Science.gov

Sample records for absorbing materials rams

  1. Knitted radar absorbing materials (RAM) based on nickel-cobalt magnetic materials

    NASA Astrophysics Data System (ADS)

    Teber, Ahmet; Unver, Ibrahim; Kavas, Huseyin; Aktas, Bekir; Bansal, Rajeev

    2016-05-01

    There has been a long-standing interest in the development of flexible, lightweight, thin, and reconfigurable radar absorbing materials (RAM) for military applications such as camouflaging ground-based hardware against airborne radar observation. The use of polymeric Polyacrylonitrile (PAN) fabrics as a host matrix for magnetic metal nano-particles (either at the yarn-stage or after weaving the fabric) for shielding and absorbing applications has been described in the literature. In our experimental investigation, the relative concentrations of Nickel and Cobalt as well as the coating time are varied with a view to optimizing the microwave absorption characteristics of the resulting PAN-based composite material in the radar-frequency bands (X, Ku, and K). It is found that the PAN samples with the shortest coating time have the best return losses (under -20 dB return loss over a moderate bandwidth).

  2. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  3. Solar radiation absorbing material

    DOEpatents

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  4. Conducting-polymer-based radar-absorbing materials

    NASA Astrophysics Data System (ADS)

    Truong, Vo-Van; Turner, Ben D.; Muscat, Richard F.; Russo, M. S.

    1997-11-01

    The controllability of conductivity and the ease of manufacturing/coating of conducting polymers enable tailor- made dielectric loss components for radar absorbing materials (RAM). Different polypyrrole (PPy) based RAM, e.g. paint/rubber containing PPy powder and PPy coated structural phenolic foams with a gradient of impedance, have been examined. Reflection loss strongly depends on thickness and complex permittivity of the material. For a single layer material, the optimum values of the real part, (epsilon) ', and imaginary part, (epsilon) ", of the complex permittivity required to achieve a minimum reflectivity at a given sample thickness are found by theoretical calculations. The conductivity of the PPy powder is controlled to obtain RAM with lowest reflectivity according to the calculated optimum values of (epsilon) ' and (epsilon) ". A paint panel containing 2 wt% of the PPy powder with a thickness of 2.5 mm exhibits a reflectivity less than $minus 10 dB over 12 to 18 GHz. Blending and milling in the manufacturing process can destroy the original fibrous shape of PPy aggregates leading to low absorbing performances. PPy can be coated on rigid or flexible open cell foams to provide a lightweight broadband RAM. In particular, a coating technique on phenolic foams (12 - 15 mm thick) with a pore size of micrometer order has been developed to generate a gradient of conductivity across the foam thickness. The PPy coated foams are broadband RAM.

  5. Porcelain enamel neutron absorbing material

    SciTech Connect

    Iverson, Daniel C.

    1990-01-01

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  6. Porcelain enamel neutron absorbing material

    SciTech Connect

    Iverson, Daniel C.

    1990-02-06

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  7. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, D.C.

    1987-11-20

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compound of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved. 2 figs.

  8. Structure property relations and finite element analysis of ram horns: A pathway to energy absorbent bio-inspired designs

    NASA Astrophysics Data System (ADS)

    Trim, Michael Wesley

    2011-12-01

    A recently emerging engineering design approach entails studying the brilliant design solutions found in nature with an aim to develop design strategies that mimic the remarkable efficiency found in biological systems. This novel engineering approach is referred to as bio-inspired design. In this context, the present study quantifies the structure-property relations in bighorn sheep (Ovis canadensis) horn keratin, qualitatively characterizes the effects of a tapered spiral geometry (the same form as in a ram's horn) on pressure wave and impulse mitigation, describes the stress attenuation capabilities and features of a ram's head, and compares the structures and mechanical properties of some energy absorbent natural materials. The results and ideas presented herein can be used in the development of lightweight, energy absorbent, bio-inspired material designs. Among the most notable conclusions garnered from this research include: (1) Horn keratin behaves in an anisotropic manner similar to a long fiber composite. (2) Moisture content dominates the material behavior of horn keratin more than anisotropy, age, and stress-state. This makes moisture content the most influential parameter on the mechanical behavior of horn keratin. (3) Tapered geometries mitigate the impulse generated by a stress wave due to the convergent boundary and a continually decreasing cross sectional area such that greater uniaxial stresses and subsequent axial deformation arises. Furthermore, the tapered geometry introduces small shear stresses that further decrease the impulse. (4) Spiral geometries attenuate the impulse generated by a stress wave by the introduction of shear stresses along the length of the spiral. These shear stresses introduce transverse displacements that function to lessen the impulse. (5) When both a taper and spiral geometry are used in a design, their synergistic effects multiplicatively reduce the impulse (6) Tough natural materials have a high porosity, which makes

  9. Advanced Reflector and Absorber Materials (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities in the area of advanced reflector and absorber materials: evaluating performance, determining degradation rates and lifetime, and developing new coatings.

  10. Damage tolerant light absorbing material

    DOEpatents

    Lauf, Robert J.; Hamby, Jr., Clyde; Akerman, M. Alfred; Seals, Roland D.

    1993-01-01

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000.degree. C. to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm.sup.3.

  11. Damage tolerant light absorbing material

    DOEpatents

    Lauf, R.J.; Hamby, C. Jr.; Akerman, M.A.; Seals, R.D.

    1993-09-07

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, is prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000 C to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm[sup 3]. 9 figures.

  12. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  13. Radar Absorbing Materials for Cube Stealth Satellite

    NASA Astrophysics Data System (ADS)

    Micheli, D.; Pastore, R.; Vricella, A.; Marchetti, M.

    A Cube Stealth Satellite is proposed for potential applications in defense system. Particularly, the faces of the satellite exposed to the Earth are made of nanostructured materials able to absorb radar surveillance electromagnetic waves, conferring stealth capability to the cube satellite. Microwave absorbing and shielding material tiles are proposed using composite materials consisting in epoxy-resin and carbon nanotubes filler. The electric permittivity of the composite nanostructured materials is measured and discussed. Such data are used by the modeling algorithm to design the microwave absorbing and the shielding faces of the cube satellite. The electromagnetic modeling takes into account for several incidence angles (0-80°), extended frequency band (2-18 GHz), and for the minimization of the electromagnetic reflection coefficient. The evolutionary algorithm used for microwave layered microwave absorber modeling is the recently developed Winning Particle Optimization. The mathematical model of the absorbing structure is finally experimentally validated by comparing the electromagnetic simulation to the measurement of the manufactured radar absorber tile. Nanostructured composite materials manufacturing process and electromagnetic reflection measurements methods are described. Finally, a finite element method analysis of the electromagnetic scattering by cube stealth satellite is performed.

  14. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Milbourne, M.

    2005-01-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. The objective of this task is to quantify lifetimes through measurement of the optical and mechanical stability of candidate polymeric glazing and absorber materials. Polycarbonate sheet glazings, as proposed by two industry partners, have been tested for resistance to UV radiation with three complementary methods. Incorporation of a specific 2-mil thick UV-absorbing screening layer results in glazing lifetimes of at least 15 years; improved screens promise even longer lifetimes. Proposed absorber materials were tested for creep and embrittlement under high temperature, and appear adequate for planned ICS absorbers.

  15. Solar absorber material reflectivity measurements at temperature

    SciTech Connect

    Bonometti, J.A.; Hawk, C.W.

    1999-07-01

    Assessment of absorber shell material properties at high operating temperatures is essential to the full understanding of the solar energy absorption process in a solar thermal rocket. A review of these properties, their application and a new experimental methodology to measure them at high temperatures is presented. The direct application for the research is absorber cavity development for a Solar Thermal Upper Stage (STUS). High temperature measurements, greater than 1,000 Kelvin, are difficult to obtain for incident radiation upon a solid surface that forms an absorber cavity in a solar thermal engine. The basic material properties determine the amount of solar energy that is absorbed, transmitted or reflected and are dependent upon the material's temperature. This investigation developed a new approach to evaluate the material properties (i.e., reflectivity, absorptive) of the absorber wall and experimentally determined them for rhenium and niobium sample coupons. The secular reflectivity was measured both at room temperature and at temperatures near 1,000 Kelvin over a range of angles from 0 to 90 degrees. The same experimental measurements were used to calculate the total reflectivity of the sample by integrating the recorded intensities over a hemisphere. The test methodology used the incident solar energy as the heating source while directly measuring the reflected light (an integrated value over all visible wavelengths). Temperature dependence on total reflectivity was found to follow an inverse power function of the material's temperature.

  16. Design and Manufacture of Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2016-07-12

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  17. Design and Manufacture of Energy Absorbing Materials

    SciTech Connect

    Duoss, Eric

    2014-05-28

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  18. Absorber Materials at Room and Cryogenic Temperatures

    SciTech Connect

    F. Marhauser, T.S. Elliott, A.T. Wu, E.P. Chojnacki, E. Savrun

    2011-09-01

    We recently reported on investigations of RF absorber materials at cryogenic temperatures conducted at Jefferson Laboratory (JLab). The work was initiated to find a replacement material for the 2 Kelvin low power waveguide Higher Order Mode (HOM) absorbers employed within the original cavity cryomodules of the Continuous Electron Beam Accelerator Facility (CEBAF). This effort eventually led to suitable candidates as reported in this paper. Furthermore, though constrained by small funds for labor and resources, we have analyzed a variety of lossy ceramic materials, several of which could be usable as HOM absorbers for both normal conducting and superconducting RF structures, e.g. as loads in cavity waveguides and beam tubes either at room or cryogenic temperatures and, depending on cooling measures, low to high operational power levels.

  19. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Lindquist, C.; Milbourne, M.

    2005-11-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. We have begun evaluation of several new UV-screened polycarbonate sheet glazing constructions. This has involved interactions with several major polymer industry companies to obtain improved candidate samples. Proposed absorber materials were tested for UV resistance, and appear adequate for unglazed ICS absorbers.

  20. Tech Transfer Webinar: Energy Absorbing Materials

    SciTech Connect

    Duoss, Eric

    2014-06-17

    A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  1. Tech Transfer Webinar: Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2016-07-12

    A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  2. Investigations on Absorber Materials at Cryogenic Temperatures

    SciTech Connect

    Marhauser, Frank; Elliott, Thomas; Rimmer, Robert

    2009-05-01

    In the framework of the 12 GeV upgrade project for the Continuous Electron Beam Accelerator Facility (CEBAF) improvements are being made to refurbish cryomodules housing Thomas Jefferson National Accelerator Facility's (JLab) original 5-cell cavities. Recently we have started to look into a possible simplification of the existing Higher Order Mode (HOM) absorber design combined with the aim to find alternative material candidates. The absorbers are implemented in two HOM-waveguides immersed in the helium bath and operate at 2 K temperature. We have built a cryogenic setup to perform measurements on sample load materials to investigate their lossy characteristics and variations from room temperature down to 2 K. Initial results are presented in this paper.

  3. Method of designing layered sound absorbing materials

    NASA Astrophysics Data System (ADS)

    Atalla, Youssef; Panneton, Raymond

    2002-11-01

    A widely used model for describing sound propagation in porous materials is the Johnson-Champoux-Allard model. This rigid frame model is based on five geometrical properties of the porous medium: resistivity, porosity, tortuosity, and viscous and thermal characteristic lengths. Using this model and with the knowledge of such properties for different absorbing materials, the design of a multiple layered system can be optimized efficiently and rapidly. The overall impedance of the layered systems can be calculated by the repeated application of single layer impedance equation. The knowledge of the properties of the materials involved in the layered system and their physical meaning, allows to perform by computer a systematic evaluation of potential layer combinations rather than do it experimentally which is time consuming and always not efficient. The final design of layered materials can then be confirmed by suitable measurements. A method of designing the overall acoustic absorption of multiple layered porous materials is presented. Some aspects based on the material properties, for designing a flat layered absorbing system are considered. Good agreement between measured and computed sound absorption coefficients has been obtained for the studied configurations. [Work supported by N.S.E.R.C. Canada, F.C.A.R. Quebec, and Bombardier Aerospace.

  4. THERMAL UPGRADING OF 9977 RADIOACTIVE MATERIAL (RAM) TYPE B PACKAGE

    SciTech Connect

    Gupta, N.; Abramczyk, G.

    2012-03-26

    The 9977 package is a radioactive material package that was originally certified to ship Heat Sources and RTG contents up to 19 watts and it is now being reviewed to significantly expand its contents in support of additional DOE missions. Thermal upgrading will be accomplished by employing stacked 3013 containers, a 3013 aluminum spacer and an external aluminum sleeve for enhanced heat transfer. The 7th Addendum to the original 9977 package Safety Basis Report describing these modifications is under review for the DOE certification. The analyses described in this paper show that this well-designed and conservatively analyzed package can be upgraded to carry contents with decay heat up to 38 watts with some simple design modifications. The Model 9977 package has been designed as a replacement for the Department of Transportation (DOT) Fissile Specification 6M package. The 9977 package is a very versatile Type B package which is certified to transport and store a wide spectrum of radioactive materials. The package was analyzed quite conservatively to increase its usefulness and store different payload configurations. Its versatility is evident from several daughter packages such as the 9978 and H1700, and several addendums where the payloads have been modified to suit the Shipper's needs without additional testing.

  5. DEVELOPMENT OF BURN TEST SPECIFICATIONS FOR FIRE PROTECTION MATERIALS IN RAM PACKAGES

    SciTech Connect

    Gupta, N.

    2010-03-03

    The regulations in 10 CFR 71 require that the radioactive material (RAM) packages must be able to withstand specific fire conditions given in 10 CFR 71.73 during Hypothetical Accident Conditions (HAC). This requirement is normally satisfied by extensive testing of full scale test specimens under required test conditions. Since fire test planning and execution is expensive and only provides a single snapshot into a package performance, every effort is made to minimize testing and supplement tests with results from computational thermal models. However, the accuracy of such thermal models depends heavily on the thermal properties of the fire insulating materials that are rarely available at the regulatory fire temperatures. To the best of authors knowledge no test standards exist that could be used to test the insulating materials and derive their thermal properties for the RAM package design. This paper presents a review of the existing industry fire testing standards and proposes testing methods that could serve as a standardized specification for testing fire insulating materials for use in RAM packages.

  6. The Workshop on Microwave-Absorbing Materials for Accelerators

    SciTech Connect

    Isidoro Campisi

    1993-05-01

    A workshop on the physics and applications of microwave-absorbing materials in accelerators and related systems was held at CEBAF February 22-24, 1993. The gathering brought together about 150 scientists and representatives of industries from all over the world. The main topics of discussion were the properties of ''absorbing'' materials and how the stringent conditions in an accelerator environment restrict the choice of usable material.

  7. Practical Thermal Evaluation Methods For HAC Fire Analysis In Type B Radiaoactive Material (RAM) Packages

    SciTech Connect

    Abramczyk, Glenn; Hensel, Stephen J; Gupta, Narendra K.

    2013-03-28

    Title 10 of the United States Code of Federal Regulations Part 71 for the Nuclear Regulatory Commission (10 CFR Part 71.73) requires that Type B radioactive material (RAM) packages satisfy certain Hypothetical Accident Conditions (HAC) thermal design requirements to ensure package safety during accidental fire conditions. Compliance with thermal design requirements can be met by prototype tests, analyses only or a combination of tests and analyses. Normally, it is impractical to meet all the HAC using tests only and the analytical methods are too complex due to the multi-physics non-linear nature of the fire event. Therefore, a combination of tests and thermal analyses methods using commercial heat transfer software are used to meet the necessary design requirements. The authors, along with his other colleagues at Savannah River National Laboratory in Aiken, SC, USA, have successfully used this 'tests and analyses' approach in the design and certification of several United States' DOE/NNSA certified packages, e.g. 9975, 9977, 9978, 9979, H1700, and Bulk Tritium Shipping Package (BTSP). This paper will describe these methods and it is hoped that the RAM Type B package designers and analysts can use them for their applications.

  8. Schlieren photography to study sound interaction with highly absorbing materials.

    PubMed

    Declercq, Nico F; Degrieck, Joris; Leroy, Oswald

    2005-06-01

    Strong absorption of sound is often caused by the conversion of sound energy into heat. When this happens, it is not possible to study the interaction of sound with the absorbing material by means of reflected sound characteristics, because there is no reflected sound. Detecting for example the distance that sound travels in a strongly absorbing material, can be done by heat detection systems. However, the presence of temperature detectors in such materials interferes with the sound field and is therefore not really suitable. Infrared measurements are a possible option. Another option is the use of Schlieren photography for simultaneous visualization of sound and heat. This technique is briefly outlined with a 3 MHz sound beam incident on a highly absorbing sponge. PMID:15950023

  9. Absorbing Boundary Conditions For Optical Pulses In Dispersive, Nonlinear Materials

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Kwak, Dochan (Technical Monitor)

    1995-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that provides absorbing boundary conditions for optical pulses in dispersive, nonlinear materials. A new numerical absorber at the boundaries has been developed that is responsive to the spectral content of the pulse. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of "light bullet" like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. Comparisons will be shown of calculations that use the standard boundary conditions and the new ones.

  10. Sound-absorbing slabs and structures based on granular materials (bound and unbound). [energy absorbing efficiency of porous material

    NASA Technical Reports Server (NTRS)

    Petre-Lazar, S.; Popeea, G.

    1974-01-01

    Sound absorbing slabs and structures made up of bound or unbound granular materials are considered and how to manufacture these elements at the building site. The raw material is a single grain powder (sand, expanded blast furnace slag, etc.) that imparts to the end products an apparent porosity of 25-45% and an energy dissipation within the structure leading to absorption coefficients that can be compared with those of mineral wool and urethane.

  11. Evaluation of Metal Absorber Materials for Beyond Extreme Ultraviolet Lithography.

    PubMed

    Hong, Seongchul; Kim, Jung Sik; Lee, Jae Uk; Lee, Seung Min; Kim, Jung Hwan; Ahn, Jinho

    2015-11-01

    In addition to the development of extreme ultraviolet lithography (EUVL), studies on beyond extreme ultraviolet lithography (BEUVL), which uses radiation with a wavelength of 6.7 nm, are in progress for their application in high-volume manufacturing. The BEUV wavelength, which is much shorter than the EUV wavelength, improves the resolution of patterned features. However, suitable materials for the mask stack of BEUVL are still under development. In this study, the applicability of metallic materials, such as Ni, Co, Ir, W, and Ta, as the absorber in a binary-intensity BEUVL mask was evaluated. The mask-imaging properties were simulated by adopting a thickness that ensured a reflectivity of <1% for each material. Furthermore, we used a multilayered La/B mirror--which exhibited a high reflectivity at a wavelength of 6.7 nm--because BEUV light is absorbed by most materials, and therefore uses reflective optics as desired. The numerical aperture (NA), angle of incidence, and demagnification factor were 0.5 and 0.6, 6 degrees, and 8x, respectively. We confirmed that a line-and-space pattern with a half-pitch of 11 nm can be patterned with metallic absorbers by using a high NA. PMID:26726569

  12. Evaluation of Metal Absorber Materials for Beyond Extreme Ultraviolet Lithography.

    PubMed

    Hong, Seongchul; Kim, Jung Sik; Lee, Jae Uk; Lee, Seung Min; Kim, Jung Hwan; Ahn, Jinho

    2015-11-01

    In addition to the development of extreme ultraviolet lithography (EUVL), studies on beyond extreme ultraviolet lithography (BEUVL), which uses radiation with a wavelength of 6.7 nm, are in progress for their application in high-volume manufacturing. The BEUV wavelength, which is much shorter than the EUV wavelength, improves the resolution of patterned features. However, suitable materials for the mask stack of BEUVL are still under development. In this study, the applicability of metallic materials, such as Ni, Co, Ir, W, and Ta, as the absorber in a binary-intensity BEUVL mask was evaluated. The mask-imaging properties were simulated by adopting a thickness that ensured a reflectivity of <1% for each material. Furthermore, we used a multilayered La/B mirror--which exhibited a high reflectivity at a wavelength of 6.7 nm--because BEUV light is absorbed by most materials, and therefore uses reflective optics as desired. The numerical aperture (NA), angle of incidence, and demagnification factor were 0.5 and 0.6, 6 degrees, and 8x, respectively. We confirmed that a line-and-space pattern with a half-pitch of 11 nm can be patterned with metallic absorbers by using a high NA.

  13. Application of Absorbable Hemostatic Materials Observed in Thyroid Operation

    NASA Astrophysics Data System (ADS)

    Li, Yan-Ming; Liang, Zhen-Zhen; Song, Yan

    2016-05-01

    To observe the application effects of the absorbable hemostatic materials in thyroid operation. Methods: From May 2014 to January 2015, 100 patients with thyroid surgery in our university affiliated hospital were selected as the research object. Randomly divided into experimental group and control group, 50 cases in each group. Application of absorbable hemostatic hemostatic materials in the experimental group during the operation, the control group using the traditional mechanical methods of hemostasis hemostasis to observe the operation time, bleeding volume, postoperative drainage volume, complications and hospital stay of the two groups. Results: The operation time, bleeding volume, postoperative drainage and hospital stay in the experimental group were significantly lower in the study group than in the control group, and the difference between the two groups was statistically significant (P< 0.05); The satisfaction of patients in the experimental group was significantly higher than that in the control group, the difference was statistically significant in the two groups (P < 0.05); There was no significant difference in the incidence of wound bleeding complications between the study group and the control group (P > 0.05). Conclusion: Absorbable hemostatic materials can effectively shorten the operation time, reduce intraoperative blood loss and postoperative drainage, reduce the length of hospital stay and improve the success rate of surgery and patient satisfaction, which is worthy to be popularized in clinical thyroid surgery.

  14. An `H'-shape three-dimensional meta-material used in honeycomb structure absorbing material

    NASA Astrophysics Data System (ADS)

    Huang, Daqing; Kang, Feiyu; Zhou, Zhuohui; Cheng, Hongfei; Ding, Heyan

    2015-03-01

    An `H'-shape three-dimensional meta-material structure which loaded on the sidewall of honeycomb structure absorbing material was designed and fabricated in this project. The simulation results demonstrated a super-wide absorption band below -10 dB between 2.3 and 18 GHz, which expanded 7 GHz compared with the absorber without meta-material. The relative impedance curve was analyzed, which showed that the meta-material has little impact on the impedance-matching characteristics of the honeycomb structure absorbing material. We further studied the distribution of both electronic field energy and magnetic field energy. The former one indicated that the low-frequency absorption peaks could easily be moved by adjusting the parameters of the parallel-plate capacitors which generate electric resonance, and the latter one illustrated that the three-dimensional meta-material could generate magnetic resonance between units which would not exist in two-dimensional meta-material. Then we verified the simulation results through experiment which display a similar absorbing curve. The differences between simulation results and experiment results were caused by the addition substrate of the meta-material, which could not be eliminated in this experiment. However, it still implied that we can obtain a meta-material absorber that has a super-wide absorbing band if we can put the meta-material on the sidewall of the honeycomb without attachments.

  15. [Shaping of electron radiation fields using homogeneous absorbent materials].

    PubMed

    Eichhorn, M; Reis, A; Kraft, M

    1990-01-01

    Proof of shielding and forming by absorbers was done in water phantom dosimetrically. Alterations of isodose course were measured in dependence of primary energy, as well as of thickness and density of the absorber materials. Piacryl or aluminium are not suitable for forming of irregular electron fields. They only effect a reduction of therapeutic range. For primary energies of 10.0 less than or equal to MeV less than or equal to E0- less than or equal to 20.0 MeV lead rubber and wood metal are to recommended in a thickness of less than or equal to 10 mm or less than or equal to 8 mm respectively.

  16. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhong, Qiwen

    The conservation and transformation of energy is essential to the survival of mankind, and thus concerns every modern society. Solar energy, as an everlasting source of energy, holds one of the key solutions to some of the most urgent problems the world now faces, such as global warming and the oil crisis. Advances in technologies utilizing clean, abundant solar energy, could be the steering wheel of our societies. Solar cells, one of the major advances in converting solar energy into electricity, are now capturing people's interest all over the globe. While solar cells have been commercially available for many years, the manufacturing of solar cells is quite expensive, limiting their broad based implementation. The cost of solar cell based electricity is 15-50 cents per kilowatt hour (¢/kwh), depending on the type of solar cell, compared to 0.7 ¢/kwh for fossil fuel based electricity. Clearly, decreasing the cost of electricity from solar cells is critical for their wide spread deployment. This will require a decrease in the cost of light absorbing materials and material processing used in fabricating the cells. Organic photovoltaics (OPVs) utilize organic materials such as polymers and small molecules. These devices have the advantage of being flexible and lower cost than conventional solar cells built from inorganic semiconductors (e.g. silicon). The low cost of OPVs is tied to lower materials and fabrication costs of organic cells. However, the current power conversion efficiencies of OPVs are still below 15%, while convention crystalline Si cells have efficiencies of 20-25%. A key limitation in OPVs today is their inability to utilize the near infrared (NIR) portion of the solar spectrum. This part of the spectrum comprises nearly half of the energy in sunlight that could be used to make electricity. The first and foremost step in conversion solar energy conversion is the absorption of light, which nature has provided us optimal model of, which is

  17. Material Model Evaluation of a Composite Honeycomb Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.

  18. Boron-copper neutron absorbing material and method of preparation

    DOEpatents

    Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry

    1991-01-01

    A composite, copper clad neutron absorbing material is comprised of copper powder and boron powder enriched with boron 10. The boron 10 content can reach over 30 percent by volume, permitting a very high level of neutron absorption. The copper clad product is also capable of being reduced to a thickness of 0.05 to 0.06 inches and curved to a radius of 2 to 3 inches, and can resist temperatures of 900.degree. C. A method of preparing the material includes the steps of compacting a boron-copper powder mixture and placing it in a copper cladding, restraining the clad assembly in a steel frame while it is hot rolled at 900.degree. C. with cross rolling, and removing the steel frame and further rolling the clad assembly at 650.degree. C. An additional sheet of copper can be soldered onto the clad assembly so that the finished sheet can be cold formed into curved shapes.

  19. Alternative materials to cadmium for neutron absorbers in safeguards applications

    SciTech Connect

    Freeman, Corey R; Geist, William H; West, James D

    2009-01-01

    Cadmium is increasingly difficult to use in safeguards applications because of rising cost and increased safety regulations. This work examines the properties of two materials produced by Ceradyne, inc. that present alternatives to cadmium for neutron shielding. The first is an aluminum metal doped with boron and the second is a boron carbide powder, compressed into a ceramic. Both are enriched in the {sup 10}B isotope. Two sheets of boron doped aluminum (1.1 mm and 5.2mm thick) and one sheet of boron carbide (8.5mm thick) were provided by Ceradyne for testing. An experiment was designed to test the neutron absorption capabilities of these three sheets against two different thicknesses of cadmium (0.6mm and 1.6mm thick). The thinner piece of aluminum boron alloy (1.1mm) performed as well as the cadmium pieces at absorbing neutrons. The thicker aluminum-boron plate provided more shielding than the cadmium sheets and the boron carbide performed best by a relatively large margin. Monte Carlo N-Particle eXtended (MCNPX) transport code modeling of the experiment was performed to provide validaLed computational tools for predicting the behavior of systems in which these materials may be incorporated as alternatives to cadmium. MCNPX calculations predict that approximately 0.17mm of the boron carbide is equivalent to 0.6mm of cadmium. There are drawbacks to these materials that need to be noted when considering using them as replacements for cadmium. Notably, they may need to be thicker than cadmium, and are not malleable, requiring machining to fit any curved forms.

  20. Thin films of copper antimony sulfide: A photovoltaic absorber material

    SciTech Connect

    Ornelas-Acosta, R.E.; Shaji, S.; Avellaneda, D.; Castillo, G.A.; Das Roy, T.K.; Krishnan, B.

    2015-01-15

    Highlights: • CuSbS{sub 2} thin films were prepared by heating Sb{sub 2}S{sub 3}/Cu layers. • Analyzed the structure, composition, optical, and electrical properties. • PV structures: glass/SnO{sub 2}:F/n-CdS/p-CuSbS{sub 2}/C/Ag were formed at different conditions. • The PV parameters (J{sub sc}, V{sub oc}, and FF) were evaluated from the J–V characteristics. • J{sub sc}: 0.52–3.20 mA/cm{sup 2}, V{sub oc}:187–323 mV, FF: 0.27–0.48 were obtained. - Abstract: In this work, we report preparation and characterization of CuSbS{sub 2} thin films by heating glass/Sb{sub 2}S{sub 3}/Cu layers and their use as absorber material in photovoltaic structures: glass/SnO{sub 2}:F/n-CdS/p-CuSbS{sub 2}/C/Ag. The Sb{sub 2}S{sub 3} thin films of 600 nm were prepared by chemical bath deposition on which copper thin films of 50 nm were thermally evaporated, and the glass/Sb{sub 2}S{sub 3}/Cu multilayers were heated in vacuum at different temperatures. X-ray diffraction analysis showed the formation of orthorhombic CuSbS{sub 2} after heating the precursor layers. Studies on identification and chemical state of the elements were done using X-ray photoelectron spectroscopy. The optical band gap of the CuSbS{sub 2} thin films was 1.55 eV and the thin films were photoconductive. The photovoltaic parameters of the devices using CuSbS{sub 2} as absorber and CdS as window layer were evaluated from the J–V curves, yielding J{sub sc}, V{sub oc}, and FF values in the range of 0.52–3.20 mA/cm{sup 2}, 187–323 mV, and 0.27–0.48, respectively, under illumination of AM1.5 radiation.

  1. Solar absorber material stability under high solar flux

    NASA Astrophysics Data System (ADS)

    Ignatiev, A.; Zajac, G.; Smith, G. B.

    1982-04-01

    Solar absorbing Black Chrome coatings have been exposed to high temperatures (350-400 C) under high solar fluxes (0.4 to 2.0 MW/sq m) to test for their stability under actual operating conditions. Field tests at the White Sands Solar Furnace have shown higher stability than expected from oven tested samples. Laboratory studies utilizing spectrally selective concentrated solar simulated radiation have indicated that the cause of the higher stability under solar irradiation is photo-stimulated desorption of oxygen bearing species at the absorber surface and resultant reduced oxidation of the absorber.

  2. Intrinsic Hydrophobicity of Rammed Earth

    NASA Astrophysics Data System (ADS)

    Holub, M.; Stone, C.; Balintova, M.; Grul, R.

    2015-11-01

    Rammed earth is well known for its vapour diffusion properties, its ability to regulate humidity within the built environment. Rammed earth is also an aesthetically iconic material such as marble or granite and therefore is preferably left exposed. However exposed rammed earth is often coated with silane/siloxane water repellents or the structure is modified architecturally (large roof overhangs) to accommodate for the hydrophilic nature of the material. This paper sets out to find out optimal hydrophobicity for rammed earth based on natural composite fibres and surface coating without adversely affecting the vapour diffusivity of the material. The material is not required to be waterproof, but should resist at least driving rain. In order to evaluate different approaches to increase hydrophobicity of rammed earth surface, peat fibres and four types of repellents were used.

  3. New Electromagnetic Absorbers Composed of Left-handed and Right-handed Materials

    NASA Astrophysics Data System (ADS)

    Fang, Weihai; Xu, Shanjia

    2008-08-01

    New double-layered electromagnetic absorbers are presented in this paper. The new absorbers composed of one lossy left-handed material absorbing layer and one impedance matching layer consisted of lossless right-handed material. It is indicated that the reflection loss of below -20dB can be obtained in the frequency range 7GHz 13GHz. Power attenuation achieving -50dB of narrow frequency band electromagnetic absorbers can also be obtained by modulate permittivity of right-handed material. Furthermore, the thickness of the whole absorbing structure is only 2mm, which is particularly helpful in some practical applications. The presented results are of reference significance for accurate design of the new electromagnetic absorbers and of practical prospects for stealth technology.

  4. Boron cage compound materials and composites for shielding and absorbing neutrons

    SciTech Connect

    Bowen, III, Daniel E; Eastwood, Eric A

    2014-03-04

    Boron cage compound-containing materials for shielding and absorbing neutrons. The materials include BCC-containing composites and compounds. BCC-containing compounds comprise a host polymer and a BCC attached thereto. BCC-containing composites comprise a mixture of a polymer matrix and a BCC filler. The BCC-containing materials can be used to form numerous articles of manufacture for shielding and absorbing neutrons.

  5. Negative Refraction in a Uniaxial Absorbent Dielectric Material

    ERIC Educational Resources Information Center

    Jen, Yi-Jun; Lakhtakia, Akhlesh; Yu, Ching-Wei; Lin, Chin-Te

    2009-01-01

    Refraction of light from an isotropic dielectric medium to an anisotropic dielectric material is a complicated phenomenon that can have several different characteristics not usually discussed in electromagnetics textbooks for undergraduate students. With a simple problem wherein the refracting material is uniaxial with its optic axis normal to the…

  6. Levelized Cost of Coating (LCOC) for selective absorber materials

    DOE PAGES

    Ho, Clifford K.; Pacheco, James E.

    2014-08-08

    A new metric has been developed to evaluate and compare selective absorber coatings for concentrating solar power applications. Previous metrics have typically considered the performance of the selective coating (i.e., solar absorptance and thermal emittance), but cost and durability were not considered. This report describes the development of the levelized cost of coating (LCOC), which is similar to the levelized cost of energy (LCOE) commonly used to evaluate alternative energy technologies. The LCOC is defined as the ratio of the annualized cost of the coating (and associated costs such as labor and number of heliostats required) to the average annualmore » thermal energy produced by the receiver. The baseline LCOC using Pyromark 2500 paint was found to be %240.055/MWht, and the distribution of LCOC values relative to this baseline were determined in a probabilistic analysis to range from -%241.6/MWht to %247.3/MWht, accounting for the cost of additional (or fewer) heliostats required to yield the same baseline average annual thermal energy produced by the receiver. A stepwise multiple rank regression analysis showed that the initial solar absorptance was the most significant parameter impacting the LCOC, followed by thermal emittance, degradation rate, reapplication interval, and downtime during reapplication.« less

  7. Levelized Cost of Coating (LCOC) for selective absorber materials

    SciTech Connect

    Ho, Clifford K.; Pacheco, James E.

    2014-08-08

    A new metric has been developed to evaluate and compare selective absorber coatings for concentrating solar power applications. Previous metrics have typically considered the performance of the selective coating (i.e., solar absorptance and thermal emittance), but cost and durability were not considered. This report describes the development of the levelized cost of coating (LCOC), which is similar to the levelized cost of energy (LCOE) commonly used to evaluate alternative energy technologies. The LCOC is defined as the ratio of the annualized cost of the coating (and associated costs such as labor and number of heliostats required) to the average annual thermal energy produced by the receiver. The baseline LCOC using Pyromark 2500 paint was found to be %240.055/MWht, and the distribution of LCOC values relative to this baseline were determined in a probabilistic analysis to range from -%241.6/MWht to %247.3/MWht, accounting for the cost of additional (or fewer) heliostats required to yield the same baseline average annual thermal energy produced by the receiver. A stepwise multiple rank regression analysis showed that the initial solar absorptance was the most significant parameter impacting the LCOC, followed by thermal emittance, degradation rate, reapplication interval, and downtime during reapplication.

  8. 3D-Printing ‘Smarter’ Energy Absorbing Materials

    SciTech Connect

    Duoss, Eric

    2014-08-29

    Foams are, by nature, disordered materials studded with air pockets of varying sizes. Lack of control over the material’s architecture at the micrometer or nanometer scale can make it difficult to adjust the foam’s basic properties. But Eric Duoss and a team of Livermore researchers are using additive manufacturing to develop “smarter” silicone cushions. By architecting the structure at the micro scale, they are able to control macro-scale properties previously unachievable with foam materials.

  9. Method of Synthesizing a Novel Absorbent Titanosilicate Material (UPRM-5)

    NASA Technical Reports Server (NTRS)

    Hernandez-Maldonado, Arturo (Inventor); Primera-Pedrozo, Jose N (Inventor)

    2013-01-01

    A titanium silicate variant named UPRM-5 was prepared using tetraethylammonium hydroxide as a structure-directing agent (SDA). Successful detemplation was achieved via ion exchange with NH4Cl. Effective functionalization was obtained after ion exchanging the detemplated material using SrCl2 and BaCl2. Adsorption of CO2 at 25 deg C in Sr(-) and Ba-UPRM-5 materials activated at different temperatures. For low partial pressures, the observed CO2 adsorption capacities increased as follows: NH4-UPRM-5 less than Sr-UPRM-5 less than Ba-UPRM-5. Both the Sr(-) and Ba-UPRM-5 materials exhibited outstanding selectivity for CO2 over CH4, N2 and O2.

  10. Electrokinetic profiles of nonowoven cotton for absorbent incontinence material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper discusses recent work on cotton/synthetic nonwovens, their electrokinetic analysis, and their potential use in incontinence materials. Electrokinetic analysis is useful in exploring fiber surface polarity properties, and it is a useful tool to render a snap shot of the role of fiber char...

  11. Material Activation Benchmark Experiments at the NuMI Hadron Absorber Hall in Fermilab

    SciTech Connect

    Matsumura, H.; Matsuda, N.; Kasugai, Y.; Toyoda, A.; Yashima, H.; Sekimoto, S.; Iwase, H.; Oishi, K.; Sakamoto, Y.; Nakashima, H.; Leveling, A.; Boehnlein, D.; Lauten, G.; Mokhov, N.; Vaziri, K.

    2014-06-15

    In our previous study, double and mirror symmetric activation peaks found for Al and Au arranged spatially on the back of the Hadron absorber of the NuMI beamline in Fermilab were considerably higher than those expected purely from muon-induced reactions. From material activation bench-mark experiments, we conclude that this activation is due to hadrons with energy greater than 3 GeV that had passed downstream through small gaps in the hadron absorber.

  12. On the use of a loudspeaker for measuring the viscoelastic properties of sound absorbing materials.

    PubMed

    Doutres, Olivier; Dauchez, Nicolas; Génevaux, Jean-Michel; Lemarquand, Guy

    2008-12-01

    This paper investigates the feasibility to use an electrodynamic loudspeaker to determine viscoelastic properties of sound-absorbing materials in the audible frequency range. The loudspeaker compresses the porous sample in a cavity, and a measurement of its electrical impedance allows one to determine the mechanical impedance of the sample: no additional sensors are required. Viscoelastic properties of the material are then estimated by inverting a 1D Biot model. The method is applied to two sound-absorbing materials (glass wool and polymer foam). Results are in good agreement with the classical compression quasistatic method.

  13. Development of a Weldable Neutron Absorbing Structural Material

    SciTech Connect

    R. E. Mizia; W. L. Hurt; C. V. Robino; J. N. DuPont

    2006-04-01

    The National Spent Nuclear Fuel Program, located at the Idaho National Laboratory, coordinates and integrates national efforts in management and disposal of U.S. Department of Energy (DOE)-owned spent nuclear fuel. These management functions include development of standardized systems for packaging, storage, treatment, transport, and long-term disposal in the proposed Yucca Mountain Repository. Nuclear criticality control measures are needed in these systems to avoid restrictive fissile loading limits because of the enrichment and total quantity of fissile material in some types of the DOE spent nuclear fuel. This paper will outline the results to date of a metallurgical development program that is investigating the alloying of gadolinium into a nickel-chromium-molybdenum alloy matrix. Gadolinium has been chosen as the neutron absorption alloying element due to its high thermal neutron absorption cross section and low solubility in the expected repository environment. The nickel-chromium-molybdenum alloy family was chosen for its known corrosion performance, mechanical properties, and weldability. The workflow of this program includes chemical composition definition, primary melting and secondary refining studies, ingot conversion process evaluations, mechanical/physical properties and corrosion testing, welding studies, and national consensus codes, and standards work.

  14. Absorber Materials for Transition-Edge Sensor X-ray Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Brown, Ari-David; Bandler, Simon; Brekosky, Regis; Chervenak, James; Figueroa-Feliciano, Enectali; Finkbeiner, Fred; Sadleir, Jack; Iyomoto, Naoko; Kelley, Richard; Kilbourne, Caroline; Porter, F. Scott; Smith, Stephen; Saab, Tarek; Sadleir, Jac,

    2007-01-01

    Arrays of superconducting transition-edge sensors (TES) can provide high spatial and energy resolution necessary for x-ray astronomy. High quantum efficiency and uniformity of response can be achieved with a suitable absorber material, in which absorber x-ray stopping power, heat capacity, and thermal conductivity are relevant parameters. Here we compare these parameters for bismuth and gold. We have fabricated electroplated gold, electroplated gold/electroplated bismuth, and evaporated gold/evaporated bismuth 8x8 absorber arrays and find that a correlation exists between the residual resistance ratio (RRR) and thin film microstructure. This finding indicates that we can tailor absorber material conductivity via microstructure alteration, so as to permit absorber thermalization on timescales suitable for high energy resolution x-ray microcalorimetry. We show that by incorporating absorbers possessing large grain size, including electroplated gold and electroplated gold/electroplated bismuth, into our current Mo/Au TES, devices with tunable heat capacity and energy resolution of 2.3 eV (gold) and 2.1 eV (gold/bismuth) FWHM at 6 keV have been fabricated.

  15. Thin absorber extreme ultraviolet photomask based on Ni-TaN nanocomposite material.

    PubMed

    Hay, Darrick; Bagge, Patrick; Khaw, Ian; Sun, Lei; Wood, Obert; Chen, Yulu; Kim, Ryoung-Han; Qi, Zhengqing John; Shi, Zhimin

    2016-08-15

    We study the use of random nanocomposite material as a photomask absorber layer for the next generation of extreme ultraviolet (EUV) lithography. By introducing nickel nanoparticles (NPs) randomly into a TaN host, the nanocomposite absorber layer can greatly reduce the reflectivity as compared with the standard TaN layer of the same thickness. Finite integral simulations show that the reduction in the reflectivity is mainly due to the enhanced absorption by the Ni NPs. The fluctuation in reflectivity induced by scattering and random position of the NPs is found to be on the order of 0.1%. Based on these observations, we build an effective medium model for the nanocomposite absorber layer and use the transfer matrix method to identify optimal absorber designs that utilize cavity effects to reduce the required volume fraction of Ni NPs. We further perform a process simulation and show that our approach can greatly reduce the HV bias in the lithography process. PMID:27519090

  16. Improving impact resistance of ceramic materials by energy absorbing surface layers

    NASA Technical Reports Server (NTRS)

    Kirchner, H. P.; Seretsky, J.

    1974-01-01

    Energy absorbing surface layers were used to improve the impact resistance of silicon nitride and silicon carbide ceramics. Low elastic modulus materials were used. In some cases, the low elastic modulus was achieved using materials that form localized microcracks as a result of thermal expansion anisotropy, thermal expansion differences between phases, or phase transformations. In other cases, semi-vitreous or vitreous materials were used. Substantial improvements in impact resistance were observed at room and elevated temperatures.

  17. Preparation of steel slag porous sound-absorbing material using coal powder as pore former.

    PubMed

    Sun, Peng; Guo, Zhancheng

    2015-10-01

    The aim of the study was to prepare a porous sound-absorbing material using steel slag and fly ash as the main raw material, with coal powder and sodium silicate used as a pore former and binder respectively. The influence of the experimental conditions such as the ratio of fly ash, sintering temperature, sintering time, and porosity regulation on the performance of the porous sound-absorbing material was investigated. The results showed that the specimens prepared by this method had high sound absorption performance and good mechanical properties, and the noise reduction coefficient and compressive strength could reach 0.50 and 6.5MPa, respectively. The compressive strength increased when the dosage of fly ash and sintering temperature were raised. The noise reduction coefficient decreased with increasing ratio of fly ash and reducing pore former, and first increased and then decreased with the increase of sintering temperature and time. The optimum preparation conditions for the porous sound-absorbing material were a proportion of fly ash of 50% (wt.%), percentage of coal powder of 30% (wt.%), sintering temperature of 1130°C, and sintering time of 6.0hr, which were determined by analyzing the properties of the sound-absorbing material. PMID:26456608

  18. Preparation of steel slag porous sound-absorbing material using coal powder as pore former.

    PubMed

    Sun, Peng; Guo, Zhancheng

    2015-10-01

    The aim of the study was to prepare a porous sound-absorbing material using steel slag and fly ash as the main raw material, with coal powder and sodium silicate used as a pore former and binder respectively. The influence of the experimental conditions such as the ratio of fly ash, sintering temperature, sintering time, and porosity regulation on the performance of the porous sound-absorbing material was investigated. The results showed that the specimens prepared by this method had high sound absorption performance and good mechanical properties, and the noise reduction coefficient and compressive strength could reach 0.50 and 6.5MPa, respectively. The compressive strength increased when the dosage of fly ash and sintering temperature were raised. The noise reduction coefficient decreased with increasing ratio of fly ash and reducing pore former, and first increased and then decreased with the increase of sintering temperature and time. The optimum preparation conditions for the porous sound-absorbing material were a proportion of fly ash of 50% (wt.%), percentage of coal powder of 30% (wt.%), sintering temperature of 1130°C, and sintering time of 6.0hr, which were determined by analyzing the properties of the sound-absorbing material.

  19. Absorbent Material

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A superabsorbent fabric developed by Johnson Space Center and described in Tech Briefs was adapted by Honeywell and fabricated into special containment devices used on Navy "smart" torpedos. The superabsorbent fabric can sequester up to 400 times its own weight in water and protects the torpedo electronic controls from possible short circuiting by deepwater hull seepage.

  20. Acoustic behavior of a fibrous bulk material. [Kevlar 29 sound absorber

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.; Walker, B.

    1979-01-01

    A semiempirical model is presented describing the acoustic behavior of Kevlar 29, a bulk absorbing material. The model is based on an approximate solution to the one-dimensional equations representing conservation of fluctuating mass, momentum and energy. By treating the material as a momentum sink, theoretical expressions of the material complex propagation constants and characteristic impedance were derived in terms of a single constant. Evaluating the constant at a single frequency for a particular specimen, excellent agreement between prediction and measurement was achieved for a large range of sound frequencies and material porosities and thicknesses. Results show that Kevlar 29 absorbs sound efficiently even at low frequencies. This is explained in terms of a frequency dependent material phase speed.

  1. Food-processes wastewaters treatment using food solid-waste materials as adsorbents or absorbents

    NASA Astrophysics Data System (ADS)

    Rapti, Ilaira; Georgopoulos, Stavros; Antonopoulou, Maria; Konstantinou, Ioannis; Papadaki, Maria

    2016-04-01

    The wastewaters generated by olive-mills during the production of olive oil, wastewaters from a dairy and a cow-farm unit and wastewaters from a small food factory have been treated by means of selected materials, either by-products of the same units, or other solid waste, as absorbents or adsorbents in order to identify the capacity of those materials to remove organic load and toxicity from the aforementioned wastewaters. The potential of both the materials used as absorbents as well as the treated wastewaters to be further used either as fertilizers or for agricultural irrigation purposes are examined. Dry olive leaves, sheep wool, rice husks, etc. were used either in a fixed-bed or in a stirred batch arrangemen,t employing different initial concentrations of the aforementioned wastewaters. The efficiency of removal was assessed using scpectrophotometric methods and allium test phytotoxicity measurements. In this presentation the response of each material employed is shown as a function of absorbent/adsorbent quantity and kind, treatment time and wastewater kind and initial organic load. Preliminary results on the potential uses of the adsorbents/absorbents and the treated wastewaters are also shown. Keywords: Olive-mill wastewaters, dairy farm wastewaters, olive leaves, zeolite, sheep wool

  2. Realizing thin electromagnetic absorbers for wide incidence angles from commercially available planar circuit materials

    SciTech Connect

    Glover, Brian B; Whites, Kieth W; Radway, Matthew J

    2009-01-01

    In this study, recent work on engineering R-card surface resistivity with printed metallic patterns is extended to the design of thin electromagnetic absorbers. Thin electromagnetic absorbers for wide incidence angles and both polarizations have recently been computationally verified by Luukkonen et al.. These absorbers are analytically modeled high-impedance surfaces with capacitive arrays of square patches implemented with relatively high dielectric constant and high loss substrate. However, the advantages provided by the accurate analytical model are largely negated by the need to obtain high dielectric constant material with accurately engineered loss. Fig. I(c) illustrates full-wave computational results for an absorber without vias engineered as proposed by Luukkonen et al.. Unique values for the dielectric loss are required for different center frequencies. Parameters for the capacitive grid are D=5.0 mm and w=O.l mm for a center frequency of 3.36 GHz. The relative permittivity and thickness is 9.20(1-j0.234) and 1=3.048 mm. Consider a center frequency of5.81 GHz and again 1=3.048 mm, the required parameters for the capacitive grid are D=2.0 mm and w=0.2 mm where the required relative permittivity is now 9.20(1-j0.371) Admittedly, engineered dielectrics are themselves a historically interesting and fruitful research area which benefits today from advances in monolithic fabrication using direct-write of dielectrics with nanometer scale inclusions. However, our objective in the present study is to realize the advantages of the absorber proposed by Luukkonen et al. without resort to engineered lossy dielectrics. Specifically we are restricted to commercially available planer circuit materials without use of in-house direct-write technology or materials engineering capability. The materials considered here are TMM 10 laminate with (35 {mu}lm copper cladding with a complex permittivity 9.20-j0.0022) and Ohmegaply resistor conductor material (maximum 250 {Omega

  3. Cold tests of HOM absorber material for the ARIEL eLINAC at TRIUMF

    NASA Astrophysics Data System (ADS)

    Kolb, P.; Laxdal, R. E.; Zvyagintsev, V.; Chao, Y. C.; Amini, B.

    2014-01-01

    At TRIUMF development of a 50 MeV electron accelerator is well under way. Five 1.3 GHz, superconducting 9-cell cavities will accelerate 10 mA electrons to a production target to produce rare isotopes. Each cavity will provide 10 MV accelerating voltage. Plans to upgrade the accelerator in the future to a small ring with ERL capabilities requires that the shunt impedance of the dipole higher order modes to be less than 10 MΩ . The design of the accelerator incorporates beam line absorbers to reduce the shunt impedance of potentially dangerous dipole modes. The performance of the absorber is dependant on its electrical conductivity at the operational temperature. Measurements of the electrical conductivity in RF fields of a sample of the proposed beam line absorber material at room temperature and at its operational temperature will be presented for frequencies between 1.3 and 2.4 GHz.

  4. Thin absorber EUV photomask based on mixed Ni and TaN material

    NASA Astrophysics Data System (ADS)

    Hay, Derrick; Bagge, Patrick; Khaw, Ian; Sun, Lei; Wood, Obert; Chen, Yulu; Kim, Ryoung-han; Qi, Zhengqing John; Shi, Zhimin

    2016-05-01

    Lithographic patterning at the 7 and 5 nm nodes will likely require EUV (λ=13.5 nm) lithography for many of the critical levels. All optical elements in an EUV scanner are reflective which requires the EUV photomask to be illuminated at an angle to its normal. Current scanners have an incidence of 6 degree, but future designs will be <6 degrees for high-NA systems. Non-telecentricity has been shown to cause H-V bias due to shadowing, pattern shift through focus, and image contrast lost due to apodization by the reflective mask coating. A thinner EUV absorber can dramatically reduce these issues. Ni offers better EUV absorption than Ta-based materials, which hold promise as a thinner absorber candidate. Unfortunately, the challenge of etching Ni has prevented its adoption into manufacturing. We propose a new absorber material that infuses Ni nanoparticles into the TaN host medium, allowing for the use of established Ta etching chemistry. A thinner is absorber is created due to the enhanced absorption properties of the Ni-Ta nano-composite material. Finite integral method and effective medium theory-based transfer matrix method have been independently developed to analyze the performance of the nano-composite absorption layer. We show that inserting 15% volume fraction Ni nanoparticles into 40-nm of TaN absorber material can reduce the reflection below 2% over the EUV range. Numerical simulations confirm that the reduced reflectivity is due to the increased absorption of Ni, while scattering only contributes to approximately 0.2% of the reduction in reflectivity.

  5. Finite element analysis of ramming in Ovis canadensis.

    PubMed

    Maity, Parimal; Tekalur, Srinivasan Arjun

    2011-02-01

    The energy produced during the ramming of bighorn sheep (Ovis canadensis) would be expected to result in undesirable stresses in their frontal skull, which in turn would cause brain injury; yet, this animal seems to suffer no ill effects. In general, horn is made of an α-keratin sheath covering a bone. Despite volumes of data on the ramming behavior of Ovis canadensis, the extent to which structural components of horn and horn-associated structure or tissue absorb the impact energy generated by the ramming event is still unknown. This study investigates the hypothesis that there is a mechanical relationship present among the ramming event, the structural constituents of the horn, and the horn-associated structure. The three-dimensional complex structure of the bighorn sheep horn was successfully constructed and modeled using a computed tomography (CT) scan and finite element (FE) method, respectively. Three different three-dimensional quasi-static models, including a horn model with trabecular bone, a horn model with compact bone that instead of trabecular bone, and a horn model with trabecular bone as well as frontal sinuses, were studied. FE simulations were used to compare distributions of principal stress in the horn and the frontal sinuses and the strain energy under quasi-static loading conditions. It was noticed that strain energy due to elastic deformation of the complex structure of horn modeled with trabecular bone and with trabecular bone and frontal sinus was different. In addition, trabecular bone in the horn distributes the stresses over a larger volume, suggesting a mechanical link between the structural constituents and the ramming event. This phenomenon was elucidated through the principal stress distribution in the structure. This study will help designers in choosing appropriate material combinations for the successful design of protective structures against a similar impact.

  6. Benzodipyrrole-based Donor-Acceptor-type Boron Complexes as Tunable Near-infrared-Absorbing Materials.

    PubMed

    Nakamura, Tomoya; Furukawa, Shunsuke; Nakamura, Eiichi

    2016-07-20

    Benzodipyrrole-based donor-acceptor boron complexes were designed and synthesized as near-infrared-absorbing materials. The electron-rich organic framework combined with the Lewis acidic boron co-ordination enabled us to tune the LUMO energy level and the HOMO-LUMO gap (i.e.,the absorption wavelength) by changing the organic acceptor units, the number of boron atoms, and the substituents on the boron atoms.

  7. Investigation of MEMS bi-material sensors with metamaterial absorbers for THz imaging

    NASA Astrophysics Data System (ADS)

    Alves, Fabio; Grbovic, Dragoslav; Karunasiri, Gamani

    2014-06-01

    There has been a continued interest in the terahertz (THz) imaging due to penetration and non-ionizing properties. Realtime imaging in this spectral range has been demonstrated using infrared microbolometer technology with external illumination by quantum cascade lasers (QCL). However, to achieve high sensitivity, it is necessary to develop focal plane arrays using enhanced THz-absorbing materials. One attractive option to achieve real time THz imaging is MEMS bi-material sensor with embedded metamaterial absorbers, consisting of a periodic array of metallic squared elements separated from a homogeneous metallic ground plane by a dielectric layer. We have demonstrated that the metamaterial films can be designed using standard MEMS materials such as silicon oxide (SiOx), silicon oxinitrate (SiOxNy) and aluminum (Al), to achieve nearly 100 % resonant absorption matched to the illumination source, while providing structural support, desired thermomechanical properties and access to external optical readout. The metamaterial structure absorbs the incident THz radiation and transfers the heat to bi-material microcantilevers that are connected to the substrate, which acts as a heat sink, via thermal insulating legs. A temperature gradient builds up in the legs, allowing the overall structure to deform proportionally to the absorbed power. The amount of deformation can be probed by measuring the displacement of a laser beam reflected from the sensor's metallic ground plane. Several sensor configurations have been designed, fabricated and characterized to optimize responsivity, speed of operation and minimize structural residual stress. Measured figures of merit indicate that the THz MEMS sensors have a great potential for real-time imaging.

  8. Decontamination of skin exposed to nanocarriers using an absorbent textile material and PEG-12 dimethicone

    NASA Astrophysics Data System (ADS)

    Lademann, J.; Richter, H.; Baier, G.; Landfester, K.; Frazier, L.; Gefeller, H.; Wunderlich, U.; Gross, I.; Rühl, E.; Knorr, F.

    2014-11-01

    The removal of noxious particulate contaminants such as pollutants derived from particle-to-gas conversions from exposed skin is essential to avoid the permeation of potentially harmful substances into deeper skin layers via the stratum corneum or the skin appendages and their dispersion throughout the circulatory system. This study is aimed at evaluating the efficacy of using the silicone glycol polymer PEG-12 dimethicone and an absorbent textile material to remove fluorescing hydroxyethyl starch nanocapsules implemented as model contaminants from exposed porcine ear skin. Using laser scanning microscopy, it could be shown that while the application and subsequent removal of the absorbent textile material alone did not result in sufficient decontamination, the combined application with PEG-12 dimethicone almost completely eliminated the nanocapsules from the surface of the skin. By acting as a wetting agent, PEG-12 dimethicone enabled the transfer of the nanocapsules into a liquid phase which was taken up by the absorbent textile material. Only traces of fluorescence remained detectable in several skin furrows and follicular orifices, suggesting that the repeated implementation of the procedure may be necessary to achieve total skin surface decontamination.

  9. Phase-contrast imaging of weakly absorbing materials using hard X-rays

    NASA Astrophysics Data System (ADS)

    Davis, T. J.; Gao, D.; Gureyev, T. E.; Stevenson, A. W.; Wilkins, S. W.

    1995-02-01

    IMAGING with hard X-rays is an important diagnostic tool in medicine, biology and materials science. Contact radiography and tomography using hard X-rays provide information on internal structures that cannot be obtained using other non-destructive methods. The image contrast results from variations in the X-ray absorption arising from density differences and variations in composition and thickness of the object. But although X-rays penetrate deeply into carbon-based compounds, such as soft biological tissue, polymers and carbon-fibre composites, there is little absorption and therefore poor image contrast. Here we describe a method for enhancing the contrast in hard X-ray images of weakly absorbing materials by resolving phase variations across the X-ray beam1-4. The phase gradients are detected using diffraction from perfect silicon crystals. The diffraction properties of the crystal determine the ultimate spatial resolution in the image; we can readily obtain a resolution of a fraction of a millimetre. Our method shows dramatic contrast enhancement for weakly absorbing biological and inorganic materials, compared with conventional radiography using the same X-ray energy. We present both bright-field and dark-field phase-contrast images, and show evidence of contrast reversal. The method should have the clinical advantage of good contrast for low absorbed X-ray dose.

  10. Evaluation of polypropylene and poly (butylmethacrylate-co-hydroxyethylmethacrylate) nonwoven material as oil absorbent.

    PubMed

    Zhao, Jian; Xiao, Changfa; Xu, Naiku

    2013-06-01

    Polypropylene (PP) and poly(butylmethacrylate-co-hydroxyethylmethacrylate) (PBMA-co-HEMA) nonwoven materials as oil absorbents have been fabricated for the first time via melt blown method. As-prepared nonwovens were investigated in terms of mass per unit area, density, air permeability, contact angle, and morphology observations for fiber diameter distribution and single fiber surface by a field emission scanning electron microscope. The nonwovens are demonstrated as fast and efficient absorbents for various kinds of oils with oil absorbency up to seven to ten times their own weight. The nonwovens show excellent water repulsion but superoleophilic properties. The measured contact angles for water and toluene are more than 127° and ca. 0°, respectively. The addition of PBMA-co-HEMA makes the nonwoven surface more hydrophobic while conserving superoleophilicity. Compared with PP nonwoven, broad diameter distribution of the blend nonwoven is attributed to poor melt fluidity of PBMA-co-HEMA. In terms of single fiber, coarse surface and the presence of point-like convexities lead to the fibers being more readily wetted by oil. More interesting, oil-water separation and oil recovery can be easily carried out by filter and absorption-desorption process, the recovered materials contained hardly any oil droplet and could be reused for next cycles. PMID:23238599

  11. Super water-absorbing new material from chitosan, EDTA and urea.

    PubMed

    Narayanan, Abathodharanan; Dhamodharan, Raghavachari

    2015-12-10

    A new, super water-absorbing, material is synthesized by the reaction between chitosan, EDTA and urea and named as CHEDUR. CHEDUR is probably formed through the crosslinking of chitosan molecules (CH) with the EDTA-urea (EDUR) adduct that is formed during the reaction. CHEDUR as well as the other products formed in control reactions are characterized extensively. CHEDUR exhibits a very high water uptake capacity when compared with chitosan, chitosan-EDTA adduct, as well as a commercial diaper material. A systematic study was done to find the optimum composition as well as reaction conditions for maximum water absorbing capacity. CHEDUR can play a vital role in applications that demand the rapid absorption and slow release of water such as agriculture, as a three in one new material for the slow release of urea, water and other metal ions that can be attached through the EDTA component. The other potential advantage of CHEDUR is that it can be expected to degrade in soil based on its chitosan backbone. The new material with rapid and high water uptake could also find potential applications as biodegradable active ingredient of the diaper material.

  12. Super water-absorbing new material from chitosan, EDTA and urea.

    PubMed

    Narayanan, Abathodharanan; Dhamodharan, Raghavachari

    2015-12-10

    A new, super water-absorbing, material is synthesized by the reaction between chitosan, EDTA and urea and named as CHEDUR. CHEDUR is probably formed through the crosslinking of chitosan molecules (CH) with the EDTA-urea (EDUR) adduct that is formed during the reaction. CHEDUR as well as the other products formed in control reactions are characterized extensively. CHEDUR exhibits a very high water uptake capacity when compared with chitosan, chitosan-EDTA adduct, as well as a commercial diaper material. A systematic study was done to find the optimum composition as well as reaction conditions for maximum water absorbing capacity. CHEDUR can play a vital role in applications that demand the rapid absorption and slow release of water such as agriculture, as a three in one new material for the slow release of urea, water and other metal ions that can be attached through the EDTA component. The other potential advantage of CHEDUR is that it can be expected to degrade in soil based on its chitosan backbone. The new material with rapid and high water uptake could also find potential applications as biodegradable active ingredient of the diaper material. PMID:26428133

  13. Carbon nanotube scaffolds with controlled porosity as electromagnetic absorbing materials in the gigahertz range.

    PubMed

    González, M; Crespo, M; Baselga, J; Pozuelo, J

    2016-05-19

    Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials.

  14. Carbon nanotube scaffolds with controlled porosity as electromagnetic absorbing materials in the gigahertz range.

    PubMed

    González, M; Crespo, M; Baselga, J; Pozuelo, J

    2016-05-19

    Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials. PMID:27152472

  15. A study of the switching mechanism and electrode material of fully CMOS compatible tungsten oxide ReRAM

    NASA Astrophysics Data System (ADS)

    Chien, W. C.; Chen, Y. C.; Lai, E. K.; Lee, F. M.; Lin, Y. Y.; Chuang, Alfred T. H.; Chang, K. P.; Yao, Y. D.; Chou, T. H.; Lin, H. M.; Lee, M. H.; Shih, Y. H.; Hsieh, K. Y.; Lu, Chih-Yuan

    2011-03-01

    Tungsten oxide (WO X ) resistive memory (ReRAM), a two-terminal CMOS compatible nonvolatile memory, has shown promise to surpass the existing flash memory in terms of scalability, switching speed, and potential for 3D stacking. The memory layer, WO X , can be easily fabricated by down-stream plasma oxidation (DSPO) or rapid thermal oxidation (RTO) of W plugs universally used in CMOS circuits. Results of conductive AFM (C-AFM) experiment suggest the switching mechanism is dominated by the REDOX (Reduction-oxidation) reaction—the creation of conducting filaments leads to a low resistance state and the rupturing of the filaments results in a high resistance state. Our experimental results show that the reactions happen at the TE/WO X interface. With this understanding in mind, we proposed two approaches to boost the memory performance: (i) using DSPO to treat the RTO WO X surface and (ii) using Pt TE, which forms a Schottky barrier with WO X . Both approaches, especially the latter, significantly reduce the forming current and enlarge the memory window.

  16. Method and apparatus for determining the content and distribution of a thermal neutron absorbing material in an object

    DOEpatents

    Crane, T.W.

    1983-12-21

    The disclosure is directed to an apparatus and method for determining the content and distribution of a thermal neutron absorbing material within an object. Neutrons having an energy higher than thermal neutrons are generated and thermalized. The thermal neutrons are detected and counted. The object is placed between the neutron generator and the neutron detector. The reduction in the neutron flux corresponds to the amount of thermal neutron absorbing material in the object. The object is advanced past the neutron generator and neutron detector to obtain neutron flux data for each segment of the object. The object may comprise a space reactor heat pipe and the thermal neutron absorbing material may comprise lithium.

  17. Method and apparatus for determining the content and distribution of a thermal neutron absorbing material in an object

    DOEpatents

    Crane, Thomas W.

    1986-01-01

    The disclosure is directed to an apparatus and method for determining the content and distribution of a thermal neutron absorbing material within an object. Neutrons having an energy higher than thermal neutrons are generated and thermalized. The thermal neutrons are detected and counted. The object is placed between the neutron generator and the neutron detector. The reduction in the neutron flux corresponds to the amount of thermal neutron absorbing material in the object. The object is advanced past the neutron generator and neutron detector to obtain neutron flux data for each segment of the object. The object may comprise a space reactor heat pipe and the thermal neutron absorbing material may comprise lithium.

  18. All-Metal Magnetic RAM

    NASA Technical Reports Server (NTRS)

    Torok, E. J.; Spitzer, R.

    2000-01-01

    The factors that enter into the development of an all-metal, nonvolatile magnetic RAM, in which multilayer giant magnetoresistive films are used for all functions - storage, readout, and support electronics - are described. Four significant characteristics are expected to favor all-metal over hybrid magnetic RAM. First, silicon-technology fabrication requires a large number of masking steps, including complex ones such as ion implantation. Conversely, all-metal technology is inherently simple: fewer masking steps, no doping, scaling to lithographic limits, very little operating power. Second, the all-metal footprint is significantly smaller than the hybrid one. Third, an all-metal RAM is expected to be able to be miniaturized to lithographic limits; miniaturization of hybrid magnetic RAMs is likely to be limited by the semiconductor circuitry. Finally, semiconductor processing and magnetic processing in MRAM are done separately because the former requires high temperatures, whereas magnetic fabrication is a low-temperature process. By contrast, because both GMR electronics and the memory elements are made of the same materials, the two major components are deposited and patterned concurrently on the same substrate.

  19. The NuSTAR View of Reflecting and Absorbing Circumnuclear Material in AGN

    NASA Astrophysics Data System (ADS)

    Rivers, Elizabeth

    2016-04-01

    The physical conditions and precise geometry of the accreting circumnuclear material in the vicinity of supermassive black holes remain open and critical questions. Between July 2012 and February 2013, NuSTAR and XMM-Newton performed four long-look joint observations of the type 1.8 Seyfert, NGC 1365. We have analyzed the variable absorption seen in these observations in order to characterize the geometry of the absorbing material. Two of the observations caught NGC 1365 in an unusually low absorption state, revealing complexity in the multi-layer absorbers which had previously been hidden, including a the Compton-thick torus, BLR clouds, and a patchy absorber with a variable column around 1022 cm-2 and a line of sight covering fraction of 0.3-0.9 which responds directly to the intrinsic source flux, possibly due to a wind geometry. We have also analyzed two NuSTAR observations of NGC 7582, a well-studied X-ray bright Seyfert 2 with moderately heavy highly variable absorption and strong reflection spectral features. Changes in the spectral shape and high reflection fractions have led to competing explanations: 1) the central X-ray source partially “shut off”, decreasing in intrinsic luminosity, with a delayed decrease in reflection features due to the light-crossing time of the Compton-thick material or 2) the source became more heavily obscured, with only a portion of the power law continuum leaking through. The high quality of the NuSTAR spectra above 10 keV give us the best look at the reflection hump to date and allow us to test these two scenarios.

  20. Nanostructured thin film-based near-infrared tunable perfect absorber using phase-change material

    NASA Astrophysics Data System (ADS)

    Kocer, Hasan

    2015-01-01

    Nanostructured thin film absorbers embedded with phase-change thermochromic material can provide a large level of absorption tunability in the near-infrared region. Vanadium dioxide was employed as the phase-change material in the designed structures. The optical absorption properties of the designed structures with respect to the geometric and material parameters were systematically investigated using finite-difference time-domain computations. Absorption level of the resonance wavelength in the near-IR region was tuned from the perfect absorption level to a low level (17%) with a high positive dynamic range of near-infrared absorption intensity tunability (83%). Due to the phase transition of vanadium dioxide, the resonance at the near-infrared region is being turned on and turned off actively and reversibly under the thermal bias, thereby rendering these nanostructures suitable for infrared camouflage, emitters, and sensors.

  1. Aging behavior of polymeric solar absorber materials - Part 2: Commodity plastics

    SciTech Connect

    Kahlen, S.; Wallner, G.M.; Lang, R.W.

    2010-09-15

    In this series of two papers, various polymeric materials are investigated as to their potential applicability as absorber materials for solar thermal collectors. While Part 1 of this paper series deals with the aging behavior of engineering plastics, including two amorphous polymers (PPE + PS) and (PC) and two semi-crystalline polymers (two types of PA12), the present Part 2 treats the aging behavior of semi-crystalline so-called ''commodity'' plastics (two types of crosslinked polyethylene (PE-X) and two types of polypropylene (PP)). As in Part 1, the focus of the investigation is to study the aging behavior of these materials under maximum operating conditions (80 C in water up to 16,000 h) and stagnation conditions (140 C in air up to 500 h) typical for northern climate. The materials supplied or produced as polymer films were first characterized in the unaged state and then for different states of aging by differential scanning calorimetry (DSC), by size exclusion chromatography (SEC) and by mechanical tensile tests. DSC was applied primarily to obtain information on physical aging phenomena, whereas SEC analysis was used to characterize chemical degradation of the materials. In addition, physical and chemical aging were both analyzed via the small and large strain mechanical behavior. Comparing the two aging conditions in hot air and hot water, a rather stable mechanical performance profile was found for both PP types over the investigated aging time, which was interpreted in terms of competing physical and chemical aging mechanisms. Analogously such competing mechanisms were also inferred for one of the PE-X materials, while the other exhibited substantial degradation in terms of strain-to-break values for both aging conditions. In principle, both PP and PE-X are promising candidates for black absorber applications in northern climates if proper measures against overheating are taken and when adequately modified. (author)

  2. Aging behavior of polymeric solar absorber materials - Part 1: Engineering plastics

    SciTech Connect

    Kahlen, S.; Wallner, G.M.; Lang, R.W.

    2010-09-15

    In this series of two papers, various polymeric materials are investigated as to their potential applicability as absorber materials for solar thermal collectors. The focus of the investigation is to study the aging behavior of these materials under maximum operating conditions (80 C in water up to 16,000 h) and stagnation conditions (140 C in air up to 500 h) typical for northern climate. The materials supplied or produced as polymer films were first characterized in the unaged state and then for different states of aging by differential scanning calorimetry (DSC), by size exclusion chromatography (SEC) and by mechanical tensile tests. Physical aging phenomena were studied by DSC, SEC analysis provided information on chemical degradation of the materials. In addition, physical and chemical aging were both analyzed via the small and large strain mechanical behavior. While the present Part 1 of this paper series deals with the aging behavior of engineering plastics, including two amorphous polymers (a polyphenylene ether polystyrene blend (PPE + PS) and polycarbonate (PC)) and two semi-crystalline polymers (two types of polyamide 12 (PA12)), the aging behavior of so-called ''commodity'' plastics (PE and PP) is the subject of Part 2. Comparing the two aging conditions, the amorphous materials (PPE + PS and PC) turned out to be more prone to physical and chemical aging at 140 C in air. In contrast, the semi-crystalline PA12 materials were more strongly affected by exposure to water at 80 C, although to different degrees, depending on the modification. (author)

  3. Scientists Identify New Quaternary Materials for Solar Cell Absorbers (Fact Sheet), NREL Highlights, Science

    SciTech Connect

    Not Available

    2011-10-01

    Research provides insight for exploring use of earth-abundant quaternary semiconductors for large-scale solar cell applications. For large-scale solar electricity generation, it is critical to find new material that is Earth abundant and easily manufactured. Previous experimental studies suggest that Cu{sub 2}ZnSnS{sub 4} could be a strong candidate absorber materials for large-scale thin-film solar cells due to its optimal bandgap, high adsorption coefficient, and ease of synthesis. However, due to the complicated nature of the quaternary compound, it is unclear whether other quaternary compounds have physical properties suitable for solar cell application. Researchers at the National Renewable Energy Laboratory (NREL), Fudan University, and University College London have performed systematic searches of quaternary semiconductors using a sequential cation mutation method in which the material properties of the quaternary compounds can be derived and understood through the evolution from the binary, to ternary, and to quaternary compounds. The searches revealed that in addition to Cu{sub 2}ZnSnS{sub 4}, Cu{sub 2}ZnGeSe{sub 4} and Cu{sub 2}ZnSnSe{sub 4} are also suitable quaternary materials for solar cell absorbers. Through the extensive study of defect and alloy properties of these materials, the researchers propose that to maximize solar cell performance, growth of Cu{sub 2}ZnSnS{sub 4} under Cu-poor/Zn-rich conditions will be optimal and the formation of Cu{sub 2}ZnSn(S,Se){sub 4} alloy will be beneficial in improving solar cell performance.

  4. Results of the Workshop on Microwave-Absorbing Materials for Accelerators (MAMA): A Personal View

    SciTech Connect

    Campisi, I E

    1993-04-01

    The first workshop on the properties and uses of special materials for absorption of microwaves in particle accelerators was held at the Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, February 22-24, 1993. The meeting's purpose was to review the advances of ceramic and materials science and to describe the accelerator projects the success of which strongly depends on the existence and availability of microwave-absorbing materials with special characteristics. Scientists from various branches of physics, materials science, microwave engineering, accelerator physics and from national and international laboratories, from universities and industries participated in this gathering. This interdisciplinary meeting brought new people and new ideas together which in the future will bloom into better understanding of general materials and of physical processes and eventually to collaborative efforts to design and produce custom made materials. This paper describes the major topics covered in the workshop and is a personal elaboration of the author on the future possibilities opened by this interaction.

  5. Efficient positioning of absorbing material in complex systems by using the Patch Transfer Function method

    NASA Astrophysics Data System (ADS)

    Totaro, N.; Guyader, J. L.

    2012-06-01

    Given the need to decrease energy consumption in the automobile industry, vehicle weight has become an important issue. Regarding acoustic comfort, the weight of noise reduction devices must be minimized inside vehicle compartments. Consequently, these devices, for example those using poro-elastic materials, must be designed carefully to maximize their influence on noise reduction. The present paper describes a method developed to obtain an efficient positioning of a given surface (or mass) of absorbing material characterized by its surface impedance. This technique is based on the Patch Transfer Function method used to couple complex vibro-acoustic sub-domains and which has been successfully applied in the European ViSPeR and Silence projects. First, a numerical analysis of the possibilities of this method is performed on a non-rectangular cavity with rigid walls after which an experimental validation of this numerical analysis is performed to evaluate the accuracy of the method under real conditions.

  6. Carbon nanotube scaffolds with controlled porosity as electromagnetic absorbing materials in the gigahertz range

    NASA Astrophysics Data System (ADS)

    González, M.; Crespo, M.; Baselga, J.; Pozuelo, J.

    2016-05-01

    Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials.Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials. Electronic supplementary information (ESI) available: Scheme of hydrogenated derivative of diglycidyl ether of bisphenol-A (HDGEBA) and m-xylylenediamine; X-ray diffractograms of pristine CNT

  7. High-volume use of self-cementing spray dry absorber material for structural applications

    NASA Astrophysics Data System (ADS)

    Riley, Charles E.

    Spray dry absorber (SDA) material, or spray dryer ash, is a byproduct of energy generation by coal combustion and sulfur emissions controls. Like any resource, it ought to be used to its fullest potential offsetting as many of the negative environmental impacts of coal combustion as possible throughout its lifecycle. Its cementitious and pozzolanic properties suggest it be used to augment or replace another energy and emissions intensive product: Portland cement. There is excellent potential for spray dryer ash to be used beneficially in structural applications, which will offset CO2 emissions due to Portland cement production, divert landfill waste by further utilizing a plentiful coal combustion by-product, and create more durable and sustainable structures. The research into beneficial use applications for SDA material is relatively undeveloped and the material is highly underutilized. This dissertation explored a specific self-cementing spray dryer ash for use as a binder in structural materials. Strength and stiffness properties of hydrated spray dryer ash mortars were improved by chemical activation with Portland cement and reinforcement with polymer fibers from automobile tire recycling. Portland cement at additions of five percent of the cementitious material was found to function effectively as an activating agent for spray dryer ash and had a significant impact on the hardened properties. The recycled polymer fibers improved the ductility and toughness of the material in all cases and increased the compressive strength of weak matrix materials like the pure hydrated ash. The resulting hardened materials exhibited useful properties that were sufficient to suggest that they be used in structural applications such as concrete, masonry block, or as a hydraulic cement binder. While the long-term performance characteristics remain to be investigated, from an embodied-energy and carbon emissions standpoint the material investigated here is far superior to

  8. Ram Burn Observations (RAMBO)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Ram Burn Observations (RAMBO) is a Department of Defense experiment that observes shuttle Orbital Maneuvering System engine burns for the purpose of improving plume models. On STS-107 the appropriate sensors will observe selected rendezvous and orbit adjust burns.

  9. Neutron-Absorbing Coatings for Safe Storage of Fissile Materials with Enhanced Shielding & Criticality Safety

    SciTech Connect

    Choi, J; Farmer, J; Lee, C; Fischer, L; Boussoufi, M; Liu, B; Egbert, H

    2007-07-03

    Neutron-absorbing Fe-based amorphous-metal coatings have been developed that are more corrosion resistant than other criticality-control materials, including Al-B{sub 4}C composites, borated stainless steels, and Ni-Cr-Mo-Gd alloys. The presence of relatively high concentration of boron in these coatings not only enhances its neutron-absorption capability, but also enables these coatings to exist in the amorphous state. Exceptional corrosion resistance has been achieved with these Fe-based amorphous-metal alloys through additions of chromium, molybdenum, and tungsten. The addition of rare earth elements such as yttrium has lowered the critical cooling rate of these materials, thereby rendering them more easily processed. Containers used for the storage of nuclear materials, and protected from corrosion through the application of amorphous metal coatings, would have greatly enhanced service lives, and would therefore provide greater long-term safety. Amorphous alloy powders have been successfully produced in multi-ton quantities with gas atomization, and applied to several half-scale spent fuel storage containers and criticality control structures with the high-velocity oxy-fuel (HVOF) thermal spray process. Salt fog testing and neutron radiography of these prototypes indicates that such an approach is viable for the production of large-scale industrial-scale facilities and containers. The use of these durable neutron-absorbing materials to coat stainless steel containers and storage racks, as well as vaults, hot-cell facilities and glove boxes could substantially reduce the risk of criticality in the event of an accident. These materials are particularly attractive for shielding applications since they are fire proof. Additionally, layers of other cold and thermal sprayed materials that include carbon and/or carbides can be used in conjunction with the high-boron amorphous metal coatings for the purpose of moderation. For example, various carbides, including boron

  10. Millimeter wave complex dielectric permittivity and complex magnetic permeability measurements of absorbing materials

    NASA Astrophysics Data System (ADS)

    Tkachov, Igor Ivanovich

    2000-09-01

    This dissertation presents new methods for characterization of materials in the millimeter wave range. Historically, this has been the most difficult part of the electromagnetic spectrum for accurate measurements of material properties. New instrumentation has now been developed for operation in this frequency band. The new techniques developed in the course of this work allowed precise measurement of dielectric properties as well as the separation of magnetic properties from dielectric in the millimeter wave range. A new quasi-optical spectrometer with a waveguide reference channel has been designed and built for the precision measurement of the real part of dielectric permittivity of medium and highly absorbing materials over an extended W-band frequency range (70-118 GHz). A new method of phase measurement with this unique unbalanced quasi-optical waveguide bridge spectrometer has been developed. The phase of the electromagnetic wave transmitted through the specimen can be measured accurately, leading to the determination of the real part of the complex dielectric permittivity of moderate and highly absorbing dielectric materials with high precision. A simple quasi-optical transmission configuration of the spectrometer, a single free space channel provides the transmittance data with a high resolution from which the spectra of the imaginary part of dielectric permittivity of materials are evaluated accurately. A backward wave oscillator (BWO) is used as the source of tunable coherent radiation for the spectrometer. The high output power of the BWO and the high sensitivity of the receiver system, which employs a specially constructed liquid helium cooled InSb detector, enable adequate sensitivity in transmission for highly absorbing materials. Systematic study of dielectric and magnetic properties of various materials has been performed with the quasi-optical free space method in the millimeter wave range from 34GHz to 117GHz for the first time. Specific results

  11. SQL-RAMS

    NASA Technical Reports Server (NTRS)

    Alfaro, Victor O.; Casey, Nancy J.

    2005-01-01

    SQL-RAMS (where "SQL" signifies Structured Query Language and "RAMS" signifies Rocketdyne Automated Management System) is a successor to the legacy version of RAMS -- a computer program used to manage all work, nonconformance, corrective action, and configuration management on rocket engines and ground support equipment at Stennis Space Center. The legacy version resided in the File-Maker Pro software system and was constructed in modules that could act as standalone programs. There was little or no integration among modules. Because of limitations on file-management capabilities in FileMaker Pro, and because of difficulty of integration of FileMaker Pro with other software systems for exchange of data using such industry standards as SQL, the legacy version of RAMS proved to be limited, and working to circumvent its limitations too time-consuming. In contrast, SQL-RAMS is an integrated SQL-server-based program that supports all data-exchange software industry standards. Whereas in the legacy version, it was necessary to access individual modules to gain insight into a particular workstatus document, SQL-RAMS provides access through a single-screen presentation of core modules. In addition, SQL-RAMS enables rapid and efficient filtering of displayed statuses by predefined categories and test numbers. SQL-RAMS is rich in functionality and encompasses significant improvements over the legacy system. It provides users the ability to perform many tasks, which in the past required administrator intervention. Additionally, many of the design limitations have been corrected, allowing for a robust application that is user centric.

  12. Ram jet engine

    SciTech Connect

    Crispin, B.; Pohl, W.D.; Thomaier, D.; Voss, N.

    1983-11-29

    In a ram jet engine, a tubular combustion chamber is divided into a flame chamber followed by a mixing chamber. The ram air is supplied through intake diffusers located on the exterior of the combustion chamber. The intake diffusers supply combustion air directly into the flame chamber and secondary air is conveyed along the exterior of the combustion chambers and then supplied directly into the mixing chamber.

  13. SQL-RAMS

    NASA Technical Reports Server (NTRS)

    Alfaro, Victor O.; Casey, Nancy J.

    2005-01-01

    SQL-RAMS (where "SQL" signifies Structured Query Language and "RAMS" signifies Rocketdyne Automated Management System) is a successor to the legacy version of RAMS a computer program used to manage all work, nonconformance, corrective action, and configuration management on rocket engines and ground support equipment at Stennis Space Center. The legacy version resided in the FileMaker Pro software system and was constructed in modules that could act as stand-alone programs. There was little or no integration among modules. Because of limitations on file-management capabilities in FileMaker Pro, and because of difficulty of integration of FileMaker Pro with other software systems for exchange of data using such industry standards as SQL, the legacy version of RAMS proved to be limited, and working to circumvent its limitations too time-consuming. In contrast, SQL-RAMS is an integrated SQL-server-based program that supports all data-exchange software industry standards. Whereas in the legacy version, it was necessary to access individual modules to gain insight to a particular work-status documents, SQL-RAMS provides access through a single-screen presentation of core modules. In addition, SQL-RAMS enable rapid and efficient filtering of displayed statuses by predefined categories and test numbers. SQL-RAMS is rich in functionality and encompasses significant improvements over the legacy system. It provides users the ability to perform many tasks which in the past required administrator intervention. Additionally many of the design limitations have been corrected allowing for a robust application that is user centric.

  14. Measurements of the light-absorbing material inside cloud droplets and its effect on cloud albedo

    NASA Technical Reports Server (NTRS)

    Twohy, C. H.; Clarke, A. D.; Warren, Stephen G.; Radke, L. F.; Charleson, R. J.

    1990-01-01

    Most of the measurements of light-absorbing aerosol particles made previously have been in non-cloudy air and therefore provide no insight into aerosol effects on cloud properties. Here, researchers describe an experiment designed to measure light absorption exclusively due to substances inside cloud droplets, compare the results to related light absorption measurements, and evaluate possible effects on the albedo of clouds. The results of this study validate those of Twomey and Cocks and show that the measured levels of light-absorbing material are negligible for the radiative properties of realistic clouds. For the measured clouds, which appear to have been moderately polluted, the amount of elemental carbon (EC) present was insufficient to affect albedo. Much higher contaminant levels or much larger droplets than those measured would be necessary to significantly alter the radiative properties. The effect of the concentrations of EC actually measured on the albedo of snow, however, would be much more pronounced since, in contrast to clouds, snowpacks are usually optically semi-infinite and have large particle sizes.

  15. Review of Mid- to High-Temperature Solar Selective Absorber Materials

    SciTech Connect

    Kennedy, C. E.

    2002-07-01

    This report describes the concentrating solar power (CSP) systems using solar absorbers to convert concentrated sunlight to thermal electric power. It is possible to achieve solar absorber surfaces for efficient photothermal conversion having high solar absorptance (a) for solar radiation and a low thermal emittance (e) at the operational temperature. A low reflectance (?'' 0) at wavelengths (?) 3 mm and a high reflectance (?'' 1) at l 3 mm characterize spectrally selective surfaces. The operational temperature ranges of these materials for solar applications can be categorized as low temperature (T< 100 C), mid-temperature (100 C< T< 400 C), and high-temperature (T> 400 C). High- and mid-temperature applications are needed for CSP applications. For CSP applications, the ideal spectrally selective surface would be low-cost and easy to manufacture, chemically and thermally stable in air at elevated operating temperatures (T= 500 C), and have a solar absorptance= 0.98 and a thermal emittance= 0.05 at 500 C.

  16. Generalization in probabilistic RAM nets.

    PubMed

    Clarkson, T G; Guan, Y; Taylor, J G; Gorse, D

    1993-01-01

    The probabilistic RAM (pRAM) is a hardware-realizable neural device which is stochastic in operation and highly nonlinear. Even small nets of pRAMs offer high levels of functionality. The means by which a pRAM network generalizes when trained in noise is shown and the results of this behavior are described.

  17. Ram-jet Performance

    NASA Technical Reports Server (NTRS)

    Cervenko, A. J.; Friedman, R.

    1956-01-01

    The ram jet is basically one of the most dimple types of aircraft engine. It consists only of an inlet diffuser, a combustion system, and an exit nozzle. A typical ram-jet configuration is shown in figure 128. The engine operates on the Brayton cycle, and ideal cycle efficiency depends only on the ratio of engine to ambient pressure. The increased, engine pressures are obtained by ram action alone, and for this reason the ram jet has zero thrust at zero speed. Therefore, ram-jet-powered aircraft must be boosted to flight speeds close to a Mach number of 1.0 before appreciable thrust is generated by the engine. Since pressure increases are obtained by ram action alone, combustor-inlet pressures and temperatures are controlled by the flight speed, the ambient atmospheric condition, and by the efficiency of the inlet diffuser. These pressures and temperatures, as functions of flight speed and altitude, are shown in figure 129 for the NACA standard atmosphere and for practical values of diffuser efficiency. It can be seen that very wide ranges of combustor-inlet temperatures and pressures may be encountered over the ranges of flight velocity and altitude at which ram jets may be operated. Combustor-inlet temperatures from 500 degrees to 1500 degrees R and inlet pressures from 5 to 100 pounds per square inch absolute represent the approximate ranges of interest in current combustor development work. Since the ram jet has no moving parts in the combustor outlet, higher exhaust-gas temperatures than those used in current turbojets are permissible. Therefore, fuel-air ratios equivalent to maximum rates of air specific impulse or heat release can be used, and, for hydrocarbon fuels, this weight ratio is about 0.070. Lower fuel-air ratios down to about 0.015 may also be required to permit efficient cruise operation. This fuel-air-ratio range of 0.015 to 0.070 used in ram jets can be compared with the fuel-air ratios up to 0.025 encountered in current turbojets. Ram

  18. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials.

    PubMed

    Grinberg, Ilya; West, D Vincent; Torres, Maria; Gou, Gaoyang; Stein, David M; Wu, Liyan; Chen, Guannan; Gallo, Eric M; Akbashev, Andrew R; Davies, Peter K; Spanier, Jonathan E; Rappe, Andrew M

    2013-11-28

    Ferroelectrics have recently attracted attention as a candidate class of materials for use in photovoltaic devices, and for the coupling of light absorption with other functional properties. In these materials, the strong inversion symmetry breaking that is due to spontaneous electric polarization promotes the desirable separation of photo-excited carriers and allows voltages higher than the bandgap, which may enable efficiencies beyond the maximum possible in a conventional p-n junction solar cell. Ferroelectric oxides are also stable in a wide range of mechanical, chemical and thermal conditions and can be fabricated using low-cost methods such as sol-gel thin-film deposition and sputtering. Recent work has shown how a decrease in ferroelectric layer thickness and judicious engineering of domain structures and ferroelectric-electrode interfaces can greatly increase the current harvested from ferroelectric absorber materials, increasing the power conversion efficiency from about 10(-4) to about 0.5 per cent. Further improvements in photovoltaic efficiency have been inhibited by the wide bandgaps (2.7-4 electronvolts) of ferroelectric oxides, which allow the use of only 8-20 per cent of the solar spectrum. Here we describe a family of single-phase solid oxide solutions made from low-cost and non-toxic elements using conventional solid-state methods: [KNbO3]1 - x[BaNi1/2Nb1/2O3 - δ]x (KBNNO). These oxides exhibit both ferroelectricity and a wide variation of direct bandgaps in the range 1.1-3.8 electronvolts. In particular, the x = 0.1 composition is polar at room temperature, has a direct bandgap of 1.39 electronvolts and has a photocurrent density approximately 50 times larger than that of the classic ferroelectric (Pb,La)(Zr,Ti)O3 material. The ability of KBNNO to absorb three to six times more solar energy than the current ferroelectric materials suggests a route to viable ferroelectric semiconductor-based cells for solar energy conversion and

  19. The hybrid of SnO2 nanoparticle and polypyrrole aerogel: an excellent electromagnetic wave absorbing materials

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Dai, Xiaoqing; Jiang, Wanchun; Wu, Fan; Xie, Aming

    2016-07-01

    As a kind of costless and lightweight material, SnO2 nanoparticles@polypyrrole hybrid aerogels have been synthesized and displayed electromagnetic wave absorbing (EWA) performance. Only with 10 wt% of nano-SnO2 filler loading in wax, effective EWA bandwidth of the hybrid aerogel can reach 7.28 GHz which is the widest lightweight EWA material among the reported absorbents. Through the regulation of sample thicknesses, effective EWA at lower frequencies can also be achieved. It was demonstrated that this aerogel can be used as an effective lightweight broadband EWA material.

  20. A comparison of the shock-absorbing properties of cervical disc prosthesis bearing materials

    PubMed Central

    Dahl, Michael C.; Jacobsen, Stephen; Metcalf, Newton; Sasso, Rick; Ching, Randal P.

    2011-01-01

    Background Data Cervical arthroplasty offers theoretical advantages over traditional spinal fusion, including elimination of adjacent segment disease and elimination of the risk of pseudoarthrosis formation. Initial studies of cervical arthroplasty have shown promising results, however, the ideal design characteristics for disc replacement constructs have not been determined. The current study seeks to quantify the differences in the shock absorption characteristics of three commonly used materials in cervical disc arthroplasty. Methods Three different nucleus materials, polyurethane (PU), polyethylene (PE) and a titanium-alloy (Ti) were tested in a humidity- and temperature-controlled chamber. Ten of each nucleus type underwent three separate mechanical testing protocols to measure 1) dynamic stiffness, 2) quasi-static stiffness, 3) energy absorption, and 4) energy dissipation. The results were compared using analysis of variance. Results PU had the lowest mean dynamic stiffness (435 ± 13 N/mm, P < .0001) and highest energy absorption (19.4 ± 0.1 N/mm, P < .0001) of all three nucleus materials tested. PU was found to have significantly higher energy dissipation (viscous damping ratio 0.017 ± 0,001, P < .0001) than the PE or TI nuclei. PU had the lowest quasi-static stiffness (598 ± 23 N/mm, P < .0001) of the nucleus materials tested. A biphasic response curve was observed for all of the PU nuclei tests. Conclusions Polyurethane absorbs and dissipates more energy and is less stiff than either polyethylene or titanium. Level of Evidence Basic Science/Biomechanical Study. Clinical Relevance This study characterizes important differences in biomechanical properties of materials that are currently being used for different cervical disc prostheses. PMID:25802668

  1. Inorganic-organic solar cells based on quaternary sulfide as absorber materials.

    PubMed

    Hong, Tiantian; Liu, Zhifeng; Yan, Weiguo; Liu, Junqi; Zhang, Xueqi

    2015-12-14

    We report a novel promising quaternary sulfide (CuAgInS) to serve as a semiconductor sensitizer material in the photoelectrochemical field. In this study, CuAgInS (CAIS) sulfide sensitized ZnO nanorods were fabricated on ITO substrates through a facile and low-cost hydrothermal chemical method and applied on photoanodes for solar cells for the first time. The component and stoichiometry were key factors in determining the photoelectric performance of CAIS sulfide, which were controlled by modulating their reaction time. ZnO/Cu0.7Ag0.3InS2 nanoarrays exhibit an enhanced optical and photoelectric performance and the power conversion efficiency of ITO/ZnO/Cu0.7Ag0.3InS2/P3HT/Pt solid-state solar cell was up to 1.80%. The remarkable performance stems from improved electron transfer, a higher efficiency of light-harvesting and appropriate band gap alignment at the interface of the ZnO/Cu0.7Ag0.3InS2 NTs. The research indicates that CAIS as an absorbing material has enormous potential in solar cell systems.

  2. Derivation of a Levelized Cost of Coating (LCOC) metric for evaluation of solar selective absorber materials

    SciTech Connect

    Ho, C. K.; Pacheco, J. E.

    2015-06-05

    A new metric, the Levelized Cost of Coating (LCOC), is derived in this paper to evaluate and compare alternative solar selective absorber coatings against a baseline coating (Pyromark 2500). In contrast to previous metrics that focused only on the optical performance of the coating, the LCOC includes costs, durability, and optical performance for more comprehensive comparisons among candidate materials. The LCOC is defined as the annualized marginal cost of the coating to produce a baseline annual thermal energy production. Costs include the cost of materials and labor for initial application and reapplication of the coating, as well as the cost of additional or fewer heliostats to yield the same annual thermal energy production as the baseline coating. Results show that important factors impacting the LCOC include the initial solar absorptance, thermal emittance, reapplication interval, degradation rate, reapplication cost, and downtime during reapplication. The LCOC can also be used to determine the optimal reapplication interval to minimize the levelized cost of energy production. As a result, similar methods can be applied more generally to determine the levelized cost of component for other applications and systems.

  3. Derivation of a Levelized Cost of Coating (LCOC) metric for evaluation of solar selective absorber materials

    DOE PAGES

    Ho, C. K.; Pacheco, J. E.

    2015-06-05

    A new metric, the Levelized Cost of Coating (LCOC), is derived in this paper to evaluate and compare alternative solar selective absorber coatings against a baseline coating (Pyromark 2500). In contrast to previous metrics that focused only on the optical performance of the coating, the LCOC includes costs, durability, and optical performance for more comprehensive comparisons among candidate materials. The LCOC is defined as the annualized marginal cost of the coating to produce a baseline annual thermal energy production. Costs include the cost of materials and labor for initial application and reapplication of the coating, as well as the costmore » of additional or fewer heliostats to yield the same annual thermal energy production as the baseline coating. Results show that important factors impacting the LCOC include the initial solar absorptance, thermal emittance, reapplication interval, degradation rate, reapplication cost, and downtime during reapplication. The LCOC can also be used to determine the optimal reapplication interval to minimize the levelized cost of energy production. As a result, similar methods can be applied more generally to determine the levelized cost of component for other applications and systems.« less

  4. Inorganic-organic solar cells based on quaternary sulfide as absorber materials.

    PubMed

    Hong, Tiantian; Liu, Zhifeng; Yan, Weiguo; Liu, Junqi; Zhang, Xueqi

    2015-12-14

    We report a novel promising quaternary sulfide (CuAgInS) to serve as a semiconductor sensitizer material in the photoelectrochemical field. In this study, CuAgInS (CAIS) sulfide sensitized ZnO nanorods were fabricated on ITO substrates through a facile and low-cost hydrothermal chemical method and applied on photoanodes for solar cells for the first time. The component and stoichiometry were key factors in determining the photoelectric performance of CAIS sulfide, which were controlled by modulating their reaction time. ZnO/Cu0.7Ag0.3InS2 nanoarrays exhibit an enhanced optical and photoelectric performance and the power conversion efficiency of ITO/ZnO/Cu0.7Ag0.3InS2/P3HT/Pt solid-state solar cell was up to 1.80%. The remarkable performance stems from improved electron transfer, a higher efficiency of light-harvesting and appropriate band gap alignment at the interface of the ZnO/Cu0.7Ag0.3InS2 NTs. The research indicates that CAIS as an absorbing material has enormous potential in solar cell systems. PMID:26553746

  5. Coupling Hollow Fe3O4-Fe Nanoparticles with Graphene Sheets for High-Performance Electromagnetic Wave Absorbing Material.

    PubMed

    Qu, Bin; Zhu, Chunling; Li, Chunyan; Zhang, Xitian; Chen, Yujin

    2016-02-17

    We developed a strategy for coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. The hollow Fe3O4-Fe nanoparticles with average diameter and shell thickness of 20 and 8 nm, respectively, were uniformly anchored on the graphene sheets without obvious aggregation. The minimal reflection loss RL values of the composite could reach -30 dB at the absorber thickness ranging from 2.0 to 5.0 mm, greatly superior to the solid Fe3O4-Fe/G composite and most magnetic EM wave absorbing materials recently reported. Moreover, the addition amount of the composite into paraffin matrix was only 18 wt %.

  6. Incorporation of Integral Fuel Burnable Absorbers Boron and Gadolinium into Zirconium-Alloy Fuel Clad Material

    SciTech Connect

    Sridharan, K.; Renk, T.J.; Lahoda, E.J.; Corradini, M.L

    2004-12-14

    Long-lived fuels require the use of higher enrichments of 235U or other fissile materials. Such high levels of fissile material lead to excessive fuel activity at the beginning of life. To counteract this excessive activity, integral fuel burnable absorbers (IFBA) are added to some rods in the fuel assembly. The two commonly used IFBA elements are gadolinium, which is added as gadolinium-oxide to the UO2 powder, and boron, which is applied as a zirconium-diboride coating on the UO2 pellets using plasma spraying or chemical vapor deposition techniques. The incorporation of IFBA into the fuel has to be performed in a nuclear-regulated facility that is physically separated from the main plant. These operations tend to be very costly because of their small volume and can add from 20 to 30% to the manufacturing cost of the fuel. Other manufacturing issues that impact cost and performance are maintaining the correct levels of dosing, the reduction in fuel melting point due to gadolinium-oxide additions, and parasitic neutron absorption at fuel's end-of-life. The goal of the proposed research is to develop an alternative approach that involves incorporation of boron or gadolinium into the outer surface of the fuel cladding material rather than as an additive to the fuel pellets. This paradigm shift will allow for the introduction of the IFBA in a non-nuclear regulated environment and will obviate the necessity of additional handling and processing of the fuel pellets. This could represent significant cost savings and potentially lead to greater reproducibility and control of the burnable fuel in the early stages of the reactor operation. The surface alloying is being performed using the IBEST (Ion Beam Surface Treatment) process developed at Sandia National Laboratories. IBEST involves the delivery of energetic ion beam pulses onto the surface of a material, near-surface melting, and rapid solidification. The non-equilibrium nature of such processing allows for surface

  7. A Novel, Real-Valued Genetic Algorithm for Optimizing Radar Absorbing Materials

    NASA Technical Reports Server (NTRS)

    Hall, John Michael

    2004-01-01

    A novel, real-valued Genetic Algorithm (GA) was designed and implemented to minimize the reflectivity and/or transmissivity of an arbitrary number of homogeneous, lossy dielectric or magnetic layers of arbitrary thickness positioned at either the center of an infinitely long rectangular waveguide, or adjacent to the perfectly conducting backplate of a semi-infinite, shorted-out rectangular waveguide. Evolutionary processes extract the optimal physioelectric constants falling within specified constraints which minimize reflection and/or transmission over the frequency band of interest. This GA extracted the unphysical dielectric and magnetic constants of three layers of fictitious material placed adjacent to the conducting backplate of a shorted-out waveguide such that the reflectivity of the configuration was 55 dB or less over the entire X-band. Examples of the optimization of realistic multi-layer absorbers are also presented. Although typical Genetic Algorithms require populations of many thousands in order to function properly and obtain correct results, verified correct results were obtained for all test cases using this GA with a population of only four.

  8. The Ram's Horn.

    ERIC Educational Resources Information Center

    Rassias, John A., Ed.; And Others

    1983-01-01

    The summer-fall and winter-spring numbers of the journal, "The Ram's Horn," contain these articles: "The Text as Dramatic Departure"; "The Dartmouth Language Outreach Approach to Spanish for Police Action"; "The Dartmouth Intensive Language Model (DILM) in Florida: John Rassias with High School Teachers"; "The Flexibility of Using Drama Techniques…

  9. Organizational Impact of RAMS.

    ERIC Educational Resources Information Center

    Staebler, Mel

    A series of observations is made regarding the potential impact of the Remotely Accessible Management System (RAMS) upon the administrative structure of the Pontiac, Michigan City School System. Nine major results of the district wide needs assessment are reported, and evidence is advanced to support the conclusion that modern educational…

  10. Study of earth abundant tco and absorber materials for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Prabhakar, Tejas

    In order to make photovoltaic power generation a sustainable venture, it is necessary to use cost-effective materials in the manufacture of solar cells. In this regard, AZO (Aluminum doped Zinc Oxide) and CZTS (Copper Zinc Tin Sulfide) have been studied for their application in thin film solar cells. While AZO is a transparent conducting oxide, CZTS is a photovoltaic absorber. Both AZO and CZTS consist of earth abundant elements and are non-toxic in nature. Highly transparent and conductive AZO thin films were grown using RF sputtering. The influence of deposition parameters such as working pressure, RF power, substrate temperature and flow rate on the film characteristics was investigated. The as-grown films had a high degree of preferred orientation along the (002) direction which enhanced at lower working pressures, higher RF powers and lower substrate temperatures. Williamson-Hall analysis on the films revealed that as the working pressure was increased, the nature of stress and strain gradually changed from being compressive to tensile. The fall in optical transmission of the films was a consequence of free carrier absorption resulting from enhanced carrier density due to incorporation of Al atoms or oxygen vacancies. The optical and electrical properties of the films were described well by the Burstein-Moss effect. CZTS absorber layers were grown using ultrasonic spray pyrolysis at a deposition temperature of 350 C and subsequently annealed in a sulfurization furnace. Measurements from XRD and Raman spectra confirmed the presence of pure single phase Cu2ZnSnS4. Texture analysis of as-deposited and annealed CZTS films indicated that the (112) plane which is characteristic of the kesterite phase was preferred. The grain size increased from 50 nm to 100 nm on conducting post-deposition annealing. CZTS films with stoichiometric composition yielded a band gap of 1.5 eV, which is optimal for solar energy conversion. The variation of tin in the film changed its

  11. Measured Wavelength-Dependent Absorption Enhancement of Internally Mixed Black Carbon with Absorbing and Nonabsorbing Materials.

    PubMed

    You, Rian; Radney, James G; Zachariah, Michael R; Zangmeister, Christopher D

    2016-08-01

    Optical absorption spectra of laboratory generated aerosols consisting of black carbon (BC) internally mixed with nonabsorbing materials (ammonium sulfate, AS, and sodium chloride, NaCl) and BC with a weakly absorbing brown carbon surrogate derived from humic acid (HA) were measured across the visible to near-IR (550 to 840 nm). Spectra were measured in situ using a photoacoustic spectrometer and step-scanning a supercontinuum laser source with a tunable wavelength and bandwidth filter. BC had a mass-specific absorption cross section (MAC) of 7.89 ± 0.25 m(2) g(-1) at λ = 550 nm and an absorption Ångström exponent (AAE) of 1.03 ± 0.09 (2σ). For internally mixed BC, the ratio of BC mass to the total mass of the mixture was chosen as 0.13 to mimic particles observed in the terrestrial atmosphere. The manner in which BC mixed with each material was determined from transmission electron microscopy (TEM). AS/BC and HA/BC particles were fully internally mixed, and the BC was both internally and externally mixed for NaCl/BC particles. The AS/BC, NaCl/BC, and HA/BC particles had AAEs of 1.43 ± 0.05, 1.34 ± 0.06, and 1.91 ± 0.05, respectively. The observed absorption enhancement of mixed BC relative to the pure BC was wavelength dependent for AS/BC and decreased from 1.5 at λ = 550 nm with increasing wavelength while the NaCl/BC enhancement was essentially wavelength independent. For HA/BC, the enhancement ranged from 2 to 3 and was strongly wavelength dependent. Removal of the HA absorption contribution to enhancement revealed that the enhancement was ≈1.5 and independent of wavelength. PMID:27359341

  12. Rice straw-wood particle composite for sound absorbing wooden construction materials.

    PubMed

    Yang, Han-Seung; Kim, Dae-Jun; Kim, Hyun-Joong

    2003-01-01

    In this study, rice straw-wood particle composite boards were manufactured as insulation boards using the method used in the wood-based panel industry. The raw material, rice straw, was chosen because of its availability. The manufacturing parameters were: a specific gravity of 0.4, 0.6, and 0.8, and a rice straw content (10/90, 20/80, and 30/70 weight of rice straw/wood particle) of 10, 20, and 30 wt.%. A commercial urea-formaldehyde adhesive was used as the composite binder, to achieve 140-290 psi of bending modulus of rupture (MOR) with 0.4 specific gravity, 700-900 psi of bending MOR with 0.6 specific gravity, and 1400-2900 psi of bending MOR with a 0.8 specific gravity. All of the composite boards were superior to insulation board in strength. Width and length of the rice straw particle did not affect the bending MOR. The composite boards made from a random cutting of rice straw and wood particles were the best and recommended for manufacturing processes. Sound absorption coefficients of the 0.4 and 0.6 specific gravity boards were higher than the other wood-based materials. The recommended properties of the rice straw-wood particle composite boards are described, to absorb noises, preserve the temperature of indoor living spaces, and to be able to partially or completely substitute for wood particleboard and insulation board in wooden constructions. PMID:12653275

  13. Analysis of the effect of different absorber materials and loading on the shielding effectiveness of a metallic enclosure

    NASA Astrophysics Data System (ADS)

    Parr, S.; Karcoon, H.; Dickmann, S.; Rambousky, R.

    2015-11-01

    Metallic rooms as part of a complex system, like a ship, are necessarily connected electromagnetically via apertures and cables to the outside. Therefore, their electromagnetic shielding effectiveness (SE) is limited by ventilation openings, cable feed-throughs and door gaps. Thus, electronic equipment inside these rooms is susceptible to outer electromagnetic threats like IEM (Intentional Electromagnetic Interference). Dielectric or magnetic absorber inside such a screened room can be used in order to prevent the SE from collapsing at the resonant frequencies. In this contribution, the effect of different available absorber materials is compared, as well as other properties like weight and workability. Furthermore, parameter variations of the absorber as well as the effect of loading in form of metallic and dielectric structures on the SE are analyzed.

  14. Evaluation of Aluminum-Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear Fuel

    SciTech Connect

    Wang, Lumin; Wierschke, Jonathan Brett

    2015-04-08

    The objective of this work was to understand the corrosion behavior of Boral® and Bortec® neutron absorbers over long-term deployment in a used nuclear fuel dry cask storage environment. Corrosion effects were accelerated by flowing humidified argon through an autoclave at temperatures up to 570°C. Test results show little corrosion of the aluminum matrix but that boron is leaching out of the samples. Initial tests performed at 400 and 570°C were hampered by reduced flow caused by the rapid build-up of solid deposits in the outlet lines. Analysis of the deposits by XRD shows that the deposits are comprised of boron trioxide and sassolite (H3BO3). The collection of boron- containing compounds in the outlet lines indicated that boron was being released from the samples. Observation of the exposed samples using SEM and optical microscopy show the growth of new phases in the samples. These phases were most prominent in Bortec® samples exposed at 570°C. Samples of Boral® exposed at 570°C showed minimal new phase formation but showed nearly the complete loss of boron carbide particles. Boron carbide loss was also significant in Boral samples at 400°C. However, at 400°C phases similar to those found in Bortec® were observed. The rapid loss of the boron carbide particles in the Boral® is suspected to inhibit the formation of the new secondary phases. However, Material samples in an actual dry cask environment would be exposed to temperatures closer to 300°C and less water than the lowest test. The results from this study conclude that at the temperature and humidity levels present in a dry cask environment, corrosion and boron leaching will have no effect on the performance of Boral® and Bortec® to maintain criticality control.

  15. Development of FeCoB/Graphene Oxide based microwave absorbing materials for X-Band region

    NASA Astrophysics Data System (ADS)

    Das, Sukanta; Chandra Nayak, Ganesh; Sahu, S. K.; Oraon, Ramesh

    2015-06-01

    This work explored the microwave absorption capability of Graphene Oxide and Graphene Oxide coated with FeCoB for stealth technology. Epoxy based microwave absorbing materials were prepared with 30% loading of Graphene Oxide, FeCoB alloy and Graphene Oxide coated with FeCoB. Graphene Oxide and FeCoB were synthesized by Hummer's and Co-precipitation methods, respectively. The filler particles were characterized by FESEM, XRD and Vibrating Sample Magnetometer techniques. Permittivity, permeability and reflection loss values of the composite absorbers were measured with vector network analyzer which showed a reflection loss value of -7.86 dB, at 10.72 GHz, for single layered Graphene Oxide/Epoxy based microwave absorbers which can be correlated to the absorption of about 83.97% of the incident microwave energy. Reflection loss value of FeCoB/Epoxy based microwave absorber showed -13.30 dB at 11.67 GHz, which corresponded to maximum absorption of 93.8%. However, reflection loss values of Graphene Oxide coated with FeCoB/Epoxy based single-layer absorber increased to -22.24 dB at 12.4 GHz which corresponds to an absorption of 99% of the incident microwave energy.

  16. On the physical and geometrical properties responsible for the highly absorbing nature of black materials in the infrared

    NASA Astrophysics Data System (ADS)

    Meier, Steven Robert

    Black surfaces are of paramount importance in the design of terrestrial and space-borne optical systems. Optical designers can choose from a variety of black materials to suppress reflected and scattered stray light. Among these applications are the suppression of unwanted reflection or scattering of light in optical systems, solar collectors, blackbody absorbers, thermal insulators, telescope housing and baffles where stray light reduction is vital, and cold stops and light shields for infrared detectors. The physical mechanisms responsible for understanding the highly absorbing nature of black materials in the infrared spectral region are investigated in this dissertation. We present experimental data on the optical, surface, and constituent properties of black materials. In addition, we developed unique optical instrumentation to characterize the hemispherical reflectance and scattering properties of these materials as a function of incident angle and state of polarization. We compared the experimental data to theoretical rough surface scattering models to understand the absorption mechanisms of these black materials and found good agreement. Furthermore, results from a new, highly absorbing black material in the infrared wavelength regime, known as carbon aerogels, are presented and shown to be superior or equivalent to existing black materials used by optical designers. In addition, we presented a new cylindrical-spherical cavity enclosure and calculated the apparent emissivity along the bounding surfaces of this new cavity enclosure. To our knowledge, this was the first calculation of the apparent emissivity for a cavity enclosure with obscuration. Finally, we proposed several improvements for each individual black material in order to achieve even higher absorption levels.

  17. A Two-Step Absorber Deposition Approach To Overcome Shunt Losses in Thin-Film Solar Cells: Using Tin Sulfide as a Proof-of-Concept Material System.

    PubMed

    Steinmann, Vera; Chakraborty, Rupak; Rekemeyer, Paul H; Hartman, Katy; Brandt, Riley E; Polizzotti, Alex; Yang, Chuanxi; Moriarty, Tom; Gradečak, Silvija; Gordon, Roy G; Buonassisi, Tonio

    2016-08-31

    As novel absorber materials are developed and screened for their photovoltaic (PV) properties, the challenge remains to reproducibly test promising candidates for high-performing PV devices. Many early-stage devices are prone to device shunting due to pinholes in the absorber layer, producing "false-negative" results. Here, we demonstrate a device engineering solution toward a robust device architecture, using a two-step absorber deposition approach. We use tin sulfide (SnS) as a test absorber material. The SnS bulk is processed at high temperature (400 °C) to stimulate grain growth, followed by a much thinner, low-temperature (200 °C) absorber deposition. At a lower process temperature, the thin absorber overlayer contains significantly smaller, densely packed grains, which are likely to provide a continuous coating and fill pinholes in the underlying absorber bulk. We compare this two-step approach to the more standard approach of using a semi-insulating buffer layer directly on top of the annealed absorber bulk, and we demonstrate a more than 3.5× superior shunt resistance Rsh with smaller standard error σRsh. Electron-beam-induced current (EBIC) measurements indicate a lower density of pinholes in the SnS absorber bulk when using the two-step absorber deposition approach. We correlate those findings to improvements in the device performance and device performance reproducibility.

  18. A Two-Step Absorber Deposition Approach To Overcome Shunt Losses in Thin-Film Solar Cells: Using Tin Sulfide as a Proof-of-Concept Material System.

    PubMed

    Steinmann, Vera; Chakraborty, Rupak; Rekemeyer, Paul H; Hartman, Katy; Brandt, Riley E; Polizzotti, Alex; Yang, Chuanxi; Moriarty, Tom; Gradečak, Silvija; Gordon, Roy G; Buonassisi, Tonio

    2016-08-31

    As novel absorber materials are developed and screened for their photovoltaic (PV) properties, the challenge remains to reproducibly test promising candidates for high-performing PV devices. Many early-stage devices are prone to device shunting due to pinholes in the absorber layer, producing "false-negative" results. Here, we demonstrate a device engineering solution toward a robust device architecture, using a two-step absorber deposition approach. We use tin sulfide (SnS) as a test absorber material. The SnS bulk is processed at high temperature (400 °C) to stimulate grain growth, followed by a much thinner, low-temperature (200 °C) absorber deposition. At a lower process temperature, the thin absorber overlayer contains significantly smaller, densely packed grains, which are likely to provide a continuous coating and fill pinholes in the underlying absorber bulk. We compare this two-step approach to the more standard approach of using a semi-insulating buffer layer directly on top of the annealed absorber bulk, and we demonstrate a more than 3.5× superior shunt resistance Rsh with smaller standard error σRsh. Electron-beam-induced current (EBIC) measurements indicate a lower density of pinholes in the SnS absorber bulk when using the two-step absorber deposition approach. We correlate those findings to improvements in the device performance and device performance reproducibility. PMID:27494110

  19. Electromagnetic property of SiO2-coated carbonyl iron/polyimide composites as heat resistant microwave absorbing materials

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Zhu, Dongmei; Zhou, Wancheng; Luo, Fa

    2015-02-01

    Heat resistant microwave absorbing materials were prepared by compression molding method, using polyimide resin as matrix and SiO2 coated carbonyl iron (CI) as filler. The SiO2 coated CI particles were prepared by Stober process. The microwave absorbing properties and the effect of heat treatment on the electromagnetic properties of SiO2 coated CI/polyimide composites were investigated. When the content of SiO2 coated CI is 60 wt%, the value of minimum reflection loss decreases from -25 dB to -33 dB with the thickness increases from 1.5 mm to 2.1 mm. According to the thermal-gravimetric analyses (TGA) curves, the polyimide matrix can be used at 300 °C for long time. The complex permittivity of the composites slightly increases while the complex permeability almost keeps constant after heat treatment at 300 °C for 10 h, which indicating that the composites can be used at elevated temperature as microwave absorbing materials at the same time have good heat resistance and microwave absorption.

  20. Retrospective study of absorbable gelatin sponge soaked in triamicinolone acetonide as interpositioning material in temporomandibular joint ankylosis in 350 patients

    PubMed Central

    Pal, U.S.; Singh, Nimisha; Malkunje, Laxman R.; Singh, R.K.; Dhasmana, Satish; Yadav, Arvind Kumar; Chand, Sharad

    2012-01-01

    Aim To evaluate the feasibility and usefulness of absorbable gelatin sponge soaked in triamcinolone acetonide as an interposition material in the treatment of temporomandibular joint (TMJ) ankylosis. Materials and methods This retrospective study was conducted in 350 patients of TMJ ankylosis who visited our outpatient department between 2000 and 2010, and were treated by the same surgeon. Patients were randomly divided into two groups, where in group 1, absorbable gelatin sponge soaked with triamcinolone acetonide was interposed in the surgical gap created after arthroplasty and in group 2, temporalis fascia was interposed. Preoperative assessment included history and physical examination, along with cause of ankylosis, Postoperative observation were undertaken for maximum mouth opening (MMO), facial nerve paralysis and recurrence. Results At one year follow-up, in group 1 MMO ranged from 35 to 45 mm with no case of re-ankylosis while in the other group 25–43 mm, with re-ankylosis in 20 patients (13.69%). Conclusion The findings of this study showed successful management of TMJ ankylosis using absorbable gelatin sponge soaked in triamcinolone acetonide in cases which did not require condylar reconstruction. PMID:25737875

  1. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  2. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  3. Development of High Band Gap Absorber and Buffer Materials for Thin Film Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Dwyer, Dan

    2011-12-01

    CuInGaSe2 (CIGS) device efficiencies are the highest of the thin film absorber materials (vs. CdTe, alpha-Si, CuInSe2). However, the band gap of the highest efficiency CIGS cells deviates from the expected ideal value predicted by models [1]. Widening the band gap to the theoretically ideal value is one way to increase cell efficiencies. Widening the band gap can be accomplished in two ways; by finding a solution to the Ga-related defects which limit the open circuit voltage at high Ga ratios, or by utilizing different elemental combinations to form an alternative high band gap photoactive Cu-chalcopyrite (which includes any combination of the cations Cu, Al, Ga, and In along with the anions S, Se, and Te). This thesis focuses on the second option, substituting aluminum for gallium in the chalcopyrite lattice to form a CuInAlSe2 (CIAS) film using a sputtering and selenization approach. Both sequential and co-sputtering of metal precursors is performed. Indium was found to be very mobile during both sputtering processes, with a tendency to diffuse to the film surface even when deposited as the base layer in a sequential sputtering process. Elemental diffusion was controlled to a degree using thicker Cu top layer in co-sputtering. The greater thermal conductivity of stainless steel foil (16 W/mK) vs. glass (0.9-1.3 W/mK) can also be used to limit indium diffusion, by keeping the substrate cooler during sputtering. In both sputtering methods aluminum is deposited oxygen-free by capping the film with a Cu capping layer in combination with controlling the indium diffusion. Selenization of metal precursor films is completed using two different techniques. The first is a thermal evaporation approach from a heated box source (method 1 -- reactive thermal evaporation (RTE-Se)). The second is batch selenization using a heated tube furnace (method 2 -- batch selenization). Some batch selenized precursors were capped with ˜ 1mum of selenium. In both selenization methods

  4. Remotely Accessible Management System (RAMS).

    ERIC Educational Resources Information Center

    Wood, Rex

    Oakland Schools, an Intermediate School District for Administration, operates a Remotely Accessible Management System (RAMS). RAMS is composed of over 100 computer programs, each of which performs procedures on the files of the 28 local school districts comprising the constituency of Oakland Schools. This regional service agency covers 900 square…

  5. Two-photon or higher-order absorbing optical materials and methods of use

    NASA Technical Reports Server (NTRS)

    Marder, Seth (Inventor); Perry, Joseph (Inventor)

    2001-01-01

    Compositions capable of simultaneous two-photon absorption and higher order absorptivities are disclosed. Many of these compositions are compounds satisfying the formulae D-.PI.-D, A-.PI.-A, D-A-D and A-D-A, wherein D is an electron donor group, A is an electron acceptor group and .PI. comprises a bridge of .pi.-conjugated bonds connecting the electron donor groups and electron acceptor groups. In A-D-A and D-A-D compounds, the .pi. bridge is substituted with electron donor groups and electron acceptor groups, respectively. Also disclosed are methods that generate an electronically excited state of a compound, including those satisfying one of these formulae. The electronically excited state is achieved in a method that includes irradiating the compound with light. Then, the compound is converted to a multi-photon electronically excited state upon simultaneous absorption of at least two photons of light. The sum of the energies of all of the absorbed photons is greater than or equal to the transition energy from a ground state of the compound to the multi-photon excited state. The energy of each absorbed photon is less than the transition energy between the ground state and the lowest single-photon excited state of the compound is less than the transition energy between the multi-photon excited state and the ground state.

  6. Quantitation of absorbed or deposited materials on a substrate that measures energy deposition

    DOEpatents

    Grant, Patrick G.; Bakajin, Olgica; Vogel, John S.; Bench, Graham

    2005-01-18

    This invention provides a system and method for measuring an energy differential that correlates to quantitative measurement of an amount mass of an applied localized material. Such a system and method remains compatible with other methods of analysis, such as, for example, quantitating the elemental or isotopic content, identifying the material, or using the material in biochemical analysis.

  7. Two-Photon or Higher-Order Absorbing Optical Materials for Generation of Reactive Species

    NASA Technical Reports Server (NTRS)

    Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R. (Inventor); Perry, Joseph W. (Inventor)

    2013-01-01

    Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.

  8. Two-photon or higher-order absorbing optical materials for generation of reactive species

    NASA Technical Reports Server (NTRS)

    Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R. (Inventor); Perry, Joseph W. (Inventor)

    2003-01-01

    Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.

  9. Two-photon or higher-order absorbing optical materials for generation of reactive species

    NASA Technical Reports Server (NTRS)

    Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R (Inventor); Perry, Joseph W (Inventor)

    2007-01-01

    Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.

  10. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  11. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  12. Measurement and Simulation of Thermal Conductivity of Hafnium-Aluminum Thermal Neutron Absorber Material

    NASA Astrophysics Data System (ADS)

    Guillen, Donna Post; Harris, William H.

    2016-09-01

    A metal matrix composite (MMC) material composed of hafnium aluminide (Al3Hf) intermetallic particles in an aluminum matrix has been identified as a promising material for fast flux irradiation testing applications. This material can filter thermal neutrons while simultaneously providing high rates of conductive cooling for experiment capsules. The purpose of this work is to investigate effects of Hf-Al material composition and neutron irradiation on thermophysical properties, which were measured before and after irradiation. When performing differential scanning calorimetry (DSC) on the irradiated specimens, a large exotherm corresponding to material annealment was observed. Therefore, a test procedure was developed to perform DSC and laser flash analysis (LFA) to obtain the specific heat and thermal diffusivity of pre- and post-annealment specimens. This paper presents the thermal properties for three states of the MMC material: (1) unirradiated, (2) as-irradiated, and (3) irradiated and annealed. Microstructure-property relationships were obtained for the thermal conductivity. These relationships are useful for designing components from this material to operate in irradiation environments. The ability of this material to effectively conduct heat as a function of temperature, volume fraction Al3Hf, radiation damage, and annealing is assessed using the MOOSE suite of computational tools.

  13. Plasmonic materials based on ZnO films and their potential for developing broadband middle-infrared absorbers

    SciTech Connect

    Kesim, Yunus E. Battal, Enes; Okyay, Ali K.

    2014-07-15

    Noble metals such as gold and silver have been extensively used for plasmonic applications due to their ability to support plasmons, yet they suffer from high intrinsic losses. Alternative plasmonic materials that offer low loss and tunability are desired for a new generation of efficient and agile devices. In this paper, atomic layer deposition (ALD) grown ZnO is investigated as a candidate material for plasmonic applications. Optical constants of ZnO are investigated along with figures of merit pertaining to plasmonic waveguides. We show that ZnO can alleviate the trade-off between propagation length and mode confinement width owing to tunable dielectric properties. In order to demonstrate plasmonic resonances, we simulate a grating structure and computationally demonstrate an ultra-wide-band (4–15 μm) infrared absorber.

  14. SeaRAM: an evaluation of the safety of RAM transport by sea

    SciTech Connect

    McConnell, P.; Sorenson, K.B.; Carter, M.H.; Keane, M.P.; Keith, V.F.; Heid, R.J.

    1995-12-31

    SeaRAM is a multi-year Department of Energy (DOE) project designed to validate the safety of shipping radioactive materials (RAM) by sea. The project has an ultimate goal of developing and demonstrating analytic tools for performing comprehensive analyses to evaluate the risks to humans and the environment due to sea transport of plutonium, vitrified high-level waste (VHLW), and spent fuel associated with reprocessing and research reactors. To achieve this end, evaluations of maritime databases and structural an thermal analyses of particular severe collision and fire accidents have been and will continue to be conducted. Program management for SeaRAM is based at the DOE`s Office of Environmental Restoration. Technical activities for the project are being conducted at Sandia National Laboratories (SNL). Several private organizations are also involved in providing technical support, notably Engineering Computer Optecnomics, Inc. (ECO). The technical work performed for SeaRAM also supports DOE participation in an International Atomic Energy Agency (IAEA) Cooperative Research Program (CRP) entitled Accident Severity at Sea During Transport of Radioactive Material. This paper discusses activities performed during the first year of the project.

  15. Exploiting Mycosporines as Natural Molecular Sunscreens for the Fabrication of UV-Absorbing Green Materials.

    PubMed

    Fernandes, Susana C M; Alonso-Varona, Ana; Palomares, Teodoro; Zubillaga, Verónica; Labidi, Jalel; Bulone, Vincent

    2015-08-01

    Ultraviolet radiations have many detrimental effects in living organisms that challenge the stability and function of cellular structures. UV exposure also alters the properties and durability of materials and affects their lifetime. It is becoming increasingly important to develop new biocompatible and environmentally friendly materials to address these issues. Inspired by the strategy developed by fish, algae, and microorganisms exposed to UV radiations in confined ecosystems, we have constructed novel UV-protective materials that exclusively consist of natural compounds. Chitosan was chosen as the matrix for grafting mycosporines and mycosporine-like amino acids as the functional components of the active materials. Here, we show that these materials are biocompatible, photoresistant, and thermoresistant, and exhibit a highly efficient absorption of both UV-A and UV-B radiations. Thus, they have the potential to provide an efficient protection against both types of UV radiations and overcome several shortfalls of the current UV-protective products. In practice, the same concept can be applied to other biopolymers than chitosan and used to produce multifunctional materials. Therefore, it has a great potential to be exploited in a broad range of applications in living organisms and nonliving systems. PMID:26168193

  16. Exploiting Mycosporines as Natural Molecular Sunscreens for the Fabrication of UV-Absorbing Green Materials.

    PubMed

    Fernandes, Susana C M; Alonso-Varona, Ana; Palomares, Teodoro; Zubillaga, Verónica; Labidi, Jalel; Bulone, Vincent

    2015-08-01

    Ultraviolet radiations have many detrimental effects in living organisms that challenge the stability and function of cellular structures. UV exposure also alters the properties and durability of materials and affects their lifetime. It is becoming increasingly important to develop new biocompatible and environmentally friendly materials to address these issues. Inspired by the strategy developed by fish, algae, and microorganisms exposed to UV radiations in confined ecosystems, we have constructed novel UV-protective materials that exclusively consist of natural compounds. Chitosan was chosen as the matrix for grafting mycosporines and mycosporine-like amino acids as the functional components of the active materials. Here, we show that these materials are biocompatible, photoresistant, and thermoresistant, and exhibit a highly efficient absorption of both UV-A and UV-B radiations. Thus, they have the potential to provide an efficient protection against both types of UV radiations and overcome several shortfalls of the current UV-protective products. In practice, the same concept can be applied to other biopolymers than chitosan and used to produce multifunctional materials. Therefore, it has a great potential to be exploited in a broad range of applications in living organisms and nonliving systems.

  17. Spacecraft ram glow and surface temperature

    NASA Technical Reports Server (NTRS)

    Swenson, G. R.; Mende, S. B.; Llewellyn, E. J.

    1987-01-01

    Space shuttle glow intensity measurements show large differences when the data from different missions are compared. In particular, on the 41-G mission the space shuttle ram glow was observed to display an unusually low intensity. Subsequent investigation of this measurement and earlier measurements suggest that there was a significant difference in temperature of the glow producing ram surfaces. The highly insulating properties coupled with the high emissivity of the shuttle tile results in surfaces that cool quickly when exposed to deep space on the night side of the orbit. The increased glow intensity is consistent with the hypothesis that the glow is emitted from excited NO2. The excited NO2 is likely formed through three body recombination (OI + NO + M = NO2*) where ramming of OI interacts with weakly surface bound NO. The NO is formed from atmospheric OI and NI which is scavenged by the spacecraft moving through the atmosphere. It is postulated that the colder surfaces retain a thicker layer of NO thereby increasing the probability of the reaction. It has been found from the glow intensity/temperature data that the bond energy of the surface bound precursor, leading to the chemical recombination producing the glow, is approximately 0.14 eV. A thermal analysis of material samples of STS-8 was made and the postulated temperature change of individual material samples prior to the time of glow measurements above respective samples are consistent with the thermal effect on glow found for the orbiter surface.

  18. Comparison of amorphous silicon absorber materials: Light-induced degradation and solar cell efficiency

    NASA Astrophysics Data System (ADS)

    Stuckelberger, M.; Despeisse, M.; Bugnon, G.; Schüttauf, J.-W.; Haug, F.-J.; Ballif, C.

    2013-10-01

    Several amorphous silicon (a-Si:H) deposition conditions have been reported to produce films that degrade least under light soaking when incorporated into a-Si:H solar cells. However, a systematic comparison of these a-Si:H materials has never been presented. In the present study, different plasma-enhanced chemical vapor deposition conditions, yielding standard low-pressure VHF a-Si:H, protocrystalline, polymorphous, and high-pressure RF a-Si:H materials, are compared with respect to their optical properties and their behavior when incorporated into single-junction solar cells. A wide deposition parameter space has been explored in the same deposition system varying hydrogen dilution, deposition pressure, temperature, frequency, and power. From the physics of layer growth, to layer properties, to solar cell performance and light-induced degradation, a consistent picture of a-Si:H materials that are currently used for a-Si:H solar cells emerges. The applications of these materials in single-junction, tandem, and triple-junction solar cells are discussed, as well as their deposition compatibility with rough substrates, taking into account aspects of voltage, current, and charge collection. In sum, this contributes to answering the question, "Which material is best for which type of solar cell?"

  19. Prediction of the niche effect for single flat panels with or without attached sound absorbing materials.

    PubMed

    Sgard, Franck; Atalla, Noureddine; Nélisse, Hugues

    2015-01-01

    The sound transmission loss (STL) of a test sample measured in sound transmission facilities is affected by the opening in which it is located. This is called the niche effect. This paper uses a modal approach to study the STL of a rectangular plate with or without an attached porous material located inside a box-shaped niche. The porous material is modeled as a limp equivalent fluid. The proposed model is validated by comparison with finite element/boundary element computations. Using a condensation of the pressure fields in the niche, the niche effect is interpreted in terms of a modification of the modal blocked pressure fields acting on the panel induced by the front cavity and by a modification of the radiation efficiency of the panel modes due to the presence of the back cavity. The modal approach is then used to investigate the impact of (1) the presence of a porous material attached to the panel on the niche effect and (2) the niche effect on the assessment of the porous material insertion loss. A simplified model for the porous material based on a transfer matrix approach is also proposed to predict the STL of the system and its validity is discussed.

  20. Prediction of the niche effect for single flat panels with or without attached sound absorbing materials.

    PubMed

    Sgard, Franck; Atalla, Noureddine; Nélisse, Hugues

    2015-01-01

    The sound transmission loss (STL) of a test sample measured in sound transmission facilities is affected by the opening in which it is located. This is called the niche effect. This paper uses a modal approach to study the STL of a rectangular plate with or without an attached porous material located inside a box-shaped niche. The porous material is modeled as a limp equivalent fluid. The proposed model is validated by comparison with finite element/boundary element computations. Using a condensation of the pressure fields in the niche, the niche effect is interpreted in terms of a modification of the modal blocked pressure fields acting on the panel induced by the front cavity and by a modification of the radiation efficiency of the panel modes due to the presence of the back cavity. The modal approach is then used to investigate the impact of (1) the presence of a porous material attached to the panel on the niche effect and (2) the niche effect on the assessment of the porous material insertion loss. A simplified model for the porous material based on a transfer matrix approach is also proposed to predict the STL of the system and its validity is discussed. PMID:25618044

  1. The physical properties of black carbon and other light-absorbing material emitted from prescribed fires in the United States

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Kreidenweis, S. M.; Yokelson, R. J.; Sullivan, A. P.; Lee, T.; Collett, J. L.; Fortner, E.; Onasch, T. B.; Akagi, S. K.; Taylor, J.; Coe, H.

    2012-12-01

    Black carbon (BC) aerosol emitted from fires absorbs light, leading to visibility degradation as well as regional and global climate impacts. Fires also emit a wide range of trace gases and particulates that can interact with emitted BC and alter its optical properties and atmospheric lifetime. Non-BC particulate species emitted by fires can also scatter and absorb light, leading to additional effects on visibility. Recent work has shown that certain organic species can absorb light strongly at shorter wavelengths, giving it a brown or yellow color. This material has been classified as brown carbon, though it is not yet well defined. Land managers must find a balance between the negative impacts of prescribed fire emissions on visibility and air quality and the need to prevent future catastrophic wildfire as well as manage ecosystems for habitat restoration or other purposes. This decision process requires accurate assessments of the visibility impacts of fire emissions, including BC and brown carbon, which in turn depend on their optical properties. We present recent laboratory and aircraft measurements of black carbon and aerosol optical properties emitted from biomass burning. All measurement campaigns included a single particle soot photometer (SP2) instrument capable of providing size-resolved measurements of BC mass and number distributions and mixing state, which are needed to separate the BC and brown carbon contributions to total light absorption. The laboratory experiments also included a three-wavelength photoacoustic spectrometer that provided accurate measurements of aerosol light absorption. The laboratory systems also characterized emissions after they had been treated with a thermal denuder to remove semi-volatile coatings, allowing an assessment of the role of non-BC coatings on bulk aerosol optical properties. Emissions were also aged in an environmental smog chamber to examine the role of secondary aerosol production on aerosol optical properties.

  2. A summary of measurements of permittivities and permeabilities of some microwave absorbing materials

    NASA Astrophysics Data System (ADS)

    Spurgeon, W. A.; Elrayess, M.; Dorsey, P.; Vittoria, C.

    1990-05-01

    This report presents results of measurements of permittivities and permeabilities of assorted materials collected by the U.S. Army Office of Low Observables Technology and Applications (LOTA), and by the U.S. Army Materials Technology Laboratory (MTL). The samples fell into the following categories: (1) Pure materials (Teflon, plexiglasses and casting plastic); (2) Metal-coated microspheres; (3) Carbospheres, both uncoated and metal coated; (4) Ferrites; (5) Magnetic metal flake; (6) Ceramic matrix composites; and (7) A standard paint. The data and its limitations and plans for additional testing are presented in the text. The most interesting results were obtained for a Rockwell Ferrite and for a 50/50 ferronickel flake which showed magnetic loss from 2 to 18 GHz.

  3. Characterization of porous glass-ceramic material as absorber of electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Kazmina, O.; Suslyaev, V.; Dushkina, M.; Semukhin, B.

    2015-04-01

    Investigations of a foam glass-ceramic material synthesized from raw siliceous earth material by the two-stage method at temperatures below 950°C have demonstrated the improvement of its physic mechanical properties in comparison with foam glass synthesized from glass cullet. This material actively interacts with microwaves and can be used for the development of protective screens reducing the adverse effect of microwaves on biological objects, anechoic chambers, and rooms with low level of electromagnetic background noise. Spectra of the transmission and absorption coefficients and of the complex dielectric permittivity for frequencies in the range 26-260 GHz are presented. The observed effects demonstrate the existence of regions with partial and total reflection arising on the glass-pore boundary and of the microwave interaction with ultradisperse carbon particles that remain after foaming with incomplete frothier transition from the soot to the gas phase.

  4. On the Prediction of the Nonlinear Absorption in Reverse Saturable Absorbing Materials

    NASA Astrophysics Data System (ADS)

    Pachter, Ruth; Nguyen, Kiet A.; Day, Paul N.; Kennel, Joshua C.

    2001-03-01

    In our continuing efforts to design materials that exhibit reverse saturable absorption (RSA), we systematically examine the ability of the time-dependent density functional theory (TDDFT) method using local, nonlocal, and hybrid functionals, to predict the experimental nonlinear absorption for a variety of organic and organometallic molecular systems, including a number of free-base porphyrins, phthalocyanine and their metal complexes. The ground and triplet-triplet excitation energies, as well as the oscillator strengths are calculated, indicating good agreement with experiment. We conclude that the TDDFT approach with a hybrid functional provides good estimates for the nonlinear absorption of RSA materials.

  5. Remote Attitude Measurement Sensor (RAMS)

    NASA Technical Reports Server (NTRS)

    Davis, H. W.

    1989-01-01

    Remote attitude measurement sensor (RAMS) offers a low-cost, low-risk, proven design concept that is based on mature, demonstrated space sensor technology. The electronic design concepts and interpolation algorithms were tested and proven in space hardware like th Retroreflector Field Tracker and various star trackers. The RAMS concept is versatile and has broad applicability to both ground testing and spacecraft needs. It is ideal for use as a precision laboratory sensor for structural dynamics testing. It requires very little set-up or preparation time and the output data is immediately usable without integration or extensive analysis efforts. For on-orbit use, RAMS rivals any other type of dynamic structural sensor (accelerometer, lidar, photogrammetric techniques, etc.) for overall performance, reliability, suitability, and cost. Widespread acceptance and extensive usage of RAMS will occur only after some interested agency, such as OAST, adopts the RAMS concept and provides the funding support necessary for further development and implementation of RAMS for a specific program.

  6. Remote Attitude Measurement Sensor (RAMS)

    NASA Astrophysics Data System (ADS)

    Davis, H. W.

    1989-07-01

    Remote attitude measurement sensor (RAMS) offers a low-cost, low-risk, proven design concept that is based on mature, demonstrated space sensor technology. The electronic design concepts and interpolation algorithms were tested and proven in space hardware like th Retroreflector Field Tracker and various star trackers. The RAMS concept is versatile and has broad applicability to both ground testing and spacecraft needs. It is ideal for use as a precision laboratory sensor for structural dynamics testing. It requires very little set-up or preparation time and the output data is immediately usable without integration or extensive analysis efforts. For on-orbit use, RAMS rivals any other type of dynamic structural sensor (accelerometer, lidar, photogrammetric techniques, etc.) for overall performance, reliability, suitability, and cost. Widespread acceptance and extensive usage of RAMS will occur only after some interested agency, such as OAST, adopts the RAMS concept and provides the funding support necessary for further development and implementation of RAMS for a specific program.

  7. Preventing improper disposal of healthcare facility waste containing RAM.

    PubMed

    Michel, René; Zorn, Michael J

    2004-05-01

    Non-hazardous waste management facilities, which are not authorized to receive licensable radioactive material (RAM), periodically find contaminated waste in shipments from local healthcare facilities. As a consequence, many healthcare facilities are cited each year for losing control and/or improperly disposing of RAM at unauthorized disposal sites. Healthcare radiation safety professionals must ensure that effective measures are in place at their facilities to prevent RAM from inadvertently being included with non-radioactive waste shipments. The objective of this article is to assist in developing and implementing procedures to properly monitor and dispose of waste containing RAM. This article discusses, among other topics, the installation of portal monitors containing both visual and audible alarms to screen medical waste, instruction to individuals handling medical waste and emergency response procedures.

  8. Analysis of SnS2 hyperdoped with V proposed as efficient absorber material.

    PubMed

    Seminovski, Yohanna; Palacios, Pablo; Wahnón, Perla

    2014-10-01

    Intermediate-band materials can improve the photovoltaic efficiency of solar cells through the absorption of two subband-gap photons that allow extra electron-hole pair formations. Previous theoretical and experimental findings support the proposal that the layered SnS2 compound, with a band-gap of around 2 eV, is a candidate for an intermediate-band material when it is doped with a specific transition-metal. In this work we characterize vanadium doped SnS2 using density functional theory at the dilution level experimentally found and including a dispersion correction combined with the site-occupancy-disorder method. In order to analyze the electronic characteristics that depend on geometry, two SnS2 polytypes partially substituted with vanadium in symmetry-adapted non-equivalent configurations were studied. In addition the magnetic configurations of vanadium in a SnS2 2H-polytype and its comparison with a 4H-polytype were also characterized. We demonstrate that a narrow intermediate-band is formed, when these dopant atoms are located in different layers. Our theoretical predictions confirm the recent experimental findings in which a paramagnetic intermediate-band material in a SnS2 2H-polytype with 10% vanadium concentration is obtained. PMID:25204457

  9. Chemistry away from local equilibrium: shocking high-energy and energy absorbing materials

    NASA Astrophysics Data System (ADS)

    Strachan, Alejandro

    2015-06-01

    In this presentation I will describe reactive molecular dynamics and coarse grain simulations of shock induced chemistry. MD simulations of the chemical reactions following the shock-induced collapse of cylindrical pores in the high-energy density material RDX provide the first atomistic picture of the shock to deflagration transition in nanoscale hotspots. We find that energy localization during pore collapse leads to ultra-fast, multi-step chemical reactions that occur under non-equilibrium conditions. The formation of exothermic products during the first few picoseconds of the process prevents the hotspot from quenching, and within 30 ps a deflagration wave develops. Quite surprisingly, an artificial hot-spot matching the shock-induced one in size and thermodynamic conditions quenches; providing strong evidence that the dynamic nature of the loading plays a role in determining the criticality of the hotspot. To achieve time and lengths beyond what is possible in MD we developed a mesoscale model that incorporates chemical reactions at a coarse-grained level. We used this model to explore shock propagation on materials that can undergo volume-reducing, endothermic chemical reactions. The simulations show that such chemical reactions can attenuate the shockwave and characterize how the characteristics of the chemistry affect this behavior. We find that the amount of volume collapse and the activation energy are critical to weaken the shock, whereas the endothermicity of the reactions plays only a minor role. As in the reactive MD simulations, we find that the non-equilibrium state following the shock affects the nucleation of chemistry and, thus, the timescales for equilibration between various degrees of freedom affect the response of the material.

  10. Absorbed Gamma-Ray Doses due to Natural Radionuclides in Building Materials

    SciTech Connect

    Aguiar, Vitor A. P.; Medina, Nilberto H.; Moreira, Ramon H.; Silveira, Marcilei A. G.

    2010-05-21

    This work is devoted to the application of high-resolution gamma-ray spectrometry in the study of the effective dose coming from naturally occurring radionuclides, namely {sup 40}K, {sup 232}Th and {sup 238}U, present in building materials such as sand, cement, and granitic gravel. Four models were applied to estimate the effective dose and the hazard indices. The maximum estimated effective dose coming from the three reference rooms considered is 0.90(45) mSv/yr, and maximum internal hazard index is 0.77(24), both for the compact clay brick reference room. The principal gamma radiation sources are cement, sand and bricks.

  11. Absorbed Gamma-Ray Doses due to Natural Radionuclides in Building Materials

    NASA Astrophysics Data System (ADS)

    Aguiar, Vitor A. P.; Medina, Nilberto H.; Moreira, Ramon H.; Silveira, Marcilei A. G.

    2010-05-01

    This work is devoted to the application of high-resolution gamma-ray spectrometry in the study of the effective dose coming from naturally occurring radionuclides, namely 40K, 232Th and 238U, present in building materials such as sand, cement, and granitic gravel. Four models were applied to estimate the effective dose and the hazard indices. The maximum estimated effective dose coming from the three reference rooms considered is 0.90(45) mSv/yr, and maximum internal hazard index is 0.77(24), both for the compact clay brick reference room. The principal gamma radiation sources are cement, sand and bricks.

  12. Scientists Identify New Family of Iron-Based Absorber Materials for Solar Cells (Fact Sheet), NREL Highlights, Science

    SciTech Connect

    Not Available

    2011-10-01

    Use of Earth-abundant materials in solar absorber films is critical for expanding the reach of photovoltaic (PV) technologies. The use of Earth-abundant and inexpensive Fe in PV was proposed more than 25 years ago in the form of FeS{sub 2} pyrite - fool's gold. Unfortunately, the material has been plagued by performance problems that to this day are both persistent and not well understood. Researchers from the National Renewable Energy Laboratory (NREL) and Oregon State University, working collaboratively in the Center for Inverse Design, an Energy Frontier Research Center, have uncovered several new insights into the problems of FeS{sub 2}. They have used these advances to propose and implement design rules that can be used to identify new Fe-containing materials that can circumvent the limitations of FeS{sub 2} pyrite. The team has identified that it is the unavoidable metallic secondary phases and surface defects coexisting near the FeS{sub 2} thin-film surfaces and grain boundaries that limit its open-circuit voltage, rather than the S vacancies in the bulk, which has long been commonly assumed. The materials Fe{sub 2}SiS{sub 4} and Fe{sub 2}GeS{sub 4} hold considerable promise as PV absorbers. The ternary Si compound is especially attractive, as it contains three of the more abundant low-cost elements available today. The band gap (E{sub g} = 1.5 eV) from both theory and experiment is higher than those of c-Si and FeS{sub 2}, offering better absorption of the solar spectrum and potentially higher solar cell efficiencies. More importantly, these materials do not have metallic secondary phase problems as seen in FeS{sub 2}. High calculated formation energies of donor-type defects are consistent with p-type carriers in thin films and are prospects for high open-circuit voltages in cells.

  13. A Versatile and Scalable Approach toward Robust Superhydrophobic Porous Materials with Excellent Absorbency and Flame Retardancy.

    PubMed

    Ruan, Changping; Shen, Mengxia; Ren, Xiaoyan; Ai, Kelong; Lu, Lehui

    2016-08-09

    The frequent oil spillages and the industrial discharge of organic contaminants have not only created severe environmental and ecological crises, but also cause a risk of fire and explosion. These environmental and safety issues emphasize the urgent need for materials that possess superior sorption capability and less flammability and thus can effectively and safely clean up the floating oils and water-insoluble organic compounds. Here we present the successful hydrophobic modification of the flame retardant melamine sponge with a commercial fluorosilicone, by using a facile one-step solvent-free approach and demonstrate that the resultant superhydrophobic sponge not only exhibits extraordinary absorption efficiency (including high capacity, superior selectivity, good recyclability, and simple recycling routes), but also retains excellent flame retardancy and robust stability. In comparison to conventional methods, which usually utilize massive organic solvents, the present approach does not involve any complicated process or sophisticated equipment nor generates any waste liquids, and thus is a more labor-saving, environment-friendly, energy-efficient and cost-effective strategy for the hydrophobic modification. Taking into account the critical role of hydrophobic porous materials, especially in the field of environmental remediation, the approach presented herein would be highly valuable for environmental remediation and industrial applications.

  14. A Versatile and Scalable Approach toward Robust Superhydrophobic Porous Materials with Excellent Absorbency and Flame Retardancy.

    PubMed

    Ruan, Changping; Shen, Mengxia; Ren, Xiaoyan; Ai, Kelong; Lu, Lehui

    2016-01-01

    The frequent oil spillages and the industrial discharge of organic contaminants have not only created severe environmental and ecological crises, but also cause a risk of fire and explosion. These environmental and safety issues emphasize the urgent need for materials that possess superior sorption capability and less flammability and thus can effectively and safely clean up the floating oils and water-insoluble organic compounds. Here we present the successful hydrophobic modification of the flame retardant melamine sponge with a commercial fluorosilicone, by using a facile one-step solvent-free approach and demonstrate that the resultant superhydrophobic sponge not only exhibits extraordinary absorption efficiency (including high capacity, superior selectivity, good recyclability, and simple recycling routes), but also retains excellent flame retardancy and robust stability. In comparison to conventional methods, which usually utilize massive organic solvents, the present approach does not involve any complicated process or sophisticated equipment nor generates any waste liquids, and thus is a more labor-saving, environment-friendly, energy-efficient and cost-effective strategy for the hydrophobic modification. Taking into account the critical role of hydrophobic porous materials, especially in the field of environmental remediation, the approach presented herein would be highly valuable for environmental remediation and industrial applications. PMID:27501762

  15. A Versatile and Scalable Approach toward Robust Superhydrophobic Porous Materials with Excellent Absorbency and Flame Retardancy

    NASA Astrophysics Data System (ADS)

    Ruan, Changping; Shen, Mengxia; Ren, Xiaoyan; Ai, Kelong; Lu, Lehui

    2016-08-01

    The frequent oil spillages and the industrial discharge of organic contaminants have not only created severe environmental and ecological crises, but also cause a risk of fire and explosion. These environmental and safety issues emphasize the urgent need for materials that possess superior sorption capability and less flammability and thus can effectively and safely clean up the floating oils and water-insoluble organic compounds. Here we present the successful hydrophobic modification of the flame retardant melamine sponge with a commercial fluorosilicone, by using a facile one-step solvent-free approach and demonstrate that the resultant superhydrophobic sponge not only exhibits extraordinary absorption efficiency (including high capacity, superior selectivity, good recyclability, and simple recycling routes), but also retains excellent flame retardancy and robust stability. In comparison to conventional methods, which usually utilize massive organic solvents, the present approach does not involve any complicated process or sophisticated equipment nor generates any waste liquids, and thus is a more labor-saving, environment-friendly, energy-efficient and cost-effective strategy for the hydrophobic modification. Taking into account the critical role of hydrophobic porous materials, especially in the field of environmental remediation, the approach presented herein would be highly valuable for environmental remediation and industrial applications.

  16. Tunable microwave absorbing nano-material for X-band applications

    NASA Astrophysics Data System (ADS)

    Sadiq, Imran; Naseem, Shahzad; Ashiq, Muhammad Naeem; Khan, M. A.; Niaz, Shanawer; Rana, M. U.

    2016-03-01

    The effect of rare earth elements substitution in Sr1.96RE0.04Co2Fe27.80Mn0.2O46 (RE=Ce, Gd, Nd, La and Sm) X-type hexagonal ferrites prepared by using sol gel autocombustion method was studied. The XRD and FTIR analysis show the single phase of the prepared material. The lattice constants a (Å) and c (Å) varies with the additives. The particle size measured by Scherer formula for all the samples varies in the range of 54-100 nm and confirmed by the TEM analysis. The average grain size measured by SEM analysis lies in the range of 0.672-1.01 μm for all the samples. The Gd-substituted ferrite has higher value of coercivity (526.06 G) among all the samples which could be a good material for longitudinal recording media. The results also indicate that the Gd-substituted sample has maximum reflection loss of -25.2 dB at 11.878 GHz, can exhibit the best microwave absorption properties among all the substituted samples. Furthermore, the minimum value of reflection loss shifts towards the lower and higher frequencies with the substitution of rare earth elements which confirms that the microwave absorption properties can be tuned with the substitution of rare earth elements in pure ferrites. The peak value of attenuation constant at higher frequency agrees well the reflection loss data.

  17. A Versatile and Scalable Approach toward Robust Superhydrophobic Porous Materials with Excellent Absorbency and Flame Retardancy

    PubMed Central

    Ruan, Changping; Shen, Mengxia; Ren, Xiaoyan; Ai, Kelong; Lu, Lehui

    2016-01-01

    The frequent oil spillages and the industrial discharge of organic contaminants have not only created severe environmental and ecological crises, but also cause a risk of fire and explosion. These environmental and safety issues emphasize the urgent need for materials that possess superior sorption capability and less flammability and thus can effectively and safely clean up the floating oils and water-insoluble organic compounds. Here we present the successful hydrophobic modification of the flame retardant melamine sponge with a commercial fluorosilicone, by using a facile one-step solvent-free approach and demonstrate that the resultant superhydrophobic sponge not only exhibits extraordinary absorption efficiency (including high capacity, superior selectivity, good recyclability, and simple recycling routes), but also retains excellent flame retardancy and robust stability. In comparison to conventional methods, which usually utilize massive organic solvents, the present approach does not involve any complicated process or sophisticated equipment nor generates any waste liquids, and thus is a more labor-saving, environment-friendly, energy-efficient and cost-effective strategy for the hydrophobic modification. Taking into account the critical role of hydrophobic porous materials, especially in the field of environmental remediation, the approach presented herein would be highly valuable for environmental remediation and industrial applications. PMID:27501762

  18. Surface Modification of Fuel Cladding Materials with Integral Fuel BUrnable Absorber Boron

    SciTech Connect

    Dr. Kumar Sridharan; Dr. Todd Allen; Jesse Gudmundson; Benjamin Maier

    2008-11-03

    Integral fuel burnable absorgers (IFBA) are added to some rods in the fuel assembly to counteract excessive reactivity. These IFBA elements (usually boron or gadolinium) are presently incorporated in the U)2 pellets either by mixing in the pellets or as coatings on the pellet surface. In either case, the incorporation of ifba into the fuel has to be performed in a nuclear-regulated facility that is physically separated from the main plant. These operations tend to be costly and can add from 20 to 30% to the manufacturing cost of the fuel. The goal of this NEER research project was to develop an alternative approach that involves incorporation of IFBA element boron at the surface of the fuel cladding material.

  19. Preparation and low-frequency microwave-absorbing properties of MWCNTs/Co-Ni/Fe3O4 hybrid material

    NASA Astrophysics Data System (ADS)

    Lu, Shao-Wei; Yuan, Chao-Jun; Jia, Cai-Xia; Ma, Ke-Ming; Wang, Xiao-Qiang

    2016-04-01

    MWCNTs/Co-Ni/Fe3O4 hybrid material has been successfully prepared by electroless plating and coprecipitation method, which is applied to the low-frequency microwave absorption. Their surface morphology, structure, magnetism and electromagnetic properties in the low-frequency range of 1-4GHz were characterized by field-emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and vector network analyzer. Results indicated that magnetic Co-Ni/Fe3O4 particles were attached on the surface of multi-walled carbon nanotubes successfully. The saturation magnetization of MWCNTs/Co-Ni/Fe3O4 hybrid materials was 68.6emu/g and the coercivity is 17.9 Oe. The electromagnetic and microwave absorbing properties analysis in the low-frequency range of 1-4GHz indicated that the hybrid material exhibited excellent magnetic loss and the maximum reflection loss could reach ‑13.57dB at 1.51GHz with 1.05GHz bandwidth below ‑5dB.

  20. Transfer matrix method applied to the parallel assembly of sound absorbing materials.

    PubMed

    Verdière, Kévin; Panneton, Raymond; Elkoun, Saïd; Dupont, Thomas; Leclaire, Philippe

    2013-12-01

    The transfer matrix method (TMM) is used conventionally to predict the acoustic properties of laterally infinite homogeneous layers assembled in series to form a multilayer. In this work, a parallel assembly process of transfer matrices is used to model heterogeneous materials such as patchworks, acoustic mosaics, or a collection of acoustic elements in parallel. In this method, it is assumed that each parallel element can be modeled by a 2 × 2 transfer matrix, and no diffusion exists between elements. The resulting transfer matrix of the parallel assembly is also a 2 × 2 matrix that can be assembled in series with the classical TMM. The method is validated by comparison with finite element (FE) simulations and acoustical tube measurements on different parallel/series configurations at normal and oblique incidence. The comparisons are in terms of sound absorption coefficient and transmission loss on experimental and simulated data and published data, notably published data on a parallel array of resonators. From these comparisons, the limitations of the method are discussed. Finally, applications to three-dimensional geometries are studied, where the geometries are discretized as in a FE concept. Compared to FE simulations, the extended TMM yields similar results with a trivial computation time.

  1. Synthesis and characterisation of Copper Zinc Tin Sulphide (CZTS) compound for absorber material in solar-cells

    NASA Astrophysics Data System (ADS)

    Kheraj, Vipul; Patel, K. K.; Patel, S. J.; Shah, D. V.

    2013-01-01

    The development of thin-film semiconductor compounds, such as Copper Indium Gallium Selenide (CIGS), has caused remarkable progress in the field of thin-film photovoltaics. However, the scarcity and the increasing prices of indium impose the hunt for alternative materials. The Copper Zinc Tin Sulphide (CZTS) is one of the promising emerging materials with Kesterite-type crystal structure and favourable material properties like high absorption co-efficient and direct band-gap. Moreover, all the constituent elements of CZTS are non-toxic and aplenty on the earth-crust, making it a potential candidate for the thin-film photovoltaics. Here we report the synthesis of CZTS powder from its constituent elements, viz. copper, zinc, tin and sulphur, in an evacuated Quartz ampoule at 1030 K temperature. The sulphur content in the raw mixture in the ampoule was varied and optimised in order to attain the desired atomic stoichiometry of the compound. The synthesised powder was characterised by X-Ray diffraction technique (XRD), Raman Scattering Spectroscopy, Energy Dispersive Analysis of X-Ray (EDAX) and UV-Visible Absorption Spectra. The XRD Patterns of the synthesised compound show the preferred orientation of (112), (220) and (312) planes, confirming the Kesterite structure of CZTS. The chemical composition of the powder was analysed by EDAX and shows good atomic stoichiometry of the constituent elements in the CZTS compound. The UV-Vis absorption spectra confirm the direct band-gap of about 1.45 eV, which is quite close to the optimum value for the semiconductor material as an absorber in solar-cells.

  2. Time-bin quantum RAM

    NASA Astrophysics Data System (ADS)

    Moiseev, E. S.; Moiseev, S. A.

    2016-11-01

    We have proposed a compact scheme of quantum random access memory (qRAM) based on the impedance matched multi-qubit photon echo quantum memory incorporated with the control four-level atom in two coupled QED cavities. A set of matching conditions for basic physical parameters of the qRAM scheme that provides an efficient quantum control of the fast single photon storage and readout has been found. In particular, it has been discovered that the efficient qRAM operations are determined by the specific properties of the excited photonic molecule coupling the two QED cavities. Herein, the maximal efficiency of the qRAM is realized when the cooperativity parameter of the photonic molecule equals to unity that can be experimentally achievable. We have also elaborated upon the new quantum address scheme where the multi-time-bin photon state is used for the control of the four-level atom during the readout of the photonic qubits from the quantum memory. The scheme reduces the required number of logical elements to one. Experimental implementation by means of current quantum technologies in the optical and microwave domains is also discussed.

  3. Enantiomeric analysis of beta-pinene and limonene by direct coupling of reversed phase liquid chromatography and gas chromatography using absorbents as packing materials.

    PubMed

    Flores, Gema; Ruiz del Castillo, Maria Luisa; Herraiz, Marta

    2007-11-01

    A method based on the use of absorbents as packing materials inside the interface of the online coupling between RPLC and GC is proposed for the enantiomeric analysis of beta-pinene and limonene in essential oils. For that purpose, a comparison of the RSD, detection limit and recovery provided by two absorbents and one adsorbent is included in this study. The results found in this work proved the validity of absorbents as packing materials in online RPLC-GC to determine minor compounds in complex matrices. In particular, PDMS seemed to be specially useful to analyse nonpolar compounds, such as beta-pinene and limonene, since it provided higher sensitivity for this kind of compounds. The developed method was applied to the evaluation of the natural and non-natural character of commercial essential oils by means of the determination of the enantiomeric composition of beta-pinene and limonene.

  4. Study of the antifungal potential of novel cellulose/copper composites as absorbent materials for fruit juices.

    PubMed

    Llorens, Amparo; Lloret, Elsa; Picouet, Pierre; Fernandez, Avelina

    2012-08-17

    Cellulose/copper composites with antifungal properties have been synthesized by physical/chemical methods. Physical treatments by heat or by a combination of heat and UV radiation provided composites with metallic copper and excellent interfacial adhesion; in contrast, chemical reduction with borohydride generated small although partially aggregated copper oxide nanoparticles. Copper micro/nano-particles and copper ions (Cu(2+)) were released from the cellulose matrix at an adequate rate to achieve a strong antimicrobial activity against Saccharomyces cerevisiae in in vitro experiments. Moreover, the copper oxide composites showed an excellent antifungal activity in pineapple and melon juice, reducing about 4 log cycles the loads of spoilage-related yeasts and moulds. The metallic copper composites reduced in 4 log cycles the load of yeasts and moulds in pineapple juice, although their antifungal activity was weaker in contact with melon juice. Copper loaded absorbent materials could be selectively implemented during the shelf-life of minimally processed fruits to reduce the number of spoilage-related microorganisms in the drip.

  5. Evaluation of absorbed dose in irradiated sugar-containing plant material (peony roots) by an ESR method

    NASA Astrophysics Data System (ADS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2015-12-01

    The relationship between electron spin resonance (ESR) signal intensity of irradiated plant materials and sugar content was investigated by spectral analysis using peony roots. A weak background signal near g=2.005 was observed in the roots. After a 10 kGy irradiation, the ESR line broadened and the intensity increased, and the spectral characteristics were similar to a typical spectrum of irradiated food containing crystalline sugars. The free radical concentration was nearly stable 30 days after irradiation. The spectrum of peony root 30 days after irradiation was simulated using the summation of the intensities of six assumed components: radical signals derived from (a) sucrose, (b) glucose, (c) fructose, (d) cellulose, (e) the background signal near g=2.005 and (f) unidentified component. The simulated spectra using the six components were in agreement with the observed sample spectra. The intensity of sucrose radical signal in irradiated samples increased proportionally up to 20 kGy. In addition, the intensity of sucrose radical signals was strongly correlated with the sucrose contents of the samples. The results showed that the radiation sensitivity of sucrose in peony roots was influenced little by other plant constituents. There was also a good correlation between the total area of the spectra and the sucrose content, because the sucrose content was higher than that of other sugars in the samples. In peony roots, estimation of the absorbed dose from the ESR signal intensity may be possible by a calibration method based on the sucrose content.

  6. Intramuscular collagen characteristics of ram, wether, and zeranol-implanted ram lambs.

    PubMed

    Maiorano, G; McCormick, R J; Field, R A; Snowder, G

    1993-07-01

    Eighteen spring-born Columbia ram, wether, and zeranol-implanted ram lambs were studied to determine the influence of castration or zeranol implants on intramuscular collagen (IMC) properties and muscle shear force values. Warner-Bratzler shear force values for longissimus muscle were greatest for ram lambs, intermediate for implanted rams, and least for wethers (P < .05). Nonreducible collagen crosslink concentration was greater in IMC of rams and implanted rams (P < .05). The IMC from rams compared with that from wethers contained proportionately more Type III than Type I collagen (P < .05); values for implanted rams were intermediate. Heat-soluble muscle collagen concentration was greater for rams and implanted rams than for wethers (P < .05); however, insoluble collagen concentration did not differ by treatment. Muscle collagen concentrations were not different for rams, wethers, or implanted rams. Increased shear force values in rams were associated with elevated collagen crosslink concentration and increased proportion of Type III collagen. Greater concentration of soluble collagen in ram IMC neither diminished nor diluted IMC crosslinking. The proportion of heat-labile collagen in the fractions did not reflect the IMC crosslinking profile for ram and wether lambs. Zeranol implantation modified IMC characteristics of rams such that shear force values and some collagen properties were similar to those of wethers.

  7. Liquid Cryogen Absorber for MICE

    SciTech Connect

    Baynham, D.E.; Bish, P.; Bradshaw, T.W.; Cummings, M.A.; Green,M.A.; Ishimoto, S.; Ivaniouchenkov, I.; Lau, W.; Yang, S.Q.; Zisman, M.S.

    2005-08-20

    The Muon Ionization Cooling Experiment (MICE) will test ionization cooling of muons. In order to have effective ionization cooling, one must use an absorber that is made from a low-z material. The most effective low z materials for ionization cooling are hydrogen, helium, lithium hydride, lithium and beryllium, in that order. In order to measure the effect of material on cooling, several absorber materials must be used. This report describes a liquid-hydrogen absorber that is within a pair of superconducting focusing solenoids. The absorber must also be suitable for use with liquid helium. The following absorber components are discussed in this report; the absorber body, its heat exchanger, the hydrogen system, and the hydrogen safety. Absorber cooling and the thin windows are not discussed here.

  8. Research and Applications Modules (RAM), phase B study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The research and applications modules (RAM) system is discussed. The RAM is a family of payload carrier modules that can be delivered to and retrieved from earth orbit by the space shuttle. The RAM's capability for implementing a wide range of manned and man-tended missions is described. The rams have evolved into three types; (1) pressurized RAMs, (2) unpressurized RAMs, and (3) pressurizable free-flying RAMs. A reference experiment plan for use as a baseline in the derivation and planning of the RAM project is reported. The plan describes the number and frequency of shuttle flights dedicated to RAM missions and the RAM payloads for the identified flights.

  9. Light scattering by dust particles (PROGRA2 experiment): size and structure effects for transparent and absorbing materials

    NASA Astrophysics Data System (ADS)

    Hadamcik, E.; Renard, J.-B.; Lasue, J.; Levasseur-Regourd, A. C.

    2007-08-01

    1- Introduction Cometary and possibly interplanetary dust particles seem to be mainly made of agglomerates of submicron and micron-sized grains. These particles are among the most primitive in our solar system. Regoliths on asteroidal and planetary surfaces seem to be loose materials produced by impinging meteorites on the surface of small bodies. Comparing their physical properties is thus fundamental to understand their evolution. To interpret remote observations of solar light scattered by dust particles and regoliths, it is necessary to use numerical and experimental simulations [1,2,3]. 2- PROGRA2 experiment PROGRA2 instruments are polarimeters; the light sources are two randomly polarized lasers (632.8 nm and 543.5 nm). Levitating particles (in microgravity or lifted by an air-draught) are studied by imaging polarimetry. Details on the instruments can be found in [4,5]. 3- Samples Two kinds of samples are studied: compact particles in the (1-400) micrometer size range and fluffy aggregates in the same size range, made from submicron and micronsized grains. The materials are transparent silica and absorbing carbon. Some deposited particles are huge agglomerates of micron-sized grains produced by random ballistic deposition of single grains [6,7] or produced by evaporation of mixtures in alcohol of fluffy aggregates of submicron-sized grains. Two samples are made of silica spheres coated by a carbonaceous black compound. Cometary analogues are mixtures of silica and amorphous carbon or Mg-Fe silicates mixed with amorphous carbon. 4- Results Phase curves and their main parameters (negative polarization at small phase angles and maximum polarization, Pmax, at 90-100° phase angle) for the different materials will be compared and related to the physical properties. For example, it is well known by numerical simulations and/or by experiments that the maximum polarization decreases when the size (submicrometer range) of the grains increases [2,8,9]. An inverse rule

  10. HyRAM Testing Script.

    SciTech Connect

    Parkins, Owen

    2014-12-01

    The testing script is to provide a method of inspections to HyRAM (v1.0.0.244 Alpha) application features. This document will lead participants through the use of the application to make sure the application performs as designed. If a feature of the application becomes non-working, this script will relay useful information back to the designers of the application so that the feature can be fixed. This is essential to keep the application updated and performing as designed so that the users of this program can be satisfied. There will be frequent updates of this document to ensure proper testing of future application versions.

  11. Feasibility of Integrated Insulation in Rammed Earth

    NASA Astrophysics Data System (ADS)

    Stone, C.; Balintova, M.; Holub, M.

    2015-11-01

    Building Codes in Europe stipulate strict thermal performance criteria which any traditional rammed earth recipe cannot meet. This does not infer that the material itself is inferior; it has many other face saving attributes such as low embodied energy, high workability, sound insulation, fire resistance, aesthetics, high diffusivity and thermal accumulation properties. Integrated insulation is experimented with, to try achieve a 0.22 [W/(m2.K)] overall coefficient of heat transfer for walls required by 2015 Slovak standards, without using external insulation or using technologically complex interstitial insulation. This has the added aesthetic benefit of leaving the earth wall exposed to the external environment. Results evaluate the feasibility of this traditional approach.

  12. Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer-Lambert law absorbance of highly scattering materials.

    PubMed

    Gobrecht, Alexia; Bendoula, Ryad; Roger, Jean-Michel; Bellon-Maurel, Véronique

    2015-01-01

    Visible and Near Infrared (Vis-NIR) Spectroscopy is a powerful non destructive analytical method used to analyze major compounds in bulk materials and products and requiring no sample preparation. It is widely used in routine analysis and also in-line in industries, in-vivo with biomedical applications or in-field for agricultural and environmental applications. However, highly scattering samples subvert Beer-Lambert law's linear relationship between spectral absorbance and the concentrations. Instead of spectral pre-processing, which is commonly used by Vis-NIR spectroscopists to mitigate the scattering effect, we put forward an optical method, based on Polarized Light Spectroscopy to improve the absorbance signal measurement on highly scattering samples. This method selects part of the signal which is less impacted by scattering. The resulted signal is combined in the Absorption/Remission function defined in Dahm's Representative Layer Theory to compute an absorbance signal fulfilling Beer-Lambert's law, i.e. being linearly related to concentration of the chemicals composing the sample. The underpinning theories have been experimentally evaluated on scattering samples in liquid form and in powdered form. The method produced more accurate spectra and the Pearson's coefficient assessing the linearity between the absorbance spectra and the concentration of the added dye improved from 0.94 to 0.99 for liquid samples and 0.84-0.97 for powdered samples. PMID:25467494

  13. Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer-Lambert law absorbance of highly scattering materials.

    PubMed

    Gobrecht, Alexia; Bendoula, Ryad; Roger, Jean-Michel; Bellon-Maurel, Véronique

    2015-01-01

    Visible and Near Infrared (Vis-NIR) Spectroscopy is a powerful non destructive analytical method used to analyze major compounds in bulk materials and products and requiring no sample preparation. It is widely used in routine analysis and also in-line in industries, in-vivo with biomedical applications or in-field for agricultural and environmental applications. However, highly scattering samples subvert Beer-Lambert law's linear relationship between spectral absorbance and the concentrations. Instead of spectral pre-processing, which is commonly used by Vis-NIR spectroscopists to mitigate the scattering effect, we put forward an optical method, based on Polarized Light Spectroscopy to improve the absorbance signal measurement on highly scattering samples. This method selects part of the signal which is less impacted by scattering. The resulted signal is combined in the Absorption/Remission function defined in Dahm's Representative Layer Theory to compute an absorbance signal fulfilling Beer-Lambert's law, i.e. being linearly related to concentration of the chemicals composing the sample. The underpinning theories have been experimentally evaluated on scattering samples in liquid form and in powdered form. The method produced more accurate spectra and the Pearson's coefficient assessing the linearity between the absorbance spectra and the concentration of the added dye improved from 0.94 to 0.99 for liquid samples and 0.84-0.97 for powdered samples.

  14. Sound Absorbers

    NASA Astrophysics Data System (ADS)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  15. Determination of caffeine and caffeine-related metabolites in ephedra-containing standard reference materials using liquid chromatography with absorbance detection and tandem mass spectrometry.

    PubMed

    Thomas, Jeanice B; Sharpless, Katherine E; Mitvalsky, Staci; Roman, Mark; Yen, James; Satterfield, Mary B

    2007-01-01

    The concentrations of caffeine and caffeine-related compounds in 2 ephedra-containing reference materials have been determined by 3 independent methods with measurements performed by the National Institute of Standards and Technology (NIST) and a collaborating laboratory. Results from the 3 methods were used for value assignment of caffeine, theobromine, and theophylline in these Standard Reference Materials (SRMs). The methods used at NIST to determine the concentration levels of caffeine, theobromine, and theophylline in SRM 3243 Ephedra-Containing Solid Oral Dosage Form and SRM 3244 Ephedra-Containing Protein Powder used reversed-phase liquid chromatography with absorbance detection and tandem mass spectrometry. These reference materials are part of the first suite in a series of NIST SRMs that provide concentration values for multiple components in dietary supplements. These SRMs are primarily intended for method validation and for use as control materials to support the analysis of dietary supplements and similar materials.

  16. Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers.

    PubMed

    Luo, Zhengqian; Wu, Duanduan; Xu, Bin; Xu, Huiying; Cai, Zhiping; Peng, Jian; Weng, Jian; Xu, Shuo; Zhu, Chunhui; Wang, Fengqiu; Sun, Zhipei; Zhang, Han

    2016-01-14

    Passive Q-switching or mode-locking by placing a saturable absorber inside the laser cavity is one of the most effective and popular techniques for pulse generation. However, most of the current saturable absorbers cannot work well in the visible spectral region, which seriously impedes the progress of passively Q-switched/mode-locked visible pulsed fibre lasers. Here, we report a kind of visible saturable absorber-two-dimensional transition-metal dichalcogenides (TMDs, e.g. WS2, MoS2, MoSe2), and successfully demonstrate compact red-light Q-switched praseodymium (Pr(3+))-doped all-fibre lasers. The passive Q-switching operation at 635 nm generates stable laser pulses with ∼200 ns pulse duration, 28.7 nJ pulse energy and repetition rate from 232 to 512 kHz. This achievement is attributed to the ultrafast saturable absorption of these layered TMDs in the visible region, as well as the compact and all-fibre laser-cavity design by coating a dielectric mirror on the fibre end facet. This work may open a new route for next-generation high-performance pulsed laser sources in the visible (even ultraviolet) range. PMID:26658877

  17. Architecture of the sperm whale forehead facilitates ramming combat.

    PubMed

    Panagiotopoulou, Olga; Spyridis, Panagiotis; Mehari Abraha, Hyab; Carrier, David R; Pataky, Todd C

    2016-01-01

    Herman Melville's novel Moby Dick was inspired by historical instances in which large sperm whales (Physeter macrocephalus L.) sank 19th century whaling ships by ramming them with their foreheads. The immense forehead of sperm whales is possibly the largest, and one of the strangest, anatomical structures in the animal kingdom. It contains two large oil-filled compartments, known as the "spermaceti organ" and "junk," that constitute up to one-quarter of body mass and extend one-third of the total length of the whale. Recognized as playing an important role in echolocation, previous studies have also attributed the complex structural configuration of the spermaceti organ and junk to acoustic sexual selection, acoustic prey debilitation, buoyancy control, and aggressive ramming. Of these additional suggested functions, ramming remains the most controversial, and the potential mechanical roles of the structural components of the spermaceti organ and junk in ramming remain untested. Here we explore the aggressive ramming hypothesis using a novel combination of structural engineering principles and probabilistic simulation to determine if the unique structure of the junk significantly reduces stress in the skull during quasi-static impact. Our analyses indicate that the connective tissue partitions in the junk reduce von Mises stresses across the skull and that the load-redistribution functionality of the former is insensitive to moderate variation in tissue material parameters, the thickness of the partitions, and variations in the location and angle of the applied load. Absence of the connective tissue partitions increases skull stresses, particularly in the rostral aspect of the upper jaw, further hinting of the important role the architecture of the junk may play in ramming events. Our study also found that impact loads on the spermaceti organ generate lower skull stresses than an impact on the junk. Nevertheless, whilst an impact on the spermaceti organ would

  18. Architecture of the sperm whale forehead facilitates ramming combat.

    PubMed

    Panagiotopoulou, Olga; Spyridis, Panagiotis; Mehari Abraha, Hyab; Carrier, David R; Pataky, Todd C

    2016-01-01

    Herman Melville's novel Moby Dick was inspired by historical instances in which large sperm whales (Physeter macrocephalus L.) sank 19th century whaling ships by ramming them with their foreheads. The immense forehead of sperm whales is possibly the largest, and one of the strangest, anatomical structures in the animal kingdom. It contains two large oil-filled compartments, known as the "spermaceti organ" and "junk," that constitute up to one-quarter of body mass and extend one-third of the total length of the whale. Recognized as playing an important role in echolocation, previous studies have also attributed the complex structural configuration of the spermaceti organ and junk to acoustic sexual selection, acoustic prey debilitation, buoyancy control, and aggressive ramming. Of these additional suggested functions, ramming remains the most controversial, and the potential mechanical roles of the structural components of the spermaceti organ and junk in ramming remain untested. Here we explore the aggressive ramming hypothesis using a novel combination of structural engineering principles and probabilistic simulation to determine if the unique structure of the junk significantly reduces stress in the skull during quasi-static impact. Our analyses indicate that the connective tissue partitions in the junk reduce von Mises stresses across the skull and that the load-redistribution functionality of the former is insensitive to moderate variation in tissue material parameters, the thickness of the partitions, and variations in the location and angle of the applied load. Absence of the connective tissue partitions increases skull stresses, particularly in the rostral aspect of the upper jaw, further hinting of the important role the architecture of the junk may play in ramming events. Our study also found that impact loads on the spermaceti organ generate lower skull stresses than an impact on the junk. Nevertheless, whilst an impact on the spermaceti organ would

  19. Architecture of the sperm whale forehead facilitates ramming combat

    PubMed Central

    Spyridis, Panagiotis; Mehari Abraha, Hyab; Carrier, David R.; Pataky, Todd C.

    2016-01-01

    Herman Melville’s novel Moby Dick was inspired by historical instances in which large sperm whales (Physeter macrocephalus L.) sank 19th century whaling ships by ramming them with their foreheads. The immense forehead of sperm whales is possibly the largest, and one of the strangest, anatomical structures in the animal kingdom. It contains two large oil-filled compartments, known as the “spermaceti organ” and “junk,” that constitute up to one-quarter of body mass and extend one-third of the total length of the whale. Recognized as playing an important role in echolocation, previous studies have also attributed the complex structural configuration of the spermaceti organ and junk to acoustic sexual selection, acoustic prey debilitation, buoyancy control, and aggressive ramming. Of these additional suggested functions, ramming remains the most controversial, and the potential mechanical roles of the structural components of the spermaceti organ and junk in ramming remain untested. Here we explore the aggressive ramming hypothesis using a novel combination of structural engineering principles and probabilistic simulation to determine if the unique structure of the junk significantly reduces stress in the skull during quasi-static impact. Our analyses indicate that the connective tissue partitions in the junk reduce von Mises stresses across the skull and that the load-redistribution functionality of the former is insensitive to moderate variation in tissue material parameters, the thickness of the partitions, and variations in the location and angle of the applied load. Absence of the connective tissue partitions increases skull stresses, particularly in the rostral aspect of the upper jaw, further hinting of the important role the architecture of the junk may play in ramming events. Our study also found that impact loads on the spermaceti organ generate lower skull stresses than an impact on the junk. Nevertheless, whilst an impact on the spermaceti organ

  20. A facile fabrication of chemically converted graphene oxide thin films and their uses as absorber materials for solar cells

    NASA Astrophysics Data System (ADS)

    Adelifard, Mehdi; Darudi, Hosein

    2016-07-01

    There is a great interest in the use of graphene sheets in thin film solar cells with low-cost and good-optoelectronic properties. Here, the production of absorbent conductive reduced graphene oxide (RGO) thin films was investigated. RGO thin films were prepared from spray-coated graphene oxide (GO) layers at various substrate temperature followed by a simple hydrazine-reducing method. The structural, morphological, optical, and electrical characterizations of graphene oxide (GO) and RGO thin films were investigated. X-ray diffraction analysis showed a phase shift from GO to RGO due to hydrazine treatment, in agreement with the FTIR spectra of the layers. FESEM images clearly exhibited continuous films resulting from the overlap of graphene nanosheets. The produced low-cost thin films had high absorption coefficient up to 1.0 × 105 cm-1, electrical resistance as low as 0.9 kΩ/sq, and effective optical band gap of about 1.50 eV, close to the optimum value for solar conversion. The conductive absorbent properties of the reduced graphene oxide thin films would be useful to develop photovoltaic cells.

  1. Neutron Absorbing Alloys

    DOEpatents

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  2. Broadband patterned magnetic microwave absorber

    SciTech Connect

    Li, Wei; Wu, Tianlong; Wang, Wei; Guan, Jianguo; Zhai, Pengcheng

    2014-07-28

    It is a tough task to greatly improve the working bandwidth for the traditional flat microwave absorbers because of the restriction of available material parameters. In this work, a simple patterning method is proposed to drastically broaden the absorption bandwidth of a conventional magnetic absorber. As a demonstration, an ultra-broadband microwave absorber with more than 90% absorption in the frequency range of 4–40 GHz is designed and experimentally realized, which has a thin thickness of 3.7 mm and a light weight equivalent to a 2-mm-thick flat absorber. In such a patterned absorber, the broadband strong absorption is mainly originated from the simultaneous incorporation of multiple λ/4 resonances and edge diffraction effects. This work provides a facile route to greatly extend the microwave absorption bandwidth for the currently available absorbing materials.

  3. Optical addressing technique for a CMOS RAM

    NASA Technical Reports Server (NTRS)

    Wu, W. H.; Bergman, L. A.; Allen, R. A.; Johnston, A. R.

    1988-01-01

    Progress on optically addressing a CMOS RAM for a feasibility demonstration of free space optical interconnection is reported in this paper. The optical RAM chip has been fabricated and functional testing is in progress. Initial results seem promising. New design and SPICE simulation of optical gate cell (OGC) circuits have been carried out to correct the slow fall time of the 'weak pull down' OGC, which has been characterized experimentally. Methods of reducing the response times of the photodiodes and the associated circuits are discussed. Even with the current photodiode, it appears that an OGC can be designed with a performance that is compatible with a CMOS circuit such as the RAM.

  4. Transient simulation of ram accelerator flowfields

    NASA Astrophysics Data System (ADS)

    Drabczuk, Randall P.; Rolader, G.; Dash, S.; Sinha, N.; York, B.

    1993-01-01

    This paper describes the development of an advanced computational fluid dynamic (CFD) simulation capability in support of the USAF Armament Directorate ram accelerator research initiative. The state-of-the-art CRAFT computer code has been specialized for high fidelity, transient ram accelerator simulations via inclusion of generalized dynamic gridding, solution adaptive grid clustering, and high pressure thermo-chemistry. Selected ram accelerator simulations are presented that serve to exhibit the CRAFT code capabilities and identify some of the principle research/design Issues.

  5. Transient simulation of ram accelerator flowfields

    NASA Astrophysics Data System (ADS)

    Sinha, N.; York, B. J.; Dash, S. M.; Drabczuk, R.; Rolader, G. E.

    1992-10-01

    This paper describes the development of an advanced computational fluid dynamic (CFD) simulation capability in support of the U.S. Air Force Armament Directorate's ram accelerator research initiative. The state-of-the-art CRAFT computer code has been specialized for high fidelity, transient ram accelerator simulations via inclusion of generalized dynamic gridding, solution adaptive grid clustering, high pressure thermochemistry, etc. Selected ram accelerator simulations are presented which serve to exhibit the CRAFT code's capabilities and identify some of the principal research/design issues.

  6. Theoretical and experimental study of the diffuse transmission of light through highly concentrated absorbing and scattering materials. Part I: Monte-Carlo simulations

    NASA Astrophysics Data System (ADS)

    Bressel, L.; Reich, O.

    2014-10-01

    In many technical materials and commercial products like sunscreen or paint high particle and absorber concentrations are present. An important parameter for slabs of these materials is the diffuse transmission of light, which quantifies the total amount of directly and diffusely transmitted light. Due to the high content of scattering particles not only multiple scattering but also additional dependent scattering occurs. Hence, simple analytical models cannot be applied to calculate the diffuse transmission. In this work a Monte-Carlo program for the calculation of the diffuse transmission of light through dispersions in slab-like geometry containing high concentrations of scattering particles and absorbers is presented and discussed in detail. Mie theory is applied for the calculation of the scattering properties of the samples. Additionally, dependent scattering is considered in two different models, the well-known hard sphere model in the Percus-Yevick approximation (HSPYA) and the Yukawa model in the Mean Spherical Approximation (YMSA). Comparative experiments will show the accurateness of the program as well as its applicability to real samples [1].

  7. Electron microscopic observations on the epithelium of ram seminal vesicles.

    PubMed Central

    Plöen, L

    1980-01-01

    The ultrastructure of the secretory cells of the ram seminal vesicle was studied on material fixed by immersion or by vascular perfusion. The signs of apocrine secretion seen after immersion fixation did not appear after perfusion fixation and are therefore interpreted as artefacts. Instead, vacuoles with a granule in them were seen. Such vacuoles were observed in the Golgi apparatus and in the apical cytoplasm. Further indications of merocrine secretion were also found. It therefore appears that protein secretion in the ram seminal vesicle follows the typical pattern of serous glands. The possibility that fructose is extruded with the protein as the vacuoles open at the luminal cell surface is discussed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7410195

  8. Energy-Saving RAM-Power Tap

    NASA Technical Reports Server (NTRS)

    Bruner, Alan Roy

    1987-01-01

    Reverse-flow HEXFET(R) minimizes voltage drop and power dissipation. HEXFET(R) scheme reduces voltage drop by approximately 80 percent. Design for power tap for random-access memory (RAM) has potential application in digital systems.

  9. Ram Pressure Stripping: The Long Goodbye

    NASA Astrophysics Data System (ADS)

    Tonnesen, Stephanie; Lu, Yu; Benson, Andrew; Peter, Annika; Boylan-Kolchin, Michael; Wetzel, Andrew R.; Weisz, Daniel R.

    2016-01-01

    What turns off star formation in satellite galaxies? Ram pressure stripping, the removal of a galaxy's gas through direct interaction with the gas halo in which it orbits, is an attractive quenching mechanism, particularly in the Milky Way halo where the radial distribution of quenching is dramatic. However, many implementations of this process in semi-analytic models result in overly-rapid gas removal when compared with observations. We use high resolution hydrodynamical simulations run with Enzo to parameterize the stripping of disk and halo gas from an orbiting satellite galaxy for use in the semi-analytic modeling code Galacticus. We find that using the instantaneous ram pressure overestimates the amount of gas that is stripped, and present a physically-motivated module for including ram pressure stripping in semi-analytic models that uses the integral of the ram pressure experienced by a satellite galaxy. We will compare our results to observations of the Milky Way satellites.

  10. RAMS (Risk Analysis - Modular System) methodology

    SciTech Connect

    Stenner, R.D.; Strenge, D.L.; Buck, J.W.

    1996-10-01

    The Risk Analysis - Modular System (RAMS) was developed to serve as a broad scope risk analysis tool for the Risk Assessment of the Hanford Mission (RAHM) studies. The RAHM element provides risk analysis support for Hanford Strategic Analysis and Mission Planning activities. The RAHM also provides risk analysis support for the Hanford 10-Year Plan development activities. The RAMS tool draws from a collection of specifically designed databases and modular risk analysis methodologies and models. RAMS is a flexible modular system that can be focused on targeted risk analysis needs. It is specifically designed to address risks associated with overall strategy, technical alternative, and `what if` questions regarding the Hanford cleanup mission. RAMS is set up to address both near-term and long-term risk issues. Consistency is very important for any comparative risk analysis, and RAMS is designed to efficiently and consistently compare risks and produce risk reduction estimates. There is a wide range of output information that can be generated by RAMS. These outputs can be detailed by individual contaminants, waste forms, transport pathways, exposure scenarios, individuals, populations, etc. However, they can also be in rolled-up form to support high-level strategy decisions.

  11. Experiment of rocket-ram combined combustor

    NASA Astrophysics Data System (ADS)

    Sato, Kazuo; Sakamoto, Hiroshi; Sasaki, Masaki; Ono, Fumiei; Yatsuyanagi, Nobuyuki

    1994-10-01

    There are limitations to achieve high specific impulse with rocket engine operations alone. However, in the flight at low altitude, combined engines with an airbreathing ramjet engine and a rocket engine can be expected to increase the specific impulse significantly in parallel operation. In this paper, the superiority in the specific impulse of the double-nozzle type of rocket-ram combined engine over the single-nozzle type combined engine was shown by performance calculations. Then, a double-nozzle type of rocket-ram combined combustor with a total thrust of 5kN was designed and experimentally tested with varying ratios of thrust produced by rocket and ramjet. The propellants are LOX/kerosene+ hydrogen for rocket combustion and air-hydrogen for ram combustion. With the thrust chamber having different diverging half-angles, namely 10 deg 18 min, and 6 deg 40 min, thrust and pressure distribution along the common expansion nozzle were measured to investigate the effect of interaction of the expanding gases of rocket and ram on thrust. Enhancement of the specific impulse was experimentally verified. That is, the specific impulse which was gained in rocket-ram parallel operations, when the thrust ratio of rocket to ram was 50 to 50, was found to increase 90 percent over those in pure rocket operations.

  12. A new method to retrieve spectral absorption coefficient of highly-scattering and weakly-absorbing materials

    NASA Astrophysics Data System (ADS)

    Dombrovsky, Leonid A.

    2016-03-01

    A significant uncertainty in the absorption coefficient of highly scattering dispersed materials is typical in the spectral ranges of very weak absorption. The traditional way to identify the main absorption and scattering characteristics of semi-transparent materials is based on spectral measurements of normal-hemispherical reflectance and transmittance for the material sample. Unfortunately this way cannot be used in the case of in vivo measurements of optical properties of biological tissues. A method suggested in the present paper is based on thermal response to the periodic radiative heating of the open surface of a semi-transparent material. It is shown that the period of a variation of the surface temperature is sensitive to the value of an average absorption coefficient in the surface layer. As a result, the monochromatic external irradiation combined with the surface temperature measurements can be used to retrieve the spectral values of absorption coefficient. Possible application of this method to porous semi-transparent ceramics is considered. An example problem is also solved to illustrate the applicability of this method to human skin. The approach suggested enables one to estimate an average absorption coefficient of human skin of a patient just before the thermal processing.

  13. HyRAM Testing Strategy and Quality Design Elements.

    SciTech Connect

    Reynolds, John Thomas

    2014-12-01

    Strategy document and tentative schedule for testing of HyRAM, a software toolkit that integrates data and methods relevant to assessing the safety of hydrogen fueling and storage infrastructure. Because proposed and existing features in HyRAM that support testing are important factors in this discussion, relevant design considerations of HyRAM are also discussed. However, t his document does not cover all of HyRAM desig n, nor is the full HyRAM software development schedule included.

  14. Implementation of optical dynamic RAM using spatially distributed spectral storage

    NASA Astrophysics Data System (ADS)

    Johnson, Alan E.; Maniloff, Eric S.; Mossberg, Thomas W.

    1999-11-01

    Optical Dynamic RAM (ODRAM) is a high capacity, low latency optical memory architecture based on persistent spectral hole burning in frequency selective materials. This paper describes the basic ODRAM architecture and progress towards realization of a high capacity, low latency, tabletop demonstration unit. In particular, a new technique, Spatially Distributed Spectral Storage (SDSS) is introduced and demonstrated to provide over two orders of magnitude improvement in spectral capacity for materials that experience excitation induced frequency shifts. Finally, the relative strengths and weaknesses of ODRAM are emphasized in a competitive analysis that includes currently available memory technologies such as semiconductor DRAM and magnetic disks.

  15. Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers.

    PubMed

    Arenas, Celia; Leiva, Carlos; Vilches, Luis F; Cifuentes, Héctor

    2013-11-01

    The present study aims to determine and evaluate the applicability of a new product consisting of coal bottom ash mixed with Portland cement in the application of highway noise barriers. In order to effectively recycle the bottom ash, the influence of the grain particle size of bottom ash, the thickness of the panel and the combination of different layers with various particle sizes have been studied, as well as some environmental properties including leachability (EN-12457-4, NEN-7345) and radioactivity tests. Based on the obtained results, the acoustic properties of the final composite material were similar or even better than those found in porous concrete used for the same application. According to this study, the material produced presented no environmental risk. PMID:23916843

  16. Effect of zeolite nano-materials and artichoke (Cynara scolymus L.) leaf extract on increase in urinary clearance of systematically absorbed nicotine.

    PubMed

    Malekshah, R E; Mahjub, R; Rastgarpanah, M; Ghorbani, M; Partoazar, A R; Mehr, S E; Dehpour, A R; Dorkoosh, F A

    2012-12-01

    Nicotine, the main pharmacologically active component in tobacco and cigarette, has some toxic effects and also high potential for addiction. In this study, the effect of artichoke (Cynara scolymus L.) and zeolite nano-materials on urinary excretion of nicotine and consequently elimination of systematically absorbed nicotine was investigated. A simple, valid and highly sensitive high performance liquid chromatography method has been developed for determination of nicotine in rat urine according to guidelines for bioanalysis.It was found that nano-zeolites can cause increase in urinary concentration of nicotine due to its high surface adsorption. Artichoke leaf extract can cause increase in urinary excretion of nicotine in longer post administration times. It was observed that co-administration of nanozeolites and the leaf extract has the synergetic effect on increasing the urinary excretion of nicotine. PMID:23196970

  17. Effect of zeolite nano-materials and artichoke (Cynara scolymus L.) leaf extract on increase in urinary clearance of systematically absorbed nicotine.

    PubMed

    Malekshah, R E; Mahjub, R; Rastgarpanah, M; Ghorbani, M; Partoazar, A R; Mehr, S E; Dehpour, A R; Dorkoosh, F A

    2012-12-01

    Nicotine, the main pharmacologically active component in tobacco and cigarette, has some toxic effects and also high potential for addiction. In this study, the effect of artichoke (Cynara scolymus L.) and zeolite nano-materials on urinary excretion of nicotine and consequently elimination of systematically absorbed nicotine was investigated. A simple, valid and highly sensitive high performance liquid chromatography method has been developed for determination of nicotine in rat urine according to guidelines for bioanalysis.It was found that nano-zeolites can cause increase in urinary concentration of nicotine due to its high surface adsorption. Artichoke leaf extract can cause increase in urinary excretion of nicotine in longer post administration times. It was observed that co-administration of nanozeolites and the leaf extract has the synergetic effect on increasing the urinary excretion of nicotine.

  18. FPS-RAM: Fast Prefix Search RAM-Based Hardware for Forwarding Engine

    NASA Astrophysics Data System (ADS)

    Zaitsu, Kazuya; Yamamoto, Koji; Kuroda, Yasuto; Inoue, Kazunari; Ata, Shingo; Oka, Ikuo

    Ternary content addressable memory (TCAM) is becoming very popular for designing high-throughput forwarding engines on routers. However, TCAM has potential problems in terms of hardware and power costs, which limits its ability to deploy large amounts of capacity in IP routers. In this paper, we propose new hardware architecture for fast forwarding engines, called fast prefix search RAM-based hardware (FPS-RAM). We designed FPS-RAM hardware with the intent of maintaining the same search performance and physical user interface as TCAM because our objective is to replace the TCAM in the market. Our RAM-based hardware architecture is completely different from that of TCAM and has dramatically reduced the costs and power consumption to 62% and 52%, respectively. We implemented FPS-RAM on an FPGA to examine its lookup operation.

  19. Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers

    SciTech Connect

    Arenas, Celia; Leiva, Carlos; Vilches, Luis F.

    2013-11-15

    Highlights: • The particle size of bottom ash influenced the acoustic behavior of the barrier. • The best sound absorption coefficients were measured for larger particle sizes. • The maximum noise absorption is displaced to lower frequencies for higher thickness. • A noise barrier was designed with better properties than commercial products. • Recycling products from bottom ash no present leaching and radioactivity problems. - Abstract: The present study aims to determine and evaluate the applicability of a new product consisting of coal bottom ash mixed with Portland cement in the application of highway noise barriers. In order to effectively recycle the bottom ash, the influence of the grain particle size of bottom ash, the thickness of the panel and the combination of different layers with various particle sizes have been studied, as well as some environmental properties including leachability (EN-12457-4, NEN-7345) and radioactivity tests. Based on the obtained results, the acoustic properties of the final composite material were similar or even better than those found in porous concrete used for the same application. According to this study, the material produced presented no environmental risk.

  20. Initial plasma formation by laser radiation acting on absorbing materials for a planar geometry of expansion of the plasma formed

    SciTech Connect

    Min'ko, L.Y.; Chivel', Y.A.; Chumakov, A.N.

    1985-01-01

    This work is concerned with the experimental studies of nonstationary processes of initial plasma formation as well as with the elucidation of the role of the erosion and air plasmas in the formation of the screening plasma flame. To this end, the authors performed complex experiments using high-speed shadow, photo and spectrographic methods, as well as the methods of photoelectric recording of the incident and reflected laser radiation together with time-referencing of the apparatus complex to within 20 nsec using a specially developed generator of synchronous electrical and light pulses. Specific measurements were performed primarily for determining the dependence of the time of the initial plasma formation and development of screening on the power density of the LR and the chemical composition of the plasma-forming material.

  1. Extracting material parameters from x-ray attenuation: a CT feasibility study using kilovoltage synchrotron x-rays incident upon low atomic number absorbers.

    PubMed

    Kirby, B J; Davis, J R; Grant, J A; Morgan, M J

    2003-10-21

    The work reported here is a feasibility study of the extraction of material parameters from measurements of the linear x-ray attenuation coefficient of low atomic number absorbers. Computed tomography (CT) scans of small samples containing several liquids and solids were carried out with synchrotron radiation at the Australian National Beamline Facility (BL 20B) in Japan. Average values of the x-ray linear attenuation coefficient were extracted for each material for x-ray energies ranging from 11 keV to 20.5 keV. The electron density was estimated by applying results derived from a parametrization of the x-ray linear attenuation coefficient first developed by Jackson and Hawkes and extended for this work. Average estimates for the electron density of triethanolamine and acetic acid were made to within +5.3% of the actual value. Other materials examined included furfuraldehyde, perspex and teflon, for which average estimates of the electron density were less than 10% in excess of the calculated value. PMID:14620065

  2. Structural Responses and Finite Element Modeling of Hakka Tulou Rammed Earth Structures

    NASA Astrophysics Data System (ADS)

    Sranislawski, Daniel

    Hakka Tulous are rammed earth structures that have survived the effects of aging and natural elements upwards of even over a thousand years. These structures have housed the Hakka people of the Fujian Province, China in natural yet modern housing that has provided benefits over newer building materials. The key building material, rammed earth, which is used for the walls of the Hakka Tulou structures, has provided structural stability along with thermal comfort to the respective inhabitants of the Hakka Tulous. Through material testing and analysis this study has examined how the Tulou structures have maintained their structural stability while also providing thermal comfort. Reports of self healing cracks in the rammed earth walls were also analyzed for their validity in this study. The study has found that although the story of the self healing crack cannot be validated, there is reason to believe that with the existence of lime, some type of autogenous healing could occur on a small scale. The study has also found, through the use of nondestructive testing, that both the internal wooden systems (flooring, roof, and column support) and the rammed earth walls, are still structurally sound. Also, rammed earth's high thermal mass along with the use of sufficient shading has allowed for a delay release of heat energy from the walls of the Tulous, thus providing thermal comfort that can be felt during both night and day temperatures. The Hakka Tulou structures have been found to resist destruction from natural disasters such as strong earthquakes even when more modern construction has not. Through finite element modeling, this study has shown that the high volume of rammed earth used in the construction of the Hakka Tulous helps dissipate lateral force energy into much lower stresses for the rammed earth wall. This absorption of lateral force energy allows the rammed earth structures to survive even the strongest of earthquakes experienced in the region. The Hakka

  3. Anxious uncertainty and reactive approach motivation (RAM).

    PubMed

    McGregor, Ian; Nash, Kyle; Mann, Nikki; Phills, Curtis E

    2010-07-01

    In 4 experiments anxious uncertainty threats caused reactive approach motivation (RAM). In Studies 1 and 2, academic anxious uncertainty threats caused RAM as assessed by behavioral neuroscience and implicit measures of approach motivation. In Study 3 the effect of a relational anxious uncertainty threat on approach-motivated personal projects in participants' everyday lives was mediated by the idealism of those projects. In Study 4 the effect of a different relational anxious uncertainty threat on implicit approach motivation was heightened by manipulated salience of personal ideals. Results suggest a RAM account for idealistic and ideological reactions in the threat and defense literature. Speculative implications are suggested for understanding diverse social and clinical phenomena ranging from worldview defense, prejudice, and meaning making to narcissism, hypomania, and aggression. PMID:20565191

  4. Reactive approach motivation (RAM) for religion.

    PubMed

    McGregor, Ian; Nash, Kyle; Prentice, Mike

    2010-07-01

    In 3 experiments, participants reacted with religious zeal to anxious uncertainty threats that have caused reactive approach motivation (RAM) in past research (see McGregor, Nash, Mann, & Phills, 2010, for implicit, explicit, and neural evidence of RAM). In Study 1, results were specific to religious ideals and did not extend to merely superstitious beliefs. Effects were most pronounced among the most anxious and uncertainty-averse participants in Study 1 and among the most approach-motivated participants in Study 2 (i.e., with high Promotion Focus, Behavioral Activation, Action Orientation, and Self-Esteem Scale scores). In Studies 2 and 3, anxious uncertainty threats amplified even the most jingoistic and extreme aspects of religious zeal. In Study 3, reactive religious zeal occurred only among participants who reported feeling disempowered in their everyday goals in life. Results support a RAM view of empowered religious idealism for anxiety management (cf. Armstrong, 2000; Inzlicht, McGregor, Hirsch, & Nash, 2009). PMID:20565192

  5. Wireless data over RAM's Mobitex network

    NASA Astrophysics Data System (ADS)

    Khan, M. Mobeen

    1995-12-01

    Mobitex is a mobile data technology standard created by Eritel, now a wholly owned subsidiary of Ericsson, that has been in existence for about a decade. Originally designed as a low speed (1.2 kbps) data system with a voice dispatch overlay, it was significantly enhanced in 1990 for use in North America and the UK. The enhanced system is a data-only system using cellular architecture and multi-channel frequency reuse, store-and-forward capability, and an 8 kbps over-the-air data rate. The mission of RAM Mobile Data USA Limited Partnership ('RAM') is to provide high quality, cost efficient, wireless data communications solutions in its targeted market segments. RAM's Mobitex network is currently one of the two networks providing two way wireless data services nationwide using a long distance service provider of the customer's choice.

  6. Reactive approach motivation (RAM) for religion.

    PubMed

    McGregor, Ian; Nash, Kyle; Prentice, Mike

    2010-07-01

    In 3 experiments, participants reacted with religious zeal to anxious uncertainty threats that have caused reactive approach motivation (RAM) in past research (see McGregor, Nash, Mann, & Phills, 2010, for implicit, explicit, and neural evidence of RAM). In Study 1, results were specific to religious ideals and did not extend to merely superstitious beliefs. Effects were most pronounced among the most anxious and uncertainty-averse participants in Study 1 and among the most approach-motivated participants in Study 2 (i.e., with high Promotion Focus, Behavioral Activation, Action Orientation, and Self-Esteem Scale scores). In Studies 2 and 3, anxious uncertainty threats amplified even the most jingoistic and extreme aspects of religious zeal. In Study 3, reactive religious zeal occurred only among participants who reported feeling disempowered in their everyday goals in life. Results support a RAM view of empowered religious idealism for anxiety management (cf. Armstrong, 2000; Inzlicht, McGregor, Hirsch, & Nash, 2009).

  7. The Contributions Regarding the Use of Microwave to Obtain Modeling Gypsum for Phonic-Absorbent Construction and Orthopedic Materials

    NASA Astrophysics Data System (ADS)

    Pop, P. A.; Ungur, P. A.; Caraban, A.; Marcu, F.

    2009-11-01

    The paper has presented some experiments realized at "Congips" Co. Oradea and University of Oradea, regarding of increase machining efficiency and quality for modeling gypsum plaster by using of microwave energy to gypsum ore roast. The elaboration process of microwave energy for modeling gypsum plaster has done on electromagnetic waves properties and specific properties for dielectric materials. Microwaves are radiations of electromagnetic waveform nature, determine by pulsations of electrical-E) and magnetically-H components of electromagnetic wave in interdependence with Maxwell equations. The gypsum ore is calcium sulphate dehydrate (CaSO4ṡ2H2O) using at modeling gypsum plaster fabrication, which is calcium sulphate hemihydrate (CaSO4ṡ1/2H2O), that has behavior of dielectric with losses. The gypsum ore getting in microwave field, in conditions of predictable pressure and temperature has transformed in modeling gypsum plaster, by quick lost of a part from crystallization water. The processing time is very short, which due to a great productivity and machining efficiency, finally of low process cost. All of these recommend continuing the research at pilot station level.

  8. Absorber coatings' degradation

    SciTech Connect

    Moore, S.W.

    1984-01-01

    This report is intended to document some of the Los Alamos efforts that have been carried out under the Department of Energy (DOE) Active Heating and Cooling Materials Reliability, Maintainability, and Exposure Testing program. Funding for these activities is obtained directly from DOE although they represent a variety of projects and coordination with other agencies. Major limitations to the use of solar energy are the uncertain reliability and lifetimes of solar systems. This program is aimed at determining material operating limitations, durabilities, and failure modes such that materials improvements can be made and lifetimes can be extended. Although many active and passive materials and systems are being studied at Los Alamos, this paper will concentrate on absorber coatings and degradation of these coatings.

  9. Dynamic-RAM Data Storage Unit

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1985-01-01

    Dynamic random-access-memory (RAM) data delay and storage unit developed to insure data received from satellite is stored and not lost when satellite is not within range of ground station. Stores 256K of serial data, with independent read and write capability.

  10. Ram side of Wake Shield Facility

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The ram side of the Wake Shield Facility (WSF) is in the grasp of the Space Shuttle Discovery's Remote Manipulator System (RMS) arm in this 70mm frame. Clouds over the Atlantic Ocean and the blackness of space share the backdrop for the picture.

  11. 3. Light tower, view northwest, south side Ram Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Light tower, view northwest, south side - Ram Island Light Station, Ram Island, south of Ocean Point & just north of Fisherman Island, marking south side of Fisherman Island Passage, Ocean Point, Lincoln County, ME

  12. 116. Stage mezzanine level floor structure. North rams (type D), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    116. Stage mezzanine level floor structure. North rams (type D), facing south-southwest. The right hand ram is the same one visible from above in IL-1007-114. - Auditorium Building, 430 South Michigan Avenue, Chicago, Cook County, IL

  13. 24. WESTERNMOST HYDRAULIC RAM IN NORTH BANK, LOWER LEVEL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. WESTERNMOST HYDRAULIC RAM IN NORTH BANK, LOWER LEVEL OF STAGE, LOOKING SOUTH. NOTE PIN CONNECTION BETWEEN STAGE FLOOR AND RAM. - Auditorium Building, 430 South Michigan Avenue, Chicago, Cook County, IL

  14. Synthesis and microwave absorbing characteristics of functionally graded carbonyl iron/polyurethane composites

    NASA Astrophysics Data System (ADS)

    Yang, R. B.; Liang, W. F.; Wu, C. H.; Chen, C. C.

    2016-05-01

    Radar absorbing materials (RAMs) also known as microwave absorbers, which can absorb and dissipate incident electromagnetic wave, are widely used in the fields of radar-cross section reduction, electromagnetic interference (EMI) reduction and human health protection. In this study, the synthesis of functionally graded material (FGM) (CI/Polyurethane composites), which is fabricated with semi-sequentially varied composition along the thickness, is implemented with a genetic algorithm (GA) to optimize the microwave absorption efficiency and bandwidth of FGM. For impedance matching and broad-band design, the original 8-layered FGM was obtained by the GA method to calculate the thickness of each layer for a sequential stacking of FGM from 20, 30, 40, 50, 60, 65, 70 and 75 wt% of CI fillers. The reflection loss of the original 8-layered FGM below -10 dB can be obtained in the frequency range of 5.12˜18 GHz with a total thickness of 9.66 mm. Further optimization reduces the number of the layers and the stacking sequence of the optimized 4-layered FGM is 20, 30, 65, 75 wt% with thickness of 0.8, 1.6, 0.6 and 1.0 mm, respectively. The synthesis and measurement of the optimized 4-layered FGM with a thickness of 4 mm reveal a minimum reflection loss of -25.2 dB at 6.64 GHz and its bandwidth below - 10 dB is larger than 12.8 GHz.

  15. Thermal conversion of an Fe₃O₄@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material.

    PubMed

    Zhang, Xingmiao; Ji, Guangbin; Liu, Wei; Quan, Bin; Liang, Xiaohui; Shang, Chaomei; Cheng, Yan; Du, Youwei

    2015-08-14

    A novel FeCo nanoparticle embedded nanoporous carbon composite (Fe-Co/NPC) was synthesized via in situ carbonization of dehydro-ascorbic acid (DHAA) coated Fe3O4 nanoparticles encapsulated in a metal-organic framework (zeolitic imidazolate framework-67, ZIF-67). The molar ratio of Fe/Co significantly depends on the encapsulated content of Fe3O4 in ZIF-67. The composites filled with 50 wt% of the Fe-Co/NPC-2.0 samples in paraffin show a maximum reflection loss (RL) of -21.7 dB at a thickness of 1.2 mm; in addition, a broad absorption bandwidth for RL < -10 dB which covers from 12.2 to 18 GHz can be obtained, and its minimum reflection loss and bandwidth (RL values exceeding -10 dB) are far greater than those of commercial carbonyl iron powder under a very low thickness (1-1.5 mm). This study not only provides a good reference for future preparation of carbon-based lightweight microwave absorbing materials but also broadens the application of such kinds of metal-organic frameworks. PMID:26167763

  16. COS Side 2 Science Data Buffer Check/Self-Tests for CS Buffer RAM and DIB RAM

    NASA Astrophysics Data System (ADS)

    Bacinski, John

    2013-10-01

    The COS Science Buffer RAM is checked for bit flips during SAA passages. This is followed by a Control Section {CS} self-test consisting of writing/reading a specified bit pattern from each memory location in Buffer RAM and a similar test for DIB RAM. The DIB must be placed in BOOT mode for its self-test. The CS Buffer RAM self-test as well as the bit flip tests are all done with the CS in Operate.

  17. Absorbent product to absorb fluids. [for collection of human wastes

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multi-layer absorbent product for use in contact with the skin to absorb fluids is discussed. The product utilizes a water pervious facing layer for contacting the skin, overlayed by a first fibrous wicking layer, the wicking layer preferably being of the one-way variety in which fluid or liquid is moved away from the facing layer. The product further includes a first container section defined by inner and outer layer of a water pervious wicking material between which is disposed a first absorbent mass. A second container section defined by inner and outer layers between which is disposed a second absorbent mass and a liquid impermeable/gas permeable layer. Spacesuit applications are discussed.

  18. Reliability and Maintainability (RAM) Training

    NASA Technical Reports Server (NTRS)

    Lalli, Vincent R. (Editor); Malec, Henry A. (Editor); Packard, Michael H. (Editor)

    2000-01-01

    The theme of this manual is failure physics-the study of how products, hardware, software, and systems fail and what can be done about it. The intent is to impart useful information, to extend the limits of production capability, and to assist in achieving low-cost reliable products. In a broader sense the manual should do more. It should underscore the urgent need CI for mature attitudes toward reliability. Five of the chapters were originally presented as a classroom course to over 1000 Martin Marietta engineers and technicians. Another four chapters and three appendixes have been added, We begin with a view of reliability from the years 1940 to 2000. Chapter 2 starts the training material with a review of mathematics and a description of what elements contribute to product failures. The remaining chapters elucidate basic reliability theory and the disciplines that allow us to control and eliminate failures.

  19. Investigation of advanced propulsion technologies: The RAM accelerator and the flowing gas radiation heater

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Knowlen, C.; Mattick, A. T.; Hertzberg, A.

    1992-01-01

    The two principal areas of advanced propulsion investigated are the ram accelerator and the flowing gas radiation heater. The concept of the ram accelerator is presented as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerothermodynamics research. The ram accelerator is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled in a stationary tube filled with a tailored combustible gas mixture. Combustion on and behind the projectile generates thrust which accelerates it to very high velocities. The acceleration can be tailored for the 'soft launch' of instrumented models. The distinctive reacting flow phenomena that have been observed in the ram accelerator are relevant to the aerothermodynamic processes in airbreathing hypersonic propulsion systems and are useful for validating sophisticated CFD codes. The recently demonstrated scalability of the device and the ability to control the rate of acceleration offer unique opportunities for the use of the ram accelerator as a large-scale hypersonic ground test facility. The flowing gas radiation receiver is a novel concept for using solar energy to heat a working fluid for space power or propulsion. Focused solar radiation is absorbed directly in a working gas, rather than by heat transfer through a solid surface. Previous theoretical analysis had demonstrated that radiation trapping reduces energy loss compared to that of blackbody receivers, and enables higher efficiencies and higher peak temperatures. An experiment was carried out to measure the temperature profile of an infrared-active gas and demonstrate the effect of radiation trapping. The success of this effort validates analytical models of heat transfer in this receiver, and confirms the potential of this approach for achieving high efficiency space power and propulsion.

  20. Optical Addressing And Clocking Of RAM's

    NASA Technical Reports Server (NTRS)

    Johnston, Alan R.; Nixon, Robert H.; Bergman, Larry A.; Esener, Sadik

    1989-01-01

    Proposed random-access-memory (RAM) addressing system, in which memory linked optically to read/write logic circuits, greatly increases computer operating speed. System - comprises addressing circuits including numerous lasers as signal sources, numerous optical gates including optical detectors associated with memory cells, and holographic element to direct light signals to desired memory-cell locations - applied to high-capacity digital systems, supercomputers, and complex microcircuits.

  1. DVD-RAM-based network storage system

    NASA Astrophysics Data System (ADS)

    Ura, Tetsuya; Tanabe, Takaya; Yamamoto, Manabu

    2000-04-01

    A network storage system with a high transfer rate and high capacity has been developed. This system, DVD-RAIL (Digital Versatile Disk-Redundant Array of Inexpensive Libraries), consists of six small DVD-RAM libraries and a RAILcontroller, which uses the RAID4 algorithm. Each library has two DVD-RAM drives, a robotic changer and a slot for storing up to 150 DVD-RAM disks. The system can handle up to 900 disks, corresponding to about 2 TB of storage. Data transfer is done in parallel from and to each library, so the transfer rate is over 6 MB/sec. The redundant architecture of RAIL provides high reliability, enabling the system to continue working even if an error occurs in one of the libraries. The RAILcontroller controls all the allocation and parallel transmission processes, so the system behaves as a large single library. Evaluation of the system showed that it can distribute high- definition moving pictures at over 20 Mbps and that a transfer rate of over 50 Mbps may be feasible.

  2. The ram accelerator - A chemically driven mass launcher

    NASA Technical Reports Server (NTRS)

    Kaloupis, P.; Bruckner, A. P.

    1988-01-01

    The ram accelerator, a chemically propelled mass driver, is presented as a viable new approach for directly launching acceleration-insensitive payloads into low earth orbit. The propulsion principle is similar to that of a conventional air-breathing ramjet. The cargo vehicle resembles the center-body of a ramjet and travels through a tube filled with a pre-mixed fuel and oxidizer mixture. The launch tube acts as the outer cowling of the ramjet and the combustion process travels with the vehicle. Two drive modes of the ram accelerator propulsion system are described, which when used in sequence are capable of accelerating the vehicle to as high as 10 km/sec. The requirements are examined for placing a 2000 kg vehicle into a 500 km orbit with a minimum of on-board rocket propellant for circularization maneuvers. It is shown that aerodynamic heating during atmospheric transit results in very little ablation of the nose. An indirect orbital insertion scenario is selected, utilizing a three step maneuver consisting of two burns and aerobraking. An on-board propulsion system using storable liquid propellants is chosen in order to minimize propellant mass requirements, and the use of a parking orbit below the desired final orbit is suggested as a means to increase the flexibility of the mass launch concept. A vehicle design using composite materials is proposed that will best meet the structural requirements, and a preliminary launch tube design is presented.

  3. Absorbent product and articles made therefrom

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multilayer absorbent product for use in contact with the skin to absorb fluids is described. The product has a water pervious facing layer for contacting the skin, and a first fibrous wicking layer overlaying the water pervious layer. A first container section is defined by inner and outer layers of a water pervious wicking material in between a first absorbent mass and a second container section defined by inner and outer layers of a water pervious wicking material between what is disposed a second absorbent mass, and a liquid impermeable/gas permeable layer overlaying the second fibrous wicking layer.

  4. Additive manufacturing of RF absorbers

    NASA Astrophysics Data System (ADS)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  5. Identification and characterization of aging products in the glyoxal/ammonium sulfate system - implications for light-absorbing material in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Kampf, C. J.; Jakob, R.; Hoffmann, T.

    2012-02-01

    In this study we report the identification of bicyclic imidazoles in aqueous aerosol mimics using HPLC-ESI-MS/MS. 2,2´-Biimidazole was identified to be a major contributor to the 280 nm absorbance band observed in mixtures of glyoxal and ammonium sulfate, despite the fact that its production rate is two orders of magnitude lower than the previously reported production rates of imidazole or imidazole-2-carboxaldehyde. The molar absorptivity of 2,2´-biimidazole was determined to be (36 690±998) M-1 cm-1. This demonstrates the necessity of molecular product identification at trace levels to enable a better understanding of relevant absorbing species. Additionally the formation of lower polarity products including formamides of imidazoles is proposed. The role of imidazoles and other light-absorbing species in the formation of SOA and optical properties of SOA is discussed and potentially interesting fields for future investigations are outlined.

  6. Identification and characterization of aging products in the glyoxal/ammonium sulfate system - implications for light-absorbing material in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Kampf, C. J.; Jakob, R.; Hoffmann, T.

    2012-07-01

    In this study we report the identification of bicyclic imidazoles in aqueous aerosol mimics using HPLC-ESI-MS/MS. 2,2'-Biimidazole was identified to be a major contributor to the 280 nm absorbance band observed in mixtures of glyoxal and ammonium sulfate, despite the fact that its production rate is two orders of magnitude lower than the previously reported production rates of imidazole or imidazole-2-carboxaldehyde. The molar absorptivity of 2,2'-biimidazole was determined to be (36 690 ± 998) M-1 cm-1. This demonstrates the necessity of molecular product identification at trace levels to enable a better understanding of relevant absorbing species. Additionally, the formation of lower polarity products including formamides of imidazoles is proposed. The role of imidazoles and other light-absorbing species in the formation of SOA and optical properties of SOA is discussed and potentially interesting fields for future investigations are outlined.

  7. Incorporation of RAM techniques into simulation modeling

    SciTech Connect

    Nelson, S.C. Jr.; Haire, M.J.; Schryver, J.C.

    1995-07-01

    This work concludes that reliability, availability, and maintainability (RAM) analytical techniques can be incorporated into computer network simulation modeling to yield an important new analytical tool. This paper describes the incorporation of failure and repair information into network simulation to build a stochastic computer model represents the RAM Performance of two vehicles being developed for the US Army: The Advanced Field Artillery System (AFAS) and the Future Armored Resupply Vehicle (FARV). The AFAS is the US Army`s next generation self-propelled cannon artillery system. The FARV is a resupply vehicle for the AFAS. Both vehicles utilize automation technologies to improve the operational performance of the vehicles and reduce manpower. The network simulation model used in this work is task based. The model programmed in this application requirements a typical battle mission and the failures and repairs that occur during that battle. Each task that the FARV performs--upload, travel to the AFAS, refuel, perform tactical/survivability moves, return to logistic resupply, etc.--is modeled. Such a model reproduces a model reproduces operational phenomena (e.g., failures and repairs) that are likely to occur in actual performance. Simulation tasks are modeled as discrete chronological steps; after the completion of each task decisions are programmed that determine the next path to be followed. The result is a complex logic diagram or network. The network simulation model is developed within a hierarchy of vehicle systems, subsystems, and equipment and includes failure management subnetworks. RAM information and other performance measures are collected which have impact on design requirements. Design changes are evaluated through ``what if`` questions, sensitivity studies, and battle scenario changes.

  8. Digital Alloy Absorber for Photodetectors

    NASA Technical Reports Server (NTRS)

    Hill, Cory J. (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2016-01-01

    In order to increase the spectral response range and improve the mobility of the photo-generated carriers (e.g. in an nBn photodetector), a digital alloy absorber may be employed by embedding one (or fraction thereof) to several monolayers of a semiconductor material (insert layers) periodically into a different host semiconductor material of the absorber layer. The semiconductor material of the insert layer and the host semiconductor materials may have lattice constants that are substantially mismatched. For example, this may performed by periodically embedding monolayers of InSb into an InAsSb host as the absorption region to extend the cutoff wavelength of InAsSb photodetectors, such as InAsSb based nBn devices. The described technique allows for simultaneous control of alloy composition and net strain, which are both key parameters for the photodetector operation.

  9. A 1K Shadow RAM for circumvention applications

    SciTech Connect

    Murray, J.R.

    1991-01-01

    A 1K bit Shadow RAM has been developed for storage of critical data in a high transient radiation environment. The circuit includes a 1K bit (128 {times} 8) static RAM with two non-volatile (NV) shadows. The NV shadows are used to back-up the data in the static RAM allowing the circuit to be powered down during transient radiation without losing critical data. This paper will describe the circuit's operation and characterization results.

  10. Neutron absorbers and methods of forming at least a portion of a neutron absorber

    SciTech Connect

    Guillen, Donna P; Porter, Douglas L; Swank, W David; Erickson, Arnold W

    2014-12-02

    Methods of forming at least a portion of a neutron absorber include combining a first material and a second material to form a compound, reducing the compound into a plurality of particles, mixing the plurality of particles with a third material, and pressing the mixture of the plurality of particles and the third material. One or more components of neutron absorbers may be formed by such methods. Neutron absorbers may include a composite material including an intermetallic compound comprising hafnium aluminide and a matrix material comprising pure aluminum.

  11. The rams horn in western history

    NASA Astrophysics Data System (ADS)

    Lubman, David

    2003-10-01

    The shofar or rams horn-one of the most ancient of surviving aerophones-may have originated with early Neolithic herders. The shofar is mentioned frequently and importantly in the Hebrew bible and in later biblical and post-biblical literature. Despite its long history, contemporary ritual uses, and profound symbolic significance to western religion, no documentation of shofar acoustical properties was found. Since ancient times, shepherds of many cultures have fashioned sound instruments from the horns of herd animals for practical and musical uses. Shepherd horns of other cultures exhibit an evolution of form and technology (e.g., the inclusion of finger holes). The shofar is unique in having retained its primitive form. It is suggested that after centuries of practical use, the shofar became emblematic of the shepherd culture. Ritual use then developed, which froze its form. A modern ritual rams horn played by an experienced blower was examined. This rather short horn was determined to have a source strength of 92 dB (A) at 1 m, a fundamental frequency near 420 Hz, and maximum power output between 1.2 and 1.8 kHz. Sample sounds and detection range estimates are provided.

  12. Robotic Assisted Microsurgery - RAMS FY'97

    NASA Technical Reports Server (NTRS)

    1997-01-01

    JPL and Microdexterity Systems collaborated to develop new surgical capabilities. They developed a Robot Assisted Microsurgery (RAM) tool for surgeons to use for operating on the eye, ear, brain, and blood vessels with unprecedented dexterity. A surgeon can hold the surgical instrument with motions of 6 degrees of freedom with an accuracy of 25 microns in a 70 cu cm workspace. In 1996 a demonstration was performed to remove a microscopic particle from a simulated eyeball. In 1997, tests were performed at UCLA to compare telerobotics with mechanical operations. In 5 out of 7 tests, the RAM tool performed with a significant improvement of preciseness over mechanical operation. New design features include: (1) amplified forced feedback; (2) simultaneous slave robot instrumentation; (3) index control switch on master handle; and (4) tool control switches. Upgrades include: (1) increase in computational power; and (2) installation of hard disk memory storage device for independent operation and independent operation of forceps. In 1997 a final demonstration was performed using 2 telerobotics simultaneously in a microsurgery suture procedure to close a slit in a thin sheet of latex rubber which extended the capabilities of microsurgery procedures. After completing trials and demonstrations for the FDA the potential benefits for thousands of operations will be exposed.

  13. Nonventing, Regenerable, Lightweight Heat Absorber

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo

    2008-01-01

    A lightweight, regenerable heat absorber (RHA), developed for rejecting metabolic heat from a space suit, may also be useful on Earth for short-term cooling of heavy protective garments. Unlike prior space-suit-cooling systems, a system that includes this RHA does not vent water. The closed system contains water reservoirs, tubes through which water is circulated to absorb heat, an evaporator, and an absorber/radiator. The radiator includes a solution of LiCl contained in a porous material in titanium tubes. The evaporator cools water that circulates through a liquid-cooled garment. Water vapor produced in the evaporator enters the radiator tubes where it is absorbed into the LiCl solution, releasing heat. Much of the heat of absorption is rejected to the environment via the radiator. After use, the RHA is regenerated by heating it to a temperature of 100 C for about 2 hours to drive the absorbed water back to the evaporator. A system including a prototype of the RHA was found to be capable of maintaining a temperature of 20 C while removing heat at a rate of 200 W for 6 hours.

  14. Hydrodynamic ram modeling with the immersed boundary method

    SciTech Connect

    Lewis, M.W.; Kashiwa, B.A.; Rauenzahn, R.M.

    1998-03-01

    The authors have modeled a hydrodynamic ram experiment conducted at Wright-Patterson Air Force Base. In the experiment, a projectile traveling at 200 ft/sec impacted and penetrated a simulated airplane wing containing water. The structure consisted of composite panels with stiffeners and rivets, and an aluminum panel. The test included instrumentation to measure strains, accelerations, and pressures. The technique used for modeling this experiment was a multifluid compressible finite volume approach. The solid fields, namely the projectile and the plates which comprised the structure, were represented by a set of discrete, Lagrangian-frame, mass points. These mass points were followed throughout the computation. The contribution of the stress state at each mass point was applied on the grid to determine the stress divergence contribution to the equations of motion and resulting grid based accelerations. This approach has been defined as the immersed boundary method. The immersed boundary method allows the modeling of fluid-structure interaction problems involving material failure. The authors implemented a plate theory to allow the representation of each plate by a surface of mass points. This theory includes bending terms and transverse shear. Arbitrary constitutive models may be used for each plate. Here they describe the immersed boundary method as they have implemented. They then describe the plate theory and its implementation. They discuss the hydrodynamic ram experiment and describe how they modeled it. They compare computed results with test data. They finally conclude with a discussion of benefits and difficulties associated with this modeling approach and possible improvement to it.

  15. Single Event Upset Behavior of CMOS Static RAM Cells

    NASA Technical Reports Server (NTRS)

    Lieneweg, Udo; Jeppson, Kjell O.; Buehler, Martin G.

    1993-01-01

    An improved state-space analysis of the CMOS static RAM cell is presented. Introducing theconcept of the dividing line, the critical charge for heavy-ion-induced upset of memory cells can becalculated considering symmetrical as well as asymmetrical capacitive loads. From the criticalcharge, the upset-rate per bit-day for static RAMs can be estimated.

  16. 29. NORTH SIDE OF SOUTH BANK OF HYDRAULIC RAMS, MIDDLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. NORTH SIDE OF SOUTH BANK OF HYDRAULIC RAMS, MIDDLE LEVEL OF STAGE, LOOKING SOUTHEAST. RAMS HAVE BEEN FIXED IN POSITION AT STAGE LEVEL AND NEW MIDDLE LEVEL FLOOR CONSTRUCTED BELOW. - Auditorium Building, 430 South Michigan Avenue, Chicago, Cook County, IL

  17. Modelling Absorbent Phenomena of Absorbent Structure

    NASA Astrophysics Data System (ADS)

    Sayeb, S.; Ladhari, N.; Ben Hassen, M.; Sakli, F.

    Absorption, retention and strike through time, as evaluating criteria of absorbent structures quality were studied. Determination of influent parameters on these criteria were realized by using the design method of experimental sets. In this study, the studied parameters are: Super absorbent polymer (SAP)/fluff ratio, compression and the porosity of the non woven used as a cover stock. Absorption capacity and retention are mostly influenced by SAP/fluff ratio. However, strike through time is affected by compression. Thus, a modelling of these characteristics in function of the important parameter was established.

  18. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  19. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  20. Space station synergetic RAM-logistics analysis

    NASA Technical Reports Server (NTRS)

    Dejulio, Edmund T.; Leet, Joel H.

    1988-01-01

    NASA's Space Station Maintenance Planning and Analysis (MP&A) Study is a step in the overall Space Station Program to define optimum approaches for on-orbit maintenance planning and logistics support. The approach used in the MP&A study and the analysis process used are presented. Emphasis is on maintenance activities and processes that can be accomplished on orbit within the known design and support constraints of the Space Station. From these analyses, recommendations for maintainability/maintenance requirements are established. The ultimate goal of the study is to reduce on-orbit maintenance requirements to a practical and safe minimum, thereby conserving crew time for productive endeavors. The reliability, availability, and maintainability (RAM) and operations performance evaluation models used were assembled and developed as part of the MP&A study and are described. A representative space station system design is presented to illustrate the analysis process.

  1. Method for absorbing an ion from a fluid

    DOEpatents

    Gao, Huizhen; Wang, Yifeng; Bryan, Charles R.

    2007-07-03

    A method for absorbing an ion from a fluid by using dispersing an organic acid into an anion surfactant solution, mixing in a divalent-metal containing compound and a trivalent-metal containing compound and calcining the resulting solid layered double hydroxide product to form an absorbent material and then contacting the absorbent material with an aqueous solution of cations or anions to be absorbed.

  2. Energy absorber uses expanded coiled tube

    NASA Technical Reports Server (NTRS)

    Johnson, E. F.

    1972-01-01

    Mechanical shock mitigating device, based on working material to its failure point, absorbs mechanical energy by bending or twisting tubing. It functions under axial or tangential loading, has no rebound, is area independent, and is easy and inexpensive to build.

  3. A simple parameterization of aerosol emissions in RAMS

    NASA Astrophysics Data System (ADS)

    Letcher, Theodore

    Throughout the past decade, a high degree of attention has been focused on determining the microphysical impact of anthropogenically enhanced concentrations of Cloud Condensation Nuclei (CCN) on orographic snowfall in the mountains of the western United States. This area has garnered a lot of attention due to the implications this effect may have on local water resource distribution within the Region. Recent advances in computing power and the development of highly advanced microphysical schemes within numerical models have provided an estimation of the sensitivity that orographic snowfall has to changes in atmospheric CCN concentrations. However, what is still lacking is a coupling between these advanced microphysical schemes and a real-world representation of CCN sources. Previously, an attempt to representation the heterogeneous evolution of aerosol was made by coupling three-dimensional aerosol output from the WRF Chemistry model to the Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS) (Ward et al. 2011). The biggest problem associated with this scheme was the computational expense. In fact, the computational expense associated with this scheme was so high, that it was prohibitive for simulations with fine enough resolution to accurately represent microphysical processes. To improve upon this method, a new parameterization for aerosol emission was developed in such a way that it was fully contained within RAMS. Several assumptions went into generating a computationally efficient aerosol emissions parameterization in RAMS. The most notable assumption was the decision to neglect the chemical processes in formed in the formation of Secondary Aerosol (SA), and instead treat SA as primary aerosol via short-term WRF-CHEM simulations. While, SA makes up a substantial portion of the total aerosol burden (much of which is made up of organic material), the representation of this process is highly complex and highly expensive within a numerical

  4. Testicular pathology, gonadal and epididymal sperm reserves of Yankasa rams infected with experimental Trypanosoma brucei brucei and Trypanosoma evansi

    PubMed Central

    Wada, Yunusa A.; Oniye, Sonnie J.; Rekwot, Peter I.; Okubanjo, Oluyinka O.

    2016-01-01

    Aim: The study was conducted to evaluate the pathological effects of trypanosomosis on the testes, gonadal, and epididymal sperm reserves of Yankasa rams for 98 days. Materials and Methods: A total of 16 Yankasa rams, aged between 24 and 30 months and weighed between 22 and 25 kg, were acclimatized for a period of 2-months in a clean fly proof house and were adequately fed and given water ad-libitum. Of the 16 rams, 12 that were clinically fit for the experiment at the end of the acclimatization period were randomly divided into four groups: Groups I, II, III, and IV, each having 3 rams. Groups I and II were each challenged singly with experimental Trypanosoma brucei brucei (Federer strain) and Trypanosoma evansi (Sokoto strain), respectively, while Group III was challenged with mixed T. brucei brucei and T. evansi parasites (50% of each species in the infective inoculum) and Group IV was left as an uninfected control. Each infected ram received 2 mL of the infected blood containing 2×106 trypomastigotes via the jugular vein, while the control group received 2 mL each, normal saline. Results: All the infected rams developed clinical signs typical of trypanosomosis at varying pre-patent periods. The gross lesions observed in the infected rams in Group II were moderate and more severe in those of Groups I and III. Histological sections of the testes of infected rams (Groups I, II, and III) showed moderate (T. evansi-infected group) to severe (mixed and T. brucei brucei-infected groups) testicular degenerations with reduction in number of spermatogenic cell layers, degenerated seminiferous tubules, congested interlobular spaces, loss of tissue architecture with significant (p<0.01) depletion, and loss of gonadal and epididymal sperm reserves in Groups I and III in comparison to Group II and the control Group IV. No observable clinical signs and histopathological lesions were found in those rams of the control Group IV. Conclusion: The study concluded that

  5. Absorbing Outflows in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, Smita

    2002-01-01

    The goal of this program was a comprehensive multiwavelength study of absorption phenomena in active galactic nuclei (AGN). These include a variety of associated absorption systems: X-ray warm absorbers, X-ray cold absorbers. UV absorbers with high ionization lines, MgII absorbers, red quasars and BALQSOs. The aim is to determine the physical conditions in the absorbing outflows, study their inter-relations and their role in AGN. We designed several observing programs to achieve this goal: X-ray spectroscopy, UV spectroscopy, FLAY spectroscopy and X-ray imaging. We were very successful towards achieving the goal over the five year period as shown through following observing programs and papers. Copies of a few papers are attached with this report.

  6. Ram-Jet off Design Performances

    NASA Astrophysics Data System (ADS)

    Andriani, Roberto; Ghezzi, Umberto

    2002-01-01

    In this work it is intended to study the off-design performances of a ram jet engine. To this purpouse it has been analyzed in a first time the behaviour of an ideal engine, that means to not consider the losses in the various components, or, under a thermodynamic point of view, to consider the fluid transformation through the air intake and exhaust nozzle, remembering that in a ram jet there are not rotating components as compressor and turbine, isentropic. Referring to the ram-jet scheme of fig.1. we can say, neglecting the fuel introduced, that the air mass flow rate throughout the engine is constant. If we consider the two control sections 4 and 8, respectively the throat section of the converging-diverging supersonic inlet and the throat section of the discharge nozzle, the condition of constant mass flow leads to the relation: m4 =f (M 4 ) m8 = m 4 = m8 We can imaging that the throat section # 4 is always choked for any value of the flight Mach number M0. This means that the throat section 4 is adjusted at any value of M0 so that the flow Mach number in 4 is equal to unity. In this it follows: R. Andriani, U. Ghezzi1 Since in an ideal case T t8 The relation [1] allows to determine the T8 temperature, that represent the maximum cycle temperature, for different operating conditions, as flight Mach number and altitude. We then have two cases: the first is A8 (nozzle throat section) fixed, and the second is A8 variable. In the first case the maximum temperature T8 is univocally determined by the operating condition. In the second case A8 can be varied so to maintain T8 at a chosen value. The graphic of fig.2 shows the first case. In particular it has been considered as design point an altitude of 15000 meters and a flight Mach number equal to 2. In this condition it has been evaluated the section A8 for unity mass flow rate. At the same altitude, varying the flight Mach number, with the section A4 always choked, the graphic shows the variation of the maximum

  7. STS-9 Shuttle grow - Ram angle effect and absolute intensities

    NASA Technical Reports Server (NTRS)

    Swenson, G. R.; Mende, S. B.; Clifton, K. S.

    1986-01-01

    Visible imagery from Space Shuttle mission STS-9 (Spacelab 1) has been analyzed for the ram angle effect and the absolute intensity of glow. The data are compared with earlier measurements and the anomalous high intensities at large ram angles are confirmed. Absolute intensities of the ram glow on the shuttle tile, at 6563 A, are observed to be about 20 times more intense than those measured on the AE-E spacecraft. Implications of these observations for an existing theory of glow involving NO2 are presented.

  8. 117. Stage mezzanine level floor structure. North rams, facing south. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. Stage mezzanine level floor structure. North rams, facing south. The left hand ram is the same one visible from above in IL-1007-114. A hinged slot in the mezzanine floor corresponding to the slot in the stage floor above is visible in the center of the photo (also visible from below in IL-1007-119). To the right, the top of one of the lowered, smaller, downstage rams (type C) is visible. - Auditorium Building, 430 South Michigan Avenue, Chicago, Cook County, IL

  9. A radiation hardened 256 x 4 bulk CMOS RAM

    NASA Technical Reports Server (NTRS)

    Napoli, L. S.; Smeltzer, R. K.; Donnelly, R.; Yeh, J.

    1982-01-01

    A radiation hardened version of the C2L process has been developed that utilizes all-low-temperature processes subsequent to channel oxidation. This process has been used on 1K RAMS. The RAMs functioned reliably at a dose of 200,000 rads (Si) and failed at a dose of 500,000 rads (Si). The 1K RAM is capable of operating from 7.5 to 12 volts and has an access time from address change of 160 nsec at 10 volts

  10. 26. EASTERNMOST HYDRAULIC RAM IN CENTER RANK (STILL OPERABLE), LOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. EASTERNMOST HYDRAULIC RAM IN CENTER RANK (STILL OPERABLE), LOWER LEVEL OF STAGE, LOOKING SOUTH. THE CENTER BANK OF RAMS MOVED SMALL SECTIONS OF STAGE IN THE CENTER OF EACH LARGE MOVABLE SECTION. THE WEST EDGE OF THIS SECTION HAS BEEN EXTENDED TO THE WEST EDGE OF THE LARGE SECTION WHICH ORIGINALLY SURROUNDED IT. THE SOUTH RAM FOR THE LARGE SECTION IS VISIBLE IN THE BACKGROUND. THE SMALL MOVABLE SECTIONS COULD NOT TILT BUT COULD BE LOWERED TO THE LOWER LEVEL OF THE STAGE WITH HINGED PANELS UNDER EACH LARGE SECTION FILLING THE VOID. - Auditorium Building, 430 South Michigan Avenue, Chicago, Cook County, IL

  11. Internal absorber solar collector

    DOEpatents

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  12. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  13. Ram pressure stripping in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Verdugo, C.; Combes, F.; Dasyra, K.; Salomé, P.; Braine, J.

    2015-10-01

    Gas can be violently stripped from their galaxy disks in rich clusters, and be dispersed over 100 kpc-scale tails or plumes. Young stars have been observed in these tails, suggesting they are formed in situ. This will contribute to the intracluster light, in addition to tidal stripping of old stars. We want to quantify the efficiency of intracluster star formation. We present CO(1-0) and CO(2-1) observations, made with the IRAM-30 m telescope, towards the ram-pressure stripped tail northeast of NGC 4388 in Virgo. We selected HII regions found all along the tails, together with dust patches, as observing targets. We detect molecular gas in 4 positions along the tail, with masses between 7 × 105 to 2 × 106M⊙. Given the large distance from the NGC 4388 galaxy, the molecular clouds must have formed in situ, from the HI gas plume. We compute the relation between surface densities of star formation and molecular gas in these regions, and find that the star formation has very low efficiency. The corresponding depletion time of the molecular gas can be up to 500 Gyr and more. Since this value exceeds a by far Hubble time, this gas will not be converted into stars, and will stay in a gaseous phase to join the intracluster medium.

  14. New River Geothermal Exploration (Ram Power Inc.)

    DOE Data Explorer

    Miller, Clay

    2013-11-15

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

  15. RAM simulation model for SPH/RSV systems

    SciTech Connect

    Schryver, J.C.; Primm, A.H.; Nelson, S.C.

    1995-12-31

    The US Army`s Project Manager, Crusader is sponsoring the development of technologies that apply to the Self-Propelled Howitzer (SPH), formerly the Advanced Field Artillery System (AFAS), and Resupply Vehicle (RSV), formerly the Future Armored Resupply Vehicle (FARV), weapon system. Oak Ridge National Laboratory (ORNL) is currently performing developmental work in support of the SPH/PSV Crusader system. Supportive analyses of reliability, availability, and maintainability (RAM) aspects were also performed for the SPH/RSV effort. During FY 1994 and FY 1995 OPNL conducted a feasibility study to demonstrate the application of simulation modeling for RAM analysis of the Crusader system. Following completion of the feasibility study, a full-scale RAM simulation model of the Crusader system was developed for both the SPH and PSV. This report provides documentation for the simulation model as well as instructions in the proper execution and utilization of the model for the conduct of RAM analyses.

  16. Rotor acoustic monitoring system (RAMS): a fatigue crack detection system

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.

    1996-05-01

    The Rotor Acoustic Monitoring System (RAMS) is an embedded structural health monitoring system to demonstrate the ability to detect rotor head fatigue cracks and provide early warning of propagating fatigue cracks in rotor components of Navy helicopters. The concept definition effort was performed to assess the feasibility of detecting rotor head fatigue cracks using bulk- wave wide-bandwidth acoustic emission technology. A wireless piezo-based transducer system is being designed to capture rotor fatigue data in real time and perform acoustic emission (AE) event detection, feature extraction, and classification. A flight test effort will be performed to characterize rotor acoustic background noise and flight environment characteristics. The long- term payoff of the RAMS technology includes structural integrity verification and leak detection for large industrial tanks, and nuclear plant cooling towers could be performed using the RAMS AE technology. A summary of the RAMS concept, bench-level AE fatigue testing, and results are presented.

  17. DETAIL OF CORNICE MOULDING WITH RAM'S HEAD MOTIF. EIGHT SHADES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF CORNICE MOULDING WITH RAM'S HEAD MOTIF. EIGHT SHADES OF GOLD LEAF AND BURNISHED GOLD LEAF WERE USED FOR THE INTERIOR FINISHES. - Anaconda Historic District, Washoe Theater, 305 Main Street, Anaconda, Deer Lodge County, MT

  18. 10. DETAIL OF CORNICE MOULDING WITH RAM'S HEAD MOTIF. EIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL OF CORNICE MOULDING WITH RAM'S HEAD MOTIF. EIGHT SHADES OF GOLD LEAF AND BURNISHED GOLD LEAF WERE USED FOR THE INTERIOR FINISHES - Anaconda Historic District, Washoe Theater, 305 Main Street, Anaconda, Deer Lodge County, MT

  19. 30. DETAIL OF TOP OF TYPICAL HYDRAULIC RAM IN SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. DETAIL OF TOP OF TYPICAL HYDRAULIC RAM IN SOUTH RANK SHOWING ROLLER CONNECTIONS FOR STAGE FLOORS, MIDDLE LEVEL OF STAGE, LOOKING SOUTH. - Auditorium Building, 430 South Michigan Avenue, Chicago, Cook County, IL

  20. The pathology of bacterial infection of the genitalia in rams.

    PubMed

    Jansen, B C

    1980-12-01

    Details are given of the macroscopic and histopathological changes brought about by infection of the genitalia of rams by bacteria other than Brucella ovis. Lesions of the seminal vesicles and ampullae are described which, in addition to the clinically evident lesions of the testes and epididymis, could be an important reasons for impaired fertility. The name "bacterial infection of the genitalia", abbreviated to BIG, is suggested as a more appropriate designation for this condition than "ram epididymitis". PMID:7231922

  1. 33 CFR 147.811 - Ram-Powell Tension Leg Platform safety zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Ram-Powell Tension Leg Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.811 Ram-Powell Tension Leg Platform safety zone. (a) Description. The Ram-Powell Tension Leg Platform (Ram-Powell TLP) is located...

  2. 33 CFR 147.811 - Ram-Powell Tension Leg Platform safety zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Ram-Powell Tension Leg Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.811 Ram-Powell Tension Leg Platform safety zone. (a) Description. The Ram-Powell Tension Leg Platform (Ram-Powell TLP) is located...

  3. 33 CFR 147.811 - Ram-Powell Tension Leg Platform safety zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Ram-Powell Tension Leg Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.811 Ram-Powell Tension Leg Platform safety zone. (a) Description. The Ram-Powell Tension Leg Platform (Ram-Powell TLP) is located...

  4. 33 CFR 147.811 - Ram-Powell Tension Leg Platform safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Ram-Powell Tension Leg Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.811 Ram-Powell Tension Leg Platform safety zone. (a) Description. The Ram-Powell Tension Leg Platform (Ram-Powell TLP) is located...

  5. 33 CFR 147.811 - Ram-Powell Tension Leg Platform safety zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Ram-Powell Tension Leg Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.811 Ram-Powell Tension Leg Platform safety zone. (a) Description. The Ram-Powell Tension Leg Platform (Ram-Powell TLP) is located...

  6. Container and method for absorbing and reducing hydrogen concentration

    DOEpatents

    Wicks, George G.; Lee, Myung W.; Heung, Leung K.

    2001-01-01

    A method for absorbing hydrogen from an enclosed environment comprising providing a vessel; providing a hydrogen storage composition in communication with a vessel, the hydrogen storage composition further comprising a matrix defining a pore size which permits the passage of hydrogen gas while blocking the passage of gaseous poisons; placing a material within the vessel, the material evolving hydrogen gas; sealing the vessel; and absorbing the hydrogen gas released into the vessel by the hydrogen storage composition. A container for absorbing evolved hydrogen gas comprising: a vessel having an interior and adapted for receiving materials which release hydrogen gas; a hydrogen absorbing composition in communication with the interior, the composition defining a matrix surrounding a hydrogen absorber, the matrix permitting the passage of hydrogen gas while excluding gaseous poisons; wherein, when the vessel is sealed, hydrogen gas, which is released into the vessel interior, is absorbed by the hydrogen absorbing composition.

  7. Composite neutron absorbing coatings for nuclear criticality control

    DOEpatents

    Wright, Richard N.; Swank, W. David; Mizia, Ronald E.

    2005-07-19

    Thermal neutron absorbing composite coating materials and methods of applying such coating materials to spent nuclear fuel storage systems are provided. A composite neutron absorbing coating applied to a substrate surface includes a neutron absorbing layer overlying at least a portion of the substrate surface, and a corrosion resistant top coat layer overlying at least a portion of the neutron absorbing layer. An optional bond coat layer can be formed on the substrate surface prior to forming the neutron absorbing layer. The neutron absorbing layer can include a neutron absorbing material, such as gadolinium oxide or gadolinium phosphate, dispersed in a metal alloy matrix. The coating layers may be formed by a plasma spray process or a high velocity oxygen fuel process.

  8. Porous absorber for solar air heaters

    SciTech Connect

    Finch, J.A.

    1980-09-10

    A general discussion of the factors affecting solar collector performance is presented. Bench scale tests done to try to determine the heat transfer characteristics of various screen materials are explained. The design, performance, and evaluation of a crude collector with a simple screen stack absorber is treated. The more sophisticated absorber concept, and its first experimental approximation is examined. A short summary of future plans for the collector concept is included. (MHR)

  9. Energy-Absorbing, Lightweight Wheels

    NASA Technical Reports Server (NTRS)

    Waydo, Peter

    2003-01-01

    Improved energy-absorbing wheels are under development for use on special-purpose vehicles that must traverse rough terrain under conditions (e.g., extreme cold) in which rubber pneumatic tires would fail. The designs of these wheels differ from those of prior non-pneumatic energy-absorbing wheels in ways that result in lighter weights and more effective reduction of stresses generated by ground/wheel contact forces. These wheels could be made of metals and/or composite materials to withstand the expected extreme operating conditions. As shown in the figure, a wheel according to this concept would include an isogrid tire connected to a hub via spring rods. The isogrid tire would be a stiff, lightweight structure typically made of aluminum. The isogrid aspect of the structure would both impart stiffness and act as a traction surface. The hub would be a thin-walled body of revolution having a simple or compound conical or other shape chosen for structural efficiency. The spring rods would absorb energy and partially isolate the hub and the supported vehicle from impact loads. The general spring-rod configuration shown in the figure was chosen because it would distribute contact and impact loads nearly evenly around the periphery of the hub, thereby helping to protect the hub against damage that would otherwise be caused by large loads concentrated onto small portions of the hub.

  10. Effect of washing on the post-thaw quality of cryopreserved ram epididymal spermatozoa

    PubMed Central

    Ahmed, Touqeer; Islam, Rafiqul; Lone, Farooz Ahmad; Malik, Asloob Ahmad

    2016-01-01

    Aim: The aim of the study was to evaluate the effect of washing on the post-thaw quality of ram cauda epididymal spermatozoa (P1: Unwashed, P2: Washed). Materials and Methods: Fresh testicles of adult healthy slaughtered rams were collected and transported to the laboratory in an ice chest, where they were weighed, and cauda epididymides were separated. These cauda epididymides were used for recovery of spermatozoa in tris-citric acid fructose buffer by incision method. Spermatozoa samples showing ≥70% progressive motility were pooled and processed further. The mean values (±standard error) of various parameters such as the percentage of sperm motility, live sperm, intact acrosome, and hypo-osmotic swelling test (HOST) reacted spermatozoa were recorded. Results: In this experiment, the percent sperm motility, live spermatozoa, and intact acrosome both at pre-freeze and post-thaw were higher (p>0.05) in P1 than P2. However, the post-thaw percent HOST reacted spermatozoa was slightly higher (p>0.05) for P2 than P1. Conclusion: Washing of cauda epididymal spermatozoa has no significant adverse effect on the quality during cryopreservation. Therefore, this processing method can be applied wherever necessary before the extension of the recovered spermatozoa sample in different ram extenders. PMID:27284230

  11. Origin of the OFF state variability in ReRAM cells

    NASA Astrophysics Data System (ADS)

    Salaoru, Iulia; Khiat, Ali; Li, Qingjiang; Berdan, Radu; Papavassiliou, Christos; Prodromakis, Themistoklis

    2014-04-01

    This work exploits the switching dynamics of nanoscale resistive random access memory (ReRAM) cells with particular emphasis on the origin of the observed variability when cells are consecutively cycled/programmed at distinct memory states. It is demonstrated that this variance is a common feature of all ReRAM elements and is ascribed to the formation and rupture of conductive filaments that expand across the active core, independently of the material employed as the active switching core, the causal physical switching mechanism, the switching mode (bipolar/unipolar) or even the unit cells' dimensions. Our hypothesis is supported through both experimental and theoretical studies on TiO2 and In2O3 : SnO2 (ITO) based ReRAM cells programmed at three distinct resistive states. Our prototypes employed TiO2 or ITO active cores over 5 × 5 µm2 and 100 × 100 µm2 cell areas, with all tested devices demonstrating both unipolar and bipolar switching modalities. In the case of TiO2-based cells, the underlying switching mechanism is based on the non-uniform displacement of ionic species that foster the formation of conductive filaments. On the other hand, the resistive switching observed in the ITO-based devices is considered to be due to a phase change mechanism. The selected experimental parameters allowed us to demonstrate that the observed programming variance is a common feature of all ReRAM devices, proving that its origin is dependent upon randomly oriented local disorders within the active core that have a substantial impact on the overall state variance, particularly for high-resistive states.

  12. Unidirectional perfect absorber

    PubMed Central

    Jin, L.; Wang, P.; Song, Z.

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  13. Unidirectional perfect absorber

    NASA Astrophysics Data System (ADS)

    Jin, L.; Wang, P.; Song, Z.

    2016-09-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  14. Unidirectional perfect absorber.

    PubMed

    Jin, L; Wang, P; Song, Z

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  15. Mechanical energy absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J. (Inventor)

    1993-01-01

    An energy absorbing system for controlling the force where a moving object engages a stationary stop and where the system utilized telescopic tubular members, energy absorbing diaphragm elements, force regulating disc springs, and a return spring to return the telescoping member to its start position after stroking is presented. The energy absorbing system has frusto-conical diaphragm elements frictionally engaging the shaft and are opposed by a force regulating set of disc springs. In principle, this force feedback mechanism serves to keep the stroking load at a reasonable level even if the friction coefficient increases greatly. This force feedback device also serves to desensitize the singular and combined effects of manufacturing tolerances, sliding surface wear, temperature changes, dynamic effects, and lubricity.

  16. Unidirectional perfect absorber.

    PubMed

    Jin, L; Wang, P; Song, Z

    2016-09-12

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  17. Calculating the Muon Cooling within a MICE Solid and LiquidAbsorber

    SciTech Connect

    Yang, Stephanie Q.; Green, Michael A.; Virostek, Steve P.

    2006-06-10

    The key elements of the Muon Ionization Cooling Experiment (MICE) cooling channel are the absorbers that are a part of the MICE absorber focus coil modules (AFC modules). The boundaries of room temperature solid absorbers are well defined. The density of most solid absorber materials is also well understood. The properties of solid absorber are most certainly understood to 0.3 percent. The MICE liquid absorbers are different in that their dimensions are a function of the absorber temperature and the fluid pressure within the absorber. The second element in the liquid absorber is the variability of the liquid density with temperature and pressure. While one can determine the absorber boundary within 0.3 percent, the determination of the liquid density within 0.3 percent is more difficult (particularly with liquid helium in the absorber). This report presents a method of calculating absorber boundary and the cooling performance of the MICE absorbers as a function of fluid temperature and pressure.

  18. Operational advances in ring current modeling using RAM-SCB

    SciTech Connect

    Welling, Daniel T; Jordanova, Vania K; Zaharia, Sorin G; Morley, Steven K

    2010-12-03

    The Ring current Atmosphere interaction Model with Self-Consistently calculated 3D Magnetic field (RAM-SCB) combines a kinetic model of the ring current with a force-balanced model of the magnetospheric magnetic field to create an inner magnetospheric model that is magnetically self consistent. RAM-SCB produces a wealth of outputs that are valuable to space weather applications. For example, the anisotropic particle distribution of the KeV-energy population calculated by the code is key for predicting surface charging on spacecraft. Furthermore, radiation belt codes stand to benefit substantially from RAM-SCB calculated magnetic field values and plasma wave growth rates - both important for determining the evolution of relativistic electron populations. RAM-SCB is undergoing development to bring these benefits to the space weather community. Data-model validation efforts are underway to assess the performance of the system. 'Virtual Satellite' capability has been added to yield satellite-specific particle distribution and magnetic field output. The code's outer boundary is being expanded to 10 Earth Radii to encompass previously neglected geosynchronous orbits and allow the code to be driven completely by either empirical or first-principles based inputs. These advances are culminating towards a new, real-time version of the code, rtRAM-SCB, that can monitor the inner magnetosphere conditions on both a global and spacecraft-specific level. This paper summarizes these new features as well as the benefits they provide the space weather community.

  19. Solar concentrator/absorber

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  20. Application of ICP-OES to the determination of CuIn(1-x)Ga(x)Se2 thin films used as absorber materials in solar cell devices.

    PubMed

    Fernández-Martínez, Rodolfo; Caballero, Raquel; Guillén, Cecilia; Gutiérrez, María Teresa; Rucandio, María Isabel

    2005-05-01

    CuIn(1-x)Ga(x)Se2 [CIGS; x=Ga/(In+Ga)] thin films are among of the best candidates as absorber materials for solar cell applications. The material quality and main properties of the polycrystalline absorber layer are critically influenced by deviations in the stoichiometry, particularly in the Cu/(In+Ga) atomic ratio. In this work a simple, sensitive and accurate method has been developed for the quantitative determination of these thin films by inductively coupled plasma optical emission spectrometry (ICP-OES). The proposed method involves an acid digestion of the samples to achieve the complete solubilization of CIGS, followed by the analytical determination by ICP-OES. A digestion procedure with 50% HNO3 alone or in the presence of 10% HCl was performed to dissolve those thin films deposited on glass or Mo-coated glass substrates, respectively. Two analytical lines were selected for each element (Cu 324.754 and 327.396 nm, Ga 294.364 and 417.206 nm, In 303.936 and 325.609 nm, Se 196.090 and 203.985 nm, and Mo 202.030 and 379.825 nm) and a study of spectral interferences was performed which showed them to be suitable, since they offered a high sensitivity and no significant inter-element interferences were detected. Detection limits for all elements at the selected lines were found to be appropriate for this kind of application, and the relative standard deviations were lower than 1.5% for all elements with the exception of Se (about 5%). The Cu/(In+Ga) atomic ratios obtained from the application of this method to CIGS thin films were consistent with the study of the structural and morphological properties by X-ray diffraction (XRD) and scanning electron microscopy (SEM). PMID:15702309

  1. Application of ICP-OES to the determination of CuIn(1-x)Ga(x)Se2 thin films used as absorber materials in solar cell devices.

    PubMed

    Fernández-Martínez, Rodolfo; Caballero, Raquel; Guillén, Cecilia; Gutiérrez, María Teresa; Rucandio, María Isabel

    2005-05-01

    CuIn(1-x)Ga(x)Se2 [CIGS; x=Ga/(In+Ga)] thin films are among of the best candidates as absorber materials for solar cell applications. The material quality and main properties of the polycrystalline absorber layer are critically influenced by deviations in the stoichiometry, particularly in the Cu/(In+Ga) atomic ratio. In this work a simple, sensitive and accurate method has been developed for the quantitative determination of these thin films by inductively coupled plasma optical emission spectrometry (ICP-OES). The proposed method involves an acid digestion of the samples to achieve the complete solubilization of CIGS, followed by the analytical determination by ICP-OES. A digestion procedure with 50% HNO3 alone or in the presence of 10% HCl was performed to dissolve those thin films deposited on glass or Mo-coated glass substrates, respectively. Two analytical lines were selected for each element (Cu 324.754 and 327.396 nm, Ga 294.364 and 417.206 nm, In 303.936 and 325.609 nm, Se 196.090 and 203.985 nm, and Mo 202.030 and 379.825 nm) and a study of spectral interferences was performed which showed them to be suitable, since they offered a high sensitivity and no significant inter-element interferences were detected. Detection limits for all elements at the selected lines were found to be appropriate for this kind of application, and the relative standard deviations were lower than 1.5% for all elements with the exception of Se (about 5%). The Cu/(In+Ga) atomic ratios obtained from the application of this method to CIGS thin films were consistent with the study of the structural and morphological properties by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

  2. OSCEE fan exhaust bulk absorber treatment evaluation

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Samanich, N. E.

    1980-01-01

    The acoustic suppression capability of bulk absorber material designed for use in the fan exhaust duct walls of the quiet clean short haul experiment engine (OCSEE UTW) was evaluated. The acoustic suppression to the original design for the engine fan duct which consisted of phased single degree-of-freedom wall treatment was tested with a splitter and also with the splitter removed. Peak suppression was about as predicted with the bulk absorber configuration, however, the broadband characteristics were not attained. Post test inspection revealed surface oil contamination on the bulk material which could have caused the loss in bandwidth suppression.

  3. The Nimbus F Random Access Measurement System /RAMS/

    NASA Technical Reports Server (NTRS)

    Coates, J. L.

    1975-01-01

    In 1974, the Random Access Measurement System (RAMS) will be launched aboard the Nimbus F satellite as part of the Tropical Wind, Energy Conversion, and Reference Level Experiment (TWERLE). This paper describes operation and performance of the RAMS instrument, which will provide a means of tracking and collecting data from a large number of instrumented platforms. In operation, the RAMS will perform satellite onboard processing of up to eight simultaneous platform transmissions, following search and detection of the randomly received platform transmissions in a compressed-time expanded-frequency domain. The processed data is stored aboard the satellite for readout every 108 minutes (orbital period), and platform locational coordinates and/or velocity components are determined in a central ground data processing facility.

  4. Wrap spring clutch syringe ram and frit mixer

    DOEpatents

    Simpson, Frank B.

    2006-07-25

    A wrap spring clutch syringe ram pushes at least one syringe with virtually instantaneous starting and stopping, and with constant motion at a defined velocity during the intervening push. The wrap spring clutch syringe ram includes an electric motor, a computer, a flywheel, a wrap spring clutch, a precision lead screw, a slide platform, and syringe reservoirs, a mixing chamber, and a reaction incubation tube. The electric motor drives a flywheel and the wrap spring clutch couples the precision lead screw to the flywheel when a computer enables a solenoid of the wrap spring clutch. The precision lead screw drives a precision slide which causes syringes to supply a portion of solution into the mixing chamber and the incubation tube. The wrap spring clutch syringe ram is designed to enable the quantitative study of solution phase chemical and biochemical reactions, particularly those reactions that occur on the subsecond time scale.

  5. Computational Study of Flow Establishment in a Ram Accelerator

    NASA Technical Reports Server (NTRS)

    Yungster, S.; Radhakrishnan, K.; Rabinowitz, M. J.

    1995-01-01

    The temporal evolution of the combustion process established during projectile transition from the launch tube into the ram accelerator section containing an explosive hydrogen-oxygen-argon gas mixture is studied. The Navier-Stokes equations for chemically reacting flow are solved in a fully coupled manner, using an implicit, time accurate algorithm. The solution procedure is based on a spatially second order total variation diminishing scheme and a temporally second order, variable-step, backward differentiation formula method. The hydrogen-oxygen chemistry is modeled with a 9-species, 19-step mechanism. The accuracy of the solution method is first demonstrated by several benchmark calculations. Numerical simulations of two ram accelerator configurations are then presented. In particular, the temporal developments of shock-induced combustion and thrust forces are followed. Positive thrust is established in both cases; however, in one of the ram accelerator configurations studied, combustion in the boundary layer enhances its separation, ultimately resulting in unstart.

  6. Application of RAM to Facility/Laboratory Design

    SciTech Connect

    Mohammadi, K

    2008-04-14

    Reliability, Availability, and Maintainability (RAM) studies are extensively used for mission critical systems (e.g., weapons systems) to predict the RAM parameters at the preliminary design phase. A RAM methodology is presented for predicting facility/laboratory inherent availability (i.e., availability that only considers the steady-state effects of design) at the preliminary design phase in support of Department of Energy (DOE) Order 430.1A (Life Cycle Asset Management) and DOE Order 420.1B (Facility Safety). The methodology presented identifies the appropriate system-level reliability and maintainability metrics and discusses how these metrics are used in a fault tree analysis for predicting the facility/laboratory inherent availability. The inherent availability predicted is compared against design criteria to determine if changes to the facility/laboratory preliminary design are necessary to meet the required availability objective in the final design.

  7. Design of a Ram Accelerator mass launch system

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Ram Accelerator, a chemically propelled, impulsive mass launch system, is presented as a viable concept for directly launching acceleration-insensitive payloads into low Earth orbit. The principles of propulsion are based on those of an airbreathing supersonic ramjet. The payload vehicle acts as the ramjet centerbody and travels through a fixed launch tube that acts as the ramjet outer cowling. The launch tube is filled with premixed gaseous fuel and oxidizer mixtures that combust at the base of the vehicle and produce thrust. Two modes of in-tube propulsion involving ramjet cycles are used in sequence to accelerate the vehicle from 0.7 km/sec to 9 km/sec. Requirements for placing a 2000 kg vehicle into a 500-km circular orbit, with a minimum amount of onboard rocket propellant for orbital maneuvers, are examined. It is shown that in-tube propulsion requirements dictate a launch tube length of 5.1 km to achieve an exit velocity of 9 km/sec, with peak accelerations not to exceed 1000 g's. Aerodynamic heating due to atmospheric transit requires minimal ablative protection and the vehicle retains a large percentage of its exit velocity. An indirect orbital insertion maneuver with aerobraking and two apogee burns is examined to minimize the required onboard propellant mass. An appropriate onboard propulsion system design to perform the required orbital maneuvers with minimum mass requirements is also determined. The structural designs of both the launch tube and the payload vehicle are examined using simple structural and finite element analysis for various materials.

  8. Data requirements for verification of ram glow chemistry

    NASA Technical Reports Server (NTRS)

    Swenson, G. R.; Mende, S. B.

    1985-01-01

    A set of questions is posed regarding the surface chemistry producing the ram glow on the space shuttle. The questions surround verification of the chemical cycle involved in the physical processes leading to the glow. The questions, and a matrix of measurements required for most answers, are presented. The measurements include knowledge of the flux composition to and from a ram surface as well as spectroscopic signatures from the U to visible to IR. A pallet set of experiments proposed to accomplish the measurements is discussed. An interim experiment involving an available infrared instrument to be operated from the shuttle Orbiter cabin is also be discussed.

  9. Determination of ginsenoside content in Panax ginseng C.A. Meyer and Panax quinquefolius L. root materials and finished products by high-performance liquid chromatography with ultraviolet absorbance detection: interlaboratory study.

    PubMed

    Brown, Paula N; Yu, Ronan; Cain, T; Huie, G; Jin, C D; Kababick, J N; Leong, G; LeVanseler, K; Lunetta, S; Ma, Y C; Reif, K; Schaneberg, B; Shevchuk, C; Smith, R; Sullivan, D; Wijewickreme, N; Windust, A

    2013-01-01

    An interlaboratory study was conducted on an HPLC method with UV absorbance detection, previously validated using AOAC single-laboratory validation guidelines, for the determination of the six major ginsenosides (Rg1, Re, Rb1, Rc, Rb2, and Rd) in Panax ginseng C.A. Meyer and Panax quinquefolius L. root materials, extracts, and finished products. Fourteen participating laboratories analyzed five test materials (P. ginseng whole root, P. ginseng powdered extract, P. quinquefolius whole root, P. quinquefolius powdered extract, and P. ginseng powdered extract spiked in a matrix blank) as blind duplicates, and two test materials (P. ginseng powdered whole root tablet and P. quinquefolius powdered extract hard-filled capsule) as single samples. Due to the variability of the ginsenosides (low level concentration of Rb2 in P. quinquefolius raw materials and in P. ginseng spiked matrix blanks, and the possibility of incomplete hydrolysis of the finished products during processing), it was deemed more applicable to analyze total ginsenosides rather than individual ones. Outliers were evaluated and omitted using the Cochran's test and single and double Grubbs' tests. The reproducibility RSD (RSD(R)) for the blind duplicate samples ranged from 4.38 to 5.39%, with reproducibility Horwitz Ratio (HorRat(R)) values ranging from 1.5 to 1.9. For the single replicate samples, the data sets were evaluated solely by their repeatability HorRat (HorRat(r)), which were 2.9 and 3.5 for the capsule and tablet samples, respectively. Based on these results, the method is recommended for AOAC Official First Action for the determination of total ginsenosides in P. ginseng and P. quinquefolius root materials and powdered extracts.

  10. Equatorial disk formation around rotating stars due to ram pressure confinement by the stellar wind

    NASA Technical Reports Server (NTRS)

    Bjorkman, J. E.; Cassinelli, J. P.

    1993-01-01

    The axisymmetric 2D supersonic solution of a rotating, radiation-driven stellar wind presently obtained by a simple approximation predicts the formation of a dense equatorial disk, when the star's rotation rate lies above a threshold value that depends on the ratio of the wind's terminal speed to the escape speed of the star. The disk is formed because the trajectories of the wind leaving the stellar surface at high latitudes carry it down to the equatorial plane; there, the material passes through a standing oblique shock atop the disk; it is therefore the ram pressure of the polar wind that compresses and confines the disk.

  11. Metasurface Broadband Solar Absorber

    PubMed Central

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  12. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  13. Metasurface Broadband Solar Absorber

    DOE PAGES

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributionsmore » to elucidate how the absorption occurs within the metasurface structure.« less

  14. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  15. Absorbed dose water calorimeter

    SciTech Connect

    Domen, S.R.

    1982-01-26

    An absorbed dose water calorimeter that takes advantage of the low thermal diffusivity of water and the water-imperviousness of polyethylene film. An ultra-small bead thermistor is sandwiched between two thin polyethylene films stretched between insulative supports in a water bath. The polyethylene films insulate the thermistor and its leads, the leads being run out from between the films in insulated sleeving and then to junctions to form a wheatstone bridge circuit. Convection barriers may be provided to reduce the effects of convection from the point of measurement. Controlled heating of different levels in the water bath is accomplished by electrical heater circuits provided for controlling temperature drift and providing adiabatic operation of the calorimeter. The absorbed dose is determined from the known specific heat of water and the measured temperature change.

  16. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  17. Perfect terahertz absorber using fishnet based metafilm

    SciTech Connect

    Azad, Abul Kalam; Shchegolkov, Dmitry Yu; Chen, Houtong; Taylor, Antoinette; Smirnova, E I; O' Hara, John F

    2009-01-01

    We present a perfect terahertz (THz) absorber working for a broad-angle of incidence. The two fold symmetry of rectangular fishnet structure allows either complete absorption or mirror like reflection depending on the polarization of incident the THz beam. Metamaterials enable the ability to control the electromagnetic wave in a unique fashion by designing the permittivity or permeability of composite materials with desired values. Although the initial idea of metamaterials was to obtain a negative index medium, however, the evolution of metamaterials (MMs) offers a variety of practically applicable devices for controlling electromagnetic wave such as tunable filters, modulators, phase shifters, compact antenna, absorbers, etc. Terahertz regime, a crucial domain of the electromagnetic wave, is suffering from the scarcity of the efficient devices and might take the advantage of metamaterials. Here, we demonstrate design, fabrication, and characterization of a terahertz absorber based on a simple fishnet metallic film separated from a ground mirror plane by a dielectric spacer. Such absorbers are in particular important for bolometric terahertz detectors, high sensitivity imaging, and terahertz anechoic chambers. Recently, split-ring-resonators (SRR) have been employed for metamaterial-based absorbers at microwave and THz frequencies. The experimental demonstration reveals that such absorbers have absorptivity close to unity at resonance frequencies. However, the downside of these designs is that they all employ resonators of rather complicated shape with many fine parts and so they are not easy to fabricate and are sensitive to distortions.

  18. Oxygen absorbers in food preservation: a review.

    PubMed

    Cichello, Simon Angelo

    2015-04-01

    The preservation of packaged food against oxidative degradation is essential to establish and improve food shelf life, customer acceptability, and increase food security. Oxygen absorbers have an important role in the removal of dissolved oxygen, preserving the colour, texture and aroma of different food products, and importantly inhibition of food spoilage microbes. Active packaging technology in food preservation has improved over decades mostly due to the sealing of foods in oxygen impermeable package material and the quality of oxygen absorber. Ferrous iron oxides are the most reliable and commonly used oxygen absorbers within the food industry. Oxygen absorbers have been transformed from sachets of dried iron-powder to simple self-adhesive patches to accommodate any custom size, capacity and application. Oxygen concentration can be effectively lowered to 100 ppm, with applications spanning a wide range of food products and beverages across the world (i.e. bread, meat, fish, fruit, and cheese). Newer molecules that preserve packaged food materials from all forms of degradation are being developed, however oxygen absorbers remain a staple product for the preservation of food and pharmaceutical products to reduce food wastage in developed nations and increased food security in the developing & third world. PMID:25829570

  19. Oxygen absorbers in food preservation: a review.

    PubMed

    Cichello, Simon Angelo

    2015-04-01

    The preservation of packaged food against oxidative degradation is essential to establish and improve food shelf life, customer acceptability, and increase food security. Oxygen absorbers have an important role in the removal of dissolved oxygen, preserving the colour, texture and aroma of different food products, and importantly inhibition of food spoilage microbes. Active packaging technology in food preservation has improved over decades mostly due to the sealing of foods in oxygen impermeable package material and the quality of oxygen absorber. Ferrous iron oxides are the most reliable and commonly used oxygen absorbers within the food industry. Oxygen absorbers have been transformed from sachets of dried iron-powder to simple self-adhesive patches to accommodate any custom size, capacity and application. Oxygen concentration can be effectively lowered to 100 ppm, with applications spanning a wide range of food products and beverages across the world (i.e. bread, meat, fish, fruit, and cheese). Newer molecules that preserve packaged food materials from all forms of degradation are being developed, however oxygen absorbers remain a staple product for the preservation of food and pharmaceutical products to reduce food wastage in developed nations and increased food security in the developing & third world.

  20. Treating ram sperm with cholesterol-loaded cyclodextrins improves cryosurvival

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diluted ram sperm can be held for 24 h at 5º C prior to cryopreservation without impacting cryosurvival rates, however, the effects this storage has on subsequent fertility is unknown. These studies were conducted to evaluate the fertility of semen held for 24 h (to mimic shipping semen to a cryopr...

  1. An evaluation of RAMS radiation schemes by field measurements

    SciTech Connect

    Zhong, S; Doran, J C

    1994-02-01

    At present, two radiation schemes are used in RAMS: the Mahrer and Pielke (M-P) scheme and the Chen and Cotton (C-C) scheme. The M-P scheme requires little computational expense, but does not include the radiative effects of liquid water or ice; the C-C scheme accounts for the radiative effects of liquid water and ice but is fairly expensive computationally. For simulations with clouds, the C-C scheme is obviously a better choice, but for clear sky conditions, RAMS users face a decision regarding which radiation scheme to use. It has been noted that the choice of radiation scheme may result in significantly different results for the same case. To examine the differences in the radiative fluxes and the boundary-layer structure corresponding to the two radiation schemes in RAMS we have carried out a study where Rams was used to simulate the same case with two different radiation schemes. The modeled radiative fluxes by the two schemes were then compared with the field measurements. A description of the observations and the case study, a comparison and discussion of the results, and a summary and conclusions follow.

  2. A realization of the RAM digital filter. [Random Access Memory

    NASA Technical Reports Server (NTRS)

    Zohar, S.

    1976-01-01

    The digital filtering algorithm of W. D. Little, which employs a large RAM to obtain high speed, is implemented in a simple hardware configuration. The nonrecursive version of this filter is compared to the counting digital filter and found to be competitive for low-order filters up to order 7 (8 coefficients).

  3. Initiation of combustion in the thermally choked ram accelerator

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Burnham, E. A.; Knowlen, C.; Hertzberg, A.; Bogdanoff, D. W.

    1992-01-01

    The methodology for initiating stable combustion in a ram accelerator operating in the thermally choked mode is presented in this paper. The ram accelerator is a high velocity ramjet-in-tube projectile launcher whose principle of operation is similar to that of an airbreathing ramjet. The subcaliber projectile travels supersonically through a stationary tube filled with a premixed combustible gas mixture. In the thermally choked propulsion mode subsonic combustion takes place behind the base of the projectile and leads to thermal choking, which stabilizes a normal shock system on the projectile, thus producing forward thrust. Projectiles with masses in the 45-90 g range have been accelerated to velocities up to 2650 m/sec in a 38 mm bore, 16 m long accelerator tube. Operation of the ram accelerator is started by injecting the projectile into the accelerator tube at velocities in the 700 - 1300 m/sec range by means of a conventional gas gun. A specially designed obturator, which seals the bore of the gun during this initial acceleration, enters the ram accelerator together with the projectile. The interaction of the obturator with the propellant gas ignites the gas mixture and establishes stable combustion behind the projectile.

  4. 17. Detail of base of 'Flying Ram' in NW corner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Detail of base of 'Flying Ram' in NW corner of foyer. Camera is looking SW. First doorway beyond fountain leads to basement and men's lounge seen in WA-197-44. Second doorway leads to storefront corner at Seventh Ave. and Olive Way. (Aug. 1991) - Fox Theater, Seventh Avenue & Olive Way, Seattle, King County, WA

  5. A User of RAMS*--Saginaw City Schools.

    ERIC Educational Resources Information Center

    Hall, Randall K.

    In 1969 the Saginaw, Michigan City School System affiliated with the Remotely Accessible Management System (RAMS) developed by the Oakland Schools, a regional service agency. The affiliation enabled Saginaw to move into computerized data processing with minimal costs for programing personnel, systems specialists, hardware, software, and operating…

  6. BioRAM Lite v.1.0

    SciTech Connect

    2010-08-05

    BioRAM lite is a training tool for teaching the processes which should be using in assessing biosafety and biosecurity risks. The tool includes 4 separate workbooks – two for biosafety and two for biosecurity. The tools include a set of questions which are scored using ordinal values and the mathematical equations to combine the answers into likelihood and consequence values.

  7. Copper toxicity in confinement-housed ram lambs.

    PubMed Central

    Lewis, N J; Fallah-Rad, A H; Connor, M L

    1997-01-01

    Fourteen Suffolk rams (6 mo) were diagnosed with chronic copper poisoning. Preliminary results indicated that a combination of serum aspartate aminotransferase, gamma glutamyltransferase, and copper could be used as a test so that high risk lambs could be treated more aggressively. PMID:9262859

  8. Composition for absorbing hydrogen from gas mixtures

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Lee, Myung W.

    1999-01-01

    A hydrogen storage composition is provided which defines a physical sol-gel matrix having an average pore size of less than 3.5 angstroms which effectively excludes gaseous metal hydride poisons while permitting hydrogen gas to enter. The composition is useful for separating hydrogen gas from diverse gas streams which may have contaminants that would otherwise render the hydrogen absorbing material inactive.

  9. Absorber for terahertz radiation management

    DOEpatents

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  10. Evidence of melatonin synthesis in the ram reproductive tract.

    PubMed

    Gonzalez-Arto, M; Hamilton, T R dos S; Gallego, M; Gaspar-Torrubia, E; Aguilar, D; Serrano-Blesa, E; Abecia, J A; Pérez-Pé, R; Muiño-Blanco, T; Cebrián-Pérez, J A; Casao, A

    2016-01-01

    Melatonin is a ubiquitous molecule found in a wide range of fluids, one of them being ram seminal plasma, in which it can reach higher concentrations than those found in blood, suggesting an extrapineal secretion by the reproductive tract. In order to identify the source of the melatonin found in ram seminal plasma, we first tried to determine whether the melatonin levels were maintained during the day. For this purpose, melatonin concentrations were measured in seminal plasma obtained from first ejaculates of six rams at 6:00 a.m. in total darkness, at 10:00 a.m. and at 14:00 p.m. The melatonin concentration was higher (p < 0.05) in ejaculates collected at 6:00 a.m. than at 10:00 and 14:00. There was no statistical difference between the latter. To further corroborate an extrapineal secretion of melatonin, the presence of the two key enzymes involved in melatonin synthesis, arylalkylamine-N-acetyltransferase (AANAT) and N-acetylserotonin-O-methyltransferase (ASMT) was analyzed by RT-PCR, q-PCR and Western-blot in ram testes, epididymis, and accessory glands. The RT-PCR showed the presence of the m-RNA codifying both AANAT and ASTM in all the tissues under study, but the q-PCR and Western-blot revealed that gene expression of these enzymes was significantly higher in the testis (p < 0.05). Immunohistochemistry confirmed the presence of AANAT and ASMT in the testis and revealed that they were found in the Leydig cells, spermatocytes, and spermatids. Also, measurable levels of melatonin were found in testicular tissue and the tail of the epididymis. In conclusion, our study indicates that the testes are one of the likely sources of the high levels of melatonin found in ram seminal plasma, at least during the day. PMID:26742835

  11. Evidence of melatonin synthesis in the ram reproductive tract.

    PubMed

    Gonzalez-Arto, M; Hamilton, T R dos S; Gallego, M; Gaspar-Torrubia, E; Aguilar, D; Serrano-Blesa, E; Abecia, J A; Pérez-Pé, R; Muiño-Blanco, T; Cebrián-Pérez, J A; Casao, A

    2016-01-01

    Melatonin is a ubiquitous molecule found in a wide range of fluids, one of them being ram seminal plasma, in which it can reach higher concentrations than those found in blood, suggesting an extrapineal secretion by the reproductive tract. In order to identify the source of the melatonin found in ram seminal plasma, we first tried to determine whether the melatonin levels were maintained during the day. For this purpose, melatonin concentrations were measured in seminal plasma obtained from first ejaculates of six rams at 6:00 a.m. in total darkness, at 10:00 a.m. and at 14:00 p.m. The melatonin concentration was higher (p < 0.05) in ejaculates collected at 6:00 a.m. than at 10:00 and 14:00. There was no statistical difference between the latter. To further corroborate an extrapineal secretion of melatonin, the presence of the two key enzymes involved in melatonin synthesis, arylalkylamine-N-acetyltransferase (AANAT) and N-acetylserotonin-O-methyltransferase (ASMT) was analyzed by RT-PCR, q-PCR and Western-blot in ram testes, epididymis, and accessory glands. The RT-PCR showed the presence of the m-RNA codifying both AANAT and ASTM in all the tissues under study, but the q-PCR and Western-blot revealed that gene expression of these enzymes was significantly higher in the testis (p < 0.05). Immunohistochemistry confirmed the presence of AANAT and ASMT in the testis and revealed that they were found in the Leydig cells, spermatocytes, and spermatids. Also, measurable levels of melatonin were found in testicular tissue and the tail of the epididymis. In conclusion, our study indicates that the testes are one of the likely sources of the high levels of melatonin found in ram seminal plasma, at least during the day.

  12. Penicillamine prevents ram sperm agglutination in media that support capacitation.

    PubMed

    Leahy, T; Rickard, J P; Aitken, R J; de Graaf, S P

    2016-02-01

    Ram spermatozoa are difficult to capacitate in vitro. Here we describe a further complication, the unreported phenomenon of head-to-head agglutination of ram spermatozoa following dilution in the capacitation medium Tyrodes plus albumin, lactate and pyruvate (TALP). Sperm agglutination is immediate, specific and persistent and is not associated with a loss of motility. Agglutination impedes in vitro sperm handling and analysis. So the objectives of this study were to investigate the cause of sperm agglutination and potential agents which may reduce agglutination. The percentage of non-agglutinated, motile spermatozoa increased when bicarbonate was omitted from complete TALP suggesting that bicarbonate ions stimulate the agglutination process. d-penicillamine (PEN), a nucleophilic thiol, was highly effective at reducing agglutination. The inclusion of 250 μM PEN in TALP reduced the incidence of motile, agglutinated spermatozoa from 76.7 ± 2.7% to 2.8 ± 1.4%. It was then assessed if PEN (1 mM) could be included in existing ram sperm capacitation protocols (TALP +1 mM dibutyryl cAMP, caffeine and theophylline) to produce spermatozoa that were simultaneously capacitated and non-agglutinated. This protocol resulted in a sperm population which displayed high levels of tyrosine phosphorylated proteins and lipid disordered membranes (merocyanine-540) while remaining motile, viable, acrosome-intact and non-agglutinated. In summary, PEN (1 mM) can be included in ram sperm capacitation protocols to reduce sperm agglutination and allow for the in vitro assessment of ram sperm capacitation.

  13. RAM: a Relativistic Adaptive Mesh Refinement Hydrodynamics Code

    SciTech Connect

    Zhang, Wei-Qun; MacFadyen, Andrew I.; /Princeton, Inst. Advanced Study

    2005-06-06

    The authors have developed a new computer code, RAM, to solve the conservative equations of special relativistic hydrodynamics (SRHD) using adaptive mesh refinement (AMR) on parallel computers. They have implemented a characteristic-wise, finite difference, weighted essentially non-oscillatory (WENO) scheme using the full characteristic decomposition of the SRHD equations to achieve fifth-order accuracy in space. For time integration they use the method of lines with a third-order total variation diminishing (TVD) Runge-Kutta scheme. They have also implemented fourth and fifth order Runge-Kutta time integration schemes for comparison. The implementation of AMR and parallelization is based on the FLASH code. RAM is modular and includes the capability to easily swap hydrodynamics solvers, reconstruction methods and physics modules. In addition to WENO they have implemented a finite volume module with the piecewise parabolic method (PPM) for reconstruction and the modified Marquina approximate Riemann solver to work with TVD Runge-Kutta time integration. They examine the difficulty of accurately simulating shear flows in numerical relativistic hydrodynamics codes. They show that under-resolved simulations of simple test problems with transverse velocity components produce incorrect results and demonstrate the ability of RAM to correctly solve these problems. RAM has been tested in one, two and three dimensions and in Cartesian, cylindrical and spherical coordinates. they have demonstrated fifth-order accuracy for WENO in one and two dimensions and performed detailed comparison with other schemes for which they show significantly lower convergence rates. Extensive testing is presented demonstrating the ability of RAM to address challenging open questions in relativistic astrophysics.

  14. Refractory plasmonics with titanium nitride: broadband metamaterial absorber.

    PubMed

    Li, Wei; Guler, Urcan; Kinsey, Nathaniel; Naik, Gururaj V; Boltasseva, Alexandra; Guan, Jianguo; Shalaev, Vladimir M; Kildishev, Alexander V

    2014-12-17

    A high-temperature stable broadband plasmonic absorber is designed, fabricated, and optically characterized. A broadband absorber with an average high absorption of 95% and a total thickness of 240 nm is fabricated, using a refractory plasmonic material, titanium nitride. This absorber integrates both the plasmonic resonances and the dielectric-like loss. It opens a path for the interesting applications such as solar thermophotovoltaics and optical circuits.

  15. Underwater acoustic omnidirectional absorber

    NASA Astrophysics Data System (ADS)

    Naify, Christina J.; Martin, Theodore P.; Layman, Christopher N.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.

    2014-02-01

    Gradient index media, which are designed by varying local element properties in given geometry, have been utilized to manipulate acoustic waves for a variety of devices. This study presents a cylindrical, two-dimensional acoustic "black hole" design that functions as an omnidirectional absorber for underwater applications. The design features a metamaterial shell that focuses acoustic energy into the shell's core. Multiple scattering theory was used to design layers of rubber cylinders with varying filling fractions to produce a linearly graded sound speed profile through the structure. Measured pressure intensity agreed with predicted results over a range of frequencies within the homogenization limit.

  16. Dual transcriptional control of the acetaldehyde dehydrogenase gene ald of Corynebacterium glutamicum by RamA and RamB.

    PubMed

    Auchter, Marc; Arndt, Annette; Eikmanns, Bernhard J

    2009-03-10

    Corynebacterium glutamicum has been shown to grow with ethanol as the sole or as additional carbon and energy source and accordingly, to possess both alcohol dehydrogenase and acetaldehyde dehydrogenase (ALDH) activities, which are responsible for the two-step ethanol oxidation to acetate. Here we identify and functionally analyze the C. glutamicum ALDH gene (cg3096, ald), its expression and its regulation. Directed inactivation of the chromosomal ald gene led to the absence of detectable ALDH activity and to the inability to grow on or to utilize ethanol, indicating that the ald gene product is essential for ethanol metabolism and that no ALDH isoenzymes are present in C. glutamicum. Transcriptional analysis revealed that ald from C. glutamicum is monocistronic, that ald transcription is initiated 92 nucleotides upstream of the translational start codon ATG and that ald expression is much lower in the presence of glucose in the growth medium. Further analysis revealed that transcription of the ald gene is under control of the transcriptional regulators RamA and RamB. Both these proteins directly bind to the respective promoter region, RamA is essential for expression and RamB exerts a slightly negative effect on ald expression on all carbon sources tested.

  17. Windsock memory COnditioned RAM (CO-RAM) pressure effect: Forced reconnection in the Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Vörös, Z.; Facskó, G.; Khodachenko, M.; Honkonen, I.; Janhunen, P.; Palmroth, M.

    2014-08-01

    Magnetic reconnection (MR) is a key physical concept explaining the addition of magnetic flux to the magnetotail and closed flux lines back-motion to the dayside magnetosphere. This scenario elaborated by Dungey (1963) can explain many aspects of solar wind-magnetosphere interaction processes, including substorms. However, neither the Dungey model nor its numerous modifications were able to explain fully the onset conditions for MR in the tail. In this paper, we introduce new onset conditions for forced MR in the tail. We call our scenario the "windsock memory conditioned ram pressure effect." Our nonflux transfer-associated forcing is introduced by a combination of the large-scale windsock motions exhibiting memory effects and solar wind dynamic pressure actions on the nightside magnetopause during northward oriented interplanetary magnetic field (IMF). Using global MHD Grand Unified Magnetosphere Ionosphere Coupling Simulation version 4 simulation results, upstream data from Wind, magnetosheath data from Cluster 1 and distant tail data from the two-probe Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun mission, we show that the simultaneous occurrence of vertical windsock motions of the magnetotail and enhanced solar wind dynamic pressure introduces strong nightside disturbances, including enhanced electric fields and persistent vertical cross-tail shear flows. These perturbations, associated with a stream interaction region in the solar wind, drive MR in the tail during episodes of northward oriented interplanetary magnetic field (IMF). We detect MR indirectly, observing plasmoids in the tail and ground-based signatures of earthward moving fast flows. We also consider the application to solar system planets and close-in exoplanets, where the proposed scenario can elucidate some new aspects of solar/stellar wind-magnetosphere interactions.

  18. Electrochemical Corrosion Testing of Neutron Absorber Materials

    SciTech Connect

    Tedd Lister; Ron Mizia; Arnold Erickson; Tammy Trowbridge

    2007-05-01

    This report summarizes the results of crevice-corrosion tests for six alloys in solutions representative of ionic compositions inside the Yucca Mountain waste package should a breech occur. The alloys in these tests are Neutronit A978a (ingot metallurgy, hot rolled), Neutrosorb Plus 304B4 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B5 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B6 Grade Ab (powder metallurgy, hot rolled), Ni-Cr-Mo-Gd alloy2 (ingot metallurgy, hot rolled), and Alloy 22 (ingot metallurgy, hot rolled).

  19. On the definition of absorbed dose

    NASA Astrophysics Data System (ADS)

    Grusell, Erik

    2015-02-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before.

  20. Evaluation of Magnetoresistive RAM for Space Applications

    NASA Technical Reports Server (NTRS)

    Heidecker, Jason

    2014-01-01

    Magnetoresistive random-access memory (MRAM) is a non-volatile memory that exploits electronic spin, rather than charge, to store data. Instead of moving charge on and off a floating gate to alter the threshold voltage of a CMOS transistor (creating different bit states), MRAM uses magnetic fields to flip the polarization of a ferromagnetic material thus switching its resistance and bit state. These polarized states are immune to radiation-induced upset, thus making MRAM very attractive for space application. These magnetic memory elements also have infinite data retention and erase/program endurance. Presented here are results of reliability testing of two space-qualified MRAM products from Aeroflex and Honeywell.

  1. Dual broadband metamaterial absorber.

    PubMed

    Kim, Young Ju; Yoo, Young Joon; Kim, Ki Won; Rhee, Joo Yull; Kim, Yong Hwan; Lee, YoungPak

    2015-02-23

    We propose polarization-independent and dual-broadband metamaterial absorbers at microwave frequencies. This is a periodic meta-atom array consisting of metal-dielectric-multilayer truncated cones. We demonstrate not only one broadband absorption from the fundamental magnetic resonances but additional broadband absorption in high-frequency range using the third-harmonic resonance, by both simulation and experiment. In simulation, the absorption was over 90% in 3.93-6.05 GHz, and 11.64-14.55 GHz. The corresponding experimental absorption bands over 90% were 3.88-6.08 GHz, 9.95-10.46 GHz and 11.86-13.84 GHz, respectively. The origin of absorption bands was elucidated. Furthermore, it is independent of polarization angle owing to the multilayered circular structures. The design is scalable to smaller size for the infrared and the visible ranges.

  2. Effect of selenium supplementation on performance, cost economics, and biochemical profile of Nellore ram lambs

    PubMed Central

    Sushma, K.; Reddy, Y. Ramana; Kumari, N. Nalini; Reddy, P. Baswa; Raghunandan, T.; Sridhar, K.

    2015-01-01

    Aim: Present experiment was conducted to investigate the effect of selenium (Se) supplementation on performance, carcass characteristics, meat composition, shelflife of meat and biochemical profile in Nellore ram lambs. Materials and Methods: 24 male Nellore ram lambs (15.75±0.47 kg) were randomly divided into four dietary groups with six lambs in each and reared under uniform management conditions for 120 days. Basal diet was not supplemented with Se and consisted of green fodder (Se 0.09 mg/kg dry matter [DM]), dry roughage (Se 0.11 mg/kg DM) and concentrate mixture (Se 0.019 mg/kg DM) and fed individually. Dietary treatments were prepared by adding graded levels Se (0, 0.45, 0.9, and 1.8 ppm) to concentrate mixture (1% body weight [BW]) from sodium selenite. Feed offered and refusal measured daily; and BWs were measured at fortnight interval to find out average daily gain (g), feed conversion ratio (FCR), cost economics and plane of nutrition. Serum biochemical profile (concentration of glucose, total protein, albumin, globulin, cholesterol, and hemoglobin) was assessed on 0, 60th, and 120th day. At the end of experiment, the carcass characteristics (dressing percentage, cut-up parts, meat to bone ratio) and meat chemical composition were evaluated. Meat keeping (thiobarbituric acid reactive substances) quality from different groups was evaluated on day 0, 3, and 6 post-slaughter. Results: Dietary Se supplementation did not show any effect on weight gain, FCR, cost economics, plane of nutrition, and serum biochemical profile in Nellore ram lambs. However, Se supplemented lambs had numerically higher weight gain than the unsupplemented lambs. Similarly, carcass characteristics and keeping quality were comparable among the four treatments. However, numerical increase in post-slaughter keeping quality with increasing Se supplementation was observed. Conclusion: It can be concluded that supplementation of Se in the form of sodium selenite (inorganic source) at

  3. Fertility of ram semen frozen in Bioexcell and used for cervical artificial insemination.

    PubMed

    Gil, J; Rodriguez-Irazoqui, M; Lundeheim, N; Söderquist, L; Rodríguez-Martínez, H

    2003-03-01

    The current use of ingredients of animal origin, such as egg yolk, in semen extenders presents a risk of microbial contamination, and has led to the search for alternatives. Such an extender is commercially available for bull semen (Bioexcell), IMV, L'Aigle, France), and it has previously been tested in vitro for freezing ram semen, with satisfactory results. The aim of the present study was to compare the fertility results of ewes in Uruguay, after cervical insemination with ram semen that was frozen in Bioexcell versus semen frozen in a conventional milk-egg yolk extender (control). Semen from five Corriedale rams was frozen, using a split sample design, in either milk-egg yolk or Bioexcell extender, using a two-step extension method. The sperm parameters assessed after thawing were subjective motility, membrane integrity (SYBR-14/PI), and capacitation status (CTC). Thawed semen was inseminated intracervically once during spontaneous estrus in 970 Corriedale ewes that grazed in natural pastures, under extensive management conditions. Fertility was recorded as nonreturn rates at 21 days (NRR-21) and 36 days (NRR-36) after artificial insemination (AI), as well as pregnancy rate (PR-US, diagnosed ultrasonographically 50 days after AI of the last ewe). Subjective motility was slightly higher in Bioexcell than in the milk extender (47 vs. 46.5%; NS), as was membrane integrity (38 vs. 37.7%; NS) and the percentage of uncapacitated spermatozoa (28.5 vs. 26.3%; NS). There were no statistically significant differences in fertility rates found between Bioexcell and the control extender: NRR-21 (35.9 vs. 33.2%), NRR-36 (34.8 vs. 32.6%), and PR-US (28.4 vs. 27.2%). In conclusion, Bioexcell appears to be an alternative to the conventional milk-egg yolk extender for freezing ram semen, and provides similar fertility results after cervical AI under extensive management conditions. Thus, Bioexcell, containing no additives of animal origin, can offer a safer alternative when

  4. Fatal Injury Caused by a Ram (Ovis Aries) Attack.

    PubMed

    Škavić, Petar; Šprem, Nikica; Kostelić, Antun

    2015-09-01

    Animal-inflicted injuries to humans are a major public health problem around the world resulting in great morbidity, money loss, and mortality. They are related to wild and domestic animals alike. Animals can cause injuries by various mechanisms--biting, stinging, crushing, goring, stomping, butting, kicking, pecking, etc. We present a case of a ram's attack with fatal consequences. A 4-year-old, 120 kg jezersko-solčava breed ram with prior history of aggressive behavior inflicted multiple injuries to his 83-year-old owner, who died in the hospital a few hours later due to severe blunt force injuries sustained in the attack. The autopsy revealed the cause of death to be multiple injuries of the thorax and the head. Sheep, even though they are not considered aggressive or large farm animals such as cattle and horses, can inflict serious injuries with devastating results. PMID:26258770

  5. Investigation of starting transients in the thermally choked ram accelerator

    NASA Technical Reports Server (NTRS)

    Burnham, E. A.; Hinkey, J. B.; Bruckner, A. P.

    1992-01-01

    An experimental investigation of the starting transients of the thermally choked ram accelerator is presented in this paper. Construction of a highly instrumented tube section and instrumentation inserts provide high resolution experimental pressure, luminosity, and electromagnetic data of the starting transients. Data obtained prior to and following the entrance diaphragm show detailed development of shock systems in both combustible and inert mixtures. With an evacuated launch tube, starting the diffuser is possible at any Mach number above the Kantrowitz Mach number. The detrimental effects and possible solutions of higher launch tube pressures and excessive obturator leakage (blow-by) are discussed. Ignition of a combustible mixture is demonstrated with both perforated and solid obturators. The relative advantages and disadvantages of each are discussed. Data obtained from these starting experiments enhance the understanding of the ram accelerator, as well as assist in the validation of unsteady, chemically reacting CFD codes.

  6. Numerical simulations of the superdetonative ram accelerator combusting flow field

    NASA Technical Reports Server (NTRS)

    Soetrisno, Moeljo; Imlay, Scott T.; Roberts, Donald W.

    1993-01-01

    The effects of projectile canting and fins on the ram accelerator combusting flowfield and the possible cause of the ram accelerator unstart are investigated by performing axisymmetric, two-dimensional, and three-dimensional calculations. Calculations are performed using the INCA code for solving Navier-Stokes equations and a guasi-global combustion model of Westbrook and Dryer (1981, 1984), which includes N2 and nine reacting species (CH4, CO, CO2, H2, H, O2, O, OH, and H2O), which are allowed to undergo a 12-step reaction. It is found that, without canting, interactions between the fins, boundary layers, and combustion fronts are insufficient to unstart the projectile at superdetonative velocities. With canting, the projectile will unstart at flow conditions where it appears to accelerate without canting. Unstart occurs at some critical canting angle. It is also found that three-dimensionality plays an important role in the overall combustion process.

  7. Applications of the ram accelerator to hypervelocity aerothermodynamic testing

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Knowlen, C.; Hertzberg, A.

    1992-01-01

    A ram accelerator used as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerodynamics research is presented. It is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled down a stationary tube filled with a tailored combustible gas mixture. Ram accelerator operation has been demonstrated at 39 mm and 90 mm bores, supporting the proposition that this launcher concept can be scaled up to very large bore diameters of the order of 30-60 cm. It is concluded that high quality data obtained from the tube wall and projectile during the aceleration process itself are very useful for understanding aerothermodynamics of hypersonic flow in general, and for providing important CFD validation benchmarks.

  8. Ram vehicle glow spectrum - Implication of NO2 recombination continuum

    NASA Technical Reports Server (NTRS)

    Swenson, G. R.; Mende, S. B.; Clifton, K. S.

    1985-01-01

    An experiment was operated on several Space Shuttle missions to provide spatial and spectral distributions of a ram glow associated with the Orbiter. The most recent data featured resolved spectrum and imagery of the glow with spectroscopic resolution of 34 A FWHM between 4000 and 8000 A. The spectrum of the glow on the Shuttle tail pod could be clearly separated from spectrum of the reflected light from the Orbiter. Analysis and comparison have been performed which strongly suggest the emission originates from recombination continuum of NO2. Both fast recombination (high temperature) and the spectral dependence in lifetime can describe the spectral difference. If the recombined NO2 retains 25 percent of the kinetic energy of the ram OI, the thickness of the glow layer can be explained by the lifetime of NO2 (2B1) recombination emission.

  9. DVD-RAM for all audio/video, PC, and network applications

    NASA Astrophysics Data System (ADS)

    Satoh, Isao; Yamada, Noboru

    2001-02-01

    Rewritable DVD (DVD-RAM) 4.7 GBytes products such as DVD-RAM disc, DVD-RAM drive, and DVD Video Recorder have been developed. DVD-RAM can integrate all Audio, Video, Imaging, Computer, and Network applications with write compatibility between DVD-RAM 2.6 GBytes and read compatibility across the entire DVD format family. DVD-RAM disc and drive technologies such as high speed reliable recording, easy operability, secure copy protection functions, and DVD Video Recorder are presented. With the coming of blue light sources, the capacity of the DVD-RAM disc can be upgraded 3 to approximately 5 times, and furthermore could be expanded over 10 times in conjunction with a high-NA optics and a dual-layer disc technology, then 2 to approximately 4 hours high-definition video will be recorded.

  10. Development of structural materials exhibiting dielectric and magnetic loss at radio frequencies

    SciTech Connect

    Duke, J.R. Jr.; Apen, P.G.; Hoisington, M.

    1996-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The reduction of radio frequency (RF) return from military assets has been of critical interest for the last twenty years. New materials are required that not only provide a reduction in specular and travelling wave RF energy, but also function mechanically in primary structural applications. Typical radar attenuating material (RAM) is structurally parasitic and its utilization decreases the vehicle range by adding significant weight. New conducting and semiconducting polymers have demonstrated potential for RF absorption and can be incorporated into newly developed isotropic structural foams developed from laser target technology at LANL to absorb RF energy. Successful implementation of this technology will lead to broad-band absorbers, light-weight absorbers and radar-absorbing structures (RAS) that can be applied to existing aircraft or integrated into new designs. These new materials also show a high potential to be developed into {open_quotes}smart{close_quotes} structures, i.e., structures that adapt to the threat environment and optimize their absorption.

  11. A study of single event upsets in static RAM's

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Nichols, D. K.; Soliman, K. A.

    1980-01-01

    Several types of CMOS static random access memories (RAMs) have been tested in a cyclotron for susceptibility to single event upsets and latchup such as might occur in earth orbit or interplanetary space. No upsets have been observed for neutron fluences of 10 to the 11th n/sq cm and higher or proton fluences of 10 to the 9th protons/sq cm.

  12. Tracing ram-pressure stripping with warm molecular hydrogen emission

    SciTech Connect

    Sivanandam, Suresh; Rieke, Marcia J.; Rieke, George H.

    2014-12-01

    We use the Spitzer Infrared Spectrograph to study four infalling cluster galaxies with signatures of ongoing ram-pressure stripping. H{sub 2} emission is detected in all four, and two show extraplanar H{sub 2} emission. The emission usually has a warm (T ∼ 115-160 K) and a hot (T ∼ 400-600 K) component that is approximately two orders of magnitude less massive than the warm one. The warm component column densities are typically 10{sup 19} to 10{sup 20} cm{sup –2} with masses of 10{sup 6} to 10{sup 8} M {sub ☉}. The warm H{sub 2} is anomalously bright compared with normal star-forming galaxies and therefore may be excited by ram-pressure. In the case of CGCG 97-073, the H{sub 2} is offset from the majority of star formation along the direction of the galaxy's motion in the cluster, suggesting that it is forming in the ram-pressure wake of the galaxy. Another galaxy, NGC 4522, exhibits a warm H{sub 2} tail approximately 4 kpc in length. These results support the hypothesis that H{sub 2} within these galaxies is shock-heated from the interaction with the intracluster medium. Stripping of dust is also a common feature of the galaxies. For NGC 4522, where the distribution of dust at 8 μm is well resolved, knots and ripples demonstrate the turbulent nature of the stripping process. The Hα and 24 μm luminosities show that most of the galaxies have star-formation rates comparable to similar mass counterparts in the field. Finally, we suggest a possible evolutionary sequence primarily related to the strength of ram-pressure that a galaxy experiences to explain the varied results observed in our sample.

  13. 86. Photocopied August 1978. CLAY RAMMING EQUIPMENT IN OPERATION IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    86. Photocopied August 1978. CLAY RAMMING EQUIPMENT IN OPERATION IN THE POWER HOUSE IN 1910. A PILE OF CLAY USED TO FILL THE WASHED-OUT AREAS BENEATH THE FOUNDATIONS IS SHOWN IN THE CENTER OF THE ILLUSTRATION BESIDE THE FILLER PIPE. THE WEIGHT USED TO FORCE THE CLAY DOWN UNDER THE FOUNDATIONS IS SHOWN PRESSING ON THE PLUNGER PIPE. (542) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  14. 120. Stage basement. View of the downstage, right, hydraulic ram ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    120. Stage basement. View of the downstage, right, hydraulic ram (type B) "star lift" and trap mechanism. The trap is in the retracted (open) position, but the opening in the stage floor was covered after the lift was taken out of service (see also sheet 8 of 9, details 5, 6A and 6B). - Auditorium Building, 430 South Michigan Avenue, Chicago, Cook County, IL

  15. Simulating Single-Event Upsets in Bipolar RAM's

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.

    1986-01-01

    Simulation technique saves testing. Uses interactive version of SPICE (Simulation Program with Integrated Circuit Emphasis). Device and subcircuit models available in software used to construct macromodel for an integrated bipolar transistor. Time-dependent current generators placed inside transistor macromodel to simulate charge collection from ion track. Significant finding of experiments is standard design practice of reducing power in unaddressed bipolar RAM cell increases sensitivity of cell to single-event upsets.

  16. Experiments on hypersonic ramjet propulsion cycles using a ram accelerator

    NASA Technical Reports Server (NTRS)

    Chew, G.; Knowlen, C.; Burnham, E. A.; Hertzberg, A.; Bruckner, A. P.

    1991-01-01

    Work on hypersonic propulsion research using a ram accelerator is presented. Several different ram accelerator propulsive cycles have been experimentally demonstrated over the Mach number range of 3 to 8.5. The subsonic, thermally choked combustion mode has accelerated projectiles to near the Chapman-Jouguet (C-J) detonation velocity within many different propellant mixtures. In the transdetonative velocity regime (85 to 115 percent of C-J speed), projectiles have established a propulsive cycle which allows them to transition smoothly from subdetonative to superdetonative velocities. Luminosity data indicate that the combustion process moves forward onto the projectile body as it approaches the C-J speed. In the superdetonative velocity range, the projectiles accelerate while always traveling faster than the C-J velocity. Ram accelerator projectiles operating continuously through these velocity regimes generate distinctive hypersonic phenomena which can be studied very effectively in the laboratory. These results would be very useful for validating sophisticated CFD computer codes and in collecting engineering data for potential airbreathing hypersonic propulsive systems.

  17. High spatial resolution measurements in a single stage ram accelerator

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented in this paper. The ram accelerator is a ramjet-in-tube device which operates in a manner similar to that of a conventional ramjet. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Utilization of special highly instrumented sections of tube has allowed the recording of gas dynamic phenomena with high resolution. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) in a single stage gas mixture are presented and reveal the three-dimensional character of the flow field induced by projectile fins and the canting of the fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, three-dimensional CFD code. The knowledge gained from these experiments and simulations is useful in understanding the underlying nature of ram accelerator propulsive regimes, as well as assisting in the validation of three-dimensional CFD coded which model unsteady, chemically reactive flows.

  18. Ram accelerator direct space launch system - New concepts

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.

    1992-01-01

    The ram accelerator, a chemically driven ramjet-in-tube device is a new option for direct launch of acceleration-insensitive payloads into earth orbit. The projectile is the centerbody of a ramjet and travels through a tube filled with a premixed fuel-oxidizer mixture. The tube acts as the cowl of the ramjet. A number of new concepts for a ram accelerator space launch system are presented. The velocity and acceleration capabilities of a number of ram accelerator drive modes, including several new modes, are given. Passive (fin) stabilization during atmospheric transit is investigated and found to be promising. Gasdynamic heating in-tube and during atmospheric transit is studied; the former is found to be severe, but may be alleviated by the selection of the most suitable drive modes, transpiration cooling, or a hydrogen gas core in the launch tube. To place the payload in earth orbit, scenarios using one impulse and three impulses (with an aeropass) and a new scenario involving an auxiliary vehicle are studied. The auxiliary vehicle scenario is found to be competitive regarding payload, and requires a much simpler projectile, but has the disadvantage of requiring the auxiliary vehicle.

  19. Liquid Hydrogen Absorber for MICE

    SciTech Connect

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  20. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  1. Studies on Freezing RAM Semen in Absence of Glycerol.

    NASA Astrophysics Data System (ADS)

    Abdelnaby, Abdelhady Abdelhakeam

    1988-12-01

    Glycerol is widely used as a major cryoprotective agent for freezing spermatozoa of almost all species. However, it reduces fertility of sheep inseminated cervically compared with intrauterine insemination. Studies were conducted to develop a method and procedure for freezing ram semen in the absence of glycerol. Post -thaw survival of ram spermatozoa frozen in the absence of glycerol was affected by time and temperature after collection and before dilution and time after dilution and before freezing. Increase in time at 5^ circC before or after dilution and before freezing increased both post-thaw motility and number of cells passing through Sephadex filter. A cold dilution method was developed. Slow cooling of fresh ram semen and diluting at 5^circ C 2-3 hr. after collection, then freezing 1 hr. after dilution improved both post-thaw motility and number of cells passing through Sephadex filter compared with immediate dilution at 30-37^circC after collection and freezing 3-4 hr. later (P < 0.05). An extender was developed to freeze ram semen in the absence of glycerol. An increase in post-thaw motility was obtained when semen was extended in TES titrated with Tris to pH 7.0 (TEST) and osmotic pressure of 375-400 mOsm/kg, containing 25-30% (v/v) egg yolk and 10% (v/v) maltose. A special device (boat) for freezing was constructed to insure the same height of the sample above LN _2 and thus the same freezing rate from freeze to freeze. Freezing of semen in 0.25cc straws at 5-10 cm above LN_2 (73.8 to 49.5 ^circC/min) yielded higher post-thaw motility than the rates resulted from freezing at 15 cm above LN_2 or 1 cm above LN _2. Faster Thawing in 37^ circC water for 30 sec. (7.8^ circC/sec.) increased post-thaw motility compared with slower thawing in 5 or 20^circ C water (P < 0.05). A lambing rate of 52.2% was obtained in one fertility trial conducted with ram semen frozen without glycerol and 17.1% in a second trial. One injection (IM) of 15 mg PGF_{2alpha}/ewe for

  2. Precise dispersion equations of absorbing filter glasses

    NASA Astrophysics Data System (ADS)

    Reichel, S.; Biertümpfel, Ralf

    2014-05-01

    The refractive indices versus wavelength of optical transparent glasses are measured at a few wavelengths only. In order to calculate the refractive index at any wavelength, a so-called Sellmeier series is used as an approximation of the wavelength dependent refractive index. Such a Sellmeier representation assumes an absorbing free (= loss less) material. In optical transparent glasses this assumption is valid since the absorption of such transparent glasses is very low. However, optical filter glasses have often a rather high absorbance in certain regions of the spectrum. The exact description of the wavelength dependent function of the refractive index is essential for an optimized design for sophisticated optical applications. Digital cameras use an IR cut filter to ensure good color rendition and image quality. In order to reduce ghost images by reflections and to be nearly angle independent absorbing filter glass is used, e.g. blue glass BG60 from SCHOTT. Nowadays digital cameras improve their performance and so the IR cut filter needs to be improved and thus the accurate knowledge of the refractive index (dispersion) of the used glasses must be known. But absorbing filter glass is not loss less as needed for a Sellmeier representation. In addition it is very difficult to measure it in the absorption region of the filter glass. We have focused a lot of effort on measuring the refractive index at specific wavelength for absorbing filter glass - even in the absorption region. It will be described how to do such a measurement. In addition we estimate the use of a Sellmeier representation for filter glasses. It turns out that in most cases a Sellmeier representation can be used even for absorbing filter glasses. Finally Sellmeier coefficients for the approximation of the refractive index will be given for different filter glasses.

  3. On the railway track dynamics with rail vibration absorber for noise reduction

    NASA Astrophysics Data System (ADS)

    Wu, T. X.

    2008-01-01

    A promising means to increase the decay rate of vibration along the rail is using a rail absorber for noise reduction. Compound track models with the tuned rail absorber are developed for investigation of the performance of the absorber on vibration reduction. Through analysis of the track dynamics with the rail absorber some guidelines are given on selection of the types and parameters for the rail absorber. It is found that a large active mass used in the absorber is beneficial to increase the decay rate of rail vibration. The effectiveness of the piecewise continuous absorber is moderate compared with the discrete absorber installed in the middle of sleeper span or at a sleeper. The most effective installation position for the discrete absorber is in the middle of sleeper span. Over high or over low loss factor of the damping material used in the absorber may degrade the performance on vibration reduction.

  4. Plants absorb heavy metals

    SciTech Connect

    Parry, J.

    1995-02-01

    Decontamination of heavy metals-polluted soils remains one of the most intractable problems of cleanup technology. Currently available techniques include extraction of the metals by physical and chemical means, such as acid leaching and electroosmosis, or immobilization by vitrification. There are presently no techniques for cleanup which are low cost and retain soil fertility after metals removal. But a solution to the problem could be on the horizon. A small but growing number of plants native to metalliferous soils are known to be capable of accumulating extremely high concentrations of metals in their aboveground portions. These hyperaccumulators, as they are called, contain up to 1,000 times larger metal concentrations in their aboveground parts than normal species. Their distribution is global, including many different families of flowering plants of varying growth forms, from herbaceous plants to trees. Hyperaccumulators absorb metals they do not need for their own nutrition. The metals are accumulated in the leaf and stem vacuoles, and to a lesser extent in the roots.

  5. Novel Ultraviolet Light Absorbing Polymers For Optical Applications

    NASA Astrophysics Data System (ADS)

    Doddi, Namassivaya; Yamada, Akira; Dunks, Gary B.

    1988-07-01

    Ultraviolet light absorbing monomers have been developed that can be copolymerized with acrylates. The composition of the resultant stable copolymers can be adjusted to totally block the transmission of light below about 430 nm. Fabrication of lenses from the materials is accomplished by lathe cutting and injection molding procedures. These ultraviolet light absorbing materials are non-mutagenic and non-toxic and are currently being used in intraocular lenses.

  6. The Register of Antarctic Marine Species (RAMS): a ten-year appraisal

    PubMed Central

    Jossart, Quentin; Moreau, Camille; Agüera, Antonio; Broyer, Claude De; Danis, Bruno

    2015-01-01

    Abstract The Register of Antarctic Marine Species (RAMS) is a marine species database that manages an authoritative taxonomic list of species occurring in the Southern Ocean. RAMS links with several other initiatives managing biogeographic or genomics information. The current paper aims to briefly present RAMS and provides an updated snapshot of its contents, in the form of a DarwinCore checklist (available through http://ipt.biodiversity.aq/resource.do?r=rams) and illustrative barplots. Moreover, this article presents a ten year appraisal (since the creation of RAMS). This appraisal first focuses on RAMS bibliometrics. We observed that RAMS was cited (Google Scholar) in 50 distinct publications among which 32 were peer-reviewed in 18 different journals. Three journals (Antarctic Science, Polar Biology, ZooKeys) represent almost 40% of these peer-review publications. The second appraisal focuses on the evolution of new RAMS records. We observed an important decrease in data additions since 2011. As a case study, we focused on an original dataset for a specific group (Asteroidea, Echinodermata). It appears that around one hundred species of asteroids are lacking in RAMS despite the relatively high availability of these data. This suggests that the users’ community (or collaborative projects such as AquaRES) could be helpful in order to maintain the RAMS database over the long term. PMID:26478709

  7. The Register of Antarctic Marine Species (RAMS): a ten-year appraisal.

    PubMed

    Jossart, Quentin; Moreau, Camille; Agüera, Antonio; Broyer, Claude De; Danis, Bruno

    2015-01-01

    The Register of Antarctic Marine Species (RAMS) is a marine species database that manages an authoritative taxonomic list of species occurring in the Southern Ocean. RAMS links with several other initiatives managing biogeographic or genomics information. The current paper aims to briefly present RAMS and provides an updated snapshot of its contents, in the form of a DarwinCore checklist (available through http://ipt.biodiversity.aq/resource.do?r=rams) and illustrative barplots. Moreover, this article presents a ten year appraisal (since the creation of RAMS). This appraisal first focuses on RAMS bibliometrics. We observed that RAMS was cited (Google Scholar) in 50 distinct publications among which 32 were peer-reviewed in 18 different journals. Three journals (Antarctic Science, Polar Biology, ZooKeys) represent almost 40% of these peer-review publications. The second appraisal focuses on the evolution of new RAMS records. We observed an important decrease in data additions since 2011. As a case study, we focused on an original dataset for a specific group (Asteroidea, Echinodermata). It appears that around one hundred species of asteroids are lacking in RAMS despite the relatively high availability of these data. This suggests that the users' community (or collaborative projects such as AquaRES) could be helpful in order to maintain the RAMS database over the long term. PMID:26478709

  8. Leaf absorbance and photosynthesis

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  9. Hydraulic shock absorber

    SciTech Connect

    Tanaka, T.

    1987-03-03

    This patent describes a hydraulic shock absorber including a piston reciprocating in a cylinder, a piston upper chamber and a piston lower chamber which are oil-tightly separated by the piston, piston ports formed through the piston in a circle for communicating the piston upper chamber with the piston lower chamber, and return ports formed outside of the piston ports in a circle for communicating the piston upper chamber with the piston lower chamber. It also includes a sheet ring-like non-return valve provided above the piston and fitted to a piston rod, valve holes formed through the non-return valve in opposed relation with the piston ports. A ring-like non-return valve stopper fixed to the piston rod on an upper side of the non-return valve with a small spaced defined between the non-return valve and the non-return valve stopper, and a spring is interposed between the non-return valve and the non-return valve stopper for normally urging the non-return valve to an upper surface of the piston. Movement of the piston to the piston upper chamber allows oil to flow from the piston upper chamber through the piston ports to the piston lower chamber, while the return ports are closed by the non-return valve to generate a vibration damping force by resistance upon pass of the oil through the piston parts. The improvement described here comprises a groove formed in an upper surface of the piston facing the non-return valve and aligned with the valve holes, the groove being in the circle where the piston ports lie and being in communication with the piston ports.

  10. Metal-shearing energy absorber

    NASA Technical Reports Server (NTRS)

    Fay, R. J.; Wittrock, E. P.

    1971-01-01

    Device, consisting of tongue of thin aluminum alloy strip, pull tab, slotted steel plate which serves as cutter, and steel buckle, absorbs mechanical energy when its ends are subjected to tensile loading. Device is applicable as auxiliary shock absorbing anchor for automobile and airplane safety belts.

  11. The broadband dynamic vibration absorber

    NASA Astrophysics Data System (ADS)

    Hunt, J. B.; Nissen, J.-C.

    1982-08-01

    The limited effectiveness of the linear passive dynamic vibration absorber is described. This is followed by an analysis producing the response of a primary system when a non-linear softening Belleville spring is used in the absorber. It is shown that the suppression bandwidth can be doubled by this means.

  12. Device for absorbing mechanical shock

    DOEpatents

    Newlon, Charles E.

    1980-01-01

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  13. Device for absorbing mechanical shock

    DOEpatents

    Newlon, C.E.

    1979-08-29

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  14. Innovative Anti Crash Absorber for a Crashworthy Landing Gear

    NASA Astrophysics Data System (ADS)

    Guida, Michele; Marulo, Francesco; Montesarchio, Bruno; Bruno, Massimiliano

    2014-06-01

    This paper defines an innovative concept to anti-crash absorber in composite material to be integrated on the landing gear as an energy-absorbing device in crash conditions to absorb the impact energy. A composite cylinder tube in carbon fiber material is installed coaxially to the shock absorber cylinder and, in an emergency landing gear condition, collapses in order to enhance the energy absorption performance of the landing system. This mechanism has been developed as an alternative solution to a high-pressure chamber installed on the Agusta A129 CBT helicopter, which can be considered dangerous when the helicopter operates in hard and/or crash landing. The characteristics of the anti-crash device are presented and the structural layout of a crashworthy landing gear adopting the developed additional energy absorbing stage is outlined. Experimental and numerical results relevant to the material characterization and the force peaks evaluation of the system development are reported. The anti-crash prototype was designed, analysed, optimized, made and finally the potential performances of a landing gear with the additional anti-crash absorber system are tested by drop test and then correlated with a similar test without the anti-crash system, showing that appreciable energy absorbing capabilities and efficiencies can be obtained in crash conditions.

  15. High speed GaAs static RAM technology and design

    NASA Astrophysics Data System (ADS)

    Lundgren, R. E.; Waldner, M.

    A design and analysis study of potential high-speed GaAs MESFET memory circuits was performed. The results show that a 1-kbit static RAM having a 1-ns access time is feasible using low-power enhancement-mode MESFETs to realize static flip-flop memory cells; power dissipation would be 5 microwatts per cell. To achieve maximum memory speed, the control and drive circuitry incorporates depletion-mode devices throughout; total power dissipation would be about 1 W. Details of the memory design and analysis are presented.

  16. Ram accelerator direct launch system for space cargo

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A new method of efficiently accelerating relatively large masses (up to several metric tons) to velocities of 0.6 km/sec up to 12 km/sec using chemical energy has been developed. The vehicle travels through a tube filled with a premixed gaseous fuel and oxidizer mixture. There is no propellant on-board the vehicle. The tube acts as the outer cowling of a ram jet and the energy release process travels with the vehicle. The ballistic efficiency remains high up to extremely high velocities and the acceleration can be maintained at a nearly constant level. Five modes of ram accelerator operation have been investigated; these modes differ primarily in the method of chemical heat release and the operational velocity range, and include two subsonic combustion modes (one of which involves thermally choke a combustion behind the vehicle) and three detonation drive modes. These modes of propulsion are capable of efficient acceleration in the range of 0.6-12 km/sec, although aerodynamic heating becomes severe above about 8 km/sec. Experiments carried out to date at the University of Washington up to 2 km/sec have established proof of principle of the ram accelerator concept and have shown close agreement between predicted and measured performance. A launch system capable of delivering two metric tons into low earth orbit was selected for the purposes of the present study. The preliminary analysis indicates that the overall dimensions of a restricted acceleration (less than approx. 1000 g) launch facility would require a tube 1 m in diameter, with an overall length of approximately 4 km. As in any direct launch scheme, a small on-board rocket is required to circularize the otherwise highly elliptical orbit which intersects the Earth. Various orbital insertion scenarios have been explored for the case of a 9 km/sec ram accelerator launch. These include direct insertion through a single circularization maneuver (i.e., on rocket burn), insertion involving two burns, and a

  17. RAM-based neural networks for data mining applications

    NASA Astrophysics Data System (ADS)

    Agehed, Kenneth I.; Eide, Age J.; Lindblad, Thomas; Lindsey, Clark S.; Szekely, Geza; Waldemark, Joakim T. A.; Waldemark, Karina E.

    1999-03-01

    We discuss possible new hardware and software techniques for handling very large databases such as image archives. In particular, we investigate how high capacity solid-state `disks' could be used to speed the database processing by algorithms that require considerably memory space. One such algorithm, for example, called the RAM neural network, or weightless neural network, needs a number of large lookup tables to perform most efficiently. The solid state disks could provide fast storage both for the algorithm and the data. We also briefly discuss development of an algorithm to cluster images of similar objects. This algorithm could also benefit from a large cache of fast memory storage.

  18. RAM-based neural networks for data mining applications

    NASA Astrophysics Data System (ADS)

    Agehed, Kenneth I.; Eide, Age J.; Lindblad, Thomas; Lindsey, Clark S.; Szekely, Geza; Waldemark, Joakim T. A.; Waldemark, Karina E.

    1998-03-01

    We discuss possible new hardware and software techniques for handling very large databases such as image archives. In particular, we investigate how high capacity solid-state 'disks' could be used to speed the database processing by algorithms that require considerable memory space. One such algorithm, for example, called the RAM neural network, or weightless neural network, needs a number of large lookup tables to perform most efficiently. The solid state disks could provide fast storage both for the algorithm and the data. We also briefly discuss development of an algorithm to cluster images of similar objects. This algorithm could also benefit from a large cache of fast memory storage.

  19. History of fat grafting: from ram fat to stem cells.

    PubMed

    Mazzola, Riccardo F; Mazzola, Isabella C

    2015-04-01

    Fat injection empirically started 100 years ago to correct contour deformities mainly on the face and breast. The German surgeon Eugene Hollaender (1867-1932) proposed a cocktail of human and ram fat, to avoid reabsorption. Nowadays, fat injection has evolved, and it ranks among the most popular procedures, for it provides the physician with a range of aesthetic and reconstructive clinical applications with regenerative effects on the surrounding tissues. New research from all over the world has demonstrated the role of adipose-derived stem cells, present in the adipose tissue, in the repair of damaged or missing tissues.

  20. Retroperitoneal perirenal pseudocyst in a Massese breed ram.

    PubMed

    Mutinelli, Franco; Vascellari, Marta; Schiavon, Eliana

    2005-05-01

    The macroscopic and microscopic features of a retroperitoneal perirenal pseudocyst in a 12-month-old ram without impairment of renal function are described. In humans and animals, uriniferous pseudocysts may be of traumatic origin, resulting from rupture of kidney, renal pelvis, or ureter, or congenital. Lymphatic pseudocysts may develop secondary to inflammatory obstruction of the hilar lymphatics after perinephritis or renal transplantation. In this case, histologic characteristics of the pseudocyst wall were suggestive of development from the parietal peritoneal layer encapsulating the kidney. This is the first case of retroperitoneal perirenal pseudocyst in a sheep.

  1. Reproductive seasonality of corriedale rams under extensive rearing conditions.

    PubMed

    Pérez, R; López, A; Castrillejo, A; Bielli, A; Laborde, D; Gastel, T; Tagle, R; Queirolo, D; Franco, J; Forsberg, M; Rodríguez-Martínez, H

    1997-01-01

    The objective of the present study was to describe seasonal changes in scrotal circumference (SC), live weight (LW), sperm morphology and plasma levels of testosterone (T) and thyroxine (T4) in young Corriedale rams reared under extensive conditions typical for the southern Latin American region. A total of 31 Corriedale rams, 11 months of age and with a LW of 36 +/- 1.1 kg and (SC) of 23.0 +/- 0.5 cm at the beginning of the experiment (September) were kept on natural pastures. At monthly intervals LW was recorded, animals were clinically examined, and SC was measured. None of the animals were used for breeding. Fifteen animals were randomly selected and bled once a month from January to December and plasma concentrations of T and T4 were determined. In addition, one semen sample was collected by electroejaculation and morphological studies were performed. The mean individual LW increase was 18 kg (50% of the initial LW) during the experiment (p < 0.01). LW decreased in autumn, with the nadir in late autumn. SC reached mean maximum levels in late summer (31.1 +/- 0.4 cm, p < 0.01), then decreased until the beginning of winter (26.3 +/- 0.4 cm, p < 0.01) and remained low until early spring (27.5 +/- 0.5 cm, p > 0.05) to increase again between mid-spring and the end of the experimental period the following summer (30.7 +/- 0.5 cm, p < 0.01). The mean SC in winter was 16% lower than that in late summer. Semen could be collected from the rams throughout the experiment. Frequencies of sperm head, mid-piece and total abnormalities showed monthly variation (p < 0.05), but tail abnormalities were not affected by month. Low abnormalities were found in autumn (9.4% +/- 2.2%). T was high during autumn (p < 0.01). Minimal T4 concentrations were observed during late summer and early autumn (p < 0.01) when T levels were high. Maximum T4 concentrations were registered in late autumn (p < 0.01); when SC was decreasing; in mid-spring (p < 0.01) one month after shearing and in early

  2. Social dominance and courtship and mating behaviour in rams in non-competitive and competitive pen tests.

    PubMed

    Ungerfeld, R; González-Pensado, S P

    2009-02-01

    A group of 19 Merino rams was used to determine: (i) if body weight, age and testis characteristics are different between high (HR) and low-ranked (LR) rams, and (ii) how the competition between HR and LR rams for oestrous ewes affect their courtship and mating behaviour. Hierarchy was determined using the food competition test. The five first and five last ranked rams were individually exposed to oestrous ewes in pen tests, and the frequency of different courtship behavioural units, mounts and mates, and the time from test onset to each mate was recorded. The sexual behaviour of the five first ranked and the five last ranked rams was also tested in competition, pairing a HR and a LR ram. Age, body weight, body condition score, scrotal circumference, and testis firmness and resilience from HR and LR were not different. The display of courtship behavioural units was lower when rams were tested in competition but was not affected by the rank of the rams. The number of mates per test from HR rams was lower than that observed in LR rams when tested alone. While the number of mates decreased in LR rams in competition tests, it was not affected in HR rams. In summary, there was no relation between social rank and body weight, age or testis characteristics. LR rams were more effective than HR rams when mating oestrous ewes without competition. However, in competitive tests, although all rams modified their courtship strategies, LR rams were more affected by the presence of dominant rams than HR rams were by the presence of LR rams.

  3. Structural investigation and microwave characteristics of (Ba{sub 0.2}La{sub 0.8})Fe{sub 0.2}Mn{sub 0.4}Ti{sub 0.4}O{sub 3} absorbing materials

    SciTech Connect

    Manaf, Azwar; Adi, Wisnu Ari

    2014-03-24

    Synthesis and characterization of (Ba{sub 0.2}La{sub 0.8})Fe{sub 0.2}Mn{sub 0.4}Ti{sub 0.4}O{sub 3} absorbing material by mechanical alloying process has been performed. The absorbing material was prepared by oxide materials, namely BaCO{sub 3}, La{sub 2}O{sub 3}, TiO{sub 2}, Fe{sub 2}O{sub 3}, and MnCO{sub 3}. The mixture was milled for 10 h and then sintered at a temperature of 1000 ° C for 10 h. The refinement results of x-ray diffraction pattern of lanthanum manganite substituted with barium showed that the sample consisted of two phases, namely, La{sub 0.9125}MnO{sub 3} phase which has a structure monoclinic (I12/a1) with lattice parameters a = 5.527(1) Å, b = 5.572(1) Å and c = 7.810(1) Å, α = γ = 90° and β = 89.88(5)°, the unit cell volume of V = 240.57(8) Å{sup 3}, and the atomic density of ρ = 6.238 gr.cm{sup −3}. The microstructure analyses showed that the particle shapes was polygonal with the varied particle sizes of 1 ∼ 3 μm distributed homogeneously on the surface of the samples. The results of the electromagnetic wave absorption curve analysis by using a vector network analyzer (VNA) showed that the sample can absorb microwaves in the frequency range of 8-15 GHz with a very wide absorption bandwidth. It indicates that the as prepared absorber presents potential absorbing property in X and Ku-band. We concluded that the (Ba{sub 0.2}La{sub 0.8})Fe{sub 0.2}Mn{sub 0.4}Ti{sub 0.4}O{sub 3} material can be applied as a candidate absorber material of microwaves or electromagnetic wave.

  4. Debuncher Microwave Absorber Tests of January 1992

    SciTech Connect

    Fullett, Ken

    1992-01-01

    This paper describes the tests performed on the microwave absorbers placed in the Debuncher to replace the existing microwave cutoffs. The purpose of the microwave cutoffs is to reduce the transmission of microwave energy through the beam pipe. The old microwave cutoffs consisted of a stainless steel beam pipe of approximately 2.8 inches inside diameter into which a glass tube with an inside diameter of 1.835 inches was placed. The glass tube was coated with a thin coat of microwave absorbing material on its outside. Three of these cutoffs were installed in the Debuncher at locations D6Q5, D1Q7, and D4Q10 (see Figure 1). However, the glass tube was removed from the cutoff at D4Q10 leaving only the metal beam pipe. Please note that there was not an old style microwave cutoff installed at location D2Q09. It was felt that the glass tube cutoff was an aperture restriction in the Debuncher with its small (1.8 inch) inside diameter. It was decided that new cutoffs would be needed that would increase the aperture. The new microwave absorbers consist of a four inch stainless steel beam pipe into which eleven dielectric cores are inserted separated by aluminum spacers. The spacing allows adjustment of the frequency response of the absorber assembly. The inside diameter is 3 inches thus providing an increase of 1.2 inches over the old cutoffs. The new absorbers will be installed at four locations as shown in Figure 1.

  5. A CCaMK-CYCLOPS-DELLA Complex Activates Transcription of RAM1 to Regulate Arbuscule Branching.

    PubMed

    Pimprikar, Priya; Carbonnel, Samy; Paries, Michael; Katzer, Katja; Klingl, Verena; Bohmer, Monica J; Karl, Leonhard; Floss, Daniela S; Harrison, Maria J; Parniske, Martin; Gutjahr, Caroline

    2016-04-25

    Intracellular arbuscular mycorrhiza symbiosis between plants and glomeromycotan fungi leads to formation of highly branched fungal arbuscules that release mineral nutrients to the plant host. Their development is regulated in plants by a mechanistically unresolved interplay between symbiosis, nutrient, and hormone (gibberellin) signaling. Using a positional cloning strategy and a retrotransposon insertion line, we identify two novel alleles of Lotus japonicus REDUCED ARBUSCULAR MYCORRHIZA1 (RAM1) encoding a GRAS protein. We confirm that RAM1 is a central regulator of arbuscule development: arbuscule branching is arrested in L. japonicus ram1 mutants, and ectopic expression of RAM1 activates genes critical for arbuscule development in the absence of fungal symbionts. Epistasis analysis places RAM1 downstream of CCaMK, CYCLOPS, and DELLA because ectopic expression of RAM1 restores arbuscule formation in cyclops mutants and in the presence of suppressive gibberellin. The corresponding proteins form a complex that activates RAM1 expression via binding of CYCLOPS to a cis element in the RAM1 promoter. We thus reveal a transcriptional cascade in arbuscule development that employs the promoter of RAM1 as integrator of symbiotic (transmitted via CCaMK and CYCLOPS) and hormonal (gibberellin) signals.

  6. Self-Regulating Shock Absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J.

    1995-01-01

    Mechanical shock absorber keeps frictional damping force within tolerable limit. Its damping force does not increase with coefficient of friction between energy-absorbing components; rather, frictional damping force varies only slightly. Relatively insensitive to manufacturing variations and environmental conditions altering friction. Does not exhibit high breakaway friction and consequent sharp increase followed by sharp decrease in damping force at beginning of stroking. Damping force in absorber does not vary appreciably with speed of stroking. In addition, not vulnerable to leakage of hydraulic fluid.

  7. Sperm head phenotype and male fertility in ram semen.

    PubMed

    Maroto-Morales, A; Ramón, M; García-Álvarez, O; Montoro, V; Soler, A J; Fernández-Santos, M R; Roldan, E R S; Pérez-Guzmán, M D; Garde, J J

    2015-12-01

    Although there is ample evidence for the effects of sperm head shape on sperm function, its impact on fertility has not been explored in detail at the intraspecific level in mammals. Here, we assess the relationship between sperm head shape and male fertility in a large-scale study in Manchega sheep (Ovis aries), which have not undergone any selection for fertility. Semen was collected from 83 mature rams, and before insemination, head shapes were measured for five parameters: area, perimeter, length, width, and p2a (perimeter(2)/2×π×area) using a computer-assisted sperm morphometric analysis. In addition, a cluster analysis using sperm head length and p2a factor was performed to determine sperm subpopulations (SPs) structure. Our results show the existence of four sperm SPs, which present different sperm head phenotype: SP1 (large and round), SP2 (short and elongated), SP3 (shortest and round), and SP4 (large and the most elongated). No relationships were found between males' fertility rates and average values of sperm head dimensions. However, differences in fertility rates between rams were strongly associated to the proportion of spermatozoa in an ejaculate SP with short and elongated heads (P < 0.001). These findings show how the heterogeneity in sperm head shape of the ejaculate has an effect on reproductive success, and highlight the important role of modulation of the ejaculate at the intraspecific level.

  8. Flow over a Ram-Air Parachute Canopy

    NASA Astrophysics Data System (ADS)

    Eslambolchi, Ali; Johari, Hamid

    2012-11-01

    The flow field over a full-scale, ram-air personnel parachute canopy was investigated numerically using a finite-volume flow solver coupled with the Spalart-Allmaras turbulence model. Ram-air parachute canopies resemble wings with arc-anhedral, surface protuberances, and an open leading edge for inflation. The rectangular planform canopy had an aspect ratio of 2.2 and was assumed to be rigid and impermeable. The chord-based Reynolds number was 3.2 million. Results indicate that the oncoming flow barely penetrates the canopy opening, and creates a large separation bubble below the lower lip of canopy. A thick boundary layer exists over the entire lower surface of the canopy. The flow over the upper surface of the canopy remains attached for an extended fraction of the chord. Lift increases linearly with angle of attack up to about 12 degrees. To assess the capability of lifting-line theory in predicting the forces on the canopy, the lift and drag data from a two-dimensional simulation of the canopy profile were extended using finite-wing expressions and compared with the forces from the present simulations. The finite-wing predicted lift and drag trends compare poorly against the full-span simulation, and the maximum lift-to-drag ratio is over-predicted by 36%. Sponsored by the US Army NRDEC.

  9. Flow over a Modern Ram-Air Parachute Canopy

    NASA Astrophysics Data System (ADS)

    Mohammadi, Mohammad; Johari, Hamid

    2010-11-01

    The flow field on the central section of a modern ram-air parachute canopy was examined numerically using a finite-volume flow solver coupled with the one equation Spalart-Allmaras turbulence model. Ram-air parachutes are used for guided airdrop applications, and the canopy resembles a wing with an open leading edge for inflation. The canopy surfaces were assumed to be impermeable and rigid. The flow field consisted of a vortex inside the leading edge opening which effectively closed off the canopy and diverted the flow around the leading edge. The flow experienced a rather bluff leading edge in contrast to the smooth leading of an airfoil, leading to a separation bubble on the lower lip of the canopy. The flow inside the canopy was stagnant beyond the halfway point. The section lift coefficient increased linearly with the angle of attack up to 8.5 and the lift curve slope was about 8% smaller than the baseline airfoil. The leading edge opening had a major effect on the drag prior to stall; the drag is at least twice the baseline airfoil drag. The minimum drag of the section occurs over the angle of attack range of 3 -- 7 .

  10. Space shuttle Ram glow: Implication of NO2 recombination continuum

    NASA Astrophysics Data System (ADS)

    Swenson, G. R.; Mende, S. B.; Clifton, S.

    1985-09-01

    The ram glow data gathered to data from imaging experiments on space shuttle suggest the glow is a continuum (within 34 angstrom resolution); the continuum shape is such that the peak is near 7000 angstroms decreasing to the blue and red, and the average molecular travel leading to emission after leaving the surface is 20 cm (assuming isotropic scattering from the surface). Emission continuum is rare in molecular systems but the measured spectrum does resemble the laboratory spectrum of NO2 (B) recombination continuum. The thickness of the observed emission is consistent with the NO2 hypothesis given an exit velocity of approx. 2.5 km/sec (1.3 eV) which leaves approx. 3.7 eV of ramming OI energy available for unbonding the recombined NO2 from the surface. The NO2 is formed in a 3-body recombination of OI + NO + m = NO2 + m where OI originates from the atmosphere and NO is chemically formed on the surface from atmospheric NI and OI. The spacecraft surface then acts as the n for the reaction: Evidence exists from orbital mass spectrometer data that the NO and NO2 chemistry described in this process does occur on surfaces of spectrometer orifices in orbit. Surface temperature effects are likely a factor in the NO sticking efficiency and, therefore, glow intensities.

  11. Simulating lightning into the RAMS model: implementation and preliminary results

    NASA Astrophysics Data System (ADS)

    Federico, S.; Avolio, E.; Petracca, M.; Panegrossi, G.; Sanò, P.; Casella, D.; Dietrich, S.

    2014-05-01

    This paper shows the results of a tailored version of a previously published methodology, designed to simulate lightning activity, implemented into the Regional Atmospheric Modeling System (RAMS). The method gives the flash density at the resolution of the RAMS grid-scale allowing for a detailed analysis of the evolution of simulated lightning activity. The system is applied in detail to two case studies occurred over the Lazio Region, in Central Italy. Simulations are compared with the lightning activity detected by the LINET network. The cases refer to two thunderstorms of different intensity. Results show that the model predicts reasonably well both cases and that the lightning activity is well reproduced especially for the most intense case. However, there are errors in timing and positioning of the convection, whose magnitude depends on the case study, which mirrors in timing and positioning errors of the lightning distribution. To assess objectively the performance of the methodology, standard scores are presented for four additional case studies. Scores show the ability of the methodology to simulate the daily lightning activity for different spatial scales and for two different minimum thresholds of flash number density. The performance decreases at finer spatial scales and for higher thresholds. The comparison of simulated and observed lighting activity is an immediate and powerful tool to assess the model ability to reproduce the intensity and the evolution of the convection. This shows the importance of the use of computationally efficient lightning schemes, such as the one described in this paper, in forecast models.

  12. Sperm head phenotype and male fertility in ram semen.

    PubMed

    Maroto-Morales, A; Ramón, M; García-Álvarez, O; Montoro, V; Soler, A J; Fernández-Santos, M R; Roldan, E R S; Pérez-Guzmán, M D; Garde, J J

    2015-12-01

    Although there is ample evidence for the effects of sperm head shape on sperm function, its impact on fertility has not been explored in detail at the intraspecific level in mammals. Here, we assess the relationship between sperm head shape and male fertility in a large-scale study in Manchega sheep (Ovis aries), which have not undergone any selection for fertility. Semen was collected from 83 mature rams, and before insemination, head shapes were measured for five parameters: area, perimeter, length, width, and p2a (perimeter(2)/2×π×area) using a computer-assisted sperm morphometric analysis. In addition, a cluster analysis using sperm head length and p2a factor was performed to determine sperm subpopulations (SPs) structure. Our results show the existence of four sperm SPs, which present different sperm head phenotype: SP1 (large and round), SP2 (short and elongated), SP3 (shortest and round), and SP4 (large and the most elongated). No relationships were found between males' fertility rates and average values of sperm head dimensions. However, differences in fertility rates between rams were strongly associated to the proportion of spermatozoa in an ejaculate SP with short and elongated heads (P < 0.001). These findings show how the heterogeneity in sperm head shape of the ejaculate has an effect on reproductive success, and highlight the important role of modulation of the ejaculate at the intraspecific level. PMID:26318229

  13. Preliminary Tests of a Burner for Ram-Jet Applications

    NASA Technical Reports Server (NTRS)

    Huber, Paul W.

    1947-01-01

    Preliminary tests have been made of a small burner to meet the requirements for application to supersonic ram jets. The principal requirements were taken as: (1) efficient combustion in a high-velocity air stream, (2) utilization for combustion of only a small fraction of the air passing through the unit, (3) low resistance to air flow, (4) simple construction, and (5) light weight. Tests of a small burner were carried to stream velocities of nearly 150 feet per second and fuel rates such that one-eighth to one-fourth of the total air was involved in combustion. Commercial propane was selected as the fuel since its low boiling point facilitated vaporization. Combustion which was 80 percent complete along with low aerodynamic losses was obtained by injecting the fuel evenly, prior to ignition, and allowing it to mix with the air without appreciably disturbing the stream. The pressure drop due to frictional losses around the burner and to the adjacent inside walls of the ram jet is small compared with the pressure drop due to combustion.

  14. The modification and application of RAMS computer code. Final report

    SciTech Connect

    McKee, T.B.

    1995-01-17

    The Regional Atmospheric Modeling System (RAMS) has been utilized in its most updated form, version 3a, to simulate a case night from the Atmospheric Studies in COmplex Terrain (ASCOT) experimental program. ASCOT held a wintertime observational campaign during February, 1991 to observe the often strong drainage flows which form on the Great Plains and in the canyons embedded within the slope from the Continental Divide to the Great Plains. A high resolution (500 m grid spacing) simulation of the 4-5 February 1991 case night using the more advanced turbulence closure now available in RAMS 3a allowed greater analysis of the physical processes governing the drainage flows. It is found that shear interaction above and within the drainage flow are important, and are overpredicted with the new scheme at small grid spacing (< {approximately}1000 m). The implication is that contaminants trapped in nighttime stable flows such as these, will be mixed too strongly in the vertical reducing predicted ground concentrations. The HYPACT code has been added to the capability at LANL, although due to the reduced scope of work, no simulations with HYPACT were performed.

  15. Ram accelerator direct launch system for space cargo

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Hertzberg, A.

    1987-01-01

    The ram accelerator, a chemically-propelled mass driver, is presented as a new approach for directly launching acceleration-insensitive pay-loads into LEO. The cargo vehicle resembles the centerbody of a conventional ramjet and travels through a launch tube filled with a premixed gaseous fuel and oxidizer mixture. The tube acts as the outer cowling of the ramjet and the combustion process travels with the vehicle. Two modes of ram accelerator drive are described, which when used in sequence, are capable of accelerating the cargo vehicle to 10 km/sec. The requirements for placing a 2000 kg vehicle with 50 percent payload fraction into a 400 km orbit, with a minimum of on-board rocket propellant for circularization maneuvers, are examined. It is shown that aerodynamic heating during atmospheric transit results in very little ablation of the nose. Both direct and indirect orbital insertion scenarios are investigated, and a three-step maneuver consisting of two burns and aerobraking is found to minimize the on-board propellant mass. A scenario involving a parking orbit below the desired final orbit is suggested as a means to increase the flexibility of the mass launch concept.

  16. Space shuttle ram glow: Implication of NO2 recombination continuum

    NASA Technical Reports Server (NTRS)

    Swenson, G. R.; Mende, S. B.; Clifton, S.

    1985-01-01

    The ram glow data gathered to data from imaging experiments on space shuttle suggest the glow is a continuum (within 34 angstrom resolution); the continuum shape is such that the peak is near 7000 angstroms decreasing to the blue and red, and the average molecular travel leading to emission after leaving the surface is 20 cm (assuming isotropic scattering from the surface). Emission continuum is rare in molecular systems but the measured spectrum does resemble the laboratory spectrum of NO2 (B) recombination continuum. The thickness of the observed emission is consistent with the NO2 hypothesis given an exit velocity of approx. 2.5 km/sec (1.3 eV) which leaves approx. 3.7 eV of ramming OI energy available for unbonding the recombined NO2 from the surface. The NO2 is formed in a 3-body recombination of OI + NO + m = NO2 + m where OI originates from the atmosphere and NO is chemically formed on the surface from atmospheric NI and OI. The spacecraft surface then acts as the n for the reaction: Evidence exists from orbital mass spectrometer data that the NO and NO2 chemistry described in this process does occur on surfaces of spectrometer orifices in orbit. Surface temperature effects are likely a factor in the NO sticking efficiency and, therefore, glow intensities.

  17. Imaging highly absorbing nanoparticles using photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lussier, Simon-Alexandre; Moradi, Hamid; Price, Alain; Murugkar, Sangeeta

    2015-03-01

    Gold nanoparticles (NPs) have tremendous potential in biomedicine. They can be used as absorbing labels inside living cells for the purpose of biomedical imaging, biosensing as well as for photothermal therapy. We demonstrate photothermal imaging of highly-absorbing particles using a pump-probe setup. The photothermal signal is recovered by heterodyne detection, where the excitation pump laser is at 532 nm and the probe laser is at 638 nm. The sample is moved by a scanning stage. Proof of concept images of red polystyrene microspheres and gold nanoparticles are obtained with this home-built multimodal microscope. The increase in temperature at the surface of the gold NPs, due to the pump laser beam, can be directly measured by means of this photothermal microscope and then compared with the results from theoretical predictions. This technique will be useful for characterization of nanoparticles of different shapes, sizes and materials that are used in cancer diagnosis and therapy.

  18. Disposable Diaper Absorbency: Improvements via Advanced Designs.

    PubMed

    Helmes, C Tucker; O'Connor, Robert; Sawyer, Larry; Young, Sharon

    2014-06-24

    Absorbency effectiveness in diapers has improved significantly in recent years with the advent of new ingredient combinations and advanced design features. With these features, many leading products maintain their dryness performance overnight. Considering the importance of holding liquid away from the skin, ongoing research in diaper construction focuses on strategies to increase the effectiveness to capture liquid and help avoid rewetting of infant skin. The layout and design of a disposable diaper allows for distribution of absorbency features where they can provide the optimal benefit. Clinical evidence indicates materials can keep moisture away from the skin in the diapered area, helping maintain proper skin hydration, minimizing irritation, and contributing to reduced rates of diaper rash.

  19. Impedance matched thin metamaterials make metals absorbing

    PubMed Central

    Mattiucci, N.; Bloemer, M. J.; Aközbek, N.; D'Aguanno, G.

    2013-01-01

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others. PMID:24220284

  20. Disposable Diaper Absorbency: Improvements via Advanced Designs.

    PubMed

    Helmes, C Tucker; O'Connor, Robert; Sawyer, Larry; Young, Sharon

    2014-06-24

    Absorbency effectiveness in diapers has improved significantly in recent years with the advent of new ingredient combinations and advanced design features. With these features, many leading products maintain their dryness performance overnight. Considering the importance of holding liquid away from the skin, ongoing research in diaper construction focuses on strategies to increase the effectiveness to capture liquid and help avoid rewetting of infant skin. The layout and design of a disposable diaper allows for distribution of absorbency features where they can provide the optimal benefit. Clinical evidence indicates materials can keep moisture away from the skin in the diapered area, helping maintain proper skin hydration, minimizing irritation, and contributing to reduced rates of diaper rash. PMID:24961785

  1. Impedance matched thin metamaterials make metals absorbing.

    PubMed

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-01-01

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others. PMID:24220284

  2. Impedance matched thin metamaterials make metals absorbing.

    PubMed

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-11-13

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others.

  3. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, William H.

    1984-01-01

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system.

  4. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, W.H.

    1984-10-16

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system. 9 figs.

  5. Unglazed transpired solar collector having a low thermal-conductance absorber

    DOEpatents

    Christensen, Craig B.; Kutscher, Charles F.; Gawlik, Keith M.

    1997-01-01

    An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprising an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution.

  6. Acoustical model of a Shoddy fibre absorber

    NASA Astrophysics Data System (ADS)

    Manning, John Peter

    Shoddy fibres or "Shoddies" are a mixture of post-consumer and post-industrial fibres diverted from textile waste streams and recycled into their raw fibre form. They have found widespread use as a raw material for manufacturing sound absorbers that include, but are not limited to: automotive, architectural and home appliance applications. The purpose of this project is to develop a simple acoustic model to describe the acoustic behaviour of sound absorbers composed primarily of Shoddy fibres. The model requires knowledge of the material's bulk density only. To date, these materials have not been the focus of much published research and acoustical designers must rely on models that were developed for other materials or are overly complex. For modelling purposes, an equivalent fluid approach is chosen to balance complexity and accuracy. In deriving the proposed model, several popular equivalent fluid models are selected and the required input parameters for each model identified. The models are: the model of Delaney and Bazley, two models by Miki, the model of Johnson in conjunction with the model of Champoux and Allard and the model of Johnson in conjunction with the model of Lafarge. Characterization testing is carried out on sets of Shoddy absorbers produced using three different manufacturing methods. The measured properties are open porosity, tortuosity, airflow resistivity, the viscous and thermal characteristic lengths and the static thermal permeability. Empirical relationships between model parameters and bulk density are then derived and used to populate the selected models. This yields several 'simplified' models with bulk density as the only parameter. The most accurate model is then selected by comparing each model's prediction to the results of normal incidence sound absorption tests. The model of Johnson-Lafarge populated with the empirical relations is the most accurate model over the range of frequencies considered (approx. 300 Hz - 4000 Hz

  7. Energy deposition studies for the LBNE beam absorber

    SciTech Connect

    Rakhno, Igor L.; Mokhov, Nikolai V.; Tropin, Igor S.

    2015-01-29

    Results of detailed Monte Carlo energy deposition studies performed for the LBNE absorber core and the surrounding shielding with the MARS15 code are described. The model of the entire facility, that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system – all with corresponding radiation shielding – was developed using the recently implemented ROOT-based geometry option in the MARS15 code. This option provides substantial flexibility and automation when developing complex geometry models. Both normal operation and accidental conditions were studied. Various design options were considered, in particular the following: (i) filling the decay pipe with air or helium; (ii) the absorber mask material and shape; (iii) the beam spoiler material and size. Results of detailed thermal calculations with the ANSYS code helped to select the most viable absorber design options.

  8. Metamaterial perfect absorber based on artificial dielectric "atoms".

    PubMed

    Liu, Xiaoming; Bi, Ke; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-09-01

    In this work, we numerically designed and then experimentally verified a metamaterial perfect absorber based on artificial dielectric "atoms". This metamaterial absorber is composed of dielectric ceramic material (SrTiO3) "atoms" embedded in a background matrix on a metal plate. The dielectric "atoms" couple strongly to the incident electric and magnetic fields at the Mie resonance mode, leading to the narrow perfect absorption band with simulated and experimental absorptivities of 99% and 98.5% at 8.96 GHz, respectively. The designed metamaterial perfect absorber is polarization insensitive and can operate in wide angle incidence.

  9. Metamaterial perfect absorber based on artificial dielectric "atoms".

    PubMed

    Liu, Xiaoming; Bi, Ke; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-09-01

    In this work, we numerically designed and then experimentally verified a metamaterial perfect absorber based on artificial dielectric "atoms". This metamaterial absorber is composed of dielectric ceramic material (SrTiO3) "atoms" embedded in a background matrix on a metal plate. The dielectric "atoms" couple strongly to the incident electric and magnetic fields at the Mie resonance mode, leading to the narrow perfect absorption band with simulated and experimental absorptivities of 99% and 98.5% at 8.96 GHz, respectively. The designed metamaterial perfect absorber is polarization insensitive and can operate in wide angle incidence. PMID:27607650

  10. Flexible subterahertz metamaterial absorber fabrication using inkjet printing technology

    NASA Astrophysics Data System (ADS)

    Lee, Dongju; Sung, Hyuk-Kee; Lim, Sungjoon

    2016-07-01

    In this study, a flexible metamaterial (MM) absorber was designed at 0.1 THz and fabricated using inkjet printing technology. The unit cell of the MM absorber was designed using a finite element method-based full-wave simulation. The unit cell comprised square rings, and it was printed with silver nanoparticle ink on flexible Kapton polyimide film. The fabrication processes were performed using a material printer. The absorber's reflection coefficient was measured using a vector network analyzer and a WR-10 waveguide. The absorption ratio was 93.5 % at 0.102 THz. Therefore, we demonstrated the possibility of inkjet printing at a subterahertz band.

  11. The utility of nanowater for ram semen cryopreservation

    PubMed Central

    Murawski, Maciej; Schwarz, Tomasz; Patkowski, Krzysztof; Oszczęda, Zdzisław; Jelkin, Igor; Kosiek, Anna; Gruszecki, Tomasz M; Szymanowska, Anna; Skrzypek, Tomasz; Zieba, Dorota A; Bartlewski, Pawel M

    2015-01-01

    Nanowater (NW; water declusterized in the low-temperature plasma reactor) has specific physicochemical properties that could increase semen viability after freezing and hence fertility after artificial insemination (AI) procedures. The main goal of this study was to evaluate ram semen quality after freezing in the media containing NW. Ejaculates from 10 rams were divided into two equal parts, diluted in a commercially available semen extender (Triladyl®; MiniTüb GmbH, Tiefenbach, Germany) prepared with deionized water (DW) or NW, and then frozen in liquid nitrogen. Semen samples were examined for sperm motility and morphology using the sperm class analyzer system and light microscopy. Cryo-scanning electron microscopy (cryo-SEM) was employed to determine the size of extracellular water crystals in frozen semen samples. Survival time at room temperature, aspartate aminotransferase (AspAT) and alkaline phosphatase (ALP) concentrations post-thawing as well as conception/lambing rates after laparoscopic intrauterine AI of 120 ewes were also determined. There were no significant differences between DW and NW groups in sperm progressive motility (26.4 ± 12.2 and 30.8 ± 12.4%) or survival time (266.6 ± 61.3 and 270.9 ± 76.7 min) after thawing and no differences in the percentages of spermatozoa with various morphological defects before or after freezing. There were, however, differences (P < 0.05) in AspAT (DW: 187.1 ± 160.4 vs. NW: 152.7 ± 118.3 U/l) and ALP concentrations (DW: 2198.3 ± 1810.5 vs. NW: 1612.1 ± 1144.8 U/l) in semen samples post-thawing. Extracellular water crystals were larger (P < 0.05) in ejaculates frozen in NW-containing media. Ultrasonographic examinations on day 40 post-AI revealed higher (P < 0.05) conception rates in ewes inseminated with NW (78.3%) compared with DW semen (58.3%), and the percentages of ewes that carried lambs to term were 73.3% and 45.0% in NW and DW groups, respectively (P

  12. The utility of nanowater for ram semen cryopreservation.

    PubMed

    Murawski, Maciej; Schwarz, Tomasz; Grygier, Joanna; Patkowski, Krzysztof; Oszczęda, Zdzisław; Jelkin, Igor; Kosiek, Anna; Gruszecki, Tomasz M; Szymanowska, Anna; Skrzypek, Tomasz; Zieba, Dorota A; Bartlewski, Pawel M

    2015-05-01

    Nanowater (NW; water declusterized in the low-temperature plasma reactor) has specific physicochemical properties that could increase semen viability after freezing and hence fertility after artificial insemination (AI) procedures. The main goal of this study was to evaluate ram semen quality after freezing in the media containing NW. Ejaculates from 10 rams were divided into two equal parts, diluted in a commercially available semen extender (Triladyl®; MiniTüb GmbH, Tiefenbach, Germany) prepared with deionized water (DW) or NW, and then frozen in liquid nitrogen. Semen samples were examined for sperm motility and morphology using the sperm class analyzer system and light microscopy. Cryo-scanning electron microscopy (cryo-SEM) was employed to determine the size of extracellular water crystals in frozen semen samples. Survival time at room temperature, aspartate aminotransferase (AspAT) and alkaline phosphatase (ALP) concentrations post-thawing as well as conception/lambing rates after laparoscopic intrauterine AI of 120 ewes were also determined. There were no significant differences between DW and NW groups in sperm progressive motility (26.4 ± 12.2 and 30.8 ± 12.4%) or survival time (266.6 ± 61.3 and 270.9 ± 76.7 min) after thawing and no differences in the percentages of spermatozoa with various morphological defects before or after freezing. There were, however, differences (P < 0.05) in AspAT (DW: 187.1 ± 160.4 vs. NW: 152.7 ± 118.3 U/l) and ALP concentrations (DW: 2198.3 ± 1810.5 vs. NW: 1612.1 ± 1144.8 U/l) in semen samples post-thawing. Extracellular water crystals were larger (P < 0.05) in ejaculates frozen in NW-containing media. Ultrasonographic examinations on day 40 post-AI revealed higher (P < 0.05) conception rates in ewes inseminated with NW (78.3%) compared with DW semen (58.3%), and the percentages of ewes that carried lambs to term were 73.3% and 45.0% in NW and DW groups, respectively (P < 0.01). In summary, the use of a semen

  13. Growth and slaughter characteristics of ram and wether lambs implanted with zeranol.

    PubMed

    Field, R A; Snowder, G D; Maiorano, G; McCormick, R J; Riley, M L

    1993-03-01

    Forty-nine Columbia ram and wether lambs born in April 1990 and 46 born in April 1991 were studied to determine the effects of zeranol implants on growth, difficulty of pelt removal, and carcass characteristics. Implanting ram and wether lambs once (1990) or twice (1991) with 12 mg of zeranol did not change live weight or ADG but gain/feed decreased (P < .05) in ram lambs slaughtered at approximately 50 kg. Testes weight was reduced approximately 50% by implanting. Two implants reduced (P < .05) the force needed to pull the pelt from the hind legs of ram lambs, but implanting tended to increase the force required to pull the pelt from wether lambs. Data for pelt weight, force required to pull the pelt, percentage of the carcass in the shoulder or splenius muscle, and Warner-Bratzler shear values showed that zeranol implants resulted in ram lambs becoming more like wethers and wether lambs becoming more like rams. Implanting with zeranol did not affect closure of the metacarpal growth plate in ram or in wether lambs. Difficulty of pelt removal can be reduced by implanting ram lambs with 12 mg of zeranol at approximately 114 d of age and reimplanting zeranol 28 d later.

  14. Effect of semen extender and storage temperature on ram sperm motility over time

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storage of ram semen for long period of time depends on a number of factors, including type of extender and storage temperature. A study compared the effect of semen extender and storage temperature on motility of ram semen stored for 72 h. Semen collected via electroejaculator from 5 mature Katahd...

  15. The RAM Scale: Development and Validation of the Revised Scale in Likert Format.

    ERIC Educational Resources Information Center

    Wright, Claudia R.; And Others

    1983-01-01

    The development and validation of a revised form of the RAM Scale in Likert format are described. The RAM Scale measures student philosophical orientations in terms of relative, absolute, or mixed biases or preferences toward issues of knowledge, methods, and values. (Author/PN)

  16. ABSORBING WIPP BRINES: A TRU WASTE DISPOSAL STRATEGY

    SciTech Connect

    Yeamans, D. R.; Wrights, R. S.

    2002-02-25

    Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250- liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WIPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $311k in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

  17. Absorbing WIPP brines : a TRU waste disposal strategy.

    SciTech Connect

    Yeamans, D. R.; Wright, R.

    2002-01-01

    Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250-liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WlPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $3 1 lk in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

  18. Load limiting energy absorbing lightweight debris catcher

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B. (Inventor); Schneider, William C. (Inventor)

    1991-01-01

    In the representative embodiment of the invention disclosed, a load limiting, energy absorbing net is arranged to overlay a normally-covered vent opening in the rear bulkhead of the space orbiter vehicle. Spatially-disposed flexible retainer straps are extended from the net and respectively secured to bulkhead brackets spaced around the vent opening. The intermediate portions of the straps are doubled over and stitched together in a pattern enabling the doubled-over portions to progressively separate at a predicable load designed to be well below the tensile capability of the straps as the stitches are successively torn apart by the forces imposed on the retainer members whenever the cover plate is explosively separated from the bulkhead and propelled into the net. By arranging these stitches to be successively torn away at a load below the strap strength in response to forces acting on the retainers that are less than the combined strength of the retainers, this tearing action serves as a predictable compact energy absorber for safely halting the cover plate as the retainers are extended as the net is deployed. The invention further includes a block of an energy-absorbing material positioned in the net for receiving loose debris produced by the explosive release of the cover plate.

  19. Shock wave absorber having a deformable liner

    DOEpatents

    Youngdahl, C.K.; Wiedermann, A.H.; Shin, Y.W.; Kot, C.A.; Ockert, C.E.

    1983-08-26

    This invention discloses a shock wave absorber for a piping system carrying liquid. The absorber has a plastically deformable liner defining the normal flow boundary for an axial segment of the piping system, and a nondeformable housing is spaced outwardly from the liner so as to define a gas-tight space therebetween. The flow capacity of the liner generally corresponds to the flow capacity of the piping system line, but the liner has a noncircular cross section and extends axially of the piping system line a distance between one and twenty times the diameter thereof. Gas pressurizes the gas-tight space equal to the normal liquid pressure in the piping system. The liner has sufficient structural capacity to withstand between one and one-half and two times this normal liquid pressures; but at greater pressures it begins to plastically deform initially with respect to shape to a more circular cross section, and then with respect to material extension by circumferentially stretching the wall of the liner. A high energy shock wave passing through the liner thus plastically deforms the liner radially into the gas space and progressively also as needed in the axial direction of the shock wave to minimize transmission of the shock wave beyond the absorber.

  20. An absorbed dose calorimeter for IMRT dosimetry

    NASA Astrophysics Data System (ADS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N. D.; Thomas, C. G.; Palmans, H.

    2012-10-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%).

  1. Microscopic modeling of nitride intersubband absorbance

    NASA Astrophysics Data System (ADS)

    Montano, Ines; Allerman, A. A.; Wierer, J. J.; Moseley, M.; Skogen, E. J.; Tauke-Pedretti, A.; Vawter, G. A.

    III-nitride intersubband structures have recently attracted much interest because of their potential for a wide variety of applications ranging from electro-optical modulators to terahertz quantum cascade lasers. To overcome present simulation limitations we have developed a microscopic absorbance simulator for nitride intersubband devices. Our simulator calculates the band structure of nitride intersubband systems using a fully coupled 8x8 k.p Hamiltonian and determines the material response of a single period in a density-matrix-formalism by solving the Heisenberg equation including many-body and dephasing contributions. After calculating the polarization due to intersubband transitions in a single period, the resulting absorbance of a superlattice structure including radiative coupling between the different periods is determined using a non-local Green's-function formalism. As a result our simulator allows us to predict intersubband absorbance of superlattice structures with microscopically determined lineshapes and linewidths accounting for both many-body and correlation contributions. This work is funded by Sandia National Laboratories Laboratory Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin.

  2. CMOS RAM cosmic-ray-induced-error-rate analysis

    NASA Technical Reports Server (NTRS)

    Pickel, J. C.; Blandford, J. T., Jr.

    1981-01-01

    A significant number of spacecraft operational anomalies are believed to be associated with cosmic-ray-induced soft errors in the LSI memories. Test programs using a cyclotron to simulate cosmic rays have established conclusively that many common commercial memory types are vulnerable to heavy-ion upset. A description is given of the methodology and the results of a detailed analysis for predicting the bit-error rate in an assumed space environment for CMOS memory devices. Results are presented for three types of commercially available CMOS 1,024-bit RAMs. It was found that the HM6508 is susceptible to single-ion induced latchup from argon and krypton ions. The HS6508 and HS6508RH and the CDP1821 apparently are not susceptible to single-ion induced latchup.

  3. Microbial diseases of the genital system of rams or bucks.

    PubMed

    Gouletsou, P G; Fthenakis, G C

    2015-12-14

    Objective of the present paper is to review microbial diseases of the genital system of male small ruminants. The paper reviews the infections and the diseases by taking an organ approach within the genital system, whilst relevant health management actions are also discussed. Diseases of the genital organs of male small ruminants include orchitis, of bacterial or viral aetiology, epididymitis, primarily caused by Brucella ovis, by other bacteria as well (e.g., Actinobacillus seminis, Haemophilus somni), infections of the accessory glands, orf, other infections of the penis or prepuce and infections of the scrotum. The health management of rams/bucks include the appropriate diagnostic investigations, the relevant therapeutic approaches and, finally, the preventive measures. PMID:26209019

  4. NGC 4438: Ram pressure sweeping of a tidally disrupted galaxy

    NASA Technical Reports Server (NTRS)

    Hibbard, J. E.; Vangorkom, Jacqueline H.

    1990-01-01

    NGC 4438 is the highly HI deficient peculiar spiral in the center of the Virgo cluster. Observations are given of the neutral hydrogen emission obtained with the Very Large Array (VLA) in the D-array configuration. These observations map out the total HI as determined from single dish measurements, and show the hydrogen to be confined to a region about one third the size of the optical disk and displaced to the side of the galaxy opposite M87. The hydrogen content of the galaxy is over an order of magnitude less than that expected for a galaxy of its type. The data suggest that the HI deficiency is a result of ram pressure stripping of the gas in the outer regions of the galaxy by the hot intracluster medium after being tidally perturbed.

  5. High spatial resolution measurements of ram accelerator gas dynamic phenomena

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Data obtained by using a special highly instrumented section of tube has allowed the recording of gas dynamic phenomena with a spatial resolution on the order of one tenth the projectile length. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) are presented and reveal the 3D character of the flowfield induced by projectile fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, 3D CFD code.

  6. Ram acceleration from a two phase detonative system

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc; Bogdanoff, David W.

    1993-01-01

    A concept for ram acceleration is presented here, which uses a combination of a gas core and a layer of solid explosive or propellant to generate high thrust densities. The concept can be either self-synchronized or externally synchronized, and may be reusable. It has the potential to achieve very high acceleration rates, higher exit velocities and to lower the tube length requirements. Preliminary numerical simulations are presented and discussed, which show the characteristics of the flow fields. Stable conditions can be achieved for low mass loadings of solid explosive, and relatively slow combustion. Accurate knowledge of the thermo-chemical properties and the equations of state of the gas and solid components is essential for further tuning of the concept.

  7. Environment, Ram Pressure, and Shell Formation in Holmberg II

    NASA Astrophysics Data System (ADS)

    Bureau, M.; Carignan, C.

    2002-03-01

    Neutral hydrogen VLA D-array observations of the dwarf irregular galaxy HoII, a prototype galaxy for studies of shell formation, are presented. These were extracted from the multiconfiguration data set of Puche and colleagues. H I is detected to radii over 16' or 4R25, almost a factor of 2 better than previous studies. The total H I mass MHI=6.44×108 Msolar. The integrated H I map has a comet-like appearance, with a large but faint component extending to the northwest and the H I appearing compressed on the opposite side. This suggests that HoII is affected by ram pressure from an intragroup medium (IGM). The velocity field shows a clear rotating disk pattern, and a rotation curve corrected for asymmetric drift was derived. However, the gas at large radii may not be in equilibrium. Puche and colleagues' multiconfiguration data were also reanalyzed, and it is shown that they overestimated their fluxes by over 20%. The rotation curve derived for HoII is well defined for r<~10 kpc. For 10<~r<~18 kpc, however, velocities are only defined on the approaching side, such that this part of the rotation curve should be used with caution. An analysis of the mass distribution, using the whole extent of this rotation curve, yields a total mass of 6.3×109 Msolar, of which ~80% is dark. Similarly to what is seen in many dwarfs, there is more luminous mass in H I than in stars. One peculiarity, however, is that luminous matter dominates within the optical body of the galaxy and dark matter only in the outer parts, analogous to what is seen in massive spirals rather than dwarfs. HoII lies northeast of the M81 Group's core, along with Kar 52 (M81 dwarf A) and UGC 4483. No signs of interaction are observed, however, and it is argued that HoII is part of the NGC 2403 subgroup, infalling toward M81. A case is made for ram pressure stripping and an IGM in the M81 Group. Stripping of the outer parts of the disk would require an IGM density nIGM>~4.0×10-6 atoms cm-3 at the location of

  8. Carbon Absorber Retrofit Equipment (CARE)

    SciTech Connect

    Klein, Eric

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  9. Mushroom plasmonic metamaterial infrared absorbers

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinpei; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-01

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF2 etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  10. Mushroom plasmonic metamaterial infrared absorbers

    SciTech Connect

    Ogawa, Shinpei Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-26

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF{sub 2} etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  11. In vitro and in vivo fertility of ram semen cryopreserved in different extenders.

    PubMed

    Valente, S S; Pereira, R M; Baptista, M C; Marques, C C; Vasques, M I; Pereira, M V C Silva; Horta, A E M; Barbas, J P

    2010-01-01

    Seminal traits of frozen-thawed (FT) ram semen and in vitro and field fertility in native Portuguese breeds were evaluated in 4 experiments. In exp. 1 and 2 the cryopreservation capacity of 2 extenders, E1 (15% egg yolk-EY) and E2 (4.5% EY and trehalose) was compared through morphological evaluation and in vitro fertilizability of FT ram semen. Exp. 3 aimed to determine the usefulness of in vitro homologous/heterologous fertilization tests as tools for predicting ram fertility. Exp. 4 was conducted to verify if the identified differences between the 2 extenders could be confirmed by field fertility. E1 showed a better cryoprotective action expressed by higher in vitro and field fertility results. In conclusion, EY is difficult to be replaced in ram semen extenders. Heterologous fertilization seems to be a useful tool for predicting fertility of FT ram semen.

  12. Preference of redear sunfish on zebra mussels and rams-horn snails

    USGS Publications Warehouse

    French, John R. P.; Morgan, Michael N.

    1995-01-01

    We tested prey preferences of adult (200- to 222-mm long) redear sunfish (Lepomis microlophus) on two size classes of zebra mussels (Dreissena polymorpha) and two-ridge rams-horns (Helisoma anceps) in experimental aquaria. We also tested physical limitations on consuming these mollusks and determined prey bioenergetic profitability. Redear sunfish strongly preferred rams-horns over zebra mussels, but they displayed no size preference for either prey. Ingestion was not physically limited since both prey species up to 15-mm long fit within the pharyngeal gapes of redear sunfish. Rams-horns were more bioenergetically profitable than zebra mussels and ingestion of rams-horn shell fragments was about three times less than zebra mussels. Rams-horns were somewhat more resistant to shell-crushing, but all size ranges of both prey species tested were crushable by redear sunfish. These studies suggested that the redear sunfish should not be considered a panacea for biological control of zebra mussels.

  13. NGC 3312: A victim of ram pressure sweeping

    NASA Technical Reports Server (NTRS)

    Mcmahon, P. M.; Richter, O.-G.; Vangorkom, Jacqueline H.; Ferguson, H. C.

    1990-01-01

    Researchers are undertaking a volume limited survey of the Hydra I cluster in neutral hydrogen using the National Radio Astronomy Observatory's Very Large Array (VLA). The main purpose is to study the effects of a dense environment on the gaseous component of the galaxies. Observational evidence has been accumulating recently that ram pressure sweeping does occur in the centers of clusters, but it is possible that tidal interactions play a role as well. Results of high resolution HI imaging of NGC 3312, the large peculiar spiral near the cluster center are presented. Hydra I (= A1060) is the nearest rich cluster beyond Virgo and, as such, presents a unique opportunity to do a complete survey of a cluster. It is similar to the Virgo cluster in many of its general physical characteristics, such as size, x ray luminosity, velocity dispersion, and galaxy content (high spiral fraction). However, Hydra I appears to be more regular and relaxed. This is evident in the x ray distribution in its central region, which is radially symmetric and centered on the dominant galaxy, NGC 3311, a cD-like elliptical. The observed x ray luminosity implies a central gas density of 4.5 x 10 to the 3rd power cm(-3). Gallagher (1978) argued from optical images of NGC 3312 that this galaxy might be an ideal candidate to directly study effects of the ram pressure process; it might currently be undergoing stripping of its interstellar medium. The researchers' data are consistent with this suggestion, but other origins of the peculiar appearance cannot yet be ruled out.

  14. Parallel finite element simulation of large ram-air parachutes

    NASA Astrophysics Data System (ADS)

    Kalro, V.; Aliabadi, S.; Garrard, W.; Tezduyar, T.; Mittal, S.; Stein, K.

    1997-06-01

    In the near future, large ram-air parachutes are expected to provide the capability of delivering 21 ton payloads from altitudes as high as 25,000 ft. In development and test and evaluation of these parachutes the size of the parachute needed and the deployment stages involved make high-performance computing (HPC) simulations a desirable alternative to costly airdrop tests. Although computational simulations based on realistic, 3D, time-dependent models will continue to be a major computational challenge, advanced finite element simulation techniques recently developed for this purpose and the execution of these techniques on HPC platforms are significant steps in the direction to meet this challenge. In this paper, two approaches for analysis of the inflation and gliding of ram-air parachutes are presented. In one of the approaches the point mass flight mechanics equations are solved with the time-varying drag and lift areas obtained from empirical data. This approach is limited to parachutes with similar configurations to those for which data are available. The other approach is 3D finite element computations based on the Navier-Stokes equations governing the airflow around the parachute canopy and Newtons law of motion governing the 3D dynamics of the canopy, with the forces acting on the canopy calculated from the simulated flow field. At the earlier stages of canopy inflation the parachute is modelled as an expanding box, whereas at the later stages, as it expands, the box transforms to a parafoil and glides. These finite element computations are carried out on the massively parallel supercomputers CRAY T3D and Thinking Machines CM-5, typically with millions of coupled, non-linear finite element equations solved simultaneously at every time step or pseudo-time step of the simulation.

  15. Simulating lightning into the RAMS model: two case studies

    NASA Astrophysics Data System (ADS)

    Federico, Stefano; Avolio, Elenio; Petracca, Marco; Panegrossi, Giulia; Dietrich, Stefano

    2013-04-01

    In this paper we show the results of the implementation of a tailored version of a methodology already presented in the bibliography to simulate flashes into the Regional Atmospheric Modeling System (RAMS). The method gives the flash rate for each thundercloud, which is detected by a labelling algorithm applied to the output of RAMS. The flash rate is computed by assuming a plane capacitor model, which is charged by the non-inductive graupel-ice charge separation mechanism and is discharged by lightning. The method explicitly considers the charging zone and uses the geometry of the graupel field to redistribute the flashes. An important feature of the method is that it gives the position and time of occurrence of each flash, allowing for a detailed and comprehensive display of the lightning activity during the simulation period. The method is applied to two case studies occurred over the Lazio Region, in central Italy. Simulations are compared with the lightning detected by the LINET network. The cases refer to a thunderstorm characterized by an intense lightning activity (up to 2800 flashes per hour over the Lazio Region), and a moderate thunderstorm (up to 1600 flashes per hour over the same domain). The results show that the model is able to catch the main features of both storms and their relative differences. This feature is promising because the method is computationally fast and gives a tool to the forecaster to predict the lightning threat. Nevertheless there are errors in timing (O(3h)) and positioning (O(100km)) of the convection, which mirrors in timing and position errors of the lightning distribution. These model shortcomings presently limit the use of the lightning forecast; nevertheless the method can take advantages of future development of the model physics, initialization techniques, and ensemble forecast. A useful application of the method in an ensemble forecast is already suggested.

  16. Design of a ram accelerator mass launch system

    NASA Technical Reports Server (NTRS)

    Aarnio, Michael; Armerding, Calvin; Berschauer, Andrew; Christofferson, Erik; Clement, Paul; Gohd, Robin; Neely, Bret; Reed, David; Rodriguez, Carlos; Swanstrom, Fredrick

    1988-01-01

    The ram accelerator mass launch system has been proposed to greatly reduce the costs of placing acceleration-insensitive payloads into low earth orbit. The ram accelerator is a chemically propelled, impulsive mass launch system capable of efficiently accelerating relatively large masses from velocities of 0.7 km/sec to 10 km/sec. The principles of propulsion are based on those of a conventional supersonic air-breathing ramjet; however the device operates in a somewhat different manner. The payload carrying vehicle resembles the center-body of the ramjet and accelerates through a stationary tube which acts as the outer cowling. The tube is filled with premixed gaseous fuel and oxidizer mixtures that burn in the vicinity of the vehicle's base, producing a thrust which accelerates the vehicle through the tube. This study examines the requirement for placing a 2000 kg vehicle into a 500 km circular orbit with a minimum amount of on-board rocket propellant for orbital maneuvers. The goal is to achieve a 50 pct payload mass fraction. The proposed design requirements have several self-imposed constraints that define the vehicle and tube configurations. Structural considerations on the vehicle and tube wall dictate an upper acceleration limit of 1000 g's and a tube inside diameter of 1.0 m. In-tube propulsive requirements and vehicle structural constraints result in a vehicle diameter of 0.76 m, a total length of 7.5 m and a nose-cone half angle of 7 degrees. An ablating nose-cone constructed from carbon-carbon composite serves as the thermal protection mechanism for atmospheric transit.

  17. Effects of ram speed on prey capture kinematics of juvenile Indo-Pacific tarpon, Megalops cyprinoides.

    PubMed

    Tran, Hoang Q; Mehta, Rita S; Wainwright, Peter C

    2010-03-01

    We examined the effects of variation in swimming speed, or 'ram speed', on the feeding kinematics of juvenile Indo-Pacific tarpon, Megalops cyprinoides. Tarpon were filmed feeding on non-elusive prey at 500 images s(-1). Prey items were offered at one end of the filming tank, the opposite end where tarpon grouped, to encourage them to use a ram strategy to capture their prey. We describe tarpon as ram-suction feeders. Ram speed varied among strikes from 0.19 to 1.38 m/s and each individual produced speeds that spanned at least 0.9 m/s across trials. Although suction distances were much less variable, prey movement towards the predator was present in all feeding trials. There was a strong positive relationship between initial predator - prey distance and ram speed (r(2)=0.72, P<0.001). When tarpon initiated their strike from further away, they achieved higher ram speeds, but also took longer to capture their prey. All other timing variables were unaffected by ram speed whereas at higher ram speeds tarpon exhibited greater expansion of the mouth and buccal cavity. Greater buccal expansion accomplished in the same period of time implies that both the total volume of water captured and the water flow rate entering the mouth was greater in strikes at higher ram speeds. Our results demonstrate how feeding kinematics may vary as a function of ram speed, and how fish predators that lack jaw protrusion and have a large gape capacity can maximize their feeding success by altering their swimming speed. PMID:20188531

  18. Testicular and epididymal pathology in Yankasa rams experimentally infected with Trypanosoma congolense

    PubMed Central

    Okubanjo, Oluyinka O; Sekoni, Victor O; Ajanusi, Ologunja J; Nok, Andrew J; Adeyeye, Adewale A

    2014-01-01

    Objective To investigate the pathological effect of experimental Trypanosoma congolense (T. congolense) infection on the testes and epididymis of Yankasa rams. Methods Nine intact un-castrated rams were obtained and divided into 2 groups of 6 infected with 1×106 T. congolense and 3 uninfected controls. Four infected and one uninfected control rams were sacrificed on Day 75 post infection and the remaining four rams (two each of infected and control groups) on Day 86 post infection. Results All infected rams became parasitaemic within 7-11 days post infection with clinical trypanosomosis characterized by peri-orbital oedema and a transient period of scrotal oedema, this was followed by progressive decrease in scrotal size. At postmortem, the organs from infected rams were pale and emaciated but no observable lesion was seen in the uninfected control group. At histology, the testes showed areas of necrosis on the interstitial tissue characterized by destruction of cellular structures within the tissues and seminiferous tubules. There was moderate to severe testicular degeneration manifested by loss of tissue architecture and infiltration with macrophages, neutrophils, lymphocytes and plasma cells. Fibrous connective tissues were also seen in the testes of the infected rams indicative of replacement of normal cells by fibrous connective tissue. The epididymis of the infected rams had collection of some spermatocytes and desquamated epithelial cells in the epithelial ducts although others were devoid of spermatocytes in their ducts leading to loss of epididymal sperm reserves. However, these were not seen in the uninfected control rams. Conclusions T. congolense causes testicular and epididymal damage which may render the rams infertile or sterile.

  19. Fabrication of THz Sensor with Metamaterial Absorber

    NASA Astrophysics Data System (ADS)

    Gonzalez, Hugo; Alves, Fabio; Karunasiri, Gamani

    The terahertz (THz) portion of the electromagnetic spectrum (0.1-10 THz) has not been fully utilized due to the lack of sensitive detectors. Real-time imaging in this spectral range has been demonstrated using uncooled infrared microbolometer cameras and external illumination provided by quantum cascade laser (QCL) based THz sources. However, the microbolometer pixels in the cameras have not been optimized to achieve high sensitivity in THz frequencies. Recently, we have developed a highly sensitive micromechanical THz sensor employing bi-material effect with an integrated metamaterial absorber tuned to the THz frequency of interest. The use of bi-material structures causes deflection on the sensor to as the absorbed THz radiation increases its temperature, which can be monitored optically by reflecting a light beam. This approach eliminates the integration of readout electronics needed in microbolometers. The absorption of THz by metamaterial can be tailored by controlling geometrical parameters. The sensors can be fabricated using conventional microelectronic materials and incorporated into pixels to form focal plane arrays (FPAs). In this presentation, characterization and readout of a THz sensor with integrated metamaterial structure will be described. Supported by DoD.

  20. A novel broadband waterborne acoustic absorber

    NASA Astrophysics Data System (ADS)

    Wang, Changxian; Wen, Weibin; Huang, Yixing; Chen, Mingji; Lei, Hongshuai; Fang, Daining

    2016-07-01

    In this paper, we extended the ray tracing theory in polar coordinate system, and originally proposed the Snell-Descartes law in polar coordinates. Based on these theories, a novel broadband waterborne acoustic absorber device was proposed. This device is designed with gradient-distributing materials along radius, which makes the incidence acoustic wave ray warps. The echo reduction effects of this device were investigated by finite element analysis, and the numerical results show that the reflectivity of acoustic wave for the new device is lower than that of homogenous and Alberich layers in almost all frequency 0-30 kHz at the same loss factor.

  1. Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces.

    PubMed

    Petoukhoff, Christopher E; O'Carroll, Deirdre M

    2015-01-01

    Interactions between absorbers and plasmonic metasurfaces can give rise to unique optical properties not present for either of the individual materials and can influence the performance of a host of optical sensing and thin-film optoelectronic applications. Here we identify three distinct mode types of absorber-coated plasmonic metasurfaces: localized and propagating surface plasmons and a previously unidentified optical mode type called absorption-induced scattering. The extinction of the latter mode type can be tuned by controlling the morphology of the absorber coating and the spectral overlap of the absorber with the plasmonic modes. Furthermore, we show that surface plasmons are backscattered when the crystallinity of the absorber is low but are absorbed for more crystalline absorber coatings. This work furthers our understanding of light-matter interactions between absorbers and surface plasmons to enable practical optoelectronic applications of metasurfaces.

  2. Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces

    PubMed Central

    Petoukhoff, Christopher E.; O'Carroll, Deirdre M.

    2015-01-01

    Interactions between absorbers and plasmonic metasurfaces can give rise to unique optical properties not present for either of the individual materials and can influence the performance of a host of optical sensing and thin-film optoelectronic applications. Here we identify three distinct mode types of absorber-coated plasmonic metasurfaces: localized and propagating surface plasmons and a previously unidentified optical mode type called absorption-induced scattering. The extinction of the latter mode type can be tuned by controlling the morphology of the absorber coating and the spectral overlap of the absorber with the plasmonic modes. Furthermore, we show that surface plasmons are backscattered when the crystallinity of the absorber is low but are absorbed for more crystalline absorber coatings. This work furthers our understanding of light–matter interactions between absorbers and surface plasmons to enable practical optoelectronic applications of metasurfaces. PMID:26271900

  3. Simulation, fabrication and characterization of THz metamaterial absorbers.

    PubMed

    Grant, James P; McCrindle, Iain J H; Cumming, David R S

    2012-12-27

    Metamaterials (MM), artificial materials engineered to have properties that may not be found in nature, have been widely explored since the first theoretical(1) and experimental demonstration(2) of their unique properties. MMs can provide a highly controllable electromagnetic response, and to date have been demonstrated in every technologically relevant spectral range including the optical(3), near IR(4), mid IR(5) , THz(6) , mm-wave(7) , microwave(8) and radio(9) bands. Applications include perfect lenses(10), sensors(11), telecommunications(12), invisibility cloaks(13) and filters(14,15). We have recently developed single band(16), dual band(17) and broadband(18) THz metamaterial absorber devices capable of greater than 80% absorption at the resonance peak. The concept of a MM absorber is especially important at THz frequencies where it is difficult to find strong frequency selective THz absorbers(19). In our MM absorber the THz radiation is absorbed in a thickness of ~ λ/20, overcoming the thickness limitation of traditional quarter wavelength absorbers. MM absorbers naturally lend themselves to THz detection applications, such as thermal sensors, and if integrated with suitable THz sources (e.g. QCLs), could lead to compact, highly sensitive, low cost, real time THz imaging systems.

  4. Simulation, Fabrication and Characterization of THz Metamaterial Absorbers

    PubMed Central

    Grant, James P.; McCrindle, Iain J.H.; Cumming, David R.S.

    2012-01-01

    Metamaterials (MM), artificial materials engineered to have properties that may not be found in nature, have been widely explored since the first theoretical1 and experimental demonstration2 of their unique properties. MMs can provide a highly controllable electromagnetic response, and to date have been demonstrated in every technologically relevant spectral range including the optical3, near IR4, mid IR5 , THz6 , mm-wave7 , microwave8 and radio9 bands. Applications include perfect lenses10, sensors11, telecommunications12, invisibility cloaks13 and filters14,15. We have recently developed single band16, dual band17 and broadband18 THz metamaterial absorber devices capable of greater than 80% absorption at the resonance peak. The concept of a MM absorber is especially important at THz frequencies where it is difficult to find strong frequency selective THz absorbers19. In our MM absorber the THz radiation is absorbed in a thickness of ~ λ/20, overcoming the thickness limitation of traditional quarter wavelength absorbers. MM absorbers naturally lend themselves to THz detection applications, such as thermal sensors, and if integrated with suitable THz sources (e.g. QCLs), could lead to compact, highly sensitive, low cost, real time THz imaging systems. PMID:23299442

  5. Practical multi-featured perfect absorber utilizing high conductivity silicon

    NASA Astrophysics Data System (ADS)

    Gok, Abdullah; Yilmaz, Mehmet; Bıyıklı, Necmi; Topallı, Kağan; Okyay, Ali K.

    2016-03-01

    We designed all-silicon, multi-featured band-selective perfect absorbing surfaces based on CMOS compatible processes. The center wavelength of the band-selective absorber can be varied between 2 and 22 μm while a bandwidth as high as 2.5 μm is demonstrated. We used a silicon-on-insulator (SOI) wafer which consists of n-type silicon (Si) device layer, silicon dioxide (SiO2) as buried oxide layer, and n-type Si handle layer. The center wavelength and bandwidth can be tuned by adjusting the conductivity of the Si device and handle layers as well as the thicknesses of the device and buried oxide layers. We demonstrate proof-of-concept absorber surfaces experimentally. Such absorber surfaces are easy to microfabricate because the absorbers do not require elaborate microfabrication steps such as patterning. Due to the structural simplicity, low-cost fabrication, wide spectrum range of operation, and band properties of the perfect absorber, the proposed multi-featured perfect absorber surfaces are promising for many applications. These include sensing devices, surface enhanced infrared absorption applications, solar cells, meta-materials, frequency selective sensors and modulators.

  6. Simulation, fabrication and characterization of THz metamaterial absorbers.

    PubMed

    Grant, James P; McCrindle, Iain J H; Cumming, David R S

    2012-01-01

    Metamaterials (MM), artificial materials engineered to have properties that may not be found in nature, have been widely explored since the first theoretical(1) and experimental demonstration(2) of their unique properties. MMs can provide a highly controllable electromagnetic response, and to date have been demonstrated in every technologically relevant spectral range including the optical(3), near IR(4), mid IR(5) , THz(6) , mm-wave(7) , microwave(8) and radio(9) bands. Applications include perfect lenses(10), sensors(11), telecommunications(12), invisibility cloaks(13) and filters(14,15). We have recently developed single band(16), dual band(17) and broadband(18) THz metamaterial absorber devices capable of greater than 80% absorption at the resonance peak. The concept of a MM absorber is especially important at THz frequencies where it is difficult to find strong frequency selective THz absorbers(19). In our MM absorber the THz radiation is absorbed in a thickness of ~ λ/20, overcoming the thickness limitation of traditional quarter wavelength absorbers. MM absorbers naturally lend themselves to THz detection applications, such as thermal sensors, and if integrated with suitable THz sources (e.g. QCLs), could lead to compact, highly sensitive, low cost, real time THz imaging systems. PMID:23299442

  7. Waveform-Dependent Absorbing Metasurfaces

    NASA Astrophysics Data System (ADS)

    Wakatsuchi, Hiroki; Kim, Sanghoon; Rushton, Jeremiah J.; Sievenpiper, Daniel F.

    2013-12-01

    We present the first use of a waveform-dependent absorbing metasurface for high-power pulsed surface currents. The new type of nonlinear metasurface, composed of circuit elements including diodes, is capable of storing high-power pulse energy to dissipate it between pulses, while allowing propagation of small signals. Interestingly, the absorbing performance varies for high-power pulses but not for high-power continuous waves (CW’s), since the capacitors used are fully charged up. Thus, the waveform dependence enables us to distinguish various signal types (i.e., CW or pulse) even at the same frequency, which potentially creates new kinds of microwave technologies and applications.

  8. Recent developments of smart electromagnetic absorbers based polymer-composites at gigahertz frequencies

    NASA Astrophysics Data System (ADS)

    Idris, Fadzidah Mohd.; Hashim, Mansor; Abbas, Zulkifly; Ismail, Ismayadi; Nazlan, Rodziah; Ibrahim, Idza Riati

    2016-05-01

    The rapid increase in electromagnetic interference has received a serious attention from researchers who responded by producing a variety of radar absorbing materials especially at high gigahertz frequencies. Ongoing investigation is being carried out in order to find the best absorbing materials which can fulfill the requirements for smart absorbing materials which are lightweight, broad bandwidth absorption, stronger absorption etc. Thus, to improve the absorbing capability, several important parameters need to be taken into consideration such as filler type, loading level, type of polymer matrix, physical thickness, grain sizes, layers and bandwidth. Therefore, this article introduces the electromagnetic wave absorption mechanisms and then reveals and reviews those parameters that enhance the absorption performance.

  9. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets

    PubMed Central

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-01-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet–height and diameter– and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials. PMID:26354891

  10. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets

    NASA Astrophysics Data System (ADS)

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, Youngpak

    2015-09-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  11. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.

    PubMed

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-01-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  12. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.

    PubMed

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-01-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials. PMID:26354891

  13. Process for separating and/or recovering hydrocarbon oils from water using biodegradable absorbent sponges

    SciTech Connect

    Mueller, M.B.; Mareau, K.J.

    1991-08-13

    This patent describes an improved process for absorbing oils selected from the group consisting of hydrocarbon oils and hydrocarbon fuels. It comprises the step of contacting the oils with an absorbent oleophilic biodegradable sponge material comprised of at least one essentially fat free, foamed, biodegradable natural product selected from the group consisting of animal proteins and plant polymaccharides, which material is capable of absorbing at least about thirty times its weight of oils.

  14. Oil and fat absorbing polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A method is described for forming a solid network polymer having a minimal amount of crosslinking for use in absorbing fats and oils. The polymer remains solid at a swelling ratio in oil or fat of at least ten and provides an oil absorption greater than 900 weight percent.

  15. Counterflow absorber for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    An air-cooled, vertical tube absorber for an absorption refrigeration system is disclosed. Strong absorbent solution is supplied to the top of the absorber and refrigerant vapor is supplied to the bottom of the absorber to create a direct counterflow of refrigerant vapor and absorbent solution in the absorber. The refrigeration system is designed so that the volume flow rate of refrigerant vapor in the tubes of the absorber is sufficient to create a substantially direct counterflow along the entire length of each tube in the absorber. This provides several advantages for the absorber such as higher efficiency and improved heat transfer characteristics, and allows improved purging of non-condensibles from the absorber.

  16. Design of wide bandwidth pyramidal microwave absorbers using ferrite composites with broad magnetic loss spectra

    NASA Astrophysics Data System (ADS)

    Park, Myung-Jun; Kim, Sung-Soo

    2016-09-01

    Wide bandwidth microwave absorbers with a pyramidal shape and a significantly reduced thickness can be designed using high lossy ferrite materials with broad magnetic loss spectra. The microwave absorbing properties of pyramidal cone absorbers are analyzed using the transmission line approximation, which provides the reflection loss as a function of the material parameters and absorber geometry. Three types of ferrite materials (NiZn spinel ferrite, Co2Z hexaferrite, and RuCoM hexaferrite) are used as the absorbent fillers in a rubber matrix. Among these, Co2Z ferrite is the most suitable material for wide bandwidth pyramidal absorbers, due to its broad magnetic loss spectrum in the GHz frequency range. The optimal geometry of the pyramidal absorber is also determined using the transmission line theory. With the reduced total height of the pyramidal absorber (approximately 60 mm), a wide bandwidth (1.5-18 GHz with respect to the -20 dB reflection loss) can be realized. The proposed absorbers have a thickness advantage over the classical pyramidal ohmic absorbers; thus, they are suitable for small and semi-anechoic chambers.

  17. Design of wide bandwidth pyramidal microwave absorbers using ferrite composites with broad magnetic loss spectra

    NASA Astrophysics Data System (ADS)

    Park, Myung-Jun; Kim, Sung-Soo

    2016-07-01

    Wide bandwidth microwave absorbers with a pyramidal shape and a significantly reduced thickness can be designed using high lossy ferrite materials with broad magnetic loss spectra. The microwave absorbing properties of pyramidal cone absorbers are analyzed using the transmission line approximation, which provides the reflection loss as a function of the material parameters and absorber geometry. Three types of ferrite materials (NiZn spinel ferrite, Co2Z hexaferrite, and RuCoM hexaferrite) are used as the absorbent fillers in a rubber matrix. Among these, Co2Z ferrite is the most suitable material for wide bandwidth pyramidal absorbers, due to its broad magnetic loss spectrum in the GHz frequency range. The optimal geometry of the pyramidal absorber is also determined using the transmission line theory. With the reduced total height of the pyramidal absorber (approximately 60 mm), a wide bandwidth (1.5-18 GHz with respect to the -20 dB reflection loss) can be realized. The proposed absorbers have a thickness advantage over the classical pyramidal ohmic absorbers; thus, they are suitable for small and semi-anechoic chambers.

  18. The Magellanic Stream System. I. Ram-Pressure Tails and the Relics of the Collision Between the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Hammer, F.; Yang, Y. B.; Flores, H.; Puech, M.; Fouquet, S.

    2015-11-01

    We have analyzed the Magellanic Stream (MS) using the deepest and the most resolved H i survey of the Southern Hemisphere (the Galactic All-Sky Survey). The overall Stream is structured into two filaments, suggesting two ram-pressure tails lagging behind the Magellanic Clouds (MCs), and resembling two close, transonic, von Karman vortex streets. The past motions of the Clouds appear imprinted in them, implying almost parallel initial orbits, and then a radical change after their passage near the N(H i) peak of the MS. This is consistent with a recent collision between the MCs, 200–300 Myr ago, which has stripped their gas further into small clouds, spreading them out along a gigantic bow shock, perpendicular to the MS. The Stream is formed by the interplay between stellar feedback and the ram pressure exerted by hot gas in the Milky Way (MW) halo with n h = 10‑4 cm‑3 at 50–70 kpc, a value necessary to explain the MS multiphase high-velocity clouds. The corresponding hydrodynamic modeling provides the currently most accurate reproduction of the whole H i Stream morphology, of its velocity, and column density profiles along L MS. The “ram pressure plus collision” scenario requires tidal dwarf galaxies, which are assumed to be the Cloud and dSph progenitors, to have left imprints in the MS and the Leading Arm, respectively. The simulated LMC and SMC have baryonic mass, kinematics, and proper motions consistent with observations. This supports a novel paradigm for the MS System, which could have its origin in material expelled toward the MW by the ancient gas-rich merger that formed M31.

  19. Hubble space telescope imaging of decoupled dust clouds in the ram pressure stripped Virgo spirals NGC 4402 and NGC 4522

    SciTech Connect

    Abramson, Anne; Kenney, Jeffrey D. P. E-mail: jeff.kenney@yale.edu

    2014-03-01

    We present the highest-resolution study to date of the interstellar medium (ISM) in galaxies undergoing ram pressure stripping, using Hubble Space Telescope BVI imaging of NGC 4522 and NGC 4402, Virgo Cluster spirals that are well known to be experiencing intracluster medium (ICM) ram pressure. We find that throughout most of both galaxies, the main dust lane has a fairly well-defined edge, with a population of giant molecular cloud (GMC) sized (tens- to hundreds-of-pc scale), isolated, highly extincting dust clouds located up to ∼1.5 kpc radially beyond it. Outside of these dense clouds, the area has little or no diffuse dust extinction, indicating that the clouds have decoupled from the lower-density ISM material that has already been stripped. Several of the dust clouds have elongated morphologies that indicate active ram pressure, including two large (kpc scale) filaments in NGC 4402 that are elongated in the projected ICM wind direction. We calculate a lower limit on the H I + H{sub 2} masses of these clouds based on their dust extinctions and find that a correction factor of ∼10 gives cloud masses consistent with those measured in CO for clouds of similar diameters, probably due to the complicating factors of foreground light, cloud substructure, and resolution limitations. Assuming that the clouds' actual masses are consistent with those of GMCs of similar diameters (∼10{sup 4}-10{sup 5} M {sub ☉}), we estimate that only a small fraction (∼1%-10%) of the original H I + H{sub 2} remains in the parts of the disks with decoupled clouds. Based on Hα images, a similar fraction of star formation persists in these regions, 2%-3% of the estimated pre-stripping star formation rate. We find that the decoupled cloud lifetimes may be up to 150-200 Myr.

  20. Protective effect of silymarin on viability, motility and mitochondrial membrane potential of ram sperm treated with sodium arsenite

    PubMed Central

    Eskandari, Farzaneh; Momeni, Hamid Reza

    2016-01-01

    Background: Sodium arsenite can impair male reproductive function by inducing oxidative stress. Silymarin is known as a potent antioxidant. Objective: This study was performed to investigate if silymarin can prevent the adverse effect of sodium arsenite on ram sperm viability, motility and mitochondrial membrane potential. Materials and Methods: Epidydimal spermatozoa obtained from ram were divided into five groups: 1) Spermatozoa at 0 hr, 2) spermatozoa at 180 min (control), 3) spermatozoa treated with sodium arsenite (10 μM) for 180 min, 4) spermatozoa treated with silymarin (20 μM) + sodium arsenite (10 μM) for 180 min and 5) spermatozoa treated with silymarin (20 μM) for 180 min. MTT assay and Rhodamine 123 staining were used to assess sperm viability and mitochondrial membrane potential respectively. Sperm motility was performed according to World Health Organization (WHO) guidelines. Results: Viability (p<0.01), nonprogressive motility (p<0.001) and intact mitochondrial membrane potential (p<0.001) of the spermatozoa were significantly decreased in sodium arsenite treated group compared to control group. In silymarin + sodium arsenite group, silymarin could significantly reverse the adverse effect of sodium arsenite on these sperm parameters compared to sodium arsenite group (p<0.001). In addition, the application of silymarin alone for 180 minutes could significantly increase progressively motile sperm (p<0.001) and decrease non motile sperm (p<0.01) compared to the control. Conclusion: Silymarin could compensate the adverse effect of sodium arsenite on viability, nonprogressive motility and mitochondrial membrane potential of ram sperm. PMID:27525323

  1. THE MAGELLANIC STREAM SYSTEM. I. RAM-PRESSURE TAILS AND THE RELICS OF THE COLLISION BETWEEN THE MAGELLANIC CLOUDS

    SciTech Connect

    Hammer, F.; Yang, Y. B.; Flores, H.; Puech, M.; Fouquet, S.

    2015-11-10

    We have analyzed the Magellanic Stream (MS) using the deepest and the most resolved H i survey of the Southern Hemisphere (the Galactic All-Sky Survey). The overall Stream is structured into two filaments, suggesting two ram-pressure tails lagging behind the Magellanic Clouds (MCs), and resembling two close, transonic, von Karman vortex streets. The past motions of the Clouds appear imprinted in them, implying almost parallel initial orbits, and then a radical change after their passage near the N(H i) peak of the MS. This is consistent with a recent collision between the MCs, 200–300 Myr ago, which has stripped their gas further into small clouds, spreading them out along a gigantic bow shock, perpendicular to the MS. The Stream is formed by the interplay between stellar feedback and the ram pressure exerted by hot gas in the Milky Way (MW) halo with n{sub h} = 10{sup −4} cm{sup −3} at 50–70 kpc, a value necessary to explain the MS multiphase high-velocity clouds. The corresponding hydrodynamic modeling provides the currently most accurate reproduction of the whole H i Stream morphology, of its velocity, and column density profiles along L{sub MS}. The “ram pressure plus collision” scenario requires tidal dwarf galaxies, which are assumed to be the Cloud and dSph progenitors, to have left imprints in the MS and the Leading Arm, respectively. The simulated LMC and SMC have baryonic mass, kinematics, and proper motions consistent with observations. This supports a novel paradigm for the MS System, which could have its origin in material expelled toward the MW by the ancient gas-rich merger that formed M31.

  2. The Magellanic Stream System. I. Ram-Pressure Tails and the Relics of the Collision Between the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Hammer, F.; Yang, Y. B.; Flores, H.; Puech, M.; Fouquet, S.

    2015-11-01

    We have analyzed the Magellanic Stream (MS) using the deepest and the most resolved H i survey of the Southern Hemisphere (the Galactic All-Sky Survey). The overall Stream is structured into two filaments, suggesting two ram-pressure tails lagging behind the Magellanic Clouds (MCs), and resembling two close, transonic, von Karman vortex streets. The past motions of the Clouds appear imprinted in them, implying almost parallel initial orbits, and then a radical change after their passage near the N(H i) peak of the MS. This is consistent with a recent collision between the MCs, 200-300 Myr ago, which has stripped their gas further into small clouds, spreading them out along a gigantic bow shock, perpendicular to the MS. The Stream is formed by the interplay between stellar feedback and the ram pressure exerted by hot gas in the Milky Way (MW) halo with n h = 10-4 cm-3 at 50-70 kpc, a value necessary to explain the MS multiphase high-velocity clouds. The corresponding hydrodynamic modeling provides the currently most accurate reproduction of the whole H i Stream morphology, of its velocity, and column density profiles along L MS. The “ram pressure plus collision” scenario requires tidal dwarf galaxies, which are assumed to be the Cloud and dSph progenitors, to have left imprints in the MS and the Leading Arm, respectively. The simulated LMC and SMC have baryonic mass, kinematics, and proper motions consistent with observations. This supports a novel paradigm for the MS System, which could have its origin in material expelled toward the MW by the ancient gas-rich merger that formed M31.

  3. Parallel-Plate Acoustic Absorbers For Hot Environments

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph; Parrot, Tony L.

    1995-01-01

    Stacking patterns and materials chosen to suppress noise. Acoustic liners incorporating parallel-plate absorbing elements proposed for use in suppressing broadband aerodynamic noise originating in flows of hot gases in ducts. One potential application lies in suppressing noise generated in exhaust-jet mixer/ejectors in propulsion system of proposed High-Speed Civil Transport. In addition, such absorbers useful in any situation in which high temperature limits use of such conventional resonant acoustic-liner materials as perforated face sheets bonded to honey-comb-core panels.

  4. The "Ram Effect": A "Non-Classical" Mechanism for Inducing LH Surges in Sheep.

    PubMed

    Fabre-Nys, Claude; Chanvallon, Audrey; Dupont, Joëlle; Lardic, Lionel; Lomet, Didier; Martinet, Stéphanie; Scaramuzzi, Rex J

    2016-01-01

    During spring sheep do not normally ovulate but exposure to a ram can induce ovulation. In some ewes an LH surge is induced immediately after exposure to a ram thus raising questions about the control of this precocious LH surge. Our first aim was to determine the plasma concentrations of oestradiol (E2) E2 in anoestrous ewes before and after the "ram effect" in ewes that had a "precocious" LH surge (starting within 6 hours), a "normal" surge (between 6 and 28h) and "late» surge (not detected by 56h). In another experiment we tested if a small increase in circulating E2 could induce an LH surge in anoestrus ewes. The concentration of E2 significantly was not different at the time of ram introduction among ewes with the three types of LH surge. "Precocious" LH surges were not preceded by a large increase in E2 unlike "normal" surges and small elevations of circulating E2 alone were unable to induce LH surges. These results show that the "precocious" LH surge was not the result of E2 positive feedback. Our second aim was to test if noradrenaline (NA) is involved in the LH response to the "ram effect". Using double labelling for Fos and tyrosine hydroxylase (TH) we showed that exposure of anoestrous ewes to a ram induced a higher density of cells positive for both in the A1 nucleus and the Locus Coeruleus complex compared to unstimulated controls. Finally, the administration by retrodialysis into the preoptic area, of NA increased the proportion of ewes with an LH response to ram odor whereas treatment with the α1 antagonist Prazosin decreased the LH pulse frequency and amplitude induced by a sexually active ram. Collectively these results suggest that in anoestrous ewes NA is involved in ram-induced LH secretion as observed in other induced ovulators. PMID:27384667

  5. Heart rate patterns during courtship and mating in rams and in estrous and nonestrous ewes ().

    PubMed

    Orihuela, A; Omaña, J C; Ungerfeld, R

    2016-02-01

    The aim of this study was to compare the heart rate (HR) patterns in rams mated with estrous or nonestrous ewes and in mated estrous and nonestrous ewes () during courtship and mating. For this purpose, HR and behavior were recorded using a radio telemetry recording system and a closed-circuit television system with video recording, respectively. Rams were joined with either an estrous ( = 10) or a nonestrous ( = 10) ewe that was restrained in a stanchion by the neck. Data were continuously recorded until each ram performed 3 ejaculations. Eight days later, the HR of the 10 estrous and 10 nonestrous ewes was recorded during mating. Although the time between entrance into the yard and the first ejaculation was similar across rams, rams that mounted estrous ewes were faster at attaining their second (3min5s ± 17 s vs. 5min28s ± 18 s) and third (7min58s ± 45 s vs. 12 min ± 1min14s) ejaculations (all < 0.05). By contrast, no differences in HR were observed between rams that interacted with estrous versus nonestrous ewes. In all cases, HR reached maximum values immediately after each ejaculation and the HR pattern was similar across ejaculations (first, second, and third). Although HR was similar between estrous and nonestrous ewes before mating, nonestrous ewes had higher HR ( < 0.05) during mating. In summary, 1) rams that mated estrous ewes displayed shorter interejaculation periods but HR did not differ between groups of rams during any ejaculation (first, second, or third), 2) HR for both groups of rams peaked shortly after each ejaculation, and 3) HR increased more in nonestrous than in estrous ewes while mating. PMID:27065125

  6. The "Ram Effect": A "Non-Classical" Mechanism for Inducing LH Surges in Sheep.

    PubMed

    Fabre-Nys, Claude; Chanvallon, Audrey; Dupont, Joëlle; Lardic, Lionel; Lomet, Didier; Martinet, Stéphanie; Scaramuzzi, Rex J

    2016-01-01

    During spring sheep do not normally ovulate but exposure to a ram can induce ovulation. In some ewes an LH surge is induced immediately after exposure to a ram thus raising questions about the control of this precocious LH surge. Our first aim was to determine the plasma concentrations of oestradiol (E2) E2 in anoestrous ewes before and after the "ram effect" in ewes that had a "precocious" LH surge (starting within 6 hours), a "normal" surge (between 6 and 28h) and "late» surge (not detected by 56h). In another experiment we tested if a small increase in circulating E2 could induce an LH surge in anoestrus ewes. The concentration of E2 significantly was not different at the time of ram introduction among ewes with the three types of LH surge. "Precocious" LH surges were not preceded by a large increase in E2 unlike "normal" surges and small elevations of circulating E2 alone were unable to induce LH surges. These results show that the "precocious" LH surge was not the result of E2 positive feedback. Our second aim was to test if noradrenaline (NA) is involved in the LH response to the "ram effect". Using double labelling for Fos and tyrosine hydroxylase (TH) we showed that exposure of anoestrous ewes to a ram induced a higher density of cells positive for both in the A1 nucleus and the Locus Coeruleus complex compared to unstimulated controls. Finally, the administration by retrodialysis into the preoptic area, of NA increased the proportion of ewes with an LH response to ram odor whereas treatment with the α1 antagonist Prazosin decreased the LH pulse frequency and amplitude induced by a sexually active ram. Collectively these results suggest that in anoestrous ewes NA is involved in ram-induced LH secretion as observed in other induced ovulators.

  7. Influence of grazing management on the seasonal change in testicular morphology in Corriedale rams.

    PubMed

    Bielli, A; Pedrana, G; Gastel, M T; Castrillejo, A; Moraña, A; Lundeheim, N; Forsberg, M; Rodriguez-Martinez, H

    1999-06-28

    The present study was conducted: (a) to determine the degree of seasonal variation in testis stereology in Corriedale rams between autumn and winter; (b) to test the hypothesis that testis stereology of Corriedale rams grazing native pastures during autumn and winter would differ from those of Corriedale rams grazing sown pastures and supplemented with grain during the same period; and (c) to determine whether Sertoli cell numbers differ in adult rams between the breeding season (autumn) and the following non-breeding season (winter). Twenty experimental animals were studied. Six rams (autumn control group, C-A) that had been grazing on native pasture (stocking rate = 2-3 animals ha(-1)) were castrated at the beginning of the experiment (March, early autumn). Seven rams (winter control group, C-W) continued to graze on native pasture at the same stocking rate until the end of the experiment (August, late winter). Another seven rams (treated group, T) grazed on improved pasture (stocking rate = 1-2 animals ha(-1)) and were supplemented with 1 kg grain ram(-1) day(-1) until the end of the experiment. Live weight, scrotal circumference, serum testosterone concentration and selected testicular stereological parameters were measured. The treatment did not impede the winter reduction in testicular activity and reduced its magnitude slightly (group T) compared with controls (group C-W). Sertoli cell numbers were higher in autumn (group C-A) than in winter, both on native (group C-W) and sown pastures (group T). Diminishing Sertoli cell numbers between autumn and the following winter suggest the occurrence of that Sertoli cell death during this period. The results indicate that, although the reproductive activity of Corriedale rams is moderately seasonal, a restricted change in grazing and grain supplementation can only modify it to a limited extent. PMID:10463397

  8. Genetic inactivation of acrAB or inhibition of efflux induces expression of ramA

    PubMed Central

    Lawler, A. J.; Ricci, V.; Busby, S. J. W.; Piddock, L. J. V.

    2013-01-01

    Objectives The transcriptional activator RamA regulates production of the multidrug resistance efflux AcrAB–TolC system in several Enterobacteriaceae. This study investigated factors that lead to increased expression of ramA. Methods In order to monitor changes in ramA expression, the promoter region of ramA was fused to a gfp gene encoding an unstable green fluorescence protein (GFP) on the reporter plasmid, pMW82. The ramA reporter plasmid was transformed into Salmonella Typhimurium SL1344 and a ΔacrB mutant. The response of the reporter to subinhibitory concentrations of antibiotics, dyes, biocides, psychotropic agents and efflux inhibitors was measured during growth over a 5 h time period. Results Our data revealed that the expression of ramA was increased in a ΔacrB mutant and also in the presence of the efflux inhibitors phenylalanine-arginine-β-naphthylamide, carbonyl cyanide m-chlorophenylhydrazone and 1-(1-naphthylmethyl)-piperazine. The phenothiazines chlorpromazine and thioridazine also increased ramA expression, triggering the greatest increase in GFP expression. However, inducers of Escherichia coli marA and soxS and 12 of 17 tested antibiotic substrates of AcrAB–TolC did not induce ramA expression. Conclusions This study shows that expression of ramA is not induced by most substrates of the AcrAB–TolC efflux system, but is increased by mutational inactivation of acrB or when efflux is inhibited. PMID:23493314

  9. Simulating lightning into the RAMS model: implementation and preliminary results

    NASA Astrophysics Data System (ADS)

    Federico, S.; Avolio, E.; Petracca, M.; Panegrossi, G.; Sanò, P.; Casella, D.; Dietrich, S.

    2014-11-01

    This paper shows the results of a tailored version of a previously published methodology, designed to simulate lightning activity, implemented into the Regional Atmospheric Modeling System (RAMS). The method gives the flash density at the resolution of the RAMS grid scale allowing for a detailed analysis of the evolution of simulated lightning activity. The system is applied in detail to two case studies occurred over the Lazio Region, in Central Italy. Simulations are compared with the lightning activity detected by the LINET network. The cases refer to two thunderstorms of different intensity which occurred, respectively, on 20 October 2011 and on 15 October 2012. The number of flashes simulated (observed) over Lazio is 19435 (16231) for the first case and 7012 (4820) for the second case, and the model correctly reproduces the larger number of flashes that characterized the 20 October 2011 event compared to the 15 October 2012 event. There are, however, errors in timing and positioning of the convection, whose magnitude depends on the case study, which mirrors in timing and positioning errors of the lightning distribution. For the 20 October 2011 case study, spatial errors are of the order of a few tens of kilometres and the timing of the event is correctly simulated. For the 15 October 2012 case study, the spatial error in the positioning of the convection is of the order of 100 km and the event has a longer duration in the simulation than in the reality. To assess objectively the performance of the methodology, standard scores are presented for four additional case studies. Scores show the ability of the methodology to simulate the daily lightning activity for different spatial scales and for two different minimum thresholds of flash number density. The performance decreases at finer spatial scales and for higher thresholds. The comparison of simulated and observed lighting activity is an immediate and powerful tool to assess the model ability to reproduce the

  10. Model-Based RAMS & FDIR Co-Engineering at Astrium Satellites

    NASA Astrophysics Data System (ADS)

    Thomas, Dave; Blanquart, Jean-Paul

    2013-08-01

    This paper presents the new model-based process developed within Astrium Satellites in order to support and improve RAMS & FDIR Co-Engineering. The first part of the paper focuses on the proposed RAMS & FDIR model-based process and its objectives. The second part analyses the needs and depicts the specific requirements that the modelling language and the tool(s) have to meet in order to support fully such a process in an industrial context. Finally the third section describes current implementation within Astrium Satellites where an overall RAMS / FDIR Modelling Framework has been developed and is being pushed into operation.

  11. Porous Carbon Nanoparticle Networks with Tunable Absorbability

    PubMed Central

    Dai, Wei; Kim, Seong Jin; Seong, Won-Kyeong; Kim, Sang Hoon; Lee, Kwang-Ryeol; Kim, Ho-Young; Moon, Myoung-Woon

    2013-01-01

    Porous carbon materials with high specific surface areas and superhydrophobicity have attracted much research interest due to their potential application in the areas of water filtration, water/oil separation, and oil-spill cleanup. Most reported superhydrophobic porous carbon materials are fabricated by complex processes involving the use of catalysts and high temperatures but with low throughput. Here, we present a facile single-step method for fabricating porous carbon nanoparticle (CNP) networks with selective absorbability for water and oils via the glow discharge of hydrocarbon plasma without a catalyst at room temperature. Porous CNP networks were grown by the continuous deposition of CNPs at a relatively high deposition pressure. By varying the fluorine content, the porous CNP networks exhibited tunable repellence against liquids with various degrees of surface tension. These porous CNP networks could be applied for the separation of not only water/oil mixtures but also mixtures of liquids with different surface tension levels. PMID:23982181

  12. Porous carbon nanoparticle networks with tunable absorbability.

    PubMed

    Dai, Wei; Kim, Seong Jin; Seong, Won-Kyeong; Kim, Sang Hoon; Lee, Kwang-Ryeol; Kim, Ho-Young; Moon, Myoung-Woon

    2013-01-01

    Porous carbon materials with high specific surface areas and superhydrophobicity have attracted much research interest due to their potential application in the areas of water filtration, water/oil separation, and oil-spill cleanup. Most reported superhydrophobic porous carbon materials are fabricated by complex processes involving the use of catalysts and high temperatures but with low throughput. Here, we present a facile single-step method for fabricating porous carbon nanoparticle (CNP) networks with selective absorbability for water and oils via the glow discharge of hydrocarbon plasma without a catalyst at room temperature. Porous CNP networks were grown by the continuous deposition of CNPs at a relatively high deposition pressure. By varying the fluorine content, the porous CNP networks exhibited tunable repellence against liquids with various degrees of surface tension. These porous CNP networks could be applied for the separation of not only water/oil mixtures but also mixtures of liquids with different surface tension levels. PMID:23982181

  13. Porous Carbon Nanoparticle Networks with Tunable Absorbability

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Kim, Seong Jin; Seong, Won-Kyeong; Kim, Sang Hoon; Lee, Kwang-Ryeol; Kim, Ho-Young; Moon, Myoung-Woon

    2013-08-01

    Porous carbon materials with high specific surface areas and superhydrophobicity have attracted much research interest due to their potential application in the areas of water filtration, water/oil separation, and oil-spill cleanup. Most reported superhydrophobic porous carbon materials are fabricated by complex processes involving the use of catalysts and high temperatures but with low throughput. Here, we present a facile single-step method for fabricating porous carbon nanoparticle (CNP) networks with selective absorbability for water and oils via the glow discharge of hydrocarbon plasma without a catalyst at room temperature. Porous CNP networks were grown by the continuous deposition of CNPs at a relatively high deposition pressure. By varying the fluorine content, the porous CNP networks exhibited tunable repellence against liquids with various degrees of surface tension. These porous CNP networks could be applied for the separation of not only water/oil mixtures but also mixtures of liquids with different surface tension levels.

  14. Compact and High Thrust Air Turbo Ram Engine

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hiroaki; Kitahara, Kazuki; Inukai, Yasuo

    The Air Turbo Ramjet (ATR) is a combined cycle engine which performs like a turbojet engine at subsonic speeds and a ramjet at supersonic speeds and therefore the ATR is an attractive propulsion system for the wide operation range (e.g. Mach 0 to Mach 4). The ATR can provide a higher specific impulse than a solid fuel rocket engine and a higher thrust per frontal area than a turbojet engine. The major ATR components are the inlet, fan (compressor), turbine, gas generator, combustor and exhaust nozzle. In the ATR, the turbine drive gas is generated by a decomposed liquid or solid fuel gas generator. In order to carry heavier payloads and to attain shorter flight time, the compact and high thrust engine is required. In this study, the ram combustor with the double-staged flameholders and the fan with tandem blade were introduced to shorten the engine length and to increase the fan pressure ratio, respectively. Furthermore, the engine testing was carried out on sea level static condition to confirm the engine component integration technologies for the ATR propulsion system.

  15. Interoperability portcullises and technology battering rams for distributed simulation

    NASA Astrophysics Data System (ADS)

    Dunkelberger, Kirk A.

    1997-06-01

    The construction, execution, and analysis of application- oriented simulations is difficult; the integration, coordinated execution, and after action review of heterogeneous distributed simulations can be overwhelming. Economy, risk mitigation, and just plain common sense compel us to utilize legacy simulations but discrepancies in controllability, fidelity, implementation paradigm, algorithms, representations, time management, construction, etc. tend to negate any potential gain. While several generations of interoperability approaches and associated standards have emerged and matured, even they have been limited in their ability to accommodate disparate classes of simulations. Within the permitted scope of this paper, a taxonomy for the most common interoperability issues (portcullises) for distributed simulation is developed. Part of this identification process will consist of establishing contexts and/or prerequisites for the issues, e.g. under what conditions are the issues actually issues at all. As a result, the prioritization will become application dependent. Methods for resolving the issues (battering rams), couched in the form of case studies, are subsequently presented to close the circle. Sources will include industry and government state-of- the-practice, academic state-of-the-art, and our own broad experience. Specific topics to be discussed include application philosophy, the integration of live entities, investigative versus analytical simulation, implications of human-in-the-loop, mixed and/or variable fidelity, heterogeneous time management schemes, current and emerging distributed simulation standards, simulation/exercise management, and control and data distribution. Discussion will focus heavily on examples and experience.

  16. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal.

    PubMed

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-01-01

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4-8 GHz) and the X-band (8-12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels. PMID:27546310

  17. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-08-01

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4-8 GHz) and the X-band (8-12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels.

  18. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal

    PubMed Central

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-01-01

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4–8 GHz) and the X-band (8–12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels. PMID:27546310

  19. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal.

    PubMed

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-08-22

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4-8 GHz) and the X-band (8-12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels.

  20. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-08-01

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4–8 GHz) and the X-band (8–12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels.

  1. Reliable Acquisition of RAM Dumps from Intel-Based Apple Mac Computers over FireWire

    NASA Astrophysics Data System (ADS)

    Gladyshev, Pavel; Almansoori, Afrah

    RAM content acquisition is an important step in live forensic analysis of computer systems. FireWire offers an attractive way to acquire RAM content of Apple Mac computers equipped with a FireWire connection. However, the existing techniques for doing so require substantial knowledge of the target computer configuration and cannot be used reliably on a previously unknown computer in a crime scene. This paper proposes a novel method for acquiring RAM content of Apple Mac computers over FireWire, which automatically discovers necessary information about the target computer and can be used in the crime scene setting. As an application of the developed method, the techniques for recovery of AOL Instant Messenger (AIM) conversation fragments from RAM dumps are also discussed in this paper.

  2. Effect of vane opening on aerodynamic performance of the ram-rotor test system

    NASA Astrophysics Data System (ADS)

    Han, Ji-ang; Guan, Jian; Zhong, Jingjun; Yuan, Chenguang

    2016-06-01

    In order to research the influence of adjustable vane on the aerodynamic performance of the ram-rotor test system, FLUENT software has been adopted to simulate the flow passage of the ram-rotor test system numerically. The vane opening is controlled by changing the stagger angle of the vane blades. Results show that flow uniformity of vane outlet is influenced by the vane openings, which has an impact on the aerodynamic loss to some extent. Total pressure ratio, adiabatic efficiency and mass flow rate can be regulated by different openings of the vane. Compared with -8° vane opening, top efficiency of the ram-rotor increases by about 13.8% at +6° opening. And total pressure ratio drops by 5.87%. The rising opening increases the relative Mach number at inlet of the ram-rotor and weakens the intensity of the tip clearance leakage, which comes to a decreasing aerodynamic loss.

  3. Multi-wavelength access gate for WDM-formatted words in optical RAM row architectures

    NASA Astrophysics Data System (ADS)

    Fitsios, D.; Alexoudi, T.; Vagionas, C.; Miliou, A.; Kanellos, G. T.; Pleros, N.

    2013-03-01

    Optical RAM has emerged as a promising solution for overcoming the "Memory Wall" of electronics, indicating the use of light in RAM architectures as the approach towards enabling ps-regime memory access times. Taking a step further towards exploiting the unique wavelength properties of optical signals, we reveal new architectural perspectives in optical RAM structures by introducing WDM principles in the storage area. To this end, we demonstrate a novel SOAbased multi-wavelength Access Gate for utilization in a 4x4 WDM optical RAM bank architecture. The proposed multiwavelength Access Gate can simultaneously control random access to a 4-bit optical word, exploiting Cross-Gain-Modulation (XGM) to process 8 Bit and Bit channels encoded in 8 different wavelengths. It also suggests simpler optical RAM row architectures, allowing for the effective sharing of one multi-wavelength Access Gate for each row, substituting the eight AGs in the case of conventional optical RAM architectures. The scheme is shown to support 10Gbit/s operation for the incoming 4-bit data streams, with a power consumption of 15mW/Gbit/s. All 8 wavelength channels demonstrate error-free operation with a power penalty lower than 3 dB for all channels, compared to Back-to-Back measurements. The proposed optical RAM architecture reveals that exploiting the WDM capabilities of optical components can lead to RAM bank implementations with smarter column/row encoders/decoders, increased circuit simplicity, reduced number of active elements and associated power consumption. Moreover, exploitation of the wavelength entity can release significant potential towards reconfigurable optical cache mapping schemes when using the wavelength dimension for memory addressing.

  4. Radiation immune RAM semiconductor technology for the 80's. [Random Access Memory

    NASA Technical Reports Server (NTRS)

    Hanna, W. A.; Panagos, P.

    1983-01-01

    This paper presents current and short term future characteristics of RAM semiconductor technologies which were obtained by literature survey and discussions with cognizant Government and industry personnel. In particular, total ionizing dose tolerance and high energy particle susceptibility of the technologies are addressed. Technologies judged compatible with spacecraft applications are ranked to determine the best current and future technology for fast access (less than 60 ns), radiation tolerant RAM.

  5. DaimlerChrysler builds a mine-duty Dodge Ram trucks

    SciTech Connect

    Fiscor, S.

    2006-10-15

    Automotive and engine OEMS worked together with the mines to develop a diesel-powered underground pickup truck that meets emissions standards. The article relates how DaimlerChrysler and Cummins eventually managed to redesign the engine for the Dodge Ram truck to satisfy the new HD10 onroad Environmental Protection Agency regulations for diesel engines that come into force in January 2007. Classic Motors in Richfield, Utah modifies Dodge Ram pickups for use as mantrips and service vehicles. 4 photos.

  6. Service and repair of the rammed lining of a rotary furnace

    SciTech Connect

    Startsev, D.A.; Khamatova, V.G.; Murzin, V.N.

    1986-03-01

    The rotary furnace is designed for heating of carbon and alloy steel billets 100-150 mm in diameter and 1000-3800 mm long with a maximum weight of 350 kg to 1130-1260 degrees C. The furnace hearth lining is made in three layers. The top of the center layer is made of parts laid with gaps between them of 20-30 mm. The 80-90-mm-thick working layer is made of type MKhGP-35 rammed chromite-clay compound. To protect the top of the side parts of the hearth from impacts, they are covered with a 40-mm-thick layer of rammed MKhGP-35 compound. During operation of the furnace and heating of the billets, the rammed compound of the hearth is compacted and after 6-7 months of service waves up to 20-30 mm deep are formed on it from the action of the round billets. To avoid the condition in which the unloading machine is not able to take the heated billets from such a hearth, ramming compound is added to the depressions in the hearth through the charging door. The furnace temperature is brought up to the heating schedule and billets are charged. The rammed lining is completely replaced once every two or three years. The saving with such a method of repair of the worn rammed hearth during 2 years of operation of the rotary furnace is substantial.

  7. Presence of Mycoplasma agalactiae in semen of naturally infected asymptomatic rams.

    PubMed

    Prats-van der Ham, Miranda; Tatay-Dualde, Juan; de la Fe, Christian; Paterna, Ana; Sánchez, Antonio; Corrales, Juan C; Contreras, Antonio; Gómez-Martín, Ángel

    2016-08-01

    The purpose of the present study was to assess the presence of Mycoplasma agalactiae (Ma), the main causative agent of ovine contagious agalactia (CA), in semen of naturally infected rams. Therefore, semen samples from 167 rams residing in three different artificial insemination (AI) centers of a CA-endemic area were studied by microbiological and molecular techniques. In addition, serial ejaculates from the same rams were evaluated to determine the excretion dynamics of Ma. Of the 384 samples studied, Ma was detected in 56 (14.58%) which belonged to 44 different rams (26.35%). These findings confirm the ability of Ma to be excreted in semen of asymptomatic rams. Furthermore, these results also evidence the presence of these asymptomatic carriers of Ma in ovine AI centers, representing a serious health risk regarding the spread and maintenance of CA, especially in endemic areas. Moreover, the excretion of Ma in semen also points to the risk of venereal transmission of this disease. The current results highlight the need to implement control measures to prevent the admission of infected rams in AI centers and the necessity to continuously monitor semen samples to effectively detect infected individuals. PMID:27045625

  8. RAM function is dependent on Kapβ2-mediated nuclear entry.

    PubMed

    Gonatopoulos-Pournatzis, Thomas; Cowling, Victoria H

    2014-02-01

    Eukaryotic gene expression is dependent on the modification of the first transcribed nucleotide of pre-mRNA by the addition of the 7-methylguanosine cap. The cap protects transcripts from exonucleases and recruits complexes which mediate transcription elongation, processing and translation initiation. The cap is synthesized by a series of reactions which link 7-methylguanosine to the first transcribed nucleotide via a 5' to 5' triphosphate bridge. In mammals, cap synthesis is catalysed by the sequential action of RNGTT (RNA guanylyltransferase and 5'-phosphatase) and RNMT (RNA guanine-7 methyltransferase), enzymes recruited to RNA pol II (polymerase II) during the early stages of transcription. We recently discovered that the mammalian cap methyltransferase is a heterodimer consisting of RNMT and the RNMT-activating subunit RAM (RNMT-activating mini-protein). RAM activates and stabilizes RNMT and thus is critical for cellular cap methylation and cell viability. In the present study we report that RNMT interacts with the N-terminal 45 amino acids of RAM, a domain necessary and sufficient for maximal RNMT activation. In contrast, smaller components of this RAM domain are sufficient to stabilize RNMT. RAM functions in the nucleus and we report that nuclear import of RAM is dependent on PY nuclear localization signals and Kapβ2 (karyopherin β2) nuclear transport protein.

  9. The vitamin D receptor localization and mRNA expression in ram testis and epididymis.

    PubMed

    Jin, Hui; Huang, Yang; Jin, Guang; Xue, Yanrong; Qin, Xiaowei; Yao, Xiaolei; Yue, Wenbing

    2015-02-01

    The objectives of present study were to investigate the presence of vitamin D receptor (VDR) in testis and epididymis of ram by polymerase chain reaction (PCR), to locate VDR in testis and epididymis by immunohistochemistry and to compare difference of VDR expression between testis and epididymis before and after sexual maturation by Real time-PCR and Western blot. The results showed that VDR exists in the testis and epididymis of ram while VDR protein in testis and epididymis was localized in Leydig cells, spermatogonial stem cells, spermatocytes, Sertoli cells and principal cells. For the adult ram, the amounts of VDR mRNA and VDR protein were less (p < 0.01) in testis than compared with caput, corpus and cauda epididymis. For prepubertal ram, the result showed the same trend (p < 0.01). However, the expression levels of VDR mRNA and VDR protein in caput, corpus, cauda epididymis and testis showed no significant difference (p > 0.05) between adult and prepubertal. In conclusion, VDR exists in testis and epididymis of ram, suggesting 1α,25-(OH)(2)VD(3) may play a role in ram reproduction.

  10. Determination of fatty acid profile in ram spermatozoa and seminal plasma.

    PubMed

    Díaz, R; Torres, M A; Bravo, S; Sanchez, R; Sepúlveda, N

    2016-08-01

    Fatty acids are important in male reproductive function because they are associated with membrane fluidity, acrosome reaction, sperm motility and viability, but limited information exists about the fatty acid profile of ram semen. Our aim was to determine the fatty acid composition in ram spermatozoa and seminal plasma. Sixty ejaculates were obtained from three ram (20 ejaculates/ram) using artificial vagina. Ram spermatozoa (RS) and seminal plasma (SP) were separated using centrifugation, and the fatty acids were analysed by gas chromatography. Total lipids obtained in ram spermatozoa were 1.8% and 1.6% in seminal plasma. Saturated fatty acid (SFA) was proportionally major in SP (66.6%) that RS (49.9%). The highest proportions of SFA corresponded to C4:0 (RS = 16.3% and SP = 28.8%) and C16:0 (RS = 16.3% and PS = 20%). The most important unsaturated fatty acid (UFA) was docosahexaenoic acid (DHA), 44.9% in RS and 31.5% in SP. The profile of fatty acid and their proportions showed differences between spermatozoa and seminal plasma.

  11. Polymers used to absorb fats and oils: A concept

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.

    1974-01-01

    One approach to problem of excessive oils and fats is to develop method by which oil is absorbed into solid mixture for elimination as solid waste. Materials proposed for these purposes are cross-linked (network) polymers that have high affinity for aliphatic substances, i. e., petroleum, animal, and vegetable oils.

  12. Prolactin variants in ram adenohypophyses vary with season

    NASA Technical Reports Server (NTRS)

    Stroud, C. M.; Deaver, D. R.; Peters, J. L.; Loeper, D. C.; Toth, B. E.; Derr, J. A.; Hymer, W. C.

    1992-01-01

    Secretion of PRL in sheep is affected by photoperiod being highest during the spring and summer, lowest in fall and winter. The objectives of this study were to determine if 1) the production of variant forms of PRL, and 2) immuno- and bioactivities of PRL (iPRL and bPRL) differ during times of the year selected to represent periods of low, transitional and high PRL secretion. Twelve mature rams were maintained on pasture and killed in October, December, and April (n = 4/month). Individual pituitary glands were dispersed, cells obtained, and fixed for immunocytochemical flow cytometry, extracted with 0.01 N NaHCO3 or cultured in serum-free, defined media. The Mr of PRL extracted from cells immediately following dispersion ranged from 14-140K, with significantly more bands greater than 40K being detected from rams sacrificed in December than from those killed in October and April (P less than 0.01). No bands of PRL greater than 25K were observed when samples were reduced with beta-mercaptoethanol prior to electrophoresis, indicating that the high Mr forms were disulfide-linked aggregates. Culture media from October and April contained variants of PRL that ranged from 22-40K but those greater than 25K were generally not observed from cells harvested during December. Extracts of cells after 24 h in culture contained fewer high Mr species during December than had been present in initial extracts from that month. In contrast, during April more high Mr intracellular forms were present after culture than had been detected prior to culture during that month. The percentage of lactotrophs averaged 50.0 +/- 2.5, 47.4 +/- 5.7, and 59.4 +/- 5.5 for October, December, and April, respectively. Initial lactotroph content (pg/lactotroph) of iPRL was higher (P = 0.06) in April (46.0 +/- 17.0) when compared to October and December (8.0 +/- 2.0 and 20.0 +/- 10.0, respectively). In contrast, the bPRL content of initial extracts was higher (P = 0.05) in December (267.0 +/- 68.0) than

  13. [Castration in the bull calf and ram lamb].

    PubMed

    Steiner, A; Janett, F

    2013-11-01

    This paper aims to provide an overview of the accepted techniques of pain relief and castration and guidelines of how to best perform these painful interventions in an animal-friendly way under Swiss conditions. Calves should be castrated at the age of 14 days or less, at least 10 minutes after local anesthesia with lidocaine, applying a single rubber ring. Concurrently, a NSAID should be administered intravenously (ketoprofen, 3 mg/kg of bodyweight) and Tetanus-serum subcutaneously (off label use). If possible, ketoprofen(4.5 mg/kg BW) should be orally administered for 3 - 5 days postoperatively. At 10 days after applying the rubber ring, the dried-off scrotum including the rubber ring should be removed with a clean knife or a scalpel. Local anesthesia is not necessary for this procedure. Ram lambs should be castrated at the age of 14 days or less, at least 10 minutes after local anesthesia with lidocaine, applying a rubber ring. The toxic dose of 4 mg lidocaine/kg BW (corresponds to 1 ml lidocaine 2 % per lamb of 5 kg BW) should not be exceeded. Concurrently, a NSAID (off label use) and Tetanus-serum should be administered systemically. Immunization against GnRH represents an animal-friendly and economically feasible alternative to rubber ring castration. With two immunizations at an interval of 3 - 4 weeks testicular development can be inhibited for at least 3 months and the onset of puberty clearly delayed. However, a specific vaccine for use in ruminants is currently registered neither in Switzerland nor in Europe.

  14. Graphene-enabled electrically switchable radar-absorbing surfaces.

    PubMed

    Balci, Osman; Polat, Emre O; Kakenov, Nurbek; Kocabas, Coskun

    2015-01-01

    Radar-absorbing materials are used in stealth technologies for concealment of an object from radar detection. Resistive and/or magnetic composite materials are used to reduce the backscattered microwave signals. Inability to control electrical properties of these materials, however, hinders the realization of active camouflage systems. Here, using large-area graphene electrodes, we demonstrate active surfaces that enable electrical control of reflection, transmission and absorption of microwaves. Instead of tuning bulk material property, our strategy relies on electrostatic tuning of the charge density on an atomically thin electrode, which operates as a tunable metal in microwave frequencies. Notably, we report large-area adaptive radar-absorbing surfaces with tunable reflection suppression ratio up to 50 dB with operation voltages <5 V. Using the developed surfaces, we demonstrate various device architectures including pixelated and curved surfaces. Our results provide a significant step in realization of active camouflage systems in microwave frequencies. PMID:25791719

  15. Graphene-enabled electrically switchable radar-absorbing surfaces.

    PubMed

    Balci, Osman; Polat, Emre O; Kakenov, Nurbek; Kocabas, Coskun

    2015-03-20

    Radar-absorbing materials are used in stealth technologies for concealment of an object from radar detection. Resistive and/or magnetic composite materials are used to reduce the backscattered microwave signals. Inability to control electrical properties of these materials, however, hinders the realization of active camouflage systems. Here, using large-area graphene electrodes, we demonstrate active surfaces that enable electrical control of reflection, transmission and absorption of microwaves. Instead of tuning bulk material property, our strategy relies on electrostatic tuning of the charge density on an atomically thin electrode, which operates as a tunable metal in microwave frequencies. Notably, we report large-area adaptive radar-absorbing surfaces with tunable reflection suppression ratio up to 50 dB with operation voltages <5 V. Using the developed surfaces, we demonstrate various device architectures including pixelated and curved surfaces. Our results provide a significant step in realization of active camouflage systems in microwave frequencies.

  16. Graphene-enabled electrically switchable radar-absorbing surfaces

    NASA Astrophysics Data System (ADS)

    Balci, Osman; Polat, Emre O.; Kakenov, Nurbek; Kocabas, Coskun

    2015-03-01

    Radar-absorbing materials are used in stealth technologies for concealment of an object from radar detection. Resistive and/or magnetic composite materials are used to reduce the backscattered microwave signals. Inability to control electrical properties of these materials, however, hinders the realization of active camouflage systems. Here, using large-area graphene electrodes, we demonstrate active surfaces that enable electrical control of reflection, transmission and absorption of microwaves. Instead of tuning bulk material property, our strategy relies on electrostatic tuning of the charge density on an atomically thin electrode, which operates as a tunable metal in microwave frequencies. Notably, we report large-area adaptive radar-absorbing surfaces with tunable reflection suppression ratio up to 50 dB with operation voltages <5 V. Using the developed surfaces, we demonstrate various device architectures including pixelated and curved surfaces. Our results provide a significant step in realization of active camouflage systems in microwave frequencies.

  17. Improving the laboratory monitoring of absorbent oil

    SciTech Connect

    V.S. Shved; S.S. Sychev; I.V. Safina; S.A. Klykov

    2009-05-15

    The performance of absorbent coal tar oil is analyzed as a function of the constituent and group composition. The qualitative and quantitative composition of the oil that ensures the required absorbent properties is determined. Operative monitoring may be based on absorbent characteristics that permit regulation of the beginning and end of regeneration.

  18. Microcellular ceramic foams for radar absorbing structures

    SciTech Connect

    Huling, J.; Phillips, D.

    1996-09-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project is to develop a lightweight, semi-structural, radar-absorbing ceramic foam that can be incorporated into aircraft exhaust systems to replace many of the currently used dense ceramic parts and thereby improve the radar cross section. Although the conventional processes for producing ceramic foams have not been able to provide materials that meet the design specifications for high strength at low density, we have developed and demonstrated a novel sol-gel emulsion process for preparing microcellular ceramic foams in which compositional and microstructural control is expected to provide the requisite high-temperature radar-absorption, strength-to-weight ratio, and thermal insulative properties.

  19. Development of New Absorber Materials to Achieve Organic Photovoltaic Commercial Modules with 15% Efficiency and 20 Years Lifetime: Cooperative Research and Development Final Report, CRADA Number CRD-12-498

    SciTech Connect

    Olson, D.

    2014-08-01

    Under this CRADA the parties will develop intermediates or materials that can be employed as the active layer in dye sensitized solar cells printed polymer systems, or small molecule organic photovoltaics.

  20. Parametric study on the performance of automotive MR shock absorbers

    NASA Astrophysics Data System (ADS)

    Gołdasz, J.; Dzierżek, S.

    2016-09-01

    The paper contains the results of a parametric study to explore the influence of various quantities on the performance range of semi-active automotive shock absorbers using the magnetorheological (MR) fluid under steady-state and transient excitations. The analysis was performed with simulated data and using a standard single-tube shock absorber configuration with a single-gap MR valve. Additionally, the impact of material variables and valves geometry was examined as the parameters were varied and its dynamic range studied.

  1. Continuous exposure to sexually active rams extends estrous activity in ewes in spring.

    PubMed

    Abecia, J A; Chemineau, P; Flores, J A; Keller, M; Duarte, G; Forcada, F; Delgadillo, J A

    2015-12-01

    Sexual activity in sheep is under photoperiodic control, which is the main environmental factor responsible for the seasonality of reproduction. However, other natural environmental factors such as presence of conspecifics can slightly influence the timing of onset and offset of the breeding season. In goats, we have found that the continuous presence of bucks that were rendered sexually active out of season by previous exposure to long days, prevented goats from displaying seasonal anestrus, which suggests that the relative contribution of photoperiod in controlling seasonal anestrus should be reevaluated in small ruminant species. The aim of this study was to assess whether the presence of sexually active rams that had been stimulated by artificial photoperiod and melatonin implants, reduces seasonal anestrus in sheep, by prolonging ovulatory activity in spring. Ewes were assigned to one of two groups (n = 16 and 15), which were housed in two separate barns, and kept in contact, either with the treated or the control rams between March and July. Vasectomized rams were either exposed to 2 months of long days followed by the insertion of three subcutaneous melatonin implants (treated rams, n = 8), or exposed to natural light conditions (control rams, n = 2). Estrus was monitored daily, and weekly plasma progesterone analyses indicated ovulatory activity. Ewes that were exposed to treated rams exhibited a higher proportion of monthly estrus than ewes exposed to the control rams (P < 0.05). Thirteen of 15 ewes (one ewe was not considered because of the presence of persistent CL) exposed to stimulated rams exhibited estrous behavior in a cyclic manner. In contrast, all ewes exposed to control rams stopped estrous activity for a period of time during the study, such that this group exhibited a significantly longer anestrous season (mean ± standard error of the mean 89 ± 9 days) than did the ewes housed with treated rams (26 ± 10 days; P < 0

  2. Continuous exposure to sexually active rams extends estrous activity in ewes in spring.

    PubMed

    Abecia, J A; Chemineau, P; Flores, J A; Keller, M; Duarte, G; Forcada, F; Delgadillo, J A

    2015-12-01

    Sexual activity in sheep is under photoperiodic control, which is the main environmental factor responsible for the seasonality of reproduction. However, other natural environmental factors such as presence of conspecifics can slightly influence the timing of onset and offset of the breeding season. In goats, we have found that the continuous presence of bucks that were rendered sexually active out of season by previous exposure to long days, prevented goats from displaying seasonal anestrus, which suggests that the relative contribution of photoperiod in controlling seasonal anestrus should be reevaluated in small ruminant species. The aim of this study was to assess whether the presence of sexually active rams that had been stimulated by artificial photoperiod and melatonin implants, reduces seasonal anestrus in sheep, by prolonging ovulatory activity in spring. Ewes were assigned to one of two groups (n = 16 and 15), which were housed in two separate barns, and kept in contact, either with the treated or the control rams between March and July. Vasectomized rams were either exposed to 2 months of long days followed by the insertion of three subcutaneous melatonin implants (treated rams, n = 8), or exposed to natural light conditions (control rams, n = 2). Estrus was monitored daily, and weekly plasma progesterone analyses indicated ovulatory activity. Ewes that were exposed to treated rams exhibited a higher proportion of monthly estrus than ewes exposed to the control rams (P < 0.05). Thirteen of 15 ewes (one ewe was not considered because of the presence of persistent CL) exposed to stimulated rams exhibited estrous behavior in a cyclic manner. In contrast, all ewes exposed to control rams stopped estrous activity for a period of time during the study, such that this group exhibited a significantly longer anestrous season (mean ± standard error of the mean 89 ± 9 days) than did the ewes housed with treated rams (26 ± 10 days; P < 0

  3. The Double Absorbing Boundary method

    NASA Astrophysics Data System (ADS)

    Hagstrom, Thomas; Givoli, Dan; Rabinovich, Daniel; Bielak, Jacobo

    2014-02-01

    A new approach is devised for solving wave problems in unbounded domains. It has common features to each of two types of existing techniques: local high-order Absorbing Boundary Conditions (ABC) and Perfectly Matched Layers (PML). However, it is different from both and enjoys relative advantages with respect to both. The new method, called the Double Absorbing Boundary (DAB) method, is based on truncating the unbounded domain to produce a finite computational domain Ω, and on applying a local high-order ABC on two parallel artificial boundaries, which are a small distance apart, and thus form a thin non-reflecting layer. Auxiliary variables are defined on the two boundaries and inside the layer bounded by them, and participate in the numerical scheme. The DAB method is first introduced in general terms, using the 2D scalar time-dependent wave equation as a model. Then it is applied to the 1D Klein-Gordon equation, using finite difference discretization in space and time, and to the 2D wave equation in a wave guide, using finite element discretization in space and dissipative time stepping. The computational aspects of the method are discussed, and numerical experiments demonstrate its performance.

  4. A polarization-independent broadband terahertz absorber

    SciTech Connect

    Shi, Cheng; Zang, XiaoFei E-mail: ymzhu@usst.edu.cn; Wang, YiQiao; Chen, Lin; Cai, Bin; Zhu, YiMing E-mail: ymzhu@usst.edu.cn

    2014-07-21

    A highly efficient broadband terahertz absorber is designed, fabricated, and experimentally as well as theoretically evaluated. The absorber comprises a heavily doped silicon substrate and a well-designed two-dimensional grating. Due to the destructive interference of waves and diffraction, the absorber can achieve over 95% absorption in a broad frequency range from 1 to 2 THz and for angles of incidence from 0° to 60°. Such a terahertz absorber is also polarization-independent due to its symmetrical structure. This omnidirectional and broadband absorber have potential applications in anti-reflection coatings, imaging systems, and so on.

  5. RAMS-forecasts comparison of typical summer atmospheric conditions over the Western Mediterranean coast

    NASA Astrophysics Data System (ADS)

    Gómez, I.; Caselles, V.; Estrela, M. J.; Niclòs, R.

    2014-08-01

    The Regional Atmospheric Modeling System (RAMS) has been used in order to perform a high-resolution numerical simulation of two meteorological events related to the most common atmospheric environments during the summer over the Western Mediterranean coast: mesoscale circulations and western synoptic advections. In this regard, we take advantage of the operational RAMS configuration running within the real-time forecasting system environment already implemented over this Mediterranean area, precisely in the Valencia Region and nearby areas. The attention of this paper is especially focused on identifying the main features of both events and the ability of the model in resolving the associated characteristics as well as in performing a comprehensive evaluation of the model by means of diverse meteorological observations available within the selected periods over the area of study. Additionally, as this paper is centred in RAMS-based forecasts, two simulations are operated applying the most two recent versions of the RAMS model implemented in the above-mentioned system: RAMS 4.4 and RAMS 6.0. Therefore, a comparison among both versions of the model has been performed as well. Finally, it is our intention to contrast the RAMS forecasts for two completely different atmospheric conditions common with the area of study in the summer. A main difference between the simulation of both meteorological situations has been found in the humidity. In this sense, whilst the model underestimates this magnitude considering the mesoscale event, especially at night time, the model reproduces the daily humidity properly under the western synoptic advection.

  6. Fabrication and microwave absorbing properties of NixPy nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Haoran; Wan, Lei; Chen, Yaqiong; Hu, Wenbin; Liu, Lei; Zhong, Cheng; Deng, Yida

    2015-06-01

    Materials possessing microwave absorbing properties have been a researching hotspot for their important applications amid a high frequency electromagnetic waves environment. This paper focuses on the preparation of a series of NixPy(x:y = 2.65-2.73) nanotubes (NTs) and their corresponding microwave absorbing properties. After being heat-treated, different NixPy phases would appear, without damaging their initial hollow morphologies. These processes were accompanied with the alteration of related physical properties. Low enough minimum reflection loss (RL) has been achieved in all of these samples, with -48.63 dB as the lowest one being obtained at the non-heat-treated sample. Besides, a large proportion of the microwave frequency band could be covered on the 450 °C heat-treated sample (over a 4.5 GHz bandwidth). These are indicative of the superior microwave absorbing nature of NixPy NTs.

  7. Neutron absorbed dose determination by calculations of recoil energy.

    PubMed

    Wrobel, F; Benabdesselam, M; Iacconi, P; Lapraz, D

    2004-01-01

    The aim of this work is to calculate the absorbed dose to matter due to neutrons in the 5-150 MeV energy range. Materials involved in the calculations are Al2O3, CaSO4 and CaS, which may be used as dosemeters and have already been studied for their luminescent properties. The absorbed dose is assumed to be mainly due to the energy deposited by the recoils. Elastic reactions are treated with the ECIS code while for the non-elastic ones, a Monte Carlo code has been developed and allowed to follow the nucleus decay and to determine its characteristics (nature and energy). Finally, the calculations show that the absorbed dose is mainly due to non-elastic process and that above 20 MeV this dose decreases slightly with the neutron energy. PMID:15353750

  8. A superhydrophobic sponge with excellent absorbency and flame retardancy.

    PubMed

    Ruan, Changping; Ai, Kelong; Li, Xingbo; Lu, Lehui

    2014-05-26

    Frequent oil spillages and the industrial discharge of organic solvents have not only caused severe environmental and ecological damage, but also create a risk of fire and explosion. Therefore, it is imperative, but also challenging, to find high-performance absorbent materials that are both effective and less flammable. Here we present a superior superhydrophobic sponge that exhibits excellent absorption performance through a combination of its superhydrophobicity, high porosity, and robust stability. More importantly, it inherits the intrinsic flame-retardant nature of the raw melamine sponge, and is thus expected to reduce the risk of fire and explosion when being used as an absorbent for flammable oils and organic compounds. Moreover, the fabrication of this sponge is easy to scale up, since it does not use a complicated process or sophisticated equipment. These characteristics make the sponge a much more competitive product than the commercial absorbent, nonwoven polypropylene fabric. PMID:24711147

  9. A recyclable and regenerable magnetic chitosan absorbent for dye uptake.

    PubMed

    Zhao, Weifeng; Huang, Xuelian; Wang, Yilin; Sun, Shudong; Zhao, Changsheng

    2016-10-01

    A recyclable and regenerable magnetic polysaccharide absorbent for methylene blue (MB) removal was prepared by coating magnetic polyethyleneimine nanoparticles (PEI@MNPs) with sulfonated chitosan (SCS) and further cross-linked with glutaraldehyde. The driving force for coating is the electrostactic interaction between positively charged PEI and negatively charged SCS. Infrared spectra, zeta potential, thermal gravimetric analysis and X-ray diffraction demonstrated the successful synthesis of magnetic polysaccharide absorbent. The self-assembly of polysaccharide with magnetic nanopartices did not alter the saturation magnetization value of the absorbent confirmed by vibrating sample magnetometer. The nanoparticles showed fast removal (about 30min reached equilibrium) of MB. In particular, the removal ability of MB after desorption did not reduce, demonstrating an excellent regeneration ability. Our study provides new insights into utilizing polysaccharides for environmental remediation and creating advanced magnetic materials for various promising applications. PMID:27312630

  10. Magnetorheological elastomers in tunable vibration absorbers

    NASA Astrophysics Data System (ADS)

    Ginder, John M.; Schlotter, William F.; Nichols, Mark E.

    2001-07-01

    Filling an elastomeric material with magnetizable particles leads to mechanical properties -shear moduli, tensile moduli, and magnetostriction coefficients - that are reversibly and rapidly controllable by an applied magnetic field. The origin of the field dependence of these properties is the existence of field-induced dipole magnetic forces between the particles. These 'smart' composites, which are sometimes termed magnetorheological (MR) elastomers, have been explored for use in a number of components, including automotive suspension bushings. In these and other applications, the tunability of the stiffness can enhance the compliance-control or vibration-transfer performance of the complex mechanical systems in which they are used. In the present study, we have constructed a simple one-degree-of-freedom mass-spring system - an adaptive tuned vibration absorber - that utilizes MR elastomers as variable-spring-rate elements. This device was used not only to explore the performance of such tunable components, but also to extend measurements of the shear moduli of these materials to higher frequencies than has previously been reported. We find that the field-induced increase in moduli of these materials is effective to mechanical frequencies well above 1 kHz, and that the moduli are consistent with the behavior expected for filled elastomers.

  11. A ram-pressure threshold for star formation

    NASA Astrophysics Data System (ADS)

    Whitworth, A. P.

    2016-05-01

    In turbulent fragmentation, star formation occurs in condensations created by converging flows. The condensations must be sufficiently massive, dense and cool to be gravitationally unstable, so that they start to contract; and they must then radiate away thermal energy fast enough for self-gravity to remain dominant, so that they continue to contract. For the metallicities and temperatures in local star-forming clouds, this second requirement is only met robustly when the gas couples thermally to the dust, because this delivers the capacity to radiate across the full bandwidth of the continuum, rather than just in a few discrete spectral lines. This translates into a threshold for vigorous star formation, which can be written as a minimum ram pressure PCRIT ˜ 4 × 10-11 dyne. PCRIT is independent of temperature, and corresponds to flows with molecular hydrogen number density n_{{H_2.FLOW}} and velocity vFLOW satisfying n_{{H_2.FLOW}} v_{FLOW}^2≳ 800 cm^{-3} (km s^{-1})^2. This in turn corresponds to a minimum molecular hydrogen column density for vigorous star formation, N_{{H_2.CRIT}} ˜ 4 × 10^{21} cm^{-2} (ΣCRIT ˜ 100 M⊙ pc-2), and a minimum visual extinction AV, CRIT ˜ 9 mag. The characteristic diameter and line density for a star-forming filament when this threshold is just exceeded - a sweet spot for local star formation regions - are 2RFIL ˜ 0.1 pc and μFIL ˜ 13 M⊙ pc-2. The characteristic diameter and mass for a prestellar core condensing out of such a filament are 2RCORE ˜ 0.1 pc and MCORE ˜ 1 M⊙. We also show that fragmentation of a shock-compressed layer is likely to commence while the convergent flows creating the layer are still ongoing, and we stress that, under this circumstance, the phenomenology and characteristic scales for fragmentation of the layer are fundamentally different from those derived traditionally for pre-existing layers.

  12. Characterization of Bi and Fe co-doped PZT capacitors for FeRAM

    NASA Astrophysics Data System (ADS)

    Cross, Jeffrey S.; Kim, Seung-Hyun; Wada, Satoshi; Chatterjee, Abhijit

    2010-08-01

    Ferroelectric random access memory (FeRAM) has been in mass production for over 15 years. Higher polarization ferroelectric materials are needed for future devices which can operate above about 100 °C. With this goal in mind, co-doping of thin Pb(Zr40,Ti60)O3 (PZT) films with 1 at.% Bi and 1 at.% Fe was examined in order to enhance the ferroelectric properties as well as characterize the doped material. The XRD patterns of PZT-5% BiFeO3 (BF) and PZT 140-nm thick films showed (111) orientation on (111) platinized Si wafers and a 30 °C increase in the tetragonal to cubic phase transition temperature, often called the Curie temperature, from 350 to 380 °C with co-doping, indicating that Bi and Fe are substituting into the PZT lattice. Raman spectra revealed decreased band intensity with Bi and Fe co-doping of PZT compared to PZT. Polarization hysteresis loops show similar values of remanent polarization, but square-shaped voltage pulse-measured net polarization values of PZT-BF were higher and showed higher endurance to repeated cycling up to 1010 cycles. It is proposed that Bi and Fe are both in the +3 oxidation state and substituting into the perovskite A and B sites, respectively. Substitution of Bi and Fe into the PZT lattice likely creates defect dipoles, which increase the net polarization when measured by the short voltage pulse positive-up-negative-down (PUND) method.

  13. A Built-In Self-Test Structure (BIST) for Resistive RAMs characterization: Application to bipolar OxRRAM

    NASA Astrophysics Data System (ADS)

    Aziza, H.; Bocquet, M.; Moreau, M.; Portal, J.-M.

    2015-01-01

    Resistive Random Access Memory (RRAM) is a form of nonvolatile storage that operates by changing the resistance of a specially formulated solid dielectric material [1]. Among RRAMs, oxide-based Resistive RAMs (so-called OxRRAMs) are promising candidates due their compatibility with CMOS processes and high ON/OFF resistance ratio. Common problems with OxRRAM are related to high variability in operating conditions and low yield. OxRRAM variability mainly impact ON/OFF resistance ratio. This ratio is a key parameter to determine the overall performance of an OxRRAM memory. In this context, the presented built-in structure allows collecting statistical data related to the OxRRAM memory array (ON/OFF resistance distributions) for reliability assessment of the technology.

  14. Body ram, not suction, is the primary axis of suction-feeding diversity in spiny-rayed fishes.

    PubMed

    Longo, Sarah J; McGee, Matthew D; Oufiero, Christopher E; Waltzek, Thomas B; Wainwright, Peter C

    2016-01-01

    Suction-feeding fishes exhibit diverse prey-capture strategies that vary in their relative use of suction and predator approach (ram), which is often referred to as the ram-suction continuum. Previous research has found that ram varies more than suction distance among species, such that ram accounts for most differences in prey-capture behaviors. To determine whether these findings hold at broad evolutionary scales, we collected high-speed videos of 40 species of spiny-rayed fishes (Acanthomorpha) feeding on live prey. For each strike, we calculated the contributions of suction, body ram (swimming) and jaw ram (mouth movement relative to the body) to closing the distance between predator and prey. We confirm that the contribution of suction distance is limited even in this phylogenetically and ecologically broad sample of species, with the extreme suction area of prey-capture space conspicuously unoccupied. Instead of a continuum from suction to ram, we find that variation in body ram is the major factor underlying the diversity of prey-capture strategies among suction-feeding fishes. Independent measurement of the contribution of jaw ram revealed that it is an important component of diversity among spiny-rayed fishes, with a number of ecomorphologies relying heavily on jaw ram, including pivot feeding in syngnathiforms, extreme jaw protruders and benthic sit-and-wait ambush predators. A combination of morphological and behavioral innovations has allowed fish to invade the extreme jaw ram area of prey-capture space. We caution that while two-species comparisons may support a ram-suction trade-off, these patterns do not speak to broader patterns across spiny-rayed fishes.

  15. Body ram, not suction, is the primary axis of suction-feeding diversity in spiny-rayed fishes.

    PubMed

    Longo, Sarah J; McGee, Matthew D; Oufiero, Christopher E; Waltzek, Thomas B; Wainwright, Peter C

    2016-01-01

    Suction-feeding fishes exhibit diverse prey-capture strategies that vary in their relative use of suction and predator approach (ram), which is often referred to as the ram-suction continuum. Previous research has found that ram varies more than suction distance among species, such that ram accounts for most differences in prey-capture behaviors. To determine whether these findings hold at broad evolutionary scales, we collected high-speed videos of 40 species of spiny-rayed fishes (Acanthomorpha) feeding on live prey. For each strike, we calculated the contributions of suction, body ram (swimming) and jaw ram (mouth movement relative to the body) to closing the distance between predator and prey. We confirm that the contribution of suction distance is limited even in this phylogenetically and ecologically broad sample of species, with the extreme suction area of prey-capture space conspicuously unoccupied. Instead of a continuum from suction to ram, we find that variation in body ram is the major factor underlying the diversity of prey-capture strategies among suction-feeding fishes. Independent measurement of the contribution of jaw ram revealed that it is an important component of diversity among spiny-rayed fishes, with a number of ecomorphologies relying heavily on jaw ram, including pivot feeding in syngnathiforms, extreme jaw protruders and benthic sit-and-wait ambush predators. A combination of morphological and behavioral innovations has allowed fish to invade the extreme jaw ram area of prey-capture space. We caution that while two-species comparisons may support a ram-suction trade-off, these patterns do not speak to broader patterns across spiny-rayed fishes. PMID:26596534

  16. Microwave absorbance properties of zirconium–manganese substituted cobalt nanoferrite as electromagnetic (EM) wave absorbers

    SciTech Connect

    Khan, Kishwar Rehman, Sarish

    2014-02-01

    Highlights: • Good candidates for EM materials with low reflectivity. • Good candidates for broad bandwidth at microwave frequency. • Microwave absorbing bandwidth was modulated simply by manipulating the Zr–Mn. • Higher the Zr–Mn content, the higher absorption rates for the electromagnetic radiation. • The predicted reflection loss shows that this can be used for thin ferrite absorber. - Abstract: Nanocrystalline Zr–Mn (x) substituted Co ferrite having chemical formula CoFe{sub 2−2x}Zr{sub x}Mn{sub x}O{sub 4} (x = 0.1–0.4) was prepared by co-precipitation technique. Combining properties such as structural, electrical, magnetic and reflection loss characteristics. Crystal structure and surface morphology of the calcined samples were characterized by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). By using two point probe homemade resistivity apparatus to find resistivity of the sample. Electromagnetic (EM) properties are measured through RF impedance/materials analyzer over 1 MHz–3 GHz. The room-temperature dielectric measurements show dispersion behavior with increasing frequency from 100 Hz to 3 MHz. Magnetic properties confirmed relatively strong dependence of saturation magnetization on Zr–Mn composition. Curie temperature is also found to decrease linearly with addition of Zr–Mn. Furthermore, comprehensive analysis of microwave reflection loss (RL) is carried out as a function of substitution, frequency, and thickness. Composition accompanying maximum microwave absorption is suggested.

  17. On the influence of ram-pressure stripping on interacting galaxies in clusters

    NASA Astrophysics Data System (ADS)

    Kapferer, W.; Kronberger, T.; Ferrari, C.; Riser, T.; Schindler, S.

    2008-09-01

    We investigate the influence of ram pressure on the star-formation rate and the distribution of gas and stellar matter in interacting model galaxies in clusters. To simulate the baryonic and non-baryonic components of interacting disc galaxies moving through a hot, thin medium, we use a combined N-body/hydrodynamic code GADGET2 with a description for star formation based on density thresholds. Two identical model spiral galaxies on a collision trajectory with three different configurations were investigated in detail. In the first configuration, the galaxies collide without the presence of an ambient medium. In the second configurations, the ram pressure acts face-on on the interacting galaxies and in the third configuration the ram pressure acts edge-on. The ambient medium is thin (10-28gcm-3), hot (3keV ~ 3.6 × 107 K) and has a relative velocity of 1000kms-1, to mimic an average low ram pressure in the outskirts of galaxy clusters. The interaction velocities are comparable to galaxy interactions in groups, falling along filaments into galaxy clusters. The global star-formation rate of the interacting system is enhanced in the presence of ram pressure by a factor of 3 in comparison to the same interaction without the presence of an ambient medium. The tidal tails and the gaseous bridge of the interacting system are almost completely destroyed by the ram pressure. The amount of gas in the wake of the interacting system is ~50 per cent of the total gas of the colliding galaxies after 500Myr the galaxies start to feel the ram pressure. Nearly ~10-15 per cent in mass of all newly formed stars are formed in the wake of the interacting system at distances larger than 20 kpc behind the stellar discs. As the tidal tails and the gaseous bridge between the interacting systems feel the ram pressure, knots of cold gas (T < 1 × 105 K) start to form. These irregular structures contain several 106Msolar of cold gas and newly formed stars and, as the ram pressure acts on them

  18. Graphene-enabled electrically switchable radar absorbing surfaces

    NASA Astrophysics Data System (ADS)

    Balci, Osman; Polat, Emre Ozan; Kakenov, Nurbek; Kocabas, Coskun

    2015-03-01

    Radar absorbing materials are used in stealth technologies for concealment of an object from radar detection. Resistive and/or magnetic composite materials are used to reduce the backscattered microwave signals. Inability to control electrical properties of these materials however, hinders the realization of active camouflage systems which require adaptive surfaces operating in microwave frequencies. Here, using large-area graphene electrodes, we demonstrate a new class of active surfaces which enables unprecedented ability to control reflection, transmission and absorption of microwaves by electrical means. Instead of tuning bulk material property, our strategy relies on electrostatic tuning of the charge density on an atomically thin electrode which operates as a tunable metal in microwave frequencies. Notably, we fabricated large area adaptive radar absorbing surfaces with tunable reflection suppression ratio up to 50 dB with operation voltages less than 5 V. These electrically switchable radar absorbing surfaces provide a significant step in realization of active camouflage systems and adaptive cloaking in microwave frequencies, which cannot be realized by conventional materials.

  19. RAM-induced Allostery Facilitates Assembly of a Notch Pathway Active Transcription Complex

    SciTech Connect

    Friedmann, David R.; Wilson, Jeffrey J.; Kovall, Rhett A.

    2008-07-09

    The Notch pathway is a conserved cell-to-cell signaling mechanism, in which extracellular signals are transduced into transcriptional outputs through the nuclear effector CSL. CSL is converted from a repressor to an activator through the formation of the CSL-NotchIC-Mastermind ternary complex. The RAM (RBP-J associated molecule) domain of NotchIC avidly interacts with CSL; however, its role in assembly of the CSL-NotchIC-Mastermind ternary complex is not understood. Here we provide a comprehensive thermodynamic, structural, and biochemical analysis of the RAM-CSL interaction for components from both mouse and worm. Our binding data show that RAM and CSL form a high affinity complex in the presence or absence of DNA. Our structural studies reveal a striking distal conformational change in CSL upon RAM binding, which creates a docking site for Mastermind to bind to the complex. Finally, we show that the addition of a RAM peptide in trans facilitates formation of the CSL-NotchIC-Mastermind ternary complex in vitro.

  20. MarA and ramA regulate virulence in Salmonella enterica serovar Choleraesuis.

    PubMed

    Lee, Jen-Jie; Hsuan, Shih-Ling; Kuo, Chih-Jung; Wu, Ying-Chen; Chen, Ter-Hsin

    2015-12-31

    Salmonella enterica serovar Choleraesuis is considered as an important porcine pathogen that causes serious systemic infections and exhibits poor response to treatment because of an increase in multidrug resistance (MDR). Among the various regulators of resistance, multiple antibiotic resistance factor A (marA) and regulator of acetate metabolism A (ramA) are the most effective in conferring antibiotic tolerance by activation of multidrug efflux pumps. Here we investigated the regulation of virulence in Salmonella Choleraesuis through these two transcriptional regulators. We showed that marA andramA are important for the survival of Salmonella Choleraesuis in an environment of acid and bile salts, since marA- or ramA-deficient Salmonella Choleraesuis strains failed to increase protective responses, as observed by quantitative RT-PCR (qPCR). Further, reduced invasion and survival in host cells was observed in the marA and ramA mutant strains. The results from in vitrostudies with marA- and ramA-deficient strains showed attenuated characteristics in comparison to those in the wild-type strain of Salmonella Choleraesuis when it was used to challenge BALB/c mice. The mutant strains had higher LD50 and presented poor clearance efficiency compared to the parental strain. These findings indicate that MarA and RamA not only regulate drug resistance but also play a role in the virulence of SalmonellaCholeraesuis.