a universal amber color from its original dark tone indicates how many free iron molecules were left unbound by the tea solution. After careful analysis of the data, we discovered that blackberry pomegranate green tea possessed the best chelating abilities with 97.48% of FeCl3 adsorbed. Green tea followed with 96.67%. Herbal tea chelated 94.24% of the iron while earl grey absorbed the least amount at 93.43%. From our conclusion, we drew that since blackberry pomegranate green tea contained the highest amount of polyphenols and antioxidants as well as epigallocatechin gallate (EGCG) found in green teas, it was able to chelate the most amount of iron. The substances mentioned in blackberry pomegranate green tea possess the ability to form strong bonds with multiple heavy metals, such as iron (III) chloride atoms. Overall, each variety of tea contains different organic substances. Each of these substances possesses a unique chelating ability, determining how well the type of tea can bond to iron. Among the teas being tested in this experiment, blackberry pomegranate green tea absorbed the most iron, thus acting as the superior chelating agent. Our experiment opens up new opportunities for investigations in chelation therapy and heavy metal poisoning through the knowledge of biological chelating agents.

  2. Efficient Formation of Light-Absorbing Polymeric Nanoparticles from the Reaction of Soluble Fe(III) with C4 and C6 Dicarboxylic Acids.

    PubMed

    Tran, Ashley; Williams, Geoffrey; Younus, Shagufta; Ali, Nujhat N; Blair, Sandra L; Nizkorodov, Sergey A; Al-Abadleh, Hind A

    2017-09-05

    The role of transition metals in the formation and aging of secondary organic aerosol (SOA) from aliphatic and aromatic precursors in heterogeneous/multiphase reactions is not well understood. The reactivity of soluble Fe(III) toward known benzene photooxidation products that include fumaric (trans-butenedioic) and muconic (trans,trans-2,4-hexadienedioic) acids was investigated. Efficient formation of brightly colored nanoparticles was observed that are mostly rod- or irregular-shaped depending on the structure of the organic precursor. The particles were characterized for their optical properties, growth rate, elemental composition, iron content, and oxidation state. Results indicate that these particles have mass absorption coefficients on the same order as black carbon and larger than that of biomass burning aerosols. The particles are also amorphous in nature and consist of polymeric chains of Fe centers complexed to carboxylate groups. The oxidation state of Fe was found to be in between Fe(III) and Fe(II) in standard compounds. The organic reactant to iron molar ratio and pH were found to affect the particle growth rate. Control experiments using maleic acid (cis-butenedioic acid) and succinic acid (butanedioic acid) produced no particles. The formation of particles reported herein could account for new pathways that lead to SOA and brown carbon formation mediated by transition metals. In addition, the multiple chemically active components in these particles (iron, organics, and acidic groups) may have an effect on their chemical reactivity (enhanced uptake of trace gases, catalysis, and production of reactive oxygen species) and their likely poor cloud/ice nucleation properties.

  3. The Multicenter Aerobic Iron Respiratory Chain of Acidithiobacillus ferrooxidans Functions as an Ensemble with a Single Macroscopic Rate Constant

    DOE PAGES

    Li, Ting-Feng; Painter, Richard G.; Ban, Bhupal; ...

    2015-06-03

    Electron transfer reactions among three prominent colored proteins in intact cells of Acidithiobacillus ferrooxidans were monitored using an integrating cavity absorption meter that permitted the acquisition of accurate absorbance data in suspensions of cells that scattered light. The concentrations of proteins in the periplasmic space were estimated to be 350 and 25 mg/ml for rusticyanin and cytochrome c, respectively; cytochrome a was present as one molecule for every 91 nm2 in the cytoplasmic membrane. All three proteins were rapidly reduced to the same relative extent when suspensions of live bacteria were mixed with different concentrations of ferrous ions at pHmore » 1.5. The subsequent molecular oxygen-dependent oxidation of the multicenter respiratory chain occurred with a single macroscopic rate constant, regardless of the proteins' in vitro redox potentials or their putative positions in the aerobic iron respiratory chain. The crowded electron transport proteins in the periplasm of the organism constituted an electron conductive medium where the network of protein interactions functioned in a concerted fashion as a single ensemble with a standard reduction potential of 650 mV. The appearance of product ferric ions was correlated with the reduction levels of the periplasmic electron transfer proteins; the limiting first-order catalytic rate constant for aerobic respiration on iron was 7,400 s -1. The ability to conduct direct spectrophotometric studies under noninvasive physiological conditions represents a new and powerful approach to examine the extent and rates of biological events in situ without disrupting the complexity of the live cellular environment.« less

  4. Theoretical study of novel complexed structures for methoxy derivatives of scytonemin: potential biomarkers in iron-rich stressed environments.

    PubMed

    Varnali, Tereza; Edwards, Howell G M

    2013-09-01

    Scytonemin is a cyanobacterial sheath pigment with potent UV (UVA, UVB, and UVC) absorbing properties. Di- and tetramethoxy derivatives of scytonemin have also been found and described in the literature. The importance of these biomolecules is their photoprotective function, which is one of the major survival strategies adopted by extremophiles in environmentally stressed conditions. Also, iron compounds [particularly iron(III) oxides] offer an additional UV-protecting facility to subsurface endolithic biological colonization; hence, banded iron formations (accompanied by zones of depletion of iron) in rock matrices have attracted attention with special interest in the method of transportation of iron compounds through the rock. Di- and tetramethoxyscytonemin and their iron(III) complexes have been modeled and studied computationally by using density functional theory calculations at the level of B3LYP/6-31G** methodology. We propose new structures that could feature in survival strategy and facilitate the movement of iron through the rock especially for iron-rich stressed terrestrial environments exemplified by the Río Tinto system with the added potential of subsurface Mars exploration. This study represents a continuation of our previous work on scytonemin. The calculated Raman spectra of the proposed iron complexes are compared with those of their parent compounds and discussed in relation to structural changes effected in the parent ligand upon complexation. This information leads to new insights to be gained by experimental Raman spectroscopists and the characterization of spectroscopic biosignatures for the database being compiled for the remote Raman analytical interrogation of the martian surface and subsurface being proposed for the ESA ExoMars mission planned for launch in 2018.

  5. Mechanism of Ferric Oxalate Photolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangiante, David. M.; Schaller, Richard D.; Zarzycki, Piotr

    Iron(III) oxalate, Fe 3+(C 2O 4) 3 3–, is a photoactive metal organic complex found in natural systems and used to quantify photon flux as a result of its high absorbance and reaction quantum yield. It also serves as a model complex to understand metal carboxylate complex photolysis because the mechanism of photolysis and eventual production of CO 2 is not well understood for any system. Here, we employed pump/probe mid-infrared transient absorption spectroscopy to study the photolysis reaction of the iron(III) oxalate ion in D 2O and H 2O up to 3 ns following photoexcitation. We find that intramolecularmore » electron transfer from oxalate to iron occurs on a sub-picosecond time scale, creating iron(II) complexed by one oxidized and two spectator oxalate ligands. Within 40 ps following electron transfer, the oxidized oxalate molecule dissociates to form free solvated CO 2(aq) and a species inferred to be CO 2 •– based on the appearance of a new vibrational absorption band and ab initio simulation. Our work provides direct spectroscopic evidence for the first mechanistic steps in the photolysis reaction and presents a technique to analyze other environmentally relevant metal carboxylate photolysis reactions.« less

  6. Mechanism of Ferric Oxalate Photolysis

    DOE PAGES

    Mangiante, David. M.; Schaller, Richard D.; Zarzycki, Piotr; ...

    2017-06-08

    Iron(III) oxalate, Fe 3+(C 2O 4) 3 3–, is a photoactive metal organic complex found in natural systems and used to quantify photon flux as a result of its high absorbance and reaction quantum yield. It also serves as a model complex to understand metal carboxylate complex photolysis because the mechanism of photolysis and eventual production of CO 2 is not well understood for any system. Here, we employed pump/probe mid-infrared transient absorption spectroscopy to study the photolysis reaction of the iron(III) oxalate ion in D 2O and H 2O up to 3 ns following photoexcitation. We find that intramolecularmore » electron transfer from oxalate to iron occurs on a sub-picosecond time scale, creating iron(II) complexed by one oxidized and two spectator oxalate ligands. Within 40 ps following electron transfer, the oxidized oxalate molecule dissociates to form free solvated CO 2(aq) and a species inferred to be CO 2 •– based on the appearance of a new vibrational absorption band and ab initio simulation. Our work provides direct spectroscopic evidence for the first mechanistic steps in the photolysis reaction and presents a technique to analyze other environmentally relevant metal carboxylate photolysis reactions.« less

  7. Sir John Pople, Gaussian Code, and Complex Chemical Reactions

    Science.gov Websites

    tool that describes the dance of molecules in chemical reactions ... . Dr. Pople was among the first to colors of light they will absorb or emit, and the pace of chemical reactions. The work culminated in a dropdown arrow Site Map A-Z Index Menu Synopsis Sir John Pople, Gaussian Code, and Complex Chemical

  8. Abundance, size distributions and trace-element binding of organic and iron-rich nanocolloids in Alaskan rivers, as revealed by field-flow fractionation and ICP-MS

    NASA Astrophysics Data System (ADS)

    Stolpe, Björn; Guo, Laodong; Shiller, Alan M.; Aiken, George R.

    2013-03-01

    Water samples were collected from six small rivers in the Yukon River basin in central Alaska to examine the role of colloids and organic matter in the transport of trace elements in Northern high latitude watersheds influenced by permafrost. Concentrations of dissolved organic carbon (DOC), selected elements (Al, Si, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Ba, Pb, U), and UV-absorbance spectra were measured in 0.45 μm filtered samples. 'Nanocolloidal size distributions' (0.5-40 nm, hydrodynamic diameter) of humic-type and chromophoric dissolved organic matter (CDOM), Cr, Mn, Fe, Co, Ni, Cu, Zn, and Pb were determined by on-line coupling of flow field-flow fractionation (FFF) to detectors including UV-absorbance, fluorescence, and ICP-MS. Total dissolved and nanocolloidal concentrations of the elements varied considerably between the rivers and between spring flood and late summer base flow. Data on specific UV-absorbance (SUVA), spectral slopes, and the nanocolloidal fraction of the UV-absorbance indicated a decrease in aromaticity and size of CDOM from spring flood to late summer. The nanocolloidal size distributions indicated the presence of different 'components' of nanocolloids. 'Fulvic-rich nanocolloids' had a hydrodynamic diameter of 0.5-3 nm throughout the sampling season; 'organic/iron-rich nanocolloids' occurred in the <8 nm size range during the spring flood; whereas 'iron-rich nanocolloids' formed a discrete 4-40 nm components during summer base flow. Mn, Co, Ni, Cu and Zn were distributed between the nanocolloid components depending on the stability constant of the metal (+II)-organic complexes, while stronger association of Cr to the iron-rich nanocolloids was attributed to the higher oxidation states of Cr (+III or +IV). Changes in total dissolved element concentrations, size and composition of CDOM, and occurrence and size of organic/iron and iron-rich nanocolloids were related to variations in their sources from either the upper organic-rich soil or the deeper mineral layer, depending on seasonal variations in hydrological flow patterns and permafrost dynamics.

  9. A Perspective on Diagenetic Geometries and Patterns of Iron Oxide Cement and Coloration: Understanding Challenges and Complexities

    NASA Astrophysics Data System (ADS)

    Chan, M. A.; Wang, Y.

    2015-12-01

    Diagenetic records of fluid flow are underutilized proxies of water and environmental conditions in sedimentary rocks on Earth as well as Mars. The terrestrial iron-oxide records can be highly varied from faint wisps of coloration, to heavily cemented masses and layers. Other than vein cements, concretionary forms are some of the most prominent, yet enigmatic records. Concretions can have various mineral cement compositions with sizes that can span three orders of magnitude from mm, to cm, and m scales, in remarkably consistent, common spheroidal forms. Concretion geometries and banding may indicate directions and timings of fluid flow and precipitation, but deciphering the origins can be difficult with limited analytical tools. Definite complexities are the possibilities of: 1) overprinted events in an open system; 2) the role of organics in the nucleation and precipitation of authigenic minerals; and 3) multiple fluids, pathways, or processes that may produce similar-looking end products. In near-surface environments, likely any water since the Proterozoic has contained microbial life, and thus it seems highly probable that microbes play a significant role in the precipitation of diagenetic minerals due to the interactions of the biosphere and geosphere. However, recognition of ancient biosignatures that may have poor preservation potential remains a challenge. Iron oxides are particularly common, valuable indicators of near-surface iron cycling and are recognizable because the visual coloration. Our recent studies in Jurassic sandstones indicate preserved records of fingering at the interface of two immiscible fluids. The integration of geochemical self-organization models and field data provides new insights to understanding diagenetic fluid compositions, their relative densities, and flow direction flux and movement. These studies can have valuable implications and applications for understanding past fluid flow history, and reservoir characterization for CO2, hydrocarbon, and water.

  10. Assessing fluorescent color: a review of common practices and their limitations

    NASA Astrophysics Data System (ADS)

    Streitel, Steve

    2003-07-01

    Fluorescent Colorants are widely used around the world to enhance visibility. The outstanding brightness and cleanliness of the colors lend themselves to applications in safety materials, advertising, toys, magazines, packaging, and other areas. The brightness and cleanliness is a result of the colorants ability to reradiate absorbed energy as visible light, usually shorter more energetic photons as longer less energetic photons. This can give reflectance values of well over 100%, sometimes as high as 300%, in the perceived color. A good working definition of fluorescent color is: A colorant that absorbs light energy and reradiates the energy at visible wavelengths. Light that is not absorbed is reflected, as in conventional color. Emission ceases when the excitation energy is removed.

  11. Heat transfer capability of solar radiation in colored roof and influence on room thermal comfort

    NASA Astrophysics Data System (ADS)

    Syuhada, Ahmad; Maulana, Muhammad Ilham

    2018-02-01

    Colored zinc is the most widely used by people in Indonesia as the roof of the building. Each color has different heat absorption capability, the higher the absorption capacity of a roof will cause high room temperature. A high temperature in the room will cause the room is not thermally comfortable for activity. Lack of public knowledge about the ability of each color to absorb heat can cause errors in choosing the color of the roof of the building so that it becomes uncomfortable regarding thermal comfort. This study examined how big the ability of each color in influencing the heat absorption on the roof of the zinc. The purpose of this study is to examine which colors are the lowest to absorb radiation heat. This research used theexperimental method. Data collected by measuring the temperature of the environment above and below the colored tin roof, starting at 11:00 am until 15:00 pm. The zinc roofs tested in this study are zinc black, red zinc, green zinc, blue zinc, brown zinc, maroon zinc, orange zinc, zinc gray, zinc color chrome and zinc white color. The study results show that black and blackish colors will absorb more heat than other colors. While the color white or close to whitish color will absorb a slight heat.

  12. Advances in understanding the molecular basis of the first steps in color vision

    PubMed Central

    Hofmann, Lukas; Palczewski, Krzysztof

    2015-01-01

    Serving as one of our primary environmental inputs, vision is the most sophisticated sensory system in humans. Here, we present recent findings derived from energetics, genetics and physiology that provide a more advanced understanding of color perception in mammals. Energetics of cis–trans isomerization of 11-cis-retinal accounts for color perception in the narrow region of the electromagnetic spectrum and how human eyes can absorb light in the near infrared (IR) range. Structural homology models of visual pigments reveal complex interactions of the protein moieties with the light sensitive chromophore 11-cis-retinal and that certain color blinding mutations impair secondary structural elements of these G protein-coupled receptors (GPCRs). Finally, we identify unsolved critical aspects of color tuning that require future investigation. PMID:26187035

  13. 21 CFR 73.200 - Synthetic iron oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The... suitable and that are listed in this subpart as safe for use in color additive mixtures for coloring foods... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food...

  14. 21 CFR 73.200 - Synthetic iron oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The... suitable and that are listed in this subpart as safe for use in color additive mixtures for coloring foods... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food...

  15. 21 CFR 73.200 - Synthetic iron oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The... suitable and that are listed in this subpart as safe for use in color additive mixtures for coloring foods... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food...

  16. 21 CFR 73.3125 - Iron oxides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Iron oxides. 73.3125 Section 73.3125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR.... The color additive iron oxides (CAS Reg. No. 1332-37-2), Color Index No. 77491, shall conform in...

  17. 21 CFR 73.3125 - Iron oxides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Iron oxides. 73.3125 Section 73.3125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR.... The color additive iron oxides (CAS Reg. No. 1332-37-2), Color Index No. 77491, shall conform in...

  18. 21 CFR 73.3125 - Iron oxides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Iron oxides. 73.3125 Section 73.3125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR.... The color additive iron oxides (CAS Reg. No. 1332-37-2), Color Index No. 77491, shall conform in...

  19. 21 CFR 73.3125 - Iron oxides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Iron oxides. 73.3125 Section 73.3125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR.... The color additive iron oxides (CAS Reg. No. 1332-37-2), Color Index No. 77491, shall conform in...

  20. 21 CFR 73.3125 - Iron oxides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Iron oxides. 73.3125 Section 73.3125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR.... The color additive iron oxides (CAS Reg. No. 1332-37-2), Color Index No. 77491, shall conform in...

  1. Microwave absorption property of the diatomite coated by Fe-CoNiP films

    NASA Astrophysics Data System (ADS)

    Yan, Zhenqiang; Cai, Jun; Xu, Yonggang; Zhang, Deyuan

    2015-08-01

    A bio-absorbent of Fe-CoNiP coated on the diatomite was fabricated by way of electroless plating of CoNiP and subsequent chemical vapor deposition of Fe. The surface morphology and composition of the above-mentioned diatomite particles at different stage were characterized with the scanning electron microscopy and the energy spectrum analysis respectively, and the results showed that the diatomite was successfully coated with CoNoP and Fe (carbony iron). The complex permittivity and permeability of composites filled with the bio-absorbent and paraffin was measured in frequency range of 2-18 GHz, and then the microwave reflection loss (RL) and the shielding effectiveness (SE) were calculated. The results showed that the permittivity and the permeability were both enlarged as Fe films were coated onto the CoNiP-coated diatomite, which was attributed to the excellent electromagnetic property of carbonyl irons. The composites made with the Fe-CoNiP diatomite had a better absorbing property (minimum RL -11.0 dB) as well as the shielding property (maximum SE 5.6 dB) at thickness 2 mm. It indicated the absorption property was mainly due to the attenuation on the microwave, and the Fe-CoNiP diatomite could be an effective absorbent with low-density.

  2. Effect of ultrasonic waves on the water turbidity during the oxidation of phenol. Formation of (hydro)peroxo complexes.

    PubMed

    Villota, Natalia; Lomas, Jose M; Camarero, Luis M

    2017-11-01

    Analysis of the kinetics of aqueous phenol oxidation by a sono-Fenton process reveals that the via involving ortho-substituted intermediates prevails: catechol (25.0%), hydroquinone (7.7%) and resorcinol (0.6%). During the oxidation, water rapidly acquires color that reaches its maximum intensity at the maximum concentration of p-benzoquinone. Turbidity formation occurs at a slower rate. Oxidant dosage determines the nature of the intermediates, being trihydroxylated benzenes (pyrogallol, hydroxyhydroquinone) and muconic acid the main precursors causing turbidity. It is found that the concentration of iron species and ultrasonic waves affects the intensity of the turbidity. The pathway of (hydro)peroxo-iron(II) complexes formation is proposed. Operating with 20.0-27.8mgFe 2+ /kW rates leads to formation of (hydro)peroxo-iron(II) complexes, which induce high turbidity levels. These species would dissociate into ZZ-muconic acid and ferrous ions. Applying relationships around 13.9mgFe 2+ /kW, the formation of (hydro)peroxo-iron(III) complexes would occur, which could react with carboxylic acids (2,5-dioxo-3-hexenedioic acid). That reaction induces turbidity slower. This is due to the organic substrate reacting with two molecules of the (hydro)peroxo complex. Therefore, it is necessary to accelerate the iron regeneration, intensifying the ultrasonic irradiation. Afterwards, this complex would dissociate into maleic acid and ferric ions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Method for Non-Invasive Determination of Chemical Properties of Aqueous Solutions

    NASA Technical Reports Server (NTRS)

    Jones, Alan (Inventor); Thomas, Nathan A. (Inventor); Todd, Paul W. (Inventor)

    2016-01-01

    A method for non-invasively determining a chemical property of an aqueous solution is provided. The method provides the steps of providing a colored solute having a light absorbance spectrum and transmitting light through the colored solute at two different wavelengths. The method further provides the steps of measuring light absorbance of the colored solute at the two different transmitted light wavelengths, and comparing the light absorbance of the colored solute at the two different wavelengths to determine a chemical property of an aqueous solution.

  4. Iron deficiency, but not anemia, upregulates iron absorption in breast-fed peruvian infants.

    PubMed

    Hicks, Penni D; Zavaleta, Nelly; Chen, Zhensheng; Abrams, Steven A; Lönnerdal, Bo

    2006-09-01

    Iron absorption in adults is regulated by homeostatic mechanisms that decrease absorption when iron status is high. There are few data, however, regarding the existence of a similar homeostatic regulation in infants. We studied 2 groups of human milk-fed infants using (57)Fe (given as ferrous sulfate without any milk) and (58)Fe (given at the time of a breast-milk feeding) stable isotopes to determine whether healthy infants at risk for iron deficiency would regulate their iron absorption based on their iron status. We studied 20 Peruvian infants at 5-6 mo of age and 18 infants at 9-10 mo of age. We found no effect of infant hemoglobin concentration on iron absorption with 5-6 mo-old infants absorbing 19.2 +/- 2.1% and 9- to 10-mo-old infants absorbing 25.8 +/- 2.6% of the (57)Fe dose. For (58)Fe, 5- to 6-mo-old infants absorbed 42.6 +/- 5.0% and 9 to 10-mo-old infants absorbed 51.9 +/- 10.3%. Following log transformation, iron absorption from (57)Fe (r = -0.61, P = < 0.001) and (58)Fe (r = -0.61, P = < 0.001) were inversely correlated to serum ferritin (S-Ft). For both the (57)Fe and (58)Fe doses, infants with S-Ft <12 mg/L (n = 11) had significantly higher iron absorption than those with S-Ft >12 mg/L. We concluded that iron absorption in infants is related to iron status as assessed by serum ferritin but not hemoglobin concentration. Infants with low iron status upregulate iron absorption from breast milk at both 5-6 and 9-10 mo of age.

  5. 21 CFR 73.200 - Synthetic iron oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... suitable and that are listed in this subpart as safe for use in color additive mixtures for coloring foods... food. (2) Synthetic iron oxide may be safely used for the coloring of dog and cat foods in an amount... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food...

  6. 21 CFR 73.200 - Synthetic iron oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... suitable and that are listed in this subpart as safe for use in color additive mixtures for coloring foods... food. (2) Synthetic iron oxide may be safely used for the coloring of dog and cat foods in an amount... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food...

  7. Nanocompounds of iron and zinc: their potential in nutrition

    NASA Astrophysics Data System (ADS)

    Zimmermann, Michael B.; Hilty, Florentine M.

    2011-06-01

    Recent studies suggest nanostructured oxides and phosphates of Fe and atomically mixed Fe/Zn may be useful for nutritional applications. These compounds may have several advantages over existing fortificants, such as ferrous sulfate (FeSO4), NaFeEDTA and electrolytic iron. Because of their very low solubility and formation of soft agglomerates of micron size at neutral pH as well as their light native color, they tend to be less reactive in difficult-to-fortify foods and thus have superior sensory performance. At gastric pH the soft agglomerates break up and the Fe compounds rapidly and completely dissolve due to their very high surface area. This results in in vitro solubility and in vivo bioavailability comparable to FeSO4. Doping with Mg and/or Ca may increase solubility and improve sensory characteristics by lightening color. Feeding the nanostructured compounds at 150-400 µg Fe day-1 for 15 days to weanling rats in two studies did not induce measurable histological or biochemical adverse effects. No significant Fe was detected in the submucosa of the gastrointestinal tract or lymphatic tissues, suggesting that the nanosized Fe is absorbed through usual non-heme Fe absorption pathways. Thus, these novel compounds show promise as food fortificants or supplements.

  8. 21 CFR 73.2250 - Iron oxides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron... per million. (c) Uses and restrictions. Iron oxides are safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good manufacturing practice...

  9. 21 CFR 73.2250 - Iron oxides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron... per million. (c) Uses and restrictions. Iron oxides are safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good manufacturing practice...

  10. 21 CFR 73.2250 - Iron oxides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron... per million. (c) Uses and restrictions. Iron oxides are safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good manufacturing practice...

  11. Optimized treatment conditions for textile wastewater reuse using photocatalytic processes under UV and visible light sources.

    PubMed

    Starling, Maria Clara V M; Castro, Luiz Augusto S; Marcelino, Rafaela B P; Leão, Mônica M D; Amorim, Camila C

    2017-03-01

    In this study, photo-Fenton systems using visible light sources with iron and ferrioxalate were tested for the DOC degradation and decolorization of textile wastewater. Textile wastewaters originated after the dyeing stage of dark-colored tissue in the textile industry, and the optimization of treatment processes was studied to produce water suitable for reuse. Dissolved organic carbon, absorbance, turbidity, anionic concentrations, carboxylic acids, and preliminary cost analysis were performed for the proposed treatments. Conventional photo-Fenton process achieved near 99 % DOC degradation rates and complete absorbance removal, and no carboxylic acids were found as products of degradation. Ferrioxalate photo-Fenton system achieved 82 % of DOC degradation and showed complete absorbance removal, and oxalic acid has been detected through HPLC analysis in the treated sample. In contrast, photo-peroxidation with UV light was proved effective only for absorbance removal, with DOC degradation efficiency near 50 %. Treated wastewater was compared with reclaimed water and had a similar quality, indicating that these processes can be effectively applied for textile wastewater reuse. The results of the preliminary cost analysis indicated costs of 0.91 to 1.07 US$ m -3 for the conventional and ferrioxalate photo-Fenton systems, respectively. Graphical Abstract ᅟ.

  12. Charge-Transfer Complexes and Photochemistry of Ozone with Ferrocene and n-Butylferrocene: A UV-vis Matrix-Isolation Study.

    PubMed

    Pinelo, Laura F; Kugel, Roger W; Ault, Bruce S

    2015-10-15

    The reactions of ozone with ferrocene (cp2Fe) and with n-butylferrocene (n-butyl cp2Fe) were studied using matrix isolation, UV-vis spectroscopy, and theoretical calculations. The codeposition of cp2Fe with O3 and of n-butyl cp2Fe with O3 into an argon matrix led to the production of 1:1 charge-transfer complexes with absorptions at 765 and 815 nm, respectively. These absorptions contribute to the green matrix color observed upon initial deposition. The charge-transfer complexes underwent photochemical reactions upon irradiation with red light (λ ≥ 600 nm). Theoretical UV-vis spectra of the charge-transfer complexes and photochemical products were calculated using TD-DFT at the B3LYP/6-311G++(d,2p) level of theory. The calculated UV-vis spectra were in good agreement with the experimental results. MO analysis of these long-wavelength transitions showed them to be n→ π* on the ozone subunit in the complex and indicated that the formation of the charge-transfer complex between ozone and cp2Fe or n-butyl cp2Fe affects how readily the π* orbital on O3 is populated when red light (λ ≥ 600 nm) is absorbed. 1:1 complexes of cp2Fe and n-butyl cp2Fe with O2 were also observed experimentally and calculated theoretically. These results support and enhance previous infrared studies of the mechanism of photooxidation of ferrocene by ozone, a reaction that has considerable significance for the formation of iron oxide thin films for a range of applications.

  13. Advances in understanding the molecular basis of the first steps in color vision.

    PubMed

    Hofmann, Lukas; Palczewski, Krzysztof

    2015-11-01

    Serving as one of our primary environmental inputs, vision is the most sophisticated sensory system in humans. Here, we present recent findings derived from energetics, genetics and physiology that provide a more advanced understanding of color perception in mammals. Energetics of cis-trans isomerization of 11-cis-retinal accounts for color perception in the narrow region of the electromagnetic spectrum and how human eyes can absorb light in the near infrared (IR) range. Structural homology models of visual pigments reveal complex interactions of the protein moieties with the light sensitive chromophore 11-cis-retinal and that certain color blinding mutations impair secondary structural elements of these G protein-coupled receptors (GPCRs). Finally, we identify unsolved critical aspects of color tuning that require future investigation. Copyright © 2015. Published by Elsevier Ltd.

  14. Comparison of colorimetry and electrothermal atomic absorption spectroscopy for the quantification of non-transferrin bound iron in human sera.

    PubMed

    Jittangprasert, Piyada; Wilairat, Prapin; Pootrakul, Pensri

    2004-12-01

    This paper describes a comparison of two analytical techniques, one employing bathophenanthrolinedisulfonate (BPT), a most commonly-used reagent for Fe (II) determination, as chromogen and an electrothermal atomic absorption spectroscopy (ETAAS) for the quantification of non-transferrin bound iron (NTBI) in sera from thalassemic patients. Nitrilotriacetic acid (NTA) was employed as the ligand for binding iron from low molecular weight iron complexes present in the serum but without removing iron from the transferrin protein. After ultrafiltration the Fe (III)-NTA complex was then quantified by both methods. Kinetic study of the rate of the Fe (II)-BPT complex formation for various excess amounts of NTA ligand was also carried out. The kinetic data show that a minimum time duration (> 60 minutes) is necessary for complete complex formation when large excess of NTA is used. Calibration curves given by colorimetric and ETAAS methods were linear over the range of 0.15-20 microM iron (III). The colorimetric and ETAAS methods exhibited detection limit (3sigma) of 0.13 and 0.14 microM, respectively. The NTBI concentrations from 55 thalassemic serum samples measured employing BPT as chromogen were statistically compared with the results determined by ETAAS. No significant disagreement at 95% confidence level was observed. It is, therefore, possible to select any one of these two techniques for determination of NTBI in serum samples of thalassemic patients. However, the colorimetric procedure requires a longer analysis time because of a slow rate of exchange of NTA ligand with BPT, leading to the slow rate of formation of the colored complex.

  15. The Impact of Chloride, Sulfate, and Bicarbonate on Iron Release from an Old Iron Pipe

    EPA Science Inventory

    “Colored water” describes the appearance of drinking water that contains suspended particulate iron where the actual suspension color may range from light yellow to red due to water chemistry and particle properties. This iron can originate from the source water and from distrib...

  16. Total Iron Absorption by Young Women from Iron-Biofortified Pearl Millet Composite Meals Is Double That from Regular Millet Meals but Less Than That from Post-Harvest Iron-Fortified Millet Meals123

    PubMed Central

    Cercamondi, Colin I.; Egli, Ines M.; Mitchikpe, Evariste; Tossou, Felicien; Zeder, Christophe; Hounhouigan, Joseph D.; Hurrell, Richard F.

    2013-01-01

    Iron biofortification of pearl millet (Pennisetum glaucum) is a promising approach to combat iron deficiency (ID) in the millet-consuming communities of developing countries. To evaluate the potential of iron-biofortified millet to provide additional bioavailable iron compared with regular millet and post-harvest iron-fortified millet, an iron absorption study was conducted in 20 Beninese women with marginal iron status. Composite test meals consisting of millet paste based on regular-iron, iron-biofortified, or post-harvest iron-fortified pearl millet flour accompanied by a leafy vegetable sauce or an okra sauce were fed as multiple meals for 5 d. Iron absorption was measured as erythrocyte incorporation of stable iron isotopes. Fractional iron absorption from test meals based on regular-iron millet (7.5%) did not differ from iron-biofortified millet meals (7.5%; P = 1.0), resulting in a higher quantity of total iron absorbed from the meals based on iron-biofortified millet (1125 vs. 527 μg; P < 0.0001). Fractional iron absorption from post-harvest iron-fortified millet meals (10.4%) was higher than from regular-iron and iron-biofortified millet meals (P < 0.05 and P < 0.01, respectively), resulting in a higher quantity of total iron absorbed from the post-harvest iron-fortified millet meals (1500 μg; P < 0.0001 and P < 0.05, respectively). Results indicate that consumption of iron-biofortified millet would double the amount of iron absorbed and, although fractional absorption of iron from biofortification is less than that from fortification, iron-biofortified millet should be highly effective in combatting ID in millet-consuming populations. PMID:23884388

  17. Spectrophotometric Determination of Iron(II) and Cobalt(II) by Direct, Derivative, and Simultaneous Methods Using 2-Hydroxy-1-Naphthaldehyde-p-Hydroxybenzoichydrazone

    PubMed Central

    Devi, V. S. Anusuya; Reddy, V. Krishna

    2012-01-01

    Optimized and validated spectrophotometric methods have been proposed for the determination of iron and cobalt individually and simultaneously. 2-hydroxy-1-naphthaldehyde-p-hydroxybenzoichydrazone (HNAHBH) reacts with iron(II) and cobalt(II) to form reddish-brown and yellow-coloured [Fe(II)-HNAHBH] and [Co(II)-HNAHBH] complexes, respectively. The maximum absorbance of these complexes was found at 405 nm and 425 nm, respectively. For [Fe(II)-HNAHBH], Beer's law is obeyed over the concentration range of 0.055–1.373 μg mL−1 with a detection limit of 0.095 μg mL−1 and molar absorptivity ɛ, 5.6 × 104 L mol−1 cm−1. [Co(II)-HNAHBH] complex obeys Beer's law in 0.118–3.534 μg mL−1 range with a detection limit of 0.04 μg mL−1 and molar absorptivity, ɛ of 2.3 × 104 L mol−1 cm−1. Highly sensitive and selective first-, second- and third-order derivative methods are described for the determination of iron and cobalt. A simultaneous second-order derivative spectrophotometric method is proposed for the determination of these metals. All the proposed methods are successfully employed in the analysis of various biological, water, and alloy samples for the determination of iron and cobalt content. PMID:22505925

  18. THE EFFECT OF CHLORIDE AND ORTHOPHOSPHATE ON THE RELEASE OF IRON FROM A DRINKING WATER DISTRIBUTION SYSTEM CAST IRON PIPE

    EPA Science Inventory

    "Colored water" describes the appearance of drinking water that contains suspended particulate iron although the actual suspension color may be light yellow to red depending on water chemistry and particle properties. The release of iron from distribution system materials such a...

  19. THE EFFECT OF CHLORIDE AND ORTHOPHOSPHATE ON THE RELEASE OF IRON FROM A DRINKING WATER DISTRIBUTION SYSTEM CAST IRON PIPE

    EPA Science Inventory

    Colored water" describes the appearance of drinking water that contains suspended particulate iron although the actual suspension color may be light yellow to red depending on water chemistry and particle properties. The release of iron from distribution system materials such as...

  20. Effect of green spinach (Amaranthus tricolor L.) and tomato (Solanum lycopersicum) addition in physical, chemical, and sensory properties of marshmallow as an alternative prevention of iron deficiency anemia

    NASA Astrophysics Data System (ADS)

    Yudhistira, B.; Affandi, D. R.; Nusantari, P. N.

    2018-01-01

    Iron deficiency anemia is the most common nutritional disorder in the world. Consuming vegetable which contain iron, including spinach, is an alternative to fulfill iron requirement. Fe will be more easily absorbed in the presence of vitamin C. Tomato is one of vitamin C source that can be used. Spinach can be applied into confectionary products in the form of marshmallow. This research aimed to find out the physical, chemical and sensory properties of green spinach Marshmallow in addition of Tomato, the best formula, and define the category of nutrition contents based on Acuan Label Gizi (ALG). This study used a completely randomized design (CRD) with one factor that was different proportion of spinach:tomato (75%: 25%; 50%: 50%; 25%: 75%). The data were analyzed using One Way Anova with 5% significance level. The result of this study showed that the difference of spinach and tomato proportion affect tensile strength, moisture, ash content, Fe content, crude fiber, vitamin C, color and marshmallow’s flavor. Best marshmallow formulation of 25% spinach in addition of 75% tomato had Fe content of 1.159 mg/100g and vitamin C of 44 mg/100g.

  1. Removal of copper and iron by polyurethane foam column in FIA system for the determination of nickel in pierced ring.

    PubMed

    Vongboot, Monnapat; Suesoonthon, Monrudee

    2015-01-01

    Polyurethane foam (PUF) mini-column was used to eliminate copper and iron for the determination of nickel in pierced rings. The PUF mini-column was connected to FIA system for on-line sorption of copper and iron in complexes form of CuSCN(+) and FeSCN(2+). For this season, the acid solution containing a mixture of Ni(II), Fe(III), Cu(II) and SCN(-) ions was firstly flew into the PUF column. Then, the percolated solution which Fe(III) and Cu(II) ions is separated from analysis was injected into FIA system to react with 4-(2-pyridylazo) resorcinol (PAR) reagent in basic condition which this method is called pH gradient technique. The Ni-PAR complexes obtained were measured theirs absorbance at 500 nm by UV visible spectrophotometer. In this study, it was found that Cu(II) and Fe(III) were completely to form complexes with 400 mmol/L KSCN and entirely to eliminate in acidic condition at pH 3.0. In the optimum condition of these experiments, the method provided the linear relationship between absorbance and the concentration of Ni(II) in the range from 5.00 to 30.00 mg/L. Linear equation is y=0.0134x+0.0033 (R(2)=0.9948). Precision, assessed in the term of the relative standard deviation, RSD, and accuracy for multiple determinations obtained in values of 0.77-1.73% and 97.4%, respectively. The level of an average amount of Ni(II) in six piercing rings was evaluated to be 14.78 mg/g. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Occupation of the cytochrome P450 substrate pocket by diverse compounds at general anesthesia concentrations.

    PubMed

    LaBella, F S; Stein, D; Queen, G

    1998-10-02

    Each of a diverse array of compounds, at concentrations reported to effect general anesthesia, when added to liver microsomes, forms a complex with cytochromes P450 to generate, with reference to a cuvette containing microsomes only, a characteristic absorbance-difference spectrum. This spectrum results from a change in the electron-spin state of the heme iron atom induced upon entry by the anesthetic molecule into the enzyme catalytic pocket. The difference spectrum, representing the anesthetic-P450 complex, is characteristic of substances that are substrates for the enzyme. For the group of compounds as a whole, the magnitudes of the absorbance-difference spectra vary only about twofold, although the anesthetic potencies vary by several orders of magnitude. The dissociation constants (Ks), calculated from absorbance data and representing affinities of the anesthetics for P450, agree closely with the respective EC50 (concentration that effects anesthesia in 50% of individuals) values, and with the respective Ki (concentration that inhibits P450 catalytic activities half-maximally) values reported by us previously. The absorbance complex resulting from the occupation of the catalytic pocket by endogenous substrates, androstenedione and arachidonic acid, is inhibited, competitively, by anesthetics. Occupation of and perturbation of the heme catalytic pocket by anesthetic, as monitored by the absorbance-difference spectrum, is rapidly reversible. The presumed in vivo consequences of perturbation by general anesthetics of heme proteins is suppression of the generation of chemical signals that determine cell sensitivity and response.

  3. Olivine in the Southern Isidis Basin

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) took this observation of the transition region between Libya Montes and the Isidis Basin on Mars at 17:16 UTC (12:16 p.m. EST) on January 2, 2007, near 3.6 degrees north latitude, 84.1 degrees east longitude. The image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 18 meters (60 feet) across. The image is about 11 kilometers (7 miles) wide at its narrowest point.

    The Isidis Basin resulted from of a gigantic impact on the surface of Mars early in the planet's history. The southern rim, where this target is located, is a region of complex geology and part of the planetary dichotomy boundary that separates the older southern highlands from the lower, younger northern plains. The image on the left was constructed from three visible wavelengths (RGB: 0.71, 0.60, 0.53 microns) and is a close approximation of how the surface would appear to the human eye. The image on the right was constructed from three infrared wavelengths (RGB: 2.49, 1.52, 1.08 microns) chosen to highlight variations in the mineralogy of the area. Of interest is that features in this image not only differ in color, but also in texture and morphology. The gray areas absorb similarly at all wavelengths used in this image, but display absorptions at other wavelengths related to the iron- and magesium-rich mineral pyroxene. The reddest areas absorb strongly at the wavelengths used for green and blue, which is attributable to another iron- and magesium-rich mineral, olivine. The brownish areas show subdued mineral absorptions and could represent some type of mixture between the other two materials. The presence of the mineral olivine is particularly interesting because olivine easily weathers to other minerals; thus, its presence indicates either the lack of weathering in this region or relatively recent exposure.

    CRISM's mission: Find the spectral fingerprints of aqueous and hydrothermal deposits and map the geology, composition and stratigraphy of surface features. The instrument will also watch the seasonal variations in Martian dust and ice aerosols, and water content in surface materials -- leading to new understanding of the climate.

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad.

  4. Iron storage disease (hemochromatosis) and hepcidin response to iron load in two species of pteropodid fruit bats relative to the common vampire bat.

    PubMed

    Stasiak, Iga M; Smith, Dale A; Ganz, Tomas; Crawshaw, Graham J; Hammermueller, Jutta D; Bienzle, Dorothee; Lillie, Brandon N

    2018-07-01

    Hepcidin is the key regulator of iron homeostasis in the body. Iron storage disease (hemochromatosis) is a frequent cause of liver disease and mortality in captive Egyptian fruit bats (Rousettus aegyptiacus), but reasons underlying this condition are unknown. Hereditary hemochromatosis in humans is due to deficiency of hepcidin or resistance to the action of hepcidin. Here, we investigated the role of hepcidin in iron metabolism in one species of pteropodid bat that is prone to iron storage disease [Egyptian fruit bat (with and without hemochromatosis)], one species of pteropodid bat where iron storage disease is rare [straw-colored fruit bat (Eidolon helvum)], and one species of bat with a natural diet very high in iron, in which iron storage disease is not reported [common vampire bat (Desmodus rotundus)]. Iron challenge via intramuscular injection of iron dextran resulted in significantly increased liver iron content and histologic iron scores in all three species, and increased plasma iron in Egyptian fruit bats and straw-colored fruit bats. Hepcidin mRNA expression increased in response to iron administration in healthy Egyptian fruit bats and common vampire bats, but not in straw-colored fruit bats or Egyptian fruit bats with hemochromatosis. Hepcidin gene expression significantly correlated with liver iron content in Egyptian fruit bats and common vampire bats, and with transferrin saturation and plasma ferritin concentration in Egyptian fruit bats. Induction of hepcidin gene expression in response to iron challenge is absent in straw-colored fruit bats and in Egyptian fruit bats with hemochromatosis and, relative to common vampire bats and healthy humans, is low in Egyptain fruit bats without hemochromatosis. Limited hepcidin response to iron challenge may contribute to the increased susceptibility of Egyptian fruit bats to iron storage disease.

  5. Spectrophotometric determination of traces of boron in high purity silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parashar, D.C.; Sarkar, A.K.; Singh, N.

    1989-07-01

    A reddish brown complex is formed between boron and curcumin in concentrated sulfuric acid and glacial acetic acid mixture (1:1). The colored complex is highly selective and stable for about 3 hours and has the maximum absorbance at 545 nm. The sensitivity of the method is extremely high and the detection limit is 3 parts per billion based on 0.004 absorbance value. The interference of some of the important cations and anions relevant to silicon were studied and it is found that 100 fold excess of most of these cations and anions do not interfere in the determination of boron.more » The method is successfully employed for the determination of boron in silicon used in semiconductor devices. The results have been verified by standard addition method.« less

  6. Iron

    MedlinePlus

    ... too little iron, you may develop iron deficiency anemia. Causes of low iron levels include blood loss, poor diet, or an inability to absorb enough iron from foods. People at higher risk of having too little iron are young children and women who are pregnant or have periods. ...

  7. Hewlett-Packard's Approaches to Full Color Reflective Displays

    NASA Astrophysics Data System (ADS)

    Gibson, Gary

    2012-02-01

    Reflective displays are desirable in applications requiring low power or daylight readability. However, commercial reflective displays are currently either monochrome or capable of only dim color gamuts. Low cost, high-quality color technology would be rapidly adopted in existing reflective display markets and would enable new solutions in areas such as retail pricing and outdoor digital signage. Technical breakthroughs are required to enable bright color gamuts at reasonable cost. Pixel architectures that rely on pure reflection from a single layer of side-by-side primary-color sub-pixels use only a fraction of the display area to reflect incident light of a given color and are, therefore, unacceptably dark. Reflective devices employing stacked color primaries offer the possibility of a somewhat brighter color gamut but can be more complex to manufacture. In this talk, we describe HP's successes in addressing these fundamental challenges and creating both high performance stacked-primary reflective color displays as well as inexpensive single layer prototypes that provide good color. Our stacked displays utilize a combination of careful light management techniques, proprietary high-contrast electro-optic shutters, and highly transparent active-matrix TFT arrays based on transparent metal oxides. They also offer the possibility of relatively low cost manufacturing through roll-to-roll processing on plastic webs. To create even lower cost color displays with acceptable brightness, we have developed means for utilizing photoluminescence to make more efficient use of ambient light in a single layer device. Existing reflective displays create a desired color by reflecting a portion of the incident spectrum while absorbing undesired wavelengths. We have developed methods for converting the otherwise-wasted absorbed light to desired wavelengths via tailored photoluminescent composites. Here we describe a single active layer prototype display that utilizes these materials along with an innovative optical out-coupling scheme. Further benefits of our approach include means for highly power-efficient back-lighting under low ambient light conditions and the possibility of video rate operation.

  8. Improved zircon iron corals for the 1990s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, C.

    1992-03-01

    CIBA-GEIGY/Drakenfeld Colors is dedicated to the research and development of consistent and cost-effective ceramic stains for the whitewares industry. After identifying the trends in color for the 1990s. CIBA-GEIGY/Drakenfeld Colors initiated an extensive R D project to improve zircon ion corals for the whitewares industry. These color trends indicated a need for stronger and cleaner zircon iron corals. This paper discusses the chemistry and crystal structure of zircon iron corals. A historical review of Drakenfeld corals will also be presented. The most recent development in Drakenfeld corals will then be compared to other commercially available zircon iron corals. Taking intomore » consideration these comparisons, conclusions will be drawn suggesting the coral of choice for the 1990s.« less

  9. 21 CFR 74.3106 - D&C Blue No. 6.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... material for coloring plain or chromic collagen absorbable sutures for general surgical use; (iii) Not to exceed 0.5 percent by weight of the suture material for coloring plain or chromic collagen absorbable...

  10. 21 CFR 74.3106 - D&C Blue No. 6.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... material for coloring plain or chromic collagen absorbable sutures for general surgical use; (iii) Not to exceed 0.5 percent by weight of the suture material for coloring plain or chromic collagen absorbable...

  11. 21 CFR 74.3106 - D&C Blue No. 6.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... material for coloring plain or chromic collagen absorbable sutures for general surgical use; (iii) Not to exceed 0.5 percent by weight of the suture material for coloring plain or chromic collagen absorbable...

  12. 21 CFR 74.3106 - D&C Blue No. 6.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... material for coloring plain or chromic collagen absorbable sutures for general surgical use; (iii) Not to exceed 0.5 percent by weight of the suture material for coloring plain or chromic collagen absorbable...

  13. 21 CFR 74.3106 - D&C Blue No. 6.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... material for coloring plain or chromic collagen absorbable sutures for general surgical use; (iii) Not to exceed 0.5 percent by weight of the suture material for coloring plain or chromic collagen absorbable...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Alarcon, P.A.; Donovan, M.E.; Forbes, G.B.

    To determine the hemoglobin concentration at which iron absorption is minimal, five subjects with thalassemia major and one with thalassemia intermedia underwent a series of iron-absorption studies. The effect of tea as an inhibitor of non-heme iron absorption was also tested. Iron absorption increased as the hemoglobin concentration decreased, although iron absorption was much higher at any given hemoglobin level in the subject with thalassemia intermedia. In the subjects with thalassemia major, iron absorption averaged 10% at hemoglobin concentrations between 9 and 10 and 2.7 per cent between 11 and 13 g per deciliter. The percentage of iron absorbed couldmore » be accurately predicted from the nucleated red-cell count (r = 0.91, P < 0.001). Tea produced a 41 to 95% inhibition of iron absorption. Since patients with thalassemia intermedia may absorb a large percentage of dietary iron, inhibitors of iron absorption, such as tea, may be useful in their management.« less

  15. Development of a highly sensitive and selective method for extractive spectrophotometric determination of aluminum(III) from environmental matrices, synthetic mixtures, and alloys using orthohydroxypropiophenoneisonicotinoylhydrazone.

    PubMed

    Ramachandraiah, C; Rajesh Kumar, J; Adinarayana Reddy, S; Lee, Jin-Young; Varada Reddy, A

    2010-01-01

    Orthohydroxypropiophenoneisonicotinoylhydrazone (OHPINH) is proposed as a new sensitive reagent for the spectrophotometric determination of aluminum(III). OHPINH formed a greenish-yellow colored complex with aluminum(III) in buffer solutions of pH 1 to 3. The color in pH 2 was stable for more than 48 h. The complex solution has given maximum absorbance at 390 nm when the reagent was chosen as blank and the absorbance of the reagent at this wavelength is negligible; the molar absorptivity and Sandell's sensitivity being 0.6371x10(4) L mol(-1) cm(-1) and 4.234x10(-3) microg cm(-2), respectively. The system obeys Beer's law in the range of 0.5-3.5 microg mL(-1) with excellent linearity in terms of the correlation coefficient value of 0.999. Most of the common metal ions generally found associated with aluminum(III) do not interfere. The repeatability of the method was checked by finding the relative standard deviation. The developed method has been successfully employed for the determination of aluminum(III) environmental matrices like medicinal and leafy samples, alloys, and synthetic mixtures.

  16. Determination of trace iron in the boiler water used in power generation plants by solid-phase spectrophotometry.

    PubMed

    Sarenqiqige; Maeda, Akihiro; Yoshimura, Kazuhisa

    2014-01-01

    A sensitive, simple and low-cost determination method for the total iron concentration in boiler water systems of power generation plants was developed by solid phase spectrometry (SPS) using 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ) as a coloring agent. The reagents and 0.08 cm(3) of a cation exchanger were added to a 50-cm(3) boiler water sample, then mixed for 30 min to adsorb/concentrate the produced Fe(TPTZ)2(2+) colored complex on the solid beads, resulting in a 625 times concentration of the target analyte without any other procedure. The detection limit of 0.1 μg dm(-3) was obtained, and the optimum conditions for the digestion procedure and color developing reaction was investigated and reported. According to the application of this method to real samples, the present SPS method is the best one because of the shorter analysis time, simpler operation and use of very low-cost equipment compared to the conventional methods, such as TPTZ solution spectrophotometric method after a 16 times concentration, ICP-MS and AAS.

  17. DRINKING WATER QUALITY DETERIORATION IN DISTRIBUTION SYSTEMS: COLORED WATER FORMATION AND ITS CONTROL

    EPA Science Inventory

    The release of iron from drinking water distribution systems is a common source of drinking water distribution system consumer complaints. Suspended iron particles result in colored (red) water and metallic tasting water. Iron release results from both physical and chemical mec...

  18. Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic H2O2 Production and UV Photolysis

    PubMed Central

    2017-01-01

    As water scarcity intensifies, point-of-use and point-of-entry treatment may provide a means of exploiting locally available water resources that are currently considered to be unsafe for human consumption. Among the different classes of drinking water contaminants, toxic trace elements (e.g., arsenic and lead) pose substantial operational challenges for distributed drinking water treatment systems. Removal of toxic trace elements via adsorption onto iron oxides is an inexpensive and robust treatment method; however, the presence of metal-complexing ligands associated with natural organic matter (NOM) often prevents the formation of iron precipitates at the relatively low concentrations of dissolved iron typically present in natural water sources, thereby requiring the addition of iron which complicates the treatment process and results in a need to dispose of relatively large amounts of accumulated solids. A point-of-use treatment device consisting of a cathodic cell that produced hydrogen peroxide (H2O2) followed by an ultraviolet (UV) irradiation chamber was used to decrease colloid stabilization and metal-complexing capacity of NOM present in groundwater. Exposure to UV light altered NOM, converting ∼6 μM of iron oxides into settable forms that removed between 0.5 and 1 μM of arsenic (As), lead (Pb), and copper (Cu) from solution via adsorption. After treatment, changes in NOM consistent with the loss of iron-complexing carboxylate ligands were observed, including decreases in UV absorbance and shifts in the molecular composition of NOM to higher H/C and lower O/C ratios. Chronoamperometric experiments conducted in synthetic groundwater revealed that the presence of Ca2+ and Mg2+ inhibited intramolecular charge-transfer within photoexcited NOM, leading to substantially increased removal of iron and trace elements. PMID:29240414

  19. Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic H2O2 Production and UV Photolysis.

    PubMed

    Barazesh, James M; Prasse, Carsten; Wenk, Jannis; Berg, Stephanie; Remucal, Christina K; Sedlak, David L

    2018-01-02

    As water scarcity intensifies, point-of-use and point-of-entry treatment may provide a means of exploiting locally available water resources that are currently considered to be unsafe for human consumption. Among the different classes of drinking water contaminants, toxic trace elements (e.g., arsenic and lead) pose substantial operational challenges for distributed drinking water treatment systems. Removal of toxic trace elements via adsorption onto iron oxides is an inexpensive and robust treatment method; however, the presence of metal-complexing ligands associated with natural organic matter (NOM) often prevents the formation of iron precipitates at the relatively low concentrations of dissolved iron typically present in natural water sources, thereby requiring the addition of iron which complicates the treatment process and results in a need to dispose of relatively large amounts of accumulated solids. A point-of-use treatment device consisting of a cathodic cell that produced hydrogen peroxide (H 2 O 2 ) followed by an ultraviolet (UV) irradiation chamber was used to decrease colloid stabilization and metal-complexing capacity of NOM present in groundwater. Exposure to UV light altered NOM, converting ∼6 μM of iron oxides into settable forms that removed between 0.5 and 1 μM of arsenic (As), lead (Pb), and copper (Cu) from solution via adsorption. After treatment, changes in NOM consistent with the loss of iron-complexing carboxylate ligands were observed, including decreases in UV absorbance and shifts in the molecular composition of NOM to higher H/C and lower O/C ratios. Chronoamperometric experiments conducted in synthetic groundwater revealed that the presence of Ca 2+ and Mg 2+ inhibited intramolecular charge-transfer within photoexcited NOM, leading to substantially increased removal of iron and trace elements.

  20. Residence times of alluvium in an east Texas stream as indicated by sediment color

    Treesearch

    Jonathan D. Phillips; Daniel A. Marion

    2001-01-01

    The relationships between sediment production, storage, and transport in fluvial systems are complex and variable. Key issues in addressing these relationships are the residence times of sediment delivered to the channel, and the proportion derived from recent upland erosion as opposed to remobilized alluvium. The systematic changes in iron geochemistry often...

  1. 21 CFR 73.2250 - Iron oxides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Iron oxides. 73.2250 Section 73.2250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... per million. (c) Uses and restrictions. Iron oxides are safe for use in coloring cosmetics generally...

  2. 21 CFR 73.2250 - Iron oxides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Iron oxides. 73.2250 Section 73.2250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... per million. (c) Uses and restrictions. Iron oxides are safe for use in coloring cosmetics generally...

  3. 21 CFR 73.1350 - Mica-based pearlescent pigments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Identity. (1) The color additive is formed by depositing titanium and/or iron salts onto mica, followed by heating to produce one of the following combinations: Titanium dioxide on mica; iron oxide on mica; titanium dioxide and iron oxide on mica. Mica used to manufacture the color additive shall conform in...

  4. Bench-scale evaluation of drinking water treatment parameters on iron particles and water quality.

    PubMed

    Rahman, M Safiur; Gagnon, Graham A

    2014-01-01

    Discoloration of water resulting from suspended iron particles is one of the main customer complaints received by water suppliers. However, understanding of the mechanisms of discoloration as well as role of materials involved in the process is limited. In this study, an array of bench scale experiments were conducted to evaluate the impact of the most common variables (pH, PO4, Cl2 and DOM) on the properties of iron particles and suspensions derived from the oxygenation of Fe(II) ions in NaHCO3 buffered synthetic water systems. The most important factors as well as their rank influencing iron suspension color and turbidity formation were identified for a range of water quality parameters. This was accomplished using a 2(4) full factorial design approach at a 95% confidence level. The statistical analysis revealed that phosphate was found to be the most significant factor to alter color (contribution: 37.9%) and turbidity (contribution: 45.5%) in an iron-water system. A comprehensive study revealed that phosphate and chlorine produced iron suspension with reduced color and turbidity, made ζ-potential more negative, reduced the average particle size, and increased iron suspension stability. In the presence of DOM, color was observed to increase but a reverse trend was observed to decrease the turbidity and to alter particle size distribution. HPSEC results suggest that higher molecular weight fractions of DOM tend to adsorb onto the surfaces of iron particles at early stages, resulting in alteration of the surface charge of iron particles. This in turn limits particles aggregation and makes iron colloids highly stable. In the presence of a phosphate based corrosion inhibitor, this study demonstrated that color and turbidity resulting from suspended iron were lower at a pH value of 6.5 (compared to pH of 8.5). The same trend was observed in presence of DOM. This study also suggested that iron colloid suspension color and turbidity in chlorinated drinking water systems could be lower than non-chlorinated systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Systems for the Storage of Molecular Oxygen - A Study.

    DTIC Science & Technology

    1980-11-25

    form adducts with certain chemical compounds . This process, which will be called chemical absorption, generally uses a transition metal coordination... compound as the absorber. The study of oxygen binding to metal complexes has become of great interest over the past three decades (21), and some...for iron, most notably cobalt (33-35) manganese (36,37) and ruthenium (38), usually to serve as model compounds for biologically important heme

  6. The magnetorheological fluid of carbonyl iron suspension blended with grafted MWCNT or graphene

    NASA Astrophysics Data System (ADS)

    Rwei, Syang-Peng; Ranganathan, Palraj; Chiang, Whe-Yi; Wang, Tza-Yi

    2017-12-01

    In this work, the magnetorheological (MR) fluids containing MWCNT/CI (carbonyl iron) complex and graphene/CI complex were prepared and have the better dispersity in silicone oil than CI powders alone. 1, 4-Aminobenzoic acid (PABA) was used as a grafting agent to modify CI powders to have NH2-end-group so that such nanoparticles can adsorb to acid-treated MWCNT or graphene via attraction of NH2 and COOH groups. The MWCNT/CI complex and graphene/CI complex have a structure of carbonyl iron nanoparticles adsorbed to MWCNT and graphene by self assembly, respectively. Because the carbonyl iron particles possessing magnetic permeability in nanometer scale adsorb to MWCNT or graphene which usually has a nanometer-scaled diameter and a micrometer-scaled length in this work, the dispersity of MWCNT/CI or graphene/CI complex in silicone oil is superior than the previous report [15] that the micrometer-scaled carbonyl iron microspheres were coated with multiwalled carbon nanotubes. Among CI (unmodified), MWCNT/CI and graphene/CI, graphene/CI has the best dispersity while MWCNT/CI still has the better dispersity than unmodified CI. At the temperature T = 300 K, the saturation magnetizations of CI, MWCNT/CI, graphene/CI are 208, 211 emu/g, and 204 emu/g, respectively, indicating that MWCNT/CI complex and graphene/CI complex still maintain the saturation magnetization as high as CI without being interfered by the blended MWCNT or graphene. A wide dynamic range of the yield stress adjusted through varying the electric current can be achieved by the MR fluids containing 69 wt% MWCNT/CI and graphene/CI which is useful in a shock absorber or damper. The result of the yield stress indicates the suspended MWCNT/CI particles are oriented more easily toward the direction perpendicular to the flow direction to block the flow stream lines.

  7. Radiative forcing by light-absorbing aerosols of pyrogenetic iron oxides.

    PubMed

    Ito, Akinori; Lin, Guangxing; Penner, Joyce E

    2018-05-09

    Iron (Fe) oxides in aerosols are known to absorb sun light and heat the atmosphere. However, the radiative forcing (RF) of light-absorbing aerosols of pyrogenetic Fe oxides is ignored in climate models. For the first time, we use a global chemical transport model and a radiative transfer model to estimate the RF by light-absorbing aerosols of pyrogenetic Fe oxides. The model results suggest that strongly absorbing Fe oxides (magnetite) contribute a RF that is about 10% of the RF due to black carbon (BC) over East Asia. The seasonal average of the RF due to dark Fe-rich mineral particles over East Asia (0.4-1.0 W m -2 ) is comparable to that over major biomass burning regions. This additional warming effect is amplified over polluted regions where the iron and steel industries have been recently developed. These findings may have important implications for the projection of the climate change, due to the rapid growth in energy consumption of the heavy industry in newly developing countries.

  8. Iron Homeostasis and Nutritional Iron Deficiency123

    PubMed Central

    Theil, Elizabeth C.

    2011-01-01

    Nonheme food ferritin (FTN) iron minerals, nonheme iron complexes, and heme iron contribute to the balance between food iron absorption and body iron homeostasis. Iron absorption depends on membrane transporter proteins DMT1, PCP/HCP1, ferroportin (FPN), TRF2, and matriptase 2. Mutations in DMT1 and matriptase-2 cause iron deficiency; mutations in FPN, HFE, and TRF2 cause iron excess. Intracellular iron homeostasis depends on coordinated regulation of iron trafficking and storage proteins encoded in iron responsive element (IRE)-mRNA. The noncoding IRE-mRNA structures bind protein repressors, IRP1 or 2, during iron deficiency. Integration of the IRE-RNA in translation regulators (near the cap) or turnover elements (after the coding region) increases iron uptake (DMT1/TRF1) or decreases iron storage/efflux (FTN/FPN) when IRP binds. An antioxidant response element in FTN DNA binds Bach1, a heme-sensitive transcription factor that coordinates expression among antioxidant response proteins like FTN, thioredoxin reductase, and quinone reductase. FTN, an antioxidant because Fe2+ and O2 (reactive oxygen species generators) are consumed to make iron mineral, is also a nutritional iron concentrate that is an efficiently absorbed, nonheme source of iron from whole legumes. FTN protein cages contain thousands of mineralized iron atoms and enter cells by receptor-mediated endocytosis, an absorption mechanism distinct from transport of nonheme iron salts (ferrous sulfate), iron chelators (ferric-EDTA), or heme. Recognition of 2 nutritional nonheme iron sources, small and large (FTN), will aid the solution of iron deficiency, a major public health problem, and the development of new policies on iron nutrition. PMID:21346101

  9. What color should glacier algae be? An ecological role for red carbon in the cryosphere.

    PubMed

    Dial, Roman J; Ganey, Gerard Q; Skiles, S McKenzie

    2018-03-01

    Red-colored secondary pigments in glacier algae play an adaptive role in melting snow and ice. We advance this hypothesis using a model of color-based absorption of irradiance, an experiment with colored particles in snow, and the natural history of glacier algae. Carotenoids and phenols-astaxanthin in snow-algae and purpurogallin in ice-algae-shield photosynthetic apparatus by absorbing overabundant visible wavelengths, then dissipating the excess radiant energy as heat. This heat melts proximal ice crystals, providing liquid-water in a 0°C environment and freeing up nutrients bound in frozen water. We show that purple-colored particles transfer 87%-89% of solar energy absorbed by black particles. However, red-colored particles transfer nearly as much (85%-87%) by absorbing peak solar wavelengths and reflecting the visible wavelengths most absorbed by nearby ice and snow crystals; this latter process may reduce potential cellular overheating when snow insulates cells. Blue and green particles transfer only 80%-82% of black particle absorption. In the experiment, red-colored particles melted 87% as much snow as black particles, while blue particles melted 77%. Green-colored snow-algae naturally occupy saturated snow where water is non-limiting; red-colored snow-algae occupy drier, water-limited snow. In addition to increasing melt, we suggest that esterified astaxanthin in snow-alga cells increases hydrophobicity to remain surficial. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Mineral resource of the month: iron oxide pigments

    USGS Publications Warehouse

    ,

    2008-01-01

    The article discusses iron oxide pigments, which have been used as colorants since human began painting as they resist color change due to sunlight exposure, have good chemical resistance and are stable under normal ambient conditions. Cyprus, Italy and Spain are among the countries that are known for the production of iron oxide pigments. Granular forms of iron oxides and nano-sized materials are cited as developments in the synthetic iron oxide pigment industry which are being used in computer disk drives and nuclear magnetic resonance imaging.

  11. In-Lake Processes Offset Increased Terrestrial Inputs of Dissolved Organic Carbon and Color to Lakes

    PubMed Central

    Köhler, Stephan J.; Kothawala, Dolly; Futter, Martyn N.; Liungman, Olof; Tranvik, Lars

    2013-01-01

    Increased color in surface waters, or browning, can alter lake ecological function, lake thermal stratification and pose difficulties for drinking water treatment. Mechanisms suggested to cause browning include increased dissolved organic carbon (DOC) and iron concentrations, as well as a shift to more colored DOC. While browning of surface waters is widespread and well documented, little is known about why some lakes resist it. Here, we present a comprehensive study of Mälaren, the third largest lake in Sweden. In Mälaren, the vast majority of water and DOC enters a western lake basin, and after approximately 2.8 years, drains from an eastern basin. Despite 40 years of increased terrestrial inputs of colored substances to western lake basins, the eastern basin has resisted browning over this time period. Here we find the half-life of iron was far shorter (0.6 years) than colored organic matter (A420 ; 1.7 years) and DOC as a whole (6.1 years). We found changes in filtered iron concentrations relate strongly to the observed loss of color in the western basins. In addition, we observed a substantial shift from colored DOC of terrestrial origin, to less colored autochthonous sources, with a substantial decrease in aromaticity (-17%) across the lake. We suggest that rapid losses of iron and colored DOC caused the limited browning observed in eastern lake basins. Across a wider dataset of 69 Swedish lakes, we observed greatest browning in acidic lakes with shorter retention times (< 1.5 years). These findings suggest that water residence time, along with iron, pH and colored DOC may be of central importance when modeling and projecting changes in brownification on broader spatial scales. PMID:23976946

  12. THE EFFECT OF CHLORIDE, SULFATE, BICARBONATE AND ORTHOPHOSPHATE ON THE RELEASE OF IRON FROM A DRINKING WATER DISTRIBUTION SYSTEM PIPE

    EPA Science Inventory

    “Colored water” describes the appearance of drinking water that contains suspended particulate iron where the actual suspension color may range from light yellow to red due to water chemistry and particle properties. This iron can originate from the source water and f...

  13. Vascular Spaces in Compact Bone: A Technique to Correct a Common Misinterpretation of Structure

    ERIC Educational Resources Information Center

    Locke, M.; Dean, Rob L.

    2003-01-01

    Old bones are often discolored by the grime that infiltrates spaces in the matrix once occupied by blood vessels. This suggested that allowing dry bone to absorb colorants might be a useful way to show the three dimensional complexity of bone vascularization. The authors have developed a simple way to show blood vessels spaces in bone at a glance…

  14. Effect of Iron Oxide and Phase Separation on the Color of Blue Jun Ware Glaze.

    PubMed

    Wang, Fen; Yang, Changan; Zhu, Jianfeng; Lin, Ying

    2015-09-01

    Based on the traditional Jun ware glaze, the imitated Jun ware glazes were prepared by adding iron oxide and introducing phase separation agent apatite through four-angle-method. The effect of iron oxide contents, phase separation and the firing temperature on the color of Jun ware glazes were investigated by a neutral atmosphere experiment, optical microscope and scanning electronic microscope. The results showed that the colorant, mainly Fe2O3, contributed to the Jun ware glaze blue and cyan colors of Jun ware glaze. The light scatter caused by the small droplets in phase separation structure only influenced the shade of the glaze color, intensify or weaken the color, and thus made the glaze perfect and elegant opal visual effects, but was not the origin of general blue or cyan colors of Jun ware glaze. In addition, the firing temperature and the basic glaze composition affected the glaze colors to some extent.

  15. Photometric microdetermination of malathion

    USGS Publications Warehouse

    Kallman, B.J.

    1962-01-01

    Carboxylic esters and lactones react with alkaline hydroxylamine to yield hydroxamates; these in acidic solution form colored iron(III) complexes. A photometric determination of such esters and lactones is thus permitted and has been extensively applied ( I-6). Hestrin ( 3) utilized this method for the microdetermination of acetylcholine and his procedure is much used for the in vitro study of cholinesterase activity and inhibition (4-6).

  16. Kaempferol in red and pinto bean seed (Phaseolus vulgaris L.) coats inhibits iron bioavailability using an in vitro digestion/human Caco-2 cell model.

    PubMed

    Hu, Ying; Cheng, Zhiqiang; Heller, Larry I; Krasnoff, Stuart B; Glahn, Raymond P; Welch, Ross M

    2006-11-29

    Four different colored beans (white, red, pinto, and black beans) were investigated for factors affecting iron bioavailability using an in vitro digestion/human Caco-2 cell model. Iron bioavailability from whole beans, dehulled beans, and their hulls was determined. The results show that white beans contained higher levels of bioavailable iron compared to red, pinto, and black beans. These differences in bioavailable iron were not due to bean-iron and bean-phytate concentrations. Flavonoids in the colored bean hulls were found to be contributing to the low bioavailability of iron in the non-white colored beans. White bean hulls contained no detectable flavonoids but did contain an unknown factor that may promote iron bioavailability. The flavonoids, kaempferol and astragalin (kaempferol-3-O-glucoside), were identified in red and pinto bean hulls via HPLC and MS. Some unidentified anthocyanins were also detected in the black bean hulls but not in the other colored bean hulls. Kaempferol, but not astragalin, was shown to inhibit iron bioavailability. Treating in vitro bean digests with 40, 100, 200, 300, 400, 500, and 1000 microM kaempferol significantly inhibited iron bioavailability (e.g., 15.5% at 40 microM and 62.8% at 1000 microM) in a concentration-dependent fashion. Thus, seed coat kaempferol was identified as a potent inhibitory factor affecting iron bioavailability in the red and pinto beans studied. Results comparing the inhibitory effects of kaempferol, quercitrin, and astragalin on iron bioavailability suggest that the 3',4'-dihydroxy group on the B-ring in flavonoids contributes to the lower iron bioavailability.

  17. Rapid decolorization of textile wastewater by green synthesized iron nanoparticles.

    PubMed

    Ozkan, Z Y; Cakirgoz, M; Kaymak, E S; Erdim, E

    2018-01-01

    The effectiveness of green tea (Camellia sinensis) and pomegranate (Punica granatum) extracts for the production of iron nanoparticles and their application for color removal from a textile industry wastewater was investigated. Polyphenols in extracts act as reducing agents for iron ions in aqueous solutions, forming iron nanoparticles. Pomegranate extract was found to have almost a 10-fold higher polyphenolic content than the same amount of green tea extract on a mass basis. However, the size of the synthesized nanoparticles did not show a correlation with the polyphenolic content. 100 ppm and 300 ppm of iron nanoparticles were evaluated in terms of color removal efficiency from a real textile wastewater sample. 300 ppm of pomegranate nanoscale zero-valent iron particles showed more than 95% color removal and almost 80% dissolved organic carbon removal. The degradation mechanisms are is considered to be adsorption and precipitation to a major extent, and mineralization to a minor extent.

  18. A review of iron and cobalt porphyrins, phthalocyanines, and related complexes for electrochemical and photochemical reduction of carbon dioxide

    DOE PAGES

    Manbeck, Gerald F.; Fujita, Etsuko

    2015-03-30

    This review summarizes research on the electrochemical and photochemical reduction of CO₂ using a variety of iron and cobalt porphyrins, phthalocyanines, and related complexes. Metalloporphyrins and metallophthalocyanines are visible light absorbers with extremely large extinction coefficients. However, yields of photochemically-generated active catalysts for CO₂ reduction are typically low owing to the requirement of a second photoinduced electron. This requirement is not relevant to the case of electrochemical CO₂ reduction. Recent progress on efficient and stable electrochemical systems includes the use of FeTPP catalysts that have prepositioned phenyl OH groups in their second coordination spheres. This has led to remarkable progressmore » in carrying out coupled proton-electron transfer reactions for CO₂ reduction. Such ground-breaking research has to be continued in order to produce renewable fuels in an economically feasible manner.« less

  19. Preparation of the Iron Oxide Red from the Converter Dust by the Magnetic Separation and Roasting Process

    NASA Astrophysics Data System (ADS)

    Guo, Z. J.; Li, S. Q.; Yang, C. Q.

    2017-05-01

    Preparation of iron oxide red (α-Fe2O3) from the converter dust by the superconductivity high gradient magnetic separation (S-HGMS) and roasting process was investigated in the paper. The basic properties of the dust were studied by the X Ray Fluorescence, the chemical analysis and the X Ray Diffraction methods. The results showed that the raw dust mainly contained elements of Fe‵O‵Si‵Ca, the iron content of the raw dust was 61.80%, and there were ferrous phases of Fe3O4, α-Fe2O3, Fe2(SiO4) and CaFe(Si2O6) in the raw dust. Under the optimum conditions of magnetic field intensity of 1.8T, the dispersion agent of 30mg/L and velocity of 500mL/min, the powders absorbed by the magnetic medium mainly contained Fe3O4 and α-Fe2O3, and the iron content of powders absorbed was up to 65.90%. The Fe2+ content of the powders absorbed under the optimum magnetic conditions dropped to 0.25% from 19.10% after roasting of fifty minutes, and the iron content of powders absorbed under the optimum magnetic conditions fell to 64% due to oxidation, and the Fe3O4 was removed. Finally the α-Fe2O3 content was up to 91.07% in the iron oxide red.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vazehrad, S., E-mail: vazehrad@kth.se; Elfsberg, J., E-mail: jessica.elfsberg@scania.com; Diószegi, A., E-mail: attila.dioszegi@jth.hj.se

    An investigation on silicon segregation of lamellar, compacted and nodular graphite iron was carried out by applying a selective, immersion color etching and a modified electron microprobe to study the microstructure. The color etched micrographs of the investigated cast irons by revealing the austenite phase have provided data about the chronology and mechanism of microstructure formation. Moreover, electron microprobe has provided two dimensional segregation maps of silicon. A good agreement was found between the segregation profile of silicon in the color etched microstructure and the silicon maps achieved by electron microprobe analysis. However, quantitative silicon investigation was found to bemore » more accurate than color etching results to study the size of the eutectic colonies. - Highlights: • Sensitivity of a color etchant to silicon segregation is quantitatively demonstrated. • Si segregation measurement by EMPA approved the results achieved by color etching. • Color etched micrographs provided data about solidification mechanism in cast irons. • Austenite grain boundaries were identified by measuring the local Si concentration.« less

  1. Spectrophotometric determination of vanadium in rutile and in mafic igneous rocks

    USGS Publications Warehouse

    Marinenko, John; Mei, Leung

    1974-01-01

    Minor and major levels of vanadium in rutile are separated from titanium and iron by sample fusion with sodium carbonate followed by water leach and filtration. The filtrate is then acidified with hydrochloric acid. Silicates are decomposed with a mixture of hydrofluoric and hydrochloric acids, and iron is separated by extraction of its chloride with diethyl ether. Sample vanadium in hydrochloric acid is then quantitatively reduced to vanadium(IV) with sulfurous acid. The remaining sulfur dioxide is expelled by heating. Vanadium (IV) then is reacted with excess of iron(III) at reduced acidity (pH 5) in the presence of 1,10-phenanthroline to yield the orange-red iron(II) 1,10-phenanthroline complex. Iron(II) generated by vanadium(IV) is a measure of total vanadium in the sample. The proposed method is free from elemental interferences because the color development cannot take place without the two redox reactions described above, and these are, under the outlined experimental conditions, quantitative only for vanadium.

  2. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies.

    PubMed

    Vogel, Nicolas; Utech, Stefanie; England, Grant T; Shirman, Tanya; Phillips, Katherine R; Koay, Natalie; Burgess, Ian B; Kolle, Mathias; Weitz, David A; Aizenberg, Joanna

    2015-09-01

    Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal's curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies--potentially as more efficient mimics of structural color as it occurs in nature.

  3. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies

    PubMed Central

    Vogel, Nicolas; Utech, Stefanie; England, Grant T.; Shirman, Tanya; Phillips, Katherine R.; Koay, Natalie; Burgess, Ian B.; Kolle, Mathias; Weitz, David A.; Aizenberg, Joanna

    2015-01-01

    Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal’s curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies—potentially as more efficient mimics of structural color as it occurs in nature. PMID:26290583

  4. Photo-excitation of electrons in cytochrome c oxidase as a theory of the mechanism of the increase of ATP production in mitochondria by laser therapy

    NASA Astrophysics Data System (ADS)

    Zielke, Andrzej

    2014-02-01

    The hypothesis explains the molecular basis for restoring mitochondrial function by laser therapy. It also explains how laser therapy reverses both excessive oxidation (lack of NADH/FADH2) and excessive reduction (lack of O2) states of cytochrome c oxidase complex. It is proposed that photons interact with heme molecules of cytochrome c oxidase. A molecule of heme contains a porphyrin ring and an atom of iron in the center. The iron atom (Fe) can switch oxidation states back and forth between ferrous (Fe2+) and ferric (Fe3+) by accepting or releasing an electron. The porphyrin ring is a complex aromatic molecule that has 26 pi electrons which are "delocalized", spinning in the carbon rings creating a resonating electromagnetic cloud. Photons with similar wavelengths are absorbed by the cloud increasing its energy. The energy is then passed on to the centrally located atom of iron existing in a reduced state (Fe2+). The electrons on the orbits of the iron atom accept this electromagnetic energy, and change orbitals to a higher energetic level. If the energy is sufficient, electrons leave the atom entirely. If this occurs, Fe2+ become oxidized to Fe3+ releasing electrons, thus restoring electron flow and the production of ATP. At the same time, electrons freed from complex IV may have sufficient energy to be picked by NAD+/FADH and re-enter the chain at the complex I or II amplifying the flow of electrons.

  5. The Optical Janus Effect: Asymmetric Structural Color Reflection Materials.

    PubMed

    England, Grant T; Russell, Calvin; Shirman, Elijah; Kay, Theresa; Vogel, Nicolas; Aizenberg, Joanna

    2017-08-01

    Structurally colored materials are often used for their resistance to photobleaching and their complex viewing-direction-dependent optical properties. Frequently, absorption has been added to these types of materials in order to improve the color saturation by mitigating the effects of nonspecific scattering that is present in most samples due to imperfect manufacturing procedures. The combination of absorbing elements and structural coloration often yields emergent optical properties. Here, a new hybrid architecture is introduced that leads to an interesting, highly directional optical effect. By localizing absorption in a thin layer within a transparent, structurally colored multilayer material, an optical Janus effect is created, wherein the observed reflected color is different on one side of the sample than on the other. A systematic characterization of the optical properties of these structures as a function of their geometry and composition is performed. The experimental studies are coupled with a theoretical analysis that enables a precise, rational design of various optical Janus structures with highly controlled color, pattern, and fabrication approaches. These asymmetrically colored materials will open applications in art, architecture, semitransparent solar cells, and security features in anticounterfeiting materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Green Clay Minerals

    NASA Astrophysics Data System (ADS)

    Velde, B.

    2003-12-01

    Color is a problem for scientific study. One aspect is the vocabulary one used to describe color. Mint green, bottle green, and Kelly green are nice names but not of great utility in that people's physical perception of color is not always the same. In some industries, such as colored fabric manufacture, current use is to send a set of standard colors which are matched by the producer. This is similar to the use of the Munsell color charts in geology. None of these processes makes use of physical optical spectral studies. The reason is that they are difficult to obtain and interpret. For a geologist, color is very important but we rarely have the possibility to standardize the method of our color perception. One reason is that color is both a reflective and transmission phenomenon. The thickness of the sample is critical to any transmission characteristics. Hence, a field color determination is different from one made by using a petrographic microscope. Green glauconite in a hand specimen is not the same color in 30 μm thick thin section seen with a microscope using transmitted light.A second problem is that color in a spectral identification is the result of several absorption emissions,with overlapping signal, forming a complicated spectrum. Interpretation depends very greatly on the spectrum of the light source and the conditions of transmission-reflection of the sample. As a result, for this text, we will not attempt to analyze the physical aspect of green in green clays. In the discussion which follows, reference is made concerning color, to thin section microscopic perception.Very briefly, green clay minerals are green, because they contain iron. This is perhaps not a great revelation to mineralogists, but it is the key to understanding the origin and stability of green clay minerals. In fact, iron can color minerals either red or green or in various shades of orange and brown. The color most likely depends upon the relative abundance of the iron ion valence in the silicate (clay mineral in our case) structure, the specific bonding of these ions, and other factors. In fact, the reasons for coloration are not known completely, but it is certain that a combination of Fe2+ and Fe3+ ions is necessary to give a nice green color to clays. In the green clay minerals discussed here, the colors vary greatly as seen under the optical microscope (not always the same as the one seen in hand specimen). Yellow to blue-green hues can be found. However, for the moment, no clear relation between iron content, iron valence ratio, or other factors such as minor transition element concentrations can be found to explain the greenness of green clay minerals. The fact that a clay is green just indicates a combination of the two oxidation states of iron. The color, however, indicates the key to the formation in nature of green clay minerals.Green clay minerals are in general the product of "mixed valence" conditions of formation, most often in a situation where some iron is reduced from Fe3+ and enters into a silicate mineral structure. In general, iron would rather be an oxide when it is in the trivalent state. The moment iron is reduced to a divalent state under surface or near-surface conditions, it looks for a silicate, sulfide, or carbonate to hide in. The reverse is also true, of course. When a silicate is oxidized, Fe2+ becoming Fe3+, the iron begins to group together in oxide clumps and eventually exits the silicate structure. This is seen in thin section in altered rocks (weathering or hydrothermal action). The production of trivalent, oxidized iron usually results in a brownish or orange mineral.If the geology of the formation of green silicate minerals is relatively well defined, especially at near surface or surface conditions, the question remains how much of the iron is in a reduced oxidation state and how? In the case of reduction of iron in surface environments: if most of the iron goes to Fe2+, one mineral is formed; if only part of it is reduced, another is formed. This is the fundamental geochemical aspect of the genesis of green clay minerals; they contain iron in both oxidation states.Unfortunately modern methods of mineral analysis on a microscopic scale, electron microbeam and others, do not allow the determination of the different oxidation states of iron especially for nonstoichiometric minerals. One can use Mössbauer spectral analysis, but the scales of observations are not the same (Mössbauer needing more material); one method used for observations on a microscale, the other on a macroscale. Given the problems of micro- and macroscale observations, oxidation state information is almost excluded from data gathered since the 1980s or so, and hence information concerning the relations of iron reduction and clay genesis must be taken from older studies. A second, much greater problem is that little X-ray diffraction (XRD) work is done on samples which are analyzed chemically by electron microbeam studies. In the past both types of information, structural and chemical, were available for the same sample. Hence not only do we have no precise chemical data for many samples (oxidation state of iron), but there is a rarity of mineral structural information to go along with the incomplete chemistry. This is critical for the study of clay minerals, because slight chemical changes in a clay mineral are frequently accompanied by changes in its structure, especially when one deals with interstratified clay minerals (mica/smectites for example). In fact, the tendency to obtain more and more precision (analysis of a smaller and smaller sized sample) has led to a total loss of mineralogical data. The Heisenberg principle is unwittingly verified by geologists. We know more about a small part of a sample, but we know less about its whole. As a result, the following discussion is based largely upon old data, those which combine iron oxidation states and XRD information.

  7. Fluoromodule-based reporter/probes designed for in vivo fluorescence imaging

    PubMed Central

    Zhang, Ming; Chakraborty, Subhasish K.; Sampath, Padma; Rojas, Juan J.; Hou, Weizhou; Saurabh, Saumya; Thorne, Steve H.; Bruchez, Marcel P.; Waggoner, Alan S.

    2015-01-01

    Optical imaging of whole, living animals has proven to be a powerful tool in multiple areas of preclinical research and has allowed noninvasive monitoring of immune responses, tumor and pathogen growth, and treatment responses in longitudinal studies. However, fluorescence-based studies in animals are challenging because tissue absorbs and autofluoresces strongly in the visible light spectrum. These optical properties drive development and use of fluorescent labels that absorb and emit at longer wavelengths. Here, we present a far-red absorbing fluoromodule–based reporter/probe system and show that this system can be used for imaging in living mice. The probe we developed is a fluorogenic dye called SC1 that is dark in solution but highly fluorescent when bound to its cognate reporter, Mars1. The reporter/probe complex, or fluoromodule, produced peak emission near 730 nm. Mars1 was able to bind a variety of structurally similar probes that differ in color and membrane permeability. We demonstrated that a tool kit of multiple probes can be used to label extracellular and intracellular reporter–tagged receptor pools with 2 colors. Imaging studies may benefit from this far-red excited reporter/probe system, which features tight coupling between probe fluorescence and reporter binding and offers the option of using an expandable family of fluorogenic probes with a single reporter gene. PMID:26348895

  8. The Diverse Surface Compositions of the Galilean Satellites

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.

    2002-01-01

    The galilean satellites represent a diverse collection, ranging from the volcanic moon Io, with a surface that is changing yearly, to Callisto, with a dark, ancient surface overlying ice. The composition of these surfaces are also quite different due to a variety of processes and influences, including tidal heating, radiolysis, gardening, a magnetic field (Ganymede), and meteoritic infall. Io's surface contains large quantities of sulfur dioxide (SO2) and colorful sulfur allotropes, both originating in plumes and flows from the tidally driven volcanoes. A broad, 1-micron band is found at high latitudes and may be due to absorption by long-chain sulfur polymers produced by SO2 radiolysis, although iron and iron sulfide compounds are candidates. An unidentified 3.15 micron absorber is equatorially distributed while a 4.62 micron band, perhaps due to a sulfate compound, exhibits a non-uniform distribution. Hot spots are generally dark, and some exhibit negative reflectance slopes (i.e., blue). The composition of these lavas has not been established spectroscopically, but the high temperatures of some volcanoes suggest ultramafic silicates or perhaps more refractory material such as oxides.

  9. Hibonite: Crystal Chemistry and Origin of Blue Coloration in Meteoritic Assemblages

    NASA Technical Reports Server (NTRS)

    Burns, R. G.; Burns, V. M.

    1985-01-01

    The blue color and optical spectra of hibonite, a common constituent of refractory inclusions in carbonaceous chondrites, are discussed. Because they may be manifestations of exotic cation species stabilized in unusual coordination sites in the hibonite crystalstructure. Hibonite, ideally CaAl12O19, is conducive to atomic substitution of host Ca2+ and Al3+ ions by a variety of lanthanide and first series transition elements. The latter cations are responsible for the colors of many rock-forming minerals as a result of intraelectronic or intervalence transitions. The visible-region spectra of most oxide and silicate minerals are generally well understood. Assignments of absorption bands in meteoritic hibonite optical spectra due to uncertainties of cation valencies and complexities in the crystal structure are examined. The crystal chemistry of hibonite is reviewed, Mossbauer spectral measurements of iron-bearing hibonite and electronic transitions that may be responsible for the blue coloration of meteoritic hibonites are discussed.

  10. [Spectroscopic studies on transition metal ions in colored diamonds].

    PubMed

    Meng, Yu-Fei; Peng, Ming-Sheng

    2004-07-01

    Transition metals like nickel, cobalt and iron have been often used as solvent catalysts in high pressure high temperature (HPHT) synthesis of diamond, and nickel and cobalt ions have been found in diamond lattice. Available studies indicated that nickel and cobalt ions could enter the lattice as interstitial or substitutional impurities and form complexes with nitrogen. Polarized microscopy, SEM-EDS, EPR, PL and FTIR have been used in this study to investigate six fancy color natural and synthetic diamonds in order to determine the spectroscopic characteristics and the existing forms of transition metal ions in colored diamond lattice. Cobalt-related optical centers were first found in natural chameleon diamonds, and some new nickel and cobalt-related optical and EPR centers have also been detected in these diamond samples.

  11. Study on Coloration Mechanism of Chinese Ancient Ceramics by X-ray Absorption Near-edge Structure

    NASA Astrophysics Data System (ADS)

    Peng, Y. H.; Xie, Z.; He, J. F.; Liu, Q. H.; Pan, Z. Y.; Cheng, W. R.; Wei, S. Q.

    2013-04-01

    The Fe K-edge X-ray absorption near-edge structure (XANES) spectra of a series of ceramic shards were measured by fluorescence mode to reveal the color-generating techniques of Chinese porcelain. The analysis disclosed relationships among the chemical form of the iron, the firing conditions and the colors of the ceramics. The results indicate that the coloration for different ceramics depend on the valence states of iron as the main color element in glaze and the proportion of Fe2+ and Fe3+ was attributed to the baking technology. The findings provide important information for archaeologist on the coloration researches.

  12. Oxone/Fe[superscript 2+] Degradation of Food Dyes: Demonstration of Catalyst-Like Behavior and Kinetic Separation of Color

    ERIC Educational Resources Information Center

    Nalliah, Ruth E.

    2015-01-01

    A demonstration of the degradation of food coloring dyes by oxidation via the Fenton reaction can be substituted with a simpler demonstration using the oxidant oxone with iron(II) ions as an activator. The addition of small amounts of solid oxone and iron(II) sulfate to solutions containing mixtures of food coloring results in successive…

  13. Model of radiation transmittance by inorganic fouling on UV reactor lamp sleeves.

    PubMed

    Wait, Isaac W; Blatchley, Ernest R

    2010-11-01

    The efficacy of UV disinfection of water depends on the ability of radiation to pass from UV lamps through the quartz sleeves that encase them; the accumulation of metal-containing foulants on sleeve surfaces inhibits disinfection by absorbing radiation that would otherwise be available for inactivation. In a series of experiments, the composition and quantity of sleeve foulants were studied relative to water chemistry and sleeve transmittance. Findings indicate that iron and calcium dominate fouling, with elevated fouling activity by iron, aluminum, manganese, and zinc. A regression-based modeling approach was used to characterize and quantify the effects of foulant metals on UV absorbance. The molar extinction coefficient for iron was found to be more than 3 times greater than that of calcium. Iron's relatively high activity in fouling reactions, elevated capacity to absorb UV, and reduced solubility under oxidizing conditions makes it a fouling precursor of particular concern, with respect to potential for sleeve fouling in UV reactors.

  14. Dielectric-based subwavelength metallic meanders for wide-angle band absorbers.

    PubMed

    Shen, Su; Qiao, Wen; Ye, Yan; Zhou, Yun; Chen, Linsen

    2015-01-26

    We propose nano-meanders that can achieve wide-angle band absorption in visible regime. The nano-meander consists of a subwavelength dielectric grating covered by continuous ultra-thin Aluminum film (less than one tenth of the incident wavelength). The excited photonic resonant modes, such as cavity mode, surface plasmonic mode and Rayleigh-Wood anomaly, are discussed in detail. Nearly total resonant absorption due to funneling mechanism in the air nano-groove is almost invariant with large incident angle in transverse magnetic polarization. From both the structural geometry and the nanofabrication point of view, the light absorber has a very simple geometrical structure and it is easy to be integrated into complex photonic devices. The highly efficient angle-robust light absorber can be potential candidate for a range of passive and active photonic applications, including solar-energy harvesting as well as producing artificial colors on a large scale substrate.

  15. Effects of various iron fortificants on sensory acceptability and shelf-life stability of instant noodles.

    PubMed

    Kongkachuichai, Ratchanee; Kounhawej, Arunwadee; Chavasit, Visith; Charoensiri, Rin

    2007-06-01

    Iron-deficiency anemia is the most common nutritional problem in Thailand and many developing countries. One of the most sustainable and cost-effective strategies for combating iron deficiency is fortification of staple foods with iron. In this study, the feasibility of fortifying instant noodles with different forms of iron fortificants (ferrous sulfate [FS], ferric sodium ethylenediaminetetraacetic acid [NaFeEDTA], and encapsulated H-reduced elemental iron [EEI] was evaluated, and the fortified noodles were compared with unfortified noodles for changes in physical, chemical, and sensory qualities. Wheat flour used to make instant noodles was fortified to produce a concentration of 5 mg of iron per 50-g serving of instant noodles (one-third of the Thai recommended dietary intake). Analytical data showed that the iron contents were close to 5 mg per serving of noodles fortified with FS, NaFeEDTA, or EEI (5.27 +/- 0.10, 4.27 +/- 0.07, and 5.26 +/- 0.47 mg, respectively). The color quality (measured by L*, lightness, and b* yellowness) of the raw dough sheet and of uncooked and cooked instant noodles fortified with FS was lower than that of the unfortified, but color quality was not changed by the addition of NaFeEDTA. The overall sensory acceptability scores of unfortified and fortified noodles were about 6 ("like slightly"). No metallic odor was observed. During 3 months of storage at room temperature, the iron fortificants did not affect the peroxide level, color, or sensory qualities of the product. Iron fortification of wheat flour used to make instant noodles is feasible. NaFeEDTA is the preferred fortificant because of its nonsignificant effect on the color and sensory quality of the products.

  16. Enhancement mechanism of the additional absorbent on the absorption of the absorbing composite using a type-based mixing rule

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Yuan, Liming; Zhang, Deyuan

    2016-04-01

    A silicone rubber composite filled with carbonyl iron particles and four different carbonous materials (carbon black, graphite, carbon fiber or multi-walled carbon nanotubes) was prepared using a two-roller mixture. The complex permittivity and permeability were measured using a vector network analyzer at the frequency of 2-18 GHz. Then a type-based mixing rule based on the dielectric absorbent and magnetic absorbent was proposed to reveal the enhancing mechanism on the permittivity and permeability. The enforcement effect lies in the decreased percolation threshold and the changing pending parameter as the carbonous materials were added. The reflection loss (RL) result showed the added carbonous materials enhanced the absorption in the lower frequency range, the RL decrement value being about 2 dB at 4-5 GHz with a thickness of 1 mm. All the added carbonous materials reinforced the shielding effectiveness (SE) of the composites. The maximum increment value of the SE was about 3.23 dB at 0.5 mm and 4.65 dB at 1 mm, respectively. The added carbonous materials could be effective additives for enforcing the absorption and shielding property of the absorbers.

  17. Staining intraoperative topical solutions with fluorescein: enhancing the safety of sinus surgery.

    PubMed

    Yao, William C; Regone, Rachel M; Takashima, Masayoshi

    2015-09-01

    Oxymetazoline HCl 0.05%, 1:100,000 lidocaine with epinephrine (lido+epi), and 1:1000 epinephrine are all colorless solutions employed in sinus surgery. Because lido+epi is injected whereas others are not, care must be taken to label all solutions to avoid inadvertent injection of oxymetazoline or concentrated epinephrine because of life-threatening complications. Dyes have been used to color solutions for visual identification, but efficacy and cost have never been compared. We sought to determine the effectiveness of surgical marking pen (gentian violet) and fluorescein strips as coloring agents in mediums commonly used in sinus surgery. In this specialty techniques study, 4 liquid mediums (normal saline [NS], 0.05% oxymetazoline, 1:1,000 epinephrine, and lido+epi) and 2 coloring agents (fluorescein strip and surgical marking pen) were combined separately. Photos and absorbance of each solution were obtained at 15-minute intervals over 2 hours using a spectrophotometer. Peak absorbance remained stable for all solutions with fluorescein. Absorbance also remained constant for NS (0.37 absorbance units [AU] → 0.37 AU) and oxymetazoline (2.8 AU → 2.8 AU) mixed with marking pen. Absorbance decreased over 2 hours when marking pen was mixed with 1:1000 epinephrine (0.82 AU → 0.32 AU) and lido+epi (1.19 AU → 0.33 AU). Furthermore, the majority of color visibility and absorbance decreased in the first 15 minutes for concentrated epinephrine (0.82 → 0.33) and lido+epi (1.19 → 0.51). Cost of fluorescein strips ($0.14 to $0.20/strip) was less than marking pens ($13 to 46/pen). Compared to marking pen dye, solutions dyed with fluorescein retained their color and did not decay over time. We recommend fluorescein strips to label colorless materials in the operating room because of their lack of color decay and cost advantages. © 2015 ARS-AAOA, LLC.

  18. Mineral resource of the month: manganese

    USGS Publications Warehouse

    Corathers, Lisa A.

    2012-01-01

    Manganese is a silver-colored metal resembling iron and often found in conjunction with iron. The earliest-known human use of manganese compounds was in the Stone Age, when early humans used manganese dioxide as pigments in cave paintings. In ancient Rome and Egypt, people started using it to color or remove the color from glass - a practice that continued to modern times. Today, manganese is predominantly used in metallurgical applications as an alloying addition, particularly in steel and cast iron production. Steel and cast iron together provide the largest market for manganese (historically 85 to 90 percent), but it is also alloyed with nonferrous metals such as aluminum and copper. Its importance to steel cannot be overstated, as almost all types of steel contain manganese and could not exist without it.

  19. Two-color infrared detector

    DOEpatents

    Klem, John F; Kim, Jin K

    2014-05-13

    A two-color detector includes a first absorber layer. The first absorber layer exhibits a first valence band energy characterized by a first valence band energy function. A barrier layer adjoins the first absorber layer at a first interface. The barrier layer exhibits a second valence band energy characterized by a second valence band energy function. The barrier layer also adjoins a second absorber layer at a second interface. The second absorber layer exhibits a third valence band energy characterized by a third valence band energy function. The first and second valence band energy functions are substantially functionally or physically continuous at the first interface and the second and third valence band energy functions are substantially functionally or physically continuous at the second interface.

  20. Shedding Light on Bird Egg Color: Pigment as Parasol and the Dark Car Effect.

    PubMed

    Lahti, David C; Ardia, Daniel R

    2016-05-01

    The vibrant colors of many birds' eggs, particularly those that are blue to blue-green, are extraordinary in that they are striking traits present in hundreds of species that have nevertheless eluded evolutionary functional explanation. We propose that egg pigmentation mediates a trade-off between two routes by which solar radiation can harm bird embryos: transmittance through the eggshell and overheating through absorbance. We quantitatively test four components of this hypothesis on variably colored eggs of the village weaverbird (Ploceus cucullatus) in a controlled light environment: (1) damaging ultraviolet radiation can transmit through bird eggshells, (2) infrared radiation at natural intensities can heat the interior of eggs, (3) more intense egg coloration decreases light transmittance ("pigment as parasol"), and (4) more intense egg coloration increases absorbance of light by the eggshell and heats the egg interior ("dark car effect"). Results support all of these predictions. Thus, in sunlit nesting environments, less pigmentation will increase the detrimental effect of transmittance, but more pigmentation will increase the detrimental effect of absorbance. The optimal pigmentation level for a bird egg in a given light environment, all other things being equal, will depend on the balance between light transmittance and absorbance in relation to embryo fitness.

  1. Synthesis, characterization and investigation of electrochemical and spectroelectrochemical properties of non-peripherally tetra-5-methyl-1,3,4-thiadiazole substituted copper(II) iron(II) and oxo-titanium (IV) phthalocyanines

    NASA Astrophysics Data System (ADS)

    Demirbaş, Ümit; Akyüz, Duygu; Akçay, Hakkı Türker; Barut, Burak; Koca, Atıf; Kantekin, Halit

    2017-09-01

    In this study novel substituted phthalonitrile (3) and non-peripherally tetra 5-Methyl-1,3,4-thiadiazole substituted copper(II) (4), iron(II) (5) and oxo-titanium (IV) (6) phthalocyanines were synthesized. These novel compounds were fully characterized by FT-IR, 1H NMR, UV-vis and MALDI-TOF mass spectroscopic techniques. Voltammetric and in situ spectroelectrochemical measurements were performed for metallo-phthalocyanines (4-6). TiIVOPc and FeIIPc showed metal-based and ligand-based electron transfer reactions while CuIIPc shows only ligand-based electron transfer reaction. Voltammetric measurements indicated that the complexes have reversible, diffusion controlled and one-electron redox reactions. The assignments of the redox processes and color of the electrogenerated species of the complexes were determined with in-situ spectroelectrochemical and electrocolorimetric measurements. These measurements showed that the complexes can be used as the electrochromic materials for various display technologies.

  2. Optical property measurements of a novel type of upconverting reporter

    NASA Astrophysics Data System (ADS)

    Xiao, Xudong; Herring, Michael E.; Haushalter, Jeanne; Lee, Seonkyung; Kalogerakis, Kostas S.; Faris, Gregory W.

    2003-07-01

    We have recently developed a new type of reporter (upconverting chelate) for biomedical diagnostics. For this reporter, the light is absorbed and emitted by a lanthanide ion, rather than an organic molecule, as is the case for a typical fluorescent dye. These materials do not photobleach and have no autofluorescent background. We focus in this paper on neodymium ions complexed with the familiar chelating agents, EDTA, DPA, DTPA and DOTA. We have performed experimental measurements with one- and two-color laser light excitation for different chelate compounds. The samples are excited using two Nd:YAG-pumped dye laser systems that provide laser light near 587 nm and 800 nm. For one-color excitation, the emitted light depends quadratically on the incident laser power, as expected. Three strongly emitting lines are observed, located near 360 nm, 387 nm, and 417 nm. We observed more efficient upconversion in EDTA although the DPA chelates show comparable ground state absorbance. We have studied the influence of temporal delay between the two laser pulses and obtained the decay lifetime of the first intermediate state in the various chelated compounds.

  3. [Recommended diet for reflux spectrophotometry].

    PubMed

    Felix, Valter Nilton; Viebig, Ricardo Guilherme

    2003-01-01

    The spectrophotometric probe, which uses bilirubin as a marker for the detection of duodenoesophagic reflux is subject to interference from strongly colored foods, which can cause erroneously high bilirubin absorbance readings. To overcome this problem it is necessary to ingest a diet that is free from such substances. To test the absorbance of 48 different food substances in an in vitro environment. Dry foods were blended with water or milk and non-dry solid foods were blended undiluted. It was utilized the proper calibration recipient to test them. The absorbance of weakly colored foods was usually lesser than the commonly accepted threshold of 0.14, and the absorbance of strongly colored foods was usually above this. Thirty-two from the 48 substances tested are suitable when the absorbance threshold is set at 0.14, but scrambled eggs, lacteous flour mush, green beans, beetroot, carrot, chayote, squash, "baroa" potato, boiled corn, orange, cashew, purple grape, avocado, mango, papaya and peach can alter the results and must be avoided. From the foods evaluated, enough are suitable at the 0.14 threshold to enable a suitable diet to be constructed for most patients during Bilitec studies.

  4. Improving titer while maintaining quality of final formulated drug substance via optimization of CHO cell culture conditions in low-iron chemically defined media.

    PubMed

    Xu, Jianlin; Rehmann, Matthew S; Xu, Xuankuo; Huang, Chao; Tian, Jun; Qian, Nan-Xin; Li, Zheng Jian

    2018-04-01

    During biopharmaceutical process development, it is important to improve titer to reduce drug manufacturing costs and to deliver comparable quality attributes of therapeutic proteins, which helps to ensure patient safety and efficacy. We previously reported that relative high-iron concentrations in media increased titer, but caused unacceptable coloration of a fusion protein during early-phase process development. Ultimately, the fusion protein with acceptable color was manufactured using low-iron media, but the titer decreased significantly in the low-iron process. Here, long-term passaging in low-iron media is shown to significantly improve titer while maintaining acceptable coloration during late-phase process development. However, the long-term passaging also caused a change in the protein charge variant profile by significantly increasing basic variants. Thus, we systematically studied the effect of media components, seed culture conditions, and downstream processing on productivity and quality attributes. We found that removing β-glycerol phosphate (BGP) from basal media reduced basic variants without affecting titer. Our goals for late-phase process development, improving titer and matching quality attributes to the early-phase process, were thus achieved by prolonging seed culture age and removing BGP. This process was also successfully scaled up in 500-L bioreactors. In addition, we demonstrated that higher concentrations of reactive oxygen species were present in the high-iron Chinese hamster ovary cell cultures compared to that in the low-iron cultures, suggesting a possible mechanism for the drug substance coloration caused by high-iron media. Finally, hypotheses for the mechanisms of titer improvement by both high-iron and long-term culture are discussed.

  5. Vapochromic ionic liquids from metal-chelate complexes exhibiting reversible changes in color, thermal, and magnetic properties.

    PubMed

    Funasako, Yusuke; Mochida, Tomoyuki; Takahashi, Kazuyuki; Sakurai, Toshihiro; Ohta, Hitoshi

    2012-09-17

    Vapor- and gas-responsive ionic liquids (ILs) comprised of cationic metal-chelate complexes and bis(trifluoromethanesulfonyl)imide (Tf(2)N) have been prepared, namely, [Cu(acac)(BuMe(3)en)][Tf(2)N] (1 a), [Cu(Bu-acac)(BuMe(3)en)][Tf(2)N] (1 b), [Cu(C(12)-acac)(Me(4)en)][Tf(2)N] (1 c), [Cu(acac)(Me(4)en)][Tf(2)N] (1 d), and [Ni(acac)(BuMe(3)en)][Tf(2)N] (2 a) (acac = acetylacetonate, Bu-acac = 3-butyl-2,4-pentanedionate, C(12)-acac = 3-dodecyl-2,4-pentanedionate, BuMe(3)en = N-butyl-N,N',N'-tetramethylethylenediamine, and Me(4)en = N,N,N',N'-trimethylethylenediamine). These ILs exhibited reversible changes in color, thermal properties, and magnetic properties in response to organic vapors and gases. The Cu(II)-containing ILs are purple and turn blue-purple to green when exposed to organic vapors, such as acetonitrile, methanol, and DMSO, or ammonia gas. The color change is based on the coordination of the vapor molecules to the cation, and the resultant colors depend on the coordination strength (donor number, DN) of the vapor molecules. The vapor absorption caused changes in the melting points and viscosities, leading to alteration in the phase behaviors. The IL with a long alkyl chain (1 d) transitioned from a purple solid to a brown liquid at its melting point. The Ni(II)-containing IL (2 a) is a dark red diamagnetic liquid, which turned into a green paramagnetic liquid by absorbing vapors with high DN. Based on the equilibrium shift from four- to six-coordinated species, the liquid exhibited thermochromism and temperature-dependent magnetic susceptibility after absorbing methanol. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. TIDBIT: portable diagnostics of multiplexed nutrition deficiencies: iron, vitamin A and inflammation status (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lu, Zhengda; Erickson, David

    2017-03-01

    Vitamin A and iron deficiency are common malnutrition affecting billions of people worldwide. However, in infrastructure limited settings, access to blood vitamin A and iron status test is limited because of the complexity and cost of traditional diagnostic methods. Direct measurements of vitamin A and iron level is not easy to perform, and it is necessary to measure approximate marker for obtaining vitamin A and iron deficiency status. Measurement of inflammatory marker is also necessary because the vitamin A and iron level are altered by inflammation status. Here we introduced a multiplex rapid point-of-care (POC) diagnostic devices that simultaneously characterize three markers relevant to vitamin A, iron and inflammation status: retinol binding protein 4, ferritin and C-reactive protein with lateral flow immunoassay test strips. Level of retinol binding protein 4, ferritin and C-reactive protein are indicated by excitation intensity of fluorescence tags with three different colors. The test can be done within 15 minutes and a complete sample-answer quantitative results of vitamin A, iron and inflammation status level can be obtained with assists of a smartphone and an external device. We also demonstrated the device is able to perform colorimetric analysis on single test area. which gives the device potential to perform more tests simultaneously at the same time.

  7. 75 FR 17939 - EMD Chemicals, Inc.; Withdrawal of Color Additive Petition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... of composite pigments prepared from synthetic iron oxide, mica, and titanium dioxide to color food... further review of the petition, the agency determined that these pigments are composite pigments, not... regulations to provide for the safe use of composite pigments prepared from combinations of synthetic iron...

  8. Colored ultrathin hybrid photovoltaics with high quantum efficiency

    DOE PAGES

    Lee, Kyu -Tae; Lee, Jae Yong; Seo, Sungyong; ...

    2014-10-24

    Most current solar panels are fabricated via complex processes using expensive semiconductor materials, and they are rigid and heavy with a dull, black appearance. As a result of their non-aesthetic appearance and weight, they are primarily installed on rooftops to minimize their negative impact on building appearance. The large surfaces and interiors of modern buildings are not efficiently utilized for potential electric power generation. Here, we introduce dual-function solar cells based on ultrathin dopant-free amorphous silicon embedded in an optical cavity that not only efficiently extract the photogenerated carriers but also display distinctive colors with the desired angle-insensitive appearances. Light-energy-harvestingmore » colored signage is demonstrated. Furthermore, a cascaded photovoltaics scheme based on tunable spectrum splitting can be employed to increase power efficiency by absorbing a broader band of light energy. Furthermore, this study pioneers a new approach to architecturally compatible and decorative thin-film photovoltaics.« less

  9. Colored ultrathin hybrid photovoltaics with high quantum efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyu -Tae; Lee, Jae Yong; Seo, Sungyong

    Most current solar panels are fabricated via complex processes using expensive semiconductor materials, and they are rigid and heavy with a dull, black appearance. As a result of their non-aesthetic appearance and weight, they are primarily installed on rooftops to minimize their negative impact on building appearance. The large surfaces and interiors of modern buildings are not efficiently utilized for potential electric power generation. Here, we introduce dual-function solar cells based on ultrathin dopant-free amorphous silicon embedded in an optical cavity that not only efficiently extract the photogenerated carriers but also display distinctive colors with the desired angle-insensitive appearances. Light-energy-harvestingmore » colored signage is demonstrated. Furthermore, a cascaded photovoltaics scheme based on tunable spectrum splitting can be employed to increase power efficiency by absorbing a broader band of light energy. Furthermore, this study pioneers a new approach to architecturally compatible and decorative thin-film photovoltaics.« less

  10. Microwave absorbing properties and enhanced infrared reflectance of Fe/Cu composites prepared by chemical plating

    NASA Astrophysics Data System (ADS)

    Li, Xiaoguang; Ji, Guangbin; Lv, Hualiang; Wang, Min; Du, Youwei

    2014-04-01

    Fe/Cu composite samples with Cu particles depositing on carbonyl iron sheets were prepared by chemical plating. Cu additions were uniformly distributed on the grain boundaries of the flaky carbonyl iron while keeping the internal structure of iron. Meanwhile, we found that the chemical plating time made a key point on both the microwave absorbing properties and infrared emissivity. With the growth of chemical plating time, the value of reflection loss gives a linear decrease and the infrared emissivity is reduced with a tendency of index reduction. When the plating time is less than 30 min, the reflection loss of the samples maintains above -20 GHz, moreover, prolonging the plating time more than 30 min, the infrared emissivity of the samples is reduced to 0.50 or less. It can be concluded that both the microwave absorbing and infrared properties are excellent at the optimal plating time of 30 min.

  11. Current understanding of iron homeostasis.

    PubMed

    Anderson, Gregory J; Frazer, David M

    2017-12-01

    Iron is an essential trace element, but it is also toxic in excess, and thus mammals have developed elegant mechanisms for keeping both cellular and whole-body iron concentrations within the optimal physiologic range. In the diet, iron is either sequestered within heme or in various nonheme forms. Although the absorption of heme iron is poorly understood, nonheme iron is transported across the apical membrane of the intestinal enterocyte by divalent metal-ion transporter 1 (DMT1) and is exported into the circulation via ferroportin 1 (FPN1). Newly absorbed iron binds to plasma transferrin and is distributed around the body to sites of utilization with the erythroid marrow having particularly high iron requirements. Iron-loaded transferrin binds to transferrin receptor 1 on the surface of most body cells, and after endocytosis of the complex, iron enters the cytoplasm via DMT1 in the endosomal membrane. This iron can be used for metabolic functions, stored within cytosolic ferritin, or exported from the cell via FPN1. Cellular iron concentrations are modulated by the iron regulatory proteins (IRPs) IRP1 and IRP2. At the whole-body level, dietary iron absorption and iron export from the tissues into the plasma are regulated by the liver-derived peptide hepcidin. When tissue iron demands are high, hepcidin concentrations are low and vice versa. Too little or too much iron can have important clinical consequences. Most iron deficiency reflects an inadequate supply of iron in the diet, whereas iron excess is usually associated with hereditary disorders. These disorders include various forms of hemochromatosis, which are characterized by inadequate hepcidin production and, thus, increased dietary iron intake, and iron-loading anemias whereby both increased iron absorption and transfusion therapy contribute to the iron overload. Despite major recent advances, much remains to be learned about iron physiology and pathophysiology. © 2017 American Society for Nutrition.

  12. Incorporation of Mg and Ca into nanostructured Fe2O3 improves Fe solubility in dilute acid and sensory characteristics in foods.

    PubMed

    Hilty, Florentine M; Knijnenburg, Jesper T N; Teleki, Alexandra; Krumeich, Frank; Hurrell, Richard F; Pratsinis, Sotiris E; Zimmermann, Michael B

    2011-01-01

    Iron deficiency is one of the most common micronutrient deficiencies worldwide. Food fortification can be an effective and sustainable strategy to reduce Fe deficiency but selection of iron fortificants remains a challenge. Water-soluble compounds, for example, FeSO(4), usually demonstrate high bioavailability but they often cause unacceptable sensory changes in foods. On the other hand, poorly acid-soluble Fe compounds, for example FePO(4), may cause fewer adverse sensory changes in foods but are usually not well bioavailable since they need to be dissolved in the stomach prior to absorption. The solubility and the bioavailability of poorly acid-soluble Fe compounds can be improved by decreasing their primary particle size and thereby increasing their specific surface area. Here, Fe oxide-based nanostructured compounds with added Mg or Ca were produced by scalable flame aerosol technology. The compounds were characterized by nitrogen adsorption, X-ray diffraction, transmission electron microscopy, and Fe solubility in dilute acid. Sensory properties of the Fe-based compounds were tested in 2 highly reactive, polyphenol-rich food matrices: chocolate milk and fruit yoghurt. The Fe solubility of nanostructured Fe(2)O(3) doped with Mg or Ca was higher than that of pure Fe(2)O(3). Since good solubility in dilute acid was obtained despite the inhomogeneity of the powders, inexpensive precursors, for example Fe- and Ca-nitrates, can be used for their manufacture. Adding Mg or Ca lightened powder color, while sensory changes when added to foods were less pronounced than for FeSO(4). The combination of high Fe solubility and low reactivity in foods makes these flame-made nanostructured compounds promising for food fortification. Practical Application: The nanostructured iron-containing compounds presented here may prove useful for iron fortification of certain foods; they are highly soluble in dilute acid and likely to be well absorbed in the gut but cause less severe color changes than FeSO(4) when added to difficult-to-fortify foods.

  13. Direct Method for Continuous Determination of Iron Oxidation by Autotrophic Bacteria

    PubMed Central

    Steiner, Michael; Lazaroff, Norman

    1974-01-01

    A method for direct, continuous determination of ferric ions produced in autotrophic iron oxidation, which depends upon the measurement of ferric ion absorbance at 304 nm, is described. The use of initial rates is shown to compensate for such changes in extinction during oxidation, which are due to dependence of the extinction coefficient on the ratio of complexing anions to ferric ions. A graphical method and a computer method are given for determination of absolute ferric ion concentration, at any time interval, in reaction mixtures containing Thiobacillus ferrooxidans and ferrous ions at known levels of SO42+ and hydrogen ion concentrations. Some examples are discussed of the applicability of these methods to study of the rates of ferrous ion oxidation related to sulfate concentration. PMID:4441066

  14. A strategy for the study of the interactions between metal-dyes and proteins with QM/MM approaches: the case of iron-gall dye.

    PubMed

    Jurinovich, Sandro; Degano, Ilaria; Mennucci, Benedetta

    2012-11-15

    Historical textiles dyed with tannins usually show more extended degradation than fabrics dyed with other coloring materials. In order to shed light on this phenomenon we investigated the molecular interactions between tannin dyes and protein-based textiles using quantum-mechanical tools. In particular, we focused on the iron-gall complex with a fragment of α-helix wool keratin. We developed a step by step protocol which moves from the simplest ternary complexes with free amino acids (all treated quantum mechanically) to the more realistic system of the polypeptide fragment (treated at QM/MM level), passing through an intermediate model of interacting sites to evaluate the local environmental effects. The analysis of the interactions between the iron-gall complexes and free amino acids allowed us to identify possible coordination modes as well as determining their relative geometries. However, we also showed that only with the addition of the proteic environment a detailed picture of the interaction sites and binding modes can be achieved. An important role is in fact played by the microenvironment which can favor specific coordinations with respect to others due to both structural and electronic changes in the possible interaction sites.

  15. Hepcidin is the major predictor of erythrocyte iron incorporation in anemic African children

    USDA-ARS?s Scientific Manuscript database

    Iron supplementation strategies in the developing world remain controversial owing to fears of exacerbating prevalent infectious diseases. Understanding the conditions in which iron will be absorbed and incorporated into erythrocytes is therefore important. We studied Gambian children with either po...

  16. New spectrophotometric methods for the determinations of hydrogen sulfide present in the samples of lake water, industrial effluents, tender coconut, sugarcane juice and egg

    NASA Astrophysics Data System (ADS)

    Shyla, B.; Nagendrappa, G.

    2012-10-01

    The new methods are working on the principle that iron(III) is reduced to iron(II) by hydrogen sulfide, catechol and p-toluidine the system 1/hydrogen sulfide the system 2, in acidic medium followed by the reduced iron forming complex with 1,10-phenanthroline with λmax 510 nm. The other two methods are based on redox reactions between electrolytically generated manganese(III) sulfate taken in excess and hydrogen sulfide followed by the unreacted oxidant oxidizing diphenylamine λmax 570 the system 3/barium diphenylamine sulphonate λmax 540 nm, the system 4. The increase/decrease in the color intensity of the dye products of the systems 1 and 2 or 3 and 4 are proportional to the concentration of hydrogen sulfide with its quantification range 0.035-1.40 μg ml-1/0.14-1.40 μg ml-1.

  17. Application of iron nanaoparticles in landfill leachate treatment - case study: Hamadan landfill leachate.

    PubMed

    Kashitarash, Zahra Esfahani; Taghi, Samadi Mohammad; Kazem, Naddafi; Abbass, Afkhami; Alireza, Rahmani

    2012-12-27

    This study was performed with the objective of determining the efficiency of iron nanoparticles for reducing chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total solids (TS) and color of Hamadan city landfill leachate. Experiments were performed in a batch reactor and the main effective factors of pH, reaction time and concentration of iron nanoparticles were investigated. The obtained data were analyzed with One-Way ANOVA statistical test and SPSS-13 software. Maximum removal efficiencies were 47.94%, 35%, 55.62% and 76.66% for COD, BOD5, TS and color, respectively (for 2.5 g/L iron nanoparticles dosage, pH = 6.5 and 10 min reaction time). The results showed that the removal of COD, BOD5 and color had reverse relationship with contact time and TS removal followed a direct relationship (P < 0.05). Iron nanoparticles could remove averagely 53% of leachate COD, BOD5, TS and color in a short contact time (10 min) increasing pH up to 6.5, increased the removal efficiency for COD, BOD5, TS and color and then removal efficiency decreased with increasing pH to 8.5. Increasing the dosage of nanoparticles to 2.5 g/L increased the efficiency of process. High compatibility and efficiency of this process was proven by landfill leachate pre-treatment or post-treatment, so this removal method may be recommended for municipal solid waste landfill leachate treatment plants.

  18. Application of iron nanaoparticles in landfill leachate treatment - case study: Hamadan landfill leachate

    PubMed Central

    2012-01-01

    This study was performed with the objective of determining the efficiency of iron nanoparticles for reducing chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total solids (TS) and color of Hamadan city landfill leachate. Experiments were performed in a batch reactor and the main effective factors of pH, reaction time and concentration of iron nanoparticles were investigated. The obtained data were analyzed with One-Way ANOVA statistical test and SPSS-13 software. Maximum removal efficiencies were 47.94%, 35%, 55.62% and 76.66% for COD, BOD5, TS and color, respectively (for 2.5 g/L iron nanoparticles dosage, pH = 6.5 and 10 min reaction time). The results showed that the removal of COD, BOD5 and color had reverse relationship with contact time and TS removal followed a direct relationship (P < 0.05). Iron nanoparticles could remove averagely 53% of leachate COD, BOD5, TS and color in a short contact time (10 min) increasing pH up to 6.5, increased the removal efficiency for COD, BOD5, TS and color and then removal efficiency decreased with increasing pH to 8.5. Increasing the dosage of nanoparticles to 2.5 g/L increased the efficiency of process. High compatibility and efficiency of this process was proven by landfill leachate pre-treatment or post-treatment, so this removal method may be recommended for municipal solid waste landfill leachate treatment plants. PMID:23369361

  19. Spectrophotometric determination of uric acid and some redeterminations of its solubility

    USGS Publications Warehouse

    Norton, D.R.; Plunkett, M.A.; Richards, F.A.

    1954-01-01

    The present study was initiated in order to develop a rapid and accurate method for the determination of uric acid in fresh, brackish, and sea water. It was found that the spectrophotometric determination of uric acid based upon its reaction with arsenophosphotungstic acid reagent in the presence of cyanide ion meets this objective. The absorbancy of the blue complex was measured at 890 m??. Slight variations from Beer's law were generally found. The results show the effects of pH, reaction time, concentration of reagents, and temperature upon color development and precipitate formation. Disodium dihydrogen ethylenediamine tetraacetate (Versene) was used as a buffering and complexirig agent. The results are significant in that they give the absorption spectrum of the blue complex and the effects of variables upon its absorbancy. Studies were made with the method to determine the stability of reagents and standard solutions and to determine the rate of bacterial decomposition of uric acid. Measurements of the solubility of uric acid are reported.

  20. Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe-S Assembly Complex.

    PubMed

    Fox, Nicholas G; Das, Deepika; Chakrabarti, Mrinmoy; Lindahl, Paul A; Barondeau, David P

    2015-06-30

    Iron-sulfur (Fe-S) clusters function as protein cofactors for a wide variety of critical cellular reactions. In human mitochondria, a core Fe-S assembly complex [called SDUF and composed of NFS1, ISD11, ISCU2, and frataxin (FXN) proteins] synthesizes Fe-S clusters from iron, cysteine sulfur, and reducing equivalents and then transfers these intact clusters to target proteins. In vitro assays have relied on reducing the complexity of this complicated Fe-S assembly process by using surrogate electron donor molecules and monitoring simplified reactions. Recent studies have concluded that FXN promotes the synthesis of [4Fe-4S] clusters on the mammalian Fe-S assembly complex. Here the kinetics of Fe-S synthesis reactions were determined using different electron donation systems and by monitoring the products with circular dichroism and absorbance spectroscopies. We discovered that common surrogate electron donor molecules intercepted Fe-S cluster intermediates and formed high-molecular weight species (HMWS). The HMWS are associated with iron, sulfide, and thiol-containing proteins and have properties of a heterogeneous solubilized mineral with spectroscopic properties remarkably reminiscent of those of [4Fe-4S] clusters. In contrast, reactions using physiological reagents revealed that FXN accelerates the formation of [2Fe-2S] clusters rather than [4Fe-4S] clusters as previously reported. In the preceding paper [Fox, N. G., et al. (2015) Biochemistry 54, DOI: 10.1021/bi5014485], [2Fe-2S] intermediates on the SDUF complex were shown to readily transfer to uncomplexed ISCU2 or apo acceptor proteins, depending on the reaction conditions. Our results indicate that FXN accelerates a rate-limiting sulfur transfer step in the synthesis of [2Fe-2S] clusters on the human Fe-S assembly complex.

  1. Iron clad wetlands: Soil iron-sulfur buffering determines coastal wetland response to salt water incursion

    NASA Astrophysics Data System (ADS)

    Schoepfer, Valerie A.; Bernhardt, Emily S.; Burgin, Amy J.

    2014-12-01

    Coastal freshwater wetland chemistry is rapidly changing due to increased frequency of salt water incursion, a consequence of global change. Seasonal salt water incursion introduces sulfate, which microbially reduces to sulfide. Sulfide binds with reduced iron, producing iron sulfide (FeS), recognizable in wetland soils by its characteristic black color. The objective of this study is to document iron and sulfate reduction rates, as well as product formation (acid volatile sulfide (AVS) and chromium reducible sulfide (CRS)) in a coastal freshwater wetland undergoing seasonal salt water incursion. Understanding iron and sulfur cycling, as well as their reduction products, allows us to calculate the degree of sulfidization (DOS), from which we can estimate how long soil iron will buffer against chemical effects of sea level rise. We show that soil chloride, a direct indicator of the degree of incursion, best predicted iron and sulfate reduction rates. Correlations between soil chloride and iron or sulfur reduction rates were strongest in the surface layer (0-3 cm), indicative of surface water incursion, rather than groundwater intrusion at our site. The interaction between soil moisture and extractable chloride was significantly related to increased AVS, whereas increased soil chloride was a stronger predictor of CRS. The current DOS in this coastal plains wetland is very low, resulting from high soil iron content and relatively small degree of salt water incursion. However, with time and continuous salt water exposure, iron will bind with incoming sulfur, creating FeS complexes, and DOS will increase.

  2. Hydrothermal synthesis of carbonyl iron-carbon nanocomposite: Characterization and electromagnetic performance

    NASA Astrophysics Data System (ADS)

    Pourabdollahi, Hakimeh; Zarei, Ali Reza

    In this research, the electromagnetic absorption properties of the carbonyl iron-carbon (CI/C) nanocomposite prepared via hydrothermal reaction using glucose as carbon precursor was studied in the range of 8.2-12.4 GHz. In hydrothermal reaction, glucose solution containing CI particles, placed in autoclave for 4 h under 453 K. Using surface coating technology is a method that prevents Cl oxidation and improves CI electromagnetic absorption. The structure, morphology and magnetic performances of the prepared nanocomposites were characterized by X-ray diffraction (XRD), energy dispersive spectrometry (EDS), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The electromagnetic properties including complex permittivity (εr), the permeability (μr), dielectric loss, magnetic loss, reflection loss, and attenuation constant were investigated using a vector network analyzer. For The CI/C nanocomposite, the bandwidth of -10 dB and -20 dB were obtained in the frequency range of 9.8-12.4 and 11.0-11.8 GHz, respectively. As well as, the reflection loss was -46.69 dB at the matching frequency of 11.5 GHz, when the matching thickness was 1.3 mm. While for CI particles the reflection loss for 4.4 mm thickness was -16.86 dB at the matching frequency of 12.3 GHz. The results indicate that the existence layer of carbon on carbonyl iron enhance the electromagnetic absorbing properties. Therefore, this nanocomposite can be suitable for in the radar absorbing coatings.

  3. High-LET Radiation Induced Chromosome Aberrations in Normal and Ataxia Telangiectasia Fibroblast Cells

    NASA Astrophysics Data System (ADS)

    Kawata, Tetsuya; George, Ms Kerry; Cucinotta, Francis A.; Shigematsu, Naoyuki; Ito, Hisao; Furusawa, Yoshiya; Uno, Takashi

    We investigated the effects of heavy ions beams on chromosomal aberrations in normal and AT cells. Normal and AT fibroblast cells arrested at G0/G1 phase were irradiated with 2 Gy of X-rays, 490 MeV/u Silicon (LET 55 keV/micron), 500 MeV/u Iron (LET 185 keV/micron) and 200 MeV/u Iron (LET 440 keV/micron) particles, and then cells were allowed to repair for 24 hours at 37 degrees before subculture. Calyculin-A induced PCC method was employed to collect G2/M chromosomes and whole DNA probes 1 and 3 were used to analyze chromosomal aberrations such as color-junctions, deletions, simple exchanges (incomplete and reciprocal exchanges) and complex-type exchanges. The percentages of aberrant cells were higher when normal and AT cells were exposed to heavy ions compared to X-rays, and had a tendency to increase with increasing LET up to 185 keV/micron and then decreased at 440 keV/micron. When the frequency of color-junctions per cell was compared after X-ray exposure, AT cells had around three times higher frequency of color-junctions (mis-rejoining) than normal cells. However, at 185 keV/micron there was no difference in the frequency of color-junctions between two cell lines. It was also found that the frequency of simple exchanges per cell was almost constant in AT cells regardless LET levels, but it was LET dependent for normal cells. Interestingly, the frequency of simple exchanges was higher for normal fibroblast cells when it was compared at 185 keV/micron, but AT cells had more complex-type exchanges at the same LET levels. Heavy ions are more efficient in inducing chromosome aberrations in normal and AT cells compared to X-rays, and the aberration types between normal and AT fibroblast appeared different probably due to difference in the ATM gene function.

  4. A Diarylethene Derived Chemosensor for Colorimetric Sensing of Cu2+

    NASA Astrophysics Data System (ADS)

    Pu, Shouzhi; Sun, Qi; Zheng, Chunhong

    2017-07-01

    A diarylethene bearing a 8-hydroxyquinoline-linked salicylhydrazide Schift base unit has been synthesized. In CH3CN, the conpound displayed a highly selective and sensitive response to Cu2+ via perceptible color and UV-vis absorbance changes among the other tested metal ions. In the presence of Cu2+, the peak at 341 nm disappeared and concomitantly a new charge transfer absorption band emerged at 381 and 450 nm. Moreover, the compound formed host-guest complexe in 1:1 stoichiometry.

  5. Cavitational Iron Microparticles Generation By Plasma Procedures For Medical Applications

    NASA Astrophysics Data System (ADS)

    Bica, Ioan; Bunoiu, Madalin; Chirigiu, Liviu; Spunei, Marius; Juganaru, Iulius

    2012-12-01

    The paper presents the experimental installation for the production, in argon plasma, of cavitational iron microparticles (pore microspheres, microtubes and octopus-shaped microparticles). Experimental results are presented and discussed and it is shown that absorbant particles with a minimum iron content are obtained by the plasma procedures

  6. Anemia caused by low iron - children

    MedlinePlus

    ... can cause the body to absorb too much lead. Prevention Eating a variety of healthy foods is the most important way to prevent and treat iron deficiency. Alternative Names Anemia - ... MD. Disorders of iron and copper metabolism, the sideroblastic anemias, and lead toxicity. In: Orkin SH, Fisher DE, Ginsburg D, ...

  7. Drug Modulation of Water–Heme Interactions in Low-Spin P450 Complexes of CYP2C9d and CYP125A1

    PubMed Central

    Conner, Kip P.; Cruce, Alex A.; Krzyaniak, Matthew D.; Schimpf, Alina M.; Frank, Daniel J.; de Montellano, Paul Ortiz; Atkins, William M.; Bowman, Michael K.

    2015-01-01

    Azoles and pyridines are commonly incorporated into small molecule inhibitor scaffolds that target cytochromes P450 (CYPs) as a strategy to increase drug binding affinity, impart isoform-dependent selectivity, and improve metabolic stability. Optical absorbance spectra of the CYP–inhibitor complex are widely used to infer whether these inhibitors are ligated directly to the heme iron as catalytically inert, low-spin (type II) complexes. Here, we show that the low-spin complex between a drug-metabolizing CYP2C9 variant and 4-(3-phenyl-propyl)-1H-1,2,3-triazole (PPT) retains an axial water ligand despite exhibiting elements of “classic” type II optical behavior. Hydrogens of the axial water ligand are observed by pulsed electron paramagnetic resonance (EPR) spectroscopy for both inhibitor-free and inhibitor-bound species and show that inhibitor binding does not displace the axial water. A 15N label incorporated into PPT is 0.444 nm from the heme iron, showing that PPT is also in the active site. The reverse type I inhibitor, LP10, of CYP125A1 from Mycobacterium tuberculosis, known from X-ray crystal structures to form a low-spin water-bridged complex, is found by EPR and by visible and near-infrared magnetic circular dichroism spectroscopy to retain the axial water ligand in the complex in solution. PMID:25591012

  8. Phytochemicals and antioxidant capacities in rice brans of different color.

    PubMed

    Min, Byungrok; McClung, Anna M; Chen, Ming-Hsuan

    2011-01-01

    Rice bran, a byproduct of the rice milling process, contains most of the phytochemicals. This study aimed at determining the concentrations of lipophilic, solvent-extractable (free), and cell wall-bound (bound) phytochemicals and their antioxidant capacities from brans of white, light brown, brown, purple, and red colors, and broccoli and blueberry for comparison. The concentrations of lipophilic antioxidants of vitamin E (tocopherol and tocotrienols) and γ-oryzanols were 319.67 to 443.73 and 3861.93 to 5911.12 μg/g bran dry weight (DW), respectively, and were not associated with bran color. The total phenolic, total flavonoid, and antioxidant capacities of ORAC (oxygen radical absorbance capacity), DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging, and iron-chelating in the free fraction were correlated with the intensity of bran color, while variations of these in the bound fraction were less than those in the free fraction among brans. Compounds in the bound fraction had higher antioxidant capacity of ORAC than DPPH, relative to those in the free fraction. The bound fraction of light-color brans contributed as much to its total ORAC as the free fraction. Total proanthocyanidin concentration was the highest in red rice bran, while total anthocyanin was highest in purple brans. The predominant anthocyanin was cyanidin-3-glucoside. Red and purple brans had several fold higher total phenolics and flavonoids as well as ORAC and DPPH, from both free and bound fractions, than freeze-dried blueberry and broccoli. These results indicate that rice brans are natural sources of hydrophilic and lipophilic phytochemicals for use in quality control of various food systems as well as for nutraceutical and functional food application.

  9. Microwave electromagnetic properties of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coating

    NASA Astrophysics Data System (ADS)

    Qing, Yuchang; Zhou, Wancheng; Luo, Fa; Zhu, Dongmei

    2010-02-01

    The electromagnetic characteristics of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coatings were studied. The reflection loss of the coatings exceeds -10 dB at 8-18 GHz and -9 dB at 2-18 GHz when the coating thickness is 1 and 3 mm, respectively. The dielectric and magnetic absorbers filled coatings possess excellent microwave absorption, which could be attributed to the proper incorporate of the multi-polarization mechanisms as well as strong natural resonance. It is feasible to develop the thin and wideband microwave absorbing coatings using carbonyl iron particles and Si/C/N nano-powder.

  10. XPS studies of water and oxygen on iron-sputtered natural ilmenite

    NASA Technical Reports Server (NTRS)

    Schulze, P. D.; Neil, T. E.; Shaffer, S. L.; Smith, R. W.; Mckay, D. S.

    1985-01-01

    The adsorption of D2O and O2 on polycrystalline FeTiO3 (natural ilmenite) has been studied by X-ray photoelectron spectroscopy. Oxygen was found to absorb reactively with Fe(0) on Ar(+)-sputtered surfaces at and above 150 K while D2O was found to adsorb molecularly or in ice layers below 170 K on both Ar(+) and O2(+) ion-bombarded ilmenite. The D2O desorbs at 170 K with either the formation of an OD complex or a strongly bound molecular layer of water.

  11. Iron and vegetarian diets.

    PubMed

    Saunders, Angela V; Craig, Winston J; Baines, Surinder K; Posen, Jennifer S

    2013-08-19

    Vegetarians who eat a varied and well balanced diet are not at any greater risk of iron deficiency anaemia than non-vegetarians. A diet rich in wholegrains, legumes, nuts, seeds, dried fruits, iron-fortified cereals and green leafy vegetables provides an adequate iron intake. Vitamin C and other organic acids enhance non-haem iron absorption, a process that is carefully regulated by the gut. People with low iron stores or higher physiological need for iron will tend to absorb more iron and excrete less. Research to date on iron absorption has not been designed to accurately measure absorption rates in typical Western vegetarians with low ferritin levels.

  12. Low frequency and broadband metamaterial absorber with cross arrays and a flaked iron powder magnetic composite

    NASA Astrophysics Data System (ADS)

    Li, Wangchang; Liu, Qing; Wang, Liwei; Zhou, Zuzhi; Zheng, Jingwu; Ying, Yao; Qiao, Liang; Yu, Jing; Qiao, Xiaojing; Che, Shenglei

    2018-01-01

    In this paper, we present a design, simulation and experimental measurement of a cross array metamaterial absorber (MMA) based on the flaked Carbonyl iron powder (CIP) filled rubber plate in the microwave regime. The metamaterial absorber is a layered structure consisting of multilayer periodic cross electric resonators, magnetic rubber plate and the ground metal plate. The MMA exhibits dual band absorbing property and the absorption can be tuned from 1˜8GHz in the same thickness depending on the dimension and position of the cross arrays. The obviously broadened absorbing band of the designed structure is a result of the synergistic effects of the electrical resonance of the cross arrays and intrinsic absorption of the magnetic layer. The polarization and oblique incident angle in TE and TM model are also investigated in detail to explore the absorbing mechanisms. The resonance current of the cross array can excite the enhanced local magnetic field and dielectric field which can promote the absorption. The measurement results are basically consistent with the simulations but the absorbing peaks move a little bit to higher frequency for the reason that the surface oxidation of the flaked CIP in the preparation process.

  13. Dating Endometriotic Ovarian Cysts Based on the Content of Cyst Fluid and its Potential Clinical Implications

    PubMed Central

    Ding, Ding; Shen, Minhong; Liu, Xishi

    2015-01-01

    This study was undertaken to test the hypotheses that, due to gradual accumulation of dead erythrocytes and their ingested products resulting from repeated hemorrhage, older endometriomas (whitish in color) contain chocolate fluid with higher iron content than younger (brownish/blackish in color) ones with concomitant higher collagen content and more adhesions. We recruited 30 premenopausal women with histologically confirmed ovarian endometriomas and collected samples of their endometriotic lesions and chocolate fluid and measured the viscosity, density, and the concentration of total bilirubin, ferritin, and free iron of the chocolate fluid. We also evaluated the lesion color and adhesion scores. In addition, we performed Masson trichrome and Picro-Sirius red staining on all endometriotic cysts and evaluated the extent of fibrosis in the lesions. We found that fluids taken from white-colored endometriomas had significantly higher concentration of total bilirubin, ferritin, and free iron, respectively, than black/brown-colored ones. In addition, older cysts had fluids that had significantly higher density and viscosity. Fluid density correlated positively with the concentrations of total bilirubin, ferritin, and free iron. Older lesions had significantly more collagen content and higher adhesion scores. Taken together, these data supports the notion that older cysts, having experienced more bleeding episodes, contain chocolate fluid that is higher in viscosity, density, and iron content and higher fibrotic content than younger ones. This provides another piece of evidence that endometriotic lesions are wounds that undergo repeated injury and repair, resulting ultimately fibrotic lesions that are resistant to hormonal treatment. PMID:25676579

  14. Cytogenetic effects of energetic ions with shielding

    NASA Astrophysics Data System (ADS)

    Yang, T. C.; George, K. A.; Wu, H.; Miller, D.; Miller, J.

    1998-11-01

    In order to understand the effects of shielding on the induction of biological damages by charged particles, we conducted experiments with accelerated protons (250 MeV) and iron particles (1 GeV/u). Human lymphocytes in vitro were exposed to particle beams through polyethylene with various thickness, and chromosomal aberrations were determined using FISH technique. Dose response curves for chromosome aberrations were obtained and compared for various particle types. Experimental results indicated that for a given absorbed dose at the cell, the effectiveness of protons and iron particles in the induction of chromosomal aberrations was not significantly altered by polyethylene with thickness up to 30-cm and 15-cm respectively. Comparing with gamma rays, charged particles were very effective in producing complex chromosomal damages, which may be an important mechanism in alterating functions in non-dividing tissues, such as nervous systems.

  15. Synthesis of nanocrystalline α-Fe2O3 by using thermal oxidation of Fe Films

    NASA Astrophysics Data System (ADS)

    Fortas, G.; Saidoun, I.; Abboud, H.; Gabouze, N.; Haine, N.; Manseri, A.; Zergoug, M.; Menari, H.; Sam, S.; Cheraga, H.; Bozetine, I.

    2018-03-01

    α-Fe2O3 hematite films were prepared by thermal oxidation from Fe films electroplated on silicon. Electrodeposition of Fe thin films was carried out from a sulfate bath containing an ammonium chloride complexing agent. The electrochemical study was performed by cyclic voltammetry. The SEM analysis of the films obtained at a -1.3 V constant polarization shows dendritic grains in the form of islet. The DRX spectra exhibit characteristic iron peaks according to the face centered cubic (Fcc) structure. These samples were annealed. At a temperature of 650 ° C, a single iron oxide phase was well formed, with the hematite structure. The SEM photos show a well-assembled columnar structure with formation of nanowires at the surface of the deposit. The absorbance spectra reveal an absorption features in the ultraviolet range

  16. Process for strontium-82 separation

    DOEpatents

    Heaton, Richard C.; Jamriska, Sr., David J.; Taylor, Wayne A.

    1992-01-01

    A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed.

  17. Process for strontium-82 separation

    DOEpatents

    Heaton, R.C.; Jamriska, D.J. Sr.; Taylor, W.A.

    1992-12-01

    A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed. 1 fig.

  18. Effect of chaotropes on the kinetics of iron release from ferritin by flavin nucleotides.

    PubMed

    Johnson, Lindsay E; Wilkinson, Tyler; Arosio, Paolo; Melman, Artem; Bou-Abdallah, Fadi

    2017-12-01

    Ferritins are ubiquitous multi-subunit iron storage and detoxification proteins that play a critical role in iron homeostasis. Ferrous ions that enter the protein's shell through hydrophilic channels are rapidly oxidized at dinuclear centers on the H-subunit before transfer to the protein's cavity for storage. The mechanisms of iron loading have been extensively studied, but little is known about iron mobilization. Fe(III) reduction can occur via rapid reduction by suitable reducing agents followed by chelation of Fe(II) ions or via direct and slow Fe(III) chelation. Here, the iron release kinetics from ferritin by FMNH 2 in the presence of various chaotropic agents are studied and their in-vivo physiological significance discussed. The iron release kinetics from horse and human ferritins by FMNH 2 were monitored at 522nm where the Fe(II)-bipyridine complex absorbs. The experiments were performed in the presence of different concentrations of three chaotropic agents, urea, guanidine HCl, and triton. Under our experimental conditions, iron reductive mobilization by the non-enzymatic FMN/NAD(P)H system is limited by the concentration of FMNH 2 and is independent on the type or amount of chaotropes present. Diffusion of FMNH 2 through the ferritin pores is an unlikely mechanism for ferritin iron reduction. An iron mobilization mechanism involving rapid electron transfer through the protein shell is discussed. Caution must be exercised when interpreting the kinetics of iron mobilization from ferritin using the FMN/NAD(P)H system. The kinetics are highly dependent on the amount of dissolved oxygen and the concentration of reagents used. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation

    NASA Astrophysics Data System (ADS)

    Hilty, Florentine M.; Arnold, Myrtha; Hilbe, Monika; Teleki, Alexandra; Knijnenburg, Jesper T. N.; Ehrensperger, Felix; Hurrell, Richard F.; Pratsinis, Sotiris E.; Langhans, Wolfgang; Zimmermann, Michael B.

    2010-05-01

    Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO4), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area ~190 m2 g-1) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO4 and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO4 and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value.

  20. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation.

    PubMed

    Hilty, Florentine M; Arnold, Myrtha; Hilbe, Monika; Teleki, Alexandra; Knijnenburg, Jesper T N; Ehrensperger, Felix; Hurrell, Richard F; Pratsinis, Sotiris E; Langhans, Wolfgang; Zimmermann, Michael B

    2010-05-01

    Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO(4)), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area approximately 190 m(2) g(-1)) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO(4) and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO(4) and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value.

  1. Basic methods for measuring the reflectance color of iron oxides

    NASA Astrophysics Data System (ADS)

    Pospisil, Jaroslav; Hrdy, Jan; Hrdy Jan, Jr.

    2007-06-01

    The main contribution of the present article consists in coherent description and interpretation of the principles of basic measuring methods and colorimeters for color classification and evaluation of light reflecting samples containing iron oxides. The chosen relevant theoretical background is based on the CIE tristimulus colorimetric system (X,Y,Z), the CIE colorimetric system (L*,a*,b*) and the Munsell colorimetric system (H,V,C). As an example of color identification and evaluation, some specific mathematical and graphical relationships between the soil redness rate and the corresponding hematite content are shown.

  2. Ultra-thin, conformal, and hydratable color-absorbers using silk protein hydrogel

    NASA Astrophysics Data System (ADS)

    Umar, Muhammad; Min, Kyungtaek; Jo, Minsik; Kim, Sunghwan

    2018-06-01

    Planar and multilayered photonic devices offer unprecedented opportunities in biological and chemical sensing due to strong light-matter interactions. However, uses of rigid substances such as semiconductors and dielectrics confront photonic devices with issues of biocompatibility and a mechanical mismatch for their application on humid, uneven, and soft biological surfaces. Here, we report that favorable material traits of natural silk protein led to the fabrication of an ultra-thin, conformal, and water-permeable (hydratable) metal-insulator-metal (MIM) color absorber that was mapped on soft, curved, and hydrated biological interfaces. Strong absorption was induced in the MIM structure and could be tuned by hydration and tilting of the sample. The transferred MIM color absorbers reached the exhibition of a very strong resonant absorption in the visible and near infra-red ranges. In addition, we demonstrated that the conformal resonator could function as a refractometric glucose sensor applied on a contact lens.

  3. THE INFLUENCE OF OXIDANT TYPE ON THE PROPERTIES OF IRON COLLOIDS AND SUSPENSIONS FORMED FROM FERROUS IRON

    EPA Science Inventory

    "Red water" describes the appearance of drinking water that contains suspended particulate iron although the actual suspension color may be light yellow to brown depending on water chemistry and particle properties. Iron can originate from the source water and from distribution ...

  4. In vitro evaluation of color change in maxillofacial elastomer through the use of an ultraviolet light absorber and a hindered amine light stabilizer.

    PubMed

    Tran, Ngoc H; Scarbecz, Mark; Gary, John J

    2004-05-01

    External prostheses composed of silicone elastomers exhibit an unwanted color change over time. This study evaluated color stability when an ultraviolet light absorber and hindered amine light stabilizer were mixed in the maxillofacial elastomer containing either organic or inorganic pigments. The materials used were an RTV silicone elastomer, 1 natural inorganic dry-earth pigment (burnt sienna) and 2 synthesized organic pigments (hansa yellow and alizarin red), ultraviolet light absorber (UVA) and hindered amine light stabilizer (HALS). Specimens (n=160) were fabricated in a custom mold and randomly assigned and exposed to weathering sites in Miami and Phoenix for approximately 3 months. Eight test groups (2 of each 4 material types with or without additives) of 10 specimens each were assigned to each site. L*, a*, b* readings were obtained before and after weathering from a spectrocolorimeter. Nonpigmented elastomers served as the control. Three-factor ANOVA was conducted to examine interaction effects between weathering sites, specimen type, and the presence of additive (alpha=.05). Overall color change (Delta E) and change in color coordinates (Delta L*, Delta a*, Delta b*) of specimen groups with and without additive were analyzed with independent sample t tests. In specimen groups with the additives (UVA and HALS), color change decreased significantly (P<.05) in burnt sienna and hansa yellow in Phoenix and in the control and hansa yellow in Miami. Additives did not affect color change in the alizarin red group. UVA and HALS were shown to be effective in retarding color change in some circumstances.

  5. Temporal fluctuations in grain size, organic materials and iron concentrations in intertidal surface sediment of San Francisco Bay

    USGS Publications Warehouse

    Thomson-Becker, E. A.; Luoma, S.N.

    1985-01-01

    The physical and chemical characteristics of the oxidized surface sediment in an estuary fluctuate temporally in response to physical forces and apparently-fluctuating inputs. These characteristics, which include grain size and concentrations of organic materials and iron, will influence both trace-metal geochemistry and bioavailability. Temporal trends in the abundance of fine particles, total organic carbon content (TOC), absorbance of extractable organic material (EOM), and concentration of extractable iron in the sediment of San Francisco Bay were assessed using data sets containing approximately monthly samples for periods of two to seven years. Changes in wind velocity and runoff result in monthly changes in the abundance of fine particles in the intertidal zone. Fine-grained particles are most abundant in the late fall/early winter when runoff is elevated and wind velocities are low; particles are coarser in the summer when runoff is low and wind velocities are consistently high. Throughout the bay, TOC is linearly related to fine particle abundance (r = 0.61). Temporal variability occurs in this relationship, as particles are poor in TOC relative to percent of fine particles in the early rainy season. Iron-poor particles also appear to enter the estuary during high runoff periods; while iron is enriched on particle surfaces in the summer. Concentrations of extractable iron and absorbance of EOM vary strongly from year to year. Highest absorbances of EOM occurred in the first year following the drought in 1976-77, and in 1982 and 1983 when river discharge was unusually high. Extractable-iron concentrations were also highest in 1976-77, but were very low in 1982 and 1983. ?? 1985 Dr W. Junk Publishers.

  6. Comparison of sound absorbing performances of copper foam and iron foam with the same parameters

    NASA Astrophysics Data System (ADS)

    Yang, X. C.; Shen, X. M.; Xu, P. J.; Zhang, X. N.; Bai, P. F.; Peng, K.; Yin, Q.; Wang, D.

    2018-01-01

    Sound absorbing performances of the copper foam and the iron foam with the same parameters were investigated by the AWA6128A detector according to standing wave method. Two modes were investigated, which included the pure metal foam mode and the combination mode with the settled thickness of metal foam. In order to legibly compare the sound absorbing coefficients of the two metal foams, the detected sound frequency points were divided into the low frequency range (100 Hz ~ 1000 Hz), the middle frequency range (1000 Hz ~ 3200 Hz), and the high frequency range (3500 Hz ~ 6000 Hz). Sound absorbing performances of the two metal foams in the two modes were discussed within the three frequency ranges in detail. It would be calculated that the average sound absorbing coefficients of copper foam in the pure metal foam mode were 12.6%, 22.7%, 34.6%, 43.6%, 51.1%, and 56.2% when the thickness was 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, and 30 mm. meanwhile, in the combination mode, the average sound absorbing coefficients of copper foam with the thickness of 10 mm were 30.6%, 34.8%, 36.3%, and 35.8% when the cavity was 5 mm, 10 mm, 15 mm, and 20 mm. In addition, those of iron foam in the pure metal foam mode were 13.4%, 20.1%, 34.4%, 43.1%, 49.6%, and 56.1%, and in the combination mode were 25.6%, 30.5%, 34.3%, and 33.4%.

  7. Ocean Color Data at the Goddard DAAC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The apparent color of the ocean is determined by the interactions of incident light with substances or particles present in the water. The most significant constituents are free-floating photosynthetic organisms (phytoplankton) and inorganic particulates. Phytoplankton contain chlorophyll, which absorbs light at blue and red wavelengths and transmits in the green. Particulate matter can reflect and absorb light, which reduces the clarity (light transmission) of the water. Substances dissolved in water can also affect its color. Observations of ocean color from space, utilizing sensors specially designed to detect the small amount of light radiating from the sea surface, provide a global picture of the patterns of biological productivity in the world's oceans. For that reason, ocean color remote sensing data is a vital resource for biological oceanography. Unlike the limited area of the ocean that can be investigated from a research ship, data from a satellite sensor covers a large region and provides a comprehensive view of the marine environment.

  8. Simultaneous removal of nitrogen oxides and sulfur oxides from combustion gases

    DOEpatents

    Clay, David T.; Lynn, Scott

    1976-10-19

    A process for the simultaneous removal of sulfur oxides and nitrogen oxides from power plant stack gases comprising contacting the stack gases with a supported iron oxide catalyst/absorbent in the presence of sufficient reducing agent selected from the group consisting of carbon monoxide, hydrogen, and mixtures thereof, to provide a net reducing atmosphere in the SO.sub.x /NO.sub.x removal zone. The sulfur oxides are removed by absorption substantially as iron sulfide, and nitrogen oxides are removed by catalytic reduction to nitrogen and ammonia. The spent iron oxide catalyst/absorbent is regenerated by oxidation and is recycled to the contacting zone. Sulfur dioxide is also produced during regeneration and can be utilized in the production of sulfuric acid and/or sulfur.

  9. RADIOACTIVE IRON ABSORPTION BY GASTRO-INTESTINAL TRACT

    PubMed Central

    Hahn, P. F.; Bale, W. F.; Ross, J. F.; Balfour, W. M.; Whipple, G. H.

    1943-01-01

    Iron absorption is a function of the gastro-intestinal mucosal epithelium. The normal non-anemic dog absorbs little iron but chronic anemia due to blood loss brings about considerable absorption—perhaps 5 to 15 times normal. In general the same differences are observed in man (1). Sudden change from normal to severe anemia within 24 hours does not significantly increase iron absorption. As the days pass new hemoglobin is formed. The body iron stores are depleted and within 7 days iron absorption is active, even when the red cell hematocrit is rising. Anoxemia of 50 per cent normal oxygen concentration for 48 hours does not significantly enhance iron absorption. In this respect it resembles acute anemia. Ordinary doses of iron given 1 to 6 hours before radio-iron will cause some "mucosa block"—that is an intake of radio-iron less than anticipated. Many variables which modify peristalsis come into this reaction. Iron given by vein some days before the dose of radio-iron does not appear to inhibit iron absorption. Plasma radio-iron absorption curves vary greatly. The curves may show sharp peaks in 1 to 2 hours when the iron is given in an empty stomach but after 6 hours when the radio-iron is given with food. Duration time of curves also varies widely, the plasma iron returning to normal in 6 to 12 hours. Gastric, duodenal, or jejunal pouches all show very active absorption of iron. The plasma concentration peak may reach a maximum before the solution of iron is removed from the gastric pouch—another example of "mucosa block." Absorption and distribution of radio-iron in the body of growing pups give very suggestive experimental data. The spleen, heart, upper gastro-intestinal tract, marrow, and pancreas show more radio-iron than was expected. The term "physiological saturation" with iron may be applied to the gastro-intestinal mucosal epithelium and explain one phase of acceptance or refusal of ingested iron. Desaturation is a matter of days not hours, whereas saturation may take place within 1 to 2 hours. We believe this change is a part of the complex protein metabolism of the cell. PMID:19871320

  10. Advantages and limitations of in vitro and in vivo methods of iron and zinc bioavailability evaluation in the assessment of biofortification program effectiveness

    USDA-ARS?s Scientific Manuscript database

    Biofortification aims to improve the micronutrient concentration of staple food crops through the best practices of breeding and modern biotechnology. However, increased zinc and iron concentrations in food crops may not always translate into proportional increases in absorbed zinc (Zn) and iron (Fe...

  11. Higher iron pearl millet (Pennisetum glaucum L.) provides more absorbable iron that is limited by increased polyphenolic content

    USDA-ARS?s Scientific Manuscript database

    Background: Our objective was to compare the capacity of iron (Fe) biofortified and standard pearl millet (Pennisetum glaucum L.) to deliver Fe for hemoglobin (Hb) synthesis. Pearl millet is the most widely grown type of millet. It is common primarily in West Africa and the Indian subcontinent, and ...

  12. THE EFFECT OF ORTHO- AND POLY-PHOSPHATES ON THE PROPERTIES OF IRON PARTICLES AND SUSPENSIONS FORMED FROM THE OXYGENATION OF FERROUS IRON

    EPA Science Inventory

    "Red water" describes the appearance of drinking water that contains suspended particulate iron although the actual suspension color may be light yellow to brown depending on water chemistry and particle properties. Iron can originate from the source water and from distributio...

  13. Importance of pre-pregnancy and pregnancy iron status: can long-term weekly preventive iron and folic acid supplementation achieve desirable and safe status?

    PubMed

    Viteri, Fernando E; Berger, Jacques

    2005-12-01

    Most women worldwide enter pregnancy without adequate iron reserves or are already iron deficient. Estimates of iron needs during pregnancy are markedly reduced when iron reserves are available. The needs of absorbed iron to correct mild to moderate anemia in the last two trimesters are estimated. Pre-pregnancy and prenatal weekly supplementation can improve iron reserves effectively and safely, preventing excess iron and favoring better pregnancy outcomes. We explain how the weekly supplementation idea was developed, why current hemoglobin norms may be inadequately high (especially in pregnancy), and why excess iron as recommended by many agencies for developing populations can be undesirable.

  14. Comparison of home fortification with two iron formulations among Kenyan children: Rationale and design of a placebo-controlled non-inferiority trial.

    PubMed

    Teshome, Emily M; Otieno, Walter; Terwel, Sofie R; Osoti, Victor; Demir, Ayşe Y; Andango, Pauline E A; Prentice, Andrew M; Verhoef, Hans

    2017-09-01

    Home fortification powders containing iron and other micronutrients have been recommended by World Health Organisation to prevent iron deficiency anaemia in areas of high prevalence. There is evidence, however, that home fortification at this iron dose may cause gastrointestinal adverse events including diarrhoea. Providing a low dose of highly absorbable iron (3 mg iron as NaFeEDTA) may be safer because the decreased amount of iron in the gut lumen can possibly reduce the burden of these adverse effects whilst resulting in similar or higher amounts of absorbed iron. To show non-inferiority of home fortification with 3 mg iron as NaFeEDTA compared with 12.5 mg iron as encapsulated ferrous fumarate, with haemoglobin response as the primary outcome. 338 Kenyan children aged 12-36 months will be randomly allocated to daily home fortification with either: a) 3 mg iron as NaFeEDTA (experimental treatment), b) 12.5 mg iron as encapsulated ferrous fumarate (reference), or c) placebo. At baseline, after 30 days of intervention and within 100 days post-intervention, blood samples will be assessed for primary outcome (haemoglobin concentration), iron status markers, Plasmodium parasitaemia and inflammation markers. Urine and stool samples will be assessed for hepcidin concentrations and inflammation, respectively. Adherence will be assessed by self-reporting, sachet counts and by an electronic monitoring device. If daily home fortification with a low dose of iron (3 mg NaFeEDTA) has similar or superior efficacy to a high dose (12.5 mg ferrous fumarate) then it would be the preferred choice for treatment of iron deficiency anaemia in children.

  15. New spectrophotometric methods for the determinations of hydrogen sulfide present in the samples of lake water, industrial effluents, tender coconut, sugarcane juice and egg.

    PubMed

    Shyla, B; Nagendrappa, G

    2012-10-01

    The new methods are working on the principle that iron(III) is reduced to iron(II) by hydrogen sulfide, catechol and p-toluidine the system 1/hydrogen sulfide the system 2, in acidic medium followed by the reduced iron forming complex with 1,10-phenanthroline with λ(max) 510 nm. The other two methods are based on redox reactions between electrolytically generated manganese(III) sulfate taken in excess and hydrogen sulfide followed by the unreacted oxidant oxidizing diphenylamine λ(max) 570 the system 3/barium diphenylamine sulphonate λ(max) 540 nm, the system 4. The increase/decrease in the color intensity of the dye products of the systems 1 and 2 or 3 and 4 are proportional to the concentration of hydrogen sulfide with its quantification range 0.035-1.40 μg ml(-1)/0.14-1.40 μg ml(-1). Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Nuclear resonant forward scattering of synchrotron radiation by randomly oriented iron complexes which exhibit nuclear Zeeman interaction

    NASA Astrophysics Data System (ADS)

    Haas, M.; Realo, E.; Winkler, H.; Meyer-Klaucke, W.; Trautwein, A. X.; Leupold, O.; Rüter, H. D.

    1997-12-01

    An expression for the amplitude of a pulse of synchrotron radiation (SR) coherently scattered in forward direction by a randomly oriented Mössbauer absorber is derived from the theory of γ optics. It is assumed that the hyperfine splittings present in the Mössbauer nuclei can be described in the framework of the spin-Hamiltonian formalism. In the general case of a thick Mössbauer sample, which consists of randomly oriented paramagnetic iron-containing molecules (for example, a frozen solution of a 57Fe protein) in an applied magnetic field, the response of this sample on an incident monochromatic and fully polarized SR beam cannot be given analytically because of the integrations involved. The way to evaluate nuclear forward-scattering spectra for this general case numerically is outlined and results of calculations with a corresponding program package called SYNFOS are shown and compared with experimental results obtained by measurements of the high-spin iron (II) ``picket-fence'' porphyrin [Fe(CH3COO)TPpivP]- in an applied field of 6 T.

  17. Full color organic light-emitting devices with microcavity structure and color filter.

    PubMed

    Zhang, Weiwei; Liu, Hongyu; Sun, Runguang

    2009-05-11

    This letter demonstrated the fabrication of the full color passive matrix organic light-emitting devices based on the combination of the microcavity structure, color filter and a common white polymeric OLED. In the microcavity structure, patterned ITO terraces with different thickness were used as the anode as well as cavity spacer. The primary color emitting peaks were originally generated by the microcavity and then the second resonance peak was absorbed by the color filter.

  18. Beyond [lambda][subscript max] Part 2: Predicting Molecular Color

    ERIC Educational Resources Information Center

    Williams, Darren L.; Flaherty, Thomas J.; Alnasleh, Bassam K.

    2009-01-01

    A concise roadmap for using computational chemistry programs (i.e., Gaussian 03W) to predict the color of a molecular species is presented. A color-predicting spreadsheet is available with the online material that uses transition wavelengths and peak-shape parameters to predict the visible absorbance spectrum, transmittance spectrum, chromaticity…

  19. Enhanced antioxidation and microwave absorbing properties of SiO2-coated flaky carbonyl iron particles

    NASA Astrophysics Data System (ADS)

    Zhou, Yingying; Xie, Hui; Zhou, Wancheng; Ren, Zhaowen

    2018-01-01

    SiO2 was successfully coated on the surface of flaky carbonyl iron particles using a chemical bath deposition method in the presence of 3-aminopropyl triethoxysilane (APTES). The morphologies, composition, valence states of elements, as well as antioxidation and electromagnetic properties of the samples were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and microwave network analyzer. TG curve shows the obvious weight gain of carbonyl iron was deferred to 360 °C after SiO2-coated, which can be ascribed to the exits of SiO2 overlayer. Compared with the raw carbonyl iron, SiO2-coated sample shows good wave absorption performance due to its impedance matching. The electromagnetic properties of raw and SiO2-coated carbonyl iron particles were characterized in X band before and after heat treatment at 250 °C for 10 h. It was established that SiO2-coated carbonyl iron demonstrate good thermal stability, indicating SiO2-coating is useful in the usage of microwave absorbers operating at temperature up to 250 °C.

  20. The root iron reductase assay: an examination of key factors that must be respected to generate meaningful assay results

    USDA-ARS?s Scientific Manuscript database

    Plant iron researchers have been quantifying root iron reductase activity since the 1970's, using a simple spectrophotometric method based on the color change of a ferrous iron chromophore. The technique was used by Chaney, Brown, and Tiffin (1972) to demonstrate the obligatory reduction of ferric i...

  1. THE EFFECT OF CHLORIDE AND ORTHOPHOSPHATE ON THE RELEASE OF IRON FROM DRINKING WATER DISTRIBUTION SYSTEM CAST IRON MAIN

    EPA Science Inventory

    “Colored water” resulting from suspended iron particles is a common drinking water consumer complaint which is largely impacted by water chemistry. A bench scale study, performed on a 90 year-old corroded cast-iron pipe section removed from a drinking water distribution system, w...

  2. Validated spectrophotometric methods for determination of sodium valproate based on charge transfer complexation reactions.

    PubMed

    Belal, Tarek S; El-Kafrawy, Dina S; Mahrous, Mohamed S; Abdel-Khalek, Magdi M; Abo-Gharam, Amira H

    2016-02-15

    This work presents the development, validation and application of four simple and direct spectrophotometric methods for determination of sodium valproate (VP) through charge transfer complexation reactions. The first method is based on the reaction of the drug with p-chloranilic acid (p-CA) in acetone to give a purple colored product with maximum absorbance at 524nm. The second method depends on the reaction of VP with dichlone (DC) in dimethylformamide forming a reddish orange product measured at 490nm. The third method is based upon the interaction of VP and picric acid (PA) in chloroform resulting in the formation of a yellow complex measured at 415nm. The fourth method involves the formation of a yellow complex peaking at 361nm upon the reaction of the drug with iodine in chloroform. Experimental conditions affecting the color development were studied and optimized. Stoichiometry of the reactions was determined. The proposed spectrophotometric procedures were effectively validated with respect to linearity, ranges, precision, accuracy, specificity, robustness, detection and quantification limits. Calibration curves of the formed color products with p-CA, DC, PA and iodine showed good linear relationships over the concentration ranges 24-144, 40-200, 2-20 and 1-8μg/mL respectively. The proposed methods were successfully applied to the assay of sodium valproate in tablets and oral solution dosage forms with good accuracy and precision. Assay results were statistically compared to a reference pharmacopoeial HPLC method where no significant differences were observed between the proposed methods and reference method. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Validated spectrophotometric methods for determination of sodium valproate based on charge transfer complexation reactions

    NASA Astrophysics Data System (ADS)

    Belal, Tarek S.; El-Kafrawy, Dina S.; Mahrous, Mohamed S.; Abdel-Khalek, Magdi M.; Abo-Gharam, Amira H.

    2016-02-01

    This work presents the development, validation and application of four simple and direct spectrophotometric methods for determination of sodium valproate (VP) through charge transfer complexation reactions. The first method is based on the reaction of the drug with p-chloranilic acid (p-CA) in acetone to give a purple colored product with maximum absorbance at 524 nm. The second method depends on the reaction of VP with dichlone (DC) in dimethylformamide forming a reddish orange product measured at 490 nm. The third method is based upon the interaction of VP and picric acid (PA) in chloroform resulting in the formation of a yellow complex measured at 415 nm. The fourth method involves the formation of a yellow complex peaking at 361 nm upon the reaction of the drug with iodine in chloroform. Experimental conditions affecting the color development were studied and optimized. Stoichiometry of the reactions was determined. The proposed spectrophotometric procedures were effectively validated with respect to linearity, ranges, precision, accuracy, specificity, robustness, detection and quantification limits. Calibration curves of the formed color products with p-CA, DC, PA and iodine showed good linear relationships over the concentration ranges 24-144, 40-200, 2-20 and 1-8 μg/mL respectively. The proposed methods were successfully applied to the assay of sodium valproate in tablets and oral solution dosage forms with good accuracy and precision. Assay results were statistically compared to a reference pharmacopoeial HPLC method where no significant differences were observed between the proposed methods and reference method.

  4. Quantification of body iron and iron absorption in the REDS-II Donor Iron Status Evaluation (RISE) study.

    PubMed

    Kiss, Joseph E; Birch, Rebecca J; Steele, Whitney R; Wright, David J; Cable, Ritchard G

    2017-07-01

    Repeated blood donation alters the iron balance of blood donors. We quantified these effects by analyzing changes in body iron as well as calculating iron absorbed per day for donors enrolled in a prospective study. For 1308 donors who completed a final study visit, we calculated total body iron at the enrollment and final visits and the change in total body iron over the course of the study. Taking into account iron lost from blood donations during the study and obligate losses, we also calculated the average amount of iron absorbed per day. First-time/reactivated donors at enrollment had iron stores comparable to previous general population estimates. Repeat donors had greater donation intensity and greater mean iron losses than first-time/reactivated donors, yet they had little change in total body iron over the study period, whereas first-time/reactivated donors had an average 35% drop. There was higher estimated iron absorption in the repeat donors (men: 4.49 mg/day [95% confidence interval [CI], 4.41-4.58 mg/day]; women: 3.75 mg/day [95% CI, 3.67-3.84 mg/day]) compared with estimated iron absorption in first-time/reactivated donors (men: 2.89 mg/day [95% CI, 2.75-3.04 mg/day]; women: 2.76 mg/day [95% CI, 2.64-2.87 mg/day]). The threshold for negative estimated iron stores (below "0" mg/kg stores) was correlated with the development of anemia at a plasma ferritin value of 10 ng/mL. These analyses provide quantitative data on changes in estimated total body iron for a broad spectrum of blood donors. In contrast to using ferritin alone, this model allows assessment of the iron content of red blood cells and the degree of both iron surplus and depletion over time. © 2017 AABB.

  5. Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid

    NASA Astrophysics Data System (ADS)

    Pušnik, Klementina; Goršak, Tanja; Drofenik, Miha; Makovec, Darko

    2016-09-01

    There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe3+/Fe2+ ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles' formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe3+ ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH.

  6. Comparison of the ionizing radiation effects on cochineal, annatto and turmeric natural dyes

    NASA Astrophysics Data System (ADS)

    Cosentino, Helio M.; Takinami, Patricia Y. I.; del Mastro, Nelida L.

    2016-07-01

    As studies on radiation stability of food dyes are scarce, commercially important natural food grade dyes were evaluated in terms of their sensitivity against gamma ionizing radiation. Cochineal, annatto and turmeric dyes with suitable concentrations were subjected to increasing doses up to 32 kGy and analyzed by spectrophotometry and capillary electrophoresis. The results showed different pattern of absorbance versus absorbed dose for the three systems. Carmine, the glucosidal coloring matter from the scale insect Coccus cacti L., Homoptera (cochineal) remained almost unaffected by radiation up to doses of about 32 kGy (absorbance at 494 nm). Meanwhile, at that dose, a plant-derived product annatto or urucum (Bixa orellana L.) tincture presented a nearly 58% reduction in color intensity. Tincture of curcumin (diferuloylmethane) the active ingredient in the eastern spice turmeric (Curcuma longa) showed to be highly sensitive to radiation when diluted. These data shall be taken in account whenever food products containing these food colors were going to undergo radiation processing.

  7. The Effect of Water Chemistry on the Release of Iron from Pipe Walls

    EPA Science Inventory

    Colored water problems originating from distribution system materials may be reduced by controlling corrosion, iron released from corrosion scales, and better understanding of the form and properties of the iron particles. The objective of this research was to evaluate the effect...

  8. Neelaredoxin, an iron-binding protein from the syphilis spirochete, Treponema pallidum, is a superoxide reductase.

    PubMed

    Jovanović, T; Ascenso, C; Hazlett, K R; Sikkink, R; Krebs, C; Litwiller, R; Benson, L M; Moura, I; Moura, J J; Radolf, J D; Huynh, B H; Naylor, S; Rusnak, F

    2000-09-15

    Treponema pallidum, the causative agent of venereal syphilis, is a microaerophilic obligate pathogen of humans. As it disseminates hematogenously and invades a wide range of tissues, T. pallidum presumably must tolerate substantial oxidative stress. Analysis of the T. pallidum genome indicates that the syphilis spirochete lacks most of the iron-binding proteins present in many other bacterial pathogens, including the oxidative defense enzymes superoxide dismutase, catalase, and peroxidase, but does possess an orthologue (TP0823) for neelaredoxin, an enzyme of hyperthermophilic and sulfate-reducing anaerobes shown to possess superoxide reductase activity. To analyze the potential role of neelaredoxin in treponemal oxidative defense, we examined the biochemical, spectroscopic, and antioxidant properties of recombinant T. pallidum neelaredoxin. Neelaredoxin was shown to be expressed in T. pallidum by reverse transcriptase-polymerase chain reaction and Western blot analysis. Recombinant neelaredoxin is a 26-kDa alpha(2) homodimer containing, on average, 0.7 iron atoms/subunit. Mössbauer and EPR analysis of the purified protein indicates that the iron atom exists as a mononuclear center in a mixture of high spin ferrous and ferric oxidation states. The fully oxidized form, obtained by the addition of K(3)(Fe(CN)(6)), exhibits an optical spectrum with absorbances at 280, 320, and 656 nm; the last feature is responsible for the protein's blue color, which disappears upon ascorbate reduction. The fully oxidized protein has a A(280)/A(656) ratio of 10.3. Enzymatic studies revealed that T. pallidum neelaredoxin is able to catalyze a redox equilibrium between superoxide and hydrogen peroxide, a result consistent with it being a superoxide reductase. This finding, the first description of a T. pallidum iron-binding protein, indicates that the syphilis spirochete copes with oxidative stress via a primitive mechanism, which, thus far, has not been described in pathogenic bacteria.

  9. Surface Composition and Physical Mixture State of the Regoliths of Outer Solar System Satellites: The Role of Scattering and Absorption by the non-Ice Components and Implications for Rayleigh Absorption and Rayleigh Scattering

    NASA Astrophysics Data System (ADS)

    Clark, R. N.; Perlman, Z. S.; Pearson, N.; Hendrix, A. R.; Cuzzi, J. N.; Cruikshank, D. P.; Bradley, E. T.; Filacchione, G.; Nicholson, P. D.; Hedman, M. M.; Brown, R. H.; Buratti, B. J.; Baines, K. H.; Sotin, C.; Nelson, R. M.

    2014-12-01

    Many outer Solar System satellites have surfaces dominated by water ice and a mysterious material(s) causing strong visible to ultraviolet absorption along with trace other compounds with infrared absorptions, including CO2 and organics. Various mechanisms have been proposed for the UV absorber, including tholins, iron oxides, and nano-sized metallic iron particles (e.g. see Clark et al., 2012, Icarus v218 p831, and references therein). We have constructed extensive laboratory analog measurements and radiative transfer modeling of the materials and scattering conditions that can contribute to the optical properties seen on outer Solar System satellites. We have successfully modeled Rayleigh absorption and Rayleigh scattering to produce spectral shapes typical of those seen in spectra of icy Solar System satellites, including those in the Saturn system observed with the Cassini UVIS and VIMS instruments. While it is easy to create these absorptions with radiative transfer modeling, it has been more difficult to do with laboratory analogs. We are finding that laboratory analogs refine and restricts the possible mixing states of the UV absorber in icy satellite surfaces. We have found that just because a particle is highly absorbing, as in metallic iron, if the particle is not embedded in another matrix, scattering will dominate over absorption and Rayleigh absorption will not be observed. Further, the closer the indices of refraction match between the absorbing particle and the matrix, there will be less scattering and more absorption will occur. But we have also found this to be true with other absorbing material, like Tholins. It is very difficult to obtain the very low reflectances observed in the UV in icy satellite spectra using traditional intimate mixtures, as scattering and first surface reflections contribute significantly to the reflectance. The solution, both from radiative transfer modeling and laboratory analogs point to embedded absorbing materials. For example, nano-phase metallic iron embedded in a less absorbing silicate matrix as meteoritic dust infall onto satellitesurfaces is one explanation. An alternative would be tholins embedded in the ice. Spectral features should be able to distinguish between these and other possibilities and will be explored.

  10. Preparation of drinking water used in water supply systems of the towns Zrenjanin and Temerin by electrochemical methods.

    PubMed

    Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Mikulic, Nenad

    2013-01-01

    The aim of this work was the development and application of the pilot plant with the capacity of 1000 L/day for the purification of groundwater used for human consumption characterized with high concentration of arsenic and increased values of organic pollutants, ammonia, nitrites, color and turbidity. For that purpose, groundwater from the production wells supplying the towns Zrenjanin and Temerin (Vojvodina, Serbia) was used. Due to its complex composition, the purification system required the combination of the electroreduction/electrocoagulation, using iron and aluminum electrode plates with/without ozonation, followed by the electromagnetic treatment and the finally by the simultaneous ozonation/UV treatment. The electroreduction was used for the removal of nitrates, nitrites, and Cr(VI), while the removal of arsenic, heavy metals, suspended solids, color and turbidity required the application of the electrocoagulation with simultaneous ozonation. Organic contaminants and ammonia were removed completely in the last treatment step by applying the simultaneous ozonation/UV treatment. All measured parameters in the purified water were significantly lower compared to the regulated values. Under the optimum treatment conditions, the removal efficiencies for color, turbidity, suspended solids, total arsenic, total chromium, Ni(II), total copper, sulfates, fluorides, chemical oxygen demand, ammonia, nitrates, and nitrites were 100%. The removal efficiencies of the total manganese and iron were 85.19% and 97.44%, respectively, whilst the final concentrations were 4 and 7 μg/L, respectively.

  11. Determination of phenolic compounds using spectral and color transitions of rhodium nanoparticles.

    PubMed

    Gatselou, Vasiliki; Christodouleas, Dionysios C; Kouloumpis, Antonios; Gournis, Dimitrios; Giokas, Dimosthenis L

    2016-08-17

    This work reports a new approach for the determination of phenolic compounds based on their interaction with citrate-capped rhodium nanoparticles. Phenolic compounds (i.e., catechins, gallates, cinnamates, and dihydroxybenzoic acids) were found to cause changes in the size and localized surface plasmon resonance of rhodium nanoparticles, and therefore, give rise to analyte-specific spectral and color transitions in the rhodium nanoparticle suspensions. Upon reaction with phenolic compounds (mainly dithydroxybenzoate derivatives, and trihydroxybenzoate derivatives), new absorbance peaks at 350 nm and 450 nm were observed. Upon reaction with trihydroxybenzoate derivatives, however, an additional absorbance peak at 580 nm was observed facilitating the speciation of phenolic compounds in the sample. Both absorbance peaks at 450 nm and 580 nm increased with increasing concentration of phenolic compounds over a linear range of 0-500 μM. Detection limits at the mid-micromolar levels were achieved, depending on the phenolic compound involved, and with satisfactory reproducibility (<7.3%). On the basis of these findings, two rhodium nanoparticles-based assays for the determination of the total phenolic content and total catechin content were developed and applied in tea samples. The obtained results correlated favorably with commonly used methods (i.e., Folin-Ciocalteu and aluminum complexation assay). Not the least, the finding that rhodium nanoparticles can react with analytes and exhibit unique localized surface plasmon resonance bands in the visible region, can open new opportunities for developing new optical and sensing analytical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Antioxidant activities of purple rice bran extract and its effect on the quality of low-NaCl, phosphate-free patties made from channel catfish (Ictalurus punctatus) belly flap meat.

    PubMed

    Min, B; Chen, M-H; Green, B W

    2009-04-01

    Purple rice bran contains high amounts of natural antioxidants that consist of water- and lipid-soluble compounds. Hexane-insoluble and hexane-soluble fractions were separated from 100% methanolic extract from purple rice bran (RBE-HI and RBE-HS, respectively). Total anthocyanin, tannin, flavonoid, and phenolics contents were determined in those fractions, and their antioxidant capacities were evaluated by measuring 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capability, oxygen radical absorbance capacity (ORAC), and iron chelating capability (ICC). RBE-HI and RBE-HS were also added to restructured patties made from minced channel catfish (Ictalurus punctatus) belly flap meat. Lipid oxidation, color, and/or textural properties were determined for raw and cooked patties during a 12-d storage at 4 degrees C. All antioxidant indices, except for ICC, of RBE-HI were significantly higher than those of RBE-HS due probably to its higher anthocyanin content (P < 0.05). RBE-HS showed higher ICC (P < 0.05). However, both fractions showed similar antioxidant activity in raw and cooked patties during storage, resulting from the complexity of antioxidant action in food systems. Textural properties (hardness, cohesiveness, chewiness, and springiness) in cooked patties with RBE-HS and RBE-HI were well maintained during storage, but changed significantly in the control (P < 0.05). Only RBE-HS limited microbial growth in raw patties during storage (P < 0.05), but its inhibitory effect was marginal because of low-dose and physical interactions with the matrix. L* (lightness) and a* (redness) of raw and cooked patties decreased significantly by both fractions, whereas b* (yellowness) was significantly decreased by RBE-HI and increased by RBE-HS (P < 0.05). In conclusion, we suggest that purple rice bran extract is applicable to meat products as a natural preservative, but color change in the products may limit its application.

  13. A New Graph for Understanding Colors of Mudrocks and Shales.

    ERIC Educational Resources Information Center

    Myrow, Paul Michael

    1990-01-01

    Reasons for color in sedimentary rocks are explored. Graphs relating the color of rock and corresponding organic content and oxidation state of iron, and of the temporal evolution of a rock sample, are presented. The development of these graphs is discussed. (CW)

  14. Bioavailability of zinc oxide added to corn tortilla is similar to that of zinc sulfate and is not affected by simultaneous addition of iron

    PubMed Central

    Rosado, Jorge L.; Díaz, Margarita; Muñoz, Elsa; Westcott, Jamie L.; González, Karla E.; Krebs, Nancy F.; Caamaño, María C.; Hambidge, Michael

    2013-01-01

    Background Corn tortilla is the staple food of Mexico and its fortification with zinc, iron, and other micronutrients is intended to reduce micronutrient deficiencies. However, no studies have been performed to determine the relative amount of zinc absorbed from the fortified product and whether zinc absorption is affected by the simultaneous addition of iron. Objective To compare zinc absorption from corn tortilla fortified with zinc oxide versus zinc sulfate and to determine the effect of simultaneous addition of two doses of iron on zinc bioavailability. Methods A randomized, double-blind, crossover design was carried out in two phases. In the first phase, 10 adult women received corn tortillas with either 20 mg/kg of zinc oxide added, 20 mg/kg of zinc sulfate added, or no zinc added. In the second phase, 10 adult women received corn tortilla with 20 mg/kg of zinc oxide added and either with no iron added or with iron added at one of two different levels. Zinc absorption was measured by the stable isotope method. Results The mean (± SEM) fractional zinc absorption from unfortified tortilla, tortilla fortified with zinc oxide, and tortilla fortified with zinc sulfate did not differ among treatments: 0.35 ± 0.07, 0.36 ± 0.05, and 0.37 ± 0.07, respectively. The three treatment groups with 0, 30, and 60 mg/kg of added iron had similar fractional zinc absorption (0.32 ± 0.04, 0.33 ± 0.02, and 0.32 ± 0.05, respectively) and similar amounts of zinc absorbed (4.8 ± 0.7, 4.5 ± 0.3, and 4.8 ± 0.7 mg/day, respectively). Conclusions Since zinc oxide is more stable and less expensive and was absorbed equally as well as zinc sulfate, we suggest its use for corn tortilla fortification. Simultaneous addition of zinc and iron to corn tortilla does not modify zinc bioavailability at iron doses of 30 and 60 mg/kg of corn flour. PMID:23424892

  15. Towards electrochromic devices having visible color switching using electronic push-push and push-pull cinnamaldehyde derivatives.

    PubMed

    Navarathne, Daminda; Skene, W G

    2013-12-11

    A series of symmetric and unsymmetric conjugated azomethines derived from cinnamaldehyde and 2,5-diaminothiophene-3,4-dicarboxylic acid diethyl ester were prepared. The optical, electrochemical, and spectroelectrochemical properties of the electronic push-pull and push-push triads were investigated. Their properties could be tuned contingent on the cinnamaldehyde's electron withdrawing and donating substituents. The push-push symmetric derivative exhibited positive solvatochromism with the absorbance spanning some 31 nm, depending on the solvent polarity. Solvent dependent spectroelectrochemistry was also found for the symmetric push-push azomethine. The color of the neutral state and radical cation spanned 215 nm. The most pronounced color transition of the purple colored material was found in dimethyl sulfoxide (DMSO), where the color bleached with electrochemical oxidation. This was a result of the absorbance shifting into the near infrared (NIR) and not from decomposition of the azomethine. Electrochromic devices with the azomethines possessing desired reversible oxidation and color changes in the visible were fabricated and tested to demonstrate the applicability of these azomethine triads in devices.

  16. Phytic acid concentration influences iron bioavailability from biofortified beans in Rwandese women with low iron status.

    PubMed

    Petry, Nicolai; Egli, Ines; Gahutu, Jean B; Tugirimana, Pierrot L; Boy, Erick; Hurrell, Richard

    2014-11-01

    The common bean is a staple crop in many African and Latin American countries and is the focus of biofortification initiatives. Bean iron concentration has been doubled by selective plant breeding, but the additional iron is reported to be of low bioavailability, most likely due to high phytic acid (PA) concentrations. The present study evaluated the impact of PA on iron bioavailability from iron-biofortified beans. Iron absorption, based on erythrocyte incorporation of stable iron isotopes, was measured in 22 Rwandese women who consumed multiple, composite bean meals with potatoes or rice in a crossover design. Iron absorption from meals containing biofortified beans (8.8 mg Fe, 1320 mg PA/100 g) and control beans (5.4 mg Fe, 980 mg PA/100 g) was measured with beans containing either their native PA concentration or with beans that were ∼50% dephytinized or >95% dephytinized. The iron concentration of the cooked composite meals with biofortified beans was 54% higher than in the same meals with control beans. With native PA concentrations, fractional iron absorption from the control bean meals was 9.2%, 30% higher than that from the biofortified bean meals (P < 0.001). The quantity of iron absorbed from the biofortified bean meals (406 μg) was 19% higher (P < 0.05) than that from the control bean meals. With ∼50% and >95% dephytinization, the quantity of iron absorbed from the biofortified bean meals increased to 599 and 746 μg, respectively, which was 37% (P < 0.005) and 51% (P < 0.0001) higher than from the control bean meals. PA strongly decreases iron bioavailability from iron-biofortified beans, and a high PA concentration is an important impediment to the optimal effectiveness of bean iron biofortification. Plant breeders should focus on lowering the PA concentration of high-iron beans. This trial was registered at clinicaltrials.gov as NCT01521273. © 2014 American Society for Nutrition.

  17. Automated enzymatic measurement of lecithin, sphingomyelin, and phosphatidylglycerol in amniotic fluid.

    PubMed

    Bradley, C A; Salhany, K E; Entman, S S; Aleshire, S L; Parl, F F

    1987-01-01

    We describe methods for automated enzymatic measurement of lecithin, sphingomyelin, and phosphatidylglycerol in amniotic fluid. Phospholipase C (EC 3.1.4.3) and sphingomyelin phosphodiesterase (EC 3.1.4.12) are reacted with lecithin and sphingomyelin, respectively, to liberate phosphocholine. Phosphocholine is then reacted with alkaline phosphatase, choline oxidase, peroxidase, and 4-aminoantipyrine to form a colored complex, for which the absorbance at 500 nm is measured with a centrifugal analyzer. Phosphatidylglycerol is hydrolyzed by phospholipase D (EC 3.1.4.4) to form glycerol, which is subsequently reacted with ATP and NAD+ in the presence of glycerol kinase and glycerol-3-phosphate dehydrogenase to yield NADH. The absorbance of the NADH formed is measured at 340 nm. These methods provide a simple, rapid, and accurate alternative to thin-layer chromatography for determination of phospholipids in amniotic fluid for assessment of fetal lung maturity.

  18. Effect of cell culture medium components on color of formulated monoclonal antibody drug substance.

    PubMed

    Vijayasankaran, Natarajan; Varma, Sharat; Yang, Yi; Mun, Melissa; Arevalo, Silvana; Gawlitzek, Martin; Swartz, Trevor; Lim, Amy; Li, Feng; Zhang, Boyan; Meier, Steve; Kiss, Robert

    2013-01-01

    As the industry moves toward subcutaneous delivery as a preferred route of drug administration, high drug substance concentrations are becoming the norm for monoclonal antibodies. At such high concentrations, the drug substance may display a more intense color than at the historically lower concentrations. The effect of process conditions and/or changes on color is more readily observed in the higher color, high concentration formulations. Since color is a product quality attribute that needs to be controlled, it is useful to study the impact of process conditions and/or modifications on color. This manuscript summarizes cell culture experiments and reports on findings regarding the effect of various media components that contribute to drug substance color for a specific monoclonal antibody. In this work, lower drug substance color was achieved via optimization of the cell culture medium. Specifically, lowering the concentrations of B-vitamins in the cell culture medium has the effect of reducing color intensity by as much as 25%. In addition, decreasing concentration of iron was also directly correlated color intensity decrease of as much as 37%. It was also shown that the color of the drug substance directly correlates with increased acidic variants, especially when increased iron levels cause increased color. Potential mechanisms that could lead to antibody coloration are briefly discussed. © 2013 American Institute of Chemical Engineers.

  19. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The...

  20. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The...

  1. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The...

  2. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The...

  3. The Effects of Cereals and Legumes on Iron Availability.

    DTIC Science & Technology

    1982-06-01

    vegetable protein FIGURE S Schematic diagam of the changes in the composition of soy beans as a result of processing. (Courtesy of L. Schutte) 24 (3) Moist...is influenced much more iron is absorbed by iron-deficient subjects and more than is heme iron by the composition of the diet less by those who are...from composite meals has been validated Rasmussen, 1981). Another precaution that must be in a number of ways (Hallberg, 1981a). As mentioned taken

  4. Azomethine H colorimetric method for determining dissolved boron in water

    USGS Publications Warehouse

    Spencer, R.R.; Erdmann, D.E.

    1979-01-01

    An automated colorimetric method for determining dissolved boron in water is described. The boron is complexed with azomethine H, which is readily available as the condensation product of H acid (8-amino-1-naphthol-3,6-disulfonic acid) and salicylaldehyde. The absorbance of the yellow complex formed is then measured colorimetrically at 410 nm. Interference effects from other dissolved species are minimized by the addition of diethylenetriaminepentaacetic acid (DTPA); however, iron, zinc, and bicarbonate interfere at concentrations above 400 ??g/L, 2000 ??g/L, and 200 mg/L, respectively. The bicarbonate interference can be eliminated by careful acidification of the sample with concentrated HCl to a pH between 5 and 6. Thirty samples per hour can be routinely analyzed over the range of from 10 to 400 ??g/L, boron.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinlein, Claudia; Zheng, Shao-Liang; Betley, Theodore A.

    Three ferric dipyrromethene complexes featuring different ancillary ligands were synthesized by one electron oxidation of ferrous precursors. Four-coordinate iron complexes of the type ( ArL)FeX 2 [ ArL = 1,9-(2,4,6-Ph 3C 6H 2) 2-5-mesityldipyrromethene] with X = Cl or tBuO were prepared and found to be high-spin (S = 5/2), as determined by superconducting quantum interference device magnetometry, electron paramagnetic resonance, and 57Fe Mössbauer spectroscopy. The ancillary ligand substitution was found to affect both ground state and excited properties of the ferric complexes examined. While each ferric complex displays reversible reduction and oxidation events, each alkoxide for chloride substitution resultsmore » in a nearly 600 mV cathodic shift of the Fe III/II couple. The oxidation event remains largely unaffected by the ancillary ligand substitution and is likely dipyrrin-centered. While the alkoxide substituted ferric species largely retain the color of their ferrous precursors, characteristic of dipyrrin-based ligand-to-ligand charge transfer (LLCT), the dichloride ferric complex loses the prominent dipyrrin chromophore, taking on a deep green color. Time-dependent density functional theory analyses indicate the weaker-field chloride ligands allow substantial configuration mixing of ligand-to-metal charge transfer into the LLCT bands, giving rise to the color changes observed. Furthermore, the higher degree of covalency between the alkoxide ferric centers is manifest in the observed reactivity. Delocalization of spin density onto the tert-butoxide ligand in ( ArL)FeCl(O tBu) is evidenced by hydrogen atom abstraction to yield ( ArL)FeCl and HOtBu in the presence of substrates containing weak C–H bonds, whereas the chloride ( ArL)FeCl 2 analogue does not react under these conditions.« less

  6. Enhanced and broadband microwave absorption of flake-shaped Fe and FeNi composite with Ba ferrites

    NASA Astrophysics Data System (ADS)

    Li, Wangchang; Lv, Junjun; Zhou, Xiang; Zheng, Jingwu; Ying, Yao; Qiao, Liang; Yu, Jing; Che, Shenglei

    2017-03-01

    In order to achieve a broad bandwidth absorber at high frequency, the composites of M-type ferrite BaCo1.0Ti1.0Fe10O19 (BaM) with flaked carbonyl iron powders (CIP) and flaked Fe50Ni50 were prepared to optimize the surface impedance in broadband frequency, respectively. The diameter of the flaked carbonyl iron powders (CIP) and Fe50Ni50 is in the range of 5-10 μm and 10-20 μm and the thickness of the CIP and Fe50Ni50 is close to 200 nm and 400 nm, respectively. The complex permeability and permittivity show that the addition of BaM obviously reduces the values of real part of permittivity and imaginary part of the permeability which can enhance the matched-wave-impedance. The absorption bands less than -10 dB of CIP-BaM and FeNi-BaM absorber approach to 5.5 GHz (5.7-11.2 GHz) and 7 GHz (11-18 GHz) at 1.5 mm. However, the bands of CIP and FeNi are only 1.9 GHz (4.7-6.6 GHz) and 2.1 GHz (4.0-6.1 GHz). Hence, the electromagnetic match property is greatly improved by BaM ferrites, and this composite shows a broaden absorption band.

  7. Origin of the X-ray Spectral Variation and Seemingly Broad Iron Line Strucuture in the Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Ebisawa, Ken; Naoki, Iso

    2012-07-01

    X-ray intensities and spectra of the Seyfert galaxies are known to be variable. Some of the sources have characteristic seemingly broad iron line structure, and their spectral variations are small in the iron line energy band. MCG-6-30-15 is such an archetypal source, and Miyakawa (2011) proposed a "Variable Partial Covering (VPC)" model to explain its continuum spectral variation, seemingly broad iron line structure, and small spectral variation in the iron energy band simultaneously, only due to variation of a single parameter. That single parameter is the "partial covering fraction" to describe the geometrical fraction of the X-ray emitting area covered by the ionized absorbers in the line of sight. The intrinsic X-ray luminosity is hardly variable in this model. We have applied the VPC model to the 27 Seyfert galaxies observed with Suzaku, and found that spectral variations of the 22 sources are successfully explained by this model only varying the partial covering fraction. Intrinsic X-ray luminosities of Seyfert galaxies are not variable, as opposed to what they apparently seem, and gravitationally red-shifted iron line is not necessary. Those ionized absorbing clouds are most likely to be Broad Line Region (BLR) clouds, and we will be able to constrain the BLR structure from X-ray observations.

  8. Mechanisms of Iron Uptake from Ferric Phosphate Nanoparticles in Human Intestinal Caco-2 Cells

    PubMed Central

    Perfecto, Antonio; Elgy, Christine; Valsami-Jones, Eugenia; Sharp, Paul; Hilty, Florentine; Fairweather-Tait, Susan

    2017-01-01

    Food fortification programs to reduce iron deficiency anemia require bioavailable forms of iron that do not cause adverse organoleptic effects. Rodent studies show that nano-sized ferric phosphate (NP-FePO4) is as bioavailable as ferrous sulfate, but there is controversy over the mechanism of absorption. We undertook in vitro studies to examine this using a Caco-2 cell model and simulated gastrointestinal (GI) digestion. Supernatant iron concentrations increased inversely with pH, and iron uptake into Caco-2 cells was 2–3 fold higher when NP-FePO4 was digested at pH 1 compared to pH 2. The size and distribution of NP-FePO4 particles during GI digestion was examined using transmission electron microscopy. The d50 of the particle distribution was 413 nm. Using disc centrifugal sedimentation, a high degree of agglomeration in NP-FePO4 following simulated GI digestion was observed, with only 20% of the particles ≤1000 nm. In Caco-2 cells, divalent metal transporter-1 (DMT1) and endocytosis inhibitors demonstrated that NP-FePO4 was mainly absorbed via DMT1. Small particles may be absorbed by clathrin-mediated endocytosis and micropinocytosis. These findings should be considered when assessing the potential of iron nanoparticles for food fortification. PMID:28375175

  9. The development of air shower in the iron absorber

    NASA Technical Reports Server (NTRS)

    Hazama, M.; Dake, S.; Harada, K.; Kawamoto, M.; Sakata, M.; Yamamoto, Y.; Sugihara, T.

    1985-01-01

    The iron open-sandwich experiments to observe one dimensional development of individual air showers were carried out at Akeno Observatory. One dimensional energy flow, incident energy and production height of shower is estimated using the data of size and age obtained from the above experiment and simple calculation.

  10. Retention of iron by infants.

    PubMed

    Fomon, S J; Nelson, S E; Ziegler, E E

    2000-01-01

    Throughout the world, the most common nutritional deficiency disorder of infants is iron deficiency. Developing effective strategies for preventing iron deficiency requires detailed knowledge of iron retention under ordinary living conditions. For the adult population, such knowledge is at an advanced stage, but relatively little is known about infants. Many reports of iron retention by infants have been based on the assumption that, as in normal and iron-deficient adults, 80%-100% of newly absorbed iron is promptly incorporated into circulating erythrocytes, but this assumption is not supported by available data. This communication presents a review of iron retention by term and preterm infants, as determined by metabolic balance studies or (59)Fe whole-body counting studies, and it explores the relationship between iron retention and postnatal age, iron nutritional status, iron intake (or dose), and type of feeding.

  11. Evaluation of humic substances removal from leachates originating from solid waste landfills in Rio de Janeiro State, Brazil.

    PubMed

    Lima, Letícia S M S; De Almeida, Ronei; Quintaes, Bianca R; Bila, Daniele M; Campos, Juacyara C

    2017-07-29

    This study aimed to evaluate the use of coagulation/flocculation and Fenton processes for the removal of the recalcitrant component, in particular humic substances, from two different leachates generated in the Gericinó and Gramacho landfills in Rio de Janeiro State (Brazil). A coagulation/flocculation process, using FeCl 3 ·6H 2 O as the coagulant, was applied to the two leachate samples. In the case of the leachate from Gericinó landfill, the treatment removed 93% of color, 71% of TOC, 69% of COD, 76% of HS, 73% of humic acids (HA) and 82% of fulvic acids (FA). In addition, there was a 75% reduction in the absorbance at 254 nm, using 3,000 mg L -1 of coagulant. In the case of the leachate from Gramacho landfill, the treatment removed 91% of color, 69% of TOC, 68% of COD, 77% of HS, 75% of HA and 80% of FA. In addition, there was a 70% reduction in the absorbance at 254 nm using the same concentration of coagulant (3,000 mg L -1 ). The Fenton processes, using FeSO 4 ·7H 2 O and H 2 O 2 in a ratio of 1:5, were also applied to the two leachate samples. In the case of the Gericinó leachate, the Fenton treatment removed 95% of color, 75% of TOC, 68% of COD, 82% of HS, 77% of HA and 93% of FA. In addition, there was a 93% reduction in the absorbance at 254 nm. In the case of the Gramacho leachate, the Fenton treatment removed 93% of color, 73% of TOC, 71% of COD, 81% of HS, 76% of HA, 90% of FA, and there was an 84% reduction in the absorbance at 254 nm. The results of humic substances, color, organic matter and aromatic organic matter (absorbance at 254 nm) demonstrate that the coagulation/flocculation and Fenton processes were efficient in the removal of recalcitrant organic matter from landfill leachates.

  12. RXTE Observations of A1744-361: Correlated Spectral and Timing Behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip; Strohmayer, Tod E.; Swank, Jean H.; Markwardt, Craig B.

    2007-01-01

    We analyze Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) data of the transient low mass X-ray binary (LMXB) system A1744-361. We explore the X-ray intensity and spectral evolution of the source, perform timing analysis, and find that A1744-361 is a weak LMXB, that shows atoll behavior at high intensity states. The color-color diagram indicates that this LMXB was observed in a low intensity spectrally hard (low-hard) state and in a high intensity banana state. The low-hard state shows a horizontal pattern in the color-color diagram, and the previously reported dipper QPO appears only during this state. We also perform energy spectral analyses, and report the first detection of broad iron emission line and iron absorption edge from A1744-361.

  13. [Cutaneous pigmentation related to intravenous iron extravasation: Analysis from the French pharmacovigilance database].

    PubMed

    Hermitte-Gandoliere, Alexia; Petitpain, Nadine; Lepelley, Marion; Thomas, Laure; Le Beller, Christine; Astoul, Jacqueline Ponte; Gillet, Pierre

    Intravenous iron infusion may be complicated by extravasation and lead to cutaneous pigmentation. We queried the French pharmacovigilance database to assess the spontaneously reported cases over the 2000-2016 period. Fifty-one cases of cutaneous pigmentation related to intravenous iron extravasation were retrieved, none was associated to necrosis. Most of patients were women aged 20 to 49 years old. The pigmentation was mostly a brown coloration, persisting over one month in 19 cases (37.2%) and over 6 months in 9 cases (17.6%). The management of extravasation and pigmentation was heterogeneous and was rarely followed by a decrease of the coloration. Cutaneous pigmentation after intravenous iron extravasation can persist over time and create an aesthetic prejudice, particularly in young women. Standardized extravasation and iron-induced pigmentation management procedures appear necessary. Copyright © 2017 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  14. Color separation system with angularly positioned light source module for pixelized backlighting.

    PubMed

    Chen, Po-Chou; Lin, Hui-Hsiung; Chen, Cheng-Huan; Lee, Chi-Hung; Lu, Mao-Hong

    2010-01-18

    A color-separation system that angularly positions color LEDs to produce color separation and a lens array to focus this light onto the pixels is proposed. The LED rays from different incident angles are mapped into corresponding sub-pixel positions to efficiently display color image, which can be used to replace the absorbing color filter in the conventional liquid crystal layer. In this paper, the prototype backlight has been designed, fabricated and characterized. The measurement results of this module showed that a gain factor of transmission efficiency three times more than that of conventional color filters efficiency improvement and a larger color gamut are expected.

  15. Effect of pH on the stability of hemochromatosis factor E: a combined spectroscopic and molecular dynamics simulation-based study.

    PubMed

    Khan, Parvez; Shandilya, Ashutosh; Jayaram, B; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2017-05-01

    Hereditary hemochromatosis is an iron overburden condition, which is mainly governed by hereditary hemochromatosis factor E (HFE), a member of major histocompatibility complex class I. To understand the effect of pH on the structure and stability of HFE, we have cloned, expressed, and purified the HFE in the bacterial system and performed circular dichroism, fluorescence, and absorbance measurements at a wide pH range (pH 3.0-11.0). We found that HFE remains stable in the pH range 7.5-11.0 and gets completely acid denatured at low pH values. In this work, we also analyzed the contribution of salt bridges to the stability of HFE. We further performed molecular dynamics simulations for 80 ns at different pH values. An excellent agreement was observed between results from biophysical and MD simulation studies. At lower pH, HFE undergoes denaturation and may be driven toward a degradation pathway, such as ubiquitination. Hence, HFE is not available to bind again with transferrin receptor1 to negatively regulate iron homeostasis. Further we postulated that, might be low pH of cancerous cells helps them to meet their high iron requirement.

  16. Decolorization of black liquor from bioethanol G2 production using iron oxide coating sands

    NASA Astrophysics Data System (ADS)

    Barlianti, Vera; Triwahyuni, Eka; Waluyo, Joko; Sari, Ajeng Arum

    2017-01-01

    Bioethanol G2 production using oil palm empty fruit bunch as raw material consists of four steps, namely pretreatment, hydrolysis, fermentation, and purification process. Pretreatment process generates black liquor that causes serious environmental pollution if it is released to the environment. The objective of this research is studying the ability of iron oxide coating sands to adsorb the color of black liquor. The iron oxide coating sands were synthesized from FeCl3.6H2O with quartz sands as support material. This research was conducted on batch mode using black liquor in various pH values. Result obtained that kind of iron oxide on quartz sands's surface was goethite. The result also indicated decreasing of color intensity of black liquor after adsorption process. This research supports local material utilization in environmental technology development to solve some environmental problems.

  17. Extrinsic Tooth Enamel Color Changes and Their Relationship with the Quality of Water Consumed

    PubMed Central

    de Sousa, Kathleen Rebelo; Batista, Marília Jesus; Gonçalves, Juliana Rocha; de Sousa, Maria da Luz Rosário

    2012-01-01

    The quality of the consumed drinking water may affect oral health. For example, the presence of iron in drinking water can cause aesthetic problems related to changes in dental enamel color. This study assessed the prevalence of extrinsic enamel color changes and their relationship with the quality of the water in the town of Caapiranga/AM-Brazil. Three hundred and forty six residents of the urban area were examined, and they also answered a questionnaire on eating habits and self-perceived oral health. As the initial results indicated an insufficient number of observations for the application of variance analysis (one-way ANOVA), the Student t test was chosen to compare levels of iron content in the water coming from two sources. The change in tooth color had a prevalence of 5.78% (20 people). The majority of the population (n = 261, 75.43%) consumed well water. Those who presented extrinsic stains were uncomfortable with the appearance of their teeth (15.09%). We conclude that while there is excess of iron in the water in this region of Brazil, no association between extrinsic stains on the enamel and the level of iron in the water was found. There was a low prevalence of extrinsic stains in Caaparinga, being found only in children and adolescents. In the present study, an association between the presence of stains and the consumption of açai was determined, and those who presented them felt uncomfortable about their aesthetics. PMID:23202761

  18. Acid mine drainage

    USGS Publications Warehouse

    Bigham, Jerry M.; Cravotta, Charles A.

    2016-01-01

    Acid mine drainage (AMD) consists of metal-laden solutions produced by the oxidative dissolution of iron sulfide minerals exposed to air, moisture, and acidophilic microbes during the mining of coal and metal deposits. The pH of AMD is usually in the range of 2–6, but mine-impacted waters at circumneutral pH (5–8) are also common. Mine drainage usually contains elevated concentrations of sulfate, iron, aluminum, and other potentially toxic metals leached from rock that hydrolyze and coprecipitate to form rust-colored encrustations or sediments. When AMD is discharged into surface waters or groundwaters, degradation of water quality, injury to aquatic life, and corrosion or encrustation of engineered structures can occur for substantial distances. Prevention and remediation strategies should consider the biogeochemical complexity of the system, the longevity of AMD pollution, the predictive power of geochemical modeling, and the full range of available field technologies for problem mitigation.

  19. Effect of tannic acid on iron absorption in straw-colored fruit bats(Eidolon helvum)

    USDA-ARS?s Scientific Manuscript database

    Excessive absorption and subsequent storage of dietary iron has been found in a variety of captively held birds and mammals, including fruit bats. It is thought that feeding a diet that is low in iron can prevent the onset of this disease; however, manufacturing a diet with commonly available foodst...

  20. Transforming reflectance spectra into Munsell color space by using prime colors.

    PubMed

    Romney, A Kimball; Fulton, James T

    2006-10-17

    Independent researchers have proved mathematically that, given a set of color-matching functions, there exists a unique set of three monochromatic spectral lights that optimizes luminous efficiency and color gamut. These lights are called prime colors. We present a method for transforming reflectance spectra into Munsell color space by using hypothetical absorbance curves based on Gaussian approximations of the prime colors and a simplified version of opponent process theory. The derived color appearance system is represented as a 3D color system that is qualitatively similar to a conceptual representation of the Munsell color system. We illustrate the application of the model and compare it with existing models by using reflectance spectra obtained from 1,269 Munsell color samples.

  1. Organic Exudates Enhance Iron Bioavailability to Trichodesmium (IMS101) by Modifying Fe Speciation

    NASA Astrophysics Data System (ADS)

    Tohidi Farid, H.; Rose, A.; Schulz, K.

    2016-02-01

    Although ferrous iron (Fe (II)) is believed to be the most readily absorbed form of Fe by cells, under alkaline and oxygenated conditions typical of marine environments, the thermodynamically stable Fe(III) state dominates. In marine environments, this Fe(III) is primarily presents as organic Fe(III)L complexes whose bioavailability is highly variable. However, it has been demonstrated that some eukaryotic marine algae are able to release organic ligands into their surrounding environments that change Fe bioavailability through complexation and/or redox reactions. Nevertheless, it is unclear how Fe(II) oxidation and Fe(III) reduction rates might be modified by these exudates and how this might increase or decrease iron bioavailability to microorganisms. Here, the role of natural organic ligands excreted by the cyanobacterium Trichodesmium erythraeum on the oxidation kinetics of Fe(II) was studied using the luminol chemiluminescence technique. The oxidation kinetics of Fe(II) were examined at nanomolar Fe concentrations in presence of different concentrations of EDTA and dissolved organic carbon exuded by Trichodesmium cells. The results indicated that an increase in the concentration of exuded organic matter, and consequently L:Fe(II) ratio, resulted in decreasing rates of Fe(II) oxidation by oxygen, primarily due to formation of Fe(II) complexes. Moreover, the results demonstrated that the exudates from Trichodesmium may be able to reduce Fe(III) to the more bioavailable Fe(II) state under some circumstances. This study therefore supports the ability of microorganisms to manipulate Fe bioavailability by releasing organic compounds into the extracellular environment that retard Fe(II) oxidation rates or reducing Fe(III) species to Fe(II). It also provides new insight into the potential mechanism(s) by which Trichdesmium may acquire Fe under conditions where Fe bioavailability is otherwise limited.

  2. Guidance for selecting the measurement conditions in the dye-binding method for determining serum protein: theoretical analysis based on the chemical equilibrium of protein error.

    PubMed

    Suzuki, Y

    2001-11-01

    A methodology for selecting the measurement conditions in the dye-binding method for determining serum protein has been studied by a theoretical calculation. This calculation was based on the fact that a protein error occurs because of a reaction between the side chains of a positively charged amino acid residue in a protein molecule and a dissociated dye anion. The calculated characteristics of this method are summarized as follows: (1) Although the reaction between the dye and the protein occurs up to about pH 12, a change in the color shade, called protein error, is observed only in a pH region restricted within narrow limits. (2) Although the apparent absorbance (the absorbance of the test solution measured against a reagent blank) is lower than the true absorbance indicated by the formed dye-protein complex, the apparent absorbance correlates with the true absorbance with a correlation coefficient of 1.0. (3) At a higher dye concentration, the calibration curve is more linear at a higher pH than at a lower pH. Most of these characteristics were similarly observed experimentally in the reactions of BPB, BCG and BCP with human and bovine albumins. It is concluded that in order to ensure the linearity of the calibration curve, the measurement should be performed at a higher dye concentration and sufficiently high pH where the detection sensitivity is satisfied.

  3. Aqueous two-phase extraction of nickel dimethylglyoximato complex and its application to spectrophotometric determination of nickel in stainless steel.

    PubMed

    Yoshikuni, Nobutaka; Baba, Takayuki; Tsunoda, Natsuki; Oguma, Koichi

    2005-03-31

    A polyethylene glycol (PEG)-based aqueous two-phase system has been established for the extraction of Ni-dimethylglyoximato complex. Appropriate amounts of PEG solution and solid (NH(4))(2)SO(4) were added to the Ni-dimethylglyoximato complex which had been formed in the presence of sodium tartrate and K(2)S(2)O(8) at pH 12 in a separatory funnel and shaken vigorously for about 1min. The mixture was allowed to stand for 10min and then the absorbance of the extracted complex in the upper PEG-rich phase was measured at 470nm. Beer's law was obeyed over the range of 0.26-2.1ppm Ni. The proposed extraction method has been applied to the determination of Ni in steel. A steel sample was decomposed with an appropriate acid mixture. An aliquot of the sample solution was taken, treated with H(3)PO(4) and most of the iron and copper were removed by hydroxide precipitation using solid BaCO(3) to control the pH of the sample solution in advance of the extraction of Ni. The analytical results obtained for Ni in steel certified reference material JSS 650-10 (The Japan Iron and Steel Federation), BCS 323 (Bureau of Analysed Samples Ltd.) and NIST SRM 361 and 362 (National Institute of Standards and Technology) were in good agreement with certified values.

  4. Characterizing the discoloration of EBT3 films in solar UV A+B measurement using red LED

    NASA Astrophysics Data System (ADS)

    Omar, Ahmad Fairuz; Osman, Ummi Shuhada; Tan, Kok Chooi

    2017-09-01

    This research article proposes an alternative method to measure the discoloration or the color changes of EBT3 films due to exposure by solar ultraviolet (UV A+B) dose. Common methods to measure the color changes of EBT3 are through imaging technique measured by flatbed scanner and through absorbance spectroscopy measured by visible spectrometer. The research presented in this article measure the color changes of EBT3 through simplified optical system using the combination of light emitting diode (LED) as the light source and photodiode as the detector. In this research, 50 pieces of Gafchromic EBT3 films were prepared with the dimension of 3 cm x 2 cm. Color of the films changed from light green to dark green based on the total accumulated UV dose (mJ/cm2) by each film that depends on the duration of exposure, irradiance level (mW/cm2) and condition of the sky. The exposed films were then taken to the laboratory for its color measurement using absorbance spectroscopy technique and using newly developed simplified optical instrument using LED-photodiode. Results from spectroscopy technique indicate that wavelength within red region exhibit better response in term of linearity and responsivity towards the colors of EBT3 films. Wavelength of 626 nm was then selected as the peak emission wavelength for LED-photodiode absorbance system. UV dose measurement using LEDphotodiode system produced good result with coefficient of determination, R2 of 0.97 and root mean square of error, RMSE of 431.82 mJ/cm2 while comparatively, similar wavelength but analyzed from spectroscopy dataset produced R2 of 0.988 and RMSE of 268.94 mJ/cm2.

  5. Underestimation of pyruvic acid concentrations by fructose and cysteine in 2,4-dinitrophenylhydrazine-mediated onion pungency test.

    PubMed

    Yoo, Kil Sun; Lee, Eun Jin; Patil, Bhimanagouda S

    2011-10-01

    Onion pungency has been routinely measured by determining pyruvic acid concentration in onion juice by reacting with 2,4-dinitrophenylhydrazine (DNPH) since 1961. However, the absorbency of the color adduct of the reaction rapidly decreased in onion samples as compared to that of the pyruvic acid standards, resulting in underestimations of the pyruvic acid concentrations. By measuring the absorbency at 1 min, we have demonstrated that accuracy could be substantially improved. As a continuation, the causes of degradation of the color adduct after the reaction and pyruvic acid itself before the reaction were examined in this study. Alliinase action in juice (fresh or cooked) and bulb colors did not influence the degradation. Some organic acids indigenously found in onion, such as ascorbic acid, proline, and glutamic acid, did not reduce the absorbency. However, fructose within the onion juice or supplemented caused the degradation of the color adduct, whereas sucrose and glucose had a lesser effect. Degradation rates increased proportionally as fructose concentrations increased up to 70 mg/mL. Cysteine was found to degrade the pyruvic acid itself before the pyruvic acid could react with DNPH. Approximately 90% of the pyruvic acid was degraded after 60 min in samples of 7 mM pyruvic acid supplemented with 10 mg/mL cysteine. Spectral comparisons of onion juice containing fructose naturally and pyruvic acid solution with supplemented fructose indicated identical patterns and confirmed that the color-adduct degradation was caused by fructose. Our study elucidated that fructose, a major sugar in onion juice, caused the degradation of color adduct in the onion pungency test and resulted in underestimation of the pyruvic acid concentration. © 2011 Institute of Food Technologists®

  6. Kinetics of color development of melanoidins formed from fructose/amino acid model systems.

    PubMed

    Echavarría, A P; Pagán, J; Ibarz, A

    2014-03-01

    The formation of soluble melanoidins from a single combination of sugar (fructose) and amino acid model systems were evaluated kinetically. The selected amino acids, commonly found in apple juice and highly reactive in the Maillard reaction, were asparagine, aspartic acid, and glutamic acid. The effect of these reagents and the treatment at different temperatures (50 , 85 , and 100 ) during 96 h on the color intensity of the melanoidin formed was measured by absorbance at different wavelengths (280, 325, 405, and 420 nm). The absorbance of the melanoidin formed from all model systems was located on the wavelength of 405 nm, that is, the area of the visible spectrum close to the UV region. The color of the melanoidins was directly measured using the CIELAB color space system. A first-order kinetic model was applied to the evolution of the ΔE * (color difference) and L * (lightness) of the color. The fructose/aspartic acid model system values of a * (redness) and b * (yellowness) were found in the brown-red zone. Therefore, the color development of the melanoidins was influenced by the type of amino acid and temperature. Especially, it is thought that the a * and b * values can be used to explain the differences among the amino acids in the color development of melanoidins.

  7. Emission coefficients of low temperature thermal iron plasma

    NASA Astrophysics Data System (ADS)

    Mościcki, T.; Hoffman, J.; Szymański, Z.

    2004-03-01

    Iron plasma appears during material processing with laser, electric are etc., and has considerable influence on the processing conditions. In this paper emission coefficients of low temperature thermal iron plasma at atmospheric pressure are presented. Net emission coefficients ɛ N have been calculated for pure iron plasma as well as for Fe-Ar and Fe-He plasma mixtures. To calculate the recombination radiation the knowledge of the Biberman factors ξ {fb/z}( T e, λ) is necessary and they have been calculated from the iron photo-ionization cross sections. The calculations allow estimation of energy losses, energy radiated by plasma plume and its comparison with the energy absorbed from laser beam.

  8. Colorimetric aptasensor for progesterone detection based on surfactant-induced aggregation of gold nanoparticles.

    PubMed

    Du, Gaoshang; Wang, Lumei; Zhang, Dongwei; Ni, Xuan; Zhou, Xiaotong; Xu, Hanyi; Xu, Lurong; Wu, Shijian; Zhang, Tong; Wang, Wenhao

    2016-12-01

    This paper proposes an aptasensor for progesterone (P4) detection in human serum and urine based on the aggregating behavior of gold nanoparticles (AuNPs) controlled by the interactions among P4-binding aptamer, target P4 and cationic surfactant hexadecyltrimethylammonium bromide (CTAB). The aptamer can form an aptamer-P4 complex with P4, leaving CTAB free to aggregate AuNPs in this aptasensor. Thus, the sensing solution will turn from red (520 nm) to blue (650 nm) in the presence of P4 because P4 aptamers are used up firstly owing to the formation of an aptamer-P4 complex, leaving CTAB free to aggregate AuNPs. However, in the absence of P4, CTAB combines with aptamers so that AuNPs still remain dispersed. Therefore, this assay makes it possible to detect P4 not only by absorbance measurement but also through naked eyes. By monitoring the variation of absorbance and color, a CTAB-induced colorimetric assay for P4 detection was established with a detection limit of 0.89 nM. Besides, the absorbance ratio A650/A520 has a linear correlation with the P4 concentration of 0.89-500 nM. Due to the excellent recoveries in serum and urine, this biosensor has great potential with respect to the visual and instrumental detection of P4 in biological fluids. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Efficient color display using low-absorption in-pixel color filters

    NASA Technical Reports Server (NTRS)

    Wang, Yu (Inventor)

    2000-01-01

    A display system having a non-absorbing and reflective color filtering array and a reflector to improve light utilization efficiency. One implementation of the color filtering array uses a surface plasmon filter having two symmetric metal-dielectric interfaces coupled with each other to produce a transmission optical wave at a surface plasmon resonance wavelength at one interface from a p-polarized input beam on the other interface. Another implementation of the color filtering array uses a metal-film interference filter having two dielectric layers and three metallic films.

  10. Selective sensing of submicromolar iron(III) with 3,3‧,5,5‧-tetramethylbenzidine as a chromogenic probe

    NASA Astrophysics Data System (ADS)

    Zhang, Lufeng; Du, Jianxiu

    2016-04-01

    The development of highly selective and sensitive method for iron(III) detection is of great importance both from human health as well as environmental point of view. We herein reported a simple, selective and sensitive colorimetric method for the detection of Fe(III) at submicromolar level with 3,3,‧5,5‧-tetramethylbenzidine (TMB) as a chromogenic probe. It was observed that Fe(III) could directly oxidize TMB to form a blue solution without adding any extra oxidants. The reaction has a stoichiometric ratio of 1:1 (Fe(III)/TMB) as determined by a molar ratio method. The resultant color change can be perceived by the naked eye or monitored the absorbance change at 652 nm. The method allowed the measurement of Fe(III) in the range 1.0 × 10- 7-1.5 × 10- 4 mol L- 1 with a detection limit of 5.5 × 10- 8 mol L- 1. The relative standard deviation was 0.9% for eleven replicate measurements of 2.5 × 10- 5 mol L- 1 Fe(III) solution. The chemistry showed high selectivity for Fe(III) in contrast to other common cation ions. The practically of the method was evaluated by the determination of Fe in milk samples; good consistency was obtained between the results of this method and atomic absorption spectrophotometry as indicated by statistical analysis.

  11. Nano-iron Tracer Test for Characterizing Preferential Flow Path in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Chia, Y.; Chuang, P. Y.

    2015-12-01

    Deterministic description of the discrete features interpreted from site characterization is desirable for developing a discrete fracture network conceptual model. It is often difficult, however, to delineate preferential flow path through a network of discrete fractures in the field. A preliminary cross-borehole nano-iron tracer test was conducted to characterize the preferential flow path in fractured shale bedrock at a hydrogeological research station. Prior to the test, heat-pulse flowmeter measurements were performed to detect permeable fracture zones at both the injection well and the observation well. While a few fracture zones are found permeable, most are not really permeable. Chemical reduction method was used to synthesize nano zero-valent iron particles with a diameter of 50~150 nm. The conductivity of nano-iron solution is about 3100 μs/cm. The recorded fluid conductivity shows the arrival of nano-iron solution in the observation well 11.5 minutes after it was released from the injection well. The magnetism of zero-valent iron enables it to be absorbed on magnet array designed to locate the depth of incoming tracer. We found nearly all of absorbed iron on the magnet array in the observation well were distributed near the most permeable fracture zone. The test results revealed a preferential flow path through a permeable fracture zone between the injection well and the observation well. The estimated hydraulic conductivity of the connected fracture is 2.2 × 10-3 m/s. This preliminary study indicated that nano-iron tracer test has the potential to characterize preferential flow path in fractured rock.

  12. FACTORS AFFECTING COLORED DISSOLVED ORGANIC MATTER IN AQUATIC ENVIRONMENTS OF THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    The sunlight-absorbing (colored) component of dissolved organic matter (CDOM) in aquatic environments is widely distributed in freshwaters and coastal regions where it influences the fate and transport of toxic organic substances and biologically-important metals such as mercury,...

  13. Food Based Complementary Feeding Strategies for Breastfed Infants: What's the Evidence that it Matters?

    PubMed Central

    Krebs, Nancy F.

    2015-01-01

    The period of complementary feeding represents a major portion of the 1000 day critical window and thus impacts a period of substantial and dynamic infant development. This review highlights and synthesizes findings of several recent studies conducted to evaluate food based strategies on outcomes related to micronutrient status, growth and neurocognitive development. Particular emphasis is placed on interventions using meat or fortified products to impact iron and zinc intakes, due to the dependence of breastfed infants on complementary food choices to meet requirements for these two critical micronutrients. Regular consumption of modest amounts of meat or fortified cereals provides adequate absorbed zinc to meet estimated physiologic requirements, whereas homeostatic adaptation to lower zinc intake from unfortified cereal/plant staples is inadequate to meet requirements. Iron fortification of cereals may be somewhat more effective than meat to improve iron status, but neither prevents iron deficiency in breastfed infants, even in westernized settings. Improvements in the quality of complementary foods have had very modest effects on linear growth in settings where stunting is prevalent. Maternal education is strongly associated with both linear growth and with child neurodevelopment. The determinants of early growth faltering are more complex and intractable than ‘simple’ dietary deficiencies of micronutrients. Solutions to growth faltering in young children most likely need to be multi-factorial, and almost certainly will need to start earlier than the complementary feeding period. PMID:26549893

  14. Hybrid zero valent iron (ZVI)/H2O2 oxidation process for landfill leachate treatment with novel nanosize metallic calcium/iron composite.

    PubMed

    Lee, Son Dong; Mallampati, Srinivasa Reddy; Lee, Byoung Ho

    2017-04-01

    A novel nanosize metallic calcium/iron dispersed reagent was synthesized and tested as coagulant/catalyst in a hybrid zero valent iron (ZVI)/H 2 O 2 oxidation process to treat leachate. Two different types of leachates, one from municipal solid waste (MSW) tipping hall (MSWIL) and second from an MSW landfill site (MSWLL), were collected and characterized. The morphology, elemental composition, and mineral phases of the nano-Ca/CaO and nano-Fe/Ca/CaO were characterized by scanning electron microscopy-electron dispersive spectroscopy (SEM-EDS) and x-ray powder diffraction (XRD) analysis. The coagulation process with 2.5 g L -1 nano-Ca/CaO attained 64.0, 56.0, and 20.7% removal of color, chemical oxygen demand (COD), and total suspended solids (TSS) in MSWLL. With only 1.0 g L -1 of nano-Fe/Ca/CaO, relatively high color, COD and TSS removal was achieved in MSWLL at 67.5, 60.2, and 37.7%, respectively. The heavy metal removal efficiency reached 91-99% after treatment with nano-Fe/Ca/CaO in both leachate samples. The coupling process, using 1.0 g L -1 of nano-Fe/Ca/CaO and 20 mM H 2 O 2 doses, achieved enhancement removal of color, COD, and TSS, up to 95%, 96%, and 66%, respectively, without initial pH control. After this treatment, the color, COD, TSS, and heavy metals were significantly decreased, fitting the Korean discharge regulation limit. A hybrid coupled zero valent iron (ZVI)/H 2 O 2 oxidation process with novel nanosized metallic calcium/iron dispersed reagent proved to be a suitable treatment for dealing with leachate samples. Conventional treatments (biological or physicochemical) are not sufficient anymore to reach the level of purification needed to fully reduce the negative impact of landfill leachates on the environment. This implies that new treatment alternatives species must be proposed. A coupled zero valent iron (ZVI)/H 2 O 2 oxidation process proved to be a suitable treatment for dealing with leachate samples. Coagulation with nFe/Ca/CaO allows 91-99% of heavy metals removal. The coupled coagulation-oxidation process by nFe/Ca/CaO reveals excellent ability to treat leachate. After coupled treatment the color, COD, and TSS were also much lower than the discharge regulation limit.

  15. Nuclear electromagnetic cascades from nuclei with Z larger than or equal to 3

    NASA Technical Reports Server (NTRS)

    Jones, W. V.

    1971-01-01

    A Monte Carlo simulation method was developed for studying nuclear-electromagnetic cascades initiated by high energy nuclei with Z or = 3 incident on heavy absorbers. The calculations are based on a cascade model which was first adjusted until it agreed with measurements made with protons at an accelerator. Modifications of the model used for protons include the incorporation of the probabilities for fragmentation of heavy nuclei into lighter nuclei, alpha particles, and nucleons. Mean values and fluctuations of the equivalent numbers of particles in the cascades at various depths in an iron absorber are presented for protons, carbon, and iron nuclei over the 30 to 300 GeV/nucleon energy range.

  16. Whey Peptide-Iron Complexes Increase the Oxidative Stability of Oil-in-Water Emulsions in Comparison to Iron Salts.

    PubMed

    Caetano-Silva, Maria Elisa; Barros Mariutti, Lilian Regina; Bragagnolo, Neura; Bertoldo-Pacheco, Maria Teresa; Netto, Flavia Maria

    2018-02-28

    Food fortification with iron may favor lipid oxidation in both food matrices and the human body. This study aimed at evaluating the effect of peptide-iron complexation on lipid oxidation catalyzed by iron, using oil-in-water (O/W) emulsions as a model system. The extent of lipid oxidation of emulsions containing iron salts (FeSO 4 or FeCl 2 ) or iron complexes (peptide-iron complexes or ferrous bisglycinate) was evaluated during 7 days, measured as primary (peroxide value) and secondary products (TBARS and volatile compounds). Both salts catalyzed lipid oxidation, leading to peroxide values 2.6- to 4.6-fold higher than the values found for the peptide-iron complexes. The addition of the peptide-iron complexes resulted in the formation of lower amounts of secondary volatiles of lipid oxidation (up to 78-fold) than those of iron salts, possibly due to the antioxidant activity of the peptides and their capacity to keep iron apart from the lipid phase, since the iron atom is coordinated and takes part in a stable structure. The peptide-iron complexes showed potential to reduce the undesirable sensory changes in food products and to decrease the side effects related to free iron and the lipid damage of cell membranes in the organism, due to the lower reactivity of iron in the complexed form.

  17. Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms.

    PubMed

    Wilts, Bodo D; Vey, Aidan J M; Briscoe, Adriana D; Stavenga, Doekele G

    2017-11-21

    Longwing butterflies, Heliconius sp., also called heliconians, are striking examples of diversity and mimicry in butterflies. Heliconians feature strongly colored patterns on their wings, arising from wing scales colored by pigments and/or nanostructures, which serve as an aposematic signal. Here, we investigate the coloration mechanisms among several species of Heliconius by applying scanning electron microscopy, (micro)spectrophotometry, and imaging scatterometry. We identify seven kinds of colored scales within Heliconius whose coloration is derived from pigments, nanostructures or both. In yellow-, orange- and red-colored wing patches, both cover and ground scales contain wavelength-selective absorbing pigments, 3-OH-kynurenine, xanthommatin and/or dihydroxanthommatin. In blue wing patches, the cover scales are blue either due to interference of light in the thin-film lower lamina (e.g., H. doris) or in the multilayered lamellae in the scale ridges (so-called ridge reflectors, e.g., H. sara and H. erato); the underlying ground scales are black. In the white wing patches, both cover and ground scales are blue due to their thin-film lower lamina, but because they are stacked upon each other and at the wing substrate, a faint bluish to white color results. Lastly, green wing patches (H. doris) have cover scales with blue-reflecting thin films and short-wavelength absorbing 3-OH-kynurenine, together causing a green color. The pigmentary and structural traits are discussed in relation to their phylogenetic distribution and the evolution of vision in this highly interesting clade of butterflies.

  18. The Sensitivity of SeaWiFS Ocean Color Retrievals to Aerosol Amount and Type

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Sayer, Andrew M.; Ahmad, Ziauddin; Franz, Bryan A.

    2016-01-01

    As atmospheric reflectance dominates top-of-the-atmosphere radiance over ocean, atmospheric correction is a critical component of ocean color retrievals. This paper explores the operational Sea-viewing Wide Field-of-View Sensor (SeaWiFS) algorithm atmospheric correction with approximately 13 000 coincident surface-based aerosol measurements. Aerosol optical depth at 440 nm (AOD(sub 440)) is overestimated for AOD below approximately 0.1-0.15 and is increasingly underestimated at higher AOD; also, single-scattering albedo (SSA) appears overestimated when the actual value less than approximately 0.96.AOD(sub 440) and its spectral slope tend to be overestimated preferentially for coarse-mode particles. Sensitivity analysis shows that changes in these factors lead to systematic differences in derived ocean water-leaving reflectance (Rrs) at 440 nm. The standard SeaWiFS algorithm compensates for AOD anomalies in the presence of nonabsorbing, medium-size-dominated aerosols. However, at low AOD and with absorbing aerosols, in situ observations and previous case studies demonstrate that retrieved Rrs is sensitive to spectral AOD and possibly also SSA anomalies. Stratifying the dataset by aerosol-type proxies shows the dependence of the AOD anomaly and resulting Rrs patterns on aerosol type, though the correlation with the SSA anomaly is too subtle to be quantified with these data. Retrieved chlorophyll-a concentrations (Chl) are affected in a complex way by Rrs differences, and these effects occur preferentially at high and low Chl values. Absorbing aerosol effects are likely to be most important over biologically productive waters near coasts and along major aerosol transport pathways. These results suggest that future ocean color spacecraft missions aiming to cover the range of naturally occurring and anthropogenic aerosols, especially at wavelengths shorter than 440 nm, will require better aerosol amount and type constraints.

  19. Curiosity's ChemCam Checks 'Christmas Cove' Colors

    NASA Image and Video Library

    2017-11-01

    The Chemistry and Camera (ChemCam) instrument on NASA's Curiosity Mars rover examined a freshly brushed area on target rock "Christmas Cove" and found spectral evidence of hematite, an iron-oxide mineral. ChemCam sometimes zaps rocks with a laser, but can also be used, as in this case, in a "passive" mode. In this type of investigation, the instrument's telescope delivers to spectrometers the sunlight reflected from a small target point. The upper-left inset of this graphic is an image from ChemCam's Remote Micro-Imager with five labeled points that the instrument analyzed. The image covers an area about 2 inches (5 centimeters) wide, and the bright lines are fractures in the rock filled with calcium sulfate minerals. The five charted lines of the graphic correspond to those five points and show the spectrometer measurements of brightness at thousands of different wavelengths, from 400 nanometers (at the violet end of the visible-light spectrum) to 840 nanometers (in near-infrared). Sections of the spectrum measurements that are helpful for identifying hematite are annotated. These include a dip around 535 nanometers, the green-light portion of the spectrum at which fine-grained hematite tends to absorb more light and reflect less compared to other parts of the spectrum. That same green-absorbing characteristic of the hematite makes it appear purplish when imaged through special filters of Curiosity's Mast Camera and even in usual color images. The spectra also show maximum reflectance values near 750 nanometers, followed by a steep decrease in the spectral slope toward 840 nanometers, both of which are consistent with hematite. This ChemCam examination of Christmas Cove was part of an experiment to determine whether the rock had evidence of hematite under a tan coating of dust. The target area was brushed with Curiosity's Dust Removal Tool prior to these ChemCam passive observations on Sept. 17, 2017, during the 1,819th Martian day, or sol, of Curiosity's work on Mars. https://photojournal.jpl.nasa.gov/catalog/PIA22068

  20. X-ray wind tomography of IGR J17252-3616

    NASA Astrophysics Data System (ADS)

    Manousakis, Antonios; Walter, Roland

    IGR J17252-3616 is an heavily absorbed and eclipsing High Mass X-ray Binary with an ab-sorbing hydrogen column density >1023 cm-2 . We have observed it with XMM-Newton to understand the geometry of the absorbing material. Observations were scheduled in order to cover as many orbital phases as possible. Timing analysis is constraining the orbital solution and the physical parameters of the system. Spectral analysis reveals remarkable variations of the absorbing column density and of the Iron Kα fluorescence line around the eclipse. These variations allow to map the geometry of the absorbing and reflection material. Very large accretion structures could be imaged for the first time.

  1. Circulating non–transferrin-bound iron after oral administration of supplemental and fortification doses of iron to healthy women: a randomized study1234

    PubMed Central

    Andersson, Maria; Egli, Ines; Foman, Jasmin Tajeri; Zeder, Christophe; Westerman, Mark E; Hurrell, Richard F

    2014-01-01

    Background: After the oral administration of iron, the production of circulating non–transferrin-bound iron may contribute to an increased risk of illness in malaria-endemic areas that lack effective medical services. Objective: In healthy women with a range of body iron stores, we aimed to determine effects on the production of circulating non–transferrin-bound iron resulting from the oral administration of 1) a supplemental dose of iron (60 mg) with water, 2) a supplemental dose of iron (60 mg) with a standard test meal, and 3) a fortification dose of iron (6 mg) with a standard test meal. Design: With the use of serum ferritin as the indicator, healthy women with replete iron stores (ferritin concentration >25 μg/L; n = 16) and reduced iron stores (ferritin concentration ≤25 μg/L; n = 16) were enrolled in a prospective, randomized, crossover study. After the oral administration of aqueous solutions of ferrous sulfate isotopically labeled with 54Fe, 57Fe, or 58Fe, blood samples were collected for 8 h, and iron absorption was estimated by erythrocyte incorporation at 14 d. Results: At 4 h, serum non–transferrin-bound iron reached peaks with geometric mean (95% CI) concentrations of 0.81 μmol/L (0.56, 1.1 μmol/L) for 60 mg Fe with water and 0.26 μmol/L (0.15, 0.38 μmol/L) for 60 mg Fe with food but was at assay limits of detection (0.1 μmol Fe/L) for 6 mg Fe with food. For the 60 mg Fe without food, the area under the curve over 8 h for serum non–transferrin-bound iron was positively correlated with the amount of iron absorbed (R = 0.49, P < 0.01) and negatively correlated with serum ferritin (R = −0.39, P < 0.05). Conclusions: In healthy women, the production of circulating non–transferrin-bound iron is determined by the rate and amount of iron absorbed. The highest concentrations of non–transferrin-bound iron resulted from the administration of supplemental doses of iron without food. Little or no circulating non–transferrin-bound iron resulted from the consumption of a meal with a fortification dose of iron. This trial was registered at clinicaltrials.gov as NCT01404533. PMID:25057155

  2. Circulating non-transferrin-bound iron after oral administration of supplemental and fortification doses of iron to healthy women: a randomized study.

    PubMed

    Brittenham, Gary M; Andersson, Maria; Egli, Ines; Foman, Jasmin Tajeri; Zeder, Christophe; Westerman, Mark E; Hurrell, Richard F

    2014-09-01

    After the oral administration of iron, the production of circulating non-transferrin-bound iron may contribute to an increased risk of illness in malaria-endemic areas that lack effective medical services. In healthy women with a range of body iron stores, we aimed to determine effects on the production of circulating non-transferrin-bound iron resulting from the oral administration of 1) a supplemental dose of iron (60 mg) with water, 2) a supplemental dose of iron (60 mg) with a standard test meal, and 3) a fortification dose of iron (6 mg) with a standard test meal. With the use of serum ferritin as the indicator, healthy women with replete iron stores (ferritin concentration >25 μg/L; n = 16) and reduced iron stores (ferritin concentration ≤25 μg/L; n = 16) were enrolled in a prospective, randomized, crossover study. After the oral administration of aqueous solutions of ferrous sulfate isotopically labeled with ⁵⁴Fe, ⁵⁷Fe, or ⁵⁸Fe, blood samples were collected for 8 h, and iron absorption was estimated by erythrocyte incorporation at 14 d. At 4 h, serum non-transferrin-bound iron reached peaks with geometric mean (95% CI) concentrations of 0.81 μmol/L (0.56, 1.1 μmol/L) for 60 mg Fe with water and 0.26 μmol/L (0.15, 0.38 μmol/L) for 60 mg Fe with food but was at assay limits of detection (0.1 μmol Fe/L) for 6 mg Fe with food. For the 60 mg Fe without food, the area under the curve over 8 h for serum non-transferrin-bound iron was positively correlated with the amount of iron absorbed (R = 0.49, P < 0.01) and negatively correlated with serum ferritin (R = -0.39, P < 0.05). In healthy women, the production of circulating non-transferrin-bound iron is determined by the rate and amount of iron absorbed. The highest concentrations of non-transferrin-bound iron resulted from the administration of supplemental doses of iron without food. Little or no circulating non-transferrin-bound iron resulted from the consumption of a meal with a fortification dose of iron. © 2014 American Society for Nutrition.

  3. TH-CD-BRA-08: Novel Iron-Based Radiation Reporting Systems as 4D Dosimeters for MR-Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H; Alqathami, M; Wang, J

    Purpose: To compare novel radiation reporting systems utilizing ferric ion (Fe{sup 3+}) reduction versus ferrous ion (Fe{sup 2+}) oxidation in gelatin matrixes for 3D and 4D (3D+time) MR-guided radiation therapy dosimetry. Methods: Dosimeters were irradiated using an integrated 1.5T MRI and 7MV linear accelerator (MR-Linac). Dosimeters were read-out with both a spectrophotometer and the MRI component of the MR-Linac immediately after irradiation. Changes in optical density (OD) were measured using a spectrophotometer; changes in MR signal intensity due to the paramagnetic differences in the iron ions were measured using the MR-Linac in real-time during irradiation (balanced-FFE sequences) and immediately aftermore » irradiation (T{sub 1}-weighted and inversion recovery sequences). Results: Irradiation of Fe{sup 3+} reduction dosimeters resulted in a stable red color with an absorbance peak at 512 nm. The change in OD relative to dose exhibited a linear response up to 100 Gy (R{sup 2}=1.00). T{sub 1}-weighted-MR signal intensity (SI) changed minimally after irradiation with increases of 8.0% for 17 Gy and 9.7% after escalation to 35 Gy compared to the un-irradiated region. Irradiation of Fe{sup 2+} oxidation dosimeters resulted in a stable purple color with absorbance peaks at 440 and 585 nm. The changes in OD, T{sub 1}-weighted-MR SI, and R{sub 1} relative to dose exhibited a linear response up to at least 8 Gy (R{sup 2}=1.00, 0.98, and 0.99) with OD saturation above 40 Gy. The T{sub 1}-weighted-MR SI increased 50.3% for 17 Gy compared to the un-irradiated region. The change in SI was observed in both 2D+time and 4D (3D+time) acquisitions post-irradiation and in real-time during irradiation with a linear increase with respect to dose (R{sup 2}>0.93). Conclusion: The Fe{sup 2+} oxidation-based system was superior as 4D dosimeters for MR-guided radiation therapy due to its higher sensitivity in both optical and MR signal readout and feasibility for real-time 4D dose readout. The Fe{sup 3+} reduction system is recommended for high dose applications. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. LH-102SPS.« less

  4. Sensitive and selective spectrophotometric assay of piroxicam in pure form, capsule and human blood serum samples via ion-pair complex formation.

    PubMed

    Alizadeh, Nina; Keyhanian, Fereshteh

    2014-09-15

    A simple, accurate and highly sensitive spectrophotometric method has been developed for the rapid determination of piroxicam (PX) in pure and pharmaceutical formulations. The proposed method involves formation of stable yellow colored ion-pair complexes of the amino derivative (basic nitrogen) of PX with three sulphonphthalein acid dyes namely; bromocresol green (BCG), bromothymol blue (BTB), bromophenol blue (BPB) in acidic medium. The colored species exhibited absorption maxima at 438, 429 and 432 nm with molar absorptivity values of 9.400×10(3), 1.218×10(3) and 1.02×10(4) L mol(-1) cm(-1) for PX-BCG, PX-BTB and PX-BPB complexes, respectively. The effect of optimum conditions via acidity, reagent concentration, time and solvent were studied. The reactions were extremely rapid at room temperature and the absorbance values remained constant for 48h. Beer's law was obeyed with a good correlation coefficient in the concentration ranges 1-100 μg mL(-1) for BCG, BTB complexes and 1-95 μg mL(-1) for BPB complex. The composition ratio of the ion-pair complexes were found to be 1:1 in all cases as established by Job's method. No interference was observed from common additives and excipients which may be present in the pharmaceutical preparations. The proposed method was successfully applied for the determination of PX in capsule and human blood serum samples with good accuracy and precision. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Structure and reactivity of a mononuclear non-haem iron(III)–peroxo complex

    PubMed Central

    Cho, Jaeheung; Jeon, Sujin; Wilson, Samuel A.; Liu, Lei V.; Kang, Eun A; Braymer, Joseph J.; Lim, Mi Hee; Hedman, Britt; Hodgson, Keith O.; Valentine, Joan Selverstone; Solomon, Edward I.; Nam, Wonwoo

    2012-01-01

    Oxygen-containing mononuclear iron species—iron(III)–peroxo, iron(III)–hydroperoxo and iron(IV)–oxo—are key intermediates in the catalytic activation of dioxygen by iron-containing metalloenzymes1–7. It has been difficult to generate synthetic analogues of these three active iron–oxygen species in identical host complexes, which is necessary to elucidate changes to the structure of the iron centre during catalysis and the factors that control their chemical reactivities with substrates. Here we report the high-resolution crystal structure of a mononuclear non-haem side-on iron(III)–peroxo complex, [Fe(III)(TMC)(OO)]+. We also report a series of chemical reactions in which this iron(III)–peroxo complex is cleanly converted to the iron(III)–hydroperoxo complex, [Fe(III)(TMC)(OOH)]2+, via a short-lived intermediate on protonation. This iron(III)–hydroperoxo complex then cleanly converts to the ferryl complex, [Fe(IV)(TMC)(O)]2+, via homolytic O–O bond cleavage of the iron(III)–hydroperoxo species. All three of these iron species—the three most biologically relevant iron–oxygen intermediates—have been spectroscopically characterized; we note that they have been obtained using a simple macrocyclic ligand. We have performed relative reactivity studies on these three iron species which reveal that the iron(III)–hydroperoxo complex is the most reactive of the three in the deformylation of aldehydes and that it has a similar reactivity to the iron(IV)–oxo complex in C–H bond activation of alkylaromatics. These reactivity results demonstrate that iron(III)–hydroperoxo species are viable oxidants in both nucleophilic and electrophilic reactions by iron-containing enzymes. PMID:22031443

  6. CHANGES IN SPECTRAL AND PHOTOCHEMICAL PROPERTIES OF COLORED DISSOLVED ORGANIC MATTER IN A COASTAL ESTUARY

    EPA Science Inventory

    Colored dissolved organic matter (CDOM) is the primary determinant of UV penetration and exposure in freshwater and coastal environments. CDOM is photochemically reactive and its photoreactions can lead to reductions in UV absorbance and increased UV exposure in aquatic ecosystem...

  7. Monosodium Glutamate Analysis in Meatballs Soup

    NASA Astrophysics Data System (ADS)

    Marlina, D.; Amran, A.; Ulianas, A.

    2018-04-01

    The analysis of monosodium glutamate (MSG) in meatball soup using Cu2+ ion as a MSG complex by UV-Vis spectrophotometry has carried out. Reaction of MSG with Cu2+ ions have formed complex compounds [Cu(C5H8NO4)2]2+ characterized by the color change of Cu2+ ion solution from light blue to dark blue. Maximum of complex absorbance [Cu(C5H8NO4)2]2+ is at 621 nm wavelength. The results showed that, the greatest condition of complex [Cu(C5H8NO4)2]2+ was at pH 10, concentration of Cu2+ 0.01 M, complex time is a 30 minute and stable for 170 minutes. Linear response and detection limit of MSG analysis with Cu2+ ions are 0.0005-0.025 M (R2 = 0.994) and (LOD) 0.0003 M. repeatability and recovery method is quite good (% RSD = 0.89% and %recovery = 93%). The analysis of MSG content in meatball soup with MSG complex method was 0.00372 M in sample A and 0.00370 M in sample B.

  8. Wipes, Coatings, and Patches for Detecting Hydrazines

    NASA Technical Reports Server (NTRS)

    Young, Rebecca; Buttner, William

    2005-01-01

    Three color-indicating devices have been conceived as simple, rapid, inexpensive means of detecting hazardous liquid and gaseous substances in settings in which safety is of paramount concern and it would be too time-consuming or otherwise impractical to perform detection by use of such instruments as mass spectrometers. More specifically, these devices are designed for detecting hypergolic fuels (in particular, hydrazines) and hypergolic oxidizers in spacecraft settings, where occasional leakage of these substances in liquid or vapor form occurs and it is imperative to take early corrective action to minimize adverse health effects. With suitable redesign, including reformulation of their color indicator chemicals, these devices could be adapted to detection of other hazardous substances in terrestrial settings (e.g., industrial and military ones). One of the devices is a pad of a commercially available absorbent material doped with a color indicator. The absorbent material is made from 70 percent polyester and 30 percent nylon and can absorb about eight times its own weight of liquid. The color indicator is a mixture of conventional pH color indicator chemicals. Hydrazine and monomethyl hydrazine, which are basic, cause the color indicator to turn green. In the original intended application, the pad is wiped on a space suit that is suspected of having been exposed to leaking monomethyl hydrazine during a space walk, before the wearer returns to the interior of the spacecraft. If the wiped surface is contaminated with hydrazine, the pad turns green. In addition, the pad absorbs hydrazine from the wiped surface, thereby reducing or eliminating the hazard. Used pads, including ones that show contamination by hydrazine, can be stored in a sealed plastic bag for subsequent disposal. The second device, which has been proposed but not yet developed, would comprise a color indicator material in the form of either a coating on a space suit (or other protective garment) or a coating on a sheet that could be easily attached to and detached from the protective garment. The coating material would be a hydrogel doped with a suitable pH indicator. The hydrogel would also serve to maintain a level of moisture needed to support the chemical reaction mentioned in the next sentence. In addition to changing color to indicate the presence of any hypergolic fuel (which is basic) or hypergolic oxidizer (which is acidic) that might splash on the space suit, the pH indicator would also react with the hypergolic fuel or oxidizer and thereby bind it. The third device is a color dosimeter for detecting hydrazine liquid or vapor coming from microscopic leaks. This device is designed to satisfy several requirements specific to its original intended use in the auxiliary power unit of the space shuttle. These requirements include stability under vacuum, stability at moderate temperature, fast and irreversible change in color upon exposure to hydrazine, and visibility of the color change through polyimide tape.

  9. Solar Transparent Radiators by Optical Nanoantennas.

    PubMed

    Jönsson, Gustav; Tordera, Daniel; Pakizeh, Tavakol; Jaysankar, Manoj; Miljkovic, Vladimir; Tong, Lianming; Jonsson, Magnus P; Dmitriev, Alexandre

    2017-11-08

    Architectural windows are a major cause of thermal discomfort as the inner glazing during cold days can be several degrees colder than the indoor air. Mitigating this, the indoor temperature has to be increased, leading to unavoidable thermal losses. Here we present solar thermal surfaces based on complex nanoplasmonic antennas that can raise the temperature of window glazing by up to 8 K upon solar irradiation while transmitting light with a color rendering index of 98.76. The nanoantennas are directional, can be tuned to absorb in different spectral ranges, and possess a structural integrity that is not substrate-dependent, and thus they open up for application on a broad range of surfaces.

  10. The impact of iron on the bleaching efficacy of hydrogen peroxide in liquid whey systems.

    PubMed

    Jervis, Suzanne M; Drake, MaryAnne

    2013-02-01

    Whey is a value-added product that is utilized in many food and beverage applications for its nutritional and functional properties. Whey and whey products are generally utilized in dried ingredient applications. One of the primary sources of whey is from colored Cheddar cheese manufacture that contains the pigment annatto resulting in a characteristic yellow colored Cheddar cheese. The colorant is also present in the liquid cheese whey and must be bleached so that it can be used in ingredient applications without imparting a color. Hydrogen peroxide and benzoyl peroxide are 2 commercially approved chemical bleaching agents for liquid whey. Concerns regarding bleaching efficacy, off-flavor development, and functionality changes have been previously reported for whey bleached with hydrogen peroxide and benzoyl peroxide. It is very important for the dairy industry to understand how bleaching can impact flavor and functionality of dried ingredients. Currently, the precise mechanisms of off-flavor development and functionality changes are not entirely understood. Iron reactions in a bleached liquid whey system may play a key role. Reactions between iron and hydrogen peroxide have been widely studied since the reaction between these 2 relatively stable species can cause great destruction in biological and chemical systems. The actual mechanism of the reaction of iron with hydrogen peroxide has been a controversy in the chemistry and biological community. The precise mechanism for a given reaction can vary greatly based upon the concentration of reactants, temperature, pH, and addition of biological material. In this review, some hypotheses for the mechanisms of iron reactions that may occur in fluid whey that may impact bleaching efficacy, off-flavor development, and changes in functionality are presented. Cheese whey is bleached to remove residual carotenoid cheese colorant. Concerns regarding bleaching efficacy, off-flavor development, and functionality changes have been reported for whey proteins bleached with hydrogen peroxide and benzoyl peroxide. It is very important for the dairy industry to understand how whey bleaching can impact flavor and functionality of dried ingredients. Proposed mechanisms of off-flavor development and functionality changes are discussed in this hypothesis paper. © 2013 Institute of Food Technologists®

  11. Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe–S Assembly Complex

    PubMed Central

    Fox, Nicholas G.; Das, Deepika; Chakrabarti, Mrinmoy; Lindahl, Paul A.; Barondeau, David P.

    2015-01-01

    Iron–sulfur (Fe–S) clusters function as protein cofactors for a wide variety of critical cellular reactions. In human mitochondria, a core Fe–S assembly complex [called SDUF and composed of NFS1, ISD11, ISCU2, and frataxin (FXN) proteins] synthesizes Fe–S clusters from iron, cysteine sulfur, and reducing equivalents and then transfers these intact clusters to target proteins. In vitro assays have relied on reducing the complexity of this complicated Fe–S assembly process by using surrogate electron donor molecules and monitoring simplified reactions. Recent studies have concluded that FXN promotes the synthesis of [4Fe-4S] clusters on the mammalian Fe–S assembly complex. Here the kinetics of Fe–S synthesis reactions were determined using different electron donation systems and by monitoring the products with circular dichroism and absorbance spectroscopies. We discovered that common surrogate electron donor molecules intercepted Fe–S cluster intermediates and formed high-molecular weight species (HMWS). The HMWS are associated with iron, sulfide, and thiol-containing proteins and have properties of a heterogeneous solubilized mineral with spectroscopic properties remarkably reminiscent of those of [4Fe-4S] clusters. In contrast, reactions using physiological reagents revealed that FXN accelerates the formation of [2Fe-2S] clusters rather than [4Fe-4S] clusters as previously reported. In the preceding paper [Fox, N. G., et al. (2015) Biochemistry 54, DOI: 10.1021/bi5014485], [2Fe-2S] intermediates on the SDUF complex were shown to readily transfer to uncomplexed ISCU2 or apo acceptor proteins, depending on the reaction conditions. Our results indicate that FXN accelerates a rate-limiting sulfur transfer step in the synthesis of [2Fe-2S] clusters on the human Fe–S assembly complex. PMID:26016518

  12. Chromosome Aberrations in Normal and Ataxia-Telangiectasia Cells Exposed to Heavy Ions

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Ito, H.; Liu, C.; Shigematsu, N.; George, K.; Cucinotta, F. A.

    2007-01-01

    Although cells derived from Ataxia Telangiectasia (AT) patients are known to exhibit abnormal responses to ionizing radiations, its underlying mechanism still remains unclear. Previously, the authors reported that at the same gamma-irradiation dose AT cells show higher frequencies of misrepair and deletions compared to normal human fibroblast cells. In this study, we investigated the effects of heavy ions beams on chromosomal aberrations in normal and AT cells. Normal and AT fibroblast cells arrested at G0/G1 phase were irradiated with 2 Gy of X-rays, 490 MeV/u Silicon (LET 55 keV/m), 500 MeV/u Iron (LET 185 keV/m) and 200 MeV/u Iron (LET 440 keV/m) particles, and then cells were allowed to repair for 24 hours at 37 degrees before subculture. Calyculin-A induced PCC method was employed to collect G2/M chromosomes and whole DNA probes 1 and 3 were used to analyze chromosomal aberrations such as color-junctions, deletions, simple exchanges (incomplete and reciprocal exanges) and complex-type exchanges. The percentages of aberrant cells were higher when normal and AT cells were exposed to heavy ions compared to X-rays, and had a tendency to increase with increasing LET up to 185 keV/m and then decreased at 440 keV/m. When the frequency of color-junctions per cell was compared after X-ray exposure, AT cells had around three times higher frequency of color-junctions (mis-rejoining) than normal cells. However, at 185 keV/m there was no difference in the frequency of color-junctions between two cell lines. It was also found that the frequency of simple exchanges per cell was almost constant in AT cells regardless LET levels, but it was LET dependent for normal cells. Interestingly, the frequency of simple exchanges was higher for AT cells when it was compared at 185 keV/m but AT cells had more complex-type exchanges at the same LET levels. Heavy ions are more efficient in inducing chromosome aberrations in normal and AT cells compared to X-rays, and the aberration types between normal and AT fibroblast appeared different probably due to difference in the ATM gene function.

  13. Structural color and its interaction with other color-producing elements: perspectives from spiders

    NASA Astrophysics Data System (ADS)

    Hsiung, Bor-Kai; Blackledge, Todd A.; Shawkey, Matthew D.

    2014-09-01

    Structural color is produced when nanostructures called schemochromes alter light reflected from a surface through different optic principles, in contrast with other types of colors that are produced when pigments selectively absorb certain wavelengths of light. Research on biogenic photonic nanostructures has focused primarily on bird feathers, butterfly wings and beetle elytra, ignoring other diverse groups such as spiders. We argue that spiders are a good model system to study the functions and evolution of colors in nature for the following reasons. First, these colors clearly function in spiders such as the tarantulas outside of sexual selection, which is likely the dominant driver of the evolution of structural colors in birds and butterflies. Second, within more than 44,000 currently known spider species, colors are used in every possible way based on the same sets of relatively simple materials. Using spiders, we can study how colors evolve to serve different functions under a variety of combinations of driving forces, and how those colors are produced within a relatively simple system. Here, we first review the different color-producing materials and mechanisms (i.e., light absorbing, reflecting and emitting) in birds, butterflies and beetles, the interactions between these different elements, and the functions of colors in different organisms. We then summarize the current state of knowledge of spider colors and compare it with that of birds and insects. We then raise questions including: 1. Could spiders use fluorescence as a mechanism to protect themselves from UV radiation, if they do not have the biosynthetic pathways to produce melanins? 2. What functions could color serve for nearly blind tarantulas? 3. Why are only multilayer nanostructures (thus far) found in spiders, while birds and butterflies use many diverse nanostructures? And, does this limit the diversity of structural colors found in spiders? Answering any of these questions in the future will bring spiders to the forefront of the study of structural colors in nature.

  14. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings

    NASA Astrophysics Data System (ADS)

    Kats, Mikhail A.; Byrnes, Steven J.; Blanchard, Romain; Kolle, Mathias; Genevet, Patrice; Aizenberg, Joanna; Capasso, Federico

    2013-09-01

    Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.

  15. Morphological characteristics of developmental stages of Acanthamoeba and Naegleria species before and after staining by various techniques.

    PubMed

    Ithoi, Init; Ahmad, Arine-Fadzlun; Mak, J W; Nissapatorn, Veeranoot; Lau, Yee-Ling; Mahmud, Rohela

    2011-11-01

    Seven stains were studied to determine the best color and contrast for staining the developmental stages of free living pathogenic Acanthamoeba and Naegleria species. The acid-fast bacilli stain (AFB) produced a blue color without contrast; trichrome-eosin and modified Field's showed various color contrasts; Giemsa, iron-hematoxylin, modified AFB and Gram produced only one color which distinguished the nucleus, nucleolus, cytoplasm, food- and water-vacuoles. The motile organs (acanthopodia, pseudopodia, lobopodia and flagella) were also clearly differentiated but produced a similar color as the cytoplasm. These motile organelles were first induced by incubating at 37 degrees C for at least 15 minutes and then fixing with methanol in order to preserve the protruding morphology prior to staining. The trichrome-eosin and iron-hematoxylin stains showed good color contrast for detecting all three stages, the trophozoite, cyst and flagellate; Giemsa and Gram stained the trophozoite and flagellate stages; the modified Field's and modified AFB stains stained only the trophozoite stage. Depending on the purpose, all these stains (except the AFB stain) can be used to identify the developmental stages of Acanthamoeba and Naegleria for clinical, epidemiological or public health use.

  16. The "Chocolate Experiment"--A Demonstration of Radiation Absorption by Different Colored Surfaces

    ERIC Educational Resources Information Center

    Fung, Dennis

    2015-01-01

    In the typical "cookbook" experiment comparing the radiation absorption rates of different colored surfaces, students' hands are commonly used as a measurement instrument to demonstrate that dull black and silvery surfaces are good and poor absorbers of radiation, respectively. However, college students are often skeptical about using…

  17. Reducing LANDSAT data to parameters with physical significance and signature extension: A view of LANDSAT capabilities

    NASA Technical Reports Server (NTRS)

    Salmon-Drexler, B. C.

    1977-01-01

    The premise is the LANDSAT is capable of sensing only a few physical parameters. Much of the contrast provided in LANDSAT data is provided by differences in vegetation cover. Although dominant, vegetation is not the only physical parameter that can be detected with LANDSAT; a ratio of MSS Channel 5 to MSS Channel 4 (R5,4), two visible channels, separates materials by color hue. Additional information is attained by the addition of MSS channels 5 and 4 to approximate brightness, permitting separation of materials by color value. Other spectral combinations may provide correlations with these physical parameters or new ones. An iron absorption in the infrared can also be recognized in LANDSAT data when iron content is present in sufficient percentages, Although by color, limonite-rich soils are distinctive as bright yellow, they are not unique in the R5,4. A fairly strong iron absorption is present in the infrared band MSS Channel 7 for these soils, although the wideband configuration of LANDSAT is not optimal for its enhancement and the effects of vegetation often obscure it.

  18. Synthesis, Photoluminescence Behavior of Green Light Emitting Tb(III) Complexes and Mechanistic Investigation of Energy Transfer Process.

    PubMed

    Bala, Manju; Kumar, Satish; Devi, Rekha; Khatkar, Avni; Taxak, V B; Boora, Priti; Khatkar, S P

    2018-06-04

    A series of five new terbium(III) ion complexes with 4,4-difluoro-1-phenylbutane-1,3-dione (HDPBD) and anciliary ligands was synthesized. The composition and properties of complexes were analyzed by elemental analysis, IR, NMR, powder X-ray diffaraction, TG-DTG and photoluminescence spectroscopy. These complexes exhibited ligand sensitized green emission at 546 nm associated with 5 D 4  →  7 F 5 transitions of terbium ion in the emission spectra. The photoluminescence study manifested that the organic ligands act as antenna and facilitate the absorbed energy to emitting levels of Tb(III) ion efficiently. The enhanced luminescence intensity and decay time of ternary C2-C5 complexes observed due to synergistic effect of anciliary ligands. The CIE color coordinates of complexes came under the green region of chromaticity diagram. The mechanistic investigation of intramolecular energy transfer in the complexes was discussed in detail. These terbium(III) complexes can be thrivingly used as one of the green component in light emitting material and in display devices. Graphical Abstract Illustrate the sensitization process of the Tb ion and intramolecular energy transfer process in the Tb 3+ complex.

  19. Carbonyl iron powder surface modification of magnetorheological elastomers for vibration absorbing application

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Yu, Miao; Zhu, Mi; Qi, Song; Fu, Jie

    2016-11-01

    With excellent characteristic of magnetic-control stiffness, magnetorheological elastomer (MRE) is well suited as a spring element of vibration absorber. To improve the vibration attenuation performance of MRE vibration absorbers, this paper expects to improve the mechanical strength and reduce the loss factor of MRE by interface modification. The surface of carbonyl iron powder (CIP) was modified with silica coating by a simple and convenient approach. Several MRE samples, with different proportions of modified CIPs were fabricated under a constant magnetic field. The morphology and composition of modified CIP were characterized by scanning electron microscope and Fourier transform infrared spectra. The results indicated that the modified CIPs were coated with uniform and continuous silica, which can make a better combination between particle and matrix. The tensile strength, magnetorheological properties and the damping properties of the MRE samples were tested by material testing machine and rheometer. The experimental results demonstrated that the loss factor of the MRE which incorporated with modified CIPs decreased markedly, and the tensile strength of such material has been much improved, at the same time this kind of MRE kept high MR effect. It is expected that this MRE material will meet the requirements of vibration absorber.

  20. Hematite from Natural Iron Stones as Microwave Absorbing Material on X-Band Frequency Ranges

    NASA Astrophysics Data System (ADS)

    Zainuri, Mochamad

    2017-05-01

    This study has been investigated the effect of hematite as microwave absorbing materials (RAM) on X-Band frequency ranges. Hematite was succesfully processed by coprecipitation method and calcined at 500 °C for 5 hour. It was synthesized from natural iron stones from Tanah Laut, South Kalimantan, Indonesia. The products were characterized by X-ray diffraxtion (XRD), conductivity measurement, Vibrating Sample Magnetometer (VSM), and Vector Network Analyzer (VNA). The result was shown that hematite has conductivity value on (2.5-3).10-7 S/cm and be included as dielectric materials. The hysterisis curve was shown that hematite was a super paramagnetic materials. The product was mixed on paint with procentage 10% of total weight and coated on steel grade AH36 with spray methods. Then, the maximum of reflection loss on x - band’s frequency range (8,2-12,4) GHz was -7 dB on frequency of 10.5 GHz. It mean that almost 50% electromagnetic energy was absorbed by hematite.

  1. Origin of oxygen in sulfate during pyrite oxidation with water and dissolved oxygen: an in situ horizontal attenuated total reflectance infrared spectroscopy isotope study.

    PubMed

    Usher, Courtney R; Cleveland, Curtis A; Strongin, Daniel R; Schoonen, Martin A

    2004-11-01

    FeS2 (pyrite) is known to react with water and dissolved molecular oxygen to form sulfate and iron oxyhydroxides. This process plays a large role in the environmentally damaging phenomenon known as acid mine drainage. An outstanding scientific issue has been whether the oxygen in the sulfate and oxyhydroxide product was derived from water and/or dissolved oxygen. By monitoring the reaction in situ with horizontal attenuated total reflectance infrared spectroscopy, it was found that when using 18O isotopically substituted water, the majority of the infrared absorbance due to sulfate product red-shifted approximately 70 cm(-1) relative to the absorbance of sulfate using H(2)16O as a reactant. Bands corresponding to the iron oxyhydroxide product did not shift. These results indicate water as the primary source of oxygen in the sulfate product, while the oxygen atoms in the iron oxyhydroxide product are obtained from dissolved molecular oxygen.

  2. A Wide Band Absorbing Material Design Using Band-Pass Frequency Selective Surface

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Xu, Qiang; Liu, Ting; Zheng, Dianliang; Zhou, Li

    2018-03-01

    Based on the high frequency advantage characteristics of the Fe based absorbing coating, a method for designing the structure of broadband absorbing structure by using frequency selective surface (FSS) is proposed. According to the transmission and reflection characteristic of the different size FSS structure, the frequency variation characteristic was simulated. Secondly, the genetic algorithm was used to optimize the high frequency broadband absorbing materials, including the single and double magnetic layer material. Finally, the absorbing characteristics in iron layer were analyzed as the band pass FSS structure was embedded, the results showed that the band-pass FSS had the influence on widening the absorbing frequency. As the FSS was set as the bottom layer, it was effective to achieve the good absorbing property in low frequency and the high frequency absorbing performance was not weakened, because the band-pass FSS led the low frequency absorption and the high frequency shielding effect. The results of this paper are of guiding significance for designing and manufacturing the broadband absorbing materials.

  3. Rapid colorimetric assay for gentamicin injection.

    PubMed

    Tarbutton, P

    1987-01-01

    A rapid colorimetric method for determining gentamicin concentration in commercial preparations of gentamicin sulfate injection was developed. Methods currently available for measuring gentamicin concentration via its colored complex with cupric ions in alkaline solution were modified to reduce the time required for a single analysis. The alkaline copper tartrate (ACT) reagent solution was prepared such that each milliliter contained 100 mumol cupric sulfate, 210 mumol potassium sodium tartrate, and 1.25 mmol sodium hydroxide. The assay involves mixing 0.3 mL gentamicin sulfate injection 40 mg/mL (of gentamicin), 1.0 mL ACT reagent, and 0.7 mL water; the absorbance of the resulting solution at 560 nm was used to calculate the gentamicin concentration in the sample. For injections containing 10 mg/mL of gentamicin, the amount of the injection was increased to 0.5 mL and water decreased to 0.5 mL. The concentration of gentamicin in samples representing 11 lots of gentamicin sulfate injection 40 mg/mL and 8 lots of gentamicin sulfate injection 10 mg/mL was determined. The specificity, reproducibility, and accuracy of the assay were assessed. The colored complex was stable for at least two hours. Gentamicin concentration ranged from 93.7 to 108% and from 95 to 109% of the stated label value of the 40 mg/mL and the 10 mg/mL injections, respectively. No components of the preservative system present in the injections interfered with the assay. Since other aminoglycosides produced a colored complex, the assay is not specific for gentamicin. The assay was accurate and reproducible over the range of 4-20 mg of gentamicin. This rapid and accurate assay can be easily applied in the hospital pharmacy setting.

  4. Application of ASTER and Landsat 8 imagery data and mathematical evaluation method in detecting iron minerals contamination in the Chadormalu iron mine area, central Iran

    NASA Astrophysics Data System (ADS)

    Moghtaderi, Arsia; Moore, Farid; Ranjbar, Hojjatollah

    2017-01-01

    Satellite images are widely used to map geological and environmental features at different map scales. The ability of visible to near-infrared (VNIR) scanner systems to map gossans, rich in iron and associated with weathered sulfide occurrences, as well as to characterize regoliths, is perhaps one of the most important current applications of this technology. Initial results of this study show that advanced space-borne thermal emission and reflection (ASTER), VNIR, and short-wave infrared radiometer scanner systems can be used successfully to map iron ores. By applying internal average relative reflectance, false color composite, minimum noise fraction transform, and mathematical evaluation method (MEM) techniques, iron contaminations were successfully detected in the Chadormalu iron mine area of central Iran. An attempt was also made to discriminate between the geogenic and anthropogenic iron contaminations in the vicinity of the Chadormalu iron deposit. This research compares ASTER and Landsat 8 data images and the MEM with the band ratio method in a full scope view scale and demonstrates ASTER image data capability in detecting iron contaminations in the Chadormalu area. This indicates that ASTER bands 3, 2, and 1 have a higher spatial (15 m) resolution compared with sensors used in previous works. In addition, the capability of the MEM in detecting Fe-contaminants, unlike the color judgments of the band ratio method, can discriminate between iron pollution in an alluvial plain and the Fe-contents of the host and country rocks in the study area. This study proved that Landsat 8 data illustrate exaggeration both in the MEM and band ratio final results (outputs) and cannot display iron contamination in detail.

  5. Controlling light with freeform optics: recent progress in computational methods for optical design of freeform lenses with prescribed irradiance properties

    NASA Astrophysics Data System (ADS)

    Oliker, Vladimir I.; Cherkasskiy, Boris

    2014-09-01

    Structural color is produced when nanostructures called schemochromes alter light reflected from a surface through different optic principles, in contrast with other types of colors that are produced when pigments selectively absorb certain wavelengths of light. Research on biogenic photonic nanostructures has focused primarily on bird feathers, butterfly wings and beetle elytra, ignoring other diverse groups such as spiders. We argue that spiders are a good model system to study the functions and evolution of colors in nature for the following reasons. First, these colors clearly function in spiders such as the tarantulas outside of sexual selection, which is likely the dominant driver of the evolution of structural colors in birds and butterflies. Second, within more than 44,000 currently known spider species, colors are used in every possible way based on the same sets of relatively simple materials. Using spiders, we can study how colors evolve to serve different functions under a variety of combinations of driving forces, and how those colors are produced within a relatively simple system. Here, we first review the different color-producing materials and mechanisms (i.e., light absorbing, reflecting and emitting) in birds, butterflies and beetles, the interactions between these different elements, and the functions of colors in different organisms. We then summarize the current state of knowledge of spider colors and compare it with that of birds and insects. We then raise questions including: 1. Could spiders use fluorescence as a mechanism to protect themselves from UV radiation, if they do not have the biosynthetic pathways to produce melanins? 2. What functions could color serve for nearly blind tarantulas? 3. Why are only multilayer nanostructures (thus far) found in spiders, while birds and butterflies use many diverse nanostructures? And, does this limit the diversity of structural colors found in spiders? Answering any of these questions in the future will bring spiders to the forefront of the study of structural colors in nature.

  6. Moore's curve structuring of ferromagnetic composite PE-NiFe absorbers

    NASA Astrophysics Data System (ADS)

    Fernez, N.; Arbaoui, Y.; Maalouf, A.; Chevalier, A.; Agaciak, P.; Burgnies, L.; Queffelec, P.; Laur, V.; Lheurette, É.

    2018-02-01

    A ferromagnetic material involving nickel-iron particles embedded in a polyethylene matrix is synthesized and electrically characterized between 1 and 12 GHz. These measurements show the combination of electric and magnetic activity along with significant loss terms. We take benefit of these properties for the design of broadband electromagnetic absorbers. To this aim, we use a fractal structuring based on Moore curves. The advantage of etching patterns over metallic ones is clearly evidenced, and several pattern absorbers identified by their Moore's order iteration are designed and analyzed under oblique incidence.

  7. Mapping iron oxides and the color of Australian soil using visible-near-infrared reflectance spectra

    NASA Astrophysics Data System (ADS)

    Viscarra Rossel, R. A.; Bui, E. N.; de Caritat, P.; McKenzie, N. J.

    2010-12-01

    Iron (Fe) oxide mineralogy in most Australian soils is poorly characterized, even though Fe oxides play an important role in soil function. Fe oxides reflect the conditions of pH, redox potential, moisture, and temperature in the soil environment. The strong pigmenting effect of Fe oxides gives most soils their color, which is largely a reflection of the soil's Fe mineralogy. Visible-near-infrared (vis-NIR) spectroscopy can be used to identify and measure the abundance of certain Fe oxides in soil, and the visible range can be used to derive tristimuli soil color information. The aims of this paper are (1) to measure the abundance of hematite and goethite in Australian soils from their vis-NIR spectra, (2) to compare these results to measurements of soil color, and (3) to describe the spatial variability of hematite, goethite, and soil color and map their distribution across Australia. We measured the spectra of 4606 surface soil samples from across Australia using a vis-NIR spectrometer with a wavelength range of 350-2500 nm. We determined the Fe oxide abundance for each sample using the diagnostic absorption features of hematite (near 880 nm) and goethite (near 920 nm) and derived a normalized iron oxide difference index (NIODI) to better discriminate between them. The NIODI was generalized across Australia with its spatial uncertainty using sequential indicator simulation, which resulted in a map of the probability of the occurrence of hematite and goethite. We also derived soil RGB color from the spectra and mapped its distribution and uncertainty across the country using sequential Gaussian simulations. The simulated RGB color values were made into a composite true color image and were also converted to Munsell hue, value, and chroma. These color maps were compared to the map of the NIODI, and both were used to interpret our results. The work presented here was validated by randomly splitting the data into training and test data sets, as well as by comparing our results to existing studies on the distribution of Fe oxides in Australian soils.

  8. Fe2+ chelator proferrorosamine A: a gene cluster of Erwinia rhapontici P45 involved in its synthesis and its impact on growth of Erwinia amylovora CFBP1430.

    PubMed

    Born, Yannick; Remus-Emsermann, Mitja N P; Bieri, Marco; Kamber, Tim; Piel, Jörn; Pelludat, Cosima

    2016-02-01

    Proferrorosamine A (proFRA) is an iron (Fe2+) chelator produced by the opportunistic plant pathogen Erwinia rhapontici P45. To identify genes involved in proFRA synthesis, transposon mutagenesis was performed. The identified 9.3 kb gene cluster, comprising seven genes, designated rosA-rosG, encodes proteins that are involved in proFRA synthesis. Based on gene homologies, a biosynthetic pathway model for proFRA is proposed. To obtain a better understanding of the effect of proFRA on non-proFRA producing bacteria, E. rhapontici P45 was co-cultured with Erwinia amylovora CFBP1430, a fire-blight-causing plant pathogen. E. rhapontici P45, but not corresponding proFRA-negative mutants, led to a pink coloration of E. amylovora CFBP1430 colonies on King's B agar, indicating accumulation of the proFRA-iron complex ferrorosamine, and growth inhibition in vitro. By saturating proFRA-containing extracts with Fe2+, the inhibitory effect was neutralized, suggesting that the iron-chelating capability of proFRA is responsible for the growth inhibition of E. amylovora CFBP1430.

  9. Toxicity and deficiency of copper in Elsholtzia splendens affect photosynthesis biophysics, pigments and metal accumulation.

    PubMed

    Peng, Hongyun; Kroneck, Peter M H; Küpper, Hendrik

    2013-06-18

    Elsholtzia splendens is a copper-tolerant plant species growing on copper deposits in China. Spatially and spectrally resolved kinetics of in vivo absorbance and chlorophyll fluorescence in mesophyll of E. splendens were used to investigate the copper-induced stress from deficiency and toxicity as well as the acclimation to excess copper stress. The plants were cultivated in nutrient solutions containing either Fe(III)-EDTA or Fe(III)-EDDHA. Copper toxicity affected light-acclimated electron flow much stronger than nonphotochemical quenching (NPQ) or dark-acclimated photochemical efficiency of PSIIRC (Fv/Fm). It also changed spectrally resolved Chl fluorescence kinetics, in particular by strengthening the short-wavelength (<700 nm) part of NPQ altering light harvesting complex II (LHCII) aggregation. Copper toxicity reduced iron accumulation, decreased Chls and carotenoids in leaves. During acclimation to copper toxicity, leaf copper decreased but leaf iron increased, with photosynthetic activity and pigments recovering to normal levels. Copper tolerance in E. splendens was inducible; acclimation seems be related to homeostasis of copper and iron in E. splendens. Copper deficiency appeared at 10 mg copper per kg leaf DW, leading to reduced growth and decreased photosynthetic parameters (F0, Fv/Fm, ΦPSII). The importance of these results for evaluating responses of phytoremediation plants to stress in their environment is discussed.

  10. A wavelet analysis for the X-ray absorption spectra of molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penfold, T. J.; Ecole polytechnique Federale de Lausanne, Laboratoire de chimie et biochimie computationnelles, ISIC, FSB-BCH, CH-1015 Lausanne; SwissFEL, Paul Scherrer Inst, CH-5232 Villigen

    2013-01-07

    We present a Wavelet transform analysis for the X-ray absorption spectra of molecules. In contrast to the traditionally used Fourier transform approach, this analysis yields a 2D correlation plot in both R- and k-space. As a consequence, it is possible to distinguish between different scattering pathways at the same distance from the absorbing atom and between the contributions of single and multiple scattering events, making an unambiguous assignment of the fine structure oscillations for complex systems possible. We apply this to two previously studied transition metal complexes, namely iron hexacyanide in both its ferric and ferrous form, and a rheniummore » diimine complex, [ReX(CO){sub 3}(bpy)], where X = Br, Cl, or ethyl pyridine (Etpy). Our results demonstrate the potential advantages of using this approach and they highlight the importance of multiple scattering, and specifically the focusing phenomenon to the extended X-ray absorption fine structure (EXAFS) spectra of these complexes. We also shed light on the low sensitivity of the EXAFS spectrum to the Re-X scattering pathway.« less

  11. Why Gold and Copper Are Colored but Silver Is Not.

    ERIC Educational Resources Information Center

    Guerrero, Ariel H.; Fasoli, Hector J.; Costa, Jose Luis

    1999-01-01

    Explains why silver, which has the same external electronic configuration as copper and gold, does not appear yellow: white light reflects on most metals without color absorption or change to the naked eye; however, copper and gold appear yellow because they absorb "blue" and "red" photons during electron transitions between…

  12. Alexandrite-like effect in purple flowers analyzed with newly devised round RGB diagram

    PubMed Central

    Kasajima, Ichiro

    2016-01-01

    The gemstone alexandrite is known for its feature to change color depending on the spectral quality of the incident light. Thus, the stone looks green when illuminated by white LED light but looks red when illuminated by incandescent light. This effect (alexandrite effect) is caused by a special relationship between the spectral quality of the incident light and the absorbance spectrum of the stone. Here we report an alexandrite-like effect in the petals of torenia and cyclamen flowers. These flowers are purple in sunlight but magenta (reddish) in incandescent light, and violet (bluish purple) in white LED light. The m-n, triangle and round diagrams are devised to calculate the colors of visible light spectra, based on the RGB color-matching function. Using these calculations, the alexandrite-like effect in purple flowers was successfully analyzed in terms of the interaction between the incident light spectrum and the absorbance spectrum of their purple anthocyanin. This analysis allows both logical and intuitive understanding of the colors exhibited by any object showing alexandrite–like properties. PMID:27404088

  13. Electromagnetic scattering from microwave absorbers - Laboratory verification of the coupled wave theory

    NASA Technical Reports Server (NTRS)

    Gasiewski, A. J.; Jackson, D. M.

    1992-01-01

    W-band measurements of the bistatic scattering function of some common microwave absorbing structures, including periodic wedge-type and pyramid-type iron-epoxy calibration loads and flat carbon-foam 'Echosorb' samples, were made using a network analyzer interface to a focused-lens scattering range. Swept frequency measurements over the 75-100 GHz band revealed specular and Bragg reflection characteristics in the measured data.

  14. Mössbauer investigations to characterize Fe lattice sites in sheet silicates and Peru Basin deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Lougear, André; König, Iris; Trautwein, Alfred X.; Suess, Erwin

    A procedure to classify different Fe lattice sites, i.e., OH-group geometries, in the clay mineral content of deep-sea sediments was developed using Mössbauer spectroscopy at low temperature (77 K). This speciation is of interest with regard to the redox behavior, reactivity and color of marine sediments, since substantial iron redox transitions (associated with sediment color change) have been documented for the structural sheet silicate iron. Lattice site classification was achieved for the Fe(II) fraction, all of which is structural clay Fe(II) in the sediments under investigation. Whereas the major part of the Fe(III) is structural clay iron as well, there is a small Fe(III) fraction in oxide minerals. Therefore, further elaboration of the procedure would be required to also achieve lattice site classification for the Fe(III) fraction. Analysis of the Mössbauer spectra is based on computer fits, the input parameters of which were derived from a separate study of Fe(II)-rich pure chlorites. The procedure of classification is qualified to investigate, e.g., in laboratory experiments, the site-specific reaction rates and the effects on sediment color of iron redox transitions in the sheet silicate content of sediments. The new skills were successfully applied in environmental impact studies on the mining of polymetallic nodules from the Peru Basin deep-sea floor.

  15. Synthesis and characterization of natural red dye from Caesalpinia sappan linn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulyanto, Subur, E-mail: subur.mulyanto@poltekba.ac.id; Department of Mechanical Engineering, State Polytechnic of Balikpapan, Jl. Soekarno-Hatta Km.8 Balikpapan; Suyitno,, E-mail: suyitno@uns.ac.id

    The study reports the synthesis and characterization of natural red dye. The dyes were extracted from woods of Caesalpiniasappanlinn at varied temperatures of 70, 80, 90, and 100°C for three hours. The dry wood chips and water at a ratio of 6:1 were immersed in the reactor of 150 liters. The absorbance spectra of the natural red dyes were measured by ultra-violet-visible spectroscopy. Meanwhile, Fourier transform infrared spectroscopy was used to investigate the functional groups of the natural red dyes. In addition, the basic production cost was calculated and the fastness property towards cotton fabrics was investigated according to themore » Indonesia national standard of 105-C06:2010, 105-B01:2010, and 0288-2008. The results showed that the functional groups found the extracted red dyes indicated the complex bond of brazilein with peak absorbance at a wavelength of 538-540 nm. The extraction temperature also changed the functional group of brazilein. From the color, the absorbance peak, the functional groups, and the main production cost, the best parameter to synthesize the natural red dyes from Caesalpiniasappanlinn was at a temperature of 80°C for two hours. Moreover, the natural red dyes has the fastness to wash resistance, light resistance, and scrub resistance by 4-5, 4, and 3-4, respectively. However, further studies for synthesis the natural red dyes by using a continuous reactor are required to identify the naturally complex compounds in brazilein for improving the fastness properties and for reducing the cost.« less

  16. Characterization of erythrosine B binding to bovine serum albumin and bilirubin displacement.

    PubMed

    Mathavan, Vinodaran M K; Boh, Boon Kim; Tayyab, Saad

    2009-08-01

    The interaction of crythrosine B (ErB), a commonly used dye for coloring foods and drinks, with bovine scrum albumin (BSA) was investigated both in the absence and presence of bilirubin (BR) using absorption and absorption difference spectroscopy. ErB binding to BSA was reflected from a significant red shift of 11 nm in the absorption maximum of ErB (527 nm) with the change in absorbance at lamdamax. Analysis of absorption difference spectroscopic titration results of BSA with increasing concentrations of ErB3 using Benesi-Hildebrand equation gave the association constant, K as 6.9 x 10(4) M(-1). BR displacing action of ErB was revealed by a significant blue shift in the absorption maximum, accompanied by a decrease in absorbance difference at lamdamax in the difference spectrum of BR-BSA complex upon addition of increasing concentrations of ErB. This was further substantiated by fluorescence spectroscopy, as addition of increasing concentrations of ErB to BR-BSA complex caused a significant decrease in fluoresccnce at 510 nm. The results suggest that ErB binds to a site in the vicinity of BR binding site on BSA. Therefore, intake of ErB may increase the risk of hyperbilirubinemia in the healthy subjects.

  17. Serum albumin forms a lactoferrin-like soluble iron-binding complex in presence of hydrogen carbonate ions.

    PubMed

    Ueno, Hiroshi M; Urazono, Hiroshi; Kobayashi, Toshiya

    2014-02-15

    The iron-lactoferrin complex is a common food ingredient because of its iron-solubilizing capability in the presence of hydrogen carbonate ions. However, it is unclear whether the formation of a stable iron-binding complex is limited to lactoferrin. In this study, we investigated the effects of bovine serum albumin (BSA) on iron solubility and iron-catalyzed lipid oxidation in the presence of hydrogen carbonate ions. BSA could solubilize >100-fold molar equivalents of iron at neutral pH, exceeding the specific metal-binding property of BSA. This iron-solubilizing capability of BSA was impaired by thermally denaturing BSA at ≥ 70 °C for 10 min at pH 8.5. The resulting iron-BSA complex inhibited iron-catalyzed oxidation of soybean oil in a water-in-oil emulsion measured using the Rancimat test. Our study is the first to show that BSA, like lactoferrin, forms a soluble iron-binding complex in the presence of hydrogen carbonate ions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Zero-valent iron treatment of dark brown colored coffee effluent: Contributions of a core-shell structure to pollutant removals.

    PubMed

    Tomizawa, Mayuka; Kurosu, Shunji; Kobayashi, Maki; Kawase, Yoshinori

    2016-12-01

    The decolorization and total organic carbon (TOC) removal of dark brown colored coffee effluent by zero-valent iron (ZVI) have been systematically examined with solution pH of 3.0, 4.0, 6.0 and 8.0 under oxic and anoxic conditions. The optimal decolorization and TOC removal were obtained at pH 8.0 with oxic condition. The maximum efficiencies of decolorization and TOC removal were 92.6 and 60.2%, respectively. ZVI presented potential properties for pollutant removal at nearly neutral pH because of its core-shell structure in which shell or iron oxide/hydroxide layer on ZVI surface dominated the decolorization and TOC removal of coffee effluent. To elucidate the contribution of the core-shell structure to removals of color and TOC at the optimal condition, the characterization of ZVI surface by scanning electron microscopy (SEM) with an energy dispersive X-ray spectroscope (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) was conducted. It was confirmed that the core-shell structure was formed and the shell on ZVI particulate surface and the precipitates formed during the course of ZVI treatment consisted of iron oxides and hydroxides. They were significantly responsible for decolorization and TOC removal of coffee effluent via adsorption to shell on ZVI surface and inclusion into the precipitates rather than the oxidative degradation by OH radicals and the reduction by emitted electrons. The presence of dissolved oxygen (DO) enhanced the formation of the core-shell structure and as a result improved the efficiency of ZVI treatment for the removal of colored components in coffee effluents. ZVI was found to be an efficient material toward the treatment of coffee effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. 21 CFR 172.370 - Iron-choline citrate complex.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Iron-choline citrate complex. 172.370 Section 172... CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline citrate complex made by reacting approximately equimolecular quantities of ferric hydroxide, choline, and...

  20. Radio-manganese, -iron, -phosphorus uptake by water hyacinth and economic implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colley, T.N.; Gonzalez, M.H.; Martin, D.F.

    To determine the effects of the deprivation of specific micronutrients on the water hyacinth (Eichhornia crassipes), the rate of uptake by the water hyacinth of iron and manganese in comparison with phosphorus was studied. Materials and methodology are described. Experimentation indicates that all three elements are actively absorbed by the root systems, but the rates of absorption differ markedly. The rate of absorption of manganese by roots is 13 and 21 times that for radio-iron and -phosphorous, and iron was taken up by the roots at nearly twice the rate of phosphorous. Manganese translocation appeared to be faster than phosphorusmore » translocation by an order of magnitude and 65 times faster than iron translocation. 9 references, 2 tables.« less

  1. In Nutrition, Can We “See” What Is Good for Us?123

    PubMed Central

    Barnes, Stephen; Prasain, Jeevan; Kim, Helen

    2013-01-01

    The selection of foods to eat is a complex interplay of vision, taste, smell, and texture. In addition to micro- and macronutrients, plant-based foods also contain several classes of phytochemicals. In many cases, the phytochemicals account for the various colors of foods. Although aesthetically pleasing, the color of foods may mislead consumers as to their phytochemical content, which is particularly true with regard to polyphenols. Polyphenols are a broad class of compounds with antioxidant and other health benefits. Human vision is limited to a small window (390–765 nm) of the electromagnetic spectrum. Many important phytochemicals (e.g., vitamin C) have no absorbance in this range. Therefore, the human eye cannot directly judge the vitamin C content of foods. Being able to see in the ultraviolet range allows bees to locate the pollen-rich region of flowers, whereas pit vipers locate their prey by being able to “see” them in the infrared range. Assessing the impact of phytochemicals on human health depends on several factors. Colorless phytochemicals in unprocessed foods may be lost during the cooking process because no visual guide exists to ensure their retention. The molecular structures of phytochemicals influence the extent to which they are altered by cooking processes and the methods by which they are absorbed from the gastrointestinal tract. Extensive metabolism by phase I/II enzymes and by the gut microbiome may also create compounds that the eye is never allowed to appreciate. PMID:23674801

  2. Interactions between iron and organic matter may influence the fate of permafrost carbon in the Arctic

    NASA Astrophysics Data System (ADS)

    Cory, R. M.; Trusiak, A.; Ward, C.; Kling, G. W.; Tfaily, M.; Paša-Tolić, L.; Noel, V.; Bargar, J.

    2017-12-01

    The ongoing thawing of permafrost soils is the only environmental change that allows tremendous stores of organic carbon (C) to be converted into carbon dioxide (CO2) on decadal time scales, thus providing a positive and accelerating feedback to global warming. Evidence suggests that iron enhances abiotic reactions that convert dissolved organic matter (DOM) to CO2 in dark soils and in sunlit surface waters depending on its redox state and association with DOM (i.e., iron-DOM complexation). However, the complexation of iron in surface waters and soils remains too poorly understood to predict how iron influences the rates of oxidation of DOM to CO2. To address this knowledge gap, we characterized iron-DOM complexation in iron-rich soil and surface waters of the Arctic, in combination with measurements of DOM oxidation to CO2. These waters contain high concentrations of dissolved iron and DOM (up to 1 and 2 mM, respectively), and low concentrations of other potential ligands for iron such as sulfide, carbonate, chloride, or bromide. Ultra-high resolution mass spectrometry (FT-ICR MS) was used to identify ligands for iron within the DOM pool, and synchrotron based X-ray analysis (XAS and EXAFS) was used to assess iron's oxidation state, to detect iron complexation, and to constrain the chemical composition of the complexes. Across a natural gradient of dissolved iron and DOM concentrations, many potential ligands were identified within DOM that are expected to complex with iron (e.g., aromatic acids). EXAFS showed substantial complexation of reduced ferrous iron (Fe(II)) to DOM in arctic soil waters, on the basis of comparison to Fe(II)-DOM reference spectra. Identification of iron complexed to DOM in soil waters is consistent with strongly co-varying iron and DOM concentrations in arctic soil and surface waters, and supports our hypothesis that complexation of iron by DOM influences dark and light redox reactions that oxidize DOM to CO2. Understanding the molecular controls on the biogeochemical reactions that convert permafrost carbon to CO2 is critical for understanding the role of the Arctic in current and future climate change.

  3. In situ optical properties of foliar flavonoids: Implication for non-destructive estimation of flavonoid content.

    PubMed

    Gitelson, Anatoly; Chivkunova, Olga; Zhigalova, Tatiana; Solovchenko, Alexei

    2017-11-01

    Flavonoids are a ubiquitous multifunctional group of phenolics of paramount importance for the terrestrial plants involved in protection from biotic and abiotic stresses, color and chemical signaling and other functions. Deciphering of in situ absorption of foliar Flv is important but was thought to be impossible due to a strong overlap with other pigments, complex in situ chemistry of Flv and sophisticated leaf optics. We deduced in situ absorbance of foliar Flv and introduced a concept of specific absorbance spectrum indicative of each pigment group contribution to light absorption and provided a rationale for the choice of spectral bands for non-destructive assessment of Flv in leaves with variable content of other pigments including anthocyanins. Only a narrow band 400-430nm was suitable for Flv assessment, however the effect of other pigments remained substantial, so subtraction of their contribution was necessary. The devised leaf absorbance-based algorithm allowed estimating Flv with error below 21%. Absorption by Flv in plant tissues might extend into the blue and can be commensurate to that of chlorophylls and carotenoids. The potential capacity of Flv to shield the cell in situ from the visible light might be essential for assessments of high light stress tolerance of plants. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Easy approach to assembling a biomimetic color film with tunable structural colors.

    PubMed

    Wang, Wentao; Tang, Bingtao; Ma, Wei; Zhang, Jian; Ju, Benzhi; Zhang, Shufen

    2015-06-01

    The self-assembly of silica microspheres into a close-packed array is a simple method of fabricating three-dimensional photonic crystal structural color films. However, the color is very dull because of the interferences of scattering and background light. In this study, we added a small quantity of surface-modified carbon black (CB) to the system of colloidal silica in n-propanol. The use of n-propanol as a dispersant is beneficial to the rapid development of photonic crystal films during the process of dip-coating. The doping of CB into silica microspheres can absorb background and scattering light, resulting in vivid structural colors.

  5. Electronic structure and reactivity of three-coordinate iron complexes.

    PubMed

    Holland, Patrick L

    2008-08-01

    [Reaction: see text]. The identity and oxidation state of the metal in a coordination compound are typically thought to be the most important determinants of its reactivity. However, the coordination number (the number of bonds to the metal) can be equally influential. This Account describes iron complexes with a coordination number of only three, which differ greatly from iron complexes with octahedral (six-coordinate) geometries with respect to their magnetism, electronic structure, preference for ligands, and reactivity. Three-coordinate complexes with a trigonal-planar geometry are accessible using bulky, anionic, bidentate ligands (beta-diketiminates) that steer a monodentate ligand into the plane of their two nitrogen donors. This strategy has led to a variety of three-coordinate iron complexes in which iron is in the +1, +2, and +3 oxidation states. Systematic studies on the electronic structures of these complexes have been useful in interpreting their properties. The iron ions are generally high spin, with singly occupied orbitals available for pi interactions with ligands. Trends in sigma-bonding show that iron(II) complexes favor electronegative ligands (O, N donors) over electropositive ligands (hydride). The combination of electrostatic sigma-bonding and the availability of pi-interactions stabilizes iron(II) fluoride and oxo complexes. The same factors destabilize iron(II) hydride complexes, which are reactive enough to add the hydrogen atom to unsaturated organic molecules and to take part in radical reactions. Iron(I) complexes use strong pi-backbonding to transfer charge from iron into coordinated alkynes and N 2, whereas iron(III) accepts charge from a pi-donating imido ligand. Though the imidoiron(III) complex is stabilized by pi-bonding in the trigonal-planar geometry, addition of pyridine as a fourth donor weakens the pi-bonding, which enables abstraction of H atoms from hydrocarbons. The unusual bonding and reactivity patterns of three-coordinate iron compounds may lead to new catalysts for oxidation and reduction reactions and may be used by nature in transient intermediates of nitrogenase enzymes.

  6. Effect of Ingested Liquids on Color Change of Composite Resins.

    PubMed

    Malek Afzali, Beheshteh; Ghasemi, Amir; Mirani, Asrin; Abdolazimi, Zahra; Akbarzade Baghban, Alireza; Kharazifard, Mohammad Javad

    2015-08-01

    Color change of composite restorations is well known to dentists. However, the effect of commonly consumed drinks on discoloration of composite resins has yet to be determined. This study sought to assess the color change of a nanofilled (Premise) and a flowable composite resin (Premise flowable) following simulated consumption of tea, cola, iron drops and multivitamin syrup. Forty disk-shaped specimens (7 mm in diameter and 2 mm thick) were fabricated from each composite resin. The baseline color values were measured according to the CIE L*a*b* system using digital imaging. The specimens of each restorative material were randomly divided into five groups (eight each) according to the storage media namely tea, cola, iron drops, multivitamin syrup or distilled water (control). The specimens were immersed in staining solutions for three hours daily over a 40-day test period. Following this, the color change values (ΔE*) were calculated. For statistical analyses, the color differences were analyzed using two-way ANOVA and Tukey's test (P< 0.05). There was no significant difference in ΔE* values between the two types of composite resins (P>0.05). In both composite materials, the difference among the solutions was not significant (P>0.05). Under the tested experimental conditions, both restorative materials were susceptible to discoloration by all four staining solutions. The color change values were not related to the solution or the type of material used.

  7. 21 CFR 573.580 - Iron-choline citrate complex.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Iron-choline citrate complex. 573.580 Section 573...

  8. 21 CFR 573.580 - Iron-choline citrate complex.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Iron-choline citrate complex. 573.580 Section 573...

  9. 21 CFR 573.580 - Iron-choline citrate complex.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Iron-choline citrate complex. 573.580 Section 573...

  10. 21 CFR 573.580 - Iron-choline citrate complex.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Iron-choline citrate complex. 573.580 Section 573...

  11. 21 CFR 573.580 - Iron-choline citrate complex.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made by... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Iron-choline citrate complex. 573.580 Section 573...

  12. Mutiple Stellar Populations in Blanco DECam Bulge Survey Globular Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Doryan; Pilachowski, C. A.; Johnson, C. I.; Rich, R. Michael; Clarkson, William I.; Young, M.; Michael, S.

    2018-01-01

    Preliminary SDSS ugrizY photometric observations of globular cluster stars included in the Blanco DECam Bulge Survey (BDBS) were examined to determine the suitability of these data to characterize stellar populations within clusters. The BDBS fields include around two dozen globular clusters, including the iron-complex cluster M22 and the pulsar-rich cluster Terzan 5. Many globular clusters show evidence for multiple stellar populations as a spread in the u-g color of stars in a given phase of stellar evolution, and in some clusters, the populations have different radial distributions. BDBS clusters with low and/or non-variable reddening and long dynamical mixing time scales were selected for study, and photometry for RGB and main sequence stars within two half-light radii from the center of each cluster was extracted from the BDBS preliminary catalog. Field contamination was reduced in each candidate cluster by removing all stars more than a tenth of a magnitude from the best-fit fiducial curves following the g-r vs r color-magnitude diagram. The remaining stars were split into separate populations based on u-g color, and effective cumulative distribution functions vs. half-light radius were compared to identify differences in the populations’ radial distributions.

  13. Effect of reactive monomer on PS-b-P2VP film with UV irradiation

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Shin, D. M.

    2012-03-01

    Poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) lamellar film which is hydrophobic block hydrophilic polyelectrolyte block polymer of 52 kg/mol -b- 57 kg/mol and PS-b-P2VP film with reactive monomer (RM257) were prepared for photonic gel films. The lamellar stacks, which is alternating layer of hydrophilic and hydrophobic part of PS-b-P2VP. We reported about the influence of reactive monomer on those photonic gel films. Added reactive monomer photonic gel film had higher absorbance than pure photonic gel films. And band gaps of the lamellar films shifted by the time of UV light irradiation. That Photonic gel films were measured with the UV spectrophotometer. As a result the photonic gel film with reactive monomer had more clear color. The lamellar films were swollen by DI water, Ethyl alcohol (aq) and calcium carbonate solution. Since the domain spacing of dried photonic gel films were not showing any color in visible wavelength. The band gap of the lamellar films were drastically shifted to longer wavelength swollen by calcium carbonate solution (absorbance peak 565nm-->617nm). And the lamellar films were shifted to shorter wave length swollen by ethanol (absorbance peak 565nm-->497nm). So each Photonic gel film showed different color.

  14. Vitamin C

    MedlinePlus

    ... body needs to grow and develop normally. Vitamin C is an antioxidant. It is important for your ... healing and helps the body absorb iron. Vitamin C comes from fruits and vegetables. Good sources include ...

  15. Study on EM-parameters and EM-wave absorption properties of materials with bio-flaky particles added

    NASA Astrophysics Data System (ADS)

    Zhang, Wenqiang; Zhang, Deyuan; Xu, Yonggang; McNaughton, Ryan

    2016-01-01

    Bio-flaky particles, fabricated through deposition of carbonyl iron on the surface of disk shaped diatomite, demonstrated beneficial performance on electromagnetic parameters. This paper will detail the improvements to the electromagnetic parameters and absorbing properties of traditional absorbing material generated by the addition of bio-flaky particles. Composites' electromagnetic parameters were measured using the transmission method. Calculated test results confirmed with bio-flaky particles were added, composites' permittivity increased due to the high permeability of bio-flaky particles. Secondly, the permeability of composites increased as a result of the increased volume content of iron particles. Composites with bio-flaky particles added exhibited superlative absorption properties at 0.5 mm thickness, with a maximum reflection loss of approximately -5.1 dB at 14.4 GHz.

  16. Dunes Around Khnifiss Lagoon (Tarfaya, SW of Morocco): Composition, Itinerary In Dune Fields, Effects on Dunes' Colours and Morphodynamic

    NASA Astrophysics Data System (ADS)

    Adnani, M.; Azzaoui, M. A.; Elbelrhiti, H.; Ahmamou, M.; Masmoudi, L.

    2015-12-01

    Dunes around Khnifiss lagoon (28° 3'N, 12°13'W) show different colors ranging from black at the beach, whitish yellow in transverse dunes near the beach to reddish at the mega barchans situated few kilometers in the SW. The scientific question is about the abundance of different dunes in the same environmental conditions. The present work aims to investigate the factors that influence dunes color change, and then at which degree these factors could control dunes stability. To highlight the difference in color observed at the dune fields then to characterize dunes mineralogy, Landsat TM images were used in addition to mineralogical analysis that was carried out for the black grains samples originated from megabarchans. Optic Microscope and SEM- EDS data was adopted, in addition to physico-chemical analysis provided by Electronic Microprobe. Grain size and shape analysis were conducted to characterize the different types of grains of sand. 3/1 Landsat image band ratio allowed iron oxide distinction, the results revealed the importance of iron oxide concentration. Furthermore, mineralogical and physico-chemical analysis revealed (i) a high grade of oxides (Rutile, Ilmenite, Magnetite, Ulvöspinel) in samples, (ii) silicates (Quartz, Clinopyroxene, feldspar, Zircon), (iii) phosphate (apatite) and (iv) carbonate (calcite). The grain size analysis of the sand originated from the megabarchans reveals that there are three populations of sand. Black grains with a diameter less than 100μm and dominated by the magnetite, red ones composed mainly by the quartz with diameter between 100 and 180 μm and grains with diameter more than 180 μm are white and composed by carbonates. The threshold of motion of these different grains was calculated. It shows that these different grains have the same threshold of motion, which means that the grain size compensates the density. This explains the abundance of different populations of sand in the same environment. The dominance of iron oxides justified the color black in sand. However, the whitish yellow and reddish color observed in dunes could be attributed to iron oxide clay coating, produced under weathering conditions, covering the grains of quartz. Key words: black sand, Landsat, Iron Oxide, Khnifiss beach, megadunes, Tarfaya, Morocco

  17. Effect of Various Food Additives on the Levels of 4(5)-Methylimidazole in a Soy Sauce Model System.

    PubMed

    Lee, Sumin; Lee, Jung-Bin; Hwang, Junho; Lee, Kwang-Geun

    2016-01-01

    In this study, the effect of food additives such as iron sulfate, magnesium sulfate, zinc sulfate, citric acid, gallic acid, and ascorbic acid on the reduction of 4(5)-methylimidazole (4(5)-MI) was investigated using a soy sauce model system. The concentration of 4(5)-MI in the soy sauce model system with 5% (v/v) caramel colorant III was 1404.13 μg/L. The reduction rate of 4(5)-MI level with the addition of 0.1M additives followed in order: iron sulfate (81%) > zinc sulfate (61%) > citric acid (40%) > gallic acid (38%) > ascorbic acid (24%) > magnesium sulfate (13%). Correlations between 4(5)-MI levels and the physicochemical properties of soy sauce, including the amount of caramel colorant, pH value, and color differences, were determined. The highest correlations were found between 4(5)-MI levels and the amount of caramel colorant and pH values (r(2) = 0.9712, r(2) = 0.9378). The concentration of caramel colorants in 8 commercial soy sauces were estimated, and ranged from 0.01 to 1.34% (v/v). © 2015 Institute of Food Technologists®

  18. Biophysical Characterization of an Bifunctional Iron Regulating Enzyme

    DTIC Science & Technology

    2002-05-01

    of the direct assay 29 Citrate, cis- aconitate and d- isocitrate all absorb light in the UV-Vis region, a fact which was confirmed...experimentally using a Hewlard-Packard 8452 Diode UV-Vis Diode Array Spectrophotometer. The maximum absorbance of cis- aconitate was determined to be 240 nm...and isocitrate was 212 nm. The preponderance of cis- aconitate concentration versus the formation of isocitrate concentration made tracking a

  19. Dual band QWIP focal plane array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D. (Inventor); Choi, Kwong Kit (Inventor); Bandara, Sumith V. (Inventor)

    2005-01-01

    A quantum well infrared photodetector (QWIP) that provides two-color image sensing. Two different quantum wells are configured to absorb two different wavelengths. The QWIPs are arrayed in a focal plane array (FPA). The two-color QWIPs are selected for readout by selective electrical contact with the two different QWIPs or by the use of two different wavelength sensitive gratings.

  20. Microwave absorption properties of the core/shell-type iron and nickel nanoparticles

    NASA Astrophysics Data System (ADS)

    Lu, B.; Dong, X. L.; Huang, H.; Zhang, X. F.; Zhu, X. G.; Lei, J. P.; Sun, J. P.

    Iron (Fe) and nickel (Ni) nanoparticles were prepared by the DC arc-discharge method in a mixture of hydrogen and argon gases, using bulk metals as the raw materials. The microstructure of core/shell (metal/metal oxide) in nanoparticle formed after in situ passivation process. The complex electromagnetic parameters (permittivity ɛ=ɛr'+iɛr″ and permeability μ=μr'+iμr″) of the paraffin-mixed nanocomposite samples (paraffin:nanoparticles=1:1 in mass ratio) were measured in the frequency range of 2-18 GHz. The polarization mechanisms of the space charge and dipole coexist in both the Fe and Ni nanoparticles. The orientational polarization is a particular polarization for Fe nanoparticles and brings a relatively higher dielectric loss. Natural resonance is the main reason for magnetic loss and the corresponding frequencies are 11.6 and 5.2 GHz for the Fe and Ni nanoparticles, respectively. The paraffin composite with Fe nanoparticles provided excellent microwave absorption properties (reflection loss <-20 dB) in the range 6.8-16.6 GHz over the absorber thickness of 1.1-2.3 mm.

  1. Simple and Precise Quantification of Iron Catalyst Content in Carbon Nanotubes Using UV/Visible Spectroscopy.

    PubMed

    Agustina, Elsye; Goak, Jeungchoon; Lee, Suntae; Seo, Youngho; Park, Jun-Young; Lee, Naesung

    2015-10-01

    Iron catalysts have been used widely for the mass production of carbon nanotubes (CNTs) with high yield. In this study, UV/visible spectroscopy was used to determine the Fe catalyst content in CNTs using a colorimetric technique. Fe ions in solution form red-orange complexes with 1,10-phenanthroline, producing an absorption peak at λ=510 nm, the intensity of which is proportional to the solution Fe concentration. A series of standard Fe solutions were formulated to establish the relationship between optical absorbance and Fe concentration. Many Fe catalysts were microscopically observed to be encased by graphitic layers, thus preventing their extraction. Fe catalyst dissolution from CNTs was investigated with various single and mixed acids, and Fe concentration was found to be highest with CNTs being held at reflux in HClO4/HNO3 and H2SO4/HNO3 mixtures. This novel colorimetric method to measure Fe concentrations by UV/Vis spectroscopy was validated by inductively coupled plasma optical emission spectroscopy, indicating its reliability and applicability to asses Fe content in CNTs.

  2. Highly sensitive and selective spectrophotometric method for determination of trace gold in geological samples with 5-(2-hydroxy-5-nitrophenylazo)rhodanine.

    PubMed

    Zaijun, Li; Jiaomai, Pan; Jian, Tang

    2003-02-01

    A excellent sensitive and selective method for spectrophotometric determination of trace gold has been developed, the method is based on the color reaction of gold(III) with new reagent 5-(2-hydroxy-5-nitrophenylazo)rhodanine (HNAR). Under optimal conditions, HNAR reacts with gold(III) to form a 1:5 orange complex, which has an maximum absorption peak at 480 nm. Maximum enhancement of the absorbance of the complex was obtained in the presence of the mixed surfactant of Triton X-100 and CTMAB; the reaction completed rapidly and the absorbance is stable for 5 h at least at 20 degrees C; 0-48 microg L(-1) Au(III) obeyed Beer's law. The apparent molar absorptivity of the complex, Sandell's sensitivity, the limit of quantification, the limit of detection and relative standard deviation were found to be 2.0x10(6) L mol(-1) cm(-1), 0.000,098,483 micro g cm(-2), 1.02 ng mL(-1), 0.35 ng mL(-1) and 1.09%, respectively. The effect of co-existing ions was studied seriously; most metal ions can be tolerated in considerable amounts. Its sensitivity and selectivity are remarkably superior to other reagents in the literature. The proposed method was used successfully to determine trace gold in geological samples. Moreover, the synthesis, characteristics and analytical reaction of HNAR with gold are also described in detail.

  3. Single Turnover Kinetics of Tryptophan Hydroxylase: Evidence for a New Intermediate in the Reaction of the Aromatic Amino Acid Hydroxylases

    PubMed Central

    Pavon, Jorge Alex; Eser, Bekir; Huynh, Michaela T.; Fitzpatrick, Paul F.

    2010-01-01

    Tryptophan hydroxylase (TrpH) uses a non-heme mononuclear iron center to catalyze the tetrahydropterin-dependent hydroxylation of tryptophan to 5-hydroxytryptophan. The reactions of the TrpH·Fe(II), TrpH·Fe(II)·tryptophan, TrpH·Fe(II)·6MePH4·tryptophan, and TrpH·Fe(II)·6MePH4·phenylalanine complexes with O2 were monitored by stopped-flow absorbance spectroscopy and rapid quench methods. The second-order rate constant for the oxidation of TrpH·Fe(II) has a value of 104 M−1s−1 irrespective of the presence of tryptophan. Stopped-flow absorbance analyses of the reaction of the TrpH·Fe(II)·6MePH4·tryptophan complex with oxygen are consistent with the initial step being reversible binding of oxygen, followed by the formation with a rate constant of 65 s−1 of an intermediate I that has maximal absorbance at 420 nm. The rate constant for decay of I, 4.4 s−1, matches that for formation of the 4a-hydroxypterin product monitored at 248 nm. Chemical-quench analyses show that 5-hydroxytryptophan forms with a rate constant of 1.3 s−1, and that overall turnover is limited by a subsequent slow step, presumably product release, with a rate constant of 0.2 s−1. All of the data with tryptophan as substrate can be described by a five-step mechanism. In contrast, with phenylalanine as substrate, the reaction can be described by three steps: a second-order reaction with oxygen to form I, decay of I as tyrosine forms, and slow product release. PMID:20687613

  4. Synthesis and characterization of a new Inonotus obliquus polysaccharide-iron(III) complex.

    PubMed

    Wang, Jia; Chen, Haixia; Wang, Yanwei; Xing, Lisha

    2015-04-01

    A new Inonotus obliquus polysaccharide-iron(III) complex (IOPS-iron) was synthesized and characterized. The preparation conditions of IOPS-iron(III) were optimized and the physicochemical properties were characterized by physicochemical methods, scanning electron microscopy (SEM), electron paramagnetic resonance (EPR) spectroscopy, fourier transform infrared (FTIR) spectroscopy, circular dichroism (CD) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy, respectively. The highest iron content of IOPS-iron(III) complex (19.40%) was obtained at the conditions: the ratio of IOPS and FeCl3 • 6H2O was 3:5 (w/w), the pH value of alkali solution was 10, the reaction temperature was 30 °C and the reaction time was 6h. The iron(III) was shown to be bound through the binding sites of the polysaccharide IOPS and it could form spatially separated iron centers on the polysaccharide backbone. IOPS-iron(III) complex was found to have good digestive availability and antioxidant activities in the in vitro assays, which suggested the IOPS-iron(III) complex might be used as a new iron supplement candidate. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Effect of Infant Formula on Streptococcus Mutans Biofilm Formation.

    PubMed

    Hinds, Laura M; Moser, Elizabeth A S; Eckert, George; Gregory, Richard L

    This study investigated the effect that infant formula had on biofilm growth of Streptococcus mutans. Specifically, it compared biofilm growth in media containing lactose-based and sucrose-based formulas. It also analyzed biofilm formation with formulas of varying iron content. Biofilm growth was tested with the specific infant formula components sucrose, lactose, and ferric chloride. The study was designed to determine if these types of infant formulas and components affected S. mutans biofilm formation differently. A 24-hour culture of S. mutans was treated with various concentrations of infant formula diluted in bacteriological media. To test for biofilm formation, S. mutans was cultured with and without the infant formula and formula components. The biofilms were washed, fixed, and stained with crystal violet. The absorbance was measured to evaluate biofilm growth and total absorbance. Sucrose-based formulas provided significant increases in biofilm growth when compared to lactose-based formulas at two dilutions (1:5, 1:20). Similac Sensitive RS (sucrose-based) at most dilutions provided the most significant increase in biofilm growth when compared to the control. Sucrose tested as an individual component provided more of a significant increase on biofilm growth than lactose or iron when compared to the control. A low iron formula provided a significant increase in biofilm growth at one dilution (1:5) when compared to formula containing a normal iron content. There was no significant difference in biofilm growth when comparing high iron formula to normal iron formula or low iron formula. There was no significant difference when comparing Similac PM 60/40 (low iron formula) to Similac PM 60/40 with additional ferric chloride. The results of this study demonstrated that sucrose-based formula provided more of a significant increase in biofilm growth compared to lactose-based formula. Sucrose alone provided a significant increase of biofilm growth at more dilutions when compared to the control than lactose and iron. The amount of iron in formula had a significant effect on biofilm formation only when comparing low iron formula to normal iron formula at the highest concentration (1:5). There was no significant difference in biofilm growth when iron was added to the low iron formula. The information obtained expands current knowledge regarding the influence of infant formula on the primary dentition and reinforces the importance of oral hygiene habits once the first tooth erupts.

  6. Removal of arsenic, phosphates and ammonia from well water using electrochemical/chemical methods and advanced oxidation: a pilot plant approach.

    PubMed

    Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Halkijevic, Ivan; Kuspilic, Marin; Findri Gustek, Stefica

    2014-01-01

    The purpose of this work was to develop a pilot plant purification system and apply it to groundwater used for human consumption, containing high concentrations of arsenic and increased levels of phosphates, ammonia, mercury and color. The groundwater used was obtained from the production well in the Vinkovci County (Eastern Croatia). Due to a complex composition of the treated water, the purification system involved a combined electrochemical treatment, using iron and aluminum electrode plates with simultaneous ozonation, followed by a post-treatment with UV, ozone and hydrogen peroxide. The removal of the contaminant with the waste sludge collected during the electrochemical treatment was also tested. The combined electrochemical and advanced oxidation treatment resulted in the complete removal of arsenic, phosphates, color, turbidity, suspended solids and ammonia, while the removal of other contaminants of interest was up to 96.7%. Comparable removal efficiencies were obtained by using waste sludge as a coagulant.

  7. Diagnostics of hydromorphism in soils of autonomous positions on the Severo-Sos'vinsk Upland (Western Siberia)

    NASA Astrophysics Data System (ADS)

    Avetov, N. A.; Sopova, E. O.; Golovleva, Yu. A.; Kiryushin, A. V.; Krasilnikov, P. V.

    2014-11-01

    The complex studies of hydromorphism features in taiga weakly differentiated soils using morphological (color), chemical (iron content in different extracts, indicators of reducing conditions (IRIS)), and geobotanic (using the Ramenskii scale) methods have led to ambiguous conclusions. In all the soils, surface gleying was manifested. According to the results obtained by different methods, the maximum reduction processes were related to either the sublitter or the next deeper horizon. The Schwertmann coefficient, the criterion of Bodegom, and the Ramenskii scale indicated an increase of hydromorphism in the soils studied in the following sequence: the lower part of the ridge slopes drained by the small gullies < the middle part of the slopes < the flat tops of the ridges < the depression between the ridges. The morphological diagnostics of gleying proved to be a less sensitive method, which can recognize only the most contrasting hydromorphic soils. The lower horizons in some taiga soils have a bluish gray color probably not related to the recent soil hydromorphism.

  8. Plant features measurements for robotics

    NASA Technical Reports Server (NTRS)

    Miles, Gaines E.

    1989-01-01

    Initial studies of the technical feasibility of using machine vision and color image processing to measure plant health were performed. Wheat plants were grown in nutrient solutions deficient in nitrogen, potassium, and iron. An additional treatment imposed water stress on wheat plants which received a full complement of nutrients. The results for juvenile (less than 2 weeks old) wheat plants show that imaging technology can be used to detect nutrient deficiencies. The relative amount of green color in a leaf declined with increased water stress. The absolute amount of green was higher for nitrogen deficient leaves compared to the control plants. Relative greenness was lower for iron deficient leaves, but the absolute green values were higher. The data showed patterns across the leaf consistent with visual symptons. The development of additional color image processing routines to recognize these patterns would improve the performance of this sensor of plant health.

  9. Final Progress Report for Grant Number DE-SC0007229

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blake, Robert

    2016-08-18

    We exploited a novel spectrophotometer where the cuvette is a reflecting cavity completely filled with an absorbing suspension of live, intact bacteria to monitor the in situ absorbance changes in bacteria as they respired aerobically on soluble ferrous ions. Our prior observations suggested the following hypothesis: acidophilic bacteria that belong to different phyla express different types of electron transfer proteins to respire on extracellular iron. We tested this hypothesis using six different organisms that represented each of the six phyla of microorganisms that respire aerobically on iron. Each of these six organisms expressed spectrally different biomolecules that were redox-active duringmore » aerobic respiration on iron. In all six cases, compelling kinetic evidence was collected to indicate that the biomolecules in question were obligatory intermediates in their respective respiratory chains. Additional experiments with intact Acidithiobacillus ferrooxidans revealed that the crowded electron transport proteins in this organism’s periplasm constituted a semi-conducting medium where the network of protein interactions functioned in a concerted fashion as a single ensemble. Thus the molecular oxygen-dependent oxidation of the multi-center respiratory chain occurred with a single macroscopic rate constant, regardless of the proteins’ individual redox potentials or their putative positions in the aerobic iron respiratory chain.« less

  10. Is crypsis a common defensive strategy in plants?

    PubMed Central

    2010-01-01

    Color is a common feature of animal defense. Herbivorous insects are often colored in shades of green similar to their preferred food plants, making them difficult for predators to locate. Other insects advertise their presence with bright colors after they sequester enough toxins from their food plants to make them unpalatable. Some insects even switch between cryptic and aposomatic coloration during development.1 Although common in animals, quantitative evidence for color-based defense in plants is rare. After all, the primary function of plant leaves is to absorb light for photosynthesis, rather than reflect light in ways that alter their appearance to herbivores. However, recent research is beginning to challenge the notion that color-based defence is restricted to animals. PMID:20592801

  11. Enhancement of iron content in spinach plants stimulated by magnetic nano particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yulianto, Agus; Astuti, Budi; Amalia, Saptaria Rosa

    In our previous study, the iron content in spinach plants could be detected by magnetic susceptibility values. In the present work, magnetic nano particles were found from the iron sand. The magnetic nano particles are synthesis by using co-precipitation process and sol-gel technique. The stimulation of magnetic nano particles in the plant has been done by the provision of magnetic nano particles in growing media. After certain time, plant samples was characterized using susceptibility-meter MS2B and atomic absorption spectroscopy to measure the magnetic susceptibility and the amount of iron content that absorbed of the plant, respectively. The iron content inmore » the spinach plants was increased when the magnetic nano particles was injected in the growing media.« less

  12. Complexation Effect on Redox Potential of Iron(III)-Iron(II) Couple: A Simple Potentiometric Experiment

    ERIC Educational Resources Information Center

    Rizvi, Masood Ahmad; Syed, Raashid Maqsood; Khan, Badruddin

    2011-01-01

    A titration curve with multiple inflection points results when a mixture of two or more reducing agents with sufficiently different reduction potentials are titrated. In this experiment iron(II) complexes are combined into a mixture of reducing agents and are oxidized to the corresponding iron(III) complexes. As all of the complexes involve the…

  13. Development of Radiation-Resistant In-Water Wireless Transmission System Using Light Emitting Diodes and Photo Diodes

    NASA Astrophysics Data System (ADS)

    Takeuchi, T.; Shibata, H.; Otsuka, N.; Uehara, T.; Tsuchiya, K.; Shibagaki, T.; Komanome, H.

    2016-10-01

    Several kinds of commercially available light emitting diodes (LED) and photo diodes (PD) were irradiated with 60Co gamma ray up to 1 MGy for development of a radiation-resistant in-water wireless transmission system using visible light. The lens parts of the LEDs turned brown by the irradiation and their colors became dark with the absorbed dose. The total luminous fluxes decreased with the absorbed dose and the LED with shorter emission wavelength had the higher decrease rate. Meanwhile, the current-voltage characteristics hardly changed. These results indicate that the decreases of the total luminous flux of the LEDs were mainly caused not by the degradation of the semiconductor parts but by the coloring of the lens parts by the irradiation. On the other hand, the light sensitivities of the PDs decreased with the absorbed dose. The PDs with the window part which turned a darker color had the higher decrease rate. These results indicate that the decreases of light sensitivities of the PDs were also mainly caused by the coloring of the resin parts by the irradiation. If the wireless transmission is performed using the candidate LED and PD between 5 meters in water, using a few LEDs and PDs, the PD's output current generated by the emission light of the LED is estimated to be detectable even considering the effects of the absorption of the light in water and the increased dark current by the irradiation. Therefore, a radiation resistant in-water transmission system can be constructed using commercially available LEDs and PDs in principle.

  14. A FOURTH H I 21 cm ABSORPTION SYSTEM IN THE SIGHT LINE OF MG J0414+0534: A RECORD FOR INTERVENING ABSORBERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanna, A.; Webb, J. K.; Curran, S. J.

    2013-08-01

    We report the detection of a strong H I 21 cm absorption system at z = 0.5344, as well as a candidate system at z = 0.3389, in the sight line toward the z = 2.64 quasar MG J0414+0534. This, in addition to the absorption at the host redshift and the other two intervening absorbers, takes the total to four (possibly five). The previous maximum number of 21 cm absorbers detected along a single sight line is two and so we suspect that this number of gas-rich absorbers is in some way related to the very red color of themore » background source. Despite this, no molecular gas (through OH absorption) has yet been detected at any of the 21 cm redshifts, although, from the population of 21 cm absorbers as a whole, there is evidence for a weak correlation between the atomic line strength and the optical-near-infrared color. In either case, the fact that so many gas-rich galaxies (likely to be damped Ly{alpha} absorption systems) have been found along a single sight line toward a highly obscured source may have far-reaching implications for the population of faint galaxies not detected in optical surveys, a possibility which could be addressed through future wide-field absorption line surveys with the Square Kilometer Array.« less

  15. Near-infrared sensitization in dye-sensitized solar cells.

    PubMed

    Park, Jinhyung; Viscardi, Guido; Barolo, Claudia; Barbero, Nadia

    2013-01-01

    Dye-sensitized solar cells (DSCs) are a low cost and colorful promising alternative to standard silicon photovoltaic cells. Though many of the highest efficiencies have been associated with sensitizers absorbing only in the visible portion of the solar radiation, there is a growing interest for NIR sensitization. This paper reviews the efforts made so far to find sensitizers able to absorb efficiently in the far-red NIR region of solar light. Panchromatic sensitizers as well as dyes absorbing mainly in the 650-920 nm region have been considered.

  16. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter.

    PubMed

    Donovan, A; Brownlie, A; Zhou, Y; Shepard, J; Pratt, S J; Moynihan, J; Paw, B H; Drejer, A; Barut, B; Zapata, A; Law, T C; Brugnara, C; Lux, S E; Pinkus, G S; Pinkus, J L; Kingsley, P D; Palis, J; Fleming, M D; Andrews, N C; Zon, L I

    2000-02-17

    Defects in iron absorption and utilization lead to iron deficiency and overload disorders. Adult mammals absorb iron through the duodenum, whereas embryos obtain iron through placental transport. Iron uptake from the intestinal lumen through the apical surface of polarized duodenal enterocytes is mediated by the divalent metal transporter, DMTi. A second transporter has been postulated to export iron across the basolateral surface to the circulation. Here we have used positional cloning to identify the gene responsible for the hypochromic anaemia of the zebrafish mutant weissherbst. The gene, ferroportin1, encodes a multiple-transmembrane domain protein, expressed in the yolk sac, that is a candidate for the elusive iron exporter. Zebrafish ferroportin1 is required for the transport of iron from maternally derived yolk stores to the circulation and functions as an iron exporter when expressed in Xenopus oocytes. Human Ferroportin1 is found at the basal surface of placental syncytiotrophoblasts, suggesting that it also transports iron from mother to embryo. Mammalian Ferroportin1 is expressed at the basolateral surface of duodenal enterocytes and could export cellular iron into the circulation. We propose that Ferroportin1 function may be perturbed in mammalian disorders of iron deficiency or overload.

  17. Soft X-ray spectral features in the Seyfert 1 Galaxy NGC4051

    NASA Technical Reports Server (NTRS)

    Mihara, Tatehiro; Matsuoka, Masaru; Mushotzky, Richard F.; Kunieda, Hideyo; Otani, Chiko; Miyamoto, Sigenori; Yamauchi, Makoto

    1994-01-01

    We report ASCA observations of NGC 4051 during the PV phase. The time averaged X-ray spectrum is not well fit by a simple power law with an iron K-emission line and shows significant absorption-edge features most probably due to O VII and O VIII and a strong soft excess. This is the first direct measurement of edges in the spectrum of this object and confirms that the X-ray spectrum of NGC 4051 is modified by a 'warm' absorbing gas. The best fit underlying power law index in the 0.4-10 keV band is 1.88. A power law modified by a warm absorber model can partly explain the apparent soft excess and qualitatively fit the SIS spectrum. However, the addition of a black body of kT approx. = 0.1 keV improves the fit considerably. The 90% upper limit on the width of the iron line is 460 eV full width at half maximum (FWHM). Applying the fluorescent iron line model from an accretion disk gives an upper limit of 20 deg for the inclination of the disk.

  18. Optimation and Determination of Fe-Oxinate Complex by Using High Performance Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Oktavia, B.; Nasra, E.; Sary, R. C.

    2018-04-01

    The need for iron will improve the industrial processes that require iron as its raw material. Control of industrial iron waste is very important to do. One method of iron analysis is to conduct indirect analysis of iron (III) ions by complexing with 8-Hydroxyquinoline or oxine. In this research, qualitative and quantitative tests of iron (III) ions in the form of complex with oxine. The analysis was performed using HPLC at a wavelength of 470 nm with an ODS C18 column. Three methods of analysis were performed: 1) Fe-oxinate complexes were prepared in an ethanol solvent so no need for separation anymore, (2) Fe-oxinate complexes were made in chloroform so that a solvent extraction was required before the complex was injected into the column while the third complex was formed in the column, wherein the eluent contains the oxide and the metal ions are then injected. The resulting chromatogram shows that the 3rd way provides a better chromatogram for iron analysis.

  19. A Ten-Year Global Record of Absorbing Aerosols Above Clouds from OMI's Near-UV Observations

    NASA Technical Reports Server (NTRS)

    Jethva, Hiren; Torres, Omar; Ahn, Changwoo

    2016-01-01

    Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes associated with the aerosol-cloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regional of the world. Contrary to the cloud-free scenario over dark surface, for which aerosols are known to produce a net cooling effect (negative radiative forcing) on climate, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud depends directly on the aerosol loading, microphysical-optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of optical depth of absorbing aerosols above clouds retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. The presence of absorbing aerosols above cloud reduces the upwelling radiation reflected by cloud and produces a strong 'color ratio' effect in the near-UV region, which can be unambiguously detected in the OMI measurements. Physically based on this effect, the OMACA algorithm retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. The algorithm architecture and results from a ten-year global record including global climatology of frequency of occurrence and above-cloud aerosol optical depth, and a discussion on related future field campaigns are presented.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Fei; Gao, Jie; Luk, Ting S.

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfectmore » light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.« less

  1. Characterization and treatment of water used for human consumption from six sources located in the Cameron/Tuba City abandoned uranium mining area.

    PubMed

    Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Mikelic, Ivanka Lovrencic; Kollar, Iris

    2011-01-01

    The purpose of this research was the characterization and improvement of the quality of water used for human consumption of unregulated/regulated water sources located in the Cameron/Tuba City abandoned uranium mining area (NE Arizona, western edge of the Navajo Nation). Samples were collected at six water sources which included regulated sources: Wind Mill (Tank 3T-538), Badger Springs and Paddock Well as well as unregulated sources: Willy Spring, Water Wall and Water Hole. Samples taken from Wind Mill, Water Wall and Water Hole were characterized with high turbidity and color as well as high level of manganese, iron and nickel and elevated value of molybdenum. High level of iron was also found in Badger Spring, Willy Spring, and Paddock Well. These three water sources were also characterized with elevated values of fluoride and vanadium. Significant amounts of zinc were found in Water Wall and Water Hole samples. Water Wall sample was also characterized with high level of Cr(VI). Compared to primary or secondary Navajo Nation Environmental Protection Agency (NNEPA) water quality standard the highest enrichment was found for turbidity (50.000 times), color (up to 1.796 times) and manganese (71 times), Cr(VI) (17.5 times), iron (7.4 times) and arsenic (5.2 times). Activities of (226)Ra and (238)U in water samples were still in agreement with the maximum contaminant levels. In order to comply with NNEPA water quality standard water samples were subjected to electrochemical treatment. This method was selected due to its high removal efficiency for heavy metals and uranium, lower settlement time, production of smaller volume of waste mud and higher stability of waste mud compared to physico-chemical treatment. Following the treatment, concentrations of heavy metals and activities of radionuclides in all samples were significantly lower compared to NNEPA or WHO regulated values. The maximum removal efficiencies for color, turbidity, arsenic, manganese, molybdenum and nickel were 100.0%. Maximum removal percentage of Cu, F(-), V, Zn, (137)Cs, (226)Ra, (232)Th, (238)U were as follows: 98.0%; 82.7%; 99.9%; 95.6%; 75.0%; 76.9%; 80.0% and 99.2%. From the results presented it could be concluded that electrochemical treatment is a suitable approach for the purification of drinking water with complex mixture of contaminants, especially those with high turbidity and color.

  2. A resonant absorption line in the ASCA spectrum of NGC 985?

    NASA Astrophysics Data System (ADS)

    Nicastro, F.; Fiore, F.; Brandt, N.; Reynolds, C. S.

    1999-01-01

    We present timing and spectral analyses of the ASCA observation of the Seyfert 1 galaxy NGC 985. The 0.6-10keV spectrum of this source is complex: large residuals are evident below 1keV when fitting the spectrum with a power-law model. Fitting a warm absorber model to the 0.6-2.5keV spectrum gives α=1.12+/-0.04, LogNWAH=21.97+/-0.08 and LogU=0.06+/-0.09, but the residuals continue to show a deficit of counts between 0.9 and 1keV. Adding an absorption line improves the fit, and the energy of the line is consistent with that of Kα NeIX-X resonant absorption lines. Hence, we confirm the presence of an ionized absorber along the line of sight to this source and interpret the further 1keV spectral feature as the first detection of a strong resonant absorption line associated with this system. The extrapolation of this model above 2.5keV produces large positive residuals above 3-4keV. Fitting the data with a broken power law plus warm absorber model gives an acceptable χ2 and Δα~0.5. A narrow iron line at 6.4keV (quasar frame) of equivalent width 138+64-110eV is also present in the ASCA data.

  3. Mastcam Special Filters Help Locate Variations Ahead

    NASA Image and Video Library

    2017-11-01

    This pair of images from the Mast Camera (Mastcam) on NASA's Curiosity rover illustrates how special filters are used to scout terrain ahead for variations in the local bedrock. The upper panorama is in the Mastcam's usual full color, for comparison. The lower panorama of the same scene, in false color, combines three exposures taken through different "science filters," each selecting for a narrow band of wavelengths. Filters and image processing steps were selected to make stronger signatures of hematite, an iron-oxide mineral, evident as purple. Hematite is of interest in this area of Mars -- partway up "Vera Rubin Ridge" on lower Mount Sharp -- as holding clues about ancient environmental conditions under which that mineral originated. In this pair of panoramas, the strongest indications of hematite appear related to areas where the bedrock is broken up. With information from this Mastcam reconnaissance, the rover team selected destinations in the scene for close-up investigations to gain understanding about the apparent patchiness in hematite spectral features. The Mastcam's left-eye camera took the component images of both panoramas on Sept. 12, 2017, during the 1,814th Martian day, or sol, of Curiosity's work on Mars. The view spans from south-southeast on the left to south-southwest on the right. The foreground across the bottom of the scene is about 50 feet (about 15 meters) wide. Figure 1 includes scale bars of 1 meter (3.3 feet) in the middle distance and 5 meters (16 feet) at upper right. Curiosity's Mastcam combines two cameras: the right eye with a telephoto lens and the left eye with a wider-angle lens. Each camera has a filter wheel that can be rotated in front of the lens for a choice of eight different filters. One filter for each camera is clear to all visible light, for regular full-color photos, and another is specifically for viewing the Sun. Some of the other filters were selected to admit wavelengths of light that are useful for identifying iron minerals. Each of the filters used for the lower panorama shown here admits light from a narrow band of wavelengths, extending to only about 5 to 10 nanometers longer or shorter than the filter's central wavelength. The three observations combined into this product used filters centered at three near-infrared wavelengths: 751 nanometers, 867 nanometers and 1,012 nanometers. Hematite distinctively absorbs some frequencies of infrared light more than others. Usual color photographs from digital cameras -- such as the upper panorama here from Mastcam -- combine information from red, green and blue filtering. The filters are in a microscopic grid in a "Bayer" filter array situated directly over the detector behind the lens, with wider bands of wavelengths. The colors of the upper panorama, as with most featured images from Mastcam, have been tuned with a color adjustment similar to white balancing for approximating how the rocks and sand would appear under daytime lighting conditions on Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22065

  4. 78 FR 57105 - Wm. Wrigley Jr. Company; Filing of Color Additive Petition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 73 [Docket No. FDA-2013-C-1008] Wm. Wrigley Jr. Company; Filing of Color Additive Petition AGENCY: Food and Drug... additive regulations be amended to expand the use of synthetic iron oxide to include soft and hard candy...

  5. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.; Jones, Susan A.

    2015-05-07

    This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used tomore » recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers occurs only if they are physically proximal in solution or the plutonium present in the solid phase is intimately mixed with compounds or solutions of these absorbers. No information on the potential chemical interaction of plutonium with cadmium was found in the technical literature. Definitive evidence of sorption or adsorption of plutonium onto various solid phases from strongly alkaline media is less clear-cut, perhaps owing to fewer studies and to some well-attributed tests run under conditions exceeding the very low solubility of plutonium. The several studies that are well-founded show that only about half of the plutonium is adsorbed from waste solutions onto sludge solid phases. The organic complexants found in many Hanford tank waste solutions seem to decrease plutonium uptake onto solids. A number of studies show plutonium sorbs effectively onto sodium titanate. Finally, this report presents findings describing the behavior of plutonium vis-à-vis other elements during sludge dissolution in nitric acid based on Hanford tank waste experience gained by lab-scale tests, chemical and radiochemical sample characterization, and full-scale processing in preparation for strontium-90 recovery from PUREX sludges.« less

  6. Environmental application of millimetre-scale sponge iron (s-Fe0) particles (IV): New insights into visible light photo-Fenton-like process with optimum dosage of H2O2 and RhB photosensitizers.

    PubMed

    Ju, Yongming; Yu, Yunjiang; Wang, Xiaoyan; Xiang, Mingdeng; Li, Liangzhong; Deng, Dongyang; Dionysiou, Dionysios D

    2017-02-05

    In this study, we firstly develop the photo-Fenton-like system with millimetric sponge iron (s-Fe 0 ), H 2 O 2 , visible light (vis, λ≥420nm) and rhodamine B (RhB), and present a comprehensive study concerning the mechanism. Thus, we investigate (1) the adsorption of RhB onto s-Fe 0 , (2) the photo-Fenton-like removal of RhB over iron oxides generated from the corrosion of s-Fe 0 , (3) the homogeneous photo-Fenton removal of RhB over Fe 2+ or Fe 3+ , (4) the Fe 3+ -RhB complexes, and (5) the photo-Fenton-like removal of tetrabromobisphenol A (TBBPA). The results show that neither the adsorption process over s-Fe 0 nor the photo-Fenton-like process over FeOOH, Fe 3 O 4 and Fe 2 O 3 , achieved efficient removal of RhB. For comparison, in homogeneous photo-Fenton process, the presence of Fe 3+ ions, rather than Fe 2+ ions, effectively eliminated RhB. Furthermore, the UV-vis spectra showing new absorbance at∼285nm indicate the complexes of RhB and Fe 3+ ions, adopting vis photons to form excited state and further eject one electron via ligand-to-metal charge-transfer to activate H 2 O 2 . Additionally, efficient TBBPA removal was obtained only in the presence of RhB. Accordingly, the s-Fe 0 - based photo-Fenton-like process assisted with dyestuff wastewater is promising for removing a series of persistent organic pollutants. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Track Structure and the Biological Effectiveness of Accelerated Particles for the Induction of Chromosome Damage

    NASA Technical Reports Server (NTRS)

    George, K.; Hada, M.; Chappell, L.; Cucinotta, F. A.

    2011-01-01

    Track structure models predict that at a fixed value of LET, particles with lower charge number, Z will have a higher biological effectiveness compared to particles with a higher Z. In this report we investigated how track structure effects induction of chromosomal aberration in human cells. Human lymphocytes were irradiated in vitro with various energies of accelerated iron, silicon, neon, or titanium ions and chromosome damage was assessed in using three color FISH chromosome painting in chemically induced PCC samples collected a first cell division post irradiation. The LET values for these ions ranged from 30 to195 keV/micron. Of the particles studied, Neon ions have the highest biological effectiveness for induction of total chromosome damage, which is consistent with track structure model predictions. For complex-type exchanges 64 MeV/ u Neon and 450 MeV/u Iron were equally effective and induced the most complex damage. In addition we present data on chromosomes exchanges induced by six different energies of protons (5 MeV/u to 2.5 GeV/u). The linear dose response term was similar for all energies of protons suggesting that the effect of the higher LET at low proton energies is balanced by the production of nuclear secondaries from the high energy protons.

  8. Reevaluating the mechanism of excitation energy regulation in iron-starved cyanobacteria.

    PubMed

    Chen, Hui-Yuan S; Liberton, Michelle; Pakrasi, Himadri B; Niedzwiedzki, Dariusz M

    2017-03-01

    This paper presents spectroscopic investigations of IsiA, a chlorophyll a-binding membrane protein produced by cyanobacteria grown in iron-deficient environments. IsiA, if associated with photosystem I, supports photosystem I in light harvesting by efficiently transferring excitation energy. However, if separated from photosystem I, IsiA exhibits considerable excitation quenching observed as a substantial reduction of protein-bound chlorophyll a fluorescence lifetime. Previous spectroscopic studies suggested that carotenoids are involved in excitation energy dissipation and in addition play a second role in this antenna complex by supporting chlorophyll a in light harvesting by absorbing in the spectral range inaccessible for chlorophyll a and transferring excitation to chlorophylls. However, this investigation does not support these proposed roles of carotenoids in this light harvesting protein. This study shows that carotenoids do not transfer excitation energy to chlorophyll a. In addition, our investigations do not support the hypothesis that carotenoids are quenchers of the excited state of chlorophyll a in this protein complex. We propose that quenching of chlorophyll a fluorescence in IsiA is maintained by pigment-protein interaction via electron transfer from an excited chlorophyll a to a cysteine residue, an excitation quenching mechanism that was recently proposed to regulate the light harvesting capabilities of the bacteriochlorophyll a-containing Fenna-Mathews-Olson protein from green sulfur bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The interactive biotic and abiotic processes of DDT transformation under dissimilatory iron-reducing conditions.

    PubMed

    Jin, Xin; Wang, Fang; Gu, Chenggang; Yang, Xinglun; Kengara, Fredrick O; Bian, Yongrong; Song, Yang; Jiang, Xin

    2015-11-01

    The objective of the study was to elucidate the biotic and abiotic processes under dissimilatory iron reducing conditions involved in reductive dechlorination and iron reduction. DDT transformation was investigated in cultures of Shewanella putrefaciens 200 with/without α-FeOOH. A modified first-order kinetics model was developed and described DDT transformation well. Both the α-FeOOH reduction rate and the dechlorination rate of DDT were positively correlated to the biomass. Addition of α-FeOOH enhanced reductive dechlorination of DDT by favoring the cell survival and generating Fe(II) which was absorbed on the surface of bacteria and iron oxide. 92% of the absorbed Fe(II) was Na-acetate (1M) extractable. However, α-FeOOH also played a negative role of competing for electrons as reflected by the dechlorination rate of DDT was inhibited when increasing the α-FeOOH from 1 g L(-1) to 5 g L(-1). DDT was measured to be toxic to S. putrefaciens 200. The metabolites DDD, DDE and DDMU were recalcitrant to S. putrefaciens 200. The results suggested that iron oxide was not the key factor to promote the dissipation of DDX (DDT and the metabolites), whereas the one-electron reduction potential (E1) of certain organochlorines is the main factor and that the E1 higher than the threshold of the reductive driving forces of DIRB probably ensures the occur of reductive dechlorination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Azide and acetate complexes plus two iron-depleted crystal structures of the di-iron enzyme delta9 stearoyl-acyl carrier protein desaturase. Implications for oxygen activation and catalytic intermediates.

    PubMed

    Moche, Martin; Shanklin, John; Ghoshal, Alokesh; Lindqvist, Ylva

    2003-07-04

    Delta9 stearoyl-acyl carrier protein (ACP) desaturase is a mu-oxo-bridged di-iron enzyme, which belongs to the structural class I of large helix bundle proteins and that catalyzes the NADPH and O2-dependent formation of a cis-double bond in stearoyl-ACP. The crystal structures of complexes with azide and acetate, respectively, as well as the apoand single-iron forms of Delta9 stearoyl-ACP desaturase from Ricinus communis have been determined. In the azide complex, the ligand forms a mu-1,3-bridge between the two iron ions in the active site, replacing a loosely bound water molecule. The structure of the acetate complex is similar, with acetate bridging the di-iron center in the same orientation with respect to the di-iron center. However, in this complex, the iron ligand Glu196 has changed its coordination mode from bidentate to monodentate, the first crystallographic observation of a carboxylate shift in Delta9 stearoyl-ACP desaturase. The two complexes are proposed to mimic a mu-1,2 peroxo intermediate present during catalytic turnover. There are striking structural similarities between the di-iron center in the Delta9 stearoyl-ACP desaturase-azide complex and in the reduced rubrerythrin-azide complex. This suggests that Delta9 stearoyl-ACP desaturase might catalyze the formation of water from exogenous hydrogen peroxide at a low rate. From the similarity in iron center structure, we propose that the mu-oxo-bridge in oxidized desaturase is bound to the di-iron center as in rubrerythrin and not as reported for the R2 subunit of ribonucleotide reductase and the hydroxylase subunit of methane monooxygenase. The crystal structure of the one-iron depleted desaturase species demonstrates that the affinities for the two iron ions comprising the di-iron center are not equivalent, Fe1 being the higher affinity site and Fe2 being the lower affinity site.

  11. 21 CFR 172.370 - Iron-choline citrate complex.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline citrate complex made by reacting...

  12. Metallic Iron and Iron Oxide as an Explanation for the Dark Material Observed on Saturn's Icy Satellites and Rings with Cassini VIMS

    NASA Astrophysics Data System (ADS)

    Clark, Roger Nelson; Cruikshank, D. P.; Jaumann, R.; Brown, R. H.; Dalle Ore, C.; Stephan, K.; Hoefen, T. M.; Curchin, J. M.; Buratti, B. J.; Filacchione, G.; Baines, K. H.; Nicholson, P. D.

    2010-10-01

    The Visual and Infrared Mapping Spectrometer (VIMS) on Cassini has obtained spatially resolved spectra on satellites of Saturn. The Cassini Rev 49 Iapetus fly-by on September 10, 2007, provided data on both the dark material and the transition zone between the dark material and the visually bright ice. The dark material has low albedo with a linear increase in reflectance with wavelength, 3-micron water, and CO2 absorptions. The transition between bright and dark regions shows mixing with unusual optical properties including increased blue scattering and increasing strength of a UV absorber in areas with stronger ice absorptions. Similar spectral effects are observed on other Saturnian satellites and in the rings. We have been unable to match these spectral properties and trends using tholins and carbon compounds. However, the dark material is spectrally matched by fine-grained metallic iron plus nano-phase hematite and adsorbed water which contribute UV and 3-micron absorption, respectively. The blue scattering peak and UV absorption can be explained by Rayleigh scattering from sub-micron particles with a UV absorption, or a combination of Rayleigh scattering and Rayleigh absorption as has been attributed to spectral properties of the Moon. A new radiative transfer model that includes Rayleigh scattering and Rayleigh absorption has been constructed. Models of ice, sub-micron metallic iron, hydrated iron oxide, and trace CO2 explain the observed spectra. Rayleigh absorption requires high absorption coefficient nano-sized particles, which is also consistent with metallic iron. The UV absorber appears to have increased strength on satellite surfaces close to Saturn, with a corresponding decrease in metallic iron signature. A possible explanation is that the iron is oxidized closer to Saturn by oxygen in the extended atmosphere of Saturn's rings, or the dark material is simply covered by clean fine-grained ice particles, for example, from the E-ring.

  13. Thermal consequences of colour and near-infrared reflectance.

    PubMed

    Stuart-Fox, Devi; Newton, Elizabeth; Clusella-Trullas, Susana

    2017-07-05

    The importance of colour for temperature regulation in animals remains controversial. Colour can affect an animal's temperature because all else being equal, dark surfaces absorb more solar energy than do light surfaces, and that energy is converted into heat. However, in reality, the relationship between colour and thermoregulation is complex and varied because it depends on environmental conditions and the physical properties, behaviour and physiology of the animal. Furthermore, the thermal effects of colour depend as much on absorptance of near-infrared ((NIR), 700-2500 nm) as visible (300-700 nm) wavelengths of direct sunlight; yet the NIR is very rarely considered or measured. The few available data on NIR reflectance in animals indicate that the visible reflectance is often a poor predictor of NIR reflectance. Adaptive variation in animal coloration (visible reflectance) reflects a compromise between multiple competing functions such as camouflage, signalling and thermoregulation. By contrast, adaptive variation in NIR reflectance should primarily reflect thermoregulatory requirements because animal visual systems are generally insensitive to NIR wavelengths. Here, we assess evidence and identify key research questions regarding the thermoregulatory function of animal coloration, and specifically consider evidence for adaptive variation in NIR reflectance.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).

  14. 9 CFR 75.4 - Interstate movement of equine infectious anemia reactors and approval of laboratories, diagnostic...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: (1) The description, including age, breed, color, sex, and distinctive markings when present (such as... representative, State representative or accredited veterinarian who shall use for the purpose a hot iron or chemical brand, freezemarking or a lip tattoo. If hot iron or chemical branding or freezemarking is used...

  15. 9 CFR 75.4 - Interstate movement of equine infectious anemia reactors and approval of laboratories, diagnostic...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: (1) The description, including age, breed, color, sex, and distinctive markings when present (such as... representative, State representative or accredited veterinarian who shall use for the purpose a hot iron or chemical brand, freezemarking or a lip tattoo. If hot iron or chemical branding or freezemarking is used...

  16. 9 CFR 75.4 - Interstate movement of equine infectious anemia reactors and approval of laboratories, diagnostic...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: (1) The description, including age, breed, color, sex, and distinctive markings when present (such as... representative, State representative or accredited veterinarian who shall use for the purpose a hot iron or chemical brand, freezemarking or a lip tattoo. If hot iron or chemical branding or freezemarking is used...

  17. A naked eye refractive index sensor with a visible multiple peak metamaterial absorber.

    PubMed

    Ma, Heli; Song, Kun; Zhou, Liang; Zhao, Xiaopeng

    2015-03-26

    We report a naked eye refractive index sensor with a visible metamaterial absorber. The visible metamaterial absorber consisting of a silver dendritic/dielectric/metal structure shows multiple absorption peaks. By incorporating a gain material (rhodamine B) into the dielectric layer, the maximal magnitude of the absorption peak can be improved by about 30%. As the metamaterial absorber is sensitive to the refractive index of glucose solutions, it can function as a sensor that quickly responds to variations of the refractive index of the liquid. Meanwhile, since the response is presented via color changes, it can be clearly observed by the naked eyes. Further experiments have confirmed that the sensor can be used repeatedly.

  18. Lithologic analysis from multispectral thermal infrared data of the alkalic rock complex at Iron Hill, Colorado

    USGS Publications Warehouse

    Watson, K.; Rowan, L.C.; Bowers, T.L.; Anton-Pacheco, C.; Gumiel, P.; Miller, S.H.

    1996-01-01

    Airborne thermal-infrared multispectral scanner (TIMS) data of the Iron Hill carbonatite-alkalic igneous rock complex in south-central Colorado are analyzed using a new spectral emissivity ratio algorithm and confirmed by field examination using existing 1:24 000-scale geologic maps and petrographic studies. Color composite images show that the alkalic rocks could be clearly identified and that differences existed among alkalic rocks in several parts of the complex. An unsupervised classification algorithm defines four alkalic rock classes within the complex: biotitic pyroxenite, uncompahgrite, augitic pyroxenite, and fenite + nepheline syenite. Felsic rock classes defined in the surrounding country rock are an extensive class consisting of tuff, granite, and felsite, a less extensive class of granite and felsite, and quartzite. The general composition of the classes can be determined from comparisons of the TIMS spectra with laboratory spectra. Carbonatite rocks are not classified, and we attribute that to the fact that dolomite, the predominant carbonate mineral in the complex, has a spectral feature that falls between TIMS channels 5 and 6. Mineralogical variability in the fenitized granite contributed to the nonuniform pattern of the fenite-nepheline syenite class. The biotitic pyroxenite, which resulted from alteration of the pyroxenite, is spatially associated and appears to be related to narrow carbonatite dikes and sills. Results from a linear unmixing algorithm suggest that the detected spatial extent of the two mixed felsic rock classes was sensitive to the amount of vegetation cover. These results illustrate that spectral thermal infrared data can be processed to yield compositional information that can be a cost-effective tool to target mineral exploration, particularly in igneous terranes.

  19. A Novel BA Complex Network Model on Color Template Matching

    PubMed Central

    Han, Risheng; Yue, Guangxue; Ding, Hui

    2014-01-01

    A novel BA complex network model of color space is proposed based on two fundamental rules of BA scale-free network model: growth and preferential attachment. The scale-free characteristic of color space is discovered by analyzing evolving process of template's color distribution. And then the template's BA complex network model can be used to select important color pixels which have much larger effects than other color pixels in matching process. The proposed BA complex network model of color space can be easily integrated into many traditional template matching algorithms, such as SSD based matching and SAD based matching. Experiments show the performance of color template matching results can be improved based on the proposed algorithm. To the best of our knowledge, this is the first study about how to model the color space of images using a proper complex network model and apply the complex network model to template matching. PMID:25243235

  20. A novel BA complex network model on color template matching.

    PubMed

    Han, Risheng; Shen, Shigen; Yue, Guangxue; Ding, Hui

    2014-01-01

    A novel BA complex network model of color space is proposed based on two fundamental rules of BA scale-free network model: growth and preferential attachment. The scale-free characteristic of color space is discovered by analyzing evolving process of template's color distribution. And then the template's BA complex network model can be used to select important color pixels which have much larger effects than other color pixels in matching process. The proposed BA complex network model of color space can be easily integrated into many traditional template matching algorithms, such as SSD based matching and SAD based matching. Experiments show the performance of color template matching results can be improved based on the proposed algorithm. To the best of our knowledge, this is the first study about how to model the color space of images using a proper complex network model and apply the complex network model to template matching.

  1. Water oxidation catalysis with nonheme iron complexes under acidic and basic conditions: homogeneous or heterogeneous?

    PubMed

    Hong, Dachao; Mandal, Sukanta; Yamada, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Llobet, Antoni; Fukuzumi, Shunichi

    2013-08-19

    Thermal water oxidation by cerium(IV) ammonium nitrate (CAN) was catalyzed by nonheme iron complexes, such as Fe(BQEN)(OTf)2 (1) and Fe(BQCN)(OTf)2 (2) (BQEN = N,N'-dimethyl-N,N'-bis(8-quinolyl)ethane-1,2-diamine, BQCN = N,N'-dimethyl-N,N'-bis(8-quinolyl)cyclohexanediamine, OTf = CF3SO3(-)) in a nonbuffered aqueous solution; turnover numbers of 80 ± 10 and 20 ± 5 were obtained in the O2 evolution reaction by 1 and 2, respectively. The ligand dissociation of the iron complexes was observed under acidic conditions, and the dissociated ligands were oxidized by CAN to yield CO2. We also observed that 1 was converted to an iron(IV)-oxo complex during the water oxidation in competition with the ligand oxidation. In addition, oxygen exchange between the iron(IV)-oxo complex and H2(18)O was found to occur at a much faster rate than the oxygen evolution. These results indicate that the iron complexes act as the true homogeneous catalyst for water oxidation by CAN at low pHs. In contrast, light-driven water oxidation using [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine) as a photosensitizer and S2O8(2-) as a sacrificial electron acceptor was catalyzed by iron hydroxide nanoparticles derived from the iron complexes under basic conditions as the result of the ligand dissociation. In a buffer solution (initial pH 9.0) formation of the iron hydroxide nanoparticles with a size of around 100 nm at the end of the reaction was monitored by dynamic light scattering (DLS) in situ and characterized by X-ray photoelectron spectra (XPS) and transmission electron microscope (TEM) measurements. We thus conclude that the water oxidation by CAN was catalyzed by short-lived homogeneous iron complexes under acidic conditions, whereas iron hydroxide nanoparticles derived from iron complexes act as a heterogeneous catalyst in the light-driven water oxidation reaction under basic conditions.

  2. Remote Sensing of Ocean Color

    NASA Astrophysics Data System (ADS)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats (e.g., seagrasses, kelps), eutrophication processes, oil spills, and a variety of hazards in the coastal zone.

  3. [Preliminary studies on physicochemical properties of Angelica sinensis polysaccharide-iron complex].

    PubMed

    Wang, Kai-ping; Zhang, Yu; Dai, Li-quan

    2006-05-01

    To study some physicochemical properties of Angelica sinensis polysaccharide-iron complex (APC). Based on the qualitatively identified reactions of iron (III), the qualitatively identified reactions of APC were found out by comparing hydroxide. The content of iron (III) in APC was determined with iodometry. The stability of APC under physiological pH conditions was judged by titrating APC with sodium hydroxide. The deoxidization of APC was tested with colorimetric analysis. APC showed the qualitatively identified reactions of iron (III). The content of iron (III) in APC ranged from 10% to 40%, and the water-solubility of APC was related to the content of iron (III). The complex was stable at physiological pH from 3 to 12, without precipitation and dissociation. At 37 degrees C, Fe (III) in the complex was completely reduced to Fe (III) by ascorbic acid in about 6 hours. APC can be qualitatively identified by using the qualitatively identified reactions of iron (III). When its iron (III) content is within 20%-25%, APC has a better ability to dissolve in water. And the complex is stable under physiological pH conditions.

  4. In vivo anti-radiation activities of the Ulva pertusa polysaccharides and polysaccharide-iron(III) complex.

    PubMed

    Shi, Jinming; Cheng, Cuilin; Zhao, Haitian; Jing, Jing; Gong, Ning; Lu, Weihong

    2013-09-01

    Polysaccharides with different molecular weights were extracted from Ulva pertusa and fractionated by ultrafiltration. Iron(III) complex of the low molecular-weight U. pertusa polysaccharides were synthesized. Atomic absorption spectrum showed that the iron content of iron(III)-polysaccharide complex was 27.4%. The comparison between U. pertusa polysaccharides and their iron(III) complex showed that iron chelating altered the structural characteristics of the polysaccharides. The bioactivity analysis showed that polysaccharide with low molecular weight was more effective than polysaccharide with high molecular weight in protecting mice from radiation induced damages on bone marrow cells and immune system. Results also proved that the anti-radiation and anti-oxidative activity of iron(III) complex of low molecular-weight polysaccharides were not less than that of low molecular-weight polysaccharides. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Correlation of climate cycles in middle Mississippi Valley loess and Greenland ice

    USGS Publications Warehouse

    Wang, Hongfang; Hughes, R.E.; Steele, J.D.; Lepley, S.W.; Tian, J.

    2003-01-01

    Two complete late Wisconsin loess successions in the middle Mississippi River Valley reveal 39 and 41 alternating paleosol A- and C-horizons. Striking changes in soil color, iron content, and carbonate content define four major and two minor paleosol A-horizon complexes, which were interpreted to represent Wisconsin interstadials 1, 2, 3, 4, and semiinterstadials 1.5 and 2.5, respectively. The timing of Wisconsin interstadials matches that of corresponding Greenland interstadials. Midcontinent loess and Greenland ice records as well as rates of atmospheric 14C production have periodicities in common, suggesting a solar influence. Only a persistent heat and moisture supply could produce prominent paleosol complexes near the continental ice margin. This record suggests that El Nin??o-Southern Oscillation variability has amplified solar forcing, and resultant tropical heat and moisture transport played a significant role in millennial- and centennial-scale climate cycles during the late Wisconsin glaciation over the Northern Hemisphere.

  6. Glutathione, Glutaredoxins, and Iron.

    PubMed

    Berndt, Carsten; Lillig, Christopher Horst

    2017-11-20

    Glutathione (GSH) is the most abundant cellular low-molecular-weight thiol in the majority of organisms in all kingdoms of life. Therefore, functions of GSH and disturbed regulation of its concentration are associated with numerous physiological and pathological situations. Recent Advances: The function of GSH as redox buffer or antioxidant is increasingly being questioned. New functions, especially functions connected to the cellular iron homeostasis, were elucidated. Via the formation of iron complexes, GSH is an important player in all aspects of iron metabolism: sensing and regulation of iron levels, iron trafficking, and biosynthesis of iron cofactors. The variety of GSH coordinated iron complexes and their functions with a special focus on FeS-glutaredoxins are summarized in this review. Interestingly, GSH analogues that function as major low-molecular-weight thiols in organisms lacking GSH resemble the functions in iron homeostasis. Since these iron-related functions are most likely also connected to thiol redox chemistry, it is difficult to distinguish between mechanisms related to either redox or iron metabolisms. The ability of GSH to coordinate iron in different complexes with or without proteins needs further investigation. The discovery of new Fe-GSH complexes and their physiological functions will significantly advance our understanding of cellular iron homeostasis. Antioxid. Redox Signal. 27, 1235-1251.

  7. Geology of the Biwabik Iron Formation and Duluth Complex.

    PubMed

    Jirsa, Mark A; Miller, James D; Morey, G B

    2008-10-01

    The Biwabik Iron Formation is a approximately 1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by approximately 1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact.

  8. Geology of the Biwabik Iron Formation and Duluth Complex

    USGS Publications Warehouse

    Jirsa, M.A.; Miller, J.D.; Morey, G.B.

    2008-01-01

    The Biwabik Iron Formation is a ???1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by ???1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact. ?? 2007 Elsevier Inc. All rights reserved.

  9. Iron, ferritin, and nutrition.

    PubMed

    Theil, Elizabeth C

    2004-01-01

    Ferritin, a major form of endogenous iron in food legumes such as soybeans, is a novel and natural alternative for iron supplementation strategies where effectiveness is limited by acceptability, cost, or undesirable side effects. A member of the nonheme iron group of dietary iron sources, ferritin is a complex with Fe3+ iron in a mineral (thousands of iron atoms inside a protein cage) protected from complexation. Ferritin illustrates the wide range of chemical and biological properties among nonheme iron sources. The wide range of nonheme iron receptors matched to the structure of the iron complexes that occurs in microorganisms may, by analogy, exist in humans. An understanding of the chemistry and biology of each type of dietary iron source (ferritin, heme, Fe2+ ion, etc.), and of the interactions dependent on food sources, genes, and gender, is required to design diets that will eradicate global iron deficiency in the twenty-first century.

  10. Is crypsis a common defensive strategy in plants? Speculation on signal deception in the New Zealand flora.

    PubMed

    Burns, Kevin C

    2010-01-01

    Color is a common feature of animal defense. Herbivorous insects are often colored in shades of green similar to their preferred food plants, making them difficult for predators to locate. Other insects advertise their presence with bright colors after they sequester enough toxins from their food plants to make them unpalatable. Some insects even switch between cryptic and aposomatic coloration during development. Although common in animals, quantitative evidence for color-based defense in plants is rare. After all, the primary function of plant leaves is to absorb light for photosynthesis, rather than reflect light in ways that alter their appearance to herbivores. However, recent research is beginning to challenge the notion that color-based defence is restricted to animals.

  11. The Biological Effectiveness of Accelerated Particles for the Induction of Chromosome Damage: Track Structure Effects and Cytogenetic Signatures of High-LET Exposure

    NASA Technical Reports Server (NTRS)

    George, K.; Hada, M.; Chappell, L.; Cucinotta, F. A.

    2012-01-01

    Track structure models predict that at a fixed value of LET, particles with lower charge number, Z will have a higher biological effectiveness compared to particles with a higher Z. In this report we investigated how track structure effects induction of chromosomal aberration in human cells. Human lymphocytes were irradiated in vitro with various energies of accelerated iron, silicon, neon, or titanium ions and chromosome damage was assessed in using three color FISH chromosome painting in chemically induced PCC samples collected a first cell division post irradiation. The LET values for these ions ranged from 30 to 195 keV/micrometers. Of the particles studied, Neon ions have the highest biological effectiveness for induction of total chromosome damage, which is consistent with track structure model predictions. For complex-type exchanges 64 MeV/ u Neon and 450 MeV/u Iron were equally effective and induced the most complex damage. In addition we present data on chromosomes exchanges induced by six different energies of protons (5 MeV/u to 2.5 GeV/u). The linear dose response term was similar for all energies of protons suggesting that the effect of the higher LET at low proton energies is balanced by the production of nuclear secondaries from the high energy protons. All energies of protons have a much higher percentage of complex-type chromosome exchanges than gamma rays, signifying a cytogenetic signature for proton exposures.

  12. Influence of short-chain fatty acids on iron absorption by proximal colon.

    PubMed

    Bouglé, D; Vaghefi-Vaezzadeh, N; Roland, N; Bouvard, G; Arhan, P; Bureau, F; Neuville, D; Maubois, J L

    2002-09-01

    Short-chain fatty acids produced by bacterial fermentation in the colon enhance the local absorption of cations, such as calcium, that could be used to improve the bioavailability of iron if a significant colonic absorption of iron were to occur. Iron (iron gluconate, 100 microM) absorption by the caecum of the rat was compared with that in proximal sites of the small bowel using the Ussing chamber model; the influence of probiotic bacteria (Propionibacterium freudenreichii) on iron absorption was assessed and compared with that of two of their fermentation products (acetic and propionic acids) using the Ussing chamber and the ligated colon with gamma emitting iron as experimental models. The caecum absorbed less iron than the duodenum, but significantly more than the jejunum and ileum. This occurred mainly through an enhanced mucosal transfer of iron uptake. Propionibacteria enhanced iron absorption from the proximal colon; the same effect was observed in the presence of viable bacteria, or the culture medium free of viable bacteria, or acetate and propionate or propionate alone. The proximal colon could be a significant site available for iron absorption; this absorption can be enhanced by local production of short-chain fatty acids such as propionate.

  13. Optical Properties of Fe3O4 Thin Films Prepared from the Iron Sand by Spin Coating Method

    NASA Astrophysics Data System (ADS)

    Yulfriska, N.; Rianto, D.; Murti, F.; Darvina, Y.; Ramli, R.

    2018-04-01

    Research on magnetic oxide is growing very rapidly. This magnetic oxide can be found in nature that is in iron sand. One of the beaches in Sumatera Barat containing iron sand is Tiram Beach, Padang Pariaman District, Sumatera Barat. The content of iron sand is generally in the form of magnetic minerals such as magnetite, hematite, and maghemit. Magnetite has superior properties that can be developed into thin films. The purpose of this research is to investigate the optical properties of transmittance, absorbance, reflectance and energy gap from Fe3O4 thin films. This type of research is an experimental research. The iron sand obtained from nature is first purified using a permanent magnet, then made in nanoparticle size using HEM-E3D with milling time for 30 hours. After that, the process of making thin film with sol-gel spin coating method. In this research, variation of rotation speed from spin coating is 1000 rpm, 2000 rpm and 3000 rpm. Based on XRD results indicated that the iron sand of Tiram beach contains magnetite minerals and the SEM results show that the thickness of the thin films formed is 25μm, 24μm and 11μm. The characterization tool used for characterizing optical properties is the UV-VIS Spectrophotometer. So it can be concluded that the greater the speed of rotation the thickness of the thin layer will be smaller, resulting in the transmittance and reflectance will be greater, while the absorbance will be smaller. Energy gap obtained from this research is 3,75eV, 3,75eV and 3,74eV. So the average energy gap obtained is 3,75eV.

  14. In Situ UV-Visible Assessment of Iron-Based High-Temperature Water-Gas Shift Catalysts Promoted with Lanthana: An Extent of Reduction Study

    DOE PAGES

    Hallac, Basseem B.; Brown, Jared C.; Stavitski, Eli; ...

    2018-02-04

    Here, the extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt %) lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe 3O 4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible lightmore » using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe 2O 3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe +2.57 for the catalyst with no lanthana and Fe +2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe +2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe +2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. Furthermore, the paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.« less

  15. In Situ UV-Visible Assessment of Iron-Based High-Temperature Water-Gas Shift Catalysts Promoted with Lanthana: An Extent of Reduction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallac, Basseem B.; Brown, Jared C.; Stavitski, Eli

    Here, the extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt %) lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe 3O 4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible lightmore » using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe 2O 3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe +2.57 for the catalyst with no lanthana and Fe +2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe +2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe +2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. Furthermore, the paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.« less

  16. Degradation and decoloration of textiles wastewater by electron beam irradiation: Effect of energy, current and absorbed dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakar, Khomsaton Abu; Zulkafli,; Hashim, Siti A'aisah

    2014-09-03

    In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev butmore » at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD{sub 5}, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.« less

  17. Unique Temporal Expression of Triplicated Long-Wavelength Opsins in Developing Butterfly Eyes

    PubMed Central

    Arikawa, Kentaro; Iwanaga, Tomoyuki; Wakakuwa, Motohiro; Kinoshita, Michiyo

    2017-01-01

    Following gene duplication events, the expression patterns of the resulting gene copies can often diverge both spatially and temporally. Here we report on gene duplicates that are expressed in distinct but overlapping patterns, and which exhibit temporally divergent expression. Butterflies have sophisticated color vision and spectrally complex eyes, typically with three types of heterogeneous ommatidia. The eyes of the butterfly Papilio xuthus express two green- and one red-absorbing visual pigment, which came about via gene duplication events, in addition to one ultraviolet (UV)- and one blue-absorbing visual pigment. We localized mRNAs encoding opsins of these visual pigments in developing eye disks throughout the pupal stage. The mRNAs of the UV and blue opsin are expressed early in pupal development (pd), specifying the type of the ommatidium in which they appear. Red sensitive photoreceptors first express a green opsin mRNA, which is replaced later by the red opsin mRNA. Broadband photoreceptors (that coexpress the green and red opsins) first express the green opsin mRNA, later change to red opsin mRNA and finally re-express the green opsin mRNA in addition to the red mRNA. Such a unique temporal and spatial expression pattern of opsin mRNAs may reflect the evolution of visual pigments and provide clues toward understanding how the spectrally complex eyes of butterflies evolved. PMID:29238294

  18. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion.

    PubMed

    Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D; Nam, Wonwoo

    2014-02-18

    Reaction of a nonheme iron(III)-peroxo complex, [Fe(III)(14-TMC)(O2)](+), with NO(+), a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2˙(-)) + NO], affords an iron(IV)-oxo complex, [Fe(IV)(14-TMC)(O)](2+), and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [Fe(III)(14-TMC)(NO3)(F)](+).

  19. Quaternary ammonium oxidative demethylation: X-ray crystallographic, resonance Raman, and UV-visible spectroscopic analysis of a Rieske-type demethylase.

    PubMed

    Daughtry, Kelly D; Xiao, Youli; Stoner-Ma, Deborah; Cho, Eunsun; Orville, Allen M; Liu, Pinghua; Allen, Karen N

    2012-02-08

    Herein, the structure resulting from in situ turnover in a chemically challenging quaternary ammonium oxidative demethylation reaction was captured via crystallographic analysis and analyzed via single-crystal spectroscopy. Crystal structures were determined for the Rieske-type monooxygenase, stachydrine demethylase, in the unliganded state (at 1.6 Å resolution) and in the product complex (at 2.2 Å resolution). The ligand complex was obtained from enzyme aerobically cocrystallized with the substrate stachydrine (N,N-dimethylproline). The ligand electron density in the complex was interpreted as proline, generated within the active site at 100 K by the absorption of X-ray photon energy and two consecutive demethylation cycles. The oxidation state of the Rieske iron-sulfur cluster was characterized by UV-visible spectroscopy throughout X-ray data collection in conjunction with resonance Raman spectra collected before and after diffraction data. Shifts in the absorption band wavelength and intensity as a function of absorbed X-ray dose demonstrated that the Rieske center was reduced by solvated electrons generated by X-ray photons; the kinetics of the reduction process differed dramatically for the liganded complex compared to unliganded demethylase, which may correspond to the observed turnover in the crystal.

  20. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    PubMed Central

    Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong

    2015-01-01

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfect light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage. PMID:26047486

  1. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    DOE PAGES

    Cheng, Fei; Gao, Jie; Luk, Ting S.; ...

    2015-06-05

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfectmore » light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.« less

  2. Iron and its complexes in silicon

    NASA Astrophysics Data System (ADS)

    Istratov, A. A.; Hieslmair, H.; Weber, E. R.

    This article is the first in a series of two reviews on the properties of iron in silicon. It offers a comprehensive of the current state of understanding of fundamental physical properties of iron and its complexes in silicon. The first section of this review discusses the position of iron in the silicon lattice and the electrical properties of interstitial iron. Updated expressions for the solubility and the diffusivity of iron in silicon are presented, and possible explanations for conflicting experimental data obtained by different groups are discussed. The second section of the article considers the electrical and the structural properties of complexes of interstitial iron with shallow acceptors (boron, aluminum, indium, gallium, and thallium), shallow donors (phosphorus and arsenic) and other impurities (gold, silver, platinum, palladium, zinc, sulfur, oxygen, carbon, and hydrogen). Special attention is paid to the kinetics of iron pairing with shallow acceptors, the dissociation of these pairs, and the metastability of iron-acceptor pairs. The parameters of iron-related defects in silicon are summarized in tables that include more than 30 complexes of iron as detected by electron paramagnetic resonance (EPR) and almost 20 energy levels in the band gap associated with iron. The data presented in this review illustrate the enormous complexing activity of iron, which is attributed to the partial or complete (depending on the temperature and the conductivity type) ionization of iron as well as the high diffusivity of iron in silicon. It is shown that studies of iron in silicon require exceptional cleanliness of experimental facilities and highly reproducible diffusion and temperature ramping (quenching) procedures. Properties of iron that are not yet completely understood and need further research are outlined.

  3. Method of removing oxides of sulfur and oxides of nitrogen from exhaust gases

    DOEpatents

    Walker, Richard J.

    1986-01-01

    A continuous method is presented for removing both oxides of sulfur and oxides of nitrogen from combustion or exhaust gases with the regeneration of the absorbent. Exhaust gas is cleaned of particulates and HCl by a water scrub prior to contact with a liquid absorbent that includes an aqueous solution of bisulfite and sulfite ions along with a metal chelate, such as, an iron or zinc aminopolycarboxylic acid. Following contact with the combustion gases the spent absorbent is subjected to electrodialysis to transfer bisulfite ions into a sulfuric acid solution while splitting water with hydroxide and hydrogen ion migration to equalize electrical charge. The electrodialysis stack includes alternate layers of anion selective and bipolar membranes. Oxides of nitrogen are removed from the liquid absorbent by air stripping at an elevated temperature and the regenerated liquid absorbent is returned to contact with exhaust gases for removal of sulfur oxides and nitrogen oxides.

  4. A theoretical study on the electronic structures and equilibrium constants evaluation of Deferasirox iron complexes.

    PubMed

    Salehi, Samie; Saljooghi, Amir Shokooh; Izadyar, Mohammad

    2016-10-01

    Elemental iron is essential for cellular growth and homeostasis but it is potentially toxic to the cells and tissues. Excess iron can contribute in tumor initiation and tumor growth. Obviously, in iron overload issues using an iron chelator in order to reduce iron concentration seems to be vital. This study presents the density functional theory calculations of the electronic structure and equilibrium constant for iron-deferasirox (Fe-DFX) complexes in the gas phase, water and DMSO. A comprehensive study was performed to investigate the Deferasirox-iron complexes in chelation therapy. Calculation was performed in CAMB3LYP/6-31G(d,p) to get the optimized structures for iron complexes in high and low spin states. Natural bond orbital and quantum theory of atoms in molecules analyses was carried out with B3LYP/6-311G(d,p) to understand the nature of complex bond character and electronic transition in complexes. Electrostatic potential effects on the complexes were evaluated using the CHelpG calculations. The results indicated that higher affinity for Fe(III) is not strictly a function of bond length but also the degree of Fe-X (X=O,N) covalent bonding. Based on the quantum reactivity parameters which have been investigated here, it is possible reasonable design of the new chelators to improve the chelator abilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A Graduated Cylinder Colorimeter: An Investigation of Path Length and the Beer-Lambert Law

    NASA Astrophysics Data System (ADS)

    Gordon, James; Harman, Stephanie

    2002-05-01

    A 10-mL graduated cylinder was used to construct a colorimeter to investigate the relationship between absorbance and path length found in the Beer-Lambert law. Light-emitting diodes (LEDs) were used as the light sources and filter monochromators. The experiments were conducted on intensely colored permanganate and tetraamminecopper(II) solutions. The device also was useful for demonstrating the relationship between absorbance and concentration.

  6. Compton Reflection in AGN with Simbol-X

    NASA Astrophysics Data System (ADS)

    Beckmann, V.; Courvoisier, T. J.-L.; Gehrels, N.; Lubiński, P.; Malzac, J.; Petrucci, P. O.; Shrader, C. R.; Soldi, S.

    2009-05-01

    AGN exhibit complex hard X-ray spectra. Our current understanding is that the emission is dominated by inverse Compton processes which take place in the corona above the accretion disk, and that absorption and reflection in a distant absorber play a major role. These processes can be directly observed through the shape of the continuum, the Compton reflection hump around 30 keV, and the iron fluorescence line at 6.4 keV. We demonstrate the capabilities of Simbol-X to constrain complex models for cases like MCG-05-23-016, NGC 4151, NGC 2110, and NGC 4051 in short (10 ksec) observations. We compare the simulations with recent observations on these sources by INTEGRAL, Swift and Suzaku. Constraining reflection models for AGN with Simbol-X will help us to get a clear view of the processes and geometry near to the central engine in AGN, and will give insight to which sources are responsible for the Cosmic X-ray background at energies >20 keV.

  7. Effects of iron on optical properties of dissolved organic matter.

    PubMed

    Poulin, Brett A; Ryan, Joseph N; Aiken, George R

    2014-09-02

    Iron is a source of interference in the spectroscopic analysis of dissolved organic matter (DOM); however, its effects on commonly employed ultraviolet and visible (UV-vis) light adsorption and fluorescence measurements are poorly defined. Here, we describe the effects of iron(II) and iron(III) on the UV-vis absorption and fluorescence of solutions containing two DOM fractions and two surface water samples. In each case, regardless of DOM composition, UV-vis absorption increased linearly with increasing iron(III). Correction factors were derived using iron(III) absorption coefficients determined at wavelengths commonly used to characterize DOM. Iron(III) addition increased specific UV absorbances (SUVA) and decreased the absorption ratios (E2:E3) and spectral slope ratios (SR) of DOM samples. Both iron(II) and iron(III) quenched DOM fluorescence at pH 6.7. The degree and region of fluorescence quenching varied with the iron:DOC concentration ratio, DOM composition, and pH. Regions of the fluorescence spectra associated with greater DOM conjugation were more susceptible to iron quenching, and DOM fluorescence indices were sensitive to the presence of both forms of iron. Analyses of the excitation-emission matrices using a 7- and 13-component parallel factor analysis (PARAFAC) model showed low PARAFAC sensitivity to iron addition.

  8. Fate of blood meal iron in mosquitos

    PubMed Central

    Zhou, Guoli; Kohlhepp, Pete; Geiser, Dawn; Frasquillo, Maria del Carmen; Vazquez-Moreno, Luz; Winzerling, Joy J.

    2007-01-01

    Iron is an essential element of living cells and organisms as a component of numerous metabolic pathways. Hemoglobin and ferric-transferrin in vertebrate host blood are the two major iron sources for female mosquitoes. We used inductively coupled plasma mass spectrometry (ICP-MS) and radioisotope-labeling to quantify the fate of iron supplied from hemoglobin or as transferrin in Aedes aegypti. At the end of the first gonotrophic cycloe, ~87% of the ingested total meal heme iron was excreted, while 7% was distributed into the eggs and 6% was stored in different tissues. In contrast, ~8% of the iron provided as transferrin was excreted and of that absorbed, 77% was allocated to the eggs and 15% distributed in the tissues. Further analyses indicate that of the iron supplied in a blood meal, ~7% appears in the eggs and of this iron 98% is from hemoglobin and 2% from ferric-transferrin. Whereas of iron from a blood meal retained in body of the female, ~97% is from heme and <1 % is from transferrin. Evaluation of iron-binding proteins in hemolymph and egg following intake of 59Fe-transferrin revealed that ferritin is iron loaded in these animals, and indicate that this protein plays a critical role in meal iron transport and iron storage in eggs in A. aegypti. PMID:17689557

  9. Effects of iron on optical properties of dissolved organic matter

    USGS Publications Warehouse

    Poulin, Brett; Ryan, Joseph N.; Aiken, George R.

    2014-01-01

    Iron is a source of interference in the spectroscopic analysis of dissolved organic matter (DOM); however, its effects on commonly employed ultraviolet and visible (UV–vis) light adsorption and fluorescence measurements are poorly defined. Here, we describe the effects of iron(II) and iron(III) on the UV–vis absorption and fluorescence of solutions containing two DOM fractions and two surface water samples. In each case, regardless of DOM composition, UV–vis absorption increased linearly with increasing iron(III). Correction factors were derived using iron(III) absorption coefficients determined at wavelengths commonly used to characterize DOM. Iron(III) addition increased specific UV absorbances (SUVA) and decreased the absorption ratios (E2:E3) and spectral slope ratios (SR) of DOM samples. Both iron(II) and iron(III) quenched DOM fluorescence at pH 6.7. The degree and region of fluorescence quenching varied with the iron:DOC concentration ratio, DOM composition, and pH. Regions of the fluorescence spectra associated with greater DOM conjugation were more susceptible to iron quenching, and DOM fluorescence indices were sensitive to the presence of both forms of iron. Analyses of the excitation–emission matrices using a 7- and 13-component parallel factor analysis (PARAFAC) model showed low PARAFAC sensitivity to iron addition.

  10. Preparation and microwave absorption properties of honeycomb core structures coated with composite absorber

    NASA Astrophysics Data System (ADS)

    Luo, Hui; Chen, Fu; Wang, Fang; Wang, Xian; Dai, Weiyong; Hu, Sheng; Gong, Rongzhou

    2018-05-01

    Honeycomb structure coated with paraffin filled with composite of graphene and flaky carbonyl iron powder (FCIP) as lossy filler have been studied. The composite of graphene/FCIP with different weight ratio were synthesized via mechanical milling, the electromagnetic properties of the samples were measured by transmission/reflection method in the frequency range of 8-12 GHz. The microwave absorbing properties of the microwave absorbing honeycomb structure (MAHS) and microwave absorbing honeycomb sandwich structure (MAHSS) were studied based on the Finite Element Method with periodical boundary conditions. The matching layer on the top of the honeycomb sandwich structure can enhanced the microwave absorption properties. It was shown that a light weight and broadband MAHSS could be implemented with the use of the magnetic material and dielectric material.

  11. Colored ultra-thin hybrid photovoltaics with high quantum efficiency for decorative PV applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Guo, L. Jay

    2015-10-01

    This talk will describe an approach to create architecturally compatible and decorative thin-film-based hybrid photovoltaics [1]. Most current solar panels are fabricated via complex processes using expensive semiconductor materials, and they are rigid and heavy with a dull, black appearance. As a result of their non-aesthetic appearance and weight, they are primarily installed on rooftops to minimize their negative impact on building appearance. Recently we introduced dual-function solar cells based on ultra-thin dopant-free amorphous silicon embedded in an optical cavity that not only efficiently extract the photogenerated carriers but also display distinctive colors with the desired angle-insensitive appearances [1,2]. The angle-insensitive behavior is the result of an interesting phase cancellation effect in the optical cavity with respect to angle of light propagation [3]. In order to produce the desired optical effect, the semiconductor layer should be ultra-thin and the traditional doped layers need to be eliminated. We adopted the approach of employing charge transport/blocking layers used in organic solar cells to meet this demand. We showed that the ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell can transmit desired wavelength of light and that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges. This is because the a-Si layer thickness is smaller than the charge diffusion length, therefore the electron-hole recombination is strongly suppressed in such ultra-thin layer. Reflective colored PVs can be made in a similar fashion. Light-energy-harvesting colored signage was demonstrated. Furthermore, a cascaded photovoltaics scheme based on tunable spectrum splitting can be employed to increase power efficiency by absorbing a broader band of light energy. Our work provides a guideline for optimizing a photoactive layer thickness in high efficiency hybrid PV design, which can be adopted by other material systems as well. Based on these understandings, we have also developed colored perovskite PV by integrating an optical cavity with the perovskite semiconductors [4]. The principle and experimental results will be presented. 1. J. Y. Lee, K. T. Lee, S.Y. Seo, L. J. Guo, "Decorative power generating panels creating angle insensitive transmissive colors," Sci. Rep. 4, 4192, 2014. 2. K. T. Lee, J.Y. Lee, S.-Y. Seo, and L. J. Guo, "Colored ultra-thin hybrid photovoltaics with high quantum efficiency," Light: Science and Applications, 3, e215, 2014. 3. K. T. Lee, S.-Y. Seo, J.Y. Lee, and L. J. Guo, "Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters," Appl. Phys. Lett. 104, 231112, (2014); and "Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters," Adv. Mater, 26, 6324-6328, 2014. 4. K. T. Lee, M. Fukuda, L. J. Guo, "Colored, see-through perovskite solar cells employing an optical cavity," Submitted, 2015

  12. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion†

    PubMed Central

    Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D.; Nam, Wonwoo

    2014-01-01

    Reaction of a nonheme iron(III)-peroxo complex, [FeIII(14-TMC)(O2)]+, with NO+, a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2•−) + NO], affords an iron(IV)-oxo complex, [FeIV(14-TMC)(O)]2+, and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [FeIII(14-TMC)(NO3)(F)]+. PMID:24394960

  13. [Physico-chemical features of dinitrosyl iron complexes with natural thiol-containing ligands underlying biological activities of these complexes].

    PubMed

    Vanin, A F; Borodulin, R R; Kubrina, L N; Mikoian, V D; Burbaev, D Sh

    2013-01-01

    Current notions and new experimental data of the authors on physico-chemical features of dinitrosyl iron complexes with natural thiol-containing ligands (glutathione or cysteine), underlying the ability of the complexes to act as NO molecule and nitrosonium ion donors, are considered. This ability determines various biological activities of dinitrosyl iron complexes--inducing long-lasting vasodilation and thereby long-lasting hypotension in human and animals, inhibiting pellet aggregation, increasing red blood cell elasticity, thereby stimulating microcirculation, and reducing necrotic zone in animals with myocardial infarction. Moreover, dinitrosyl iron complexes are capable of accelerating skin wound healing, improving the function of penile cavernous tissue, blocking apoptosis development in cell cultures. When decomposed dinitrosyl iron complexes can exert cytotoxic effect that can be used for curing infectious and carcinogenic pathologies.

  14. Ascorbate Efflux as a New Strategy for Iron Reduction and Transport in Plants*

    PubMed Central

    Grillet, Louis; Ouerdane, Laurent; Flis, Paulina; Hoang, Minh Thi Thanh; Isaure, Marie-Pierre; Lobinski, Ryszard; Curie, Catherine; Mari, Stéphane

    2014-01-01

    Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled 55Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds. PMID:24347170

  15. Ascorbate efflux as a new strategy for iron reduction and transport in plants.

    PubMed

    Grillet, Louis; Ouerdane, Laurent; Flis, Paulina; Hoang, Minh Thi Thanh; Isaure, Marie-Pierre; Lobinski, Ryszard; Curie, Catherine; Mari, Stéphane

    2014-01-31

    Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled (55)Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds.

  16. Evaluation of the Olympus AU-510 analyser.

    PubMed

    Farré, C; Velasco, J; Ramón, F

    1991-01-01

    The selective multitest Olympus AU-510 analyser was evaluated according to the recommendations of the Comision de Instrumentacion de la Sociedad Española de Quimica Clinica and the European Committee for Clinical Laboratory Standards. The evaluation was carried out in two stages: an examination of the analytical units and then an evaluation in routine work conditions. The operational characteristics of the system were also studied.THE FIRST STAGE INCLUDED A PHOTOMETRIC STUDY: dependent on the absorbance, the inaccuracy varies between +0.5% to -0.6% at 405 nm and from -5.6% to 10.6% at 340 nm; the imprecision ranges between -0.22% and 0.56% at 405 nm and between 0.09% and 2.74% at 340 nm. Linearity was acceptable, apart from a very low absorbance for NADH at 340 nm; and the imprecision of the serum sample pipetter was satisfactory.TWELVE SERUM ANALYTES WERE STUDIED UNDER ROUTINE CONDITIONS: glucose, urea urate, cholesterol, triglycerides, total bilirubin, creatinine, phosphate, iron, aspartate aminotransferase, alanine aminotransferase and gamma-glutamyl transferase.The within-run imprecision (CV%) ranged from 0.67% for phosphate to 2.89% for iron and the between-run imprecision from 0.97% for total bilirubin to 7.06% for iron. There was no carryover in a study of the serum sample pipetter. Carry-over studies with the reagent and sample pipetters shows some cross contamination in the iron assay.

  17. Distinguishing major lithologic types in rocks of precambrian age in central Wyoming using multilevel sensing, with a chapter on possible economic significance of iron formation discovered by use of aircraft images in the Granite Mountains of Wyoming

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Information obtained by remote sensing from three altitude levels: ERTS-1 (565 miles), U-2 (60,000 feet), and C-130 aircraft (15,000 feet) illustrates the possible application of multilevel sensing in mineral exploration. Distinction can be made between rocks of greenstone belts and rocks of granite-granite gneiss areas by using ERTS-1 imagery in portions of the Precambrian of central Wyoming. Study of low altitude color and color infrared photographs of the mafic terrain revealed the presence of metasedimentary rocks with distinct layers that were interpreted as amphibolite by photogeologic techniques. Some of the amphibolite layers were found to be iron formation when examined in the field. To our knowledge this occurrence of iron formation has not been previously reported in the literature.

  18. Copper Deficiency Leads to Anemia, Duodenal Hypoxia, Upregulation of HIF-2α and Altered Expression of Iron Absorption Genes in Mice

    PubMed Central

    Matak, Pavle; Zumerle, Sara; Mastrogiannaki, Maria; El Balkhi, Souleiman; Delga, Stephanie; Mathieu, Jacques R. R.; Canonne-Hergaux, François; Poupon, Joel; Sharp, Paul A.; Vaulont, Sophie; Peyssonnaux, Carole

    2013-01-01

    Iron and copper are essential trace metals, actively absorbed from the proximal gut in a regulated fashion. Depletion of either metal can lead to anemia. In the gut, copper deficiency can affect iron absorption through modulating the activity of hephaestin - a multi-copper oxidase required for optimal iron export from enterocytes. How systemic copper status regulates iron absorption is unknown. Mice were subjected to a nutritional copper deficiency-induced anemia regime from birth and injected with copper sulphate intraperitoneally to correct the anemia. Copper deficiency resulted in anemia, increased duodenal hypoxia and Hypoxia inducible factor 2α (HIF-2α) levels, a regulator of iron absorption. HIF-2α upregulation in copper deficiency appeared to be independent of duodenal iron or copper levels and correlated with the expression of iron transporters (Ferroportin - Fpn, Divalent Metal transporter – Dmt1) and ferric reductase – Dcytb. Alleviation of copper-dependent anemia with intraperitoneal copper injection resulted in down regulation of HIF-2α-regulated iron absorption genes in the gut. Our work identifies HIF-2α as an important regulator of iron transport machinery in copper deficiency. PMID:23555700

  19. Iron and oxygen isotope fractionation during iron UV photo-oxidation: Implications for early Earth and Mars

    NASA Astrophysics Data System (ADS)

    Nie, Nicole X.; Dauphas, Nicolas; Greenwood, Richard C.

    2017-01-01

    Banded iron formations (BIFs) contain appreciable amounts of ferric iron (Fe3+). The mechanism by which ferrous iron (Fe2+) was oxidized into Fe3+ in an atmosphere that was globally anoxic is highly debated. Of the three scenarios that have been proposed to explain BIF formation, photo-oxidation by UV photons is the only one that does not involve life (the other two are oxidation by O2 produced by photosynthesis, and anoxygenic photosynthesis whereby Fe2+ is directly used as electron donor in place of water). We experimentally investigated iron and oxygen isotope fractionation imparted by iron photo-oxidation at a pH of 7.3. The iron isotope fractionation between precipitated Fe3+-bearing lepidocrocite and dissolved Fe2+ follows a Rayleigh distillation with an instantaneous 56Fe/54Fe fractionation factor of + 1.2 ‰. Such enrichment in the heavy isotopes of iron is consistent with the values measured in BIFs. We also investigated the nature of the mass-fractionation law that governs iron isotope fractionation in the photo-oxidation experiments (i.e., the slope of the δ56Fe-δ57Fe relationship). The experimental run products follow a mass-dependent law corresponding to the high-T equilibrium limit. The fact that a ∼3.8 Gyr old BIF sample (IF-G) from Isua (Greenland) falls on the same fractionation line confirms that iron photo-oxidation in the surface layers of the oceans was a viable pathway to BIF formation in the Archean, when the atmosphere was largely transparent to UV photons. Our experiments allow us to estimate the quantum yield of the photo-oxidation process (∼0.07 iron atom oxidized per photon absorbed). This yield is used to model iron oxidation on early Mars. As the photo-oxidation proceeds, the aqueous medium becomes more acidic, which slows down the reaction by changing the speciation of iron to species that are less efficient at absorbing UV-photons. Iron photo-oxidation in centimeter to meter-deep water ponds would take months to years to complete. Oxidation by O2 in acidic conditions would be slower. Iron photo-oxidation is thus likely responsible for the formation of jarosite-hematite deposits on Mars, provided that shallow standing water bodies could persist for extended periods of time. The oxygen isotopic composition of lepidocrocite precipitated from the photo-oxidation experiment was measured and it is related to the composition of water by mass-dependent fractionation. The precipitate-fluid 18O/16O isotope fractionation of ∼ + 6 ‰ is consistent with previous determinations of oxygen equilibrium fraction factors between iron oxyhydroxides and water.

  20. [Partitioning of taxifolin-iron ions complexes in octanol-water system].

    PubMed

    Shatalin, Iu V; Shubina, V S

    2014-01-01

    The composition of taxifolin-iron ions complexes in an octanol-water biphasic system was studied using the method of absorption spectrophotometry. It was found that at pH 5.0 in an aqueous biphasic system the complex of [Tf2 x Fe x (OH)k(H2O)8-k] is present, but at pH 7.0 and 9.0 the complexes of [Tf2 x Fe x (OH)k(H2O)2-k] and [Tf x Fe x OH)k(H2O)4-k] are predominantly observed. The formation of a stable [Tf3 x Fe] complex occurred in octanol phase. The charged iron ion of this complex is surrounded by taxifolin molecules, which shield the iron ion from lipophilic solvent. During transition from water to octanol phase the changes of the composition of complexes are accompanied by reciprocal changes in portion of taxifolin and iron ions in these phases. It was shown that the portion of taxifolin in aqueous solution in the presence of iron ions is increased at high pH values, and the portion of iron ions is minimal at pH 7.0. In addition, the parameters of solubility limits of taxifolin-iron ions complexes in an aqueous solution were determined. The data obtained gain a better understanding of the role of complexation of polyphenol with metal of variable valency in passive transport of flavonoids and metal ions across lipid membranes.

  1. Multiple-Path-Length Optical Absorbance Cell

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An optical absorbance cell that offers a selection of multiple optical path lengths has been developed as part of a portable spectrometric instrument that measures absorption spectra of small samples of water and that costs less than does a conventional, non-portable laboratory spectrometer. The instrument is intended, more specifically, for use in studying colored dissolved organic matter (CDOM) in seawater, especially in coastal regions. Accurate characterization of CDOM is necessary for building bio-optical mathematical models of seawater. The multiple path lengths of the absorption cell afford a wide range of sensitivity needed for measuring the optical absorbances associated with the wide range of concentrations of CDOM observed in nature. The instrument operates in the wavelength range of 370 to 725 nm. The major subsystems of the instrument (see figure) include a color-balanced light source; the absorption cell; a peristaltic pump; a high-precision, low-noise fiber optic spectrometer; and a laptop or other personal computer. A fiber-optic cable transmits light from the source to the absorption cell. Other optical fibers transmit light from the absorption cell to the spectrometer,

  2. Formation of crystalline nanoparticles by iron binding to pentapeptide (Asp-His-Thr-Lys-Glu) from egg white hydrolysates.

    PubMed

    Sun, Na; Cui, Pengbo; Li, Dongmei; Jin, Ziqi; Zhang, Shuyu; Lin, Songyi

    2017-09-20

    A novel peptide from egg white, Asp-His-Thr-Lys-Glu (DHTKE), contains specific amino acids associated with iron binding. The present study aims to better understand the molecular basis of interactions between the DHTKE peptide and iron ions. The ultraviolet-visible and fluorescence spectra indicate an interaction between the DHTKE peptide and iron ions, which leads to the formation of a DHTKE-iron complex. Notably, Asp, Glu, His, and Lys in the DHTKE peptide play crucial roles in the formation of the DHTKE-iron complex, and the iron-binding site of the DHTKE peptide corresponds primarily to the amide and carboxyl groups. The DHTKE peptide can bind iron ions in a 1 : 2 ratio with a binding constant of 1.312 × 10 5 M -1 . Moreover, the DHTKE-iron complex belongs to thermodynamically stable nanoparticles that are present in the crystalline structure, which might be attributed to peptide folding induced by iron binding. Meanwhile, the DHTKE-iron complex exhibits a relatively high iron-releasing percentage and exerts excellent solubility in the human gastrointestinal tract in vitro. This suggests a potential application of peptides containing Asp, Glu, His, or Lys residues as potential iron supplements.

  3. [Transport of dinitrosyl iron complexes into animal lungs].

    PubMed

    Mojokina, G N; Elistratova, N A; Mikoyan, V D; Vanin, A F

    2015-01-01

    Effective accumulation of binuclear dinitrosyl iron complexes with glutathione was shown after a subcutaneous para lymphatic injection of an aqueous solution of a dinitrosyl-iron complex into animal lung tissue at a single-dose of 2 micromoles per kilogram two times a day with a 2-h interval. Two hours later after the administration was repeated the concentration of these complexes was 16 micromoles per kilogram of tissue dropping down for the last two hours to 7 micromoles per kilogram of tissue. At one dose injection of binuclear dinitrosyl iron complexes with glutathione their concentration in 2 and 4 hours was two times lower than in the previous experiments. Presumably at the obtained concentration of dinitrosyl iron complexes a bactericidal effect in lungs can be observed against mycobacterium tuberculosis and rapidly proliferating lung tumors.

  4. Facts about Vitamin C

    MedlinePlus

    ... C also helps the body absorb iron from plant foods. What happens if we do not get enough vitamin C? Vitamin C is found in many foods we eat and deficiency is rare. Scurvy, the disease caused by vitamin C deficiency, ...

  5. Iron-nickel-chromium alloy having improved swelling resistance and low neutron absorbence

    DOEpatents

    Korenko, Michael K.

    1986-01-01

    An iron-nickel-chromium age-hardenable alloy suitable for use in fast breeder reactor ducts and cladding which utilizes the gamma-double prime strengthening phase and characterized in having a delta or eta phase distributed at or near grain boundaries. The alloy consists essentially of about 33-39.5% nickel, 7.5-16% chromium, 1.5-4% niobium, 0.1-0.7% silicon, 0.01-0.2% zirconium, 1-3% titanium, 0.2-0.6% aluminum, and the remainder essentially all iron. Up to 0.4% manganese and up to 0.010% magnesium can be added to inhibit trace element effects.

  6. Geologic map of the Haji-Gak iron deposit, Bamyan Province, Afghanistan, modified from the 1965 original map compilation of M.S. Smirnov and I.K. Kusov

    USGS Publications Warehouse

    Renaud, Karine M.; Tucker, Robert D.; Peters, Stephen G.; Stettner, Will R.; Masonic, Linda M.; Moran, Thomas W.

    2011-01-01

    This map is a modified version of Geological-structural map of Hajigak iron-ore deposit, scale 1:10,000, which was compiled by M.S. Smirnov and I.K. Kusov in 1965. (Refer to the References Cited section in the Map PDF for complete citations of the original map and a related report.) USGS scientists, in cooperation with the Afghan Geological Survey and the Task Force for Business and Stability Operations of the U.S. Department of Defense, studied the original documents and also visited the field area in November 2009. This modified map illustrates the geological structure of the Haji-Gak iron deposit and includes cross sections of the same area. The map reproduces the topology (contacts, faults, and so forth) of the original Soviet map and cross sections and includes modifications based on our examination of these documents. Elevations on the cross sections are derived from the original Soviet topography and may not match the newer topography used on the current map. We have attempted to translate the original Russian terminology and rock classification into modern English geologic usage as literally as possible without changing any genetic or process-oriented implications in the original descriptions. We also use the age designations from the original map. The unit colors on the map and cross sections differ from the colors shown on the original version. The units are colored according to the color and pattern scheme of the Commission for the Geological Map of the World (CGMW) (http://www.ccgm.org).

  7. High-energy, high-resolution x-ray imaging for metallic cultural heritages

    NASA Astrophysics Data System (ADS)

    Hoshino, Masato; Uesugi, Kentaro; Shikaku, Ryuji; Yagi, Naoto

    2017-10-01

    An x-ray micro-imaging technique to visualize high-resolution structure of cultural heritages made of iron or copper has been developed. It utilizes high-energy x-rays from a bending magnet at the SPring-8 synchrotron radiation facility. A white x-ray beam was attenuated by 0.5 mm tungsten and 2.0 mm lead absorbers resulting in the peak energy of 200 keV. The tungsten absorber eliminated the photon energy peak below the absorption edge of lead. A sample was rotated over 180 degrees in 500 s and projection images were continuously collected with an exposure time of 500 ms by an sCMOS camera equipped with a scintillator. Tomographic reconstruction of an ancient sword containing of both copper and iron was successfully obtained at a voxel size of 14.8 μm. Beam hardening was found to cause 2.5 % differences in density in a reconstructed image of a homogeneous stainless-steel rod. Ring artefacts were reduced by continuously moving the absorbers. This work demonstrates feasibility of high-energy, high-resolution imaging at a synchrotron beamline which may be generally useful for inspecting metallic objects.

  8. Magnetically driven floating foams for the removal of oil contaminants from water.

    PubMed

    Calcagnile, Paola; Fragouli, Despina; Bayer, Ilker S; Anyfantis, George C; Martiradonna, Luigi; Cozzoli, P Davide; Cingolani, Roberto; Athanassiou, Athanassia

    2012-06-26

    In this study, we present a novel composite material based on commercially available polyurethane foams functionalized with colloidal superparamagnetic iron oxide nanoparticles and submicrometer polytetrafluoroethylene particles, which can efficiently separate oil from water. Untreated foam surfaces are inherently hydrophobic and oleophobic, but they can be rendered water-repellent and oil-absorbing by a solvent-free, electrostatic polytetrafluoroethylene particle deposition technique. It was found that combined functionalization of the polytetrafluoroethylene-treated foam surfaces with colloidal iron oxide nanoparticles significantly increases the speed of oil absorption. Detailed microscopic and wettability studies reveal that the combined effects of the surface morphology and of the chemistry of the functionalized foams greatly affect the oil-absorption dynamics. In particular, nanoparticle capping molecules are found to play a major role in this mechanism. In addition to the water-repellent and oil-absorbing capabilities, the functionalized foams exhibit also magnetic responsivity. Finally, due to their light weight, they float easily on water. Hence, by simply moving them around oil-polluted waters using a magnet, they can absorb the floating oil from the polluted regions, thereby purifying the water underneath. This low-cost process can easily be scaled up to clean large-area oil spills in water.

  9. A comparative study of the biosorption of iron(III)-cyanide complex anions to Rhizopus arrhizus and Chlorella vulgaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksu, Z.; Calik, A.

    1999-03-01

    In this study a comparative biosorption of iron(III)-cyanide complex anions from aqueous solutions to Rhizopus arrhizus and Chlorella vulgaris was investigated. The iron(III)-cyanide complex ion-binding capacities of the biosorbents were shown as a function of initial pH, initial iron(III)-cyanide complex ion, and biosorbent concentrations. The results indicated that a significant reduction of iron(III)-cyanide complex ions was achieved at pH 13, a highly alkaline condition for both the biosorbents. The maximum loading capacities of the biosorbents were found to be 612.2 mg/g for R.arrhizus at 1,996.2 mg/L initial iron(III)-cyanide complex ion concentration and 387.0 mg/g for C. vulgaris at 845.4 mg/Lmore » initial iron(III)-cyanide complex ion concentration at this pH. The Freundlich, Langmuir, and Redlich-Peterson adsorption models were fitted to the equilibrium data at pH 3, 7, and 13. The equilibrium data of the biosorbents could be best fitted by all the adsorption models over the entire concentration range at pH 13.« less

  10. The influence of magnetic and dielectric loss on the noise absorption of iron particles-rubber composites attached to a microstrip line

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Tae; Park, Yong-Gwon; Kim, Sung-Soo

    2008-04-01

    Magnetic and dielectric loss are systematically controlled by using iron flake powders with various initial sizes (7 μm and 70 μm) as the absorbent fillers in the rubber matrix, and their noise absorbing characteristics have been investigated as a function of frequency and sheet thickness. Flake iron particles were prepared by the mechanical forging of spherical powders using an attrition mill. Composite sheets (thickness=0.2 mm-1.0 mm) were prepared with a mixture of iron particles and silicone rubber. Attaching the composite sheets to a microstrip line of 50 Ω, a network analyzer was used to measure the reflection and transmission parameters (S11 and S21, respectively). A nearly constant value of S11 (about -10 dB) was observed, irrespective of particle size. However, S21 is strongly dependent upon initial particle size. For the composites of 7 μm particles (with high magnetic loss), S21 is reduced below -20 dB in the frequency range of 1 GHz to 10 GHz, and the corresponding bandwidth of noise absorption is not so greatly diminished by reducing the sheet thickness as low as 0.2 mm. For the composites of 70 μm particles (with high dielectric loss), however, the bandwidth is greatly reduced with a decrease in sheet thickness. It is concluded that the attenuation of conduction noise through the microstrip line is primarily controlled by the magnetic loss of the iron particles due to strong magnetic field around the microstrip line.

  11. Fe-containing nanoparticles used as effective catalysts of lignin reforming to syngas and hydrogen assisted by microwave irradiation

    NASA Astrophysics Data System (ADS)

    Tsodikov, M. V.; Ellert, O. G.; Nikolaev, S. A.; Arapova, O. V.; Bukhtenko, O. V.; Maksimov, Yu. V.; Kirdyankin, D. I.; Vasil'kov, A. Yu.

    2018-03-01

    Active iron-containing nanosized components have been formed on the lignin surface. The metal was deposited on the lignin from an ethanol solution of Fe(acac)3 and from a colloid solution of iron metal particles obtained beforehand by metal vapor synthesis. These active components are able to absorb microwave radiation and are suitable for microwave-assisted high-rate dehydrogenation and dry reforming of lignin without addition of a carbon adsorbent, as a supplementary radiation absorbing material, to the feedstock. The dependence of the solid lignin heating dynamics on the concentration of supported iron particles was investigated. The threshold Fe concentration equal to 0.5 wt.%, providing the highest rate of sample heating up to the reforming and plasma generation temperature was identified. The microstructure and magnetic properties of iron-containing nanoparticles supported on lignin were studied before and after the reforming. The Fe3O4 nanoparticles and also core-shell Fe3O4@γ-Fe-C nanostructures are formed during the reforming of lignin samples. The catalytic performance of iron-based nanoparticles toward the lignin conversion is manifested as increasing selectivity to hydrogen and syngas, which reaches 94% at the Fe concentration of 2 wt.%. It was found that with microwave irradiation under argon, hydrogen predominates in the gas. In the CO2 atmosphere, dry reforming takes place to give syngas with the CO/H2 ratio of 0.9. In both cases, the degree of hydrogen recovery from lignin reaches 90-94%. [Figure not available: see fulltext.

  12. Purification of Legiobactin and importance of this siderophore in lung infection by Legionella pneumophila.

    PubMed

    Allard, Kimberly A; Dao, Jenny; Sanjeevaiah, Prakash; McCoy-Simandle, Kessler; Chatfield, Christa H; Crumrine, David S; Castignetti, Domenic; Cianciotto, Nicholas P

    2009-07-01

    When cultured in a low-iron medium, Legionella pneumophila secretes a siderophore (legiobactin) that is both reactive in the chrome azurol S (CAS) assay and capable of stimulating the growth of iron-starved legionellae. Using anion-exchange high-pressure liquid chromatography (HPLC), we purified legiobactin from culture supernatants of a virulent strain of L. pneumophila. In the process, we detected the ferrated form of legiobactin as well as other CAS-reactive substances. Purified legiobactin had a yellow-gold color and absorbed primarily from 220 nm and below. In accordance, nuclear magnetic resonance spectroscopy revealed that legiobactin lacks aromatic carbons, and among the 13 aliphatics present, there were 3 carbonyls. When examined by HPLC, supernatants from L. pneumophila mutants inactivated for lbtA and lbtB completely lacked legiobactin, indicating that the LbtA and LbtB proteins are absolutely required for siderophore activity. Independently derived lbtA mutants, but not a complemented derivative, displayed a reduced ability to infect the lungs of A/J mice after intratracheal inoculation, indicating that legiobactin is required for optimal intrapulmonary survival by L. pneumophila. This defect, however, was not evident when the lbtA mutant and its parental strain were coinoculated into the lung, indicating that legiobactin secreted by the wild type can promote growth of the mutant in trans. Legiobactin mutants grew normally in murine lung macrophages and alveolar epithelial cells, suggesting that legiobactin promotes something other than intracellular infection of resident lung cells. Overall, these data represent the first documentation of a role for siderophore expression in the virulence of L. pneumophila.

  13. Iron-absorption band analysis for the discrimination of iron-rich zones

    NASA Technical Reports Server (NTRS)

    Rowan, L. C. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Study has concentrated on the two primary aspects of the project, structural analysis through evaluation of lineaments and circular features and spectral analyses through digital computer-processing techniques. Several previously unrecognized lineaments are mapped which may be the surface manifestations of major fault or fracture zones. Two of these, the Walker Lane and the Midas Trench lineament system, transect the predominantly NNE-NNW-trending moutain ranges for more than 500 km. Correlation of major lineaments with productive mining districts implies a genetic relationship, the 50 circular or elliptical features delineated suggest a related role for Tertiary volcanism. Color-ratio composites have been used to identify limonitic zones and to discriminate mafic and felsic rock by combing diazo color transparencies of three different ratios. EROS Data Center scene identification number for color composite in this report is ER 1 CC 500. Refinement of enhancement procedures for the ratio images is progressing. Fieldwork in coordination with both spectral and structural analyses is underway.

  14. Research on image complexity evaluation method based on color information

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Duan, Jin; Han, Xue-hui; Xiao, Bo

    2017-11-01

    In order to evaluate the complexity of a color image more effectively and find the connection between image complexity and image information, this paper presents a method to compute the complexity of image based on color information.Under the complexity ,the theoretical analysis first divides the complexity from the subjective level, divides into three levels: low complexity, medium complexity and high complexity, and then carries on the image feature extraction, finally establishes the function between the complexity value and the color characteristic model. The experimental results show that this kind of evaluation method can objectively reconstruct the complexity of the image from the image feature research. The experimental results obtained by the method of this paper are in good agreement with the results of human visual perception complexity,Color image complexity has a certain reference value.

  15. The XMM-Newton Iron Line Profile of NGC 3783

    NASA Technical Reports Server (NTRS)

    Reeves, J. N.; Nandra, K.; George, I. M.; Pounds, K. A.; Turner, T. J.; Yaqoob, T.

    2003-01-01

    We report on observations of the iron K line in the nearby Seyfert 1 galaxy, NGC 3783, obtained in a long, 2 orbit (approx. 240 ks) XMM-Newton observation. The line profile obtained exhibits two strong narrow peaks at 6.4 keV and at 7.0 keV, with measured line equivalent widths of 120 and 35 eV respectively. The 6.4 keV emission is the K(alpha) line from near neutral Fe, whilst the 7.0 keV feature probably originates from a blend of the neutral Fe K(beta) line and the Hydrogen-like line of Fe at 6.97 keV. The relatively narrow velocity width of the K(alpha) line (approx. less than 5000 km/s), its lack of response to the continuum emission on short timescales and the detection of a neutral Compton reflection component are all consistent with a distant origin in Compton-thick matter such as the putative molecular torus. A strong absorption line from highly ionized iron (at 6.67 keV) is detected in the time-averaged iron line profile, whilst the depth of the feature appears to vary with time, being strongest when the continuum flux is higher. The iron absorption line probably arises from the highest ionization component of the known warm absorber in NGC 3783, with an ionization of log xi approx 3 and column density of N(sub H) approx. 5 x 10(exp 22)/sq cm and may originate from within 0.1 pc of the nucleus. A weak red-wing to the iron K line profile is also detected below 6.4 keV. However when the effect of the highly ionized warm absorber on the underlying continuum is taken into account, the requirement for a relativistic iron line component from the inner disk is reduced.

  16. Retrieval of aerosol properties and water leaving radiance from multi-angle spectro-polarimetric measurement over coastal waters

    NASA Astrophysics Data System (ADS)

    Gao, M.; Zhai, P.; Franz, B. A.; Hu, Y.; Knobelspiesse, K. D.; Xu, F.; Ibrahim, A.

    2017-12-01

    Ocean color remote sensing in coastal waters remains a challenging task due to the complex optical properties of aerosols and ocean water properties. It is highly desirable to develop an advanced ocean color and aerosol retrieval algorithm for coastal waters, to advance our capabilities in monitoring water quality, improve our understanding of coastal carbon cycle dynamics, and allow for the development of more accurate circulation models. However, distinguishing the dissolved and suspended material from absorbing aerosols over coastal waters is challenging as they share similar absorption spectrum within the deep blue to UV range. In this paper we report a research algorithm on aerosol and ocean color retrieval with emphasis on coastal waters. The main features of our algorithm include: 1) combining co-located measurements from a hyperspectral ocean color instrument (OCI) and a multi-angle polarimeter (MAP); 2) using the radiative transfer model for coupled atmosphere and ocean system (CAOS), which is based on the highly accurate and efficient successive order of scattering method; and 3) incorporating a generalized bio-optical model with direct accounting of the total absorption of phytoplankton, CDOM and non-algal particles(NAP), and the total scattering of phytoplankton and NAP for improved description of ocean light scattering. The non-linear least square fitting algorithm is used to optimize the bio-optical model parameters and the aerosol optical and microphysical properties including refractive indices and size distributions for both fine and coarse modes. The retrieved aerosol information is used to calculate the atmospheric path radiance, which is then subtracted from the OCI observations to obtain the water leaving radiance contribution. Our work aims to maximize the use of available information from the co-located dataset and conduct the atmospheric correction with minimal assumptions. The algorithm will contribute to the success of current MAP instruments, such as the Research Scanning Polarimeter (RSP), and future ocean color missions, such as the Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) mission, by enabling retrieval of ocean biogeochemical properties under optically-complex atmospheric and oceanic conditions.

  17. Lack of Plasma Protein Hemopexin Results in Increased Duodenal Iron Uptake.

    PubMed

    Fiorito, Veronica; Geninatti Crich, Simonetta; Silengo, Lorenzo; Aime, Silvio; Altruda, Fiorella; Tolosano, Emanuela

    2013-01-01

    The body concentration of iron is regulated by a fine equilibrium between absorption and losses of iron. Iron can be absorbed from diet as inorganic iron or as heme. Hemopexin is an acute phase protein that limits iron access to microorganisms. Moreover, it is the plasma protein with the highest binding affinity for heme and thus it mediates heme-iron recycling. Considering its involvement in iron homeostasis, it was postulated that hemopexin may play a role in the physiological absorption of inorganic iron. Hemopexin-null mice showed elevated iron deposits in enterocytes, associated with higher duodenal H-Ferritin levels and a significant increase in duodenal expression and activity of heme oxygenase. The expression of heme-iron and inorganic iron transporters was normal. The rate of iron absorption was assessed by measuring the amount of (57)Fe retained in tissues from hemopexin-null and wild-type animals after administration of an oral dose of (57)FeSO4 or of (57)Fe-labelled heme. Higher iron retention in the duodenum of hemopexin-null mice was observed as compared with normal mice. Conversely, iron transfer from enterocytes to liver and bone marrow was unaffected in hemopexin-null mice. The increased iron level in hemopexin-null duodenum can be accounted for by an increased iron uptake by enterocytes and storage in ferritins. These data indicate that the lack of hemopexin under physiological conditions leads to an enhanced duodenal iron uptake thus providing new insights to our understanding of body iron homeostasis.

  18. HST-STIS Spectra of Saturn's Rings and Implications for Their Reddening Agent

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeff

    2016-01-01

    We obtained HST-STIS spectra of Saturn's main rings in May 2011, using the G230L (and G430L) gratings, with final averaged radial resolution of 160 (and 330) km/pixel. The dataset filled a previous 200-330nm "spectral gap" between Cassini and ground-based spectra. The data provide radial profiles as a function of wavelength, but our most basic product at this point is a set of very low-noise spectra, radially averaged over broad regions of the rings (A, B, C, and Cassini Division). The raw spectra required special processing to remove artifacts due to extended-source grating scatter. We have modeled the spectra using a new particle surface model, which corrects for on-surface shadowing due to the likely very rough ring particle surfaces, and avoids overestimation of intra-mixed "neutral absorber". We correct for non-classical layer effects and finite ring optical depth, and relate our observed reflectivities to the spherical albedos of individual smooth particles. We model these smooth particle albedos using standard Hapke theory for regolith grain mixtures that are either homogeneous and "intramixed" (nonicy absorbers dispersed in water ice regolith grains) or heterogeneous "intimate" mixtures. As candidates for the nonicy contaminants we have considered amorphous carbon, aromatic-rich and aliphatic-rich organic tholins, silicates, hematite and iron metal. For the A and B rings, we find that iron metal (including a new theoretical estimate of the refractive indices of nanometer-sized grains of iron) is not spectrally steep enough in the 200-300nm range, and that aliphatic-rich tholins are either too steep at short wavelengths or too flat at long wavelengths. However, less than 1% by mass of aromatic-rich tholins provides a very good fit across the entire spectral range with no gratuitous "neutral absorber" needed, and a minimum of additional free parameters. The best fits require forward-scattering regolith grains. For the C Ring and Cassini Division, additional absorbers are needed (updated results will be given).

  19. Retinal abnormalities in β-thalassemia major.

    PubMed

    Bhoiwala, Devang L; Dunaief, Joshua L

    2016-01-01

    Patients with beta (β)-thalassemia (β-TM: β-thalassemia major, β-TI: β-thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelial degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-thalassemia major are transfusion dependent and require iron chelation therapy to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by iron chelation therapy. Some who were never treated with iron chelation therapy exhibited retinopathy, and others receiving iron chelation therapy had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-thalassemia major viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Velocity of action of oxygen, hydrogen sulfide, and halogens on metals

    NASA Technical Reports Server (NTRS)

    Tammann, Gustav; Koster, Werner

    1952-01-01

    This report discusses a method of determining the rate of surface oxidation of a metal by the change in the color of the surface film produced by reactions with oxygen, chlorine, or iodine. The metals studied included iron, nickel, copper, zinc, cadmium, tin, lead, cobalt, and manganese. Tables are given for surface film thickness versus color for various times.

  1. The Fate of Malathion on Copper and Iron Piping Within a Water Distribution System

    DTIC Science & Technology

    2015-03-26

    environmental and food conditions of 50 µg cm-2 to 100 µg cm-2 and 200 µg cm-2 of soil and worms, respectively. The results were conclusive; there were...principal technique depends on the detection of molecule absorbance of infrared radiation; the absorbance of radiation is proportionate to increases... Traces of this salt or sulfide may have physically bonded to the copper. H(g) + S(s) H2S(g) (5) Where H, hydrogen gas; reacts with S

  2. Indigo Carmine-Cu complex probe exhibiting dual colorimetric/fluorimetric sensing for selective determination of mono hydrogen phosphate ion and its logic behavior

    NASA Astrophysics Data System (ADS)

    Tavallali, Hossein; Deilamy-Rad, Gohar; Moaddeli, Ali; Asghari, Khadijeh

    2017-08-01

    A new selective probe based on copper complex of Indigo Carmine (IC-Cu2) for colorimetric, naked-eye, and fluorimetric recognition of mono hydrogen phosphate (MHP) ion in H2O/DMSO (4:1 v/v, 1.0 mmol L- 1 HEPES buffer solution pH 7.5) was developed. Detection limit of HPO42 - determination, achieved by fluorimetric and 3lorimetric method, are 0.071 and 1.46 μmol L- 1, respectively. Potential, therefore is clearly available in IC-Cu2 complex to detect HPO42 - in micromolar range via dual visible color change and fluorescence response. Present method shows high selectivity toward HPO42 - over other phosphate species and other anions and was successfully utilized for analysis of P2O5 content of a fertilizer sample. The results obtained by proposed chemosensor presented good agreement with those obtained the colorimetric reference method. INHIBIT and IMPLICATION logic gates operating at molecular level have been achieved using Cu2 + and HPO42 - as chemical inputs and UV-Vis absorbance signal as output.

  3. Reflection and Refraction of Light in Absorbing Media

    NASA Astrophysics Data System (ADS)

    Katsumata, Koichi; Sasaki, Shosuke

    2018-05-01

    The results of a rigorous calculation of optical phenomena in absorbing media based on Maxwell's equations are reported. In the case of an absorbing dielectric, we assume a complex dielectric constant. We find an expression for the angle of refraction as a function of the incident angle and the real and imaginary parts of the complex dielectric constant, all of which are real. The amplitudes of the reflected and transmitted waves are calculated on the same footing. These amplitudes are shown to be complex, from which we deduce the magnitude and phase change of the reflection and transmission coefficients. The same argument applies to an absorbing magnetic material if we replace the complex dielectric constant by a complex magnetic permeability.

  4. Wavelength- or Polarization-Selective Thermal Infrared Detectors for Multi-Color or Polarimetric Imaging Using Plasmonics and Metamaterials

    PubMed Central

    Ogawa, Shinpei; Kimata, Masafumi

    2017-01-01

    Wavelength- or polarization-selective thermal infrared (IR) detectors are promising for various novel applications such as fire detection, gas analysis, multi-color imaging, multi-channel detectors, recognition of artificial objects in a natural environment, and facial recognition. However, these functions require additional filters or polarizers, which leads to high cost and technical difficulties related to integration of many different pixels in an array format. Plasmonic metamaterial absorbers (PMAs) can impart wavelength or polarization selectivity to conventional thermal IR detectors simply by controlling the surface geometry of the absorbers to produce surface plasmon resonances at designed wavelengths or polarizations. This enables integration of many different pixels in an array format without any filters or polarizers. We review our recent advances in wavelength- and polarization-selective thermal IR sensors using PMAs for multi-color or polarimetric imaging. The absorption mechanism defined by the surface structures is discussed for three types of PMAs—periodic crystals, metal-insulator-metal and mushroom-type PMAs—to demonstrate appropriate applications. Our wavelength- or polarization-selective uncooled IR sensors using various PMAs and multi-color image sensors are then described. Finally, high-performance mushroom-type PMAs are investigated. These advanced functional thermal IR detectors with wavelength or polarization selectivity will provide great benefits for a wide range of applications. PMID:28772855

  5. Wavelength- or Polarization-Selective Thermal Infrared Detectors for Multi-Color or Polarimetric Imaging Using Plasmonics and Metamaterials.

    PubMed

    Ogawa, Shinpei; Kimata, Masafumi

    2017-05-04

    Wavelength- or polarization-selective thermal infrared (IR) detectors are promising for various novel applications such as fire detection, gas analysis, multi-color imaging, multi-channel detectors, recognition of artificial objects in a natural environment, and facial recognition. However, these functions require additional filters or polarizers, which leads to high cost and technical difficulties related to integration of many different pixels in an array format. Plasmonic metamaterial absorbers (PMAs) can impart wavelength or polarization selectivity to conventional thermal IR detectors simply by controlling the surface geometry of the absorbers to produce surface plasmon resonances at designed wavelengths or polarizations. This enables integration of many different pixels in an array format without any filters or polarizers. We review our recent advances in wavelength- and polarization-selective thermal IR sensors using PMAs for multi-color or polarimetric imaging. The absorption mechanism defined by the surface structures is discussed for three types of PMAs-periodic crystals, metal-insulator-metal and mushroom-type PMAs-to demonstrate appropriate applications. Our wavelength- or polarization-selective uncooled IR sensors using various PMAs and multi-color image sensors are then described. Finally, high-performance mushroom-type PMAs are investigated. These advanced functional thermal IR detectors with wavelength or polarization selectivity will provide great benefits for a wide range of applications.

  6. Superoxide scavenging activity of pirfenidone-iron complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitani, Yoshihiro; Sato, Keizo; Muramoto, Yosuke

    Pirfenidone (PFD) is focused on a new anti-fibrotic drug, which can minimize lung fibrosis etc. We evaluated the superoxide (O{sub 2}{sup {center_dot}}{sup -}) scavenging activities of PFD and the PFD-iron complex by electron spin resonance (ESR) spectroscopy, luminol-dependent chemiluminescence assay, and cytochrome c reduction assay. Firstly, we confirmed that the PFD-iron complex was formed by mixing iron chloride with threefold molar PFD, and the complex was stable in distillated water and ethanol. Secondary, the PFD-iron complex reduced the amount of O{sub 2}{sup {center_dot}}{sup -} produced by xanthine oxidase/hypoxanthine without inhibiting the enzyme activity. Thirdly, it also reduced the amount ofmore » O{sub 2}{sup {center_dot}}{sup -} released from phorbor ester-stimulated human neutrophils. PFD alone showed few such effects. These results suggest the possibility that the O{sub 2}{sup {center_dot}}{sup -} scavenging effect of the PFD-iron complex contributes to the anti-fibrotic action of PFD used for treating idiopathic pulmonary fibrosis.« less

  7. SU-E-T-516: Investigation of a Novel Radiochromic Radiation Reporting System Utilizing the Reduction of Ferric Ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H; Alqathami, M; Wang, J

    Purpose To introduce and characterize a new “reverse-Fricke” radiation reporting system utilizing the reduction of ferric ions (Fe{sup 3+}) to ferrous ions (Fe{sup 2+}). Methods Two formulations of the radiochromic reporting system, referred to as A and B, were prepared for investigation. Formulation-A consisted of 14 mM 1,10-phenanthroline, 42 mM ethanol, and 57 mM ammonium ferric oxalate in water. Formulation-B consisted of 27 mM 1,10-phenanthroline, 42 mM ethanol, and 28 mM ammonium ferric oxalate in water. Solutions were prepared immediately prior to irradiation with a Cobalt-60 unit with radiation doses of 0, 1, 5, 10, 15, 20, and 25 Gy.more » The change in optical density over the visible range of 450–650 nm was measured using a spectrophotometer immediately after irradiation. The effective atomic numbers of the formulations were calculated using Mayneord’s formula. Results Ionizing radiation energy absorbed in the solutions causes the reduction of ferric ions (Fe{sup 3+}) into ferrous ions (Fe{sup 2+}), which then forms a 1:3 red colored complex with 1,10-phenanthroline ([(C{sub 1} {sub 2}H{sub 8}N{sup 2}){sub 3}Fe]{sup 2+}) that can be measured spectrophotometrically. The absorbance spectra of the resulting complex displayed a peak maximum at 512 nm with a greater change in absorbance for Formulation-B after receiving comparable radiation doses. The change in absorbance relative to dose exhibited a linear response up to 25 Gy for both Formulation-A (R{sup 2} = 0.98) and Formulation-B (R{sup 2} = 0.97). The novel formulations were also nearly water equivalent (Zeff = 7.42) with effective atomic numbers of 7.65 and 7.52 and mass densities within 0.2% of water. Conclusion Both formulations displayed visible Fe{sup 2+} complex formation with 1,10-phenanthroline after irradiation using a Cobalt-60 source. The higher sensitivity measured for Formulation-B is attributed to the increase in 1,10-phenanthroline concentration and the increase in the 1,10-phenanthroline to ammonium ferric oxalate ratio. Further investigation of this radiation reporting system in a 3D matrix material is encouraged. NSF GRFP Grant Award #LH-102SPS.« less

  8. Ellagic acid inhibits iron-mediated free radical formation

    NASA Astrophysics Data System (ADS)

    Dalvi, Luana T.; Moreira, Daniel C.; Andrade, Roberto; Ginani, Janini; Alonso, Antonio; Hermes-Lima, Marcelo

    2017-02-01

    Polyphenols are reported to have some health benefits, which are link to their antioxidant properties. In the case of ellagic acid (EA), there is evidence that it has free radical scavenger properties and that it is able to form complexes with metal ions. However, information on a possible link between the formation of iron-EA complexes and their interference in Haber-Weiss/Fenton reactions was not yet determined. Thus, the present study investigated the in vitro antioxidant mechanism of EA in a system containing ascorbate, Fe(III) and different iron ligands (EDTA, citrate and NTA). Iron-mediated oxidative degradation of 2-deoxyribose was poorly inhibited (by 12%) in the presence of EA (50 μM) and EDTA. When citrate or NTA - which form weak iron complexes - were used, the 2-deoxyribose protection increased to 89-97% and 45%, respectively. EA also presented equivalent inhibitory effects on iron-mediated oxygen uptake and ascorbyl radical formation. Spectral analyses of iron-EA complexes show that EA removes Fe(III) from EDTA within hours, and from citrate within 1 min. This difference in the rate of iron-EA complex formation may explain the antioxidant effects of EA. Furthermore, the EA antioxidant effectiveness was inversely proportional to the Fe(III) concentration, suggesting a competition with EDTA. In conclusion, the results indicate that EA may prevent in vitro free radical formation when it forms a complex with iron ions.

  9. Effects of hydroxycinnamic acids on blue color expression of cyanidin derivatives and their metal chelates.

    PubMed

    Sigurdson, G T; Robbins, R J; Collins, T M; Giusti, M M

    2017-11-01

    Mechanisms to recreate many anthocyanin blue hues in nature are not fully understood, but interactions with metal ions and phenolic compounds are thought to play important roles. Bluing effects of hydroxycinnamic acids on cyanidin and chelates were investigated by addition of the acids to triglycosylated cyanidin (0-50×[anthocyanin]) and by comparison to hydroxycinnamic acid monoacylated and diacylated Cy fractions by spectrophotometry (380-700nm) and colorimetry in pH 5-8. With no metal ions, λ max and absorbance was greatest for cyanidin with diacylation>monoacylation>increasing [acids]. Hydroxycinnamic acids added to cyanidin solutions weakly impacted color characteristics (ΔE<5); while acylation (covalent acid attachment) resulted in ΔE 5-15. Triglycosylated cyanidin expressed blue color (pH 7-8), suggesting glycosylation pattern also plays a role. Al 3+ chelation increased absorbance 2-42× and λ max ≳40nm (pH 5-6) compared to added hydroxycinnamic acids. Metal chelation and aromatic diacylation resulted in the most blue hues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Ligand Exchange Kinetics of Environmentally Relevant Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panasci, Adele Frances

    2014-07-15

    The interactions of ground water with minerals and contaminants are of broad interest for geochemists but are not well understood. Experiments on the molecular scale can determine reaction parameters (i.e. rates of ligand exchange, activation entropy, activation entropy, and activation volume) that can be used in computations to gain insight into reactions that occur in natural groundwaters. Experiments to determine the rate of isotopic ligand exchange for three environmentally relevant metals, rhodium (Rh), iron (Fe), and neptunium (Np), are described. Many environmental transformations of metals (e.g. reduction) in soil occur at trivalent centers, Fe(III) in particular. Contaminant ions absorb tomore » mineral surfaces via ligand exchange, and the reversal of this reaction can be dangerous, releasing contaminants into the environment. Ferric iron is difficult to study spectroscopically because most of its complexes are paramagnetic and are generally reactive toward ligand exchange; therefore, Rh(III), which is diamagnetic and less reactive, was used to study substitution reactions that are analogous to those that occur on mineral oxide surfaces. Studies on both Np(V) and Np(VI) are important in their own right, as 237Np is a radioactive transuranic element with a half-life of 2 million years.« less

  11. Multifractal Analysis of Seismically Induced Soft-Sediment Deformation Structures Imaged by X-Ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Nakashima, Yoshito; Komatsubara, Junko

    Unconsolidated soft sediments deform and mix complexly by seismically induced fluidization. Such geological soft-sediment deformation structures (SSDSs) recorded in boring cores were imaged by X-ray computed tomography (CT), which enables visualization of the inhomogeneous spatial distribution of iron-bearing mineral grains as strong X-ray absorbers in the deformed strata. Multifractal analysis was applied to the two-dimensional (2D) CT images with various degrees of deformation and mixing. The results show that the distribution of the iron-bearing mineral grains is multifractal for less deformed/mixed strata and almost monofractal for fully mixed (i.e. almost homogenized) strata. Computer simulations of deformation of real and synthetic digital images were performed using the egg-beater flow model. The simulations successfully reproduced the transformation from the multifractal spectra into almost monofractal spectra (i.e. almost convergence on a single point) with an increase in deformation/mixing intensity. The present study demonstrates that multifractal analysis coupled with X-ray CT and the mixing flow model is useful to quantify the complexity of seismically induced SSDSs, standing as a novel method for the evaluation of cores for seismic risk assessment.

  12. Simultaneous image reproduction on CRT screen: Moves ultrasonic sectional view and electrocardiogram curves

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A method for simultaneous reproduction of images, requiring different amounts of time to reproduce, on a cathode ray tube (CRT) screen is disclosed. Ultrasonic sectional views and electrocardiogram curves are simultaneously reproduced on the CRT screen by producing the images on different areas of a screen with two phosphors having different persistence times and luminous colors, within the times required for the appearance of the images. In front of the area on which is produced the image requiring the shorter time is a color filter which is permeable to the color of the phosphor with the shorter persistence time by which absorbs the color of the other phosphor.

  13. Iron-filled multi-walled carbon nanotubes for terahertz applications: effects of interfacial polarization, screening and anisotropy.

    PubMed

    Sedelnikova, O V; Korovin, E Yu; Dorozhkin, K V; Kanygin, M A; Arkhipov, V E; Shubin, Yu V; Zhuravlev, V A; Suslyaev, V I; Bulusheva, L G; Okotrub, A V

    2018-04-27

    Interface interactions in multicomponent nanoparticles can affect electromagnetic properties of an absorbing system. In this work, we investigate the electromagnetic response of multi-walled carbon nanotubes (MWCNTs) filled with iron-containing nanoparticles (ICNs) in the terahertz frequency range. MWCNTs with different iron content have been synthesized by aerosol-assisted catalytic chemical vapour deposition method from toluene containing a certain quantity of ferrocene used as a catalyst. According to the x-ray diffraction analysis, encapsulated ICNs were mainly in the form of iron carbide. Thin composite films were prepared from the iron-filled MWCNTs and polymethylmethacrylate (PMMA) by casting and stretching methods. The composites showed an enhanced permittivity and anisotropy in the transmittance spectra when iron content increased. This behaviour was related to the mechanism based on electrical conductivity and polarization of ICNs and ICN/MWCNT interfaces. Since terahertz field penetrates inside MWCNTs, the filling of their cavities can be a way of varying the electromagnetic properties of MWCNT-containing composites.

  14. Iron-filled multi-walled carbon nanotubes for terahertz applications: effects of interfacial polarization, screening and anisotropy

    NASA Astrophysics Data System (ADS)

    Sedelnikova, O. V.; Korovin, E. Yu; Dorozhkin, K. V.; Kanygin, M. A.; Arkhipov, V. E.; Shubin, Yu V.; Zhuravlev, V. A.; Suslyaev, V. I.; Bulusheva, L. G.; Okotrub, A. V.

    2018-04-01

    Interface interactions in multicomponent nanoparticles can affect electromagnetic properties of an absorbing system. In this work, we investigate the electromagnetic response of multi-walled carbon nanotubes (MWCNTs) filled with iron-containing nanoparticles (ICNs) in the terahertz frequency range. MWCNTs with different iron content have been synthesized by aerosol-assisted catalytic chemical vapour deposition method from toluene containing a certain quantity of ferrocene used as a catalyst. According to the x-ray diffraction analysis, encapsulated ICNs were mainly in the form of iron carbide. Thin composite films were prepared from the iron-filled MWCNTs and polymethylmethacrylate (PMMA) by casting and stretching methods. The composites showed an enhanced permittivity and anisotropy in the transmittance spectra when iron content increased. This behaviour was related to the mechanism based on electrical conductivity and polarization of ICNs and ICN/MWCNT interfaces. Since terahertz field penetrates inside MWCNTs, the filling of their cavities can be a way of varying the electromagnetic properties of MWCNT-containing composites.

  15. Effect of Low-Dose Ferrous Sulfate vs Iron Polysaccharide Complex on Hemoglobin Concentration in Young Children With Nutritional Iron-Deficiency Anemia: A Randomized Clinical Trial.

    PubMed

    Powers, Jacquelyn M; Buchanan, George R; Adix, Leah; Zhang, Song; Gao, Ang; McCavit, Timothy L

    2017-06-13

    Iron-deficiency anemia (IDA) affects millions of persons worldwide, and is associated with impaired neurodevelopment in infants and children. Ferrous sulfate is the most commonly prescribed oral iron despite iron polysaccharide complex possibly being better tolerated. To compare the effect of ferrous sulfate with iron polysaccharide complex on hemoglobin concentration in infants and children with nutritional IDA. Double-blind, superiority randomized clinical trial of infants and children aged 9 to 48 months with nutritional IDA (assessed by history and laboratory criteria) that was conducted in an outpatient hematology clinic at a US tertiary care hospital from September 2013 through November 2015; 12-week follow-up ended in January 2016. Three mg/kg of elemental iron once daily as either ferrous sulfate drops or iron polysaccharide complex drops for 12 weeks. Primary outcome was change in hemoglobin over 12 weeks. Secondary outcomes included complete resolution of IDA (defined as hemoglobin concentration >11 g/dL, mean corpuscular volume >70 fL, reticulocyte hemoglobin equivalent >25 pg, serum ferritin level >15 ng/mL, and total iron-binding capacity <425 μg/dL at the 12-week visit), changes in serum ferritin level and total iron-binding capacity, adverse effects. Of 80 randomized infants and children (median age, 22 months; 55% male; 61% Hispanic white; 40 per group), 59 completed the trial (28 [70%] in ferrous sulfate group; 31 [78%] in iron polysaccharide complex group). From baseline to 12 weeks, mean hemoglobin increased from 7.9 to 11.9 g/dL (ferrous sulfate group) vs 7.7 to 11.1 g/dL (iron complex group), a greater difference of 1.0 g/dL (95% CI, 0.4 to 1.6 g/dL; P < .001) with ferrous sulfate (based on a linear mixed model). Proportion with a complete resolution of IDA was higher in the ferrous sulfate group (29% vs 6%; P = .04). Median serum ferritin level increased from 3.0 to 15.6 ng/mL (ferrous sulfate) vs 2.0 to 7.5 ng/mL (iron complex) over 12 weeks, a greater difference of 10.2 ng/mL (95% CI, 6.2 to 14.1 ng/mL; P < .001) with ferrous sulfate. Mean total iron-binding capacity decreased from 501 to 389 μg/dL (ferrous sulfate) vs 506 to 417 μg/dL (iron complex) (a greater difference of -50 μg/dL [95% CI, -86 to -14 μg/dL] with ferrous sulfate; P < .001). There were more reports of diarrhea in the iron complex group than in the ferrous sulfate group (58% vs 35%, respectively; P = .04). Among infants and children aged 9 to 48 months with nutritional iron-deficiency anemia, ferrous sulfate compared with iron polysaccharide complex resulted in a greater increase in hemoglobin concentration at 12 weeks. Once daily, low-dose ferrous sulfate should be considered for children with nutritional iron-deficiency anemia. clinicaltrials.gov Identifier: NCT01904864.

  16. Assessment of Dextran Antigenicity of Intravenous Iron Preparations with Enzyme-Linked Immunosorbent Assay (ELISA).

    PubMed

    Neiser, Susann; Koskenkorva, Taija S; Schwarz, Katrin; Wilhelm, Maria; Burckhardt, Susanna

    2016-07-21

    Intravenous iron preparations are typically classified as non-dextran-based or dextran/dextran-based complexes. The carbohydrate shell for each of these preparations is unique and is key in determining the various physicochemical properties, the metabolic pathway, and the immunogenicity of the iron-carbohydrate complex. As intravenous dextran can cause severe, antibody-mediated dextran-induced anaphylactic reactions (DIAR), the purpose of this study was to explore the potential of various intravenous iron preparations, non-dextran-based or dextran/dextran-based, to induce these reactions. An IgG-isotype mouse monoclonal anti-dextran antibody (5E7H3) and an enzyme-linked immunosorbent assay (ELISA) were developed to investigate the dextran antigenicity of low molecular weight iron dextran, ferumoxytol, iron isomaltoside 1000, ferric gluconate, iron sucrose and ferric carboxymaltose, as well as isomaltoside 1000, the isolated carbohydrate component of iron isomaltoside 1000. Low molecular weight iron dextran, as well as dextran-based ferumoxytol and iron isomaltoside 1000, reacted with 5E7H3, whereas ferric carboxymaltose, iron sucrose, sodium ferric gluconate, and isolated isomaltoside 1000 did not. Consistent results were obtained with reverse single radial immunodiffusion assay. The results strongly support the hypothesis that, while the carbohydrate alone (isomaltoside 1000) does not form immune complexes with anti-dextran antibodies, iron isomaltoside 1000 complex reacts with anti-dextran antibodies by forming multivalent immune complexes. Moreover, non-dextran based preparations, such as iron sucrose and ferric carboxymaltose, do not react with anti-dextran antibodies. This assay allows to assess the theoretical possibility of a substance to induce antibody-mediated DIARs. Nevertheless, as this is only one possible mechanism that may cause a hypersensitivity reaction, a broader set of assays will be required to get an understanding of the mechanisms that may lead to intravenous iron-induced hypersensitivity reactions.

  17. Behavior of hydrogen in alpha-iron at lower temperatures

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.

    1973-01-01

    Evidence is presented that the low temperature anomalies in the hydrogen occlusive behavior of alpha iron can be explained by means of a molecular occlusion theory. This theory proposes that the stable state of the absorbed hydrogen changes from atomic at high temperatures to molecular as the temperature is lowered below a critical value. Theories proposing to explain the anomalous behavior as being due to the capture, at lower temperatures, of hydrogen in traps are shown to be unacceptable.

  18. Flexible thin broadband microwave absorber based on a pyramidal periodic structure of lossy composite.

    PubMed

    Huang, Yixing; Yuan, Xujin; Wang, Changxian; Chen, Mingji; Tang, Liqun; Fang, Daining

    2018-06-15

    Microwave absorber with broadband absorption and thin thickness is one of the main research interests in this field. A flexible ultrathin and broadband microwave absorber comprising multiwall carbon nanotubes, spherical carbonyl iron, and silicone rubber is fabricated in a newly proposed pyramidal spatial periodic structure (SPS). The SPS with equivalent thickness of 3.73 mm covers the -10  dB and -15  dB absorption bandwidth in the frequency range 2-40 GHz and 10-40 GHz, respectively. The excellent absorption performance is achieved by concentration and dissipation of the electromagnetic field inside different parts of the magnetic-dielectric lossy protrusions in different frequency ranges.

  19. The high-energy view of the broad-line radio galaxy 3C 111

    NASA Astrophysics Data System (ADS)

    Ballo, L.; Braito, V.; Reeves, J. N.; Sambruna, R. M.; Tombesi, F.

    2011-12-01

    We present the analysis of Suzaku and XMM-Newton observations of the broad-line radio galaxy (BLRG) 3C 111. Its high-energy emission shows variability, a harder continuum with respect to the radio-quiet active galactic nucleus population, and weak reflection features. Suzaku found the source in a minimum flux level; a comparison with the XMM-Newton data implies an increase of a factor of 2.5 in the 0.5-10 keV flux, in the 6 months separating the two observations. The iron K complex is detected in both data sets, with rather low equivalent width(s). The intensity of the iron K complex does not respond to the change in continuum flux. An ultrafast, high-ionization outflowing gas is clearly detected in the Suzaku/X-ray Imaging Spectrometer data; the absorber is most likely unstable. Indeed, during the XMM-Newton observation, which was 6 months after, the absorber was not detected. No clear rollover in the hard X-ray emission is detected, probably due to the emergence of the jet as a dominant component in the hard X-ray band, as suggested by the detection above ˜100 keV with the GSO onboard Suzaku, although the present data do not allow us to firmly constrain the relative contribution of the different components. The fluxes observed by the γ-ray satellites CGRO and Fermi would be compatible with the putative jet component if peaking at energies E˜ 100 MeV. In the X-ray band, the jet contribution to the continuum starts to be significant only above 10 keV. If the detection of the jet component in 3C 111 is confirmed, then its relative importance in the X-ray energy band could explain the different observed properties in the high-energy emission of BLRGs, which are otherwise similar in their other multiwavelength properties. Comparison between X-ray and γ-ray data taken at different epochs suggests that the strong variability observed for 3C 111 is probably driven by a change in the primary continuum.

  20. Optical Features of Efficient Europium(III) Complexes with β-Diketonato and Auxiliary Ligands and Mechanistic Investigation of Energy Transfer Process.

    PubMed

    Bala, Manju; Kumar, Satish; Taxak, V B; Boora, Priti; Khatkar, S P

    2016-09-01

    Two new europium (III) complexes have been synthesized with 1,3-[bis(4-methoxyphenyl)]propane-1,3-dionato (HBMPD) as main ligand and 2,2'-bipyridyl (bipy) or 1,10-phenanthroline (phen) as an auxiliary ligand. The main ligand HBMPD has been synthesized by ecofriendly microwave approach and complexes by solution precipitation method. The resulting materials are characterized by IR, (1)H-NMR, elemental analysis, X-ray diffraction, UV-visible and TG-DTG techniques. The photoluminescence (PL) spectroscopy depicts the detail analysis of photophysical properties of the complexes, their results show that the ligand interact with Eu (III) ion which act as antenna and transfers the absorbed energy to the central europium(III) ion via sensitization process efficiently. As a consequence of this interaction, these materials exhibit excellent luminescent intensity, long decay time (τ), high quantum efficiency (η) and Judd-Ofelt intensity parameter (Ω2). The CIE coordinates fall under the deep red region, matching well with the NTSC (National Television Standard Committee) standard. Hence, these highly efficient optical materials can be used as a red component in organic light emitting diodes (OLEDs) and full color flat panel displays.

  1. A supersensitive silver nanoprobe based aptasensor for low cost detection of malathion residues in water and food samples

    NASA Astrophysics Data System (ADS)

    Bala, Rajni; Mittal, Sherry; Sharma, Rohit K.; Wangoo, Nishima

    2018-05-01

    In the present study, we report a highly sensitive, rapid and low cost colorimetric monitoring of malathion (an organophosphate insecticide) employing a basic hexapeptide, malathion specific aptamer (oligonucleotide) and silver nanoparticles (AgNPs) as a nanoprobe. AgNPs are made to interact with the aptamer and peptide to give different optical responses depending upon the presence or absence of malathion. The nanoparticles remain yellow in color in the absence of malathion owing to the binding of aptamer with peptide which otherwise tends to aggregate the particles because of charge based interactions. In the presence of malathion, the agglomeration of the particles occurs which turns the solution orange. Furthermore, the developed aptasensor was successfully applied to detect malathion in various water samples and apple. The detection offered high recoveries in the range of 89-120% with the relative standard deviation within 2.98-4.78%. The proposed methodology exhibited excellent selectivity and a very low limit of detection i.e. 0.5 pM was achieved. The developed facile, rapid and low cost silver nanoprobe based on aptamer and peptide proved to be potentially applicable for highly selective and sensitive colorimetric sensing of trace levels of malathion in complex environmental samples. Figure S2. HPLC Chromatogram of KKKRRR. Figure S3. UV- Visible spectra of AgNPs in the presence of increasing peptide concentrations. Inset shows respective color changes of AgNPs with peptide concentrations ranging from 0.1 mM to 100 mM (a to e). Figure S4. UV- Visible spectra of AgNPs in the presence 10 mM peptide and varying aptamer concentrations. Inset shows the corresponding color changes. a to e shows aptamer concentrations ranging from 10 nM to 1000 nM. Figure S5. Interference Studies. Ratio of A520 nm/390 nm of AgNPs in the presence of 10 mM peptide, 500 nM aptamer, 0.5 nM malathion and 0.5 mM interfering components i.e. sodium, potassium, calcium, alanine, arginine, aspartic acid, ascorbic acid (AA) and glucose. Figure S6. (A) Absorbance spectra of AgNPs with increasing malathion concentrations. (B) Calibration plot for spiked lake water. Inset shows their respective images where a to g represents malathion concentrations from 0.01 nM to 0.75 nM. Each point represents an average of three individual measurements and error bars indicate standard deviation. Figure S7. (A) Absorbance spectra of AgNPs with increasing malathion concentrations in spiked tap water samples. (B) Calibration plot for the biosensor. Inset represents the color changes. a to g represents varying malathion concentrations from 0.01 nM to 0.75 nM. Each point represents an average of three individual measurements and error bars indicate standard deviation. Figure S8. (A) Absorbance spectra of AgNPs in the presence of different malathion concentrations in spiked apple samples. (B) Calibration plot for spiked apple. Inset displays the corresponding color changes. a to g shows the color of solutions having malathion concentrations from 0.01 nM to 0.75 nM. Each point represents an average of three individual measurements and error bars indicate standard deviation.

  2. Fitness: Stay Safe during Hot-Weather Exercise

    MedlinePlus

    ... you're used to exercising indoors or in cooler weather, take it easy at first when you ... loosefitting clothing helps sweat evaporate and keeps you cooler. Avoid dark colors, which can absorb heat. If ...

  3. Workplace Ergonomics Reference Guide

    MedlinePlus

    ... between use of keyboard and mouse (use keystroke equivalents to mouse).  Change your posture frequently throughout the ... walls should be removed.  The carpeting should be non-absorbent in warm, dark colors without padding or ...

  4. Pigmentary and photonic coloration mechanisms reveal taxonomic relationships of the Cattlehearts (Lepidoptera: Papilionidae: Parides)

    PubMed Central

    2014-01-01

    Background The colorful wing patterns of butterflies, a prime example of biodiversity, can change dramatically within closely related species. Wing pattern diversity is specifically present among papilionid butterflies. Whether a correlation between color and the evolution of these butterflies exists so far remained unsolved. Results We here investigate the Cattlehearts, Parides, a small Neotropical genus of papilionid butterflies with 36 members, the wings of which are marked by distinctly colored patches. By applying various physical techniques, we investigate the coloration toolkit of the wing scales. The wing scales contain two different, wavelength-selective absorbing pigments, causing pigmentary colorations. Scale ridges with multilayered lamellae, lumen multilayers or gyroid photonic crystals in the scale lumen create structural colors that are variously combined with these pigmentary colors. Conclusions The pigmentary and structural traits strongly correlate with the taxonomical distribution of Parides species. The experimental findings add crucial insight into the evolution of butterfly wing scales and show the importance of morphological parameter mapping for butterfly phylogenetics. PMID:25064167

  5. Development of an extractive spectrophotometric method for estimation of uranium in ore leach solutions using 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) mixture as extractant and 2-(5-bromo-2-pyridylozo)-5-diethyl aminophenol (Br-PADAP) as chromophore

    NASA Astrophysics Data System (ADS)

    Biswas, Sujoy; Pathak, P. N.; Roy, S. B.

    2012-06-01

    An extractive spectrophotometric analytical method has been developed for the determination of uranium in ore leach solution. This technique is based on the selective extraction of uranium from multielement system using a synergistic mixture of 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) in cyclohexane and color development from the organic phase aliquot using 2-(5-Bromo-2-pyridylazo)-5-diethyl aminophenol (Br-PADAP) as chromogenic reagent. The absorption maximum (λmax) for UO22+-Br-PADAP complex in organic phase samples, in 64% (v/v) ethanol containing buffer solution (pH 7.8) and 1,2-cyclohexylenedinitrilotetraacetic acid (CyDTA) complexing agent, has been found to be at 576 nm (molar extinction coefficient, ɛ: 36,750 ± 240 L mol-1 cm-1). Effects of various parameters like stability of complex, ethanol volume, ore matrix, interfering ions etc. on the determination of uranium have also been evaluated. Absorbance measurements as a function of time showed that colored complex is stable up to >24 h. Presence of increased amount of ethanol in colored solution suppresses the absorption of a standard UO22+-Br-PADAP solution. Analyses of synthetic standard as well as ore leach a solution show that for 10 determination relative standard deviation (RSD) is <2%. The accuracy of the developed method has been checked by determining uranium using standard addition method and was found to be accurate with a 98-105% recovery rate. The developed method has been applied for the analysis of a number of uranium samples generated from uranium ore leach solutions and results were compared with standard methods like inductively coupled plasma emission spectrometry (ICPAES). The determined values of uranium concentrations by these methods are within ±2%. This method can be used to determine 2.5-250 μg mL-1 uranium in ore leach solutions with high accuracy and precision.

  6. Biological effectiveness of accelerated particles for the induction of chromosome damage: track structure effects.

    PubMed

    George, Kerry A; Hada, Megumi; Chappell, Lori; Cucinotta, Francis A

    2013-07-01

    We have investigated how radiation quality affects the induction of chromosomal aberrations in human cells. Human lymphocytes were irradiated in vitro with various energies of accelerated high charge and energy (HZE) particles including oxygen, neon, silicon, titanium and iron. Chromosome damage was assessed using three-color FISH chromosome painting in chemically induced premature chromosome condensation samples collected at first cell division after irradiation. The LET values for these particles ranged from 30 to 195 keV/μm, and their energies ranged from about 55 MeV/u to more than 1,000 MeV/u. The 89 and 142 MeV/u neon particles produced the most simple-type reciprocal exchanges per unit dose. For complex-type exchanges, 64 MeV/u neon and 450 MeV/u iron were equally effective and induced the greatest amount of complex damage. Track structure models predict that at a fixed value of LET, particles with lower charge number (Z) will have a higher biological effectiveness compared to particles with a higher Z, and that a saturation cross section will be observed for different radiation qualities. Our results are consistent with model expectations within the limitation of experimental error, and provide the most extensive data that have been reported on the radiation quality dependences of chromosomal aberrations. © 2013 by Radiation Research Society

  7. Spectrophotometric Determination of Rifampicin in Bulk Drug and Pharmaceutical Formulations Based on Redox and Complexation Reactions

    NASA Astrophysics Data System (ADS)

    Swamy, N.; Basavaiah, K.

    2017-09-01

    Two spectrophotometric methods were developed and validated for the determination of rifampicin (RIF) in bulk form, formulations, and spiked human urine. The first method is based on the reduction of the Folin-Ciocalteu (FC) reagent by RIF to form a blue colored chromogen with λmax at 760 nm (the FCR method). In the second method, iron(III) is reduced by RIF in a neutral medium, and the resulting iron(II) is complexed with ferricyanide to form a Prussian blue peaking at 750 nm (the FFC method). Under optimum conditions, Beer's law enabled the determination of the drug in the concentration ranges 1-35 and 2.5-50 μg/mL with apparent molar absorptivities of 2.72 × 104 and 1.63×104 L/(mol × cm) for the FCR and FFC methods, respectively. The Sandell sensitivity, limits of detection (LOD), and quantification (LOQ) values were also reported for both methods. The precision of the methods, with % RSD of < 2%, was satisfactory, and the accuracy was higher than 2% (RE). The proposed methods were successfully applied to the determination of drug in capsules without interference from common additives and spiked human urine without interference from endogenous substances. A statistical analysis indicated that there was no significant difference between the results obtained by the developed methods and the official method.

  8. Cation exchange concentraion of the Americium product from TRUEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barney, G.S.; Cooper, T.D.; Fisher, F.D.

    1991-06-01

    A transuranic extraction (TRUEX) process has been developed to separate and recover plutonium, americium, and other transuranic (TRU) elements from acid wastes. The main objective of the process is to reduce the effluent to below the TRU limit for actinide concentrations (<100 nCi/g of material) so it can be disposed of inexpensively. The process yields a dilute nitric acid stream containing low concentrations of the extracted americium product. This solution also contains residual plutonium and trace amounts of iron. The americium will be absorbed into a cation exchange resin bed to concentrate it for disposal or for future use. Themore » overall objective of these laboratory tests was to determine the performance of the cation exchange process under expected conditions of the TRUEX process. Effects of acid, iron, and americium concentrations on americium absorption on the resin were determined. Distribution coefficients for americium absorption from acide solutions on the resin were measured using batch equilibrations. Batch equilibrations were also used to measure americium absorption in the presence of complexants. This data will be used to identify complexants and solution conditions that can be used to elute the americium from the columns. The rate of absorption was measured by passing solutions containing americium through small columns of resin, varying the flowrates, and measuring the concentrations of americium in the effluent. The rate data will be used to estimate the minimum bed size of the columns required to concentrate the americium product. 11 refs. , 10 figs., 2 tabs.« less

  9. Colorimetric determination of selenium in mineral premixes .

    PubMed

    Hurlbut, J A; Burkepile, R G; Geisler, C A; Kijak, P J; Rummel, N G

    1997-01-01

    A method is described for determination of sodium selenite or sodium selenate in mineral-based premixes. It is based on the formation of intense-yellow piazselenol by Se(IV) and 3,3'-diaminobenzidine. Mineral premixes typically contain calcium carbonate as a base material and magnesium carbonate, silicon dioxide, and iron(III) oxide as minor components or additives. In this method, the premix is digested briefly in nitric acid, diluted with water, and filtered to remove any Iron(III) oxide. Ethylenediaminetetraacetic acid and HCl are added to the filtrate, which is heated to near boiling for 1 h to convert any selenate to selenite. After heating, the solution is buffered between pH 2 and 3 with NaOH and formic acid and treated with NH2OH and EDTA; any Se present forms a complex with 3,3'-diaminobenzidine at 60 degrees C. The solution is made basic with NH4OH, and the piazselenol is extracted into toluene. The absorbance of the complex in dried toluene is measured at 420 nm. The method was validated independently by 2 laboratories. Samples analyzed included calcium carbonate fortified with 100, 200, and 300 micrograms Se in the form of sodium selenite or sodium selenate, a calcium carbonate premix containing sodium selenite, a calcium carbonate premix containing sodium selenate, and a commercial premix; 5 replicates of each sample type were analyzed by each laboratory. Average recoveries ranged from 89 to 109% with coefficients of variation from 1.2 to 13.6%.

  10. 21 CFR 172.370 - Iron-choline citrate complex.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline...

  11. 21 CFR 172.370 - Iron-choline citrate complex.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline...

  12. Creation of Emergent Sandbar Habitat (ESH) in the Headwaters of Lewis and Clark Lake and the Impacts on Water Quality

    DTIC Science & Technology

    2009-04-01

    probably tich in decayed vegetative matter (i.e., humus ) and seed stock. The richness of the matetial is indicated by its ctru·ker color as shown in...iron and manganese), humus and peat materials, plankton, weeds, and industrial wastes (APHA, 1998). “True color” is the color of water from which

  13. ON THE RELATIVE STABILITY OF ALUMINUM, TITANIUM, VANADIUM, IRON, AND COPPER TARTRATE COMPLEXES IN ALKALI MEDIA (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyatnitskii, I.V.; Kostyshina, A.P.

    1959-06-01

    The stability of aluminum, copper, iron, titunium, and vanadium tartrate complexes was determined using bond magnitudes as criteria (the ratio between the concentrations of complexed and free ions at a certain standard acid condition). A method is suggested for determining the ratio of the bonds combining the complexes of two metals. The partition constaats of aluminum, copper, iron(III), and vanadium hydroxyquinolinates between the aqueous solution and chloroform were 2.6 x 10/sup -33/, 7.3 x 10/sup -23/, 1.5 x 10/sup -37/, and 4.2 x 10/sup -23/, respectively. The relative stability of copper and iron turtrate complexes in alkali solution (pH 13)more » and aluminum, iron(III), titunium, and vanadium(IV) tartrate complexes in ammonium solution (pH 9.5) was determined. (R.V.J.)« less

  14. Autoimmune Hepatitis: Diagnostic Dilemma When It Is Disguised as Iron Overload Syndrome.

    PubMed

    Acharya, Gyanendra K; Liao, Hung-I; Frunza-Stefan, Simona; Patel, Ronakkumar; Khaing, Moe

    2017-09-01

    Elevated serum ferritin level is a common finding in iron overload syndrome, autoimmune and viral hepatitis, alcoholic and nonalcoholic fatty liver diseases. High transferrin saturation is not a common finding in above diseases except for iron overload syndrome. We encountered a challenging case of 73-year-old female who presented with yellowish discoloration of skin, dark color urine and dull abdominal pain. Initial laboratory tests reported mild anemia; elevated bilirubin, liver enzymes, and transferrin saturation. We came to the final diagnosis of autoimmune hepatitis after extensive workups. Autoimmune hepatitis is a rare disease, and the diagnosis can be further complicated by a similar presentation of iron overload syndrome. Markedly elevated transferrin saturation can simulate iron overload syndrome, but a liver biopsy can guide physicians to navigate the diagnosis.

  15. High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms

    PubMed Central

    Rabe, Benjamin; Peeken, Ilka; Bracher, Astrid

    2018-01-01

    As consequences of global warming sea-ice shrinking, permafrost thawing and changes in fresh water and terrestrial material export have already been reported in the Arctic environment. These processes impact light penetration and primary production. To reach a better understanding of the current status and to provide accurate forecasts Arctic biogeochemical and physical parameters need to be extensively monitored. In this sense, bio-optical properties are useful to be measured due to the applicability of optical instrumentation to autonomous platforms, including satellites. This study characterizes the non-water absorbers and their coupling to hydrographic conditions in the poorly sampled surface waters of the central and eastern Arctic Ocean. Over the entire sampled area colored dissolved organic matter (CDOM) dominates the light absorption in surface waters. The distribution of CDOM, phytoplankton and non-algal particles absorption reproduces the hydrographic variability in this region of the Arctic Ocean which suggests a subdivision into five major bio-optical provinces: Laptev Sea Shelf, Laptev Sea, Central Arctic/Transpolar Drift, Beaufort Gyre and Eurasian/Nansen Basin. Evaluating ocean color algorithms commonly applied in the Arctic Ocean shows that global and regionally tuned empirical algorithms provide poor chlorophyll-a (Chl-a) estimates. The semi-analytical algorithms Generalized Inherent Optical Property model (GIOP) and Garver-Siegel-Maritorena (GSM), on the other hand, provide robust estimates of Chl-a and absorption of colored matter. Applying GSM with modifications proposed for the western Arctic Ocean produced reliable information on the absorption by colored matter, and specifically by CDOM. These findings highlight that only semi-analytical ocean color algorithms are able to identify with low uncertainty the distribution of the different optical water constituents in these high CDOM absorbing waters. In addition, a clustering of the Arctic Ocean into bio-optical provinces will help to develop and then select province-specific ocean color algorithms. PMID:29304182

  16. High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms.

    PubMed

    Gonçalves-Araujo, Rafael; Rabe, Benjamin; Peeken, Ilka; Bracher, Astrid

    2018-01-01

    As consequences of global warming sea-ice shrinking, permafrost thawing and changes in fresh water and terrestrial material export have already been reported in the Arctic environment. These processes impact light penetration and primary production. To reach a better understanding of the current status and to provide accurate forecasts Arctic biogeochemical and physical parameters need to be extensively monitored. In this sense, bio-optical properties are useful to be measured due to the applicability of optical instrumentation to autonomous platforms, including satellites. This study characterizes the non-water absorbers and their coupling to hydrographic conditions in the poorly sampled surface waters of the central and eastern Arctic Ocean. Over the entire sampled area colored dissolved organic matter (CDOM) dominates the light absorption in surface waters. The distribution of CDOM, phytoplankton and non-algal particles absorption reproduces the hydrographic variability in this region of the Arctic Ocean which suggests a subdivision into five major bio-optical provinces: Laptev Sea Shelf, Laptev Sea, Central Arctic/Transpolar Drift, Beaufort Gyre and Eurasian/Nansen Basin. Evaluating ocean color algorithms commonly applied in the Arctic Ocean shows that global and regionally tuned empirical algorithms provide poor chlorophyll-a (Chl-a) estimates. The semi-analytical algorithms Generalized Inherent Optical Property model (GIOP) and Garver-Siegel-Maritorena (GSM), on the other hand, provide robust estimates of Chl-a and absorption of colored matter. Applying GSM with modifications proposed for the western Arctic Ocean produced reliable information on the absorption by colored matter, and specifically by CDOM. These findings highlight that only semi-analytical ocean color algorithms are able to identify with low uncertainty the distribution of the different optical water constituents in these high CDOM absorbing waters. In addition, a clustering of the Arctic Ocean into bio-optical provinces will help to develop and then select province-specific ocean color algorithms.

  17. Alginate-Iron Speciation and Its Effect on In Vitro Cellular Iron Metabolism

    PubMed Central

    Horniblow, Richard D.; Dowle, Miriam; Iqbal, Tariq H.; Latunde-Dada, Gladys O.; Palmer, Richard E.

    2015-01-01

    Alginates are a class of biopolymers with known iron binding properties which are routinely used in the fabrication of iron-oxide nanoparticles. In addition, alginates have been implicated in influencing human iron absorption. However, the synthesis of iron oxide nanoparticles employs non-physiological pH conditions and whether nanoparticle formation in vivo is responsible for influencing cellular iron metabolism is unclear. Thus the aims of this study were to determine how alginate and iron interact at gastric-comparable pH conditions and how this influences iron metabolism. Employing a range of spectroscopic techniques under physiological conditions alginate-iron complexation was confirmed and, in conjunction with aberration corrected scanning transmission electron microscopy, nanoparticles were observed. The results infer a nucleation-type model of iron binding whereby alginate is templating the condensation of iron-hydroxide complexes to form iron oxide centred nanoparticles. The interaction of alginate and iron at a cellular level was found to decrease cellular iron acquisition by 37% (p < 0.05) and in combination with confocal microscopy the alginate inhibits cellular iron transport through extracellular iron chelation with the resulting complexes not internalised. These results infer alginate as being useful in the chelation of excess iron, especially in the context of inflammatory bowel disease and colorectal cancer where excess unabsorbed luminal iron is thought to be a driver of disease. PMID:26378798

  18. Macroevolutionary patterns of ultraviolet floral pigmentation explained by geography and associated bioclimatic factors.

    PubMed

    Koski, Matthew H; Ashman, Tia-Lynn

    2016-07-01

    Selection driven by biotic interactions can generate variation in floral traits. Abiotic selection, however, also contributes to floral diversity, especially with respect to patterns of pigmentation. Combining comparative studies of floral pigmentation and geography can reveal the bioclimatic factors that may drive macroevolutionary patterns of floral color. We create a molecular phylogeny and measure ultraviolet (UV) floral pattern for 177 species in the Potentilleae tribe (Rosaceae). Species are similar in flower shape and visible color but vary in UV floral pattern. We use comparative approaches to determine whether UV pigmentation variation is associated with geography and/or bioclimatic features (UV-B, precipitation, temperature). Floral UV pattern was present in half of the species, while others were uniformly UV-absorbing. Phylogenetic signal was detected for presence/absence of pattern, but among patterned species, quantitative variation in UV-absorbing area was evolutionarily labile. Uniformly UV-absorbing species tended to experience higher UV-B irradiance. Patterned species occurring at higher altitudes had larger UV-absorbing petal areas, corresponding with low temperature and high UV exposure. This analysis expands our understanding of the covariation of UV-B irradiance and UV floral pigmentation from within species to that among species, and supports the view that abiotic selection is associated with floral diversification among species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Assessment of capabilities of multiangle imaging photo-polarimetry for atmospheric correction in presence of absorbing aerosols

    NASA Astrophysics Data System (ADS)

    Kalashnikova, O. V.; Garay, M. J.; Xu, F.; Seidel, F. C.; Diner, D. J.

    2015-12-01

    Satellite remote sensing of ocean color is a critical tool for assessing the productivity of marine ecosystems and monitoring changes resulting from climatic or environmental influences. Yet water-leaving radiance comprises less than 10% of the signal measured from space, making correction for absorption and scattering by the intervening atmosphere imperative. Traditional ocean color retrieval algorithms utilize a standard set of aerosol models and the assumption of negligible water-leaving radiance in the near-infrared. Modern improvements have been developed to handle absorbing aerosols such as urban particulates in coastal areas and transported desert dust over the open ocean, where ocean fertilization can impact biological productivity at the base of the marine food chain. Even so, imperfect knowledge of the absorbing aerosol optical properties or their height distribution results in well-documented sources of error. In the UV, the problem of UV-enhanced absorption and nonsphericity of certain aerosol types are amplified due to the increased Rayleigh and aerosol optical depth, especially at off-nadir view angles. Multi-angle spectro-polarimetric measurements have been advocated as an additional tool to better understand and retrieve the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of the work to be described is the assessment of the effects of absorbing aerosol properties on water leaving radiance measurement uncertainty by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. The phase matrices for the spherical smoke particles were calculated using a standard Mie code, while those for non-spherical dust particles were calculated using the numerical approach described by Dubovik et al., 2006. A vector Markov Chain radiative transfer code including bio-optical models was used to evaluate TOA and water leaving radiances.

  20. Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments

    PubMed Central

    Mey, Alexandra R.; Wyckoff, Elizabeth E.

    2015-01-01

    SUMMARY Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats. PMID:26658001

  1. Exogenous contrast agents for thermoacoustic imaging: An investigation into the underlying sources of contrast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogunlade, Olumide, E-mail: o.ogunlade@ucl.ac.uk; Beard, Paul

    2015-01-15

    Purpose: Thermoacoustic imaging at microwave excitation frequencies is limited by the low differential contrast exhibited by high water content tissues. To overcome this, exogenous thermoacoustic contrast agents based on gadolinium compounds, iron oxide, and single wall carbon nanotubes have previously been suggested and investigated. However, these previous studies did not fully characterize the electric, magnetic, and thermodynamic properties of these agents thus precluding identification of the underlying sources of contrast. To address this, measurements of the complex permittivity, complex permeability, DC conductivity, and Grüneisen parameter have been made. These measurements allowed the origins of the contrast provided by each substancemore » to be identified. Methods: The electric and magnetic properties of the contrast agents were characterized at 3 GHz using two rectangular waveguide cavities. The DC conductivity was measured separately using a conductivity meter. Thermoacoustic signals were then acquired and compared to those generated in water. Finally, 3D electromagnetic simulations were used to decouple the different contributions to the absorbed power density. Results: It was found that the gadolinium compounds provided appreciable electric contrast but not originating from the gadolinium itself. The contrast was either due to dissociation of the gadolinium salt which increased ionic conductivity or its nondissociated polar fraction which increased dielectric polarization loss or a combination of both. In addition, very high concentrations were required to achieve appreciable contrast, to the extent that the Grüneisen parameter increased significantly and became a source of contrast. Iron oxide particles were found to produce low but measurable dielectric contrast due to dielectric polarization loss, but this is attributed to the coating of the particles not the iron oxide. Single wall carbon nanotubes did not provide measurable contrast of any type. Conclusions: It is concluded that gadolinium based contrast agents, iron oxide particles, and single walled carbon nanotubes have little intrinsic merit as thermoacoustic contrast agents. Simple electrolytes such as saline which yield high contrast based on ionic conductivity provide much higher dielectric contrast per unit solute concentration and are likely to be significantly more effective as contrast agents.« less

  2. Iron tissue and excreta changes induced by ethylenediamine-N,N'-bis(2-hydroxyphenylacetic acid) in dogs.

    PubMed

    Rosenkrantz, H; Metterville, J J

    1980-05-01

    The use of EDBPHA as a potential iron chelator in cases of hemochromatosis provided impetus for investigating its toxicology. Because a reddish coloration of excreta was observed during subchronic administration of the drug to dogs, measurements of iron concentrations in blood, excreta, and hematopoietic tissues were made. Groups of beagle dogs of both sexes were injected i.v. with EDBPHA doses of 6, 12, or 18 mg/kg or were given capsules containing doses of 30, 100, or 240 mg/kg for 14 days. Control dogs received either saline i.v. or empty gelatin capsules orally. In addition to the monitoring of toxicological effects, iron levels in plasma, urine, feces, liver, spleen, and kidney were monitored before drug, at the end of treatment, and after a 16-day recovery period. In the absence of hemoglobin and hematocrit changes, i.v. EDBPHA reduced renal iron 40% and hepatic iron 15% to 25% without altering splenic iron. Serum iron rose 34% to 54%, urinary iron 80% to 119%, and fecal iron 23% to 41%. Oral EDBPHA did not induce changes in tissue iron or excreta iron, but serum iron was increased 22% to 29%. These alterations in iron concentrations were transient and may be related to iron redistribution and inactivation of drug by liver.

  3. Differences and Comparisons of the Properties and Reactivities of Iron(III)–hydroperoxo Complexes with Saturated Coordination Sphere

    PubMed Central

    Faponle, Abayomi S; Quesne, Matthew G; Sastri, Chivukula V; Banse, Frédéric; de Visser, Sam P

    2015-01-01

    Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)–oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)–hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)–hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)–hydroperoxo reacted directly with substrates or that an initial O–O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)–hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)–hydroperoxo complex with pentadentate ligand system (L52). Direct C–O bond formation by an iron(III)–hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L52)FeIII(OOH)]2+ should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)–hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O–O bond, whereas a heterolytic O–O bond breaking in heme iron(III)–hydroperoxo is found. PMID:25399782

  4. Synthesis, characterization and electrochemistry studies of iron(III) complex with curcumin ligand.

    PubMed

    Özbolat, Gülüzar; Yegani, Arash Alizadeh; Tuli, Abdullah

    2018-05-11

    Iron overload is a serious clinical condition for humans and is a key target in drug development. The aim of this study was to investigate the coordination of iron(III) ions with curcumin ligand that may be used in the treatment of iron overload. Iron(III) complex of curcumin was synthesized and structurally characterized in its solid and solution state by FT-IR, UV-Vis, elemental analysis, and magnetic susceptibility. Electrochemical behaviour of the ligand and the complexes were examined using cyclic voltammetry. The cytotoxic activities of the ligand and the iron(III) complex were evaluated by the MTT assay. Curcumin reacted with iron in high concentrations at physiological pH at room temperature. Subsequently, a brown-red complex was formed. Data regarding magnetic susceptibility showed that the complexes with a 1:2 (metal/ligand) mole ratio had octahedral geometry. The complex showed higher anti-oxidant effect towards the cell line ECV304 at IC 50 values of 4.83 compared to curcumin. The complex exhibited very high cytotoxic activity and showed a cytotoxic effect that was much better than that of the ligand. The potentials for redox were calculated as 0.180 V and 0.350 V, respectively. The electrochemistry studies showed that Fe 3+ /Fe 2+ couple redox process occurred at low potentials. This value was within the range of compounds that are expected to show superoxide dismutase activity. This finding indicates that the iron complex is capable of removing free radicals. The observed cytotoxicity could be pursued to obtain a potential drug. Further studies investigating the use of curcumin for this purpose are needed. © 2018 John Wiley & Sons Australia, Ltd.

  5. Electromagnetic interference attenuation and shielding effect of quaternary Epoxy-PPy/Fe3O4-ZnO nanocomposite as a broad band microwave-absorber

    NASA Astrophysics Data System (ADS)

    Olad, Ali; Shakoori, Sahar

    2018-07-01

    An increase in the electromagnetic wave pollution generated from wireless telecommunication devices has devoted to a great request for exploiting microwave absorbing materials for themselves. The combination of inherently conducting polymers such as polypyrrole (PPy) with metal oxides has led to design ideal microwave absorbing materials which benefit both advantage effects of ICPs and metal oxide nanoparticles. Herein, the quaternary nanocomposite of Epoxy-PPy/Fe3O4-ZnO was prepared and tested for the absorption of X-band microwaves. Simultaneous application of metal oxides and conducting polypyrrole in the epoxy matrix was evaluated in order to increase the absorption intensity and broadness of microwaves in X-band region. The morphology, microstructure, and phase structure of Fe3O4, ZnO, and PPy, as well as quaternary nanocomposite were characterized and studied using FTIR, XRD, FESEM and TEM techniques. The presence of nanoparticles in the quaternary nanocomposite was confirmed by EDS. The magnetization of iron oxide was studied by VSM. The synergetic effect of iron oxide and zinc oxide nanoparticles in different weight ratios (Fe3O4/ZnO) on the electromagnetic wave absorption was evaluated. The electromagnetic parameters have been evaluated by the vector network analyzer in the frequency range of 8.2-12.4 GHz which is named as X-band region and is adequate for radar applications. The electromagnetic wave absorbing outcomes indicated that Epoxy-PPy/Fe3O4-ZnO quaternary nanocomposite has wide absorption area and high attenuation, which is believed to be due to dielectric loss properties related to the polypyrrole, magnetic loss factor of Fe3O4, and synergetic effects of components. The maximum reflection loss reached to -32.53 dB at 9.96 GHz with a nanocomposite thickness of 2 mm which is dedicated to the Epoxy-PPy/Fe3O4-ZnO with iron oxide to zinc oxide ratio of 2:1. The absorption bandwidth with the reflection loss lower than -10 dB (90% attenuation) was up to 4.2 GHz that covering a frequency range of 8.2-12.4 GHz. Results showed that absorber having %15 (w/w) polypyrrole/epoxy resin in Epoxy-PPy/Fe3O4-ZnO nanocomposite with iron oxide to zinc oxide ratio of 2:1 displays the best reflection loss properties. The loss curves illustrated the values of dielectric loss tangent and magnetic loss tangent of prepared nanocomposites which are in the range of 0.25-0.7 and -0.08 to 0.09 respectively. Therefore, microwave absorption mechanism is probably attributed to dielectric loss.

  6. Geologic map of the western Haji-Gak iron deposit, Bamyan Province, Afghanistan, modified from the 1965 original map compilation of V.V. Reshetniak and I.K. Kusov

    USGS Publications Warehouse

    Renaud, Karine M.; Tucker, Robert D.; Peters, Stephen G.; Stettner, Will R.; Masonic, Linda M.; Moran, Thomas W.

    2011-01-01

    This map is a modified version of Geologic-prospecting plan of western area of Hajigak iron-ore deposit, scale 1:2,000, which was compiled by V.V. Reshetniak and I.K. Kusov in 1965. (Refer to the References Cited section in the Map PDF for complete citations of the original map and related reports.) USGS scientists, in cooperation with the Afghan Geological Survey and the Task Force for Business and Stability Operations of the U.S. Department of Defense, studied the original documents and also visited the field area in November 2009. This modified map illustrates the geological structure of the western Haji-Gak iron deposit and includes cross sections of the same area. The map reproduces the topology (contacts, faults, and so forth) of the original Soviet map and includes modifications based on our examination of that document. We constructed the cross sections from data derived from the original map. Elevations on the cross sections are derived from the original Soviet topography and may not match the newer topography used on the current map. We have attempted to translate the original Russian terminology and rock classification into modern English geologic usage as literally as possible without changing any genetic or process-oriented implications in the original descriptions. We also use the age designations from the original map. The unit colors on the map and cross sections differ from the colors shown on the original version. The units are colored according to the color and pattern scheme of the Commission for the Geological Map of the World (CGMW) (http://www.ccgm.org).

  7. Systematic Relationships Between Lidar Observables and Sizes And Mineral Composition Of Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Van Diedenhoven, Bastiaan; Stangl, Alexander; Perlwitz, Jan; Fridlind, Ann M.; Chowdhary, Jacek; Cairns, Brian

    2015-01-01

    The physical and chemical properties of soil dust aerosol particles fundamentally affect their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates on the surface of dust particles, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Lidar measurements, such as extinction-to-backscatter, color and depolarization ratios, are frequently used to distinguish between aerosol types with different physical and chemical properties. The chemical composition of aerosol particles determines their complex refractive index, hence affecting their backscattering properties. Here we present a study on how dust aerosol backscattering and depolarization properties at wavelengths of 355, 532 and 1064 nm are related to size and complex refractive index, which varies with the mineral composition of the dust. Dust aerosols are represented by collections of spheroids with a range of prolate and oblate aspect ratios and their optical properties are obtained using T-matrix calculations. We find simple, systematic relationships between lidar observables and the dust size and complex refractive index that may aid the use of space-based or airborne lidars for direct retrieval of dust properties or for the evaluation of chemical transport models using forward simulated lidar variables. In addition, we present first results on the spatial variation of forward-simulated lidar variables based on a dust model that accounts for the atmospheric cycle of eight different mineral types plus internal mixtures of seven mineral types with iron oxides, which was recently implemented in the NASA GISS Earth System ModelE2.

  8. Effect of Thermal Annealing on the Band GAP and Optical Properties of Chemical Bath Deposited ZnSe Thin Films

    NASA Astrophysics Data System (ADS)

    Ezema, F. I.; Ekwealor, A. B. C.; Osuji, R. U.

    2006-05-01

    Zinc selenide (ZnSe) thin films were deposited on glass substrate using the chemical bath deposition method at room temperature from aqueous solutions of zinc sulphate and sodium selenosulfate in which sodium hydroxide was employed as complexing agents. The `as-deposited' ZnSe thin films are red in color and annealed in oven at 473 K for 1 hour and on a hot plate in open air at 333 K for 5 minutes, affecting the morphological and optical properties. Optical properties such as absorption coefficient a and extinction coefficient k, were determined using the absorbance and transmission measurement from Unico UV-2102 PC spectrophotometer, at normal incidence of light in the wavelength range of 200-1000 nm. The films have transmittance in VIS-NIR regions that range between 26 and 87%. From absorbance and transmittance spectra, the band gap energy determined ranged between 1.60 eV and 1.75 for the `as deposited' samples, and the annealed samples exhibited a band gap shift of 0.15 eV. The high transmittance of the films together with its large band gap made them good materials for selective coatings for solar cells.

  9. Directed Evolution of a Thermostable Quorum-quenching Lactonase from the Amidohydrolase Superfamily*

    PubMed Central

    Chow, Jeng Yeong; Xue, Bo; Lee, Kang Hao; Tung, Alvin; Wu, Long; Robinson, Robert C.; Yew, Wen Shan

    2010-01-01

    A thermostable quorum-quenching lactonase from Geobacillus kaustophilus HTA426 (GI: 56420041) was used as an initial template for in vitro directed evolution experiments. This enzyme belongs to the phosphotriesterase-like lactonase (PLL) group of enzymes within the amidohydrolase superfamily that hydrolyze N-acylhomoserine lactones (AHLs) that are involved in virulence pathways of quorum-sensing pathogenic bacteria. Here we have determined the N-butyryl-l-homoserine lactone-liganded structure of the catalytically inactive D266N mutant of this enzyme to a resolution of 1.6 Å. Using a tunable, bioluminescence-based quorum-quenching molecular circuit, the catalytic efficiency was enhanced, and the AHL substrate range increased through two point mutations on the loops at the C-terminal ends of the third and seventh β-strands. This E101N/R230I mutant had an increased value of kcat/Km of 72-fold toward 3-oxo-N-dodecanoyl-l-homoserine lactone. The evolved mutant also exhibited lactonase activity toward N-butyryl-l-homoserine lactone, an AHL that was previously not hydrolyzed by the wild-type enzyme. Both the purified wild-type and mutant enzymes contain a mixture of zinc and iron and are colored purple and brown, respectively, at high concentrations. The origin of this coloration is suggested to be because of a charge transfer complex involving the β-cation and Tyr-99 within the enzyme active site. Modulation of the charge transfer complex alters the lactonase activity of the mutant enzymes and is reflected in enzyme coloration changes. We attribute the observed enhancement in catalytic reactivity of the evolved enzyme to favorable modulations of the active site architecture toward productive geometries required for chemical catalysis. PMID:20980257

  10. Directed evolution of a thermostable quorum-quenching lactonase from the amidohydrolase superfamily.

    PubMed

    Chow, Jeng Yeong; Xue, Bo; Lee, Kang Hao; Tung, Alvin; Wu, Long; Robinson, Robert C; Yew, Wen Shan

    2010-12-24

    A thermostable quorum-quenching lactonase from Geobacillus kaustophilus HTA426 (GI: 56420041) was used as an initial template for in vitro directed evolution experiments. This enzyme belongs to the phosphotriesterase-like lactonase (PLL) group of enzymes within the amidohydrolase superfamily that hydrolyze N-acylhomoserine lactones (AHLs) that are involved in virulence pathways of quorum-sensing pathogenic bacteria. Here we have determined the N-butyryl-L-homoserine lactone-liganded structure of the catalytically inactive D266N mutant of this enzyme to a resolution of 1.6 Å. Using a tunable, bioluminescence-based quorum-quenching molecular circuit, the catalytic efficiency was enhanced, and the AHL substrate range increased through two point mutations on the loops at the C-terminal ends of the third and seventh β-strands. This E101N/R230I mutant had an increased value of k(cat)/K(m) of 72-fold toward 3-oxo-N-dodecanoyl-L-homoserine lactone. The evolved mutant also exhibited lactonase activity toward N-butyryl-L-homoserine lactone, an AHL that was previously not hydrolyzed by the wild-type enzyme. Both the purified wild-type and mutant enzymes contain a mixture of zinc and iron and are colored purple and brown, respectively, at high concentrations. The origin of this coloration is suggested to be because of a charge transfer complex involving the β-cation and Tyr-99 within the enzyme active site. Modulation of the charge transfer complex alters the lactonase activity of the mutant enzymes and is reflected in enzyme coloration changes. We attribute the observed enhancement in catalytic reactivity of the evolved enzyme to favorable modulations of the active site architecture toward productive geometries required for chemical catalysis.

  11. Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition.

    PubMed

    Yoo, Young Jin; Lee, Gil Ju; Jang, Kyung-In; Song, Young Min

    2017-08-29

    Ultra-thin film structures have been studied extensively for use as optical coatings, but performance and fabrication challenges remain.  We present an advanced method for fabricating ultra-thin color films with improved characteristics. The proposed process addresses several fabrication issues, including large area processing. Specifically, the protocol describes a process for fabricating ultra-thin color films using an electron beam evaporator for oblique angle deposition of germanium (Ge) and gold (Au) on silicon (Si) substrates.  Film porosity produced by the oblique angle deposition induces color changes in the ultra-thin film. The degree of color change depends on factors such as deposition angle and film thickness. Fabricated samples of the ultra-thin color films showed improved color tunability and color purity. In addition, the measured reflectance of the fabricated samples was converted into chromatic values and analyzed in terms of color. Our ultra-thin film fabricating method is expected to be used for various ultra-thin film applications such as flexible color electrodes, thin film solar cells, and optical filters. Also, the process developed here for analyzing the color of the fabricated samples is broadly useful for studying various color structures.

  12. A Global, Decadal, Quantitative Record of Absorbing Aerosols above Cloud Using OMI's Near-UV Observations

    NASA Astrophysics Data System (ADS)

    Torres, O.; Jethva, H. T.; Ahn, C.

    2016-12-01

    Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes of the aerosol-cloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regions of the world. Contrary to the known cooling effects of these aerosols in cloud-free scenario over dark surface, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing (warming) at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud directly depends on the aerosol loading, microphysical and optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of above-cloud aerosol optical depth (ACAOD) of absorbing aerosols retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. Physically based on the strong `color ratio' effect in the near-UV caused by the spectral absorption of aerosols above cloud, the algorithm, formally named as OMACA, retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. Here, we present the algorithm architecture and results from an 11-year global record (2005-2015) including global climatology of frequency of occurrence and ACAOD. The theoretical uncertainty analysis and planned validation activities using measurements from upcoming field campaigns are also discussed.

  13. The Mechanism of Anaerobic (Microbial) Corrosion.

    DTIC Science & Technology

    1982-12-01

    hydrogen sulfide reacts with hypophosphite (as well as phosphate and phosphite ) .to form, in the presence of mild steel, iron phosphide, simulating the...of phosphate and phosphite , but not hypophosphite, were observed to have become yellow in 24 hours. The yellow color disap- peared upon exposure to... product is an amorphous type of iron phosphide which can be !- detected b the formation of phos hine upon its acidification. Phosphine( in M IFO, 1473

  14. Investigation of the mechanisms of membrane fouling by intracellular organic matter under different iron treatments during ultrafiltration.

    PubMed

    Huang, Weiwei; Qin, Xiao; Dong, Bingzhi; Zhou, Wenzong; Lv, Weiguang

    2018-05-30

    Iron is an important trace element in algal growth and water eutrophication. This study focused on the ultrafiltration (UF) membrane fouling mechanism by the intracellular organic matter (IOM) of Microcystis aeruginosa under different iron treatments. The results indicated that the membranes experienced faster flux decline and worse fouling reversibility when the IOM formed under low iron concentrations. In contrast, less IOM membrane fouling was found under normal and high iron concentrations. The mass balances of the dissolved organic carbon (DOC) content implied that the IOM in the low-iron treatment was associated with higher IOM retention and a higher capacity of reversibly deposited organics, whereas more IOM in the high-iron treatment passed through the UF membrane. The IOM in the low-iron treatment was composed of more biopolymer macromolecules, whereas the IOM in the high-iron treatment contained more UV-absorbing hydrophobic organics. The fluorescence excitation-emission matrix (EEM) spectra coupled with peak-fitting analysis implied that the fouling associated with protein-like components was more irreversible in the low-iron treatment than those in the normal- and high-iron treatments. Cake formation combined with intermediate blocking was identified as the main membrane fouling mechanism responsible for the flux decline caused by IOM solutions in the three iron treatments in this study. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Iron vs. cobalt clathrochelate electrocatalysts of HER: the first example on a cage iron complex.

    PubMed

    Dolganov, Alexander V; Belov, Alexander S; Novikov, Valentin V; Vologzhanina, Anna V; Mokhir, Andriy; Bubnov, Yurii N; Voloshin, Yan Z

    2013-04-07

    New macrobicyclic 2-thiopheneboron-capped iron and cobalt(II) tris-dioximates showed high electrocatalytic activity for hydrogen production from H(+) ions. This is the first example of the hydrogen evolution reaction electrocatalyzed by a clathrochelate iron complex, which catalyzes the hydrogen production at low overpotential.

  16. Iron(II) cage complexes of N-heterocyclic amide and bis(trimethylsilyl)amide ligands: synthesis, structure, and magnetic properties.

    PubMed

    Sulway, Scott A; Collison, David; McDouall, Joseph J W; Tuna, Floriana; Layfield, Richard A

    2011-03-21

    Metallation of hexahydropyrimidopyrimidine (hppH) by [Fe{N(SiMe(3))(2)}(2)] (1) produces the trimetallic iron(II) amide cage complex [{(Me(3)Si)(2)NFe}(2)(hpp)(4)Fe] (2), which contains three iron(II) centers, each of which resides in a distorted tetrahedral environment. An alternative, one-pot route that avoids use of the highly air-sensitive complex 1 is described for the synthesis of the iron(II)-lithium complex [{(Me(3)Si)(2)N}(2)Fe{Li(bta)}](2) (3) (where btaH = benzotriazole), in which both iron(II) centers reside in 3-coordinated pyramidal environments. The structure of 3 is also interpreted in terms of the ring laddering principle developed for alkali metal amides. Magnetic susceptibility measurements reveal that both compounds display very weak antiferromagnetic exchange between the iron(II) centers, and that the iron(II) centers in 2 and 3 possess large negative axial zero-field splittings.

  17. Electrochemistry of Simple Organometallic Models of Iron-Iron Hydrogenases in Organic Solvent and Water.

    PubMed

    Gloaguen, Frederic

    2016-01-19

    Synthetic models of the active site of iron-iron hydrogenases are currently the subjects of numerous studies aimed at developing H2-production catalysts based on cheap and abundant materials. In this context, the present report offers an electrochemist's view of the catalysis of proton reduction by simple binuclear iron(I) thiolate complexes. Although these complexes probably do not follow a biocatalytic pathway, we analyze and discuss the interplay between the reduction potential and basicity and how these antagonist properties impact the mechanisms of proton-coupled electron transfer to the metal centers. This question is central to any consideration of the activity at the molecular level of hydrogenases and related enzymes. In a second part, special attention is paid to iron thiolate complexes holding rigid and unsaturated bridging ligands. The complexes that enjoy mild reduction potentials and stabilized reduced forms are promising iron-based catalysts for the photodriven evolution of H2 in organic solvents and, more importantly, in water.

  18. A newly validated and characterized spectrophotometric method for determination of a three water pollutants metal ions

    NASA Astrophysics Data System (ADS)

    Mohamed, Marwa E.; Frag, Eman Y. Z.; Mohamed, Mona A.

    2018-01-01

    A simple, fast and accurate spectrophotometric method had been developed to determine lead (II), chromium (III) and barium (II) ions in pure forms and in spiked water samples using thoron (THO) as a reagent forming colored complexes. It was found that the formed complexes absorbed maximally at 539, 540 and 538 nm for Pb(II)-THO, Cr(III)-THO and Ba(II)-THO complexes, respectively. The optimum experimental conditions for these complexes had been studied carefully. Beer's law was obeyed in the range 1-35, 1-70, and 1-45 μg mL- 1 for Pb (II), Cr(III) and Ba(II) ions with THO reagent, respectively. Different parameters such as linearity, selectivity, recovery, limits of quantification and detection, precision and accuracy were also evaluated in order to validate the proposed method. The results showed that, THO was effective in simultaneous determination of Pb(II), Cr(III) and Ba(III) ions in pure forms and in spiked water samples. Also, the results of the proposed method were compared with that obtained from atomic absorption spectrometry. The isolated solid complexes had been characterized using elemental analysis, X-ray powder diffraction (XRD), IR, mass spectrometry and TD-DFT calculations. Their biological activities were investigated against different types of bacteria and fungi organisms.

  19. Iron in pregnancy: How do we secure an appropriate iron status in the mother and child?

    PubMed

    Milman, Nils

    2011-01-01

    Iron deficiency and iron deficiency anemia (IDA) during pregnancy are risk factors for preterm delivery, prematurity, and small for gestational age birth weight. Iron deficiency has a negative effect on intelligence and behavioral development in the infant. It is essential to prevent iron deficiency in the fetus by preventing iron deficiency in the pregnant woman. The requirements for absorbed iron increase during pregnancy from ∼1.0 mg/day in the first trimester to 7.5 mg/day in the third trimester. More than 90% of Scandinavian women of reproductive age have a dietary iron intake below the recommended 15 mg/day. Among nonpregnant women of reproductive age, ∼40% have plasma ferritin ≤30 μg/l, i.e. an unfavorable iron status with respect to pregnancy. An adequate iron status during pregnancy implies body iron reserves ≥500 mg at conception, but only 15-20% of women have iron reserves of such a magnitude. Iron supplements during pregnancy reduce the prevalence of IDA. In Europe, IDA can be prevented by a general low-dose iron prophylaxis of 30-40 mg ferrous iron taken between meals from early pregnancy to delivery. In affluent societies, individual iron prophylaxis tailored by the ferritin concentration should be preferred to general prophylaxis. Suggested guidelines are: ferritin >70 μg/l, no iron supplements; ferritin 31-70 μg/l, 30-40 mg ferrous iron per day, and ferritin ≤30 μg/l, 60-80 mg ferrous iron per day. In women with ferritin <15 μg/l, i.e. depleted iron reserves and possible IDA, therapeutic doses of 100 mg ferrous iron per day should be advised. Copyright © 2011 S. Karger AG, Basel.

  20. Clinical use of ultrasonography associated with color Doppler in the diagnosis and follow-up of acute pyelonephritis.

    PubMed

    Dell'Atti, Lucio; Borea, Pier Andrea; Ughi, Gianni; Russo, Gian Rosario

    2010-12-01

    The purpose of this study is to evaluate the current role of the Ultrasound associated with the color-Doppler in the diagnosis of acute pyelonephritis (APN) and to compare ultrasound images with CT images in order to reduce the amount radiation absorbe without significant loss of diagnostic efficacy, since this disease in most cases affects young adults. We studied 38 patients (aged 17-65 years) who presented from September 2007 to March 2010 to the emergency department with suspected diagnosis of APN. All patients underwent first to an ultrasound study, then to abdominal CT. Renal, perirenal and extrarenal tomographic findings usually associated with acute pyelonephritis were analyzed, in an attempt to identify what are the differences with respect to the images obtained with an ultrasound study. All patients then performed ultrasonography and/or abdominal CT evaluation one month later, 25 patients repeated both examinations, while the other 13 repeated only ultrasound. In 38 subjects with suspected APN, CT assessed the presence in 79% and in 21% the absence of the disease. Ultrasonography in 68% of cases diagnosed APN, by an increase in kidney size related to the presence of hypoechoic areas associated to edema, blurred margins and reduction of the color-Doppler vascularity. Ultrasound associated with the use of color-Doppler revealed a sensibility of 76% and specificity of 75%. Color and power-Doppler have better diagnostic accuracy than basic gray scale ultrasound, in the diagnosis of focal pyelonephritis. Therefore the combined use of ultrasound and color-Doppler can obtain useful information about the diagnosis and follow-up of the disease, with an improvement in terms of cost, without significantly altering the diagnostic efficacy and reducing the amount of radiation absorbed.

  1. Spectrophotometric and electrochemical study for metal ion binding of azocalix[4]arene bearing p-ethylester group

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyun

    2017-05-01

    The complexation behavior of diazophenylcalix[4]arene bearing para-ethylester group (p-EAC) for alkali, alkaline earth, various heavy and transition metal ions (Li+, Na+, K+, Rb+, Cs+, Mg2 +, Ca2 +, Sr2 +, Ba2 +, Cr3 +, Fe2 +, Co2 +, Ni2 +, Cu2 +, Zn2 +, Pb2 +) was investigated by spectrophotometric and electrochemical methods in CH3CN. p-EAC exhibits decreased absorbance at 353 nm in the presence of Cr3 +, Fe2 +, Pb2 +, and Cu2 +. The spectra of p-EAC showed bathochromic shift in absorption maximum on the addition of Cr3 +, Fe2 +, or Pb2 + with decreasing order of absorbance (Cr3 + > Fe2 + > Pb2 +), and on the other hand, hypsochromic shift on the addition of Cu2 +. This leads to the selective coloration from light green to orange and colorless for Cr3 + and Cu2 + that can be detected by the naked eye, respectively. In electrochemistry experiments, p-EAC also showed two different types of voltammetric changes toward Cr3 +, Fe2 +, or Pb2 +, and toward Cu2 +, whereas no significant changes occurred in the presence of the other metal ions. Nonlinear fitting curve procedure was used to determine a logarithmic value of 5.20, 4.92, 3.54 and 4.80 for the stability constants of the complex of p-EAC with Cr3 +, Fe2 +, Pb2 +, and Cu2 +, respectively.

  2. Wide band design on the scaled absorbing material filled with flaky CIPs

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Yuan, Liming; Gao, Wei; Wang, Xiaobing; Liang, Zichang; Liao, Yi

    2018-02-01

    The scaled target measurement is an important method to get the target characteristic. Radar absorbing materials are widely used in the low detectable target, considering the absorbing material frequency dispersion characteristics, it makes designing and manufacturing scaled radar absorbing materials on the scaled target very difficult. This paper proposed a wide band design method on the scaled absorbing material of the thin absorption coating with added carbonyl iron particles. According to the theoretical radar cross section (RCS) of the plate, the reflection loss determined by the permittivity and permeability was chosen as the main design factor. Then, the parameters of the scaled absorbing materials were designed using the effective medium theory, and the scaled absorbing material was constructed. Finally, the full-size coating plate and scaled coating plates (under three different scale factors) were simulated; the RCSs of the coating plates were numerically calculated and measured at 4 GHz and a scale factor of 2. The results showed that the compensated RCS of the scaled coating plate was close to that of the full-size coating plate, that is, the mean deviation was less than 0.5 dB, and the design method for the scaled material was very effective.

  3. Especially for Women: Could Gluten be Causing Your Symptoms?

    MedlinePlus

    ... loss during menstruation. Anemia is often an early symptom of celiac disease, resulting from the intestine’s inability to absorb iron ... Anxiety More common among women than men. Possible symptoms of celiac disease and non-celiac gluten sensitivity. Other Autoimmune Diseases ...

  4. The Effect of pH and Color Stability of Anthocyanin on Food Colorant

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Wulandari, L.; Wartono, M. W.; Munawaroh, H.; Ramelan, A. H.

    2017-04-01

    Anthocyanins are naturally occurring pigments of red and purple. Red anthocyanin pigments provide a strong and sharp and widely applied in various industries such as food coloring or drink. Anthocyanins isolated by maceration, extraction and thin layer chromatography (TLC). The extract has been obtained from the initial stages of maceration then separated into several fractions by chromatography to isolate fractions colored dark red. Identification of chemical compounds with TLC (Thin Layer Chromatography) is able to distinguish the fraction of anthocyanin produced. FTIR (Fourier Transform Infrared Spectroscopy) used to identification of the functional group of a compound. The UV-Vis absorption spectra have to produce maximum absorbance values that describe the intensity of anthocyanin spectra in different colors for different pH. Anthocyanins are more stable at low pH (acidic conditions) which gives a red pigment. Meanwhile, the higher the pH value of anthocyanin will provide color fading of the color blue. So as a food colorant, anthocyanin with a low pH or height pH has a significant effect on the food colorant.

  5. Effects of illumination and packaging on non-heme iron and color attributes of sliced ham.

    PubMed

    Li, H; Li, C B; Xu, X L; Zhou, G H

    2012-08-01

    This study was designed to investigate effects of illumination and packaging on color of cooked cured sliced ham during refrigeration, and the possibility of decomposition of nitrosylheme under light and oxygen exposure. Three illumination levels and three packaging films with different oxygen transmission rates (OTRs) were used in two separate experiments during 35 days storage, and pH value, a* value, nitrosylheme, residual nitrite and non-heme iron were evaluated. Packaging OTRs had significant effects (P<0.01) on a* value, but illumination level and packaging OTR did not affect (P>0.05) nitrosylheme concentration during storage. For both groups, storage time had a significant effect (P<0.01) on a* value and nitrosylheme. Negative relationships between nitrosylheme and nitrite in the illumination group, and between nitrosylheme and non-heme iron in the packaging group were observed. Therefore, illumination level and packaging OTR had limited effects on overall pigment stability, but more discoloration and loss of redness occurred on the surface of products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. CD1 Mouse Retina Is Shielded From Iron Overload Caused by a High Iron Diet

    PubMed Central

    Bhoiwala, Devang L.; Song, Ying; Cwanger, Alyssa; Clark, Esther; Zhao, Liang-liang; Wang, Chenguang; Li, Yafeng; Song, Delu; Dunaief, Joshua L.

    2015-01-01

    Purpose High RPE iron levels have been associated with age-related macular degeneration. Mutation of the ferroxidase ceruloplasmin leads to RPE iron accumulation and degeneration in patients with aceruloplasminemia; mice lacking ceruloplasmin and its homolog hephaestin have a similar RPE degeneration. To determine whether a high iron diet (HID) could cause RPE iron accumulation, possibly contributing to RPE oxidative stress in AMD, we tested the effect of dietary iron on mouse RPE iron. Methods Male CD1 strain mice were fed either a standard iron diet (SID) or the same diet with extra iron added (HID) for either 3 months or 10 months. Mice were analyzed with immunofluorescence and Perls' histochemical iron stain to assess iron levels. Levels of ferritin, transferrin receptor, and oxidative stress gene mRNAs were measured by quantitative PCR (qPCR) in neural retina (NR) and isolated RPE. Morphology was assessed in plastic sections. Results Ferritin immunoreactivity demonstrated a modest increase in the RPE in 10-month HID mice. Analysis by qPCR showed changes in mRNA levels of iron-responsive genes, indicating moderately increased iron in the RPE of 10-month HID mice. However, even by age 18 months, there was no Perls' signal in the retina or RPE and no retinal degeneration. Conclusions These findings indicate that iron absorbed from the diet can modestly increase the level of iron deposition in the wild-type mouse RPE without causing RPE or retinal degeneration. This suggests regulation of retinal iron uptake at the blood-retinal barriers. PMID:26275132

  7. Near-infrared-absorbing gold nanopopcorns with iron oxide cluster core for magnetically amplified photothermal and photodynamic cancer therapy.

    PubMed

    Bhana, Saheel; Lin, Gan; Wang, Lijia; Starring, Hunter; Mishra, Sanjay R; Liu, Gang; Huang, Xiaohua

    2015-06-03

    We present the synthesis and application of a new type of dual magnetic and plasmonic nanostructures for magnetic-field-guided drug delivery and combined photothermal and photodynamic cancer therapy. Near-infrared-absorbing gold nanopopcorns containing a self-assembled iron oxide cluster core were prepared via a seed-mediated growth method. The hybrid nanostructures are superparamagnetic and show great photothermal conversion efficiency (η=61%) under near-infrared irradiation. Compact and stable nanocomplexes for photothermal-photodynamic therapy were formed by coating the nanoparticles with near-infrared-absorbing photosensitizer silicon 2,3-naphthalocyannie dihydroxide and stabilization with poly(ethylene glycol) linked with 11-mercaptoundecanoic acid. The nanocomplex showed enhanced release and cellular uptake of the photosensitizer with the use of a gradient magnetic field. In vitro studies using two different cell lines showed that the dual mode photothermal and photodynamic therapy with the assistance of magnetic-field-guided drug delivery dramatically improved the therapeutic efficacy of cancer cells as compared to the combination treatment without using a magnetic field and the two treatments alone. The "three-in-one" nanocomplex has the potential to carry therapeutic agents deep into a tumor through magnetic manipulation and to completely eradicate tumors by subsequent photothermal and photodynamic therapies without systemic toxicity.

  8. Phosphinosilylenes as a novel ligand system for heterobimetallic complexes.

    PubMed

    Breit, Nora C; Eisenhut, Carsten; Inoue, Shigeyoshi

    2016-04-25

    A dihydrophosphinosilylene iron complex [LSi{Fe(CO)4}PH2] has been prepared and utilized in the synthesis of novel heterobimetallic complexes. The phosphine moiety in this phosphinosilylene complex allows coordination towards tungsten leading to the iron-tungsten heterobimetallic complex [LSi{Fe(CO)4}PH2{W(CO)5}]. In contrast, the reaction of [LSi{Fe(CO)4}PH2] with ethylenebis(triphenylphosphine)platinum(0) results in the formation of the iron-platinum heterobimetallic complex [LSi{Fe(CO)4}PH{PtH(PPh3)2}] via oxidative addition.

  9. Hydrosilylation of aldehydes and ketones catalyzed by hydrido iron complexes bearing imine ligands.

    PubMed

    Zuo, Zhenyu; Sun, Hongjian; Wang, Lin; Li, Xiaoyan

    2014-08-14

    Two new hydrido iron complexes (2 and 4) were synthesized by the reactions of (4-methoxyphenyl)phenylketimine ((4-MeOPh)PhC=NH) with Fe(PMe3)4 or FeMe2(PMe3)4. The molecular structures of complexes 2 and 4 were confirmed by X-ray single crystal diffraction. Using hydrido iron complexes (1-4) as catalysts, the hydrosilylations of aldehydes and ketones were investigated. The four complexes were effective catalysts for this reduction reaction. Complex 1 among them is the best catalyst.

  10. Assessment of Dextran Antigenicity of Intravenous Iron Preparations with Enzyme-Linked Immunosorbent Assay (ELISA)

    PubMed Central

    Neiser, Susann; Koskenkorva, Taija S.; Schwarz, Katrin; Wilhelm, Maria; Burckhardt, Susanna

    2016-01-01

    Intravenous iron preparations are typically classified as non-dextran-based or dextran/dextran-based complexes. The carbohydrate shell for each of these preparations is unique and is key in determining the various physicochemical properties, the metabolic pathway, and the immunogenicity of the iron-carbohydrate complex. As intravenous dextran can cause severe, antibody-mediated dextran-induced anaphylactic reactions (DIAR), the purpose of this study was to explore the potential of various intravenous iron preparations, non-dextran-based or dextran/dextran-based, to induce these reactions. An IgG-isotype mouse monoclonal anti-dextran antibody (5E7H3) and an enzyme-linked immunosorbent assay (ELISA) were developed to investigate the dextran antigenicity of low molecular weight iron dextran, ferumoxytol, iron isomaltoside 1000, ferric gluconate, iron sucrose and ferric carboxymaltose, as well as isomaltoside 1000, the isolated carbohydrate component of iron isomaltoside 1000. Low molecular weight iron dextran, as well as dextran-based ferumoxytol and iron isomaltoside 1000, reacted with 5E7H3, whereas ferric carboxymaltose, iron sucrose, sodium ferric gluconate, and isolated isomaltoside 1000 did not. Consistent results were obtained with reverse single radial immunodiffusion assay. The results strongly support the hypothesis that, while the carbohydrate alone (isomaltoside 1000) does not form immune complexes with anti-dextran antibodies, iron isomaltoside 1000 complex reacts with anti-dextran antibodies by forming multivalent immune complexes. Moreover, non-dextran based preparations, such as iron sucrose and ferric carboxymaltose, do not react with anti-dextran antibodies. This assay allows to assess the theoretical possibility of a substance to induce antibody-mediated DIARs. Nevertheless, as this is only one possible mechanism that may cause a hypersensitivity reaction, a broader set of assays will be required to get an understanding of the mechanisms that may lead to intravenous iron-induced hypersensitivity reactions. PMID:27455240

  11. Chemical abundances in the globular clusters M3, M13, and NGC 6752

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, R.A.; Dickens, R.J.

    The abundances of iron, carbon, nitrogen, and oxygen have been investigated in red giant stars in the globular clusters M3, M13, and NGC 6752. The results are based on application of spectrum synthesis and theoretical colors to observed spectra, DDO colors, and infrared CO measurements. Carbon is depleted by a factor of about 3 relative to other metals in most giants studied, with no evidence for the discontinuity along the giant branch at M/sub v/approx. =-0.7 found for more metal-poor clusters. This contrasts with the greater depletion of about a factor of 6 for the more metal-poor cluster stars, amore » difference which is expected if meridional mixing is responsible for the carbon depletion. The spectroscopic results for nitrogen are imprecise, but the colors suggest enhancements of a factor of 3. The iron abundances for M3 and M13 stars have been determined from published equivalent widths, yielding (Fe/H) close to -1.4 for both clusters. The uncertainties in M3 and M13 CO colors and (O I) equivalent widths make it impossible to derive accurate oxygen abundances, but the depletion of carbon is real and is not caused by an overabundance of oxygen.« less

  12. A new radiochromic dosimeter film

    NASA Astrophysics Data System (ADS)

    Sidney, L. N.; Lynch, D. C.; Willet, P. S.

    By employing acid-sensitive leuco dyes in a chlorine-containing polymer matrix, a new radiochromic dosimeter film has been developed for gamma, electron beam, and ultraviolet radiation. These dosimeter films undergo a color change from colorless to royal blue, red fuchsia, or black, depending on dye selection, and have been characterized using a visible spectrophotometer over an absorbed dose range of 1 to 100 kGy. The primary features of the film are improved color stability before and after irradiation, whether stored in the dark or under artificial lights, and improved moisture resistance. The effects of absorbed dose, dose rate, and storage conditions on dosimeter performance are discussed. The dosimeter material may be produced as a free film or coated onto a transparent substrate and optionally backed with adhesive. Potential applications for these materials include gamma sterilization indicator films for food and medical products, electron beam dosimeters, and in-line radiation monitors for electron beam and ultraviolet processing.

  13. Influence of dielectric barrier discharge treatment on mechanical and dyeing properties of wool

    NASA Astrophysics Data System (ADS)

    Rahul, NAVIK; Sameera, SHAFI; Md Miskatul, ALAM; Md Amjad, FAROOQ; Lina, LIN; Yingjie, CAI

    2018-06-01

    Physical and chemical properties of wool surface significantly affect the absorbency, rate of dye bath exhaustion and fixation of the industrial dyes. Hence, surface modification is a necessary operation prior to coloration process in wool wet processing industries. Plasma treatment is an effective alternative for physiochemical modification of wool surface. However, optimum processing parameters to get the expected modification are still under investigation, hence this technology is still under development in the wool wet processing industries. Therefore, in this paper, treatment parameters with the help of simple dielectric barrier discharge plasma reactor and air as a plasma gas, which could be a promising combination for treatment of wool substrate at industrial scale were schematically studied, and their influence on the water absorbency, mechanical, and dyeing properties of twill woven wool fabric samples are reported. It is expected that the results will assist to the wool coloration industries to improve the dyeing processes.

  14. High Brightness and Color Contrast Displays Constructed from Nematic Droplet/Polymer Films Incorporating Pleochroic Dyes

    NASA Astrophysics Data System (ADS)

    Drzaic, Paul S.; Wiley, Richard C.; McCoy, James A.

    1989-07-01

    A new class of high-brightness, high color contrast reflective-mode displays can be constructed from nematic droplet/polymer (NCAP) films. In these films, a high order parameter pleochroic dye can be dissolved in the nematic, leading to a film with both controllable absorbance and scattering. The physics behind the operation of these films is discussed. The intrinsic optical order parameter of a guest-host mixture is related to the performance of the NCAP film. It is shown that the scattering effects inherent in these films can be used to amplify the effects of the controllable dye absorbance, leading to excellent optical performance for a reflective-mode display. A typical construction of a display cell is given, and examples of applications are discussed. Touch switches may easily be fabricated within the display, so that an integrated control/display module can be constructed.

  15. Effect of Mineral Dust on Ocean Color Retrievals From Space: A Radiative Transfer Simulation Study

    NASA Astrophysics Data System (ADS)

    Ahmad, Z.; Franz, B. A.

    2016-02-01

    In this paper we examine the effect of mineral aerosols (dust) on the retrieval of ocean colors from space. Mineral aerosols are one of the major components of all aerosols found in the earth's atmosphere. These are mainly soil particles that originate from arid and semiarid regions of the world and are blown away by winds thousands of kilometers away from their source regions. The radii of these aerosols are between 0.1 and 1.0 μm and their resident time in the atmosphere is about 21 days. The primary focus of this paper is to estimate the remote sensing reflectance (Rrs) errors in the presence of absorbing aerosols over ocean. The present study is based on radiative transfer (RT) simulations, and it is particularly relevant to ocean color retrievals from sensors like MODIS, MERIS, VIIRS, and the future PACE/OCI. In the simulations, we have used mineralogy to determine the spectral dependence of aerosol refractive index, and modeled the aerosols to represent dust over Cape Verde (Sal Island). As a part of this study, we will present the results for retrieved aerosol optical thickness (τ), Angstrom exponent (α), and remote sensing reflectance (Rrs) and compare them with similar results for non-absorbing aerosols. In addition, we will show how aerosol layer height affects the ocean color retrievals.

  16. Wild bees preferentially visit Rudbeckia flower heads with exaggerated ultraviolet absorbing floral guides

    PubMed Central

    Horth, Lisa; Campbell, Laura; Bray, Rebecca

    2014-01-01

    ABSTRACT Here, we report on the results of an experimental study that assessed the visitation frequency of wild bees to conspecific flowers with different sized floral guides. UV absorbent floral guides are ubiquitous in Angiosperms, yet surprisingly little is known about conspecific variation in these guides and very few studies have evaluated pollinator response to UV guide manipulation. This is true despite our rich understanding about learning and color preferences in bees. Historical dogma indicates that flower color serves as an important long-range visual signal allowing pollinators to detect the flowers, while floral guides function as close-range signals that direct pollinators to a reward. We initiated the work presented here by first assessing the population level variation in UV absorbent floral guides for conspecific flowers. We assessed two species, Rudbeckia hirta and R. fulgida. We then used several petal cut-and-paste experiments to test whether UV floral guides can also function to attract visitors. We manipulated floral guide size and evaluated visitation frequency. In all experiments, pollinator visitation rates were clearly associated with floral guide size. Diminished floral guides recruited relatively few insect visitors. Exaggerated floral guides recruited more visitors than smaller or average sized guides. Thus, UV floral guides play an important role in pollinator recruitment and in determining the relative attractiveness of conspecific flower heads. Consideration of floral guides is therefore important when evaluating the overall conspicuousness of flower heads relative to background coloration. This work raises the issue of whether floral guides serve as honest indicators of reward, since guide size varies in nature for conspecific flowers at the same developmental stage and since preferences for larger guides were found. To our knowledge, these are the first cut-and-paste experiments conducted to examine whether UV absorbent floral guides affect visitation rates and pollinator preference. PMID:24585774

  17. Wild bees preferentially visit Rudbeckia flower heads with exaggerated ultraviolet absorbing floral guides.

    PubMed

    Horth, Lisa; Campbell, Laura; Bray, Rebecca

    2014-03-15

    Here, we report on the results of an experimental study that assessed the visitation frequency of wild bees to conspecific flowers with different sized floral guides. UV absorbent floral guides are ubiquitous in Angiosperms, yet surprisingly little is known about conspecific variation in these guides and very few studies have evaluated pollinator response to UV guide manipulation. This is true despite our rich understanding about learning and color preferences in bees. Historical dogma indicates that flower color serves as an important long-range visual signal allowing pollinators to detect the flowers, while floral guides function as close-range signals that direct pollinators to a reward. We initiated the work presented here by first assessing the population level variation in UV absorbent floral guides for conspecific flowers. We assessed two species, Rudbeckia hirta and R. fulgida. We then used several petal cut-and-paste experiments to test whether UV floral guides can also function to attract visitors. We manipulated floral guide size and evaluated visitation frequency. In all experiments, pollinator visitation rates were clearly associated with floral guide size. Diminished floral guides recruited relatively few insect visitors. Exaggerated floral guides recruited more visitors than smaller or average sized guides. Thus, UV floral guides play an important role in pollinator recruitment and in determining the relative attractiveness of conspecific flower heads. Consideration of floral guides is therefore important when evaluating the overall conspicuousness of flower heads relative to background coloration. This work raises the issue of whether floral guides serve as honest indicators of reward, since guide size varies in nature for conspecific flowers at the same developmental stage and since preferences for larger guides were found. To our knowledge, these are the first cut-and-paste experiments conducted to examine whether UV absorbent floral guides affect visitation rates and pollinator preference.

  18. Site-selective detection of vibrational modes of an iron atom in a trinuclear complex

    NASA Astrophysics Data System (ADS)

    Faus, Isabelle; Rackwitz, Sergej; Wolny, Juliusz A.; Banerjee, Atanu; Kelm, Harald; Krüger, Hans-Jörg; Schlage, Kai; Wille, Hans-Christian; Schünemann, Volker

    2016-12-01

    Nuclear inelastic scattering (NIS) experiments on the trinuclear complex [57Fe{L-N4(CH2Fc)2} (CH3CN)2](ClO4)2 have been performed. The octahedral iron ion in the complex was labelled with 57Fe and thereby exclusively the vibrational modes of this iron ion have been detected with NIS. The analysis of nuclear forward scattering (NFS) data yields a ferrous low-spin state for the 57Fe labelled iron ion. The simulation of the partial density of states (pDOS) for the octahedral low-spin iron(II) ion of the complex by density functional theory (DFT) calculations is in excellent agreement with the experimental pDOS of the complex determined from the NIS data obtained at 80 K. Thereby it was possible to assign almost each of the experimentally observed NIS bands to the corresponding molecular vibrational modes.

  19. New insights into the role of Mn and Fe in coloring origin of blue decorations of blue-and-white porcelains by XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Luo, Wugan; Chen, Dongliang; Xu, Wei; Ming, Chaofang; Wang, Changsui; Wang, Lihua

    2013-04-01

    Blue and white porcelain is one of the most valuable ancient ceramics varieties in ancient China. It is well known for its beautiful blue decorations. However, the origin of its blue color has not been very clear till now. In this research, two blue and white porcelains from Jingdezhen, Jiangxi province were selected and Mn and Fe K-edge XANES spectra were recorded from blue decorations with or without transparent glaze. Results showed that Mn K-edge XANES features were almost identical between different samples while that of iron changed. The above findings indicated the positive role of iron in the variation of blue decorations. As for manganese, although more system researches were need, its negative role on the variations of the tone of blue decorations was obtained. On the other hand, the paper also revealed the XAFS results will be affect by the glaze layer above the pigment. These findings provided us more information to understand the coloring origin of blue decorations of blue-and-white porcelain by means of XANES spectroscopy.

  20. Use of imaging in the 0.46-2.36 [micrometers] spectral region for alteration mapping in the Cuprite mining district, Nevada

    USGS Publications Warehouse

    Abrams, Michael J.; Ashley, R.P.; Rowan, L.C.; Goetz, A.F.H.; Kahle, A.B.

    1977-01-01

    Color composites of Landsat MSS ratio images that display variations in the intensity of ferric-iron absorption bands are highly effective for mapping limonitic altered rocks, but ineffective for mapping nonlimonitic altered rocks. Analysis of 0.45-2.5 ?m field and laboratory spectra shows that iron-deficient opalites in the Cuprite mining district, Nevada, have an intense OH-absorption band near 2.2 ?m owing to their clay mineral and alunite contents and that this spectral feature is absent or weak in adjacent unaltered tuff and basalt. To evaluate the usefulness of this spectral feature for discriminating between altered and unaltered rocks, we generated color-ratio composite images from multispectral (0.46-2.36 ?m) aircraft data. The altered rocks in the district can be discriminated from unaltered rocks with few ambiguities; in addition, some effects of mineralogical zoning can be discriminated within the altered area. Only variations in amounts of limonite can be discerned in shorter wavelength aircraft data, Landsat MSS bands, and color aerial photographs.

Top