Sample records for absorbs blue light

  1. Alternative perspective on the control of transpiration by radiation.

    PubMed

    Mott, Keith A; Peak, David

    2011-12-06

    Stomatal responses to light are important determinants for plant water use efficiency and for general circulation models, but a mechanistic understanding of these responses remains elusive. A recent study [Pieruschka R, Huber G, Berry JA (2010) Proc Natl Acad Sci USA 107:13372-13377] concluded that stomata respond to total absorbed radiation rather than red and blue light as previously thought. We tested this idea by reexamining stomatal responses to red and blue light and to IR radiation. We show that responses to red and blue light are not consistent with a response to total absorbed radiation and that apparent stomatal responses to IR radiation are explainable as experimental artifacts. In addition, our data and analysis provide a method for accurately determining the internal temperature of a leaf.

  2. Phycourobilin in trichromatic phycocyanin from oceanic cyanobacteria is formed post-translationally by a phycoerythrobilin lyase-isomerase.

    PubMed

    Blot, Nicolas; Wu, Xian-Jun; Thomas, Jean-Claude; Zhang, Juan; Garczarek, Laurence; Böhm, Stephan; Tu, Jun-Ming; Zhou, Ming; Plöscher, Matthias; Eichacker, Lutz; Partensky, Frédéric; Scheer, Hugo; Zhao, Kai-Hong

    2009-04-03

    Most cyanobacteria harvest light with large antenna complexes called phycobilisomes. The diversity of their constituting phycobiliproteins contributes to optimize the photosynthetic capacity of these microorganisms. Phycobiliprotein biosynthesis, which involves several post-translational modifications including covalent attachment of the linear tetrapyrrole chromophores (phycobilins) to apoproteins, begins to be well understood. However, the biosynthetic pathway to the blue-green-absorbing phycourobilin (lambda(max) approximately 495 nm) remained unknown, although it is the major phycobilin of cyanobacteria living in oceanic areas where blue light penetrates deeply into the water column. We describe a unique trichromatic phycocyanin, R-PC V, extracted from phycobilisomes of Synechococcus sp. strain WH8102. It is evolutionarily remarkable as the only chromoprotein known so far that absorbs the whole wavelength range between 450 and 650 nm. R-PC V carries a phycourobilin chromophore on its alpha-subunit, and this can be considered an extreme case of adaptation to blue-green light. We also discovered the enzyme, RpcG, responsible for its biosynthesis. This monomeric enzyme catalyzes binding of the green-absorbing phycoerythrobilin at cysteine 84 with concomitant isomerization to phycourobilin. This reaction is analogous to formation of the orange-absorbing phycoviolobilin from the red-absorbing phycocyanobilin that is catalyzed by the lyase-isomerase PecE/F in some freshwater cyanobacteria. The fusion protein, RpcG, and the heterodimeric PecE/F are mutually interchangeable in a heterologous expression system in Escherichia coli. The novel R-PC V likely optimizes rod-core energy transfer in phycobilisomes and thereby adaptation of a major phytoplankton group to the blue-green light prevailing in oceanic waters.

  3. Direct observation of back energy transfer in blue phosphorescent materials for organic light emitting diodes by time-resolved optical waveguide spectroscopy.

    PubMed

    Hirayama, H; Sugawara, Y; Miyashita, Y; Mitsuishi, M; Miyashita, T

    2013-02-25

    We demonstrate a high-sensitive transient absorption technique for detection of excited states in an organic thin film by time-resolved optical waveguide spectroscopy. By using a laser beam as a probe light, we detect small change in the transient absorbance which is equivalent to 10 -7 absorbance unit in a conventional method. This technique was applied to organic thin films of blue phosphorescent materials for organic light emitting diodes. We directly observed the back energy transfer from emitting guest molecules to conductive host molecules.

  4. Attenuating Photostress and Glare Disability in Pseudophakic Patients through the Addition of a Short-Wave Absorbing Filter.

    PubMed

    Hammond, Billy R

    2015-01-01

    To evaluate the effects of filtering short wavelength light on visual performance under intense light conditions among pseudophakic patients previously implanted with a clear intraocular lens (IOL). This was a patient-masked, randomized crossover study conducted at 6 clinical sites in the United States between September 2013 and January 2014. One hundred fifty-four bilaterally pseudophakic patients were recruited. Photostress recovery time and glare disability thresholds were measured with clip-on blue-light-filtering and placebo (clear; no blue-light filtration) glasses worn over patients' habitual correction. Photostress recovery time was quantified as the time necessary to regain sight of a grating target after intense light exposure. Glare disability threshold was assessed as the intensity of a white-light annulus necessary to obscure a central target. The order of filter used and test eye were randomized across patients. Photostress recovery time and glare disability thresholds were significantly improved (both P < 0.0001) when patients used blue-light-filtering glasses compared with clear, nonfiltering glasses. Compared with a nonfiltering placebo, adding a clip-on blue-absorbing filter to the glasses of pseudophakic patients implanted with clear IOLs significantly increased their ability to cope with glare and to recover normal viewing after an intensive photostress. This result implies that IOL designs with blue-light-filtering characteristics may be beneficial under intense light conditions.

  5. Phycourobilin in Trichromatic Phycocyanin from Oceanic Cyanobacteria Is Formed Post-translationally by a Phycoerythrobilin Lyase-Isomerase*S⃞

    PubMed Central

    Blot, Nicolas; Wu, Xian-Jun; Thomas, Jean-Claude; Zhang, Juan; Garczarek, Laurence; Böhm, Stephan; Tu, Jun-Ming; Zhou, Ming; Plöscher, Matthias; Eichacker, Lutz; Partensky, Frédéric; Scheer, Hugo; Zhao, Kai-Hong

    2009-01-01

    Most cyanobacteria harvest light with large antenna complexes called phycobilisomes. The diversity of their constituting phycobiliproteins contributes to optimize the photosynthetic capacity of these microorganisms. Phycobiliprotein biosynthesis, which involves several post-translational modifications including covalent attachment of the linear tetrapyrrole chromophores (phycobilins) to apoproteins, begins to be well understood. However, the biosynthetic pathway to the blue-green-absorbing phycourobilin (λmax ∼ 495 nm) remained unknown, although it is the major phycobilin of cyanobacteria living in oceanic areas where blue light penetrates deeply into the water column. We describe a unique trichromatic phycocyanin, R-PC V, extracted from phycobilisomes of Synechococcus sp. strain WH8102. It is evolutionarily remarkable as the only chromoprotein known so far that absorbs the whole wavelength range between 450 and 650 nm. R-PC V carries a phycourobilin chromophore on its α-subunit, and this can be considered an extreme case of adaptation to blue-green light. We also discovered the enzyme, RpcG, responsible for its biosynthesis. This monomeric enzyme catalyzes binding of the green-absorbing phycoerythrobilin at cysteine 84 with concomitant isomerization to phycourobilin. This reaction is analogous to formation of the orange-absorbing phycoviolobilin from the red-absorbing phycocyanobilin that is catalyzed by the lyase-isomerase PecE/F in some freshwater cyanobacteria. The fusion protein, RpcG, and the heterodimeric PecE/F are mutually interchangeable in a heterologous expression system in Escherichia coli. The novel R-PC V likely optimizes rod-core energy transfer in phycobilisomes and thereby adaptation of a major phytoplankton group to the blue-green light prevailing in oceanic waters. PMID:19182270

  6. Earthshots: Satellite images of environmental change – Lake Urmia, Iran

    USGS Publications Warehouse

    Adamson, Thomas

    2015-01-01

    The lake’s southern basin is shallower than its northern basin, so recent images show the water disappearing from the southern basin first. These Landsat images use the shortwave-infrared, near-infrared, and green wavelengths of light. Because water absorbs infrared light, water (dark blue to black) contrasts with the surrounding land areas. As the water becomes shallower, light is reflected off of the lakebed in shades of light blue. Lighter blue and bright areas immediately surrounding the lake are where the receding shoreline has exposed the lake bottom.

  7. Phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus.

    PubMed

    Shukla, Animesh; Biswas, Avijit; Blot, Nicolas; Partensky, Frédéric; Karty, Jonathan A; Hammad, Loubna A; Garczarek, Laurence; Gutu, Andrian; Schluchter, Wendy M; Kehoe, David M

    2012-12-04

    The marine cyanobacterium Synechococcus is the second most abundant phytoplanktonic organism in the world's oceans. The ubiquity of this genus is in large part due to its use of a diverse set of photosynthetic light-harvesting pigments called phycobiliproteins, which allow it to efficiently exploit a wide range of light colors. Here we uncover a pivotal molecular mechanism underpinning a widespread response among marine Synechococcus cells known as "type IV chromatic acclimation" (CA4). During this process, the pigmentation of the two main phycobiliproteins of this organism, phycoerythrins I and II, is reversibly modified to match changes in the ambient light color so as to maximize photon capture for photosynthesis. CA4 involves the replacement of three molecules of the green light-absorbing chromophore phycoerythrobilin with an equivalent number of the blue light-absorbing chromophore phycourobilin when cells are shifted from green to blue light, and the reverse after a shift from blue to green light. We have identified and characterized MpeZ, an enzyme critical for CA4 in marine Synechococcus. MpeZ attaches phycoerythrobilin to cysteine-83 of the α-subunit of phycoerythrin II and isomerizes it to phycourobilin. mpeZ RNA is six times more abundant in blue light, suggesting that its proper regulation is critical for CA4. Furthermore, mpeZ mutants fail to normally acclimate in blue light. These findings provide insights into the molecular mechanisms controlling an ecologically important photosynthetic process and identify a unique class of phycoerythrin lyase/isomerases, which will further expand the already widespread use of phycoerythrin in biotechnology and cell biology applications.

  8. Phycoerythrin-specific bilin lyase–isomerase controls blue-green chromatic acclimation in marine Synechococcus

    PubMed Central

    Shukla, Animesh; Biswas, Avijit; Blot, Nicolas; Partensky, Frédéric; Karty, Jonathan A.; Hammad, Loubna A.; Garczarek, Laurence; Gutu, Andrian; Schluchter, Wendy M.; Kehoe, David M.

    2012-01-01

    The marine cyanobacterium Synechococcus is the second most abundant phytoplanktonic organism in the world's oceans. The ubiquity of this genus is in large part due to its use of a diverse set of photosynthetic light-harvesting pigments called phycobiliproteins, which allow it to efficiently exploit a wide range of light colors. Here we uncover a pivotal molecular mechanism underpinning a widespread response among marine Synechococcus cells known as “type IV chromatic acclimation” (CA4). During this process, the pigmentation of the two main phycobiliproteins of this organism, phycoerythrins I and II, is reversibly modified to match changes in the ambient light color so as to maximize photon capture for photosynthesis. CA4 involves the replacement of three molecules of the green light-absorbing chromophore phycoerythrobilin with an equivalent number of the blue light-absorbing chromophore phycourobilin when cells are shifted from green to blue light, and the reverse after a shift from blue to green light. We have identified and characterized MpeZ, an enzyme critical for CA4 in marine Synechococcus. MpeZ attaches phycoerythrobilin to cysteine-83 of the α-subunit of phycoerythrin II and isomerizes it to phycourobilin. mpeZ RNA is six times more abundant in blue light, suggesting that its proper regulation is critical for CA4. Furthermore, mpeZ mutants fail to normally acclimate in blue light. These findings provide insights into the molecular mechanisms controlling an ecologically important photosynthetic process and identify a unique class of phycoerythrin lyase/isomerases, which will further expand the already widespread use of phycoerythrin in biotechnology and cell biology applications. PMID:23161909

  9. Cassini First-Look Images of Jupiter

    NASA Image and Video Library

    2000-10-05

    This image of Jupiter was taken by the Cassini Imaging Science narrow angle camera through the blue filter (centered at 445 nanometers) on October 1, 2000, 15:26 UTC at a distance of 84.1million km from Jupiter. The smallest features that can be seen are 500 kilometers across. The contrast between bright and dark features in this region of the spectrum is determined by the different light absorbing properties of the particles composing Jupiter's clouds. Ammonia ice particles are white, reflecting all light that falls on them. But some particles are red, and absorb mostly blue light. The composition of these red particles and the processes which determine their distribution are two of the long-standing mysteries of Jovian meteorology and chemistry. Note that the Great Red Spot contains a dark core of absorbing particles. http://photojournal.jpl.nasa.gov/catalog/PIA02666

  10. Biocompatibility and antibacterial activity of nitrogen-doped titanium dioxide nanoparticles for use in dental resin formulations

    PubMed Central

    Zane, Andrew; Zuo, Ranfang; Villamena, Frederick A; Rockenbauer, Antal; Digeorge Foushee, Ann Marie; Flores, Kristin; Dutta, Prabir K; Nagy, Amber

    2016-01-01

    The addition of antibacterial functionality to dental resins presents an opportunity to extend their useful lifetime by reducing secondary caries caused by bacterial recolonization. In this study, the potential efficacy of nitrogen-doped titanium dioxide nanoparticles for this purpose was determined. Nitrogen doping was carried out to extend the ultraviolet absorbance into longer wavelength blue light for increased biocompatibility. Titanium dioxide nanoparticles (approximately 20–30 nm) were synthesized with and without nitrogen doping using a sol–gel method. Ultraviolet–Visible spectroscopy indicated a band of trap states, with increasing blue light absorbance as the concentration of the nitrogen dopant increased. Electron paramagnetic resonance measurements indicated the formation of superoxide and hydroxyl radicals upon particle exposure to visible light and oxygen. The particles were significantly toxic to Escherichia coli in a dose-dependent manner after a 1-hour exposure to a blue light source (480 nm). Intracellular reactive oxygen species assay demonstrated that the particles caused a stress response in human gingival epithelial cells when exposed to 1 hour of blue light, though this did not result in detectable release of cytokines. No decrease in cell viability was observed by water-soluble tetrazolium dye assay. The results show that nitrogen-doped titanium dioxide nanoparticles have antibacterial activity when exposed to blue light, and are biocompatible at these concentrations. PMID:27980404

  11. Biocompatibility and antibacterial activity of nitrogen-doped titanium dioxide nanoparticles for use in dental resin formulations.

    PubMed

    Zane, Andrew; Zuo, Ranfang; Villamena, Frederick A; Rockenbauer, Antal; Digeorge Foushee, Ann Marie; Flores, Kristin; Dutta, Prabir K; Nagy, Amber

    The addition of antibacterial functionality to dental resins presents an opportunity to extend their useful lifetime by reducing secondary caries caused by bacterial recolonization. In this study, the potential efficacy of nitrogen-doped titanium dioxide nanoparticles for this purpose was determined. Nitrogen doping was carried out to extend the ultraviolet absorbance into longer wavelength blue light for increased biocompatibility. Titanium dioxide nanoparticles (approximately 20-30 nm) were synthesized with and without nitrogen doping using a sol-gel method. Ultraviolet-Visible spectroscopy indicated a band of trap states, with increasing blue light absorbance as the concentration of the nitrogen dopant increased. Electron paramagnetic resonance measurements indicated the formation of superoxide and hydroxyl radicals upon particle exposure to visible light and oxygen. The particles were significantly toxic to Escherichia coli in a dose-dependent manner after a 1-hour exposure to a blue light source (480 nm). Intracellular reactive oxygen species assay demonstrated that the particles caused a stress response in human gingival epithelial cells when exposed to 1 hour of blue light, though this did not result in detectable release of cytokines. No decrease in cell viability was observed by water-soluble tetrazolium dye assay. The results show that nitrogen-doped titanium dioxide nanoparticles have antibacterial activity when exposed to blue light, and are biocompatible at these concentrations.

  12. Shedding Light on Bird Egg Color: Pigment as Parasol and the Dark Car Effect.

    PubMed

    Lahti, David C; Ardia, Daniel R

    2016-05-01

    The vibrant colors of many birds' eggs, particularly those that are blue to blue-green, are extraordinary in that they are striking traits present in hundreds of species that have nevertheless eluded evolutionary functional explanation. We propose that egg pigmentation mediates a trade-off between two routes by which solar radiation can harm bird embryos: transmittance through the eggshell and overheating through absorbance. We quantitatively test four components of this hypothesis on variably colored eggs of the village weaverbird (Ploceus cucullatus) in a controlled light environment: (1) damaging ultraviolet radiation can transmit through bird eggshells, (2) infrared radiation at natural intensities can heat the interior of eggs, (3) more intense egg coloration decreases light transmittance ("pigment as parasol"), and (4) more intense egg coloration increases absorbance of light by the eggshell and heats the egg interior ("dark car effect"). Results support all of these predictions. Thus, in sunlit nesting environments, less pigmentation will increase the detrimental effect of transmittance, but more pigmentation will increase the detrimental effect of absorbance. The optimal pigmentation level for a bird egg in a given light environment, all other things being equal, will depend on the balance between light transmittance and absorbance in relation to embryo fitness.

  13. Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation.

    PubMed

    Siipola, Sari M; Kotilainen, Titta; Sipari, Nina; Morales, Luis O; Lindfors, Anders V; Robson, T Matthew; Aphalo, Pedro J

    2015-05-01

    Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A < 370 nm; (3) attenuate UV-B and UV-A; (4) attenuate UV-B, UV-A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole-leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV-B responses were not significant. These results show that pea plants regulate epidermal UV-A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors. © 2014 John Wiley & Sons Ltd.

  14. Penetration of UV-A, UV-B, blue, and red light into leaf tissues of pecan measured by a fiber optic microprobe system

    NASA Astrophysics Data System (ADS)

    Qi, Yadong; Bai, Shuju; Vogelmann, Thomas C.; Heisler, Gordon M.

    2003-11-01

    The depth of light penetration from the adaxial surfaces of the mature leaves of pecan (Carya illinoensis) was measured using a fiber optic microprobe system at four wavelengths: UV-B (310nm), UV-A (360 nm), blue light (430nm), and red light (680nm). The average thickness of the leaf adaxial epidermal layer was 15um and the total leaf thickness was 219um. The patterns of the light attenuation by the leaf tissues exhibited strong wavelength dependence. The leaf adaxial epidermal layer was chiefly responsible for absorbing the UV-A UV-B radiation. About 98% of 310 nm light was steeply attenuated within the first 5 um of the adaxial epidermis; thus, very little UV-B radiation was transmitted to the mesophyll tissues where contain photosynthetically sensitive sites. The adaxial epidermis also attenuated 96% of the UV-A radiation. In contrast, the blue and red light penetrated much deeper and was gradually attenutated by the leaves. The mesophyll tissues attenuated 17% of the blue light and 42% of the red light, which were available for photosynthesis use. Since the epidermal layer absorbed nearly all UV-B light, it acted as an effective filter screening out the harmful radiation and protecting photosynthetically sensitive tissues from the UV-B damage. Therefore, the epidermal function of the UV-B screening effectiveness can be regarded as one of the UV-B protection mechanisms in pecan.

  15. Metarhodopsin control by arrestin, light-filtering screening pigments, and visual pigment turnover in invertebrate microvillar photoreceptors.

    PubMed

    Stavenga, Doekele G; Hardie, Roger C

    2011-03-01

    The visual pigments of most invertebrate photoreceptors have two thermostable photo-interconvertible states, the ground state rhodopsin and photo-activated metarhodopsin, which triggers the phototransduction cascade until it binds arrestin. The ratio of the two states in photoequilibrium is determined by their absorbance spectra and the effective spectral distribution of illumination. Calculations indicate that metarhodopsin levels in fly photoreceptors are maintained below ~35% in normal diurnal environments, due to the combination of a blue-green rhodopsin, an orange-absorbing metarhodopsin and red transparent screening pigments. Slow metarhodopsin degradation and rhodopsin regeneration processes further subserve visual pigment maintenance. In most insect eyes, where the majority of photoreceptors have green-absorbing rhodopsins and blue-absorbing metarhodopsins, natural illuminants are predicted to create metarhodopsin levels greater than 60% at high intensities. However, fast metarhodopsin decay and rhodopsin regeneration also play an important role in controlling metarhodopsin in green receptors, resulting in a high rhodopsin content at low light intensities and a reduced overall visual pigment content in bright light. A simple model for the visual pigment-arrestin cycle is used to illustrate the dependence of the visual pigment population states on light intensity, arrestin levels and pigment turnover.

  16. Light sheet microscopy reveals more gradual light attenuation in light green versus dark green soybean leaves

    USDA-ARS?s Scientific Manuscript database

    Light wavelengths preferentially absorbed by chlorophyll (chl) often display steep absorption gradients. This oversaturates photosynthesis in upper chloroplasts and deprives lower chloroplasts of blue and red light, causing a steep gradient in carbon fixation. Reducing chl content could create a mor...

  17. A Flavin Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in Chlamydomonas reinhardtii[W

    PubMed Central

    Beel, Benedikt; Prager, Katja; Spexard, Meike; Sasso, Severin; Weiss, Daniel; Müller, Nico; Heinnickel, Mark; Dewez, David; Ikoma, Danielle; Grossman, Arthur R.; Kottke, Tilman; Mittag, Maria

    2012-01-01

    Cryptochromes are flavoproteins that act as sensory blue light receptors in insects, plants, fungi, and bacteria. We have investigated a cryptochrome from the green alga Chlamydomonas reinhardtii with sequence homology to animal cryptochromes and (6-4) photolyases. In response to blue and red light exposure, this animal-like cryptochrome (aCRY) alters the light-dependent expression of various genes encoding proteins involved in chlorophyll and carotenoid biosynthesis, light-harvesting complexes, nitrogen metabolism, cell cycle control, and the circadian clock. Additionally, exposure to yellow but not far-red light leads to comparable increases in the expression of specific genes; this expression is significantly reduced in an acry insertional mutant. These in vivo effects are congruent with in vitro data showing that blue, yellow, and red light, but not far-red light, are absorbed by the neutral radical state of flavin in aCRY. The aCRY neutral radical is formed following blue light absorption of the oxidized flavin. Red illumination leads to conversion to the fully reduced state. Our data suggest that aCRY is a functionally important blue and red light–activated flavoprotein. The broad spectral response implies that the neutral radical state functions as a dark form in aCRY and expands the paradigm of flavoproteins and cryptochromes as blue light sensors to include other light qualities. PMID:22773746

  18. Cyanochrome fluorophores

    DOEpatents

    Ulijasz, Andrew T.; Vierstra, Richard D.

    2016-06-14

    Genetically-engineered cyanochrome fluorophore molecules (fluorophores) with increased fluorescence and with absorbing fluorescence in the blue and green (blue/green) portion of the light spectrum are provided. These fluorophores are derived from the domains of phytochromes, and in particular cyanobacterial phytochromes. Methods for generating these fluorophores and various applications of these fluorophores are also provided.

  19. Chromoproteins Protect Blue-pigmented Corals Under Normal Conditions But May Exacerbate Stress During Bleaching Events

    NASA Astrophysics Data System (ADS)

    Richards Donà, A.

    2016-02-01

    Light in the yellow range of the visible spectrum is abundant in shallow water and is second only to ultraviolet light in potential to cause photodamage to the symbiotic algal partners living within coral cells. Chromoproteins (CPs) provide photoprotection to corals by absorbing yellow light energy and transferring it into heat that is dissipated. Because CPs absorb yellow light they are responsible for blue/purple coral pigmentation and presumably permit corals such as the endemic Hawaiian Montipora flabellata to thrive on shallow, high irradiance reefs where light is commonly supersaturating. But increasing sea surface temperatures (SSTs) are causing these corals to bleach before most other species, particularly, in Kane'ohe Bay, Hawai'i. Following the bleaching event of 2014, we observed that blue montiporids recovered more slowly and suffered more mortality than other species at similar depths. Thus it seems that while CPs provide a photoprotective advantage under normal environmental conditions, they may play a role in blue coral mortality when SSTs remain too high for too long. Through this investigation, we seek to better understand the functional role of CPs in Hawaiian coral species and determine the benefits and drawbacks to CP possession given predicted climate change scenarios. Preliminary experimental results and direct observation of currently bleaching corals in the field seem to indicate that highly blue-pigmented colonies of M. flabellata are more likely to bleach and suffer subsequent mortality than colonies with fainter blue pigmentation. It is vital we understand these phenomena since Hawaiian corals are currently experiencing the second consecutive year of higher-than-normal SSTs and our results could help elucidate the mechanisms that determine species susceptibility to thermal bleaching.

  20. Method to generate high efficient devices which emit high quality light for illumination

    DOEpatents

    Krummacher, Benjamin C.; Mathai, Mathew; Choong, Vi-En; Choulis, Stelios A.

    2009-06-30

    An electroluminescent apparatus includes an OLED device emitting light in the blue and green spectrums, and at least one down conversion layer. The down conversion layer absorbs at least part of the green spectrum light and emits light in at least one of the orange spectra and red spectra.

  1. Evidence from Studies with Acifluorfen for Participation of a Flavin-Cytochrome Complex in Blue Light Photoreception for Phototropism of Oat Coleoptiles 12

    PubMed Central

    Leong, Ta-Yan; Briggs, Winslow R.

    1982-01-01

    The diphenyl ether acifluorfen enhances the blue light-induced absorbance change in Triton X100-solubilized crude membrane preparations from etiolated oat (Avena sativa L. cv. Lodi) coleoptiles. Enhancement of the spectral change is correlated with a change in rate of dark reoxidation of a b-type cytochrome. Similar, although smaller, enhancement was obtained with oxyfluorfen, nitrofen, and bifenox. Light-minus-dark difference spectra in the presence and absence of acifluorfen, and the dithionite-reduced-minus oxidized difference spectrum indicate that acifluorfen is acting specifically at a blue light-sensitive cytochrome-flavin complex. Sodium azide, a flavin inhibitor, decreases the light-induced absorbance change significantly, but does not affect the dark reoxidation of the cytochrome. Hence, it is acting on the light reaction, suggesting that the photoreceptor itself is a flavin. Acifluorfen sensitizes phototropism in dark-grown oat seedlings such that the first positive response occurs with blue light fluences as little as one-third of those required to elicit the same response in seedlings grown in the absence of the herbicide. Both this increase in sensitivity to light and the enhancement of the light-induced cytochrome reduction vary with the applied acifluorfen concentration in a similar manner. The herbicide is without effect either on elongation or on the geotropic response of dark-grown oat seedlings, indicating that acifluorfen is acting specifically close to, or at the photoreceptor end of, the stimulus-response chain. It seems likely that the flavin-cytochrome complex serves to transduce the light signal into curvature in phototropism in oats, with the flavin moiety itself serving as the photoreceptor. PMID:16662593

  2. Potential of roselle and blue pea in the dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Dayang, S.; Irwanto, M.; Gomesh, N.; Ismail, B.

    2017-09-01

    This paper discovers the use of natural dyes from Roselle flower and Blue Pea flower which act as a sensitizer in DSSC and in addition has a potential in absorbing visible light spectrum. The dyes were extracted using distilled water (DI) and ethanol (E) extract solvent in an ultrasonic cleaner for 30 minutes with a frequency of 37 Hz by using `degas' mode at the temperature of 30°C. Absorption spectra of roselle dye and blue pea dye with different extract solvent were tested using Evolution 201 UV-Vis Spectrophotometer. It was found that Roselle dye absorbs at a range of 400 nm - 620 nm and Blue Pea absorbs at the range of wavelength 500 nm - 680 nm. Fourier-Transform Infrared (FTIR) was used to identify the functional active group in extract dye. The concept of Dye-Sensitized Solar Cell (DSSC) similar to photosynthesis process has attracted much attention since it demonstrates a great potential due to the use of low-cost materials and environmentally friendly sources of technology.

  3. Anomalous pH Effect of Blue Proteorhodopsin.

    PubMed

    Yamada, Keisuke; Kawanabe, Akira; Yoshizawa, Susumu; Inoue, Kentaro; Kogure, Kazuhiro; Kandori, Hideki

    2012-04-05

    Proteorhodopsin (PR) is a light-driven proton pump found in marine bacteria, and thousands of PRs are classified into blue-absorbing PR (B-PR; λmax ≈ 490 nm) and green-absorbing PR (G-PR; λmax ≈ 525 nm). In this report, we present conversion of B-PR into G-PR using anomalous pH effect. B-PR in LC1-200, marine γ-proteobacteria, absorbs 497 and 513 nm maximally at pH 7 and 4, respectively, whose pH titration was reversible (pKa = 4.8). When pH was lowered from 4, the λmax was further red-shifted (528 nm at pH 2). This is unusual because blue shift occurs by chloride binding in the case of bacteriorhodopsin. Surprisingly, when pH was increased from 2 to 7, the λmax of this B-PR was further red-shifted to 540 nm, indicating that green-absorbing PR (PR540) is created only by changing pH. The present study reports the conformational flexibility of microbial rhodopsins, leading to the switch of absorbing color by a simple pH change.

  4. A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet.

    PubMed

    Li, Ling; Kolle, Stefan; Weaver, James C; Ortiz, Christine; Aizenberg, Joanna; Kolle, Mathias

    2015-02-26

    Many species rely on diverse selections of entirely organic photonic structures for the manipulation of light and the display of striking colours. Here we report the discovery of a mineralized hierarchical photonic architecture embedded within the translucent shell of the blue-rayed limpet Patella pellucida. The bright colour of the limpet's stripes originates from light interference in a periodically layered zig-zag architecture of crystallographically co-oriented calcite lamellae. Beneath the photonic multilayer, a disordered array of light-absorbing particles provides contrast for the blue colour. This unique mineralized manifestation of a synergy of two distinct optical elements at specific locations within the continuum of the limpet's translucent protective shell ensures the vivid shine of the blue stripes, which can be perceived under water from a wide range of viewing angles. The stripes' reflection band coincides with the spectral range of minimal light absorption in sea water, raising intriguing questions regarding their functional significance.

  5. A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet

    NASA Astrophysics Data System (ADS)

    Li, Ling; Kolle, Stefan; Weaver, James C.; Ortiz, Christine; Aizenberg, Joanna; Kolle, Mathias

    2015-02-01

    Many species rely on diverse selections of entirely organic photonic structures for the manipulation of light and the display of striking colours. Here we report the discovery of a mineralized hierarchical photonic architecture embedded within the translucent shell of the blue-rayed limpet Patella pellucida. The bright colour of the limpet’s stripes originates from light interference in a periodically layered zig-zag architecture of crystallographically co-oriented calcite lamellae. Beneath the photonic multilayer, a disordered array of light-absorbing particles provides contrast for the blue colour. This unique mineralized manifestation of a synergy of two distinct optical elements at specific locations within the continuum of the limpet’s translucent protective shell ensures the vivid shine of the blue stripes, which can be perceived under water from a wide range of viewing angles. The stripes’ reflection band coincides with the spectral range of minimal light absorption in sea water, raising intriguing questions regarding their functional significance.

  6. A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet

    DOE PAGES

    Li, Ling; Kolle, Stefan; Weaver, James C.; ...

    2015-02-26

    Many species rely on diverse selections of entirely organic photonic structures for the manipulation of light and the display of striking colours. Here we report the discovery of a mineralized hierarchical photonic architecture embedded within the translucent shell of the blue-rayed limpet Patella pellucida. The bright colour of the limpet’s stripes originates from light interference in a periodically layered zig-zag architecture of crystallographically co-oriented calcite lamellae. Beneath the photonic multilayer, a disordered array of light-absorbing particles provides contrast for the blue colour. This unique mineralized manifestation of a synergy of two distinct optical elements at specific locations within the continuummore » of the limpet’s translucent protective shell ensures the vivid shine of the blue stripes, which can be perceived under water from a wide range of viewing angles. The stripes’ reflection band coincides with the spectral range of minimal light absorption in sea water, raising intriguing questions regarding their functional significance.« less

  7. Comprehensive analysis of the green-to-blue photoconversion of full-length Cyanobacteriochrome Tlr0924.

    PubMed

    Hardman, Samantha J O; Hauck, Anna F E; Clark, Ian P; Heyes, Derren J; Scrutton, Nigel S

    2014-11-04

    Cyanobacteriochromes are members of the phytochrome superfamily of photoreceptors and are of central importance in biological light-activated signaling mechanisms. These photoreceptors are known to reversibly convert between two states in a photoinitiated process that involves a basic E/Z isomerization of the bilin chromophore and, in certain cases, the breakage of a thioether linkage to a conserved cysteine residue in the bulk protein structure. The exact details and timescales of the reactions involved in these photoconversions have not been conclusively shown. The cyanobacteriochrome Tlr0924 contains phycocyanobilin and phycoviolobilin chromophores, both of which photoconvert between two species: blue-absorbing and green-absorbing, and blue-absorbing and red-absorbing, respectively. Here, we followed the complete green-to-blue photoconversion process of the phycoviolobilin chromophore in the full-length form of Tlr0924 over timescales ranging from femtoseconds to seconds. Using a combination of time-resolved visible and mid-infrared transient absorption spectroscopy and cryotrapping techniques, we showed that after photoisomerization, which occurs with a lifetime of 3.6 ps, the phycoviolobilin twists or distorts slightly with a lifetime of 5.3 ?s. The final step, the formation of the thioether linkage with the protein, occurs with a lifetime of 23.6 ms.

  8. Characterization of Thymol blue Radiochromic dosimeters for high dose applications

    NASA Astrophysics Data System (ADS)

    Aldweri, Feras M.; Abuzayed, Manar H.; Al-Ajaleen, Musab S.; Rabaeh, Khalid A.

    2018-03-01

    Thymol blue (TB) solutions and Thymol blue Polyvinyl Alcohol (TB-PVA) films have been introduced as Radiochromic dosimeter for high dose applications. The dosimeters were irradiated with gamma ray (60Co source) from 5 to 30 kGy for film, and from 0.150 kGy to 4 kGy for solution. The optical density of unirradiated and irradiated TB solution as well as TB-PVA film dosimeters were studied in terms of absorbance at 434 nm using UV/VIS spectrophotometer. The effects of scan temperature, light pre-gamma irradiation, dose rate, relative humidity and stability of the absorbance of solutions and films after irradiation were investigated. We found the dose sensitivity of TB solution and TB-PVA film dosimeters increases significantly with increases of the absorbed dose as well as with the increases of TB dye concentrations. The useful dose range of developed TB solutions and TB-PVA films dosimeters is in the range 0.125-1 kGy and of 5-20 kGy, respectively.

  9. On-site Determination of Trace Arsenic by Reflection-Absorption Colorimetry of Molybdenum Blue Collected on a Membrane Filter.

    PubMed

    Hasegawa, Yuya; Suzuki, Yasutada; Kawakubo, Susumu

    2017-01-01

    An on-site determination method for trace arsenic has been developed by collecting it as molybdenum blue (MB) in the presence of tetradecyldimethylbenzylammonium chloride on a mixed cellulose ester membrane filter and by measuring reflection absorbance (RA) of MB on the filter using a laboratory-made palm-top size reflection-absorbance colorimeter with a red light-emitting diode. The value of RA was proportional to the amount of arsenic up to 0.5 μg with a detection limit of 0.01 μg. The proposed method was successfully applied to soil extract and hot-spring water samples.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ling; Kolle, Stefan; Weaver, James C.

    Many species rely on diverse selections of entirely organic photonic structures for the manipulation of light and the display of striking colours. Here we report the discovery of a mineralized hierarchical photonic architecture embedded within the translucent shell of the blue-rayed limpet Patella pellucida. The bright colour of the limpet’s stripes originates from light interference in a periodically layered zig-zag architecture of crystallographically co-oriented calcite lamellae. Beneath the photonic multilayer, a disordered array of light-absorbing particles provides contrast for the blue colour. This unique mineralized manifestation of a synergy of two distinct optical elements at specific locations within the continuummore » of the limpet’s translucent protective shell ensures the vivid shine of the blue stripes, which can be perceived under water from a wide range of viewing angles. The stripes’ reflection band coincides with the spectral range of minimal light absorption in sea water, raising intriguing questions regarding their functional significance.« less

  11. Optimisation approaches for concurrent transmitted light imaging during confocal microscopy.

    PubMed

    Collings, David A

    2015-01-01

    The transmitted light detectors present on most modern confocal microscopes are an under-utilised tool for the live imaging of plant cells. As the light forming the image in this detector is not passed through a pinhole, out-of-focus light is not removed. It is this extended focus that allows the transmitted light image to provide cellular and organismal context for fluorescence optical sections generated confocally. More importantly, the transmitted light detector provides images that have spatial and temporal registration with the fluorescence images, unlike images taken with a separately-mounted camera. Because plants often provide difficulties for taking transmitted light images, with the presence of pigments and air pockets in leaves, this study documents several approaches to improving transmitted light images beginning with ensuring that the light paths through the microscope are correctly aligned (Köhler illumination). Pigmented samples can be imaged in real colour using sequential scanning with red, green and blue lasers. The resulting transmitted light images can be optimised and merged in ImageJ to generate colour images that maintain registration with concurrent fluorescence images. For faster imaging of pigmented samples, transmitted light images can be formed with non-absorbed wavelengths. Transmitted light images of Arabidopsis leaves expressing GFP can be improved by concurrent illumination with green and blue light. If the blue light used for YFP excitation is blocked from the transmitted light detector with a cheap, coloured glass filters, the non-absorbed green light will form an improved transmitted light image. Changes in sample colour can be quantified by transmitted light imaging. This has been documented in red onion epidermal cells where changes in vacuolar pH triggered by the weak base methylamine result in measurable colour changes in the vacuolar anthocyanin. Many plant cells contain visible levels of pigment. The transmitted light detector provides a useful tool for documenting and measuring changes in these pigments while maintaining registration with confocal imaging.

  12. Continuous light absorption photometer for long-term studies

    NASA Astrophysics Data System (ADS)

    Ogren, John A.; Wendell, Jim; Andrews, Elisabeth; Sheridan, Patrick J.

    2017-12-01

    A new photometer is described for continuous determination of the aerosol light absorption coefficient, optimized for long-term studies of the climate-forcing properties of aerosols. Measurements of the light attenuation coefficient are made at blue, green, and red wavelengths, with a detection limit of 0.02 Mm-1 and a precision of 4 % for hourly averages. The uncertainty of the light absorption coefficient is primarily determined by the uncertainty of the correction scheme commonly used to convert the measured light attenuation to light absorption coefficient and ranges from about 20 % at sites with high loadings of strongly absorbing aerosols up to 100 % or more at sites with low loadings of weakly absorbing aerosols. Much lower uncertainties (ca. 40 %) for the latter case can be achieved with an advanced correction scheme.

  13. Colour dependence of zodiacal light models

    NASA Technical Reports Server (NTRS)

    Giese, R. H.; Hanner, M. S.; Leinert, C.

    1973-01-01

    Colour models of the zodiacal light in the ecliptic have been calculated for both dielectric and metallic particles in the sub-micron and micron size range. Two colour ratios were computed, a blue ratio and a red ratio. The models with a size distribution proportional to s to the -2.5 power ds (where s is the particle radius) generally show a colour close to the solar colour and almost independent of elongation. Especially in the blue colour ratio there is generally no significant dependence on the lower cutoff size (0.1-1 micron). The main feature of absorbing particles is a reddening at small elongations. The models for size distributions proportional to s to the -4 power ds show larger departures from solar colour and more variation with model parameters. Colour measurements, including red and near infra-red, therefore are useful to distinguish between flat and steep size spectra and to verify the presence of slightly absorbing particles.

  14. The light environment and cellular optics of the snow alga Chlamydomonas nivalis (Bauer) Wille.

    PubMed

    Gorton, H L; Williams, W E; Vogelmann, T C

    2001-06-01

    The alga Chlamydomonas nivalis lives in a high-light, cold environment: persistent alpine snowfields. Since the algae in snow receive light from all angles, the photon fluence rate is the critical parameter for photosynthesis, but it is rarely measured. We measured photon irradiance and photon fluence rate in the snow that contained blooms of C. nivalis. On a cloudless day the photon fluence rate at the snow surface was nearly twice the photon irradiance, and it can be many times greater than the photon irradiance when the solar angle is low or the light is diffuse. Beneath the surface the photon fluence rate can be five times the photon irradiance. Photon irradiance and photon fluence rate declined exponentially with depth, approximating the Bouguer-Lambert relationship. We used an integrating sphere to measure the spectral characteristics of a monolayer of cells and microscopic techniques to examine the spectral characteristics of individual cells. Astaxanthin blocked blue light and unknown absorbers blocked UV radiation; the penetration of these wavelengths through whole cells was negligible. We extracted astaxanthin, measured absorbance on a per-cell basis and estimated that the layer of astaxanthin within cells would allow only a small percentage of the blue light to reach the chloroplast, potentially protecting the chloroplast from excessive light.

  15. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    PubMed Central

    Chen, Lei; Lin, Chun-Che; Yeh, Chiao-Wen; Liu, Ru-Shi

    2010-01-01

    White light-emitting diodes (WLEDs) have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV) LEDs) and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED) or polymer light-emitting diode (PLED), have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450−480 nm) and nUV (380−400 nm) LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+) is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  16. System responses to equal doses of photosynthetically usable radiation of blue, green, and red light in the marine diatom Phaeodactylum tricornutum.

    PubMed

    Valle, Kristin Collier; Nymark, Marianne; Aamot, Inga; Hancke, Kasper; Winge, Per; Andresen, Kjersti; Johnsen, Geir; Brembu, Tore; Bones, Atle M

    2014-01-01

    Due to the selective attenuation of solar light and the absorption properties of seawater and seawater constituents, free-floating photosynthetic organisms have to cope with rapid and unpredictable changes in both intensity and spectral quality. We have studied the transcriptional, metabolic and photo-physiological responses to light of different spectral quality in the marine diatom Phaeodactylum tricornutum through time-series studies of cultures exposed to equal doses of photosynthetically usable radiation of blue, green and red light. The experiments showed that short-term differences in gene expression and profiles are mainly light quality-dependent. Transcription of photosynthesis-associated nuclear genes was activated mainly through a light quality-independent mechanism likely to rely on chloroplast-to-nucleus signaling. In contrast, genes encoding proteins important for photoprotection and PSII repair were highly dependent on a blue light receptor-mediated signal. Changes in energy transfer efficiency by light-harvesting pigments were spectrally dependent; furthermore, a declining trend in photosynthetic efficiency was observed in red light. The combined results suggest that diatoms possess a light quality-dependent ability to activate photoprotection and efficient repair of photodamaged PSII. In spite of approximately equal numbers of PSII-absorbed quanta in blue, green and red light, the spectral quality of light is important for diatom responses to ambient light conditions.

  17. The feasibility of using methylene blue sensitized polyvinylalcohol film as a linear polarizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jyothilakshmi, K.; Anju, K. S.; Arathy, K.

    2014-01-28

    Linear light polarizing films selectively transmit radiations vibrating along an electromagnetic radiation vector and selectively absorb radiations vibrating along a second electromagnetic radiation vector. It happens according to the anisotropy of the film . In the present study the polarization effects of methylene blue sensitized polyvinyl alcohol is investigated. The polarization effects on the dye concentration, heating and stretching of film also are evaluated.

  18. Transparent sunlight conversion film based on carboxymethyl cellulose and carbon dots.

    PubMed

    You, Yaqin; Zhang, Haoran; Liu, Yingliang; Lei, Bingfu

    2016-10-20

    Transparent sunlight conversion film based on carboxymethyl cellulose (CMC) and carbon dots (CDs) has been developed for the first time through dispersion of CDs in CMC aqueous solution. Due to the hydrogen bonds interaction, CMC can effectively absorb the CDs, whose surfaces are functionalized by lots of polar groups. The results from atomic force microscopy (AFM), scanning electron microscopy (SEM) confirm that the composite film possesses a homogeneous and compact structure. Besides, the CMC matrix neither competes for absorbing excitation light nor absorbs the emissions of CDs, which reserves the inherent optical properties of the individual CDs. The composite films can efficiently convert ultraviolet light to blue light. What's more, the film is transparent and possesses excellent mechanical properties, expected to apply in the field of agricultural planting for sunlight conversion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A simple and portable colorimeter using a red-green-blue light-emitting diode and its application to the on-site determination of nitrite and iron in river-water.

    PubMed

    Suzuki, Yasutada; Aruga, Terutomi; Kuwahara, Hiroyuki; Kitamura, Miki; Kuwabara, Tetsuo; Kawakubo, Susumu; Iwatsuki, Masaaki

    2004-06-01

    A portable colorimeter using a red-green-blue light-emitting diode as a light source has been developed. An embedded controller sequentially turns emitters on and off, and acquires the signals detected by two photo diodes synchronized with their blinking. The controller calculates the absorbance and displays it on a liquid-crystal display. The whole system, including a 006P dry cell, is contained in a 100 x 70 x 50 mm aluminum case and its mass is 280 g. This colorimeter was successfully applied to the on-site determination of nitrite and iron in river-water.

  20. Novel Blue Organic Dye for Dye-Sensitized Solar Cells Achieving High Efficiency in Cobalt-Based Electrolytes and by Co-Sensitization.

    PubMed

    Hao, Yan; Saygili, Yasemin; Cong, Jiayan; Eriksson, Anna; Yang, Wenxing; Zhang, Jinbao; Polanski, Enrico; Nonomura, Kazuteru; Zakeeruddin, Shaik Mohammed; Grätzel, Michael; Hagfeldt, Anders; Boschloo, Gerrit

    2016-12-07

    Blue and green dyes as well as NIR-absorbing dyes have attracted great interest because of their excellent ability of absorbing the incident photons in the red and near-infrared range region. A novel blue D-π-A dye (Dyenamo Blue), based on the diketopyrrolopyrrole (DPP)-core, has been designed and synthesized. Assembled with the cobalt bipyridine-based electrolytes, the device with Dyenamo Blue achieved a satisfying efficiency of 7.3% under one sun (AM1.5 G). The co-sensitization strategy was further applied on this blue organic dye together with a red D-π-A dye (D35). The successful co-sensitization outperformed a panchromatic light absorption and improved the photocurrent density; this in addition to the open-circuit potential result in an efficiency of 8.7%. The extended absorption of the sensitization and the slower recombination reaction between the blue dye and TiO 2 surface inhibited by the additional red sensitizer could be the two main reasons for the higher performance. In conclusion, from the results, the highly efficient cobalt-based DSSCs could be achieved with the co-sensitization between red and blue D-π-A organic dyes with a proper design, which showed us the possibility of applying this strategy for future high-performance solar cells.

  1. Radiation Blocking Lenses

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Biomedical Optical Company of America's Eagle 475 lens absorbs 100 percent of all photowavelengths considered hazardous to eye tissue, including ultraviolet and blue light, which are considered contributors to cataract and age-related macular degeneration. The lens absorbs hazardous wavelengths, but allows a higher percentage of visually useful areas of the spectrum to pass through. Polarization blocks out irritating glint and glare and heightens visual acuity. The Eagle 475 sunglasses are the latest in a series of spinoffs that originated at the Jet Propulsion Laboratory where two scientists developed a protective, welding curtain that filtered out harmful irradiance. The result was a commercial curtain that absorbs filters and scatters light, providing protection for personnel in welding areas. Further research focused on protective industrial glasses and later on consumer products.

  2. Ag nanocluster-based color converters for white organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Nishikitani, Yoshinori; Takizawa, Daisuke; Uchida, Soichi; Lu, Yue; Nishimura, Suzushi; Oyaizu, Kenichi; Nishide, Hiroyuki

    2017-11-01

    The authors present Ag nanocluster-based color converters (Ag NC color converters), which convert part of the blue light from a light source to yellow light so as to create white organic light-emitting devices that could be suitable for lighting systems. Ag NCs synthesized by poly(methacrylic acid) template methods have a statistical size distribution with a mean diameter of around 4.5 nm, which is larger than the Fermi wavelength of around 2 nm. Hence, like free electrons in metals, the Ag NC electrons are thought to form a continuous energy band, leading to the formation of surface plasmons by photoexcitation. As for the fluorescence emission mechanism, the fact that the photoluminescence is excitation wavelength dependent suggests that the fluorescence originates from surface plasmons in Ag NCs of different sizes. By using Ag NC color converters and suitable blue light sources, white organic light-emitting devices can be fabricated based on the concept of light-mixing. For our blue light sources, we used polymer light-emitting electrochemical cells (PLECs), which, like organic light-emitting diodes, are area light sources. The PLECs were fabricated with a blue fluorescent π-conjugated polymer, poly[(9,9-dihexylfluoren-2,7-diyl)-co-(anthracen-9,10-diyl)] (PDHFA), and a polymeric solid electrolyte composed of poly(ethylene oxide) and KCF3SO3. In this device structure, the Ag NC color converter absorbs blue light from the PDHFA-based PLEC (PDHFA-PLEC) and then emits yellow light. When the PDHFA-PLEC is turned on by applying an external voltage, pure white light emission can be produced with Commission Internationale de l'Eclairage coordinates of (x = 0.32, y = 0.33) and a color rendering index of 93.6. This study shows that utilization of Ag NC color converters and blue PLECs is a very promising and highly effective method for realizing white organic light-emitting devices.

  3. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green.

    PubMed

    Terashima, Ichiro; Fujita, Takashi; Inoue, Takeshi; Chow, Wah Soon; Oguchi, Riichi

    2009-04-01

    The literature and our present examinations indicate that the intra-leaf light absorption profile is in most cases steeper than the photosynthetic capacity profile. In strong white light, therefore, the quantum yield of photosynthesis would be lower in the upper chloroplasts, located near the illuminated surface, than that in the lower chloroplasts. Because green light can penetrate further into the leaf than red or blue light, in strong white light, any additional green light absorbed by the lower chloroplasts would increase leaf photosynthesis to a greater extent than would additional red or blue light. Based on the assessment of effects of the additional monochromatic light on leaf photosynthesis, we developed the differential quantum yield method that quantifies efficiency of any monochromatic light in white light. Application of this method to sunflower leaves clearly showed that, in moderate to strong white light, green light drove photosynthesis more effectively than red light. The green leaf should have a considerable volume of chloroplasts to accommodate the inefficient carboxylation enzyme, Rubisco, and deliver appropriate light to all the chloroplasts. By using chlorophylls that absorb green light weakly, modifying mesophyll structure and adjusting the Rubisco/chlorophyll ratio, the leaf appears to satisfy two somewhat conflicting requirements: to increase the absorptance of photosynthetically active radiation, and to drive photosynthesis efficiently in all the chloroplasts. We also discuss some serious problems that are caused by neglecting these intra-leaf profiles when estimating whole leaf electron transport rates and assessing photoinhibition by fluorescence techniques.

  4. Red-light excitation of protoporphyrin IX fluorescence for subsurface tumor detection.

    PubMed

    Roberts, David W; Olson, Jonathan D; Evans, Linton T; Kolste, Kolbein K; Kanick, Stephen C; Fan, Xiaoyao; Bravo, Jaime J; Wilson, Brian C; Leblond, Frederic; Marois, Mikael; Paulsen, Keith D

    2018-06-01

    OBJECTIVE The objective of this study was to detect 5-aminolevulinic acid (ALA)-induced tumor fluorescence from glioma below the surface of the surgical field by using red-light illumination. METHODS To overcome the shallow tissue penetration of blue light, which maximally excites the ALA-induced fluorophore protoporphyrin IX (PpIX) but is also strongly absorbed by hemoglobin and oxyhemoglobin, a system was developed to illuminate the surgical field with red light (620-640 nm) matching a secondary, smaller absorption peak of PpIX and detecting the fluorescence emission through a 650-nm longpass filter. This wide-field spectroscopic imaging system was used in conjunction with conventional blue-light fluorescence for comparison in 29 patients undergoing craniotomy for resection of high-grade glioma, low-grade glioma, meningioma, or metastasis. RESULTS Although, as expected, red-light excitation is less sensitive to PpIX in exposed tumor, it did reveal tumor at a depth up to 5 mm below the resection bed in 22 of 24 patients who also exhibited PpIX fluorescence under blue-light excitation during the course of surgery. CONCLUSIONS Red-light excitation of tumor-associated PpIX fluorescence below the surface of the surgical field can be achieved intraoperatively and enables detection of subsurface tumor that is not visualized under conventional blue-light excitation. Clinical trial registration no.: NCT02191488 (clinicaltrials.gov).

  5. The Production of High Purity Phycocyanin by Spirulina platensis Using Light-Emitting Diodes Based Two-Stage Cultivation.

    PubMed

    Lee, Sang-Hyo; Lee, Ju Eun; Kim, Yoori; Lee, Seung-Yop

    2016-01-01

    Phycocyanin is a photosynthetic pigment found in photosynthetic cyanobacteria, cryptophytes, and red algae. In general, production of phycocyanin depends mainly on the light conditions during the cultivation period, and purification of phycocyanin requires expensive and complex procedures. In this study, we propose a new two-stage cultivation method to maximize the quantitative content and purity of phycocyanin obtained from Spirulina platensis using red and blue light-emitting diodes (LEDs) under different light intensities. In the first stage, Spirulina was cultured under a combination of red and blue LEDs to obtain the fast growth rate until reaching an absorbance of 1.4-1.6 at 680 nm. Next, blue LEDs were used to enhance the concentration and purity of the phycocyanin in Spirulina. Two weeks of the two-stage cultivation of Spirulina yielded 1.28 mg mL(-1) phycocyanin with the purity of 2.7 (OD620/OD280).

  6. Wavelength-dependent degradation of ochratoxin and citrinin by light in vitro and in vivo and its implications on Penicillium.

    PubMed

    Schmidt-Heydt, Markus; Cramer, Benedikt; Graf, Irina; Lerch, Sandra; Humpf, Hans-Ulrich; Geisen, Rolf

    2012-12-14

    It has previously been shown that the biosynthesis of the mycotoxins ochratoxin A and B and of citrinin by Penicillium is regulated by light. However, not only the biosynthesis of these mycotoxins, but also the molecules themselves are strongly affected by light of certain wavelengths. The white light and blue light of 470 and 455 nm are especially able to degrade ochratoxin A, ochratoxin B and citrinin after exposure for a certain time. After the same treatment of the secondary metabolites with red (627 nm), yellow (590 nm) or green (530 nm) light or in the dark, almost no degradation occurred during that time indicating the blue light as the responsible part of the spectrum. The two derivatives of ochratoxin (A and B) are degraded to certain definitive degradation products which were characterized by HPLC-FLD-FTMS. The degradation products of ochratoxin A and B did no longer contain phenylalanine however were still chlorinated in the case of ochratoxin A. Citrinin is completely degraded by blue light. A fluorescent band was no longer visible after detection by TLC suggesting a higher sensitivity and apparently greater absorbance of energy by citrinin. The fact that especially blue light degrades the three secondary metabolites is apparently attributed to the absorption spectra of the metabolites which all have an optimum in the short wave length range. The absorption range of citrinin is, in particular, broader and includes the wave length of blue light. In wheat, which was contaminated with an ochratoxin A producing culture of Penicillium verrucosum and treated with blue light after a pre-incubation by the fungus, the concentration of the preformed ochratoxin A reduced by roughly 50% compared to the control and differed by > 90% compared to the sample incubated further in the dark. This indicates that the light degrading effect is also exerted in vivo, e.g., on food surfaces. The biological consequences of the light instability of the toxins are discussed.

  7. Recent developments in white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Lohe, P. P.; Nandanwar, D. V.; Belsare, P. D.; Moharil, S. V.

    2018-05-01

    In the recent years solid state lighting based on LEDs has revolutionized lighting technology. LEDs have many advantages over the conventional lighting based on fluorescent and incandescent lamps such as mercury free, high conversion efficiency of electrical energy into light, long lifetime reliability and ability to use with many types of devices. LEDs have emerged as a new potentially revolutionary technology that could save up to half of energy used for lighting applications. White LEDs would be the most important light source in the future, so much so that this aspect had been highlighted by the Nobel committee during the award of 2014 Nobel Prize for Physics. Recent advancement in the fabrication of GaN chip capable of emitting in blue and near UV region paved way for fabrication of white LED lamps. Mainly there are two approaches used for preparing white emitting solid state lamp. In the first approach blue light (λ=450 nm) emitted from the InGaN LED chip is partially absorbed by the YAG:Ce3+ phosphor coated on it and re-emitted as yellow fluorescence. A white light can be generated by the combination of blue + yellow emission bands. These lamps are already available. But they are suffering from major drawback that their Colour Rendering Index (CRI) is low. In the second approach, white LEDs are made by coating near ultraviolet emitting (360 to 410nm) LED with a mixture of high efficiency red, green and blue emitting phosphors, analogous to the fluorescent lamp. This method yields lamps with better color rendition. Addition of a yellow emitting phosphor improves CRI further. However conversion efficiency is compromised to some extent. Further the cost of near UV emitting chip is very high compared to blue emitting chips. Thus cost and light output wise, near UV chips are much inferior to blue chips. Recently some rare earth activated oxynitrides, silicates, fluorides have emerged as an important family of luminescent materials for white LED application because they can emit visible light strongly under blue light irradiation. These are chemically, thermally and mechanically stable materials with high efficiency to down convert blue radiation into green and red. Efficient white light can be generated by coating these phosphors on blue LED.CRI of white emitting LED lamp can be improved significantly if green and red emitting phosphors are coated on efficient blue emitting LED chips. In this approach CRI will be maintained if appropriate combination of red, green along with blue emission is used. This article reviews some recent developments in phosphors for white light emitting diodes.

  8. Suppression of mutants aberrant in light intensity responses of complementary chromatic adaptation.

    PubMed Central

    Casey, E S; Kehoe, D M; Grossman, A R

    1997-01-01

    Complementary chromatic adaptation is a process in which cyanobacteria alter the pigment protein (phycocyanin and phycoerythrin) composition of their light-harvesting complexes, the phycobilisomes, to help optimize the absorbance of prevalent wavelengths of light in the environment. Several classes of mutants that display aberrant complementary chromatic adaptation have been isolated. One of the mutant classes, designated "blue" or FdB, accumulates high levels of the blue chromoprotein phycocyanin in low-intensity green light, a condition that normally suppresses phycocyanin synthesis. We demonstrate here that the synthesis of the phycocyanin protein and mRNA in the FdB mutants can be suppressed by increasing the intensity of green light. Hence, these mutants have a decreased sensitivity to green light with respect to suppression of phycocyanin synthesis. Although we were unable to complement the blue mutants, we did isolate genes that could suppress the mutant phenotype. These genes, which have been identified previously, encode a histidine kinase sensor and response regulator protein that play key roles in controlling complementary chromatic adaptation. These findings are discussed with respect to the mechanism by which light quality and quantity control the biosynthesis of the phycobilisome. PMID:9226271

  9. Altering the axial light gradient affects photomorphogenesis in emerging seedlings of Zea mays L

    NASA Technical Reports Server (NTRS)

    Parks, B. M.; Poff, K. L.

    1986-01-01

    The axial (longitudinal) red light gradient (632 nanometers) of 4 day old dark-grown maize seedlings is increased by staining the peripheral cells of the coleoptile. The magnitude of increase in the light gradient is dependent solely on the light-absorbing qualities of the stain used. Metanil yellow has no effect on the axial red-light gradient, while methylene blue causes a large increase in this light gradient. These stains did not affect growth in darkness or the sensitivity of mesocotyl elongation to red light. However, mesocotyl elongation was altered for the dark-grown seedlings stained with methylene blue when these seedlings were transplanted, covered with soil, and permitted to emerge under natural lighting conditions. These observations are consistent with the idea that there is a single perceptive site below the coleoptilar node, and suggest that this perceptive site gives the actinic light which has traveled downward through the length of the shoot from an entry point in the plant tip region.

  10. UV-A/Blue-Light responses in algae

    NASA Technical Reports Server (NTRS)

    Senger, Horst; Hermsmeier, Dieter

    1994-01-01

    All life on earth depends on light. A variety of photoreceptors capture the light for a wide range of reactions. Photosynthetic organisms absorb the light necessary for energy transformation and charge separation facilitating photosynthesis. In addition to the bulk pigments there is a great diversity of photoreceptors present in minute concentrations that control development, metabolism and orientation of plants and microorganisms. Based on its spectral absorbance, the well-studied phytochrome system acts in the RL (red light) region as well as in the UV-A/BL (blue light) region where the above mentioned reactions are mediated by a variety of photoreceptors whose natures are largely unknown. Phyllogenetically the UV-A/BL photoreceptors seem to be more ancient pigments that eventually were replaced by the phytochrome system. However, there are many reports that suggest a coaction between the UV-A/BL receptors and the phytochrome system. In several cases the UV-A/BL activation is the prerequisite for the phytochrome reaction. Historically it was the German botanist Julius Sachs who first discovered in 1864 that phototropism in plants was due to BL reactions. It took over 70 years until Bunning (1937) and Galston and Baker (1949) rediscovered the BL response. Since then, an ever-increasing attention has been paid to this effect. In this contribution, the general aspect of UV-A/BL responses and especially the responsiveness of algae will be covered.

  11. Far-red light is needed for efficient photochemistry and photosynthesis.

    PubMed

    Zhen, Shuyang; van Iersel, Marc W

    2017-02-01

    The efficiency of monochromatic light to drive photosynthesis drops rapidly at wavelengths longer than 685nm. The photosynthetic efficiency of these longer wavelengths can be improved by adding shorter wavelength light, a phenomenon known as the Emerson enhancement effect. The reverse effect, the enhancement of photosynthesis under shorter wavelength light by longer wavelengths, however, has not been well studied and is often thought to be insignificant. We quantified the effect of adding far-red light (peak at 735nm) to red/blue or warm-white light on the photosynthetic efficiency of lettuce (Lactuca sativa). Adding far-red light immediately increased quantum yield of photosystem II (Φ PSII ) of lettuce by an average of 6.5 and 3.6% under red/blue and warm-white light, respectively. Similar or greater increases in Φ PSII were observed after 20min of exposure to far-red light. This longer-term effect of far-red light on Φ PSII was accompanied by a reduction in non-photochemical quenching of fluorescence (NPQ), indicating that far-red light reduced the dissipation of absorbed light as heat. The increase in Φ PSII and complementary decrease in NPQ is presumably due to preferential excitation of photosystem I (PSI) by far-red light, which leads to faster re-oxidization of the plastoquinone pool. This facilitates reopening of PSII reaction centers, enabling them to use absorbed photons more efficiently. The increase in Φ PSII by far-red light was associated with an increase in net photosynthesis (P n ). The stimulatory effect of far-red light increased asymptotically with increasing amounts of far-red. Overall, our results show that far-red light can increase the photosynthetic efficiency of shorter wavelength light that over-excites PSII. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Ocean Color Data at the Goddard DAAC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The apparent color of the ocean is determined by the interactions of incident light with substances or particles present in the water. The most significant constituents are free-floating photosynthetic organisms (phytoplankton) and inorganic particulates. Phytoplankton contain chlorophyll, which absorbs light at blue and red wavelengths and transmits in the green. Particulate matter can reflect and absorb light, which reduces the clarity (light transmission) of the water. Substances dissolved in water can also affect its color. Observations of ocean color from space, utilizing sensors specially designed to detect the small amount of light radiating from the sea surface, provide a global picture of the patterns of biological productivity in the world's oceans. For that reason, ocean color remote sensing data is a vital resource for biological oceanography. Unlike the limited area of the ocean that can be investigated from a research ship, data from a satellite sensor covers a large region and provides a comprehensive view of the marine environment.

  13. Measurement of macular pigment optical density in a healthy chinese population sample

    USDA-ARS?s Scientific Manuscript database

    Macular pigment may protect against age-related macular degeneration (AMD) by its capability to absorb blue light and scavenge free radicals. Current information on human macular pigment density has been largely from studies on Caucasians populations. The purpose of this study was to assess macular ...

  14. Production of Chromophoric Dissolved Organic Matter from Mangrove Leaf Litter and Floating Sargassum Colonies

    EPA Science Inventory

    Chromophoric dissolved organic matter (CDOM) strongly absorbs solar radiation in the blue-green and serves as the primary attenuator of water column ultraviolet radiation (UV-R). CDOM interferes with remote sensing of ocean chlorophyll and can control UV-R-induced damage to light...

  15. Plant Growth Absorption Spectrum Mimicking Light Sources

    PubMed Central

    Jou, Jwo-Huei; Lin, Ching-Chiao; Li, Tsung-Han; Li, Chieh-Ju; Peng, Shiang-Hau; Yang, Fu-Chin; Justin Thomas, K. R.; Kumar, Dhirendra; Chi, Yun; Hsu, Ban-Dar

    2015-01-01

    Plant factories have attracted increasing attention because they can produce fresh fruits and vegetables free from pesticides in all weather. However, the emission spectra from current light sources significantly mismatch the spectra absorbed by plants. We demonstrate a concept of using multiple broad-band as well as narrow-band solid-state lighting technologies to design plant-growth light sources. Take an organic light-emitting diode (OLED), for example; the resulting light source shows an 84% resemblance with the photosynthetic action spectrum as a twin-peak blue dye and a diffused mono-peak red dye are employed. This OLED can also show a greater than 90% resemblance as an additional deeper red emitter is added. For a typical LED, the resemblance can be improved to 91% if two additional blue and red LEDs are incorporated. The approach may facilitate either an ideal use of the energy applied for plant growth and/or the design of better light sources for growing different plants. PMID:28793503

  16. Carotenoids and Photosynthesis.

    PubMed

    Hashimoto, Hideki; Uragami, Chiasa; Cogdell, Richard J

    2016-01-01

    Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet-singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet-triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis.

  17. Why Gold and Copper Are Colored but Silver Is Not.

    ERIC Educational Resources Information Center

    Guerrero, Ariel H.; Fasoli, Hector J.; Costa, Jose Luis

    1999-01-01

    Explains why silver, which has the same external electronic configuration as copper and gold, does not appear yellow: white light reflects on most metals without color absorption or change to the naked eye; however, copper and gold appear yellow because they absorb "blue" and "red" photons during electron transitions between…

  18. Family of BODIPY Photocages Cleaved by Single Photons of Visible/Near-Infrared Light.

    PubMed

    Peterson, Julie A; Wijesooriya, Chamari; Gehrmann, Elizabeth J; Mahoney, Kaitlyn M; Goswami, Pratik P; Albright, Toshia R; Syed, Aleem; Dutton, Andrew S; Smith, Emily A; Winter, Arthur H

    2018-06-13

    Photocages are light-sensitive chemical protecting groups that provide external control over when, where, and how much of a biological substrate is activated in cells using targeted light irradiation. Regrettably, most popular photocages (e.g., o-nitrobenzyl groups) absorb cell-damaging ultraviolet wavelengths. A challenge with achieving longer wavelength bond-breaking photochemistry is that long-wavelength-absorbing chromophores have shorter excited-state lifetimes and diminished excited-state energies. However, here we report the synthesis of a family of BODIPY-derived photocages with tunable absorptions across the visible/near-infrared that release chemical cargo under irradiation. Derivatives with appended styryl groups feature absorptions above 700 nm, yielding photocages cleaved with the highest known wavelengths of light via a direct single-photon-release mechanism. Photorelease with red light is demonstrated in living HeLa cells, Drosophila S2 cells, and bovine GM07373 cells upon ∼5 min irradiation. No cytotoxicity is observed at 20 μM photocage concentration using the trypan blue exclusion assay. Improved B-alkylated derivatives feature improved quantum efficiencies of photorelease ∼20-fold larger, on par with the popular o-nitrobenzyl photocages (εΦ = 50-100 M -1 cm -1 ), but absorbing red/near-IR light in the biological window instead of UV light.

  19. Structure Optimization of 21,23-Core-Modified Porphyrins Absorbing Long-Wavelength Light as Potential Photosensitizers Against Breast Cancer Cells

    DTIC Science & Technology

    2007-04-01

    the core nitrogen atom(s) of natural porphyrins with heavy atoms such as S, Se, and Te provides a red -shift in their absorption spectra [4- 7]. The...shown in red , b in green and c in blue Copyright © 2007 Society of Porphyrins & Phthalocyanines J. Porphyrins Phthalocyanines 2007; 11: 1-8 Y. YOU ET AL...shown in red , b in green and c in blue Copyright © 2007 Society of Porphyrins & Phthalocyanines J. Porphyrins Phthalocyanines 2007; 11: 1-8

  20. Blue light induced free radicals from riboflavin on E. coli DNA damage.

    PubMed

    Liang, Ji-Yuan; Yuann, Jeu-Ming P; Cheng, Chien-Wei; Jian, Hong-Lin; Lin, Chin-Chang; Chen, Liang-Yu

    2013-02-05

    The micronutrients in many cellular processes, riboflavin (vitamin B(2)), FMN, and FAD are photo-sensitive to UV and visible light to generate reactive oxygen species (ROS). The riboflavin photochemical treatment with UV light has been applied for the inactivation of microorganisms to serve as an effective and safe technology. Ultra-violet or high-intensity radiation is, however, considered as a highly risky practice. This study was working on the application of visible LED lights to riboflavin photochemical reactions to development an effective antimicrobial treatment. The photosensitization of bacterial genome with riboflavin was investigated in vitro and in vivo by light quality and irradiation dosage. The riboflavin photochemical treatment with blue LED light was proved to be able to inactivate E. coli by damaging nucleic acids with ROS generated. Riboflavin is capable of intercalating between the bases of bacterial DNA or RNA and absorbs lights in the visible regions. LED light illumination could be a more accessible and safe practice for riboflavin photochemical treatments to achieve hygienic requirements in vitro. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Blue light-irradiated human keloid fibroblasts: an in vitro study

    NASA Astrophysics Data System (ADS)

    Magni, Giada; Rossi, Francesca; Tatini, Francesca; Pini, Roberto; Coppi, Elisabetta; Cherchi, Federica; Fusco, Irene; Pugliese, Anna Maria; Pedata, Felicita; Fraccalvieri, Marco; Gasperini, Stefano; Pavone, Francesco S.; Tripodi, Cristina; Alfieri, Domenico; Targetti, Lorenzo

    2018-02-01

    Blue LED light irradiation is currently under investigation because of its effect in wound healing improvement. In this context, several mechanisms of action are likely to occur at the same time, consistently with the presence of different light absorbers within the skin. In our previous studies we observed the wound healing in superficial abrasions in an in vivo murine model. The results evidenced that both inflammatory infiltrate and myofibroblasts activity increase after irradiation. In this study we focused on evaluating the consequences of light absorption in fibroblasts from human cells culture: they play a key role in wound healing, both in physiological conditions and in pathological ones, such as keloid scarring. In particular we used keloids fibroblasts as a new target in order to investigate a possible metabolic or cellular mechanism correlation. Human keloid tissues were excised during standard surgery and immediately underwent primary cell culture extraction. Fibroblasts were allowed to grow in the appropriate conditions and then exposed to blue light. A metabolic colorimetric test (WST-8) was then performed. The tests evidenced an effect in mitochondrial activity, which could be modulated by the duration of the treatment. Electrophysiology pointed out a different behavior of irradiated fibroblasts. In conclusion, the Blue LED light affects the metabolic activity of fibroblasts and thus the cellular proliferation rate. No specific effect was found on keloid fibroblasts, thus indicating a very basic intracellular component, such as cytochromes, being the target of the treatment.

  2. Achieving significantly enhanced visible-light photocatalytic efficiency using a polyelectrolyte: the composites of exfoliated titania nanosheets, graphene, and poly(diallyl-dimethyl-ammonium chloride)

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; An, Qi; Luan, Xinglong; Huang, Hongwei; Li, Xiaowei; Meng, Zilin; Tong, Wangshu; Chen, Xiaodong; Chu, Paul K.; Zhang, Yihe

    2015-08-01

    A high-performance visible-light-active photocatalyst is prepared using the polyelectrolyte/exfoliated titania nanosheet/graphene oxide (GO) precursor by flocculation followed by calcination. The polyelectrolyte poly(diallyl-dimethyl-ammonium chloride) serves not only as an effective binder to precipitate GO and titania nanosheets, but also boosts the overall performance of the catalyst significantly. Unlike most titania nanosheet-based catalysts reported in the literature, the composite absorbs light in the UV-Vis-NIR range. Its decomposition rate of methylene blue is 98% under visible light. This novel strategy of using a polymer to enhance the catalytic performance of titania nanosheet-based catalysts affords immense potential in designing and fabricating next-generation photocatalysts with high efficiency.A high-performance visible-light-active photocatalyst is prepared using the polyelectrolyte/exfoliated titania nanosheet/graphene oxide (GO) precursor by flocculation followed by calcination. The polyelectrolyte poly(diallyl-dimethyl-ammonium chloride) serves not only as an effective binder to precipitate GO and titania nanosheets, but also boosts the overall performance of the catalyst significantly. Unlike most titania nanosheet-based catalysts reported in the literature, the composite absorbs light in the UV-Vis-NIR range. Its decomposition rate of methylene blue is 98% under visible light. This novel strategy of using a polymer to enhance the catalytic performance of titania nanosheet-based catalysts affords immense potential in designing and fabricating next-generation photocatalysts with high efficiency. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03256c

  3. Spectral characteristics of light sources for S-cone stimulation.

    PubMed

    Schlegelmilch, F; Nolte, R; Schellhorn, K; Husar, P; Henning, G; Tornow, R P

    2002-11-01

    Electrophysiological investigations of the short-wavelength sensitive pathway of the human eye require the use of a suitable light source as a S-cone stimulator. Different light sources with their spectral distribution properties were investigated and compared with the ideal S-cone stimulator. First, the theoretical background of the calculation of relative cone energy absorption from the spectral distribution function of the light source is summarized. From the results of the calculation, the photometric properties of the ideal S-cone stimulator will be derived. The calculation procedure was applied to virtual light sources (computer generated spectral distribution functions with different medium wavelengths and spectrum widths) and to real light sources (blue and green light emitting diodes, blue phosphor of CRT-monitor, multimedia projector, LCD monitor and notebook display). The calculated relative cone absorbencies are compared to the conditions of an ideal S-cone stimulator. Monochromatic light sources with wavelengths of less than 456 nm are close to the conditions of an ideal S-cone stimulator. Spectrum widths up to 21 nm do not affect the S-cone activation significantly (S-cone activation change < 0.2%). Blue light emitting diodes with peak wavelength at 448 nm and spectrum bandwidth of 25 nm are very useful for S-cone stimulation (S-cone activation approximately 95%). A suitable display for S-cone stimulation is the Trinitron computer monitor (S-cone activation approximately 87%). The multimedia projector has a S-cone activation up to 91%, but their spectral distribution properties depends on the selected intensity. LCD monitor and notebook displays have a lower S-cone activation (< or = 74%). Carefully selecting the blue light source for S-cone stimulation can reduce the unwanted L-and M-cone activation down to 4% for M-cones and 1.5% for L-cones.

  4. White light-emitting organic electroluminescent devices

    DOEpatents

    Shiang, Joseph John; Duggal, Anil Raj; Parthasarathy, Gautam

    2006-06-20

    A light-emitting device comprises a light-emitting member, which comprises two electrodes, at least two organic electroluminescent ("EL") materials disposed between the electrodes, a charge blocking material disposed between the electrodes, and at least one photoluminescent ("PL") material. The light-emitting member emits electromagnetic ("EM") radiation having a first spectrum in response to a voltage applied across the two electrodes. The PL material absorbs a portion of the EM radiation emitted by the light-emitting member and emits EM radiation having second spectrum different than the first spectrum. Each of the organic EL materials emits EM radiation having a wavelength range selected from the group consisting of blue and red wavelength ranges.

  5. Photoconversion changes bilin chromophore conjugation and protein secondary structure in the violet/orange cyanobacteriochrome NpF2164g3' [corrected].

    PubMed

    Lim, Sunghyuk; Rockwell, Nathan C; Martin, Shelley S; Dallas, Jerry L; Lagarias, J Clark; Ames, James B

    2014-06-01

    Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors distantly related to phytochromes. All CBCRs examined to date utilize a conserved Cys residue to form a covalent thioether linkage to the bilin chromophore. In the insert-Cys CBCR subfamily, a second conserved Cys can covalently link to the bilin C10 methine bridge, allowing detection of near-UV to blue light. The best understood insert-Cys CBCR is the violet/orange CBCR NpF2164g3 from Nostoc punctiforme, which has a stable second linkage in the violet-absorbing dark state. Photoconversion of NpF2164g3 leads to elimination of the second linkage and formation of an orange-absorbing photoproduct. We recently reported NMR chemical shift assignments for the orange-absorbing photoproduct state of NpF2164g3. We here present equivalent information for its violet-absorbing dark state. In both photostates, NpF2164g3 is monomeric in solution and regions containing the two conserved Cys residues essential for photoconversion are structurally disordered. In contrast to blue light receptors such as phototropin, NpF2164g3 is less structurally ordered in the dark state than in the photoproduct. The insert-Cys insertion loop and C-terminal helix exhibit light-dependent structural changes. Moreover, a motif containing an Asp residue also found in other CBCRs and in phytochromes adopts a random-coil structure in the dark state but a stable α-helix structure in the photoproduct. NMR analysis of the chromophore is consistent with a less ordered dark state, with A-ring resonances only resolved in the photoproduct. The C10 atom of the bilin chromophore exhibits a drastic change in chemical shift upon photoconversion, changing from 34.5 ppm (methylene) in the dark state to 115 ppm (methine) in the light-activated state. Our results provide structural insight into the two-Cys photocycle of NpF2164g3 and the structurally diverse mechanisms used for light perception by the larger phytochrome superfamily.

  6. Functional Green-Tuned Proteorhodopsin from Modern Stromatolites

    PubMed Central

    Albarracín, Virginia Helena; Kraiselburd, Ivana; Bamann, Christian; Wood, Phillip G.; Bamberg, Ernst; Farias, María Eugenia; Gärtner, Wolfgang

    2016-01-01

    The sequenced genome of the poly-extremophile Exiguobacterium sp. S17, isolated from modern stromatolites at Laguna Socompa (3,570 m), a High-Altitude Andean Lake (HAAL) in Argentinean Puna revealed a putative proteorhodopsin-encoding gene. The HAAL area is exposed to the highest UV irradiation on Earth, making the microbial community living in the stromatolites test cases for survival strategies under extreme conditions. The heterologous expressed protein E17R from Exiguobacterium (248 amino acids, 85% sequence identity to its ortholog ESR from E. sibiricum) was assembled with retinal displaying an absorbance maximum at 524 nm, which makes it a member of the green-absorbing PR-subfamily. Titration down to low pH values (eventually causing partial protein denaturation) indicated a pK value between two and three. Global fitting of data from laser flash-induced absorption changes gave evidence for an early red-shifted intermediate (its formation being below the experimental resolution) that decayed (τ1 = 3.5 μs) into another red-shifted intermediate. This species decayed in a two-step process (τ2 = 84 μs, τ3 = 11 ms), to which the initial state of E17-PR was reformed with a kinetics of 2 ms. Proton transport capability of the HAAL protein was determined by BLM measurements. Additional blue light irradiation reduced the proton current, clearly identifying a blue light absorbing, M-like intermediate. The apparent absence of this intermediate is explained by closely matching formation and decay kinetics. PMID:27187791

  7. Functional Green-Tuned Proteorhodopsin from Modern Stromatolites.

    PubMed

    Albarracín, Virginia Helena; Kraiselburd, Ivana; Bamann, Christian; Wood, Phillip G; Bamberg, Ernst; Farias, María Eugenia; Gärtner, Wolfgang

    2016-01-01

    The sequenced genome of the poly-extremophile Exiguobacterium sp. S17, isolated from modern stromatolites at Laguna Socompa (3,570 m), a High-Altitude Andean Lake (HAAL) in Argentinean Puna revealed a putative proteorhodopsin-encoding gene. The HAAL area is exposed to the highest UV irradiation on Earth, making the microbial community living in the stromatolites test cases for survival strategies under extreme conditions. The heterologous expressed protein E17R from Exiguobacterium (248 amino acids, 85% sequence identity to its ortholog ESR from E. sibiricum) was assembled with retinal displaying an absorbance maximum at 524 nm, which makes it a member of the green-absorbing PR-subfamily. Titration down to low pH values (eventually causing partial protein denaturation) indicated a pK value between two and three. Global fitting of data from laser flash-induced absorption changes gave evidence for an early red-shifted intermediate (its formation being below the experimental resolution) that decayed (τ1 = 3.5 μs) into another red-shifted intermediate. This species decayed in a two-step process (τ2 = 84 μs, τ3 = 11 ms), to which the initial state of E17-PR was reformed with a kinetics of 2 ms. Proton transport capability of the HAAL protein was determined by BLM measurements. Additional blue light irradiation reduced the proton current, clearly identifying a blue light absorbing, M-like intermediate. The apparent absence of this intermediate is explained by closely matching formation and decay kinetics.

  8. Visible-light photochemical activity of heterostructured core-shell materials composed of selected ternary titanates and ferrites coated by tiO2.

    PubMed

    Li, Li; Liu, Xuan; Zhang, Yiling; Nuhfer, Noel T; Barmak, Katayun; Salvador, Paul A; Rohrer, Gregory S

    2013-06-12

    Heterostructured photocatalysts comprised of microcrystalline (mc-) cores and nanostructured (ns-) shells were prepared by the sol-gel method. The ability of titania-coated ATiO3 (A = Fe, Pb) and AFeO3 (A = Bi, La, Y) catalysts to degrade methylene blue in visible light (λ > 420 nm) was compared. The catalysts with the titanate cores had enhanced photocatalytic activities for methylene blue degradation compared to their components alone, whereas the catalysts with ferrite cores did not. The temperature at which the ns-titania shell is crystallized influences the photocatalytic dye degradation. mc-FeTiO3/ns-TiO2 annealed at 500 °C shows the highest reaction rate. Fe-doped TiO2, which absorbs visible light, did not show enhanced photocatalytic activity for methylene blue degradation. This result indicates that iron contamination is not a decisive factor in the reduced reactivity of the titania coated ferrite catalysts. The higher reactivity of materials with the titanate cores suggests that photogenerated charge carriers are more easily transported across the titanate-titanate interface than the ferrite-titanate interface and this provides guidance for materials selection in composite catalyst design.

  9. Gold reflective metallic gratings with high absorption efficiency

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaojian; Liang, Linmei; Yang, Junbo

    2017-10-01

    Electromagnetic (EM) wave absorbers are devices in which the incident radiation at the operating wavelengths can be efficiently absorbed and then transformed into ohmic heat or other forms of energy. Especially, EM absorbers based on metallic structures have distinct advantages in comparison with the traditional counterparts. Thus, they have different potential applications at different frequency ranges such as absorbing devices in solar energy harvesting systems. The reflective metallic grating is a kind of metallic EM absorbers and has the fascinating property of efficiently absorbing the incident light due to the excitation of surface plasmon polaritons (SPPs), consequently drawing more and more attention. In this paper, the absorption effect of a reflective metallic grating made of gold is studied by changing grating parameters such as the period, polarization direction of the incident light and so on. We use finite difference time-domain (FDTD) method to design the grating, and simulate the process and detect the absorption spectrum. In our design, the grating has rectangular shaped grooves and has the absorption efficiency 99% for the vertically incident transverse magnetic (TM) light at the wavelength of 818nm with the period of 800 nm, the width of 365 nm and the height of 34 nm. And then we find that the absorption spectrum is blue-shifted about 87 nm with decreasing period from 800 nm to700 nm and red-shifted about 14 nm with increasing the width of the block from 305 nm to 405 nm. The absorption becomes gradually weaker from 98% to almost zero with the polarization angle from 0° to 90°. Finally, we make a theoretical explanation to these phenomena in details. It is believed that the results may provide useful guidance for the design of EM wave absorbers with high absorption efficiency.

  10. Red fluorescent protein with reversibly photoswitchable absorbance for photochromic FRET.

    PubMed

    Subach, Fedor V; Zhang, Lijuan; Gadella, Theodorus W J; Gurskaya, Nadya G; Lukyanov, Konstantin A; Verkhusha, Vladislav V

    2010-07-30

    We have developed the first red fluorescent protein, named rsTagRFP, which possesses reversibly photoswitchable absorbance spectra. Illumination with blue and yellow light switches rsTagRFP into a red fluorescent state (ON state) or nonfluorescent state (OFF state), respectively. The ON and OFF states exhibit absorbance maxima at 567 and 440 nm, respectively. Due to the photoswitchable absorbance, rsTagRFP can be used as an acceptor for a photochromic Förster resonance energy transfer (pcFRET). The photochromic acceptor facilitates determination of a protein-protein interaction by providing an internal control for FRET. Using pcFRET with EYFP as a donor, we observed an interaction between epidermal growth factor receptor and growth factor receptor-binding protein 2 in live cells by detecting the modulation of both the fluorescence intensity and lifetime of the EYFP donor upon the ON-OFF photoswitching of the rsTagRFP acceptor. 2010 Elsevier Ltd. All rights reserved.

  11. Pluto: The Ice Plot Thickens

    NASA Image and Video Library

    2015-07-15

    The latest spectra from New Horizons Ralph instrument reveal an abundance of methane ice, but with striking differences from place to place across the frozen surface of Pluto. In the north polar cap, methane ice is diluted in a thick, transparent slab of nitrogen ice resulting in strong absorption of infrared light. In one of the visually dark equatorial patches, the methane ice has shallower infrared absorptions indicative of a very different texture. An Earthly example of different textures of a frozen substance: a fluffy bank of clean snow is bright white, but compacted polar ice looks blue. New Horizons' surface composition team has begun the intricate process of analyzing Ralph data to determine the detailed compositions of the distinct regions on Pluto. This is the first detailed image of Pluto from the Linear Etalon Imaging Spectral Array, part of the Ralph instrument on New Horizons. The observations were made at three wavelengths of infrared light, which are invisible to the human eye. In this picture, blue corresponds to light of wavelengths 1.62 to 1.70 micrometers, a channel covering a medium-strong absorption band of methane ice, green (1.97 to 2.05 micrometers) represents a channel where methane ice does not absorb light, and red (2.30 to 2.33 micrometers) is a channel where the light is very heavily absorbed by methane ice. The two areas outlined on Pluto show where Ralph observations obtained the spectral traces at the right. Note that the methane absorptions (notable dips) in the spectrum from the northern region are much deeper than the dips in the spectrum from the dark patch. The Ralph data were obtained by New Horizons on July 12, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19712

  12. Light-regulated synthesis of cyclic-di-GMP by a bidomain construct of the cyanobacteriochrome Tlr0924 (SesA) without stable dimerization

    DOE PAGES

    Blain-Hartung, Matthew D.; Rockwell, Nathan Clarke; Lagarias, J. Clark

    2017-10-26

    Here, phytochromes and cyanobacteriochromes (CBCRs) use double bond photoisomerization of their linear tetrapyrrole (bilin) chromophores within cGMP-specific phosphodiesterases/Adenylyl cyclases/FhlA (GAF) domain-containing photosensory modules to regulate activity of C-terminal output domains. CBCRs exhibit much more diverse photocycles than phytochromes, and are often found in large modular proteins such as Tlr0924 (SesA), one of three blue light regulators of cell aggregation in the cyanobacterium Thermosynechococcus elongatus. Tlr0924 contains a single bilin-binding GAF domain adjacent to a C-terminal diguanylate cyclase (GGDEF) domain whose catalytic activity requires formation of a dimeric transition state presumably supported by a multi-domain extension at its N-terminus. To probemore » the structural basis of light-mediated signal propagation from the photosensory input domain to a signaling output domain for a representative CBCR, these studies explore the properties of a bidomain GAF-GGDEF construct of Tlr0924 (Tlr0924Δ) that retains light-regulated diguanylate cyclase activity. Surprisingly, CD spectroscopy and size exclusion chromatography data do not support formation of stable dimers in the either the blue-absorbing 15ZP b dark state or the green-absorbing 15EP g photoproduct state of Tlr0924Δ. Analysis of variants containing site-specific mutations reveals that proper signal transmission requires both chromophorylation of the GAF domain and individual residues within the amphipathic linker region between GAF and GGDEF domains. Based on these data, we propose a model in which bilin binding and light signals are propagated from the GAF domain via the linker region to alter the equilibrium and interconversion dynamics between active and inactive conformations of the GGDEF domain to favor or disfavor formation of catalytic competent dimers.« less

  13. Light-regulated synthesis of cyclic-di-GMP by a bidomain construct of the cyanobacteriochrome Tlr0924 (SesA) without stable dimerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blain-Hartung, Matthew D.; Rockwell, Nathan Clarke; Lagarias, J. Clark

    Here, phytochromes and cyanobacteriochromes (CBCRs) use double bond photoisomerization of their linear tetrapyrrole (bilin) chromophores within cGMP-specific phosphodiesterases/Adenylyl cyclases/FhlA (GAF) domain-containing photosensory modules to regulate activity of C-terminal output domains. CBCRs exhibit much more diverse photocycles than phytochromes, and are often found in large modular proteins such as Tlr0924 (SesA), one of three blue light regulators of cell aggregation in the cyanobacterium Thermosynechococcus elongatus. Tlr0924 contains a single bilin-binding GAF domain adjacent to a C-terminal diguanylate cyclase (GGDEF) domain whose catalytic activity requires formation of a dimeric transition state presumably supported by a multi-domain extension at its N-terminus. To probemore » the structural basis of light-mediated signal propagation from the photosensory input domain to a signaling output domain for a representative CBCR, these studies explore the properties of a bidomain GAF-GGDEF construct of Tlr0924 (Tlr0924Δ) that retains light-regulated diguanylate cyclase activity. Surprisingly, CD spectroscopy and size exclusion chromatography data do not support formation of stable dimers in the either the blue-absorbing 15ZP b dark state or the green-absorbing 15EP g photoproduct state of Tlr0924Δ. Analysis of variants containing site-specific mutations reveals that proper signal transmission requires both chromophorylation of the GAF domain and individual residues within the amphipathic linker region between GAF and GGDEF domains. Based on these data, we propose a model in which bilin binding and light signals are propagated from the GAF domain via the linker region to alter the equilibrium and interconversion dynamics between active and inactive conformations of the GGDEF domain to favor or disfavor formation of catalytic competent dimers.« less

  14. Analysis of optical transmission by 400-500 nm visible light into aesthetic dental biomaterials.

    PubMed

    Watts, D C; Cash, A J

    1994-04-01

    The penetration of visible light into dental biomaterials is an essential factor in photoinitiation of setting reactions and in the optical aspects of dental aesthetics. Light of visible blue wavelengths, 400-500 nm, has been applied at normal angles to 0.2-5.0 mm sections of human dentine and representative ceramic, polymerceramic composites and hybrid glass-polyalkenoate materials. The integrated optical transmission has been determined for each material section. The data have been converted to absorbance values and analysed to check for mathematical conformity to the Beer-Lambert Law. It is found that conformity (typically, P < 0.01) to the linear Beer-Lambert Law is only attained by making a substantial correction for the intensity of light reflected from the surface of aesthetic biomaterials. This is otherwise expressed by distinguishing between true and apparent absorbance. From linear regression of apparent absorbance with section thickness, the intercept depends upon the logarithm of the surface-reflection ratio. This factor ranges from 30% to 90% in the materials investigated. It follows that there is a high degree of inefficiency in the transmission of visible light into and through aesthetic biomaterials for the purposes of photoactivation using existing technology. Means by which this limitation and inefficiency may be reduced are discussed. While the reflectivity of aesthetic biomaterials has been perceived by dental practitioners, the magnitude of this effect and its implications in connection with light-cured materials have not been analysed and emphasized hitherto.

  15. New Frontiers in NanoBiotechnology: Monitoring the Protein Function With Single Protein Resolution

    DTIC Science & Technology

    2005-03-29

    Protein (GFP) is a spontaneously fluorescent polypeptide of 27 kD from the jellyfish Aequorea victoria that absorbs UV-blue light and emits in the...will have vast applications in science. Relationship between structure and optical properties in Green Fluorescent Proteins : A quantum mechanical study...RESEARCH AND DEVELOPMENT Invited talks Folding, stability and fluorescence efficiency of the Green and Red Fluorescent Proteins Saverio Alberti Lab.

  16. Nanoparticle optical notch filters

    NASA Astrophysics Data System (ADS)

    Kasinadhuni, Pradeep Kumar

    Developing novel light blocking products involves the design of a nanoparticle optical notch filter, working on the principle of localized surface plasmon resonance (LSPR). These light blocking products can be used in many applications. One such application is to naturally reduce migraine headaches and light sensitivity. Melanopsin ganglion cells present in the retina of the human eye, connect to the suprachiasmatic nucleus (SCN-the body's clock) in the brain, where they participate in the entrainment of the circadian rhythms. As the Melanopsin ganglion cells are involved in triggering the migraine headaches in photophobic patients, it is necessary to block the part of visible spectrum that activates these cells. It is observed from the action potential spectrum of the ganglion cells that they absorb light ranging from 450-500nm (blue-green part) of the visible spectrum with a λmax (peak sensitivity) of around 480nm (blue line). Currently prescribed for migraine patients is the FL-41 coating, which blocks a broad range of wavelengths, including wavelengths associated with melanopsin absorption. The nanoparticle optical notch filter is designed to block light only at 480nm, hence offering an effective prescription for the treatment of migraine headaches.

  17. Visual pigment spectra of the comma butterfly, Polygonia c-album, derived from in vivo epi-illumination microspectrophotometry.

    PubMed

    Vanhoutte, Kurt J A; Stavenga, Doekele G

    2005-05-01

    The visual pigments in the compound eye of the comma butterfly, Polygonia c-album, were investigated in a specially designed epi-illumination microspectrophotometer. Absorption changes due to photochemical conversions of the visual pigments, or due to light-independent visual pigment decay and regeneration, were studied by measuring the eye shine, i.e., the light reflected from the tapetum located in each ommatidium proximal to the visual pigment-bearing rhabdom. The obtained absorbance difference spectra demonstrated the dominant presence of a green visual pigment. The rhodopsin and its metarhodopsin have absorption peak wavelengths at 532 nm and 492 nm, respectively. The metarhodopsin is removed from the rhabdom with a time constant of 15 min and the rhodopsin is regenerated with a time constant of 59 min (room temperature). A UV rhodopsin with metarhodopsin absorbing maximally at 467 nm was revealed, and evidence for a blue rhodopsin was obtained indirectly.

  18. Look Sharp While Seeing Sharp

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The two scientists James B. Stephens and Dr. Charles G. Miller were tasked with studying the harmful properties of light in space, as well as the artificial radiation produced during laser and welding work, for the purpose of creating an enhanced means of eye protection in industrial welding applications. While working to apply their space research to these terrestrial applications, Stephens and Miller became engrossed with previously discovered research showing evidence that the eyes of hawks, eagles, and other birds of prey contain unique oil droplets that actually protect them from intensely radiated light rays (blue, violet, ultraviolet) while allowing vision-enhancing light rays (red, orange, green) to pass through. These oil droplets absorb short wavelength light rays which, in turn, reduce glare and provide heightened color contrast and definition for optimal visual acuity. Accordingly, birds of prey possess the ability to distinguish their targeted prey in natural surroundings and from great distances. Pairing the findings from their initial studies with what they learned from the bird studies, the scientists devised a methodology to incorporate the light-filtering/vision-enhancing dual-action benefits into a filtering system, using light-filtering dyes and tiny particles of zinc oxide. (Zinc oxide, which absorbs ultraviolet light, is also found in sunscreen lotions that protect the skin from sunburn.)

  19. [Ru(bipy)3]2+ nanoparticle-incorporate dental light cure resin to promote photobiomodulation therapy for enhanced vital pulp tissue repair

    NASA Astrophysics Data System (ADS)

    Mosca, Rodrigo C.; Young, Nicholas; Zeituni, Carlos A.; Arany, Praveen R.

    2018-02-01

    The use of nanoparticle on dental light cure resin is not new, currently several compounds (nanoadditives) are used to promote better communication between the restorative material and biological tissues. The interest for this application is growing up to enhance mechanical proprieties to dental tissue cells regeneration. Bioactive nanoparticles and complex compounds with multiple functions are the major target for optimizing the restorative materials. In this work, we incorporate [Ru(bipy)3]2+ nanoparticles, that absorbs energy at 450 nm (blue-light) and emits strongly at 620 nm (red-light), in PLGA Microspheres and insert it in Dental Light Cure Resin to promote the Photobiomodulation Therapy (PBM) effects to accelerate dental pulp repair by in vitro using cytotoxicity and proliferation assay.

  20. Epistatic interactions influence terrestrial–marine functional shifts in cetacean rhodopsin

    PubMed Central

    2017-01-01

    Like many aquatic vertebrates, whales have blue-shifting spectral tuning substitutions in the dim-light visual pigment, rhodopsin, that are thought to increase photosensitivity in underwater environments. We have discovered that known spectral tuning substitutions also have surprising epistatic effects on another function of rhodopsin, the kinetic rates associated with light-activated intermediates. By using absorbance spectroscopy and fluorescence-based retinal release assays on heterologously expressed rhodopsin, we assessed both spectral and kinetic differences between cetaceans (killer whale) and terrestrial outgroups (hippo, bovine). Mutation experiments revealed that killer whale rhodopsin is unusually resilient to pleiotropic effects on retinal release from key blue-shifting substitutions (D83N and A292S), largely due to a surprisingly specific epistatic interaction between D83N and the background residue, S299. Ancestral sequence reconstruction indicated that S299 is an ancestral residue that predates the evolution of blue-shifting substitutions at the origins of Cetacea. Based on these results, we hypothesize that intramolecular epistasis helped to conserve rhodopsin's kinetic properties while enabling blue-shifting spectral tuning substitutions as cetaceans adapted to aquatic environments. Trade-offs between different aspects of molecular function are rarely considered in protein evolution, but in cetacean and other vertebrate rhodopsins, may underlie multiple evolutionary scenarios for the selection of specific amino acid substitutions. PMID:28250185

  1. Green Nanochemistry Approach to Titanium Dioxide Nanoparticle, Dye- Sensitized Solar Cells

    DTIC Science & Technology

    2012-06-01

    of flavonoids , is commonly found in tissues of many different fruits and plants. In cell vacuoles, anthocyanins absorb light in the blue-green...their relative merits for application in green chemistry -based DSSCs. 10 5. References 1. O’Regan, B.; Grätzel, M. A Low-Cost, High-Efficiency...of Photochemistry and Photobiology A Chemistry 2011, 219, 188–194. 4. Fuleki, T.; Francis, F. J. Quantitative Methods for Anthocyanins

  2. Compendium of Aerospace Medicine. Volume 1

    DTIC Science & Technology

    1977-07-01

    storing, if their duration remains in the order of weeks. It all depends on the permissible payload. Also the introduction of new exotic absorbents...higher and upper atmosphere, and the blue sky is indirect sunlight, scattered by the air molecules. Behind’ this veil of scattered light the stars remain ...different particle composition. But all of this remains open for exploration by means of Martian fly-by’s and orbiters. Atmosphere: What is the lower

  3. A study of hydrogen peroxide chemistry and photochemistry in tea stain solution with relevance to clinical tooth whitening.

    PubMed

    Young, Nigel; Fairley, Peter; Mohan, Veena; Jumeaux, Coline

    2012-12-01

    Tooth whitening using hydrogen peroxide is a complex process, and there is still some controversy about the roles of pH, temperature, chemical activators, and the use of light irradiation. In this work the basic interactions between whitening agents and stain molecules are studied in simple solutions, thus avoiding the physics of diffusion and light penetration in the tooth to give clarity on the basic chemistry which is occurring. The absorbance of tea stain solution at 450 nm was measured over a period of 40 min, with various compositions of whitening agent added (including hydrogen peroxide, ferrous gluconate and potassium hydroxide) and at the same time the samples were subjected to blue light (465 nm) or infra-red light (850 nm) irradiation, or alternatively they were heated to 37°C. It is shown that the reaction rates between chromogens in the tea solution and hydrogen peroxide can be accelerated significantly using ferrous gluconate activator and blue light irradiation. Infra red irradiation does not increase the reaction rate through photochemistry, it serves only to increase the temperature. Raising the temperature leads to inefficiency through the acceleration of exothermic decomposition reactions which produce only water and oxygen. By carrying out work in simple solution it was possible to show that ferrous activators and blue light irradiation significantly enhance the whitening process, whereas infra red irradiation has no significant effect over heating. The importance of controlling the pH within the tooth structure during whitening is also demonstrated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Performance of photocatalyst based carbon nanodots from waste frying oil in water purification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aji, Mahardika Prasetya, E-mail: mahardika190@gmail.com; Wiguna, Pradita Ajeng; Susanto,

    Carbon Nanodots (C-Dots) from waste frying oil could be used as a photocatalyst in water purification with solar light irradiation. Performance of C-Dots as a photocatalyst was tested in the process of water purification with a given synthetic sewage methylene blue. The tested was also conducted by comparing the performance C-Dots made from frying oil, waste fryng oil as a photocatalyst and solution of methylene blue without photocatalyst C-Dots. Performance of C-Dots from waste frying oil were estimated by the results of absorbance spectrum. The results of measurement absorbance spectrum from the process of water purification with photocatalyst C-Dots showedmore » that the highest intensity at a wavelength 664 nm of methylene blue decreased. The test results showed that the performance of photocatalyst C-Dots from waste frying oil was better in water purification. This estimated that number of particles C-dots is more in waste frying oil because have experieced repeated the heating process so that the higher particles concentration make the photocatalyst process more effective. The observation of the performance C-Dots from waste frying oil as a photocatalyst in the water purification processes become important invention for solving the problems of waste and water purification.« less

  5. In situ optical properties of foliar flavonoids: Implication for non-destructive estimation of flavonoid content.

    PubMed

    Gitelson, Anatoly; Chivkunova, Olga; Zhigalova, Tatiana; Solovchenko, Alexei

    2017-11-01

    Flavonoids are a ubiquitous multifunctional group of phenolics of paramount importance for the terrestrial plants involved in protection from biotic and abiotic stresses, color and chemical signaling and other functions. Deciphering of in situ absorption of foliar Flv is important but was thought to be impossible due to a strong overlap with other pigments, complex in situ chemistry of Flv and sophisticated leaf optics. We deduced in situ absorbance of foliar Flv and introduced a concept of specific absorbance spectrum indicative of each pigment group contribution to light absorption and provided a rationale for the choice of spectral bands for non-destructive assessment of Flv in leaves with variable content of other pigments including anthocyanins. Only a narrow band 400-430nm was suitable for Flv assessment, however the effect of other pigments remained substantial, so subtraction of their contribution was necessary. The devised leaf absorbance-based algorithm allowed estimating Flv with error below 21%. Absorption by Flv in plant tissues might extend into the blue and can be commensurate to that of chlorophylls and carotenoids. The potential capacity of Flv to shield the cell in situ from the visible light might be essential for assessments of high light stress tolerance of plants. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Light-induced Changes in Allophycocyanin 1

    PubMed Central

    Ohad, Itzhak; Schneider, Hans-Jörg A. W.; Gendel, Steven; Bogorad, Lawrence

    1980-01-01

    Several lines of evidence indicate that allophycocyanin is the previously unidentified “phycochrome” observed in extracts of blue-green algae. Fractions containing phycoerythrin, phycocyanin, and allophycocyanin and exhibiting light-induced absorbance changes were prepared from extracts of Nostoc muscorum and Fremyella diplosiphon by isoelectric focusing. Illumination of such fractions with red light (650 nanometers) causes a reduction in absorbance at 620 nm (≃1 to 2%) and an increase at 560 nm. The effect, (previously observed by Björn and Björn [1976 Physiol Plant 36: 297-304]) is reversible, upon illumination with green light (550 nm). Selective immunoprecipitation of the phycobiliproteins indicates that allophycocyanin is the photoresponsive pigment. At pH 4.0 to 4.2, allophycocyanin purified from the same algae or from Phormidium luridum exhibits a light-induced absorbance change at 620 nm, which coincides with its absorption maximum at this pH; the fluorescence emission of allophycocyanin under these conditions is at 647 nm and its S20,w is 2.28, compatible with an α1β1 polypeptide composition. At neutral pH (5.8 to 7.0), allophycocyanin aggregates have a sedimentation coefficient of 4.8 (≃α3β3) and an additional absorption peak at 640 nm appears while that at 620 nm remains unaffected. The fluorescence emission maximum of the larger aggregate is at 667 nm and the light-induced change in its absorption is shifted to 650 nm. The effect of pH changes in the range 4.0 to 7.0 on the spectral and aggregation properties of allophycocyanin is completely reversible. Changes in pH which affect allophycocyanin aggregation have parallel effects on absorption and fluorescence maxima as well as on the light-induced absorbance changes of the biliprotein. No evidence is provided to resolve whether this phycochrome plays the role of an adaptochrome. PMID:16661143

  7. Removal of Methylene Blue from aqueous solution using spent bleaching earth

    NASA Astrophysics Data System (ADS)

    Saputra, E.; Saputra, R.; Nugraha, M. W.; Irianty, R. S.; Utama, P. S.

    2018-04-01

    The waste from industrial textile waste is one of the environmental problems, it is required effective and efficient processing. In this study spent bleaching earth was used as absorbent. It was found that the absorbent was effective to remove methylene blue from aqueous solution with removal efficiency 99.97 % in 120 min. Several parameters such as pH, amount of absorbent loading, stirring speed are found as key factor influencing removal of methylene blue. The mechanism of adsorption was also studied, and it was found that Langmuir isotherm fitted to data of experiment with adsorption capacity 0.5 mg/g.

  8. Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms.

    PubMed

    Wilts, Bodo D; Vey, Aidan J M; Briscoe, Adriana D; Stavenga, Doekele G

    2017-11-21

    Longwing butterflies, Heliconius sp., also called heliconians, are striking examples of diversity and mimicry in butterflies. Heliconians feature strongly colored patterns on their wings, arising from wing scales colored by pigments and/or nanostructures, which serve as an aposematic signal. Here, we investigate the coloration mechanisms among several species of Heliconius by applying scanning electron microscopy, (micro)spectrophotometry, and imaging scatterometry. We identify seven kinds of colored scales within Heliconius whose coloration is derived from pigments, nanostructures or both. In yellow-, orange- and red-colored wing patches, both cover and ground scales contain wavelength-selective absorbing pigments, 3-OH-kynurenine, xanthommatin and/or dihydroxanthommatin. In blue wing patches, the cover scales are blue either due to interference of light in the thin-film lower lamina (e.g., H. doris) or in the multilayered lamellae in the scale ridges (so-called ridge reflectors, e.g., H. sara and H. erato); the underlying ground scales are black. In the white wing patches, both cover and ground scales are blue due to their thin-film lower lamina, but because they are stacked upon each other and at the wing substrate, a faint bluish to white color results. Lastly, green wing patches (H. doris) have cover scales with blue-reflecting thin films and short-wavelength absorbing 3-OH-kynurenine, together causing a green color. The pigmentary and structural traits are discussed in relation to their phylogenetic distribution and the evolution of vision in this highly interesting clade of butterflies.

  9. False Color Mosaic of Jupiter's Belt-Zone Boundary

    NASA Technical Reports Server (NTRS)

    1997-01-01

    False-color mosaic of a belt-zone boundary near Jupiter's equator. The images that make up the four quadrants of this mosaic were taken within a few minutes of each other. Light at each of Galileo's three near-infrared wavelengths is displayed here mapped to the visible colors red, green, and blue. Light at 886 nanometers, strongly absorbed by atmospheric methane and scattered from clouds high in the atmosphere, is shown in red. Light at 732 nanometers, moderately absorbed by atmospheric methane, is shown in green. Light at 757 nanometers, scattered mostly from Jupiter's lower visible cloud deck, is shown in blue. The lower cloud deck appears bluish white, while the higher layer appears pinkish. The holes in the upper layer and their relationships to features in the lower cloud deck can be studied in the lower half of the mosaic. Galileo is the first spacecraft to image different layers in Jupiter's atmosphere.

    North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 282 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on November 5th, 1996, at a range of 1.2 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  10. False Color Mosaic Great Red Spot

    NASA Technical Reports Server (NTRS)

    1996-01-01

    False color representation of Jupiter's Great Red Spot (GRS) taken through three different near-infrared filters of the Galileo imaging system and processed to reveal cloud top height. Images taken through Galileo's near-infrared filters record sunlight beyond the visible range that penetrates to different depths in Jupiter's atmosphere before being reflected by clouds. The Great Red Spot appears pink and the surrounding region blue because of the particular color coding used in this representation. Light reflected by Jupiter at a wavelength (886 nm) where methane strongly absorbs is shown in red. Due to this absorption, only high clouds can reflect sunlight in this wavelength. Reflected light at a wavelength (732 nm) where methane absorbs less strongly is shown in green. Lower clouds can reflect sunlight in this wavelength. Reflected light at a wavelength (757 nm) where there are essentially no absorbers in the Jovian atmosphere is shown in blue: This light is reflected from the deepest clouds. Thus, the color of a cloud in this image indicates its height. Blue or black areas are deep clouds; pink areas are high, thin hazes; white areas are high, thick clouds. This image shows the Great Red Spot to be relatively high, as are some smaller clouds to the northeast and northwest that are surprisingly like towering thunderstorms found on Earth. The deepest clouds are in the collar surrounding the Great Red Spot, and also just to the northwest of the high (bright) cloud in the northwest corner of the image. Preliminary modeling shows these cloud heights vary over 30 km in altitude. This mosaic, of eighteen images (6 in each filter) taken over a 6 minute interval during the second GRS observing sequence on June 26, 1996, has been map-projected to a uniform grid of latitude and longitude. North is at the top.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunach, M.; Marti, T.; Khorana, H.G.

    The light-dark adaptation reactions of a set of bacteriorhodopsin (bR) mutants that affect function and color of the chromophore were examined by using visible absorption spectroscopy. The absorbance spectra of the mutants Arg-82 in equilibrium Ala (Gln), Asp-85 in equilibrium Ala (Asn, Glu), Tyr-185 in equilibrium Phe, and Asp-212 in equilibrium Ala (Asn, Glu) were measured at different pH values during and after illumination. None of these mutants exhibited a normal dark-light adaptation, which in wild-type bR causes a red shift of the visible absorption maximum from 558 nm (dark-adapted bR) to 568 nm (light-adapted bR). Instead a reversible lightmore » reaction occurs in the Asp-85 and Asp-212 mutants from a blue form with lambda max near 600 nm to a pink form with lambda max near 480 nm. This light-induced shift explains the appearance of a reversed light adaptation previously observed for the Asp-212 mutants. In the case of the Tyr-185 and Arg-82 mutants, light causes a purple-to-blue transformation similar to the effect of lowering the pH. However, the blue forms observed in these mutants are not identical to those formed by acid titration or deionization of wild-type bR. It is suggested that in all of these mutants, the chromophore has lost the ability to undergo the normal 13-cis, 15-syn to all-trans, 15-anti light-driven isomerization, which occurs in native bR. Instead these mutants may have as stable forms all-trans,syn and 13-cis,anti chromophores, which are not allowed in native bR, except transiently.« less

  12. Binding investigation on the interaction between Methylene Blue (MB)/TiO2 nanocomposites and bovine serum albumin by resonance light-scattering (RLS) technique and fluorescence spectroscopy.

    PubMed

    Li, Yuesheng; Zhang, Yue; Sun, Shaofa; Zhang, Aiqing; Liu, Yi

    2013-11-05

    The interaction between Methylene Blue (MB)/TiO2 nanocomposites and bovine serum albumin (BSA) was investigated by resonance light scattering (RLS), fluorescence, three-dimension spectra and UV-vis absorbance spectroscopy. Several factors which may influence the RLS intensity were also investigated before characterizing MB/TiO2-BSA complex. It was proved that the mechanism of MB/TiO2 nanocomposites binding to BSA was mainly a result of the formation of MB/TiO2-BSA complex. The binding constant of MB/TiO2-BSA is 0.762 × 10(-5) L mol(-1) at 298K. By calculating the binding constant at different temperature, the thermodynamic parameters ΔH, ΔG, and ΔS can be observed and deduced that the hydrophobic interactions played an important role to stabilize the complex. The distance r (3.73 nm) between donor (BSA) and acceptor (MB/TiO2) was obtained according to fluorescence resonance energy transfer (FRET). The binding site for MB/TiO2 on BSA was mainly located in sub-domain IIA. The UV-vis absorbance, circular dichroism and three dimension fluorescence have also been used to investigate the effect of MB/TiO2 on the conformation of BSA. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Tunable broadband near-infrared absorber based on ultrathin phase-change material

    NASA Astrophysics Data System (ADS)

    Hu, Er-Tao; Gu, Tong; Guo, Shuai; Zang, Kai-Yan; Tu, Hua-Tian; Yu, Ke-Han; Wei, Wei; Zheng, Yu-Xiang; Wang, Song-You; Zhang, Rong-Jun; Lee, Young-Pak; Chen, Liang-Yao

    2017-11-01

    In this work, a tunable broadband near-infrared light absorber was designed and fabricated with a simple and lithography free approach by introducing an ultrathin phase-change material Ge2Sb2Te5 (GST) layer into the metal-dielectric multilayered film structure with the structure parameters as that: SiO2 (72.7 nm)/Ge2Sb2Te5 (6.0 nm)/SiO2 (70.2 nm)/Cu (>100.0 nm). The film structure exhibits a modulation depth of ∼72.6% and an extinction ratio of ∼8.8 dB at the wavelength of 1410 nm. The high light absorption (95%) of the proposed film structure at the wavelength of 450 nm in both of the amorphous and crystalline phase of GST, indicates that the intensity of the reflectance in the infrared region can be rapidly tuned by the blue laser pulses. The proposed planar layered film structure with layer thickness as the only controllable parameter and large reflectivity tuning range shows the potential for practical applications in near-infrared light modulation and absorption.

  14. Diffuse-Illumination Systems for Growing Plants

    NASA Technical Reports Server (NTRS)

    May, George; Ryan, Robert

    2010-01-01

    Agriculture in both terrestrial and space-controlled environments relies heavily on artificial illumination for efficient photosynthesis. Plant-growth illumination systems require high photon flux in the spectral range corresponding with plant photosynthetic active radiation (PAR) (400 700 nm), high spatial uniformity to promote uniform growth, and high energy efficiency to minimize electricity usage. The proposed plant-growth system takes advantage of the highly diffuse reflective surfaces on the interior of a sphere, hemisphere, or other nearly enclosed structure that is coated with highly reflective materials. This type of surface and structure uniformly mixes discrete light sources to produce highly uniform illumination. Multiple reflections from within the domelike structures are exploited to obtain diffuse illumination, which promotes the efficient reuse of photons that have not yet been absorbed by plants. The highly reflective surfaces encourage only the plant tissue (placed inside the sphere or enclosure) to absorb the light. Discrete light sources, such as light emitting diodes (LEDs), are typically used because of their high efficiency, wavelength selection, and electronically dimmable properties. The light sources are arranged to minimize shadowing and to improve uniformity. Different wavelengths of LEDs (typically blue, green, and red) are used for photosynthesis. Wavelengths outside the PAR range can be added for plant diagnostics or for growth regulation

  15. Rethinking the distinction between black and brown carbon

    NASA Astrophysics Data System (ADS)

    Adler, G. A.; Franchin, A.; Lamb, K. D.; Manfred, K.; Middlebrook, A. M.; Schwarz, J. P.; Wagner, N.; Washenfelder, R. A.; Womack, C.; Murphy, D. M.

    2017-12-01

    Aerosol radiative properties contribute large uncertainty to modeling of the earth's radiative budget. Black carbon (BC) aerosols originate from combustion processes and substantially contribute to warming and uncertainty - ongoing efforts are focused on reducing their anthropogenic emissions even as their emissions from biomass burning sources, such as wildfire, may increase in the future. Quantifying the radiative effect of BC is challenging, in part due to its association with other light absorbing materials including Brown carbon organic aerosol (BrC) that absorbs primarily blue and ultraviolet light while BC absorbs broadly across the visible. Conventionally BrC is thought of a low volatility spherical particles, distinguishing it from BC, which has a distinctive agglomerate morphology and is refractory at high temperatures. However, the separation of BC and BrC is often operationally defined and dependent on the measurement method. Using measurements of aerosol morphology, mass, absorption, and refractory BC mass content we were able to identify a light absorbing contribution from biomass burning aerosol that does not correspond to either BC or BrC as conventionally defined. Our measurements were collected from realistic biomass burning fires at the Missoula Fire Sciences Laboratory as part of the NOAA FIREX project (2016) and from extensive natural wildfire sampled aloft during NASA SEAC4RS field study (2013). We coin the term Dark Brown Carbon (DBrC) to describe this material, which absorbs broadly across the visible and survives thermal denuding at 250°C but does not incandesce in laser induced incandesce (LII) measurements. DBrC may be an intermediate burning stage product between polycyclic aromatic hydrocarbons (PAHs) and the mature soot. DBrC deserves further study to quantify its abundance and aging in ambient biomass burning plumes, and its relationship to tar balls. Our findings show that more than half of the light absorption in biomass burning smoke could be potentially contributed to DBC, which may provide an explanation for some of the persistent inconsistencies in measurements of BC from biomass burning by different methods.

  16. A nonradioactive assay for poly(a)-specific ribonuclease activity by methylene blue colorimetry.

    PubMed

    Cheng, Yuan; Liu, Wei-Feng; Yan, Yong-Bin; Zhou, Hai-Meng

    2006-01-01

    A simple nonradioactive assay, which was based on the specific shift of the absorbance maximum of methylene blue induced by its intercalation into poly(A) molecules, was developed for poly(A)-specific ribonuclease (PARN). A good linear relationship was found between the absorbance at 662 nm and the poly(A) concentration. The assay conditions, including the concentration of methylene blue, the incubation temperature and time, and the poly(A) concentration were evaluated and optimized.

  17. Proteorhodopsin-bearing bacteria in Antarctic sea ice.

    PubMed

    Koh, Eileen Y; Atamna-Ismaeel, Nof; Martin, Andrew; Cowie, Rebecca O M; Beja, Oded; Davy, Simon K; Maas, Elizabeth W; Ryan, Ken G

    2010-09-01

    Proteorhodopsins (PRs) are widespread bacterial integral membrane proteins that function as light-driven proton pumps. Antarctic sea ice supports a complex community of autotrophic algae, heterotrophic bacteria, viruses, and protists that are an important food source for higher trophic levels in ice-covered regions of the Southern Ocean. Here, we present the first report of PR-bearing bacteria, both dormant and active, in Antarctic sea ice from a series of sites in the Ross Sea using gene-specific primers. Positive PR sequences were generated from genomic DNA at all depths in sea ice, and these sequences aligned with the classes Alphaproteobacteria, Gammaproteobacteria, and Flavobacteria. The sequences showed some similarity to previously reported PR sequences, although most of the sequences were generally distinct. Positive PR sequences were also observed from cDNA reverse transcribed from RNA isolated from sea ice samples. This finding indicates that these sequences were generated from metabolically active cells and suggests that the PR gene is functional within sea ice. Both blue-absorbing and green-absorbing forms of PRs were detected, and only a limited number of blue-absorbing forms were found and were in the midsection of the sea ice profile in this study. Questions still remain regarding the protein's ecological functions, and ultimately, field experiments will be needed to establish the ecological and functional role of PRs in the sea ice ecosystem.

  18. Characterization of an Optical Device with an Array of Blue Light Emitting Diodes LEDS for Treatment of Neonatal Jaundice.

    NASA Astrophysics Data System (ADS)

    Sebbe, Priscilla Fróes; Villaverde, Antonio G. J. Balbin; Nicolau, Renata Amadei; Barbosa, Ana Maria; Veissid, Nelson

    2008-04-01

    Phototherapy is a treatment that consists in irradiating a patient with light of high intensity, which promotes beneficial photochemical transformations in the irradiated area. The phototherapy for neonates is applied to break down the bilirubin, an organic pigment that is a sub product of the erythrocytes degradation, and to increase its excretion by the organism. Neonates should be irradiated with light of wavelength that the bilirubin can absorb, and with spectral irradiances between 4 and 16 μW/cm2/nm. The efficiency of the treatment depends on the irradiance and the area of the body that is irradiated. A convenient source of light for treatment of neonatal jaundice is the blue Light Emitter Diode (LED), emitting in the range of 400 to 500 nm, with power of the order of 10-150 mW. Some of the advantages for using LEDS are: low cost, operating long lifetime (over 100,000 hours), narrow emission linewith, low voltage power supply requirement and low heating. The aim of this work was to build and characterize a device for phototherapy treatment of neonatal jaundice. This consists of a blanket with 88 blue LEDs (emission peak at 472 nm), arranged in an 8×11 matrix, all connected in parallel and powered by a 5V-2A power supply. The device was characterized by using a spectroradiometer USB2000 (Ocean Optics Inc, USA), with a sensitivity range of 339-1019 nm. For determination of light spatial uniformity was used a calibrated photovoltaic sensor for measuring light intensity and mapping of the light intensity spatial distribution. Results indicate that our device shows a uniform spatial distribution for distances from the blanket larger than 10 cm, with a maximum of irradiance at such a distance. This device presenting a large and uniform area of irradiation, efficient wavelength emission and high irradiance seems to be promising for neonates' phototherapy treatment.

  19. Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond?

    PubMed Central

    Dai, Tianhong; Gupta, Asheesh; Murray, Clinton K.; Vrahas, Mark S.; Tegos, George P.; Hamblin, Michael R.

    2012-01-01

    Blue light, particularly in the wavelength range of 405–470 nm, has attracted increasing attention due to its intrinsic antimicrobial effect without the addition of exogenous photosensitizers. In addition, it is commonly accepted that blue light is much less detrimental to mammalian cells than ultraviolet irradiation, which is another light-based antimicrobial approach being investigated. In this review, we discussed the blue light sensing systems in microbial cells, antimicrobial efficacy of blue light, the mechanism of antimicrobial effect of blue light, the effects of blue light on mammalian cells, and the effects of blue light on wound healing. It has been reported that blue light can regulate multi-cellular behavior involving cell-to-cell communication via blue light receptors in bacteria, and inhibit biofilm formation and subsequently potentiate light inactivation. At higher radiant exposures, blue light exhibits a broad-spectrum antimicrobial effect against both Gram-positive and Gram-negative bacteria. Blue light therapy is a clinically accepted approach for Propionibacterium acnes infections. Clinical trials have also been conducted to investigate the use of blue light for Helicobacter pylori stomach infections and have shown promising results. Studies on blue light inactivation of important wound pathogenic bacteria, including Staphylococcus aureus and Pseudomonas aeruginosa have also been reported. The mechanism of blue light inactivation of P. acnes, H. pylori, and some oral bacteria is the photo-excitation of intracellular porphyrins and the subsequent production of cytotoxic reactive oxygen species. Although it may be the case that the mechanism of blue light inactivation of wound pathogens (e.g., S. aureus, P. aeruginosa) is the same as that of P. acnes, this hypothesis has not been rigorously tested. Limited and discordant results have been reported regarding the effects of blue light on mammalian cells and wound healing. Under certain wavelengths and radiant exposures, blue light may cause cell dysfunction by the photo-excitation of blue light sensitive chromophores, including flavins and cytochromes, within mitochondria or/and peroxisomes. Further studies should be performed to optimize the optical parameters (e.g., wavelength, radiant exposure) to ensure effective and safe blue light therapies for infectious disease. In addition, studies are also needed to verify the lack of development of microbial resistance to blue light. PMID:22846406

  20. Preparation of TiO2/(TiO2-V2O5)/polypyrrole nanocomposites and a study on catalytic activities of the hybrid materials under UV/Visible light and in the dark

    NASA Astrophysics Data System (ADS)

    Piewnuan, C.; Wootthikanokkhan, J.; Ngaotrakanwiwat, P.; Meeyoo, V.; Chiarakorn, S.

    2014-11-01

    Hybrid metal oxides/polymer nanocomposites, namely TiO2/(TiO2-V2O5)/polypyrrole (PPy), were synthesized via in situ polymerization. Structures of the products were characterized by SEM-EDX, XRD, and FTIR techniques. The light absorbance and band gap energy values of the materials were evaluated by UV/Visible spectroscopy. The catalytic activity of the materials was determined from a degradation of methylene blue. It was found that, regardless of the polymerization time, the absorbance of TiO2/(TiO2-V2O5)/PPy was greater than those of TiO2/PPy and the neat TiO2, respectively. This was in accordance with the decrease in the band gap energy of the materials. The catalytic activity of TiO2/(TiO2-V2O5) was also observed in the dark. After polymerization, the catalytic activity of nanocomposite under UV/Visible light and in the dark was compromised. The above effects are discussed in the light of the energy storage ability of V2O5 and capability of the polymer in acting as a binder for the system.

  1. Close correspondence between the action spectra for the blue light responses of the guard cell and coleoptile chloroplasts, and the spectra for blue light-dependent stomatal opening and coleoptile phototropism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinones, M.A.; Lu, Zhenmin; Zeiger, E.

    1996-03-05

    Fluorescence spectroscopy was used to characterize blue light responses from chloroplasts of adaxial guard cells from Pima cotton (Gossypium barbadense) and coleoptile tips from corn (Zea mays). The chloroplast response to blue light was quantified by measurements of the blue light-induced enhancement of a red light-stimulated quenching of chlorophyll a fluorescence. In adaxial (upper) guard cells, low fluence rates of blue light applied under saturating fluence rates of red light enhanced the red light-stimulated fluorescence quenching by up to 50%. In contrast, added blue light did not alter the red light-stimulated quenching from abaxial (lower) guard cells. This response patternmore » paralleled the blue light sensitivity of stomatal opening in the two leaf surfaces. An action spectrum for the blue light-induced enhancement of the red light-stimulated quenching showed a major peak at 450 nm and two minor peaks at 420 and 470 nm. This spectrum matched closely an action spectrum for blue light-stimulated stomatal opening. Coleoptile chloroplasts also showed an enhancement by blue light of red light-stimulated quenching. The action spectrum of this response, showing a major peak at 450 nm, a minor peak at 470 nm, and a shoulder at 430 nm, closely matched an action spectrum for blue light-stimulated coleoptile phototropism. Both action spectra match the absorption spectrum of zeaxanthin, a chloroplastic carotenoid recently implicated in blue light photoreception of both guard cells and coleoptiles. The remarkable similarity between the action spectra for the blue light responses of guard cells and coleoptile chloroplasts and the spectra for blue light-stimulated stomatal opening and phototropism, coupled to the recently reported evidence on a role of zeaxanthin in blue light photoreception, indicates that the guard cell and coleoptile chloroplasts specialize in sensory transduction. 28 refs. 4 figs.« less

  2. Blue light effect on retinal pigment epithelial cells by display devices.

    PubMed

    Moon, Jiyoung; Yun, Jieun; Yoon, Yeo Dae; Park, Sang-Il; Seo, Young-Jun; Park, Won-Sang; Chu, Hye Yong; Park, Keun Hong; Lee, Myung Yeol; Lee, Chang Woo; Oh, Soo Jin; Kwak, Young-Shin; Jang, Young Pyo; Kang, Jong Soon

    2017-05-22

    Blue light has high photochemical energy and induces cell apoptosis in retinal pigment epithelial cells. Due to its phototoxicity, retinal hazard by blue light stimulation has been well demonstrated using high intensity light sources. However, it has not been studied whether blue light in the displays, emitting low intensity light, such as those used in today's smartphones, monitors, and TVs, also causes apoptosis in retinal pigment epithelial cells. We attempted to examine the blue light effect on human adult retinal epithelial cells using display devices with different blue light wavelength ranges, the peaks of which specifically appear at 449 nm, 458 nm, and 470 nm. When blue light was illuminated on A2E-loaded ARPE-19 cells using these displays, the display with a blue light peak at a shorter wavelength resulted in an increased production of reactive oxygen species (ROS). Moreover, the reduction of cell viability and induction of caspase-3/7 activity were more evident in A2E-loaded ARPE-19 cells after illumination by the display with a blue light peak at a shorter wavelength, especially at 449 nm. Additionally, white light was tested to examine the effect of blue light in a mixed color illumination with red and green lights. Consistent with the results obtained using only blue light, white light illuminated by display devices with a blue light peak at a shorter wavelength also triggered increased cell death and apoptosis compared to that illuminated by display devices with a blue light peak at longer wavelength. These results show that even at the low intensity utilized in the display devices, blue light can induce ROS production and apoptosis in retinal cells. Our results also suggest that the blue light hazard of display devices might be highly reduced if the display devices contain less short wavelength blue light.

  3. Eukaryotic algal phytochromes span the visible spectrum

    PubMed Central

    Rockwell, Nathan C.; Duanmu, Deqiang; Martin, Shelley S.; Bachy, Charles; Price, Dana C.; Bhattacharya, Debashish; Worden, Alexandra Z.; Lagarias, J. Clark

    2014-01-01

    Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red–absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes. PMID:24567382

  4. Croconic acid - An absorber in the Venus clouds?

    NASA Technical Reports Server (NTRS)

    Hartley, Karen K.; Wolff, Andrew R.; Travis, Larry D.

    1989-01-01

    The absorbing species responsible for the UV cloud features and pale yellow hue of the Venus clouds is presently suggested to be the carbon monoxide-polymer croconic acid, which strongly absorbs in the blue and near-UV. Laboratory absorption-coefficient measurements of a dilute solution of croconic acid in sulfuric acid are used as the bases of cloud-scattering models; the Venus planetary albedo's observed behavior in the blue and near-UV are noted to be qualitatively reproduced. Attention is given to a plausible croconic acid-production mechanism for the Venus cloudtop region.

  5. False Color Mosaic of Jupiter's Belt-Zone Boundary

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color mosaic shows a belt-zone boundary near Jupiter's equator. The images that make up the four quadrants of this mosaic were taken within a few minutes of each other. Light at each of Galileo's three near-infrared wavelengths is displayed here in the visible colors red, green and blue. Light at 886 nanometers, strongly absorbed by atmospheric methane and scattered from clouds high in the atmosphere, is shown in red. Light at 732 nanometers, moderately absorbed by atmospheric methane, is shown in green. Light at 757 nanometers, scattered mostly from Jupiter's lower visible cloud deck, is shown in blue. The lower cloud deck appears bluish white, while the higher layer appears pinkish. The holes in the upper layer and their relationships to features in the lower cloud deck can be studied in the lower half of the mosaic. Galileo is the first spacecraft to image different layers in Jupiter's atmosphere.

    The edge of the planet runs along the right side of the mosaic. North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 280 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on Nov. 5, 1996, at a range of 1.2 million kilometers by the solid state imaging (CCD) system aboard NASA's Galileo spacecraft.

    Launched in October 1989, Galileo entered orbit around Jupiter on Dec. 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo.

  6. Photodegradation of near-infrared-pumped Tm(3+)-doped ZBLAN fiber upconversion lasers.

    PubMed

    Booth, I J; Archambault, J L; Ventrudo, B F

    1996-03-01

    Photodegradation has been observed in Tm(3+)-doped ZBLAN fiber lasers pumped with laser diodes at 1135 nm. After upconversion lasing at 482 nm, the fiber develops color centers that absorb strongly at wavelengths below ~650 nm, affecting further upconversion lasing. The rate of damage formation is strongly dependent on the pump power level and on the thulium concentration. The color centers are bleached by intense blue light but recover with thermal excitation and can be removed by thermal annealing at temperature near 100 degrees C.

  7. Improved methylene blue two-phase titration method for determining cationic surfactant concentration in high-salinity brine.

    PubMed

    Cui, Leyu; Puerto, Maura; López-Salinas, José L; Biswal, Sibani L; Hirasaki, George J

    2014-11-18

    The methylene blue (MB) two-phase titration method is a rapid and efficient method for determining the concentrations of anionic surfactants. The point at which the aqueous and chloroform phases appear equally blue is called Epton's end point. However, many inorganic anions, e.g., Cl(-), NO3(-), Br(-), and I(-), can form ion pairs with MB(+) and interfere with Epton's end point, resulting in the failure of the MB two-phase titration in high-salinity brine. Here we present a method to extend the MB two-phase titration method for determining the concentration of various cationic surfactants in both deionized water and high-salinity brine (22% total dissolved solid). A colorless end point, at which the blue color is completely transferred from the aqueous phase to the chloroform phase, is proposed as titration end point. Light absorbance at the characteristic wavelength of MB is measured using a spectrophotometer. When the absorbance falls below a threshold value of 0.04, the aqueous phase is considered colorless, indicating that the end point has been reached. By using this improved method, the overall error for the titration of a permanent cationic surfactant, e.g., dodecyltrimethylammonium bromide, in deionized (DI) water and high-salinity brine is 1.274% and 1.322% with limits of detection (LOD) of 0.149 and 0.215 mM, respectively. Compared to the traditional acid-base titration method, the error of this improved method for a switchable cationic surfactant, e.g., tertiary amine surfactant (Ethomeen C12), is 2.22% in DI water and 0.106% with LOD of 0.369 and 0.439 mM, respectively.

  8. Morphological responses of wheat to blue light

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Bugbee, B.

    1992-01-01

    Blue light significantly increased tillering in wheat (Triticum aestivum L.) plants grown at the same photosynthetic photon flux (PPF). Plants were grown under two levels of blue light (400-500 nm) in a controlled environment with continuous irradiation. Plants received either 50 micromoles m-2 s-1 of blue light or 2 micromoles m-2 s-1 blue light from filtered metal halide lamps at a total irradiance of 200 micromoles m-2 s-1 PPF (400-700 nm). Plants tillered an average of 25% more under the higher level of blue light. Blue light also caused a small, but consistent, increase in main culm development, measured as Haun stage. Leaf length was reduced by higher levels of blue light, while plant dry-mass was not significantly affected by blue light. Applying the principle of equivalent light action, the results suggest that tillering and leaf elongation are mediated by the blue-UV light receptor(s) because phytochrome photoequilibrium for each treatment were nearly identical.

  9. Blue light-induced immunosuppression in Bactrocera dorsalis adults, as a carryover effect of larval exposure.

    PubMed

    Tariq, K; Noor, M; Hori, M; Ali, A; Hussain, A; Peng, W; Chang, C-J; Zhang, H

    2017-12-01

    Detrimental effects of ultraviolet (UV) light on living organisms are well understood, little is known about the effects of blue light irradiation. Although a recent study revealed that blue light caused more harmful effects on insects than UV light and blue light irradiation killed insect pests of various orders including Diptera, the effects of blue light on physiology of insects are still largely unknown. Here we studied the effects of blue light irradiation on cuticular melanin in larval and the immune response in adult stage of Bactrocera dorsalis. We also evaluated the effects of blue light exposure in larval stage on various age and mass at metamorphosis and the mediatory role of cuticular melanin in carryover effects of larval stressors across metamorphosis. We found that larvae exposed to blue light decreased melanin contents in their exoskeleton with smaller mass and delayed metamorphosis than insects reared without blue light exposure. Across metamorphosis, lower melanotic encapsulation response and higher susceptibility to Beauveria bassiana was detected in adults that had been exposed to blue light at their larval stage, thereby constituting the first evidence that blue light impaired adult immune function in B. dorsalis as a carryover effect of larval exposure.

  10. Subadditive responses to extremely short blue and green pulsed light on visual evoked potentials, pupillary constriction and electroretinograms.

    PubMed

    Lee, Soomin; Uchiyama, Yuria; Shimomura, Yoshihiro; Katsuura, Tetsuo

    2017-11-17

    The simultaneous exposure to blue and green light was reported to result in less melatonin suppression than monochromatic exposure to blue or green light. Here, we conducted an experiment using extremely short blue- and green-pulsed light to examine their visual and nonvisual effects on visual evoked potentials (VEPs), pupillary constriction, electroretinograms (ERGs), and subjective evaluations. Twelve adult male subjects were exposed to three light conditions: blue-pulsed light (2.5-ms pulse width), green-pulsed light (2.5-ms pulse width), and simultaneous blue- and green-pulsed light with white background light. We measured the subject's pupil diameter three times in each condition. Then, after 10 min of rest, the subject was exposed to the same three light conditions. We measured the averaged ERG and VEP during 210 pulsed-light exposures in each condition. We also determined subjective evaluations using a visual analog scale (VAS) method. The pupillary constriction during the simultaneous exposure to blue- and green-pulsed light was significantly lower than that during the blue-pulsed light exposure despite the double irradiance intensity of the combination. We also found that the b/|a| wave of the ERGs during the simultaneous exposure to blue- and green-pulsed light was lower than that during the blue-pulsed light exposure. We confirmed the subadditive response to pulsed light on pupillary constriction and ERG. However, the P100 of the VEPs during the blue-pulsed light were smaller than those during the simultaneous blue- and green-pulsed light and green-pulsed light, indicating that the P100 amplitude might depend on the luminance of light. Our findings demonstrated the effect of the subadditive response to extremely short pulsed light on pupillary constriction and ERG responses. The effects on ipRGCs by the blue-pulsed light exposure are apparently reduced by the simultaneous irradiation of green light. The blue versus yellow (b/y) bipolar cells in the retina might be responsible for this phenomenon.

  11. Phototropin 1 and dim-blue light modulate the red light de-etiolation response.

    PubMed

    Wang, Yihai; M Folta, Kevin

    2014-01-01

    Light signals regulate seedling morphological changes during de-etiolation through the coordinated actions of multiple light-sensing pathways. Previously we have shown that red-light-induced hypocotyl growth inhibition can be reversed by addition of dim blue light through the action of phototropin 1 (phot1). Here we further examine the fluence-rate relationships of this blue light effect in short-term (hours) and long-term (days) hypocotyl growth assays. The red stem-growth inhibition and blue promotion is a low-fluence rate response, and blue light delays or attenuates both the red light and far-red light responses. These de-etiolation responses include blue light reversal of red or far-red induced apical hook opening. This response also requires phot1. Cryptochromes (cry1 and cry2) are activated by higher blue light fluence-rates and override phot1's influence on hypocotyl growth promotion. Exogenous application of auxin transport inhibitor naphthylphthalamic acid abolished the blue light stem growth promotion in both hypocotyl growth and hook opening. Results from the genetic tests of this blue light effect in auxin transporter mutants, as well as phytochrome kinase substrate mutants indicated that aux1 may play a role in blue light reversal of red light response. Together, the phot1-mediated adjustment of phytochrome-regulated photomorphogenic events is most robust in dim blue light conditions and is likely modulated by auxin transport through its transporters.

  12. Different Structural Changes Occur in the Blue- and Green-Absorbing Proteorhodopsin During the Primary Photoreaction†

    PubMed Central

    Amsden, Jason J.; Kralj, Joel M.; Bergo, Vladislav B.; Spudich, Elena N.; Spudich, John L.; Rothschild, Kenneth J.

    2013-01-01

    We examine the structural changes during the primary photoreaction in blue-absorbing proteorhodopsin (BPR), a light-driven retinylidene proton pump, using low-temperature FTIR difference spectroscopy. Comparison of the light induced BPR difference spectrum recorded at 80 K to that of green-absorbing proteorhodopsin (GPR) reveals that there are several differences in the BPR and GPR primary photoreactions despite the similar structure of the retinal chromophore and all-trans → 13-cis isomerization. Strong bands near 1700 cm−1 assigned previously to a change in hydrogen bonding of Asn230 in GPR are still present in BPR but in addition bands in the same region are assigned on the basis of site-directed mutagenesis to changes occurring in Gln105. In the amide II region bands are assigned on the basis of total-N15 labeling to structural changes of the protein backbone, although no such bands were previously observed for GPR. A band at 3642 cm−1 in BPR, assigned to the OH stretching mode of a water molecule on the basis of H218O substitution, appears at a different frequency than a band at 3626 cm−1 previously assigned to a water molecule in GPR. However, the substitution of Gln105 for Leu105 in BPR leads to the appearance of both bands at 3642 and 3626 cm−1 indicating the waters assigned in BPR and GPR exist in separate distinct locations and can coexist in the GPR-like Q105L mutant of BPR. These results indicate that there exist significant differences in the conformational changes occurring in these two types proteorhodopsin during the initial photoreaction despite their similar chromophores structures, which might reflect a different arrangement of water in the active site as well as substitution of a hydrophilic for hydrophobic residue at residue 105. PMID:18842006

  13. Spectral signatures of photosynthesis. I. Review of Earth organisms.

    PubMed

    Kiang, Nancy Y; Siefert, Janet; Govindjee; Blankenship, Robert E

    2007-02-01

    Why do plants reflect in the green and have a "red edge" in the red, and should extrasolar photosynthesis be the same? We provide (1) a brief review of how photosynthesis works, (2) an overview of the diversity of photosynthetic organisms, their light harvesting systems, and environmental ranges, (3) a synthesis of photosynthetic surface spectral signatures, and (4) evolutionary rationales for photosynthetic surface reflectance spectra with regard to utilization of photon energy and the planetary light environment. We found the "near-infrared (NIR) end" of the red edge to trend from blue-shifted to reddest for (in order) snow algae, temperate algae, lichens, mosses, aquatic plants, and finally terrestrial vascular plants. The red edge is weak or sloping in lichens. Purple bacteria exhibit possibly a sloping edge in the NIR. More studies are needed on pigment-protein complexes, membrane composition, and measurements of bacteria before firm conclusions can be drawn about the role of the NIR reflectance. Pigment absorbance features are strongly correlated with features of atmospheric spectral transmittance: P680 in Photosystem II with the peak surface incident photon flux density at approximately 685 nm, just before an oxygen band at 687.5 nm; the NIR end of the red edge with water absorbance bands and the oxygen A-band at 761 nm; and bacteriochlorophyll reaction center wavelengths with local maxima in atmospheric and water transmittance spectra. Given the surface incident photon flux density spectrum and resonance transfer in light harvesting, we propose some rules with regard to where photosynthetic pigments will peak in absorbance: (1) the wavelength of peak incident photon flux; (2) the longest available wavelength for core antenna or reaction center pigments; and (3) the shortest wavelengths within an atmospheric window for accessory pigments. That plants absorb less green light may not be an inefficient legacy of evolutionary history, but may actually satisfy the above criteria.

  14. The two parallel photocycles of the Chlamydomonas sensory photoreceptor histidine kinase rhodopsin 1.

    PubMed

    Luck, Meike; Hegemann, Peter

    2017-10-01

    Histidine kinase rhodopsins (HKRs) belong to a class of unexplored sensory photoreceptors that share a similar modular architecture. The light sensing rhodopsin domain is covalently linked to signal-transducing modules and in some cases to a C-terminal guanylyl-cyclase effector. In spite of their wide distribution in unicellular organisms, very little is known about their physiological role and mechanistic functioning. We investigated the photochemical properties of the recombinant rhodopsin-fragment of Cr-HKR1 originating from Chlamydomonas reinhardtii. Our spectroscopic studies revealed an unusual thermal stability of the photoproducts with the deprotonated retinal Schiff base (RSB). Upon UV-irradiation these Rh-UV states with maximal absorbance in the UVA-region (Rh-UV) photochemically convert to stable blue light absorbing rhodopsin (Rh-Bl) with protonated chromophore. The heterogeneity of the sample is based on two parallel photocycles with the chromophore in C 15 =N-syn- or -anti-configuration. This report represents an attempt to decipher the underlying reaction schemes and interconversions of the two coexisting photocycles. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Analysis of periodically patterned metallic nanostructures for infrared absorber

    NASA Astrophysics Data System (ADS)

    Peng, Sha; Yuan, Ying; Long, Huabao; Liu, Runhan; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    With rapid advancement of infrared detecting technology in both military and civil domains, the photo-electronic performances of near-infrared detectors have been widely concerned. Currently, near-infrared detectors demonstrate some problems such as low sensitivity, low detectivity, and relatively small array scale. The current studies show that surface plasmons (SPs) stimulated over the surface of metallic nanostructures by incident light can be used to break the diffraction limit and thus concentrate light into sub-wavelength scale, so as to indicate a method to develop a new type of infrared absorber or detector with very large array. In this paper, we present the design and characterization of periodically patterned metallic nanostructures that combine nanometer thickness aluminum film with silicon wafer. Numerical computations show that there are some valleys caused by surface plasmons in the reflection spectrum in the infrared region, and both red shift and blue shift of the reflection spectrum were observed through changing the nanostructural parameters such as angle α and diameters D. Moreover, the strong E-field intensity is located at the sharp corner of the nano-structures.

  16. Antimicrobial blue light therapy for Candida albicans burn infection in mice

    NASA Astrophysics Data System (ADS)

    Zhang, Yunsong; Wang, Yucheng; Murray, Clinton K.; Hamblin, Michael R.; Gu, Ying; Dai, Tianhong

    2015-05-01

    In this preclinical study, we investigated the utility of antimicrobial blue light therapy for Candida albicans infection in acutely burned mice. A bioluminescent strain of C. albicans was used. The susceptibilities to blue light inactivation were compared between C. albicans and human keratinocyte. In vitro serial passaging of C. albicans on blue light exposure was performed to evaluate the potential development of resistance to blue light inactivation. A mouse model of acute thermal burn injury infected with the bioluminescent strain of C. albicans was developed. Blue light (415 nm) was delivered to mouse burns for decolonization of C. albicans. Bioluminescence imaging was used to monitor in real time the extent of fungal infection in mouse burns. Experimental results showed that C. albicans was approximately 42-fold more susceptible to blue light inactivation in vitro than human keratinocyte (P=0.0022). Serial passaging of C. albicans on blue light exposure implied a tendency for the fungal susceptibility to blue light inactivation to decrease with the numbers of passages. Blue light reduced fungal burden by over 4-log10 (99.99%) in acute mouse burns infected with C. albicans in comparison to infected mouse burns without blue light therapy (P=0.015).

  17. Differences in the response of wheat, soybean and lettuce to reduced blue radiation

    NASA Technical Reports Server (NTRS)

    Dougher, T. A.; Bugbee, B.

    2001-01-01

    Although many fundamental blue light responses have been identified, blue light dose-response curves are not well characterized. We studied the growth and development of soybean, wheat and lettuce plants under high-pressure sodium (HPS) and metal halide (MH) lamps with yellow filters creating five fractions of blue light. The blue light fractions obtained were < 0.1, 2 and 6% under HPS lamps, and 6, 12 and 26% under MH lamps. Studies utilizing both lamp types were done at two photosynthetic photon flux levels, 200 and 500 mumol m-2 s-1 under a 16 h photoperiod. Phytochrome photoequilibria was nearly identical among treatments. The blue light effect on dry mass, stem length, leaf area, specific leaf area and tillering/branching was species dependent. For these parameters, wheat did not respond to blue light, but lettuce was highly sensitive to blue light fraction between 0 and 6% blue. Soybean stem length decreased and leaf area increased up to 6% blue, but total dry mass was unchanged. The blue light fraction determined the stem elongation response in soybean, whereas the absolute amount of blue light determined the stem elongation response in lettuce. The data indicate that lettuce growth and development requires blue light, but soybean and wheat may not.

  18. Phototropin 1 and dim-blue light modulate the red light de-etiolation response

    PubMed Central

    Wang, Yihai; M Folta, Kevin

    2014-01-01

    Light signals regulate seedling morphological changes during de-etiolation through the coordinated actions of multiple light-sensing pathways. Previously we have shown that red-light-induced hypocotyl growth inhibition can be reversed by addition of dim blue light through the action of phototropin 1 (phot1). Here we further examine the fluence-rate relationships of this blue light effect in short-term (hours) and long-term (days) hypocotyl growth assays. The red stem-growth inhibition and blue promotion is a low-fluence rate response, and blue light delays or attenuates both the red light and far-red light responses. These de-etiolation responses include blue light reversal of red or far-red induced apical hook opening. This response also requires phot1. Cryptochromes (cry1 and cry2) are activated by higher blue light fluence-rates and override phot1's influence on hypocotyl growth promotion. Exogenous application of auxin transport inhibitor naphthylphthalamic acid abolished the blue light stem growth promotion in both hypocotyl growth and hook opening. Results from the genetic tests of this blue light effect in auxin transporter mutants, as well as phytochrome kinase substrate mutants indicated that aux1 may play a role in blue light reversal of red light response. Together, the phot1-mediated adjustment of phytochrome-regulated photomorphogenic events is most robust in dim blue light conditions and is likely modulated by auxin transport through its transporters. PMID:25482790

  19. Visible light-induced photocatalytic degradation of Reactive Blue-19 over highly efficient polyaniline-TiO2 nanocomposite: a comparative study with solar and UV photocatalysis.

    PubMed

    Kalikeri, Shankramma; Kamath, Nidhi; Gadgil, Dhanashri Jayant; Shetty Kodialbail, Vidya

    2018-02-01

    Polyaniline-TiO 2 (PANI-TiO 2 ) nanocomposite was prepared by in situ polymerisation method. X-ray diffractogram (XRD) showed the formation of PANI-TiO 2 nanocomposite with the average crystallite size of 46 nm containing anatase TiO 2 . The PANI-TiO 2 nanocomposite consisted of short-chained fibrous structure of PANI with spherical TiO 2 nanoparticles dispersed at the tips and edge of the fibres. The average hydrodynamic diameter of the nanocomposite was 99.5 nm. The band gap energy was 2.1 eV which showed its ability to absorb light in the visible range. The nanocomposite exhibited better visible light-mediated photocatalytic activity than TiO 2 (Degussa P25) in terms of degradation of Reactive Blue (RB-19) dye. The photocatalysis was favoured under initial acidic pH, and complete degradation of 50 mg/L dye could be achieved at optimum catalyst loading of 1 g/L. The kinetics of degradation followed the Langmuir-Hinshelhood model. PANI-TiO 2 nanocomposite showed almost similar photocatalytic activity under UV and visible light as well as in the solar light which comprises of radiation in both UV and visible light range. Chemical oxygen demand removal of 86% could also be achieved under visible light, confirming that simultaneous mineralization of the dye occurred during photocatalysis. PANI-TiO 2 nanocomposites are promising photocatalysts for the treatment of industrial wastewater containing RB-19 dye.

  20. Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light

    PubMed Central

    Hogewoning, Sander W.; Trouwborst, Govert; Maljaars, Hans; Poorter, Hendrik; van Ieperen, Wim; Harbinson, Jeremy

    2010-01-01

    The blue part of the light spectrum has been associated with leaf characteristics which also develop under high irradiances. In this study blue light dose–response curves were made for the photosynthetic properties and related developmental characteristics of cucumber leaves that were grown at an equal irradiance under seven different combinations of red and blue light provided by light-emitting diodes. Only the leaves developed under red light alone (0% blue) displayed dysfunctional photosynthetic operation, characterized by a suboptimal and heterogeneously distributed dark-adapted Fv/Fm, a stomatal conductance unresponsive to irradiance, and a relatively low light-limited quantum yield for CO2 fixation. Only 7% blue light was sufficient to prevent any overt dysfunctional photosynthesis, which can be considered a qualitatively blue light effect. The photosynthetic capacity (Amax) was twice as high for leaves grown at 7% blue compared with 0% blue, and continued to increase with increasing blue percentage during growth measured up to 50% blue. At 100% blue, Amax was lower but photosynthetic functioning was normal. The increase in Amax with blue percentage (0–50%) was associated with an increase in leaf mass per unit leaf area (LMA), nitrogen (N) content per area, chlorophyll (Chl) content per area, and stomatal conductance. Above 15% blue, the parameters Amax, LMA, Chl content, photosynthetic N use efficiency, and the Chl:N ratio had a comparable relationship as reported for leaf responses to irradiance intensity. It is concluded that blue light during growth is qualitatively required for normal photosynthetic functioning and quantitatively mediates leaf responses resembling those to irradiance intensity. PMID:20504875

  1. Cellular detection of 50 Hz magnetic fields and weak blue light: effects on superoxide levels and genotoxicity.

    PubMed

    Höytö, Anne; Herrala, Mikko; Luukkonen, Jukka; Juutilainen, Jukka; Naarala, Jonne

    2017-06-01

    We tested the hypothesis that the effects of 50 Hz magnetic fields (MFs) on superoxide levels and genotoxicity depend on the presence of blue light. Human SH-SY5Y neuroblastoma cells were exposed to a 50 Hz, 100 μT MF with or without non-phototoxic level of blue light for 24 h. We also studied whether these treatments alter responses to menadione, an agent that induces mitochondrial superoxide (O 2 • - ) production and DNA damage. Micronuclei, proliferation, viability, cytosolic and mitochondrial O 2 • - levels were assessed. MF (without blue light) increased cytosolic O 2 • - production and blue light suppressed this effect. Mitochondrial O 2 • - production was reduced by both MF and blue light, but these effects were not additive. Micronucleus frequency was not affected by blue light or MF alone, but blue light (significantly when combined with MF) enhanced menadione-induced micronuclei. The original simple hypothesis (blue light is needed for MF effects) was not supported, but interaction of MF and blue light was nevertheless observed. The results are consistent with MF effects on light-independent radical reactions.

  2. Impact of blue LED irradiation on proliferation and gene expression of cultured human keratinocytes

    NASA Astrophysics Data System (ADS)

    Becker, Anja; Sticht, Carsten; Dweep, Harsh; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2015-03-01

    Blue light is known for its anti-microbial, anti-proliferative and anti-inflammatory effects. Furthermore, it is already used for the treatment of neonatal jaundice and acne. However, little is known about the exact mechanisms of action on gene expression level. The aim of this study was to assess the impact of blue LED irradiation on the proliferation and gene expression in immortalized human keratinocytes (HaCaT) in vitro. Furthermore its safety was assessed. XTT-tests revealed a decrease in cell proliferation in blue light irradiated cells depending on the duration of light irradiation. Moreover, gene expression analysis demonstrated deregulated genes already 3 hours after blue light irradiation. 24 hours after blue light irradiation the effects seemed to be even more pronounced. The oxidative stress response was significantly increased, pointing to increased ROS production due to blue light, as well as steroid hormone biosynthesis. Downregulated pathways or biological processes were connected to anti-inflammatory response. Interestingly, also the melanoma pathway contained significantly downregulated genes 24 hours after blue light irradiation, which stands in accordance to literature that blue light can also inhibit proliferation in cancer cells. First tests with melanoma cells revealed a decrease in cell proliferation after blue light irradiation. In conclusion, blue light irradiation might open avenues to new therapeutic regimens; at least blue light seems to have no effect that induces cancer growth or formation.

  3. 14 CFR Appendix A to Part 1221 - Congressional Space Medal of Honor

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... cable nos. of colors Gold 65021 (old gold). Dark Blue 70076 (independence blue). Blue 65014 (light blue... the crew through the earth's atmosphere (light blue); the light blue is the same color as the chief of...

  4. Jupiter in True and False Color

    NASA Image and Video Library

    2001-01-23

    These color composite frames of the mid-section of Jupiter were of narrow angle images acquired on December 31, 2000, a day after Cassini's closest approach to the planet. The smallest features in these frames are roughly ~ 60 kilometers. The left is natural color, composited to yield the color that Jupiter would have if seen by the naked eye. The right frame is composed of 3 images: two were taken through narrow band filters centered on regions of the spectrum where the gaseous methane in Jupiter's atmosphere absorbs light, and the third was taken in a red continuum region of the spectrum, where Jupiter has no absorptions. The combination yields an image whose colors denote the height of the clouds. Red regions are deep water clouds, bright blue regions are high haze (like the blue covering the Great Red Spot). Small, intensely bright white spots are energetic lightning storms which have penetrated high into the atmosphere where there is no opportunity for absorption of light: these high cloud systems reflect all light equally. The darkest blue regions -- for example, the long linear regions which border the northern part of the equatorial zone, are the very deep "hot spots', seen in earlier images, from which Jovian thermal emission is free to escape to space. This is the first time that global images of Jupiter in all the methane and attendant continuum filters have been acquired by a spacecraft. From images like these, the stratigraphy of Jupiter's dynamic atmosphere will be determined. http://photojournal.jpl.nasa.gov/catalog/PIA02877

  5. LED lamp

    DOEpatents

    Galvez, Miguel; Grossman, Kenneth; Betts, David

    2013-11-12

    There is herein described a lamp for providing white light comprising a plurality of light sources positioned on a substrate. Each of said light sources comprises a blue light emitting diode (LED) and a dome that substantially covers said LED. A first portion of said blue light from said LEDs is transmitted through said domes and a second portion of said blue light is converted into a red light by a first phosphor contained in said domes. A cover is disposed over all of said light sources that transmits at least a portion of said red and blue light emitted by said light sources. The cover contains a second phosphor that emits a yellow light in response to said blue light. The red, blue and yellow light combining to form the white light and the white light having a color rendering index (CRI) of at least about 80.

  6. Effects and Mechanism of Blue Light on Monascus in Liquid Fermentation.

    PubMed

    Zhang, Xiaowei; Liu, Wenqing; Chen, Xiying; Cai, Junhui; Wang, Changlu; He, Weiwei

    2017-03-01

    The effect of light on Monascus and the underlying mechanism have received a great deal of interest for the industrial application of Monascus pigments. In this study, we have examined the effects of blue light on the culture morphology, mycelium growth, pigments, and citrinin yield of Monascus in liquid-state and oscillation fermentation, and explored the mechanism at a physiological level. It was found that blue light affected the colony morphology, the composition (chitin content), and permeability of the Monascus mycelium cell wall in static liquid culture, which indicates blue light benefits pigments secreting from aerial mycelium to culture medium. In liquid oscillation fermentation, the yields of Monascus pigments in fermentation broth (darkness 1741 U/g, blue light 2206 U/g) and mycelium (darkness 2442 U/g, blue light 1900 U/g) cultured under blue light and darkness are different. The total pigments produced per gram of Monascus mycelium under blue light was also higher (4663 U/g) than that in darkness (4352 U/g). However, the production of citrinin (88 μg/g) under blue light was evidently lower than that in darkness (150 μg/g). According to the degradation of citrinin caused by blue light and hydrogen peroxide, it can be concluded that blue light could degrade citrinin and inhibit the catalase activity of Monascus mycelium, subsequently suppressing the decomposition of hydrogen peroxide, which is the active species that degrades citrinin.

  7. Effects of blue light on the circadian system and eye physiology.

    PubMed

    Tosini, Gianluca; Ferguson, Ian; Tsubota, Kazuo

    2016-01-01

    Light-emitting diodes (LEDs) have been used to provide illumination in industrial and commercial environments. LEDs are also used in TVs, computers, smart phones, and tablets. Although the light emitted by most LEDs appears white, LEDs have peak emission in the blue light range (400-490 nm). The accumulating experimental evidence has indicated that exposure to blue light can affect many physiologic functions, and it can be used to treat circadian and sleep dysfunctions. However, blue light can also induce photoreceptor damage. Thus, it is important to consider the spectral output of LED-based light sources to minimize the danger that may be associated with blue light exposure. In this review, we summarize the current knowledge of the effects of blue light on the regulation of physiologic functions and the possible effects of blue light exposure on ocular health.

  8. The Involvement of the Oxidative Stress in Murine Blue LED Light-Induced Retinal Damage Model.

    PubMed

    Nakamura, Maho; Kuse, Yoshiki; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2017-01-01

    The aim of study was to establish a mouse model of blue light emitting diode (LED) light-induced retinal damage and to evaluate the effects of the antioxidant N-acetylcysteine (NAC). Mice were exposed to 400 or 800 lx blue LED light for 2 h, and were evaluated for retinal damage 5 d later by electroretinogram amplitude and outer nuclear layer (ONL) thickness. Additionally, we investigated the effect of blue LED light exposure on shorts-wave-sensitive opsin (S-opsin), and rhodopsin expression by immunohistochemistry. Blue LED light induced light intensity dependent retinal damage and led to collapse of S-opsin and altered rhodopsin localization from inner and outer segments to ONL. Conversely, NAC administered at 100 or 250 mg/kg intraperitoneally twice a day, before dark adaptation and before light exposure. NAC protected the blue LED light-induced retinal damage in a dose-dependent manner. Further, blue LED light-induced decreasing of S-opsin levels and altered rhodopsin localization, which were suppressed by NAC. We established a mouse model of blue LED light-induced retinal damage and these findings indicated that oxidative stress was partially involved in blue LED light-induced retinal damage.

  9. High Efficiency, Illumination Quality OLEDs for Lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph Shiang; James Cella; Kelly Chichak

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature ismore » 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temperature, color rendering and luminous efficacy) while keeping the properties of the underlying blue OLED constant. The success of the downconversion approach is ultimately based upon the ability to produce efficient emission in the blue. Table 1 presents a comparison of the current performance of the conjugated polymer, dye-doped polymer, and dendrimer approaches to making a solution-processed blue OLED as 2006. Also given is the published state of the art performance of a vapor-deposited blue OLED. One can see that all the approaches to a blue OLED give approximately the same external quantum efficiency at 500 cd/m{sup 2}. However, due to its low operating voltage, the fluorescent conjugated polymer approach yields a superior power efficiency at the same brightness.« less

  10. Red Light Represses the Photophysiology of the Scleractinian Coral Stylophora pistillata

    PubMed Central

    Wijgerde, Tim; van Melis, Anne; Silva, Catarina I. F.; Leal, Miguel C.; Vogels, Luc; Mutter, Claudia; Osinga, Ronald

    2014-01-01

    Light spectrum plays a key role in the biology of symbiotic corals, with blue light resulting in higher coral growth, zooxanthellae density, chlorophyll a content and photosynthesis rates as compared to red light. However, it is still unclear whether these physiological processes are blue-enhanced or red-repressed. This study investigated the individual and combined effects of blue and red light on the health, zooxanthellae density, photophysiology and colouration of the scleractinian coral Stylophora pistillata over 6 weeks. Coral fragments were exposed to blue, red, and combined 50/50% blue red light, at two irradiance levels (128 and 256 μmol m−2 s−1). Light spectrum affected the health/survival, zooxanthellae density, and NDVI (a proxy for chlorophyll a content) of S. pistillata. Blue light resulted in highest survival rates, whereas red light resulted in low survival at 256 μmol m−2 s−1. Blue light also resulted in higher zooxanthellae densities compared to red light at 256 μmol m−2 s−1, and a higher NDVI compared to red and combined blue red light. Overall, our results suggest that red light negatively affects the health, survival, symbiont density and NDVI of S. pistillata, with a dominance of red over blue light for NDVI. PMID:24658108

  11. Red light represses the photophysiology of the scleractinian coral Stylophora pistillata.

    PubMed

    Wijgerde, Tim; van Melis, Anne; Silva, Catarina I F; Leal, Miguel C; Vogels, Luc; Mutter, Claudia; Osinga, Ronald

    2014-01-01

    Light spectrum plays a key role in the biology of symbiotic corals, with blue light resulting in higher coral growth, zooxanthellae density, chlorophyll a content and photosynthesis rates as compared to red light. However, it is still unclear whether these physiological processes are blue-enhanced or red-repressed. This study investigated the individual and combined effects of blue and red light on the health, zooxanthellae density, photophysiology and colouration of the scleractinian coral Stylophora pistillata over 6 weeks. Coral fragments were exposed to blue, red, and combined 50/50% blue red light, at two irradiance levels (128 and 256 μmol m(-2) s(-1)). Light spectrum affected the health/survival, zooxanthellae density, and NDVI (a proxy for chlorophyll a content) of S. pistillata. Blue light resulted in highest survival rates, whereas red light resulted in low survival at 256 μmol m(-2) s(-1). Blue light also resulted in higher zooxanthellae densities compared to red light at 256 μmol m(-2) s(-1), and a higher NDVI compared to red and combined blue red light. Overall, our results suggest that red light negatively affects the health, survival, symbiont density and NDVI of S. pistillata, with a dominance of red over blue light for NDVI.

  12. Can sleep quality and wellbeing be improved by changing the indoor lighting in the homes of healthy, elderly citizens?

    PubMed Central

    Sander, Birgit; Markvart, Jakob; Kessel, Line; Argyraki, Aikaterini; Johnsen, Kjeld

    2015-01-01

    The study investigated the effect of bright blue-enriched versus blue-suppressed indoor light on sleep and wellbeing of healthy participants over 65 years. Twenty-nine participants in 20 private houses in a uniform settlement in Copenhagen were exposed to two light epochs of 3 weeks with blue-enriched (280 lux) and 3 weeks blue-suppressed (240 lux) indoor light or vice versa from 8 to 13 pm in a randomized cross-over design. The first light epoch was in October, the second in November and the two light epochs were separated by one week. Participants were examined at baseline and at the end of each light epoch. The experimental indoor light was well tolerated by the majority of the participants. Sleep duration was 7.44 (95% CI 7.14–7.74) hours during blue-enriched conditions and 7.31 (95% CI 7.01–7.62) hours during blue-suppressed conditions (p = 0.289). Neither rest hours, chromatic pupillometry, nor saliva melatonin profile showed significant changes between blue-enriched and blue-suppressed epochs. Baseline Pittsburgh Sleep Quality Index (PSQI) was significantly worse in females; 7.62 (95% CI 5.13–10.0) versus 4.06 (95% CI 2.64–5.49) in males, p = 0.009. For females, PSQI improved significantly during blue-enriched light exposure (p = 0.007); no significant changes were found for males. The subjective grading of indoor light quality doubled from participants habitual indoor light to the bright experimental light, while it was stable between light epochs, although there were clear differences between blue-enriched and blue-suppressed electrical light conditions imposed. Even though the study was carried out in the late autumn at northern latitude, the only significant difference in Actiwatch-measured total blue light exposure was from 8 to 9 am, because contributions from blue-enriched, bright indoor light were superseded by contributions from daylight. PMID:26181467

  13. In vivo excitation of nanoparticles using luminescent bacteria

    PubMed Central

    Dragavon, Joe; Blazquez, Samantha; Rekiki, Abdessalem; Samson, Chelsea; Theodorou, Ioanna; Rogers, Kelly L.; Tournebize, Régis; Shorte, Spencer L.

    2012-01-01

    The lux operon derived from Photorhabdus luminescens incorporated into bacterial genomes, elicits the production of biological chemiluminescence typically centered on 490 nm. The light-producing bacteria are widely used for in vivo bioluminescence imaging. However, in living samples, a common difficulty is the presence of blue-green absorbers such as hemoglobin. Here we report a characterization of fluorescence by unbound excitation from luminescence, a phenomenon that exploits radiating luminescence to excite nearby fluorophores by epifluorescence. We show that photons from bioluminescent bacteria radiate over mesoscopic distances and induce a red-shifted fluorescent emission from appropriate fluorophores in a manner distinct from bioluminescence resonance energy transfer. Our results characterizing fluorescence by unbound excitation from luminescence, both in vitro and in vivo, demonstrate how the resulting blue-to-red wavelength shift is both necessary and sufficient to yield contrast enhancement revealing mesoscopic proximity of luminescent and fluorescent probes in the context of living biological tissues. PMID:22615349

  14. Visible-light system for detecting doxorubicin contamination on skin and surfaces.

    PubMed

    Van Raalte, J; Rice, C; Moss, C E

    1990-05-01

    A portable system that uses fluorescence stimulated by visible light to identify doxorubicin contamination on skin and surfaces was studied. When activated by violet-blue light in the 465-nm range, doxorubicin fluoresces, emitting orange-red light in the 580-nm range. The light source to stimulate fluorescence was a slide projector with a filter to selectively pass short-wave (blue) visible light. Fluorescence was both observed visually with viewing spectacles and photographed. Solutions of doxorubicin in sterile 0.9% sodium chloride injection were prepared in nine standard concentrations ranging from 2 to 0.001 mg/mL. Droplets of each admixture were placed on stainless steel, laboratory coat cloth, pieces of latex examination glove, bench-top absorbent padding, and other materials on which antineoplastics might spill or leak. These materials then were stored for up to eight weeks and photographed weekly. The relative ability of water, household bleach, hydrogen peroxide solution, and soap solution to deactivate doxorubicin was also measured. Finally, this system was used to inspect the antineoplastic-drug preparation and administration areas of three outpatient cancer clinics for doxorubicin contamination. Doxorubicin fluorescence was easily detectable with viewing spectacles when a slide projector was used as the light source. The photographic method was sensitive for doxorubicin concentrations from 2.0 to 0.001 mg/mL. Immersion of study materials in bleach for one minute eliminated detectable fluorescence. Doxorubicin contamination is detectable for at least eight weeks in the ambient environment. Probable doxorubicin contamination was detected in two of the three clinics surveyed. A safe, portable system that uses fluorescence stimulated by visible light is a sensitive method for detecting doxorubicin on skin and surfaces.

  15. Antimicrobial blue light inactivation of pathogenic microbes: State of the art.

    PubMed

    Wang, Yucheng; Wang, Ying; Wang, Yuguang; Murray, Clinton K; Hamblin, Michael R; Hooper, David C; Dai, Tianhong

    2017-11-01

    As an innovative non-antibiotic approach, antimicrobial blue light in the spectrum of 400-470nm has demonstrated its intrinsic antimicrobial properties resulting from the presence of endogenous photosensitizing chromophores in pathogenic microbes and, subsequently, its promise as a counteracter of antibiotic resistance. Since we published our last review of antimicrobial blue light in 2012, there have been a substantial number of new studies reported in this area. Here we provide an updated overview of the findings from the new studies over the past 5 years, including the efficacy of antimicrobial blue light inactivation of different microbes, its mechanism of action, synergism of antimicrobial blue light with other angents, its effect on host cells and tissues, the potential development of resistance to antimicrobial blue light by microbes, and a novel interstitial delivery approach of antimicrobial blue light. The potential new applications of antimicrobial blue light are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Blue light (470 nm) effectively inhibits bacterial and fungal growth.

    PubMed

    De Lucca, A J; Carter-Wientjes, C; Williams, K A; Bhatnagar, D

    2012-12-01

    Blue light (470 nm) LED antimicrobial properties were studied alone against bacteria and with or without the food grade photosensitizer, erythrosine (ERY) against filamentous fungi. Leuconostoc mesenteroides (LM), Bacillus atrophaeus (BA) or Pseudomonas aeruginosa (PA) aliquots were exposed on nutrient agar plates to Array 1 (AR1, 0·2 mW cm(-2)) or Array 2 (AR2, 80 mW cm(-2)), which emitted impure or pure blue light (0-300 J cm(-2)), respectively. Inoculated control (room light only) plates were incubated (48 h) and colonies enumerated. The antifungal properties of blue light combined with ERY (11·4 and 22·8 μmol l(-1)) on Penicillium digitatum (PD) and Fusarium graminearum (FG) conidia were determined. Conidial controls consisted of: no light, room light-treated conidia and ERY plus room light. Light-treated (ERY + blue light) conidial samples were exposed only to AR2 (0-100 J cm(-2)), aliquots spread on potato dextrose agar plates, incubated (48 h, 30°C) and colonies counted. Blue light alone significantly reduced bacterial and FG viability. Combined with ERY, it significantly reduced PD viability. Blue light is lethal to bacteria and filamentous fungi although effectiveness is dependent on light purity, energy levels and microbial genus. Light from two arrays of different blue LEDs significantly reduced bacterial (Leuconostoc mesenteroides, Bacillus atrophaeus and Pseudomonas aeruginosa) viabilities. Significant in vitro viability loss was observed for the filamentous fungi, Penicillium digitatum and Fusarium graminearum when exposed to pure blue light only plus a photosensitizer. F. graminearum viability was significantly reduced by blue light alone. Results suggest that (i) the amount of significant loss in bacterial viability observed for blue light that is pure or with traces of other wavelengths is genus dependent and (ii) depending on fungal genera, pure blue light is fungicidal with or without a photosensitizer. © 2012 The Society for Applied Microbiology.

  17. Effects of blue light on the circadian system and eye physiology

    PubMed Central

    Ferguson, Ian; Tsubota, Kazuo

    2016-01-01

    Light-emitting diodes (LEDs) have been used to provide illumination in industrial and commercial environments. LEDs are also used in TVs, computers, smart phones, and tablets. Although the light emitted by most LEDs appears white, LEDs have peak emission in the blue light range (400–490 nm). The accumulating experimental evidence has indicated that exposure to blue light can affect many physiologic functions, and it can be used to treat circadian and sleep dysfunctions. However, blue light can also induce photoreceptor damage. Thus, it is important to consider the spectral output of LED-based light sources to minimize the danger that may be associated with blue light exposure. In this review, we summarize the current knowledge of the effects of blue light on the regulation of physiologic functions and the possible effects of blue light exposure on ocular health. PMID:26900325

  18. Tunable absorption enhancement in electric split-ring resonators-shaped graphene arrays

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Chen, Jiajia; Zhou, Zigang; Yi, Zao; Ye, Xin

    2018-04-01

    In this paper, we propose a wavelength-tunable absorber consisting of electric split-ring resonators (eSRRs)-shaped graphene arrays deposited on a SiO2/Si substrate in the far-infrared and terahertz regions. The simulation results exhibit that two resonance modes are supported by the structure. In terms of the resonance at longer wavelength, the light absorption declines while the period a or length L increases. However, absorption contrarily improves with enlargement of incident angle under the transverse magnetic (TM) polarization. And in terms of resonance at shorter wavelengths, absorption enhances with increasing length L and incident angle θ. Generally, the light absorption enhances with Fermi level E F of graphene, accompanied by blue shift. The aforementioned results unquestionably provide a distinctive source of inspiration for how to design and manufacture devices related to absorption such as filters, spatial light modulator and sensors.

  19. Broadband Measurement of Aerosol Extinction in the Visible Range

    NASA Astrophysics Data System (ADS)

    He, Quanfu; Bluvshtein, Nir; Segev, Lior; Flores, Michel; Rudich, Yinon; Washenfelder, Rebecca; Brown, Steven

    2017-04-01

    Atmospheric aerosols influence the Earth's radiative budget directly by scattering and absorbing incoming solar radiation. Aerosol direct forcing remains one of the largest uncertainties in quantifying the role that aerosols play in the Earth's radiative budget. The optical properties of aerosols vary as a function of wavelength, but few measurements reported the wavelength dependence of aerosol extinction cross section and complex refractive indices, particularly in the blue and visible spectral range. There is also currently a large gap in our knowledge of how the optical properties evolve as a function of atmospheric aging in the visible spectrum. In this study, we constructed a new and novel laboratory instrument to measure aerosol extinction as a function of wavelength, using cavity enhanced spectroscopy with a white light source. This broadband cavity enhanced spectroscopy (BBCES) covers the 395-700 nm spectral region using a broadband light source and a grating spectrometer with charge-coupled device detector (CCD). We evaluated this BBCES by measuring extinction cross section for aerosols that are pure scattering, slightly absorbing and strongly absorbing atomized from standard materials. We also retrieved the refractive indices from the measured extinction cross sections. Secondary organic aerosols from biogenic and anthropogenic precursors were "aged" to differential time scales (1 to 10 days) in an Oxidation Flow Reactor (OFR) under the combined influence of OH, O3 and UV light. The new BBCES was used to online measure the extinction cross sections of the SOA. This talk will provide a comprehensive understanding of aerosol optical properties alerting during aging process in the 395 - 700 nm spectrum.

  20. Radiation Transfer in the Atmosphere: Scattering

    NASA Technical Reports Server (NTRS)

    Mishchenko, M.; Travis, L.; Lacis, Andrew A.

    2014-01-01

    Sunlight illuminating the Earth's atmosphere is scattered by gas molecules and suspended particles, giving rise to blue skies, white clouds, and optical displays such as rainbows and halos. By scattering and absorbing the shortwave solar radiation and the longwave radiation emitted by the underlying surface, cloud and aerosol particles strongly affect the radiation budget of the terrestrial climate system. As a consequence of the dependence of scattering characteristics on particle size, morphology, and composition, scattered light can be remarkably rich in information on particle properties and thus provides a sensitive tool for remote retrievals of macro- and microphysical parameters of clouds and aerosols.

  1. Blue Light Protects Against Temporal Frequency Sensitive Refractive Changes.

    PubMed

    Rucker, Frances; Britton, Stephanie; Spatcher, Molly; Hanowsky, Stephan

    2015-09-01

    Time spent outdoors is protective against myopia. The outdoors allows exposure to short-wavelength (blue light) rich sunlight, while indoor illuminants can be deficient at short-wavelengths. In the current experiment, we investigate the role of blue light, and temporal sensitivity, in the emmetropization response. Five-day-old chicks were exposed to sinusoidal luminance modulation of white light (with blue; N = 82) or yellow light (without blue; N = 83) at 80% contrast, at one of six temporal frequencies: 0, 0.2, 1, 2, 5, 10 Hz daily for 3 days. Mean illumination was 680 lux. Changes in ocular components and corneal curvature were measured. Refraction, eye length, and choroidal changes were dependent on the presence of blue light (P < 0.03, all) and on temporal frequency (P < 0.03, all). In the presence of blue light, refraction did not change across frequencies (mean change -0.24 [diopters] D), while in the absence of blue light, we observed a hyperopic shift (>1 D) at high frequencies, and a myopic shift (>-0.6 D) at low frequencies. With blue light there was little difference in eye growth across frequencies (77 μm), while in the absence of blue light, eyes grew more at low temporal frequencies and less at high temporal frequencies (10 vs. 0.2 Hz: 145 μm; P < 0.003). Overall, neonatal astigmatism was reduced with blue light. Illuminants rich in blue light can protect against myopic eye growth when the eye is exposed to slow changes in luminance contrast as might occur with near work.

  2. Blue Light Protects Against Temporal Frequency Sensitive Refractive Changes

    PubMed Central

    Rucker, Frances; Britton, Stephanie; Spatcher, Molly; Hanowsky, Stephan

    2015-01-01

    Purpose Time spent outdoors is protective against myopia. The outdoors allows exposure to short-wavelength (blue light) rich sunlight, while indoor illuminants can be deficient at short-wavelengths. In the current experiment, we investigate the role of blue light, and temporal sensitivity, in the emmetropization response. Methods Five-day-old chicks were exposed to sinusoidal luminance modulation of white light (with blue; N = 82) or yellow light (without blue; N = 83) at 80% contrast, at one of six temporal frequencies: 0, 0.2, 1, 2, 5, 10 Hz daily for 3 days. Mean illumination was 680 lux. Changes in ocular components and corneal curvature were measured. Results Refraction, eye length, and choroidal changes were dependent on the presence of blue light (P < 0.03, all) and on temporal frequency (P < 0.03, all). In the presence of blue light, refraction did not change across frequencies (mean change −0.24 [diopters] D), while in the absence of blue light, we observed a hyperopic shift (>1 D) at high frequencies, and a myopic shift (>−0.6 D) at low frequencies. With blue light there was little difference in eye growth across frequencies (77 μm), while in the absence of blue light, eyes grew more at low temporal frequencies and less at high temporal frequencies (10 vs. 0.2 Hz: 145 μm; P < 0.003). Overall, neonatal astigmatism was reduced with blue light. Conclusions Illuminants rich in blue light can protect against myopic eye growth when the eye is exposed to slow changes in luminance contrast as might occur with near work. PMID:26393671

  3. Spectrally balanced chromatic landing approach lighting system

    NASA Technical Reports Server (NTRS)

    Chase, W. D. (Inventor)

    1981-01-01

    Red warning lights delineate the runway approach with additional blue lights juxtaposed with the red lights such that the red lights are chromatically balanced. The red/blue point light sources result in the phenomenon that the red lights appear in front of the blue lights with about one and one-half times the diameter of the blue. To a pilot observing these lights along a glide path, those red lights directly below appear to be nearer than the blue lights. For those lights farther away seen in perspective at oblique angles, the red lights appear to be in a position closer to the pilot and hence appear to be above the corresponding blue lights. This produces a very pronounced three dimensional effect referred to as chromostereopsis which provides valuable visual cues to enable the pilot to perceive his actual position above the ground and the actual distance to the runway.

  4. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light

    PubMed Central

    Kuse, Yoshiki; Ogawa, Kenjiro; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2014-01-01

    Our eyes are increasingly exposed to light from the emitting diode (LED) light of video display terminals (VDT) which contain much blue light. VDTs are equipped with televisions, personal computers, and smart phones. The present study aims to clarify the mechanism underlying blue LED light-induced photoreceptor cell damage. Murine cone photoreceptor-derived cells (661 W) were exposed to blue, white, or green LED light (0.38 mW/cm2). In the present study, blue LED light increased reactive oxygen species (ROS) production, altered the protein expression level, induced the aggregation of short-wavelength opsins (S-opsin), resulting in severe cell damage. While, blue LED light damaged the primary retinal cells and the damage was photoreceptor specific. N-Acetylcysteine (NAC), an antioxidant, protected against the cellular damage induced by blue LED light. Overall, the LED light induced cell damage was wavelength-, but not energy-dependent and may cause more severe retinal photoreceptor cell damage than the other LED light. PMID:24909301

  5. Isolation, characterization, and amino acid sequences of auracyanins, blue copper proteins from the green photosynthetic bacterium Chloroflexus aurantiacus

    NASA Technical Reports Server (NTRS)

    McManus, J. D.; Brune, D. C.; Han, J.; Sanders-Loehr, J.; Meyer, T. E.; Cusanovich, M. A.; Tollin, G.; Blankenship, R. E.

    1992-01-01

    Three small blue copper proteins designated auracyanin A, auracyanin B-1, and auracyanin B-2 have been isolated from the thermophilic green gliding photosynthetic bacterium Chloroflexus aurantiacus. All three auracyanins are peripheral membrane proteins. Auracyanin A was described previously (Trost, J. T., McManus, J. D., Freeman, J. C., Ramakrishna, B. L., and Blankenship, R. E. (1988) Biochemistry 27, 7858-7863) and is not glycosylated. The two B forms are glycoproteins and have almost identical properties to each other, but are distinct from the A form. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis apparent monomer molecular masses are 14 (A), 18 (B-2), and 22 (B-1) kDa. The amino acid sequences of the B forms are presented. All three proteins have similar absorbance, circular dichroism, and resonance Raman spectra, but the electron spin resonance signals are quite different. Laser flash photolysis kinetic analysis of the reactions of the three forms of auracyanin with lumiflavin and flavin mononucleotide semiquinones indicates that the site of electron transfer is negatively charged and has an accessibility similar to that found in other blue copper proteins. Copper analysis indicates that all three proteins contain 1 mol of copper per mol of protein. All three auracyanins exhibit a midpoint redox potential of +240 mV. Light-induced absorbance changes and electron spin resonance signals suggest that auracyanin A may play a role in photosynthetic electron transfer. Kinetic data indicate that all three proteins can donate electrons to cytochrome c-554, the electron donor to the photosynthetic reaction center.

  6. The two photocycles of photoactive yellow protein from Rhodobacter sphaeroides.

    PubMed

    Haker, Andrea; Hendriks, Johnny; van Stokkum, Ivo H M; Heberle, Joachim; Hellingwerf, Klaas J; Crielaard, Wim; Gensch, Thomas

    2003-03-07

    The absorption spectrum of the photoactive yellow protein from Rhodobacter sphaeroides (R-PYP) shows two maxima, absorbing at 360 nm (R-PYP(360)) and 446 nm (R-PYP(446)), respectively. Both forms are photoactive and part of a temperature- and pH-dependent equilibrium (Haker, A., Hendriks, J., Gensch, T., Hellingwerf, K. J., and Crielaard, W. (2000) FEBS Lett. 486, 52-56). At 20 degrees C, for PYP characteristic, the 446-nm absorbance band displays a photocycle, in which the depletion of the 446-nm ground state absorption occurs in at least three phases, with time constants of <30 ns, 0.5 micros, and 17 micros. Intermediates with both blue- and red-shifted absorption maxima are transiently formed, before a blue-shifted intermediate (pB(360), lambda(max) = 360 nm) is established. The photocycle is completed with a monophasic recovery of the ground state with a time constant of 2.5 ms. At 7 degrees C these photocycle transitions are slowed down 2- to 3-fold. Upon excitation of R-PYP(360) with a UV-flash (330 +/- 50 nm) a species with a difference absorption maximum at approximately 435 nm is observed that returns to R-PYP(360) on a minute time scale. Recovery can be accelerated by a blue light flash (450 nm). R-PYP(360) and R-PYP(446) differ in their overall protein conformation, as well as in the isomerization and protonation state of the chromophore, as determined with the fluorescent polarity probe Nile Red and Fourier Transform Infrared spectroscopy, respectively.

  7. A new radiochromic dosimeter film

    NASA Astrophysics Data System (ADS)

    Sidney, L. N.; Lynch, D. C.; Willet, P. S.

    By employing acid-sensitive leuco dyes in a chlorine-containing polymer matrix, a new radiochromic dosimeter film has been developed for gamma, electron beam, and ultraviolet radiation. These dosimeter films undergo a color change from colorless to royal blue, red fuchsia, or black, depending on dye selection, and have been characterized using a visible spectrophotometer over an absorbed dose range of 1 to 100 kGy. The primary features of the film are improved color stability before and after irradiation, whether stored in the dark or under artificial lights, and improved moisture resistance. The effects of absorbed dose, dose rate, and storage conditions on dosimeter performance are discussed. The dosimeter material may be produced as a free film or coated onto a transparent substrate and optionally backed with adhesive. Potential applications for these materials include gamma sterilization indicator films for food and medical products, electron beam dosimeters, and in-line radiation monitors for electron beam and ultraviolet processing.

  8. Blue light versus red light for photodynamic therapy of basal cell carcinoma in patients with Gorlin syndrome: A bilaterally controlled comparison study.

    PubMed

    Maytin, Edward V; Kaw, Urvashi; Ilyas, Muneeb; Mack, Judith A; Hu, Bo

    2018-06-01

    Photodynamic therapy (PDT) is a non-scarring alternative for treating basal cell carcinoma (BCC) in patients with Basal Cell Nevus Syndrome (BCNS), also known as Gorlin syndrome. In Europe, red light (635 nm) is the predominant source for PDT, whereas in the United States blue light (400 nm) is more widely available. The objective of this study was to conduct a head-to-head comparison of blue light and red light PDT in the same BCNS patients. In a pilot study of three patients with 141 BCC lesions, 5-aminolevulinate (20% solution) was applied to all tumors. After 4 h, half of the tumors were illuminated with blue light and the remainder with red light. To ensure safety while treating this many tumors simultaneously, light doses were escalated gradually. Six treatments were administered in three biweekly sessions over 4 months, with a final evaluation at 6 months. Tumor status was documented with high-resolution photographs. Persistent lesions were biopsied at 6 months. Clearance rates after blue light (98%) were slightly better than after red light (93%), with blue light shown to be statistically non-inferior to red light. Eight suspicious lesions were biopsied, 5 after red light (5/5 were BCC) and 3 after blue light (1 was BCC). Blue light PDT was reportedly less painful. Blue light and red light PDT appear to be equally safe and perhaps equally effective for treating BCC tumors in BCNS patients. Further studies to evaluate long-term clearance after blue light PDT are needed. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. A Comparison of Blue Light and Caffeine Effects on Cognitive Function and Alertness in Humans

    PubMed Central

    Beaven, C. Martyn; Ekström, Johan

    2013-01-01

    The alerting effects of both caffeine and short wavelength (blue) light have been consistently reported. The ability of blue light to enhance alertness and cognitive function via non-image forming neuropathways have been suggested as a non-pharmacological countermeasure for drowsiness across a range of occupational settings. Here we compare and contrast the alerting and psychomotor effects of 240 mg of caffeine and a 1-h dose of ~40 lx blue light in a non-athletic population. Twenty-one healthy subjects performed a computer-based psychomotor vigilance test before and after each of four randomly assigned trial conditions performed on different days: white light/placebo; white light/240 mg caffeine; blue light/placebo; blue light/240 mg caffeine. The Karolinska Sleepiness Scale was used to assess subjective measures of alertness. Both the caffeine only and blue light only conditions enhanced accuracy in a visual reaction test requiring a decision and an additive effect was observed with respect to the fastest reaction times. However, in a test of executive function, where a distraction was included, caffeine exerted a negative effect on accuracy. Furthermore, the blue light only condition consistently outperformed caffeine when both congruent and incongruent distractions were presented. The visual reactions in the absence of a decision or distraction were also enhanced in the blue light only condition and this effect was most prominent in the blue-eyed participants. Overall, blue light and caffeine demonstrated distinct effects on aspects of psychomotor function and have the potential to positively influence a range of settings where cognitive function and alertness are important. Specifically, despite the widespread use of caffeine in competitive sporting environments, the possible impact of blue light has received no research attention. PMID:24282477

  10. From photoluminescence to thermal emission: Thermally-enhanced PL (TEPL) for efficient PV (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Manor, Assaf; Kruger, Nimrod; Martin, Leopoldo L.; Rotschild, Carmel

    2016-09-01

    The Shockley-Queisser efficiency limit of 40% for single-junction photovoltaic (PV) cells is mainly caused by the heat dissipation accompanying the process of electro-chemical potential generation. Concepts such as solar thermo-photovoltaics (STPV) aim to harvest this heat loss by the use of a primary absorber which acts as a mediator between the sun and the PV, spectrally shaping the light impinging on the cell. However, this approach is challenging to realize due to the high operating temperatures of above 2000K required in order to generate high thermal emission fluxes. After over thirty years of STPV research, the record conversion efficiency for STPV device stands at 3.2% for 1285K operating temperature. In contrast, we recently demonstrated how thermally-enhanced photoluminescence (TEPL) is an optical heat-pump, in which photoluminescence is thermally blue-shifted upon heating while the number of emitted photons is conserved. This process generates energetic photon-rates which are comparable to thermal emission in significantly reduced temperatures, opening the way for a TEPL based energy converter. In such a device, a photoluminescent low bandgap absorber replaces the STPV thermal absorber. The thermalization heat induces a temperature rise and a blue-shifted emission, which is efficiently harvested by a higher bandgap PV. We show that such an approach can yield ideal efficiencies of 70% at 1140K, and realistic efficiencies of almost 50% at moderate concentration levels. As an experimental proof-of-concept, we demonstrate 1.4% efficient TEPL energy conversion of an Nd3+ system coupled to a GaAs cell, at 600K.

  11. Blue light does not inhibit nodulation in Sesbania rostrata.

    PubMed

    Shimomura, Aya; Arima, Susumu; Hayashi, Makoto; Maymon, Maskit; Hirsch, Ann M; Suzuki, Akihiro

    2017-01-02

    Earlier, we reported that root nodulation was inhibited by blue light irradiation of Lotus japonicus. Because some legumes do not establish nodules exclusively on underground roots, we investigated whether nodule formation in Sesbania rostrata, which forms both root and "stem" nodules following inoculation with Azorhizobium caulinodans, is inhibited by blue light as are L. japonicus nodules. We found that neither S. rostrata nodulation nor nitrogen fixation was inhibited by blue light exposure. Moreover, although A. caulinodans proliferation was not affected by blue light irradiation, bacterial survival was decreased. Therefore, blue light appears to impose different responses depending on the legume-rhizobial symbiosis.

  12. Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue.

    PubMed

    Yoshida, Ayaka; Shiotsu-Ogura, Yukako; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Toyama, Toshizo; Yoshino, Fumihiko

    2015-10-01

    It has been reported that oxidative stress with reactive oxygen species (ROS) generation is induced by blue light irradiation to a living body. Only limited research has been reported in dental field on the dangers of blue light, mostly focusing on cytotoxicity associated with heat injury of dental pulp. We thus performed an in vivo study on oral tissue exposed to blue light. ROS generated upon blue light irradiation of flavin adenine dinucleotide were measured by electron spin resonance spectroscopy. After blue light irradiation, the palatal gingiva of Wistar rats were isolated. Collected samples were subjected to biochemical analysis of lipid peroxidation and glutathione. Singlet oxygen was generated by blue light irradiation, but was significantly quenched in an N-acetyl-L-cysteine (NAC) concentration-dependent manner. Blue light significantly accelerated oxidative stress and increased the oxidized glutathione levels in gingival tissue. These effects were also inhibited by NAC pre-administration. The results suggest that blue light irradiation at clinical levels of tooth bleaching treatment may enhance lipid peroxidation by the induction of oxidative stress and the consumption of a significant amount of intracellular glutathione. In addition, NAC might be an effective supplement for the protection of oral tissues against blue light irradiation-induced oxidative damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. An infra-red imaging system for the analysis of tropisms in Arabidopsis thaliana seedlings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orbovic, V.; Poff, K.L.

    1990-05-01

    Since blue and green light will induce phototropism and red light is absorbed by phytochrome, no wavelength of visible radiation should be considered safe for any study of tropisms in etiolated seedlings. For this reason, we have developed an infra-red imaging system with a video camera with which we can monitor seedlings using radiation at wavelengths longer than 800 nm. The image of the seedlings can be observed in real time, recorded on a VCR and subsequently analyzed using the Java image analysis system. The time courses for curvature of seedlings differ in shape, amplitude, and lag time. This variabilitymore » accounts for much of the noise in the measurement of curvature for a population of seedlings.« less

  14. The involvement of ATF4 and S-opsin in retinal photoreceptor cell damage induced by blue LED light.

    PubMed

    Ooe, Emi; Tsuruma, Kazuhiro; Kuse, Yoshiki; Kobayashi, Saori; Shimazawa, Masamitsu; Hara, Hideaki

    2017-01-01

    Blue light is a high-energy emitting light with a short wavelength in the visible light spectrum. Blue light induces photoreceptor apoptosis and causes age-related macular degeneration or retinitis pigmentosa. In the present study, we investigated the roles of endoplasmic reticulum (ER) stress induced by blue light-emitting diode (LED) light exposure in murine photoreceptor cells. The murine photoreceptor cell line was incubated and exposed to blue LED light (464 nm blue LED light, 450 lx, 3 to 24 h). The expression of the factors involved in the unfolded protein response pathway was examined using quantitative real-time reverse transcription (RT)-PCR and immunoblot analysis. The aggregation of short-wavelength opsin (S-opsin) in the murine photoreceptor cells was observed with immunostaining. The effect of S-opsin knockdown on ATF4 expression in the murine photoreceptor cell line was also investigated. Exposure to blue LED light increased the bip , atf4 , and grp94 mRNA levels, induced the expression of ATF4 protein, and increased the levels of ubiquitinated proteins. Exposure to blue LED light in combination with ER stress inducers (tunicamycin and dithiothreitol) induced the aggregation of S-opsin. S-opsin mRNA knockdown prevented the induction of ATF4 expression in response to exposure to blue LED light. These findings indicate that the aggregation of S-opsin induced by exposure to blue LED light causes ER stress, and ATF4 activation in particular.

  15. The absence of attenuating effect of red light exposure on pre-existing melanopsin-driven post-illumination pupil response.

    PubMed

    Lei, Shaobo; Goltz, Herbert C; Sklar, Jaime C; Wong, Agnes M F

    2016-07-01

    It has been proposed that after activation by blue light, activated melanopsin is converted back to its resting state by long wavelength red light exposure, a putative mechanism of melanopsin chromophore recovery in vivo. We tested this hypothesis by investigating whether red light attenuates the ongoing post-illumination pupil response (PIPR) induced by melanopsin-activating blue light. Pupillary light responses were tested using "Blue+Red" double flashes and "Blue Only" single flash stimuli in 10 visually normal subjects. For "Blue+Red" conditions, PIPR was induced with an intense blue flash, followed by experimental red light exposure of variable intensity and duration (Experiment 1) immediately or 9s after the offset of the blue flash (Experiment 2). For "Blue Only" conditions, only the PIPR-inducing blue stimuli were presented (reference condition). PIPR was defined as the mean pupil size from 10 to 30s (Experiment 1) and from 25 to 60s (Experiment 2) after the offset of blue light stimuli. The results showed that PIPR from "Blue+Red" conditions did not differ significantly from those of "Blue Only" conditions (p=0.55) in Experiment 1. The two stimulation conditions also did not differ in Experiment 2 (p=0.38). We therefore conclude that red light exposure does not alter the time course of PIPR induced by blue light. This finding does not support the hypothesis that long wavelength red light reverses activated melanopsin; rather it lends support to the hypothesis that the wavelengths of stimuli driving both the forward and backward reactions of melanopsin may be similar. Copyright © 2016. Published by Elsevier Ltd.

  16. Blue light-induced oxidative stress in live skin.

    PubMed

    Nakashima, Yuya; Ohta, Shigeo; Wolf, Alexander M

    2017-07-01

    Skin damage from exposure to sunlight induces aging-like changes in appearance and is attributed to the ultraviolet (UV) component of light. Photosensitized production of reactive oxygen species (ROS) by UVA light is widely accepted to contribute to skin damage and carcinogenesis, but visible light is thought not to do so. Using mice expressing redox-sensitive GFP to detect ROS, blue light could produce oxidative stress in live skin. Blue light induced oxidative stress preferentially in mitochondria, but green, red, far red or infrared light did not. Blue light-induced oxidative stress was also detected in cultured human keratinocytes, but the per photon efficacy was only 25% of UVA in human keratinocyte mitochondria, compared to 68% of UVA in mouse skin. Skin autofluorescence was reduced by blue light, suggesting flavins are the photosensitizer. Exposing human skin to the blue light contained in sunlight depressed flavin autofluorescence, demonstrating that the visible component of sunlight has a physiologically significant effect on human skin. The ROS produced by blue light is probably superoxide, but not singlet oxygen. These results suggest that blue light contributes to skin aging similar to UVA. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms

    PubMed Central

    Liu, Hongtao; Wang, Qin; Liu, Yawen; Zhao, Xiaoying; Imaizumi, Takato; Somers, David E.; Tobin, Elaine M.; Lin, Chentao

    2013-01-01

    Plants possess multiple photoreceptors to mediate light regulation of growth and development, but it is not well understood how different photoreceptors coordinate their actions to jointly regulate developmental responses, such as flowering time. In Arabidopsis, the photoexcited cryptochrome 2 interacts with the transcription factor CRYPTOCHROME-INTERACTING basic helix–loop–helix 1 (CIB1) to activate transcription and floral initiation. We show that the CIB1 protein expression is regulated by blue light; CIB1 is highly expressed in plants exposed to blue light, but levels of the CIB1 protein decreases in the absence of blue light. We demonstrate that CIB1 is degraded by the 26S proteasome and that blue light suppresses CIB1 degradation. Surprisingly, although cryptochrome 2 physically interacts with CIB1 in response to blue light, it is not the photoreceptor mediating blue-light suppression of CIB1 degradation. Instead, two of the three light–oxygen–voltage (LOV)-domain photoreceptors, ZEITLUPE and LOV KELCH PROTEIN 2, but not FLAVIN-BINDING KELCH REPEAT 1, are required for the function and blue-light suppression of degradation of CIB1. These results support the hypothesis that the evolutionarily unrelated blue-light receptors, cryptochrome and LOV-domain F-box proteins, mediate blue-light regulation of the same transcription factor by distinct mechanisms. PMID:24101505

  18. Evidence for yellow light suppression of lettuce growth

    NASA Technical Reports Server (NTRS)

    Dougher, T. A.; Bugbee, B.

    2001-01-01

    Researchers studying plant growth under different lamp types often attribute differences in growth to a blue light response. Lettuce plants were grown in six blue light treatments comprising five blue light fractions (0, 2, 6% from high-pressure sodium [HPS] lamps and 6, 12, 26% from metal halide [MH] lamps). Lettuce chlorophyll concentration, dry mass, leaf area and specific leaf area under the HPS and MH 6% blue were significantly different, suggesting wavelengths other than blue and red affected plant growth. Results were reproducible in two replicate studies at each of two photosynthetic photon fluxes, 200 and 500 mumol m-2 s-1. We graphed the data against absolute blue light, phytochrome photoequilibrium, phototropic blue, UV, red:far red, blue:red, blue: far red and 'yellow' light fraction. Only the 'yellow' wavelength range (580-600 nm) explained the differences between the two lamp types.

  19. [Effects of light quality on the growth characteristics and biochemical component of Chlorella pyrenoidosa].

    PubMed

    Tang, Qing-Qing; Fang, Zhi-Guo; Ji, Wen-Wen; Xia, Hui-Long

    2014-11-01

    Effect of light quality, including red light, blue light, white light, red and blue mixing light with ratios of 8: 1, 8:2 and 8 : 3, on the growth characteristics and biochenmical composition of Chlorella pyrenoidosa was investigated based on light emitting diode (LED). Results showed that Chlorella pyrenoidosa grew best under blue light, and the optical density, specific growth rate and biomass of Chlorella pyrenoidosa was about 2.4, 0.10 d(-1) and 0.64 g x L(-1), respectively, while the optical density of Chlorella pyrenoidosa was between 1.0 and 1.7, the specific growth rate was between 0.07-0.10 d(-1) and the biomass was between 0.27 and 0.38 g x L(-1) under other light quality after 30 days of cultivation. Under blue light, the optical density, specific growth rate and biomass of Chlorella pyrenoidosa was approximately 2.05 times, 1.33 times and 2.06 times higher than red light, respectively. Moreover, red and blue mixing light was conducive to the synthesis of chlorophyll a and β-carotene of Chlorella pyrenoidosa, and blue light could promote the synthesis of chlorophyll b. Chlorophyll a and carotenoids content of Chlorella pyrenoidosa was 13.5 mg xg(-1) and 5.8 mg x g(-1) respectively under red and blue mixing light with a ratio of 8:1, while it was 8.4 mg x g(-1) and 3.6 mg x g(-1) respectively under blue light. Red and blue mixing light was more conducive to protein and total lipid content per dry cell of Chlorella pyrenoidosa. Protein and total lipid content was 489.3 mg x g(-1) and 311.2 mg x g(-1) under red and blue mixing light with a ratio of 8 : 3, while it was 400.9 mg x g(-1) and 231.9 mg x g(-1) respectively under blue light.

  20. Efficacy and Safety of Blue Light Flexible Cystoscopy with Hexaminolevulinate in the Surveillance of Bladder Cancer: A Phase III, Comparative, Multicenter Study.

    PubMed

    Daneshmand, Siamak; Patel, Sanjay; Lotan, Yair; Pohar, Kamal; Trabulsi, Edouard; Woods, Michael; Downs, Tracy; Huang, William; Jones, Jeffrey; O'Donnell, Michael; Bivalacqua, Trinity; DeCastro, Joel; Steinberg, Gary; Kamat, Ashish; Resnick, Matthew; Konety, Badrinath; Schoenberg, Mark; Jones, J Stephen

    2018-05-01

    We compared blue light flexible cystoscopy with white light flexible cystoscopy for the detection of bladder cancer during surveillance. Patients at high risk for recurrence received hexaminolevulinate intravesically before white light flexible cystoscopy and randomization to blue light flexible cystoscopy. All suspicious lesions were documented. Patients with suspicious lesions were referred to the operating room for repeat white and blue light cystoscopy. All suspected lesions were biopsied or resected and specimens were examined by an independent pathology consensus panel. The primary study end point was the proportion of patients with histologically confirmed malignancy detected only with blue light flexible cystoscopy. Additional end points were the false-positive rate, carcinoma in situ detection and additional tumors detected only with blue light cystoscopy. Following surveillance 103 of the 304 patients were referred, including 63 with confirmed malignancy, of whom 26 had carcinoma in situ. In 13 of the 63 patients (20.6%, 95% CI 11.5-32.7) recurrence was seen only with blue light flexible cystoscopy (p <0.0001). Five of these cases were confirmed as carcinoma in situ. Operating room examination confirmed carcinoma in situ in 26 of 63 patients (41%), which was detected only with blue light cystoscopy in 9 of the 26 (34.6%, 95% CI 17.2-55.7, p <0.0001). Blue light cystoscopy identified additional malignant lesions in 29 of the 63 patients (46%). The false-positive rate was 9.1% for white and blue light cystoscopy. None of the 12 adverse events during surveillance were serious. Office based blue light flexible cystoscopy significantly improves the detection of patients with recurrent bladder cancer and it is safe when used for surveillance. Blue light cystoscopy in the operating room significantly improves the detection of carcinoma in situ and detects lesions that are missed with white light cystoscopy. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. Blue light- and genetically-reversed gravitropic response in protonemata of the moss Ceratodon purpureus.

    PubMed

    Lamparter, T; Hughes, J; Hartmann, E

    1998-09-01

    In darkness, protonemal filaments of Ceratodon purpureus (Brid.) grow negatively gravitropically (upwards). Red light induces a positive phototropic response mediated by the photoreceptor phytochrome. A red light treatment also has an inhibitory effect on the gravitropic response, an effect also mediated by phytochrome. In this study the effects of blue light on phototropism and on gravitropism were analysed. Unilateral blue light resulted in only a weak phototropic response, but markedly randomised growth direction. Blue light given together with a gravitropic stimulus reversed the gravitropism, changing it from negative to positive (filaments grow downward). The effect of blue light was also analysed with the mutant ptr116, which is defective in the biosynthesis of the phytochrome chromophore, and in a newly isolated mutant wwr2, which is positively gravitropic in darkness. Blue light induced the same reversal of gravitropism in ptrll6 as in the wild type, indicating that phytochrome is not involved in this process. In wwr2 the direction of gravitropism was unaltered by the blue light treatment. Light also affects chlorophyll content and the size of plastids, potential statoliths for gravitropism. Red light induced an increase in plastid size and chlorophyll content in the wild type but not in ptr116. Blue light induced a similar change in wild type plastids. It seems as though light-induced alterations of gravitropism are not simply mediated by alterations in plastid properties, and that red light and blue light evoke fundamentally different responses.

  2. Colored lenses suppress blue light-emitting diode light-induced damage in photoreceptor-derived cells.

    PubMed

    Hiromoto, Kaho; Kuse, Yoshiki; Tsuruma, Kazuhiro; Tadokoro, Nobuyuki; Kaneko, Nobuyuki; Shimazawa, Masamitsu; Hara, Hideaki

    2016-03-01

    Blue light-emitting diodes (LEDs) in liquid crystal displays emit high levels of blue light, exposure to which is harmful to the retina. Here, we investigated the protective effects of colored lenses in blue LED light-induced damage to 661W photoreceptor-derived cells. We used eight kinds of colored lenses and one lens that reflects blue light. Moreover, we evaluated the relationship between the protective effects of the lens and the transmittance of lens at 464 nm. Lenses of six colors, except for the SY, PN, and reflective coating lenses, strongly decreased the reduction in cell damage induced by blue LED light exposure. The deep yellow lens showed the most protective effect from all the lenses, but the reflective coating lens and pink lens did not show any effects on photoreceptor-derived cell damage. Moreover, these results were correlated with the lens transmittance of blue LED light (464 nm). These results suggest that lenses of various colors, especially deep yellow lenses, may protect retinal photoreceptor cells from blue LED light in proportion to the transmittance for the wavelength of blue LED and the suppression of reactive oxygen species production and cell damage.

  3. Analysis of AtCry1 and Mutants

    NASA Astrophysics Data System (ADS)

    Burdick, Derek; Purvis, Adam; Ahmad, Margaret; Link, Justin J.; Engle, Dorothy

    Cryptochrome is an incredibly versatile protein that influences numerous biological processes such as plant growth, bird migration, and sleep cycles. Due to the versatility of this protein, understanding the mechanism would allow for advances in numerous fields such as crop growth, animal behavior, and sleep disorders. It is known that cryptochrome requires blue light to function, but the exact processes in the regulation of biological activity are still not fully understood. It is believed that the c-terminal domain of the protein undergoes a conformational change when exposed to blue light which allows for biological function. Three different non-functioning mutants were tested during this study to gain insight on the mechanism of cryptochrome. Absorbance spectra showed a difference between two of the mutants and the wild type with one mutant showing little difference. Immunoprecipitation experiments were also conducted to identify the different c-terminal responses of the mutants. By studying non functioning mutants of this protein, the mechanism of the protein can be further characterized. This two-month research experience in Paris allowed us to experience international and interdisciplinary collaborations in science and immerse in a different culture. The Borcer Fund for Student Research, Xavier University, Cincinnati, OH, and John Hauck Foundation.

  4. The Preparation of Au@TiO2 Yolk-Shell Nanostructure and its Applications for Degradation and Detection of Methylene Blue

    NASA Astrophysics Data System (ADS)

    Wan, Gengping; Peng, Xiange; Zeng, Min; Yu, Lei; Wang, Kan; Li, Xinyue; Wang, Guizhen

    2017-09-01

    This paper reports the synthesis of a new type of Au@TiO2 yolk-shell nanostructures by integrating ion sputtering method with atomic layer deposition (ALD) technique and its applications as visible light-driven photocatalyst and surface-enhanced Raman spectroscopy (SERS) substrate. Both the size and amount of gold nanoparticles confined in TiO2 nanotubes could be facilely controlled via properly adjusting the sputtering time. The unique structure and morphology of the resulting Au@TiO2 samples were investigated by using various spectroscopic and microscopic techniques in detail. It is found that all tested samples can absorb visible light with a maximum absorption at localized surface plasmon resonance (LSPR) wavelengths (550-590 nm) which are determined by the size of gold nanoparticles. The Au@TiO2 yolk-shell composites were used as the photocatalyst for the degradation of methylene blue (MB). As compared with pure TiO2 nanotubes, Au@TiO2 composites exhibit improved photocatalytic properties towards the degradation of MB. The SERS effect of Au@TiO2 yolk-shell composites was also performed to investigate the detection sensitivity of MB.

  5. The Preparation of Au@TiO2 Yolk-Shell Nanostructure and its Applications for Degradation and Detection of Methylene Blue.

    PubMed

    Wan, Gengping; Peng, Xiange; Zeng, Min; Yu, Lei; Wang, Kan; Li, Xinyue; Wang, Guizhen

    2017-09-18

    This paper reports the synthesis of a new type of Au@TiO 2 yolk-shell nanostructures by integrating ion sputtering method with atomic layer deposition (ALD) technique and its applications as visible light-driven photocatalyst and surface-enhanced Raman spectroscopy (SERS) substrate. Both the size and amount of gold nanoparticles confined in TiO 2 nanotubes could be facilely controlled via properly adjusting the sputtering time. The unique structure and morphology of the resulting Au@TiO 2 samples were investigated by using various spectroscopic and microscopic techniques in detail. It is found that all tested samples can absorb visible light with a maximum absorption at localized surface plasmon resonance (LSPR) wavelengths (550-590 nm) which are determined by the size of gold nanoparticles. The Au@TiO 2 yolk-shell composites were used as the photocatalyst for the degradation of methylene blue (MB). As compared with pure TiO 2 nanotubes, Au@TiO 2 composites exhibit improved photocatalytic properties towards the degradation of MB. The SERS effect of Au@TiO 2 yolk-shell composites was also performed to investigate the detection sensitivity of MB.

  6. Antimicrobial Blue Light Therapy for Multidrug-Resistant Acinetobacter baumannii Infection in a Mouse Burn Model: Implications for Prophylaxis and Treatment of Combat-related Wound Infections

    PubMed Central

    Zhang, Yunsong; Zhu, Yingbo; Gupta, Asheesh; Huang, Yingying; Murray, Clinton K.; Vrahas, Mark S.; Sherwood, Margaret E.; Baer, David G.; Hamblin, Michael R.; Dai, Tianhong

    2014-01-01

    In this study, we investigated the utility of antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model. A bioluminescent clinical isolate of multidrug-resistant A. baumannii was obtained. The susceptibility of A. baumannii to blue light (415 nm)–inactivation was compared in vitro to that of human keratinocytes. Repeated cycles of sublethal inactivation of bacterial by blue light were performed to investigate the potential resistance development of A. baumannii to blue light. A mouse model of third degree burn infected with A. baumannii was developed. A single exposure of blue light was initiated 30 minutes after bacterial inoculation to inactivate A. baumannii in mouse burns. It was found that the multidrug-resistant A. baumannii strain was significantly more susceptible than keratinocytes to blue light inactivation. Transmission electron microscopy revealed blue light–induced ultrastructural damage in A. baumannii cells. Fluorescence spectroscopy suggested that endogenous porphyrins exist in A. baumannii cells. Blue light at an exposure of 55.8 J/cm2 significantly reduced the bacterial burden in mouse burns. No resistance development to blue light inactivation was observed in A. baumannii after 10 cycles of sublethal inactivation of bacteria. No significant DNA damage was detected in mouse skin by means of a skin TUNEL assay after a blue light exposure of 195 J/cm2. PMID:24381206

  7. Long-term Blue Light Effects on the Histology of Lettuce and Soybean Leaves and Stems

    NASA Technical Reports Server (NTRS)

    Dougher, Tracy A. O.; Bugbee, Bruce

    2004-01-01

    Blue light (320 to 496 nm) alters hypocotyl and stem elongation and leaf expansion in short-term, cell-level experiments, but histological effects of blue light in long-term studies of whole plants have not been described. We measured cell size and number in stems of soybean (Glycine max L.) and leaves of soybean and lettuce (Lactuca sativa L.), at two blue light fractions. Short-term studies have shown that cell expansion in stems is rapidly inhibited when etiolated tissue is exposed to blue light. However, under long-term light exposure, an increase in the blue light fraction from less than 0.1% to 26% decreased internode length, specifically by inhibiting soybean cell division in stems. In contrast, an increase in blue light fraction from 6% to 26% reduced soybean leaf area by decreasing cell expansion. Surprisingly, lettuce leaf area increased with increasing blue light fraction (0% to 6%), which was attributed to a 3.1-fold increase in cell expansion and a 1.6-fold increase in cell division.

  8. Antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model: implications for prophylaxis and treatment of combat-related wound infections.

    PubMed

    Zhang, Yunsong; Zhu, Yingbo; Gupta, Asheesh; Huang, Yingying; Murray, Clinton K; Vrahas, Mark S; Sherwood, Margaret E; Baer, David G; Hamblin, Michael R; Dai, Tianhong

    2014-06-15

    In this study, we investigated the utility of antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model. A bioluminescent clinical isolate of multidrug-resistant A. baumannii was obtained. The susceptibility of A. baumannii to blue light (415 nm)-inactivation was compared in vitro to that of human keratinocytes. Repeated cycles of sublethal inactivation of bacterial by blue light were performed to investigate the potential resistance development of A. baumannii to blue light. A mouse model of third degree burn infected with A. baumannii was developed. A single exposure of blue light was initiated 30 minutes after bacterial inoculation to inactivate A. baumannii in mouse burns. It was found that the multidrug-resistant A. baumannii strain was significantly more susceptible than keratinocytes to blue light inactivation. Transmission electron microscopy revealed blue light-induced ultrastructural damage in A. baumannii cells. Fluorescence spectroscopy suggested that endogenous porphyrins exist in A. baumannii cells. Blue light at an exposure of 55.8 J/cm(2) significantly reduced the bacterial burden in mouse burns. No resistance development to blue light inactivation was observed in A. baumannii after 10 cycles of sublethal inactivation of bacteria. No significant DNA damage was detected in mouse skin by means of a skin TUNEL assay after a blue light exposure of 195 J/cm(2). © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Method of absorbance correction in a spectroscopic heating value sensor

    DOEpatents

    Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

    2013-09-17

    A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

  10. 76 FR 82279 - Procurement List; Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... Micro, Light Blue, Size 5.5''. NSN: 6515-00-NIB-0722--Gloves, Surgical, Powder-free, Esteem Micro, Light Blue, Size 6''. NSN: 6515-00-NIB-0723--Gloves, Surgical, Powder-free, Esteem Micro, Light Blue, Size 6.5''. NSN: 6515-00-NIB-0724--Gloves, Surgical, Powder-free, Esteem Micro, Light Blue, Size 7'' . NSN...

  11. Comparison of gene expression levels of appA, ppsR, and EL368 in Erythrobacter litoralis spheroplasts under aerobic and anaerobic conditions, and under blue light, red light, and dark conditions.

    PubMed

    Nishino, Koki; Takahashi, Sawako; Nishida, Hiromi

    2018-03-31

    We compared the gene expression levels of the blue-light-responsive genes, appA (encoding photosynthesis promoting protein AppA), ppsR (encoding photosynthesis suppressing protein PpsR), and EL368 (encoding a blue-light-activated histidine kinase with a light, oxygen, or voltage domain) between aerobic and anaerobic conditions in spheroplasts of the aerobic photosynthetic bacterium Erythrobacter litoralis. The spheroplasts conducted photosynthesis under red light but not under blue light. All three blue-light-responsive genes showed higher expression under aerobic conditions than under anaerobic conditions under blue light. In contrast, under red light, although the expression level of appA was higher in the presence of oxygen than in the absence of oxygen, the expression levels of ppsR and EL368 were similar in the presence and absence of oxygen. Our findings demonstrate that the expression of blue-light-responsive genes is strongly affected by oxygen in E. litoralis spheroplasts.

  12. Optical coherence tomography using images of hair structure and dyes penetrating into the hair.

    PubMed

    Tsugita, Tetsuya; Iwai, Toshiaki

    2014-11-01

    Hair dyes are commonly evaluated by the appearance of the hair after dyeing. However, this approach cannot simultaneously assess how deep the dye has penetrated into hair. For simultaneous assessment of the appearance and the interior of hair, we developed a visible-range red, green, and blue (RGB) (three primary colors)-optical coherence tomography (OCT) using an RGB LED light source. We then evaluated a phantom model based on the assumption that the sample's absorbability in the vertical direction affects the tomographic imaging. Consistent with theory, our device showed higher resolution than conventional OCT with far-red light. In the experiment on the phantom model, we confirmed that the tomographic imaging is affected by absorbability unique to the sample. Furthermore, we verified that permeability can be estimated from this tomographic image. We also identified for the first time the relationship between penetration of the dye into hair and characteristics of wavelength by tomographic imaging of dyed hair. We successfully simultaneously assessed the appearance of dyed hair and inward penetration of the dye without preparing hair sections. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Near-infrared photocatalysts of BiVO4/CaF2:Er3+, Tm3+, Yb3+ with enhanced upconversion properties

    NASA Astrophysics Data System (ADS)

    Huang, Shouqiang; Zhu, Nanwen; Lou, Ziyang; Gu, Lin; Miao, Chen; Yuan, Haiping; Shan, Aidang

    2014-01-01

    Upconversion photocatalysts have the potential to absorb the near-infrared (NIR) light in solar energy and improve the photocatalytic performance. A hierarchical upconversion photocatalyst of BiVO4 (BVO)/CaF2:Er3+, Tm3+, Yb3+ (CF) combined with the narrow-band semiconductor of BVO and the luminescence agent of CF to enhance upconversion properties was synthesized via the hydrothermal method. The CF particles were deposited homogeneously on the surface of the BVO/CF composite with regular dendritic structure, which led to efficient upconversion emissions. The upconversion emission intensity of the BVO/CF composite was 8 times higher than that of pure CF, through tailoring the crystal symmetry of lanthanide ions by Bi3+ ions. The upconverted ultraviolet (361 and 379 nm), violet (408 nm), and blue (485 nm) light was able to excite BVO for photocatalysis in BVO/CF under NIR irradiation, which improved the degradation rate of methyl orange (MO).Upconversion photocatalysts have the potential to absorb the near-infrared (NIR) light in solar energy and improve the photocatalytic performance. A hierarchical upconversion photocatalyst of BiVO4 (BVO)/CaF2:Er3+, Tm3+, Yb3+ (CF) combined with the narrow-band semiconductor of BVO and the luminescence agent of CF to enhance upconversion properties was synthesized via the hydrothermal method. The CF particles were deposited homogeneously on the surface of the BVO/CF composite with regular dendritic structure, which led to efficient upconversion emissions. The upconversion emission intensity of the BVO/CF composite was 8 times higher than that of pure CF, through tailoring the crystal symmetry of lanthanide ions by Bi3+ ions. The upconverted ultraviolet (361 and 379 nm), violet (408 nm), and blue (485 nm) light was able to excite BVO for photocatalysis in BVO/CF under NIR irradiation, which improved the degradation rate of methyl orange (MO). Electronic supplementary information (ESI) available: Additional tables and figures. See DOI: 10.1039/c3nr05266d

  14. Blue enhanced light sources: opportunities and risks

    NASA Astrophysics Data System (ADS)

    Lang, Dieter

    2012-03-01

    Natural daylight is characterized by high proportions of blue light. By proof of a third type of photoreceptor in the human eye which is only sensitive in this spectral region and by subsequent studies it has become obvious that these blue proportions are essential for human health and well being. In various studies beneficial effects of indoor lighting with higher blue spectral proportions have been proven. On the other hand with increasing use of light sources having enhanced blue light for indoor illumination questions are arising about potential health risks attributed to blue light. Especially LED are showing distinct emission characteristics in the blue. Recently the French agency for food, environmental and occupational health & safety ANSES have raised the question on health issues related to LED light sources and have claimed to avoid use of LED for lighting in schools. In this paper parameters which are relevant for potential health risks will be shown and their contribution to risk factors will quantitatively be discussed. It will be shown how to differentiate between photometric parameters for assessment of beneficial as well as hazardous effects. Guidelines will be discussed how blue enhanced light sources can be used in applications to optimally support human health and well being and simultaneously avoid any risks attributed to blue light by a proper design of lighting parameters. In the conclusion it will be shown that no inherent health risks are related to LED lighting with a proper lighting design.

  15. Absorption properties of alternative chromophores for use in laser tissue soldering applications.

    PubMed

    Byrd, Brian D; Heintzelman, Douglas L; McNally-Heintzelman, Karen M

    2003-01-01

    The feasibility of using alternative chromophores in laser tissue soldering applications was explored. Two commonly used chromophores, indocyanine green (ICG), and methylene blue (MB) were investigated, as well as three different food colorings: red #40 (RFC), blue #1 (BFC), and green consisting of yellow #5 and blue #1 (GFC). Three experimental studies were conducted: (i) The absorption profiles of the five chromophores, when diluted in deionized water and when bound to protein, were recorded; (ii) the effect of accumulated thermal dosages on the absorption profile of the chromophores was evaluated; and (iii) the stability of the absorption profiles of the chromophore-doped solutions when exposed to ambient light for extended time periods was measured. The peak absorption wavelengths of ICG, MB, RFC, and BFC, were found to be 805 nm, 665 nm, 503 nm, and 630 nm respectively in protein solder. The GFC had two absorption peaks at 426 nm and 630 nm, corresponding to the two dye components comprising this color. The peak absorption wavelength of ICG and MB was dependent on the choice of solvent (deionized water or protein). In contrast, the peak absorption wavelengths of the three chromophores were not dependent on the choice of solvent. ICG and MB showed a significant decrease in absorbance units with increased time and temperature when heated to temperature up to 100 degrees C. A significant decrease in the absorption peak occurred in the ICG and MB samples when exposed to ambient light for a period of 7 days. Negligible change in absorption with accumulated thermal dose up to 100 degrees C or light dose (over a period of 84 days) was observed for any of the three food colorings investigated.

  16. Vibrio azureus emits blue-shifted light via an accessory blue fluorescent protein.

    PubMed

    Yoshizawa, Susumu; Karatani, Hajime; Wada, Minoru; Kogure, Kazuhiro

    2012-04-01

    Luminous marine bacteria usually emit bluish-green light with a peak emission wavelength (λ(max) ) at about 490 nm. Some species belonging to the genus Photobacterium are exceptions, producing an accessory blue fluorescent protein (lumazine protein: LumP) that causes a blue shift, from λ(max)  ≈ 490 to λ(max)  ≈ 476 nm. However, the incidence of blue-shifted light emission or the presence of accessory fluorescent proteins in bacteria of the genus Vibrio has never been reported. From our spectral analysis of light emitted by 16 luminous strains of the genus Vibrio, it was revealed that most strains of Vibrio azureus emit a blue-shifted light with a peak at approximately 472 nm, whereas other Vibrio strains emit light with a peak at around 482 nm. Therefore, we investigated the mechanism underlying this blue shift in V. azureus NBRC 104587(T) . Here, we describe the blue-shifted light emission spectra and the isolation of a blue fluorescent protein. Intracellular protein analyses showed that this strain had a blue fluorescent protein (that we termed VA-BFP), the fluorescent spectrum of which was almost identical to that of the in vivo light emission spectrum of the strain. This result strongly suggested that VA-BFP was responsible for the blue-shifted light emission of V. azureus. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression

    PubMed Central

    Cheng, Kevin P.; Kiernan, Elizabeth A.; Eliceiri, Kevin W.; Williams, Justin C.; Watters, Jyoti J.

    2016-01-01

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS. PMID:26883795

  18. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression.

    PubMed

    Cheng, Kevin P; Kiernan, Elizabeth A; Eliceiri, Kevin W; Williams, Justin C; Watters, Jyoti J

    2016-02-17

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS.

  19. An anion channel in Arabidopsis hypocotyls activated by blue light

    NASA Technical Reports Server (NTRS)

    Cho, M. H.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1996-01-01

    A rapid, transient depolarization of the plasma membrane in seedling stems is one of the earliest effects of blue light detected in plants. It appears to play a role in transducing blue light into inhibition of hypocotyl (stem) elongation, and perhaps other responses. The possibility that activation of a Cl- conductance is part of the depolarization mechanism was raised previously and addressed here. By patch clamping hypocotyl cells isolated from dark-grown (etiolated) Arabidopsis seedlings, blue light was found to activate an anion channel residing at the plasma membrane. An anion-channel blocker commonly known as NPPB 15-nitro-2-(3-phenylpropylamino)-benzoic acid] potently and reversibly blocked this anion channel. NPPB also blocked the blue-light-induced depolarization in vivo and decreased the inhibitory effect of blue light on hypocotyl elongation. These results indicate that activation of this anion channel plays a role in transducing blue light into growth inhibition.

  20. Genetic separation of phototropism from blue light inhibition of hypocotyl elongation on Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liscum, E.; Young, J.C.; Hangarter, R.P.

    1991-05-01

    Phototropism and inhibition of stem elongation occur in response to blue light-induced inhibition of cell elongation. However, phototropism is a low fluence response and inhibition of hypocotyl elongation is a high irradiance response. The authors have isolated several mutant lines of Arabidopsis which lack blue light-induced inhibition of hypocotyl elongation but retain normal phototropic functions. In addition, a mutant line which completely lacks the phototropic response retains normal blue light-induced inhibition of hypocotyl elongation. F1 progeny of crosses between these two mutant classes exhibited wild-type phototropism and inhibition of hypocotyl elongation in response to blue light stimuli. In the F2more » generation, one in sixteen seedlings were double mutants lacking both phototropism and blue light-induced hypocotyl growth inhibition. These studies conclusively show that blue light-induced phototropism and hypocotyl growth inhibition function through genetically distinct signal transduction or response systems.« less

  1. Up-conversion in rare-earth doped micro-particles applied to new emissive two-dimensional displays

    NASA Astrophysics Data System (ADS)

    Milliez, Anne Janet

    Up-conversion (UC) in rare-earth co-doped fluorides to convert diode laser light in the near infrared to red, green and blue visible light is applied to make possible high performance emissive displays. The infrared-to-visible UC in the materials we study is a sequential form of non-linear two photon absorption in which a strong absorbing constituent absorbs two low energy photons and transfers this energy to another constituent which emits visible light. Some of the UC emitters' most appealing characteristics for displays are: a wide color gamut with very saturated colors, very high brightness operation without damage to the emitters, long lifetimes and efficiencies comparable to those of existing technologies. Other advantages include simplicity of fabrication, versatility of operating modes, and the potential for greatly reduced display weight and depth. Thanks to recent advances in material science and diode laser technology at the excitation wavelength, UC selected materials can be very efficient visible emitters. However, optimal UC efficiencies strongly depend on chosing proper operating conditions. In this thesis, we studied the conditions required for optimization. We demonstrated that high efficiency UC depends on high pump irradiance, low temperature and low scattering. With this understanding we can predict how to optimally use UC emitters in a wide range of applications. In particular, we showed how our very efficient UC emitters can be applied to make full color displays and very efficient white light sources.

  2. 78 FR 48657 - Procurement List; Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... Divider, 4 Sections, Light Blue NSN: 7530-00-NIB-1098--Folder, File, Hanging, Light Blue, Letter Size, 2-Dividers, 6 Sections NSN: 7530-00-NIB-1099--Folder, File, Hanging, Light Blue, Legal Size, 1-Divider, 4 Sections NSN: 7530-00-NIB-1100--Folder, File, Hanging, Light Blue, Legal Size, 2-Dividers, 6 Sections NPA...

  3. Is It Possible to Distinguish Between Dust and Salt Aerosol Over Waters with Unknown Chlorophyll Concentrations Using Spectral Remote Sensing?

    NASA Technical Reports Server (NTRS)

    Levy, R. C.; Kaufman, Y. J.

    1999-01-01

    Atmospheric aerosol has uncertain impacts on the global climate system, as well as on atmospheric and bio-geo-chemical processes of regional and local scales. EOS-MODIS is one example of a satellite sensor designed to improve understanding of the aerosols' type, size and distribution at all temporal and spatial scales. Ocean scientists also plan to use data from EOS-MODIS to assess the temporal and spatial coverage of in-water chlorophyll. MODIS is the first sensor planned to observe the combined ocean-atmosphere system with a wide spectral range (from 410 to 2200 nm). Dust aerosol and salt aerosol have similar spectral signals for wavelengths longer than 550 nm, but because dust selectively absorbs blue light, they have divergent signals in the blue wavelength regions (412 to 490 nm). Chlorophyll also selectively absorbs blue radiation, so that varying chlorophyll concentrations produces a highly varying signal in the blue regions, but less variability in the green, and almost no signal in the red to mid-infrared regions. Thus, theoretically, it may be difficult to differentiate dust and salt in the presence of unknown chlorophyll in the ocean. This study attempts to address the cases in which aerosol and chlorophyll signals can and cannot be separated. For the aerosol spectra, we use the aerosol lookup table from the operational MODIS aerosol-over-ocean algorithm, and for chlorophyll spectra, we use the SeaBAM data set (created for SeaWiFS). We compare the signals using Principal Component Analysis and attempt to retrieve both chlorophyll and aerosol properties using a variant of the operational MODIS aerosol-over-ocean algorithm. Results show that for small optical depths, less than 0.5, it is not possible to differentiate between dust and salt and to determine the chlorophyll concentration at the same time. For larger aerosol optical depths, the chlorophyll signals are comparatively insignificant, and we can hope to distinguish between dust and salt.

  4. Blue-Light Inhibition of Listeria monocytogenes Growth Is Mediated by Reactive Oxygen Species and Is Influenced by σB and the Blue-Light Sensor Lmo0799.

    PubMed

    O'Donoghue, Beth; NicAogáin, Kerrie; Bennett, Claire; Conneely, Alan; Tiensuu, Teresa; Johansson, Jörgen; O'Byrne, Conor

    2016-07-01

    Listeria monocytogenes senses blue light via the flavin mononucleotide-containing sensory protein Lmo0799, leading to activation of the general stress response sigma factor SigB (σ(B)). In this study, we investigated the physiological response of this foodborne pathogen to blue light. We show that blue light (460 to 470 nm) doses of 1.5 to 2 mW cm(-2) cause inhibition of growth on agar-based and liquid culture media. The inhibitory effects are dependent on cell density, with reduced effects evident when high cell numbers are present. The addition of 20 mM dimethylthiourea, a scavenger of reactive oxygen species, or catalase to the medium reverses the inhibitory effects of blue light, suggesting that growth inhibition is mediated by the formation of reactive oxygen species. A mutant strain lacking σ(B) (ΔsigB) was found to be less inhibited by blue light than the wild type, likely indicating the energetic cost of deploying the general stress response. When a lethal dose of light (8 mW cm(-2)) was applied to cells, the ΔsigB mutant displayed a marked increase in sensitivity to light compared to the wild type. To investigate the role of the blue-light sensor Lmo0799, mutants were constructed that either had a deletion of the gene (Δlmo0799) or alteration in a conserved cysteine residue at position 56, which is predicted to play a pivotal role in the photocycle of the protein (lmo0799 C56A). Both mutants displayed phenotypes similar to the ΔsigB mutant in the presence of blue light, providing genetic evidence that residue 56 is critical for light sensing in L. monocytogenes Taken together, these results demonstrate that L. monocytogenes is inhibited by blue light in a manner that depends on reactive oxygen species, and they demonstrate clear light-dependent phenotypes associated with σ(B) and the blue-light sensor Lmo0799. Listeria monocytogenes is a bacterial foodborne pathogen that can cause life-threatening infections in humans. It is known to be able to sense and respond to visible light. In this study, we examine the effects of blue light on the growth and survival of this pathogen. We show that growth can be inhibited at comparatively low doses of blue light, and that at higher doses, L. monocytogenes cells are killed. We present evidence suggesting that blue light inhibits this organism by causing the production of reactive oxygen species, such as hydrogen peroxide. We help clarify the mechanism of light sensing by constructing a "blind" version of the blue-light sensor protein. Finally, we show that activation of the general stress response by light has a negative effect on growth, probably because cellular resources are diverted into protective mechanisms rather than growth. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Blue-Light Inhibition of Listeria monocytogenes Growth Is Mediated by Reactive Oxygen Species and Is Influenced by σB and the Blue-Light Sensor Lmo0799

    PubMed Central

    O'Donoghue, Beth; NicAogáin, Kerrie; Bennett, Claire; Conneely, Alan; Tiensuu, Teresa; Johansson, Jörgen

    2016-01-01

    ABSTRACT Listeria monocytogenes senses blue light via the flavin mononucleotide-containing sensory protein Lmo0799, leading to activation of the general stress response sigma factor SigB (σB). In this study, we investigated the physiological response of this foodborne pathogen to blue light. We show that blue light (460 to 470 nm) doses of 1.5 to 2 mW cm−2 cause inhibition of growth on agar-based and liquid culture media. The inhibitory effects are dependent on cell density, with reduced effects evident when high cell numbers are present. The addition of 20 mM dimethylthiourea, a scavenger of reactive oxygen species, or catalase to the medium reverses the inhibitory effects of blue light, suggesting that growth inhibition is mediated by the formation of reactive oxygen species. A mutant strain lacking σB (ΔsigB) was found to be less inhibited by blue light than the wild type, likely indicating the energetic cost of deploying the general stress response. When a lethal dose of light (8 mW cm−2) was applied to cells, the ΔsigB mutant displayed a marked increase in sensitivity to light compared to the wild type. To investigate the role of the blue-light sensor Lmo0799, mutants were constructed that either had a deletion of the gene (Δlmo0799) or alteration in a conserved cysteine residue at position 56, which is predicted to play a pivotal role in the photocycle of the protein (lmo0799 C56A). Both mutants displayed phenotypes similar to the ΔsigB mutant in the presence of blue light, providing genetic evidence that residue 56 is critical for light sensing in L. monocytogenes. Taken together, these results demonstrate that L. monocytogenes is inhibited by blue light in a manner that depends on reactive oxygen species, and they demonstrate clear light-dependent phenotypes associated with σB and the blue-light sensor Lmo0799. IMPORTANCE Listeria monocytogenes is a bacterial foodborne pathogen that can cause life-threatening infections in humans. It is known to be able to sense and respond to visible light. In this study, we examine the effects of blue light on the growth and survival of this pathogen. We show that growth can be inhibited at comparatively low doses of blue light, and that at higher doses, L. monocytogenes cells are killed. We present evidence suggesting that blue light inhibits this organism by causing the production of reactive oxygen species, such as hydrogen peroxide. We help clarify the mechanism of light sensing by constructing a “blind” version of the blue-light sensor protein. Finally, we show that activation of the general stress response by light has a negative effect on growth, probably because cellular resources are diverted into protective mechanisms rather than growth. PMID:27129969

  6. Effects of blue light and caffeine on mood.

    PubMed

    Ekström, Johan G; Beaven, C Martyn

    2014-09-01

    Both short wavelength (blue) light and caffeine have been studied for their mood enhancing effects on humans. The ability of blue light to increase alertness, mood and cognitive function via non-image forming neuropathways has been suggested as a non-pharmacological countermeasure for depression across a range of occupational settings. This experimental study compared blue light and caffeine and aimed to test the effects of blue light/placebo (BLU), white light/240-mg caffeine (CAF), blue light/240-mg caffeine (BCAF) and white light/placebo (PLA), on mood. A randomised, controlled, crossover design study was used, in a convenience population of 20 healthy volunteers. The participants rated their mood on the Swedish Core Affect Scales (SCAS) prior to and after each experimental condition to assess the dimensions of valence and activation. There was a significant main effect of light (p = 0.009), and the combination of blue light and caffeine had clear positive effects on core effects (ES, ranging from 0.41 to 1.20) and global mood (ES, 0.61 ± 0.53). The benefits of the combination of blue light and caffeine should be further investigated across a range of applications due to the observed effects on the dimensions of arousal, valence and pleasant activation.

  7. The effects of low-intensity narrow-band blue-light treatment compared to bright white-light treatment in seasonal affective disorder.

    PubMed

    Meesters, Ybe; Duijzer, Wianne B; Hommes, Vanja

    2018-05-01

    Ever since a new photoreceptor was discovered with a highest sensitivity to 470-490 nm blue light, it has been speculated that blue light has some advantages in the treatment of Seasonal Affective Disorder (SAD) over more traditional treatments. In this study we compared the effects of exposure to narrow-band blue light (BLUE) to those of broad-wavelength white light (BLT) in the treatment of SAD. In a 15-day design, 45 patients suffering from SAD completed 30-min sessions of light treatment on 5 consecutive days. 21 subjects received white-light treatment (BLT, broad-wavelength without UV, 10 000 lx, irradiance 31.7 W/m 2 ), 24 subjects received narrow-band blue light (BLUE, 100 lx, irradiance 1.0 W/m 2 ). All participants completed weekly questionnaires concerning mood and energy levels, and were also assessed by means of the SIGH-SAD, which is the primary outcome measure. On day 15, SIGH-SAD ratings were significantly lower than on day 1 (BLT 73.2%, effect size 3.37; BLUE 67%, effect size 2.63), which outcomes were not statistically significant different between both conditions. Small sample size. Light treatment is an effective treatment for SAD. The use of narrow-band blue light is equally effective as a treatment using bright white-light. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa

    PubMed Central

    Ouzounis, Theoharis; Razi Parjikolaei, Behnaz; Fretté, Xavier; Rosenqvist, Eva; Ottosen, Carl-Otto

    2015-01-01

    To evaluate the effect of blue light intensity and timing, two cultivars of lettuce [Lactuca sativa cv. “Batavia” (green) and cv. “Lollo Rossa” (red)] were grown in a greenhouse compartment in late winter under natural light and supplemental high pressure sodium (SON-T) lamps yielding 90 (±10) μmol m−2 s−1 for up to 20 h, but never between 17:00 and 21:00. The temperature in the greenhouse compartments was 22/11°C day/night, respectively. The five light-emitting diode (LED) light treatments were Control (no blue addition), 1B 06-08 (Blue light at 45 μmol m−2 s−1 from 06:00 to 08:00), 1B 21-08 (Blue light at 45 μmol m−2 s−1 from 21:00 to 08:00), 2B 17-19 (Blue at 80 μmol m−2 s−1 from 17:00 to 19:00), and 1B 17-19 (Blue at 45 μmol m−2 s−1 from 17:00 to 19:00). Total fresh and dry weight was not affected with additional blue light; however, plants treated with additional blue light were more compact. The stomatal conductance in the green lettuce cultivar was higher for all treatments with blue light compared to the Control. Photosynthetic yields measured with chlorophyll fluorescence showed different response between the cultivars; in red lettuce, the quantum yield of PSII decreased and the yield of non-photochemical quenching increased with increasing blue light, whereas in green lettuce no difference was observed. Quantification of secondary metabolites showed that all four treatments with additional blue light had higher amount of pigments, phenolic acids, and flavonoids compared to the Control. The effect was more prominent in red lettuce, highlighting that the results vary among treatments and compounds. Our results indicate that not only high light level triggers photoprotective heat dissipation in the plant, but also the specific spectral composition of the light itself at low intensities. However, these plant responses to light are cultivar dependent. PMID:25767473

  9. Blue Light Rescues Mice from Potentially Fatal Pseudomonas aeruginosa Burn Infection: Efficacy, Safety, and Mechanism of Action

    PubMed Central

    Dai, Tianhong; Gupta, Asheesh; Huang, Ying-Ying; Yin, Rui; Murray, Clinton K.; Vrahas, Mark S.; Sherwood, Margaret E.; Tegos, George P.

    2013-01-01

    Blue light has attracted increasing attention due to its intrinsic antimicrobial effect without the addition of exogenous photosensitizers. However, the use of blue light for wound infections has not been established yet. In this study, we demonstrated the efficacy of blue light at 415 nm for the treatment of acute, potentially lethal Pseudomonas aeruginosa burn infections in mice. Our in vitro studies demonstrated that the inactivation rate of P. aeruginosa cells by blue light was approximately 35-fold higher than that of keratinocytes (P = 0.0014). Transmission electron microscopy revealed blue light-mediated intracellular damage to P. aeruginosa cells. Fluorescence spectroscopy suggested that coproporphyrin III and/or uroporphyrin III are possibly the intracellular photosensitive chromophores associated with the blue light inactivation of P. aeruginosa. In vivo studies using an in vivo bioluminescence imaging technique and an area-under-the-bioluminescence-time-curve (AUBC) analysis showed that a single exposure of blue light at 55.8 J/cm2, applied 30 min after bacterial inoculation to the infected mouse burns, reduced the AUBC by approximately 100-fold in comparison with untreated and infected mouse burns (P < 0.0001). Histological analyses and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assays indicated no significant damage in the mouse skin exposed to blue light at the effective antimicrobial dose. Survival analyses revealed that blue light increased the survival rate of the infected mice from 18.2% to 100% (P < 0.0001). In conclusion, blue light therapy might offer an effective and safe alternative to conventional antimicrobial therapy for P. aeruginosa burn infections. PMID:23262998

  10. 21 CFR 74.3106 - D&C Blue No. 6.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... material for coloring plain or chromic collagen absorbable sutures for general surgical use; (iii) Not to exceed 0.5 percent by weight of the suture material for coloring plain or chromic collagen absorbable...

  11. 21 CFR 74.3106 - D&C Blue No. 6.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... material for coloring plain or chromic collagen absorbable sutures for general surgical use; (iii) Not to exceed 0.5 percent by weight of the suture material for coloring plain or chromic collagen absorbable...

  12. 21 CFR 74.3106 - D&C Blue No. 6.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... material for coloring plain or chromic collagen absorbable sutures for general surgical use; (iii) Not to exceed 0.5 percent by weight of the suture material for coloring plain or chromic collagen absorbable...

  13. 21 CFR 74.3106 - D&C Blue No. 6.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... material for coloring plain or chromic collagen absorbable sutures for general surgical use; (iii) Not to exceed 0.5 percent by weight of the suture material for coloring plain or chromic collagen absorbable...

  14. 21 CFR 74.3106 - D&C Blue No. 6.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... material for coloring plain or chromic collagen absorbable sutures for general surgical use; (iii) Not to exceed 0.5 percent by weight of the suture material for coloring plain or chromic collagen absorbable...

  15. Blue light aids in coping with the post-lunch dip: an EEG study.

    PubMed

    Baek, Hongchae; Min, Byoung-Kyong

    2015-01-01

    The 'post-lunch dip' is a commonly experienced period of drowsiness in the afternoon hours. If this inevitable period can be disrupted by an environmental cue, the result will be enhanced workplace performance. Because blue light is known to be a critical cue for entraining biological rhythms, we investigated whether blue light illumination can be a practical strategy for coping with the post-lunch dip. Twenty healthy participants underwent a continuous performance test, during which the electroencephalogram (EEG) was recorded under four different illumination conditions: dark ( < 0.3 lx), 33% blue-enriched light, 66% blue-enriched light and white polychromatic light. As a result, exposure to blue-enriched light during the post-lunch dip period significantly reduced the EEG alpha activity, and increased task performance. Since desynchronisation of alpha activity reflects enhancement of vigilance, our findings imply that blue light might disrupt the post-lunch dip. Subsequent exploration of illumination parameters will be beneficial for possible chronobiological and ergonomic applications.

  16. Magnetically triggered release of molecular cargo from iron oxide nanoparticle loaded microcapsules

    NASA Astrophysics Data System (ADS)

    Carregal-Romero, Susana; Guardia, Pablo; Yu, Xiang; Hartmann, Raimo; Pellegrino, Teresa; Parak, Wolfgang J.

    2014-12-01

    Photothermal release of cargo molecules has been extensively studied for bioapplications. For instance, microcapsules decorated with plasmonic nanoparticles have been widely used in in vitro assays. However, some concerns about their suitability for some in vivo applications cannot be easily overcome, in particular the limited penetration depth of light (even infrared). Magnetic nanoparticles are alternative heat-mediators for local heating, which can be triggered by applying an alternating magnetic field (AMF). AMFs are much less absorbed by tissue than light and thus can penetrate deeper overcoming the above mentioned limitations. Here we present iron oxide nanocube-modified microcapsules as a platform for magnetically triggered molecular release. Layer-by-layer assembled polyelectrolyte microcapsules with 4.6 μm diameter, which had 18 nm diameter iron oxide nanocubes integrated in their walls, were synthesized. The microcapsules were further loaded with an organic fluorescent polymer (Cascade Blue-labelled dextran), which was used as a model of molecular cargo. Through an AMF the magnetic nanoparticles were able to heat their surroundings and destroy the microcapsule walls, leading to a final release of the embedded cargo to the surrounding solution. The cargo release was monitored in solution by measuring the increase in both absorbance and fluorescence signal after the exposure to an AMF. Our results demonstrate that magnetothermal release of the encapsulated material is possible using magnetic nanoparticles with a high heating performance.Photothermal release of cargo molecules has been extensively studied for bioapplications. For instance, microcapsules decorated with plasmonic nanoparticles have been widely used in in vitro assays. However, some concerns about their suitability for some in vivo applications cannot be easily overcome, in particular the limited penetration depth of light (even infrared). Magnetic nanoparticles are alternative heat-mediators for local heating, which can be triggered by applying an alternating magnetic field (AMF). AMFs are much less absorbed by tissue than light and thus can penetrate deeper overcoming the above mentioned limitations. Here we present iron oxide nanocube-modified microcapsules as a platform for magnetically triggered molecular release. Layer-by-layer assembled polyelectrolyte microcapsules with 4.6 μm diameter, which had 18 nm diameter iron oxide nanocubes integrated in their walls, were synthesized. The microcapsules were further loaded with an organic fluorescent polymer (Cascade Blue-labelled dextran), which was used as a model of molecular cargo. Through an AMF the magnetic nanoparticles were able to heat their surroundings and destroy the microcapsule walls, leading to a final release of the embedded cargo to the surrounding solution. The cargo release was monitored in solution by measuring the increase in both absorbance and fluorescence signal after the exposure to an AMF. Our results demonstrate that magnetothermal release of the encapsulated material is possible using magnetic nanoparticles with a high heating performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04055d

  17. Human phase response curve to intermittent blue light using a commercially available device

    PubMed Central

    Revell, Victoria L; Molina, Thomas A; Eastman, Charmane I

    2012-01-01

    Light shifts the timing of the circadian clock according to a phase response curve (PRC). To date, all human light PRCs have been to long durations of bright white light. However, melanopsin, the primary photopigment for the circadian system, is most sensitive to short wavelength blue light. Therefore, to optimise light treatment it is important to generate a blue light PRC. We used a small, commercially available blue LED light box, screen size 11.2 × 6.6 cm at ∼50 cm, ∼200 μW cm−2, ∼185 lux. Subjects participated in two 5 day laboratory sessions 1 week apart. Each session consisted of circadian phase assessments to obtain melatonin profiles before and after 3 days of free-running through an ultradian light–dark cycle (2.5 h wake in dim light, 1.5 h sleep in the dark), forced desynchrony protocol. During one session subjects received intermittent blue light (three 30 min pulses over 2 h) once a day for the 3 days of free-running, and in the other session (control) they remained in dim room light, counterbalanced. The time of blue light was varied among subjects to cover the entire 24 h day. For each individual, the phase shift to blue light was corrected for the free-run determined during the control session. The blue light PRC had a broad advance region starting in the morning and extending through the afternoon. The delay region started a few hours before bedtime and extended through the night. This is the first PRC to be constructed to blue light and to a stimulus that could be used in the real world. PMID:22753544

  18. Removal of the blue component of light significantly decreases retinal damage after high intensity exposure.

    PubMed

    Vicente-Tejedor, Javier; Marchena, Miguel; Ramírez, Laura; García-Ayuso, Diego; Gómez-Vicente, Violeta; Sánchez-Ramos, Celia; de la Villa, Pedro; Germain, Francisco

    2018-01-01

    Light causes damage to the retina (phototoxicity) and decreases photoreceptor responses to light. The most harmful component of visible light is the blue wavelength (400-500 nm). Different filters have been tested, but so far all of them allow passing a lot of this wavelength (70%). The aim of this work has been to prove that a filter that removes 94% of the blue component may protect the function and morphology of the retina significantly. Three experimental groups were designed. The first group was unexposed to light, the second one was exposed and the third one was exposed and protected by a blue-blocking filter. Light damage was induced in young albino mice (p30) by exposing them to white light of high intensity (5,000 lux) continuously for 7 days. Short wavelength light filters were used for light protection. The blue component was removed (94%) from the light source by our filter. Electroretinographical recordings were performed before and after light damage. Changes in retinal structure were studied using immunohistochemistry, and TUNEL labeling. Also, cells in the outer nuclear layer were counted and compared among the three different groups. Functional visual responses were significantly more conserved in protected animals (with the blue-blocking filter) than in unprotected animals. Also, retinal structure was better kept and photoreceptor survival was greater in protected animals, these differences were significant in central areas of the retina. Still, functional and morphological responses were significantly lower in protected than in unexposed groups. In conclusion, this blue-blocking filter decreases significantly photoreceptor damage after exposure to high intensity light. Actually, our eyes are exposed for a very long time to high levels of blue light (screens, artificial light LED, neons…). The potential damage caused by blue light can be palliated.

  19. Human phase response curve to intermittent blue light using a commercially available device.

    PubMed

    Revell, Victoria L; Molina, Thomas A; Eastman, Charmane I

    2012-10-01

    Light shifts the timing of the circadian clock according to a phase response curve (PRC). To date, all human light PRCs have been to long durations of bright white light. However, melanopsin, the primary photopigment for the circadian system, is most sensitive to short wavelength blue light. Therefore, to optimise light treatment it is important to generate a blue light PRC.We used a small, commercially available blue LED light box, screen size 11.2 × 6.6 cm at ∼50 cm, ∼200 μW cm(−2), ∼185 lux. Subjects participated in two 5 day laboratory sessions 1 week apart. Each session consisted of circadian phase assessments to obtain melatonin profiles before and after 3 days of free-running through an ultradian light–dark cycle (2.5 h wake in dim light, 1.5 h sleep in the dark), forced desynchrony protocol. During one session subjects received intermittent blue light (three 30 min pulses over 2 h) once a day for the 3 days of free-running, and in the other session (control) they remained in dim room light, counterbalanced. The time of blue light was varied among subjects to cover the entire 24 h day. For each individual, the phase shift to blue light was corrected for the free-run determined during the control session. The blue light PRC had a broad advance region starting in the morning and extending through the afternoon. The delay region started a few hours before bedtime and extended through the night. This is the first PRC to be constructed to blue light and to a stimulus that could be used in the real world.

  20. High-luminosity blue and blue-green gallium nitride light-emitting diodes.

    PubMed

    Morkoç, H; Mohammad, S N

    1995-01-06

    Compact and efficient sources of blue light for full color display applications and lighting eluded and tantalized researchers for many years. Semiconductor light sources are attractive owing to their reliability and amenability to mass manufacture. However, large band gaps are required to achieve blue color. A class of compound semiconductors formed by metal nitrides, GaN and its allied compounds AIGaN and InGaN, exhibits properties well suited for not only blue and blue-green emitters, but also for ultraviolet emitters and detectors. What thwarted engineers and scientists from fabricating useful devices from these materials in the past was the poor quality of material and lack of p-type doping. Both of these obstacles have recently been overcome to the point where highluminosity blue and blue-green light-emitting diodes are now available in the marketplace.

  1. Astrobiological implications of dim light phototrophy in deep-sea red clays

    NASA Astrophysics Data System (ADS)

    Das, Anindita; Singh, Tanya; LokaBharathi, P. A.; Dhakephalkar, Prashant K.; Mallik, Sweta; Kshirsagar, Pranav R.; Khadge, N. H.; Nath, B. Nagender; Bhattacharya, Satadru; Dagar, Aditya Kumar; Kaur, Prabhjot; Ray, Dwijesh; Shukla, Anil D.; Fernandes, Christabelle E. G.; Fernandes, Sheryl O.; Thomas, Tresa Remya A.; Mamatha, S. S.; Mourya, Babu Shashikant; Meena, Ram Murti

    2017-02-01

    Red clays of Central Indian Basin (CIB) under influence of trace of Rodriguez Triple Junction exhibited chemoautotrophy, low temperature hydrothermal alterations and photoautotrophic potential. Seamount flank TVBC-08, hosting such signatures revealed dominance of aerobic anoxygenic phototroph Erythrobacter, with 93% of total 454 pyrosequencing tags. Subsequently, enrichments for both aerobic (Erythrobacter) and anaerobic anoxygenic phototrophs (green and purple sulphur bacteria) under red and white LED light illumination, with average irradiance 30.66 W m-2, were attempted for three red-clay sediment cores. Successful enrichments were obtained after incubation for c.a. 120 days at 4°± 2 °C and 25°± 2 °C, representing ambient psychrophilic and low temperature hydrothermal alteration conditions respectively. During hydrothermal cooling, a microbial succession from anaerobic chemolithotrophy to oxygenic photoautotrophy through anaerobic/aerobic anoxygenic phototrophic microbes is indicated. Spectral absorbance patterns of the methanol extracted cell pellets showed peaks corresponding to metal sulphide precipitations, the Soret band of chlorosome absorbance by photosystem II and absence of peaks at Qy transition band. Dendritic nano-structures of metal sulphides are common in these sediments and are comparable with other sulphidic paleo-marine Martian analogues. Significant blue and redshifts have been observed for the experimental samples relative to the un-inoculated medium. These observations indicate the propensity of metal-sulphide deposits contributing to chemiluminiscence supporting the growth of phototrophs at least partially, in the otherwise dark abyss. The effects of other geothermal heat and light sources are also under further consideration. The potential of phototrophic microbial cells to exhibit Doppler shift in absorbance patterns is significant towards understanding planetary microbial habitability. Planetary desiccation could considerably influence Doppler effects and consequently spectral detection techniques exo-planetary microbial life.

  2. Hydrogen incorporation by plasma treatment gives mesoporous black TiO 2 thin films with visible photoelectrochemical water oxidation activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Syed Z.; Reed, Allen; Nagpure, Suraj

    In this work, we use neutron reflectometry (NR) to investigate the roles of hydrogen in plasma treated hydrogen doped mesoporous black titania thin films in their visible light absorption and enhanced photoactivity for water oxidation. The cubic ordered mesoporous TiO 2 thin films are prepared by a surfactant-templated sol-gel method and are treated with hydrogen plasma, an approach hypothesized to capitalize on the high degree of disorder in the material and the high energy of the plasma species to achieve efficient hydrogen doping. UV-vis absorbance spectra indicate that H 2 plasma treatment makes TiO 2 films black, with broad-spectrum enhancementmore » of visible light absorption, and XPS analysis shows peak for Ti 3+ state in treated films. The presence of hydrogen in black mesoporous titania (H-TiO 2) films is confirmed by the scattering length density (SLD) profiles obtained from neutron reflectometry measurements. The H-TiO 2 shows ca. 28 times and 8 times higher photocurrent for photoelectrochemical water oxidation compared to undoped TiO 2 films under UV (365 nm) and blue (455 nm) LED irradiation, respectively. These findings provide the first direct evidence that the dramatic change in visible light absorbance of H-treated black TiO 2 is accompanied by significant hydrogen uptake and not just Ti 3+ generation or surface disordering.« less

  3. Hydrogen incorporation by plasma treatment gives mesoporous black TiO 2 thin films with visible photoelectrochemical water oxidation activity

    DOE PAGES

    Islam, Syed Z.; Reed, Allen; Nagpure, Suraj; ...

    2017-10-26

    In this work, we use neutron reflectometry (NR) to investigate the roles of hydrogen in plasma treated hydrogen doped mesoporous black titania thin films in their visible light absorption and enhanced photoactivity for water oxidation. The cubic ordered mesoporous TiO 2 thin films are prepared by a surfactant-templated sol-gel method and are treated with hydrogen plasma, an approach hypothesized to capitalize on the high degree of disorder in the material and the high energy of the plasma species to achieve efficient hydrogen doping. UV-vis absorbance spectra indicate that H 2 plasma treatment makes TiO 2 films black, with broad-spectrum enhancementmore » of visible light absorption, and XPS analysis shows peak for Ti 3+ state in treated films. The presence of hydrogen in black mesoporous titania (H-TiO 2) films is confirmed by the scattering length density (SLD) profiles obtained from neutron reflectometry measurements. The H-TiO 2 shows ca. 28 times and 8 times higher photocurrent for photoelectrochemical water oxidation compared to undoped TiO 2 films under UV (365 nm) and blue (455 nm) LED irradiation, respectively. These findings provide the first direct evidence that the dramatic change in visible light absorbance of H-treated black TiO 2 is accompanied by significant hydrogen uptake and not just Ti 3+ generation or surface disordering.« less

  4. Optimisation of the Photonic Efficiency of TiO2 Decorated on MWCNTs for Methylene Blue Photodegradation.

    PubMed

    Abdullahi, Nura; Saion, Elias; Shaari, Abdul Halim; Al-Hada, Naif Mohammed; Keiteb, Aysar

    2015-01-01

    MWCNTs/TiO2 nanocomposite was prepared by oxidising MWCNT in H2SO4/HNO3 then decorating it with TiO2-p25 nanopowder. The composites were characterised using XRD, TEM, FT-IR PL and UV-vis spectroscopy. The TEM images have shown TiO2 nanoparticles immobilised onto the sidewalls of the MWCNTs. The UV-vis spectrum confirms that the nanocomposites can significantly absorb more light in the visible regions compared with the commercial TiO2 (P25). The catalytic activity of these nanocomposites was determined by photooxidation of MB aqueous solution in the presence of visible light. The MWCNTs/TiO2 (1:3) mass ratio showed maximum degradation efficiency. However, its activity was more favourable in alkaline and a neutral pH than an acidic medium.

  5. The effects of low-intensity narrow-band blue-light treatment compared to bright white-light treatment in sub-syndromal seasonal affective disorder.

    PubMed

    Meesters, Ybe; Winthorst, Wim H; Duijzer, Wianne B; Hommes, Vanja

    2016-02-18

    The discovery of a novel photoreceptor in the retinal ganglion cells with a highest sensitivity of 470-490 nm blue light has led to research on the effects of short-wavelength light in humans. Several studies have explored the efficacy of monochromatic blue or blue-enriched light in the treatment of SAD. In this study, a comparison has been made between the effects of broad-wavelength light without ultraviolet (UV) wavelengths compared to narrow-band blue light in the treatment of sub-syndromal seasonal affective disorder (Sub-SAD). In a 15-day design, 48 participants suffering from Sub-SAD completed 20-minute sessions of light treatment on five consecutive days. 22 participants were given bright white-light treatment (BLT, broad-wavelength light without UV 10 000 lux, irradiance 31.7 Watt/m(2)) and 26 participants received narrow-band blue light (BLUE, 100 lux, irradiance 1.0 Watt/m(2)). All participants completed daily and weekly questionnaires concerning mood, activation, sleep quality, sleepiness and energy. Also, mood and energy levels were assessed by means of the SIGH-SAD, the primary outcome measure. On day 15, SIGH-SAD ratings were significantly lower than on day 1 (BLT 54.8 %, effect size 1.7 and BLUE 50.7 %, effect size 1.9). No statistically significant differences were found on the main outcome measures. Light treatment is an effective treatment for Sub-SAD. The use of narrow-band blue-light treatment is equally effective as bright white-light treatment. This study was registered in the Dutch Trial Register (Nederlands Trial Register TC =  4342 ) (20-12-2013).

  6. Arabidopsis Casein Kinase1 Proteins CK1.3 and CK1.4 Phosphorylate Cryptochrome2 to Regulate Blue Light Signaling[C][W

    PubMed Central

    Tan, Shu-Tang; Dai, Cheng; Liu, Hong-Tao; Xue, Hong-Wei

    2013-01-01

    Casein kinase1 (CK1) plays crucial roles in regulating growth and development via phosphorylating various substrates throughout the eukaryote kingdom. Blue light is crucial for normal growth of both plants and animals, and blue light receptor cryptochrome2 (CRY2) undergoes blue light–dependent phosphorylation and degradation in planta. To study the function of plant CK1s, systematic genetic analysis showed that deficiency of two paralogous Arabidopsis thaliana CK1s, CK1.3 and CK1.4, caused shortened hypocotyls, especially under blue light, while overexpression of either CK1.3 or CK1.4 resulted in the insensitive response to blue light and delayed flowering under long-day conditions. CK1.3 or CK1.4 act dependently on CRY2, and overexpression of CK1.3 or CK1.4 significantly suppresses the hypersensitive response to blue light by CRY2 overexpression. Biochemical studies showed that CK1.3 and CK1.4 directly phosphorylate CRY2 at Ser-587 and Thr-603 in vitro and negatively regulate CRY2 stability in planta, which are stimulated by blue light, further confirming the crucial roles of CK1.3 and CK1.4 in blue light responses through phosphorylating CRY2. Interestingly, expression of CK1.3 and CK1.4 is stimulated by blue light and feedback regulated by CRY2-mediated signaling. These results provide direct evidence for CRY2 phosphorylation and informative clues on the mechanisms of CRY2-mediated light responses. PMID:23897926

  7. Damage threshold in adult rabbit eyes after scleral cross-linking by riboflavin/blue light application.

    PubMed

    Iseli, Hans Peter; Körber, Nicole; Karl, Anett; Koch, Christian; Schuldt, Carsten; Penk, Anja; Liu, Qing; Huster, Daniel; Käs, Josef; Reichenbach, Andreas; Wiedemann, Peter; Francke, Mike

    2015-10-01

    Several scleral cross-linking (SXL) methods were suggested to increase the biomechanical stiffness of scleral tissue and therefore, to inhibit axial eye elongation in progressive myopia. In addition to scleral cross-linking and biomechanical effects caused by riboflavin and light irradiation such a treatment might induce tissue damage, dependent on the light intensity used. Therefore, we characterized the damage threshold and mechanical stiffening effect in rabbit eyes after application of riboflavin combined with various blue light intensities. Adult pigmented and albino rabbits were treated with riboflavin (0.5 %) and varying blue light (450 ± 50 nm) dosages from 18 to 780 J/cm(2) (15 to 650 mW/cm(2) for 20 min). Scleral, choroidal and retinal tissue alterations were detected by means of light microscopy, electron microscopy and immunohistochemistry. Biomechanical changes were measured by shear rheology. Blue light dosages of 480 J/cm(2) (400 mW/cm(2)) and beyond induced pathological changes in ocular tissues; the damage threshold was defined by the light intensities which induced cellular degeneration and/or massive collagen structure changes. At such high dosages, we observed alterations of the collagen structure in scleral tissue, as well as pigment aggregation, internal hemorrhages, and collapsed blood vessels. Additionally, photoreceptor degenerations associated with microglia activation and macroglia cell reactivity in the retina were detected. These pathological alterations were locally restricted to the treated areas. Pigmentation of rabbit eyes did not change the damage threshold after a treatment with riboflavin and blue light but seems to influence the vulnerability for blue light irradiations. Increased biomechanical stiffness of scleral tissue could be achieved with blue light intensities below the characterized damage threshold. We conclude that riboflavin and blue light application increased the biomechanical stiffness of scleral tissue at blue light energy levels below the damage threshold. Therefore, applied blue light intensities below the characterized damage threshold might define a therapeutic blue light tolerance range. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Second Positive Phototropism Results from Coordinated Co-Action of the Phototropins and Cryptochromes1

    PubMed Central

    Whippo, Craig W.; Hangarter, Roger P.

    2003-01-01

    Phototropism and hypocotyl growth inhibition are modulated by the coaction of different blue-light photoreceptors and their signaling pathways. How seedlings integrate the activities of the different blue-light photoreceptors to coordinate these hypocotyl growth responses is still unclear. We have used time-lapse imaging and a nontraditional mathematical approach to conduct a detailed examination of phototropism in wild-type Arabidopsis and various blue-light photoreceptor mutants. Our results indicate that high fluence rates of blue light (100 μmol m–2 s–1) attenuate phototropism through the coaction of the phototropin and cryptochrome blue-light photoreceptors. In contrast, we also demonstrate that phototropins and cryptochromes function together to enhance phototropism under low fluence rates (<1.0 μmol m–2 s–1) of blue light. Based on our results, we hypothesize that phototropins and cryptochromes regulate phototropism by coordinating the balance between stimulation and inhibition of growth of the hypocotyl depending on the fluence rate of blue light. PMID:12857830

  9. Second positive phototropism results from coordinated co-action of the phototropins and cryptochromes.

    PubMed

    Whippo, Craig W; Hangarter, Roger P

    2003-07-01

    Phototropism and hypocotyl growth inhibition are modulated by the coaction of different blue-light photoreceptors and their signaling pathways. How seedlings integrate the activities of the different blue-light photoreceptors to coordinate these hypocotyl growth responses is still unclear. We have used time-lapse imaging and a nontraditional mathematical approach to conduct a detailed examination of phototropism in wild-type Arabidopsis and various blue-light photoreceptor mutants. Our results indicate that high fluence rates of blue light (100 micro mol m(-)(2) s(-)(1)) attenuate phototropism through the coaction of the phototropin and cryptochrome blue-light photoreceptors. In contrast, we also demonstrate that phototropins and cryptochromes function together to enhance phototropism under low fluence rates (<1.0 micro mol m(-)(2) s(-)(1)) of blue light. Based on our results, we hypothesize that phototropins and cryptochromes regulate phototropism by coordinating the balance between stimulation and inhibition of growth of the hypocotyl depending on the fluence rate of blue light.

  10. Genetic separation of phototropism and blue light inhibition of stem elongation

    NASA Technical Reports Server (NTRS)

    Liscum, E.; Young, J. C.; Poff, K. L.; Hangarter, R. P.

    1992-01-01

    Blue light-induced regulation of cell elongation is a component of the signal response pathway for both phototropic curvature and inhibition of stem elongation in higher plants. To determine if blue light regulates cell elongation in these responses through shared or discrete pathways, phototropism and hypocotyl elongation were investigated in several blue light response mutants in Arabidopsis thaliana. Specifically, the blu mutants that lack blue light-dependent inhibition of hypocotyl elongation were found to exhibit a normal phototropic response. In contrast, a phototropic null mutant (JK218) and a mutant that has a 20- to 30-fold shift in the fluence dependence for first positive phototropism (JK224) showed normal inhibition of hypocotyl elongation in blue light. F1 progeny of crosses between the blu mutants and JK218 showed normal phototropism and inhibition of hypocotyl elongation, and approximately 1 in 16 F2 progeny were double mutants lacking both responses. Thus, blue light-dependent inhibition of hypocotyl elongation and phototropism operate through at least some genetically distinct components.

  11. Blue and Red Light Modulates SigB-Dependent Gene Transcription, Swimming Motility and Invasiveness in Listeria monocytogenes

    PubMed Central

    Ondrusch, Nicolai; Kreft, Jürgen

    2011-01-01

    Background In a number of gram-positive bacteria, including Listeria, the general stress response is regulated by the alternative sigma factor B (SigB). Common stressors which lead to the activation of SigB and the SigB-dependent regulon are high osmolarity, acid and several more. Recently is has been shown that also blue and red light activates SigB in Bacillus subtilis. Methodology/Principal Findings By qRT-PCR we analyzed the transcriptional response of the pathogen L. monocytogenes to blue and red light in wild type bacteria and in isogenic deletion mutants for the putative blue-light receptor Lmo0799 and the stress sigma factor SigB. It was found that both blue (455 nm) and red (625 nm) light induced the transcription of sigB and SigB-dependent genes, this induction was completely abolished in the SigB mutant. The blue-light effect was largely dependent on Lmo0799, proving that this protein is a genuine blue-light receptor. The deletion of lmo0799 enhanced the red-light effect, the underlying mechanism as well as that of SigB activation by red light remains unknown. Blue light led to an increased transcription of the internalin A/B genes and of bacterial invasiveness for Caco-2 enterocytes. Exposure to blue light also strongly inhibited swimming motility of the bacteria in a Lmo0799- and SigB-dependent manner, red light had no effect there. Conclusions/Significance Our data established that visible, in particular blue light is an important environmental signal with an impact on gene expression and physiology of the non-phototrophic bacterium L. monocytogenes. In natural environments these effects will result in sometimes random but potentially also cyclic fluctuations of gene activity, depending on the light conditions prevailing in the respective habitat. PMID:21264304

  12. Phytochrome A Mediates Blue-Light Enhancement of Second-Positive Phototropism in Arabidopsis

    PubMed Central

    Sullivan, Stuart; Hart, Jaynee E.; Rasch, Patrick; Walker, Catriona H.; Christie, John M.

    2016-01-01

    Hypocotyl phototropism of etiolated Arabidopsis seedlings is primarily mediated by the blue-light receptor kinase phototropin 1 (phot1). Phot1-mediated curvature to continuous unilateral blue light irradiation (0.5 μmol m−2 s−1) is enhanced by overhead pre-treatment with red light (20 μmol m−2 s−1 for 15 min) through the action of phytochrome (phyA). Here, we show that pre-treatment with blue light is equally as effective in eliciting phototropic enhancement and is dependent on phyA. Although blue light pre-treatment was sufficient to activate early phot1 signaling events, phot1 autophosphorylation in vivo was not found to be saturated, as assessed by subsequently measuring phot1 kinase activity in vitro. However, enhancement effects by red and blue light pre-treatment were not observed at higher intensities of phototropic stimulation (10 μmol m−2 s−1). Phototropic enhancement by red and blue light pre-treatments to 0.5 μmol m−2 s−1 unilateral blue light irradiation was also lacking in transgenic Arabidopsis where PHOT1 expression was restricted to the epidermis. Together, these findings indicate that phyA-mediated effects on phot1 signaling are restricted to low intensities of phototropic stimulation and originate from tissues other than the epidermis. PMID:27014313

  13. Blue light-induced apoptosis of human promyelocytic leukemia cells via the mitochondrial-mediated signaling pathway.

    PubMed

    Zhuang, Jianjian; Liu, Yange; Yuan, Qingxia; Liu, Junsong; Liu, Yan; Li, Hongdong; Wang, Di

    2018-05-01

    Acute promyelocytic leukemia is frequently associated with dizziness, fever, nausea, hematochezia and anemia. Blue light, or light with wavelengths of 400-480 nm, transmits high levels of energy. The aim of the present study was to determine the pro-apoptotic effects of blue light (wavelength, 456 nm; radiation power, 0.25 mW/cm 2 ) and the underlying mechanisms in a human promyelocytic leukemia cell line (HL60). Blue light reduced the viability and enhanced the mortality of HL60 cells in a time-dependent manner. Exposure to blue light for 24 h caused depolarization of the mitochondrial membrane potential and the overproduction of reactive oxygen species in HL60 cells. In a nude mouse model, 9-day exposure to blue light markedly suppressed the growth of HL60-xenografted tumors; however, it had no effect on hepatic and renal tissues. In addition, blue light abrogated the expression of B-cell lymphoma (Bcl)-2 and Bcl extra-long, while enhancing the levels of Bcl-2-associated X protein, cytochrome c , and cleaved caspases-3 and -9 in tumor tissues. The results suggested that the pro-apoptotic effects of blue light in human promyelocytic leukemia cells may be associated with the mitochondrial apoptosis signaling pathway.

  14. Phytochrome A Mediates Blue-Light Enhancement of Second-Positive Phototropism in Arabidopsis.

    PubMed

    Sullivan, Stuart; Hart, Jaynee E; Rasch, Patrick; Walker, Catriona H; Christie, John M

    2016-01-01

    Hypocotyl phototropism of etiolated Arabidopsis seedlings is primarily mediated by the blue-light receptor kinase phototropin 1 (phot1). Phot1-mediated curvature to continuous unilateral blue light irradiation (0.5 μmol m(-2) s(-1)) is enhanced by overhead pre-treatment with red light (20 μmol m(-2) s(-1) for 15 min) through the action of phytochrome (phyA). Here, we show that pre-treatment with blue light is equally as effective in eliciting phototropic enhancement and is dependent on phyA. Although blue light pre-treatment was sufficient to activate early phot1 signaling events, phot1 autophosphorylation in vivo was not found to be saturated, as assessed by subsequently measuring phot1 kinase activity in vitro. However, enhancement effects by red and blue light pre-treatment were not observed at higher intensities of phototropic stimulation (10 μmol m(-2) s(-1)). Phototropic enhancement by red and blue light pre-treatments to 0.5 μmol m(-2) s(-1) unilateral blue light irradiation was also lacking in transgenic Arabidopsis where PHOT1 expression was restricted to the epidermis. Together, these findings indicate that phyA-mediated effects on phot1 signaling are restricted to low intensities of phototropic stimulation and originate from tissues other than the epidermis.

  15. Secondary and sucrose metabolism regulated by different light quality combinations involved in melon tolerance to powdery mildew.

    PubMed

    Jing, Xin; Wang, Hui; Gong, Biao; Liu, Shiqi; Wei, Min; Ai, Xizhen; Li, Yan; Shi, Qinghua

    2018-03-01

    We evaluated the effect of different light combinations on powdery mildew resistance and growth of melon seedlings. Light-emitting diodes were used as the light source and there were five light combinations: white light (420-680 nm); blue light (460 nm); red light (635 nm); RB31 (ratio of red and blue light, 3: 1); and RB71 (ratio of red and blue light, 7: 1). Compared with other treatments, blue light significantly decreased the incidence of powdery mildew in leaves of melon seedlings. Under blue light, H 2 O 2 showed higher accumulation, and the content of phenolics, flavonoid and tannins, as well as expression of the genes involved in synthesis of these substances, significantly increased compared with other treatments before and after infection. Lignin content and expression of the genes related to its synthesis were also induced by blue light before infection. Melon irradiated with RB31 light showed the best growth parameters. Compared with white light, red light and RB71, RB31 showed higher accumulation of lignin and lower incidence of powdery mildew. We conclude that blue light increases melon resistance to powdery mildew, which is dependent on the induction of secondary metabolism that may be related to H 2 O 2 accumulation before infection. Induction of tolerance of melon seeds to powdery mildew by RB31 is due to higher levels of sucrose metabolism and accumulation of lignin. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Sensitivity to Ethephon Degreening Treatment Is Altered by Blue LED Light Irradiation in Mandarin Fruit.

    PubMed

    Deng, Lili; Yuan, Ziyi; Xie, Jiao; Yao, Shixiang; Zeng, Kaifang

    2017-08-02

    Although citrus fruits are not climacteric, exogenous ethylene is widely used in the degreening treatment of citrus fruits. Irradiation with blue light-emitting diode (LED) light (450 nm) for 10 h can promote the formation of good coloration of ethephon-degreened fruit. This study evaluated the effect of blue LED light irradiation on the pigments contents of ethephon-degreened fruit and evaluated whether the blue LED light irradiation could influence the sensitivity of mandarin fruit to ethylene. The results indicated that blue light can accelerate the color change of ethephon-degreened fruit, accompanied by changes in plastid ultrastructure and chlorophyll and carotenoid contents. Ethephon-induced expressions of CitACS1, CitACO, CitETR1, CitEIN2, CitEIL1, and CitERF2 were enhanced by blue LED light irradiation, which increased the sensitivity to ethylene in ethephon-degreened fruits. These results indicate that blue LED light-induced changes in sensitivity to ethylene in mandarin fruit may be responsible for the improved coloration of ethephon-degreened mandarin fruits.

  17. Phototherapy with blue and green mixed-light is as effective against unconjugated jaundice as blue light and reduces oxidative stress in the Gunn rat model.

    PubMed

    Uchida, Yumiko; Morimoto, Yukihiro; Uchiike, Takao; Kamamoto, Tomoyuki; Hayashi, Tamaki; Arai, Ikuyo; Nishikubo, Toshiya; Takahashi, Yukihiro

    2015-07-01

    Phototherapy using blue light-emitting diodes (LED) is effective against neonatal jaundice. However, green light phototherapy also reduces unconjugated jaundice. We aimed to determine whether mixed blue and green light can relieve jaundice with minimal oxidative stress as effectively as either blue or green light alone in a rat model. Gunn rats were exposed to phototherapy with blue (420-520 nm), filtered blue (FB; 440-520 nm without<440-nm wavelengths, FB50 (half the irradiance of filtered blue), mixed (filtered 50% blue and 50% green), and green (490-590 nm) LED irradiation for 24h. The effects of phototherapy are expressed as ratios of serum total (TB) and unbound (UB) bilirubin before and after exposure to each LED. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) was measured by HPLC before and after exposure to each LED to determine photo-oxidative stress. Values < 1.00 indicate effective phototherapy. The ratios of TB and UB were decreased to 0.85, 0.89, 1.07, 0.90, and 1.04, and 0.85, 0.94, 0.93, 0.89, and 1.09 after exposure to blue, filtered blue, FB50, and filtered blue mixed with green LED, respectively. In contrast, urinary 8-OHdG increased to 2.03, 1.25, 0.96, 1.36, 1.31, and 1.23 after exposure to blue, filtered blue, FB50, mixed, green LED, and control, indicating side-effects (> 1.00), respectively. Blue plus green phototherapy is as effective as blue phototherapy and it attenuates irradiation-induced oxidative stress. Combined blue and green spectra might be effective against neonatal hyperbilirubinemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Intramolecular co-action of two independent photosensory modules in the fern phytochrome 3.

    PubMed

    Kanegae, Takeshi

    2015-01-01

    Fern phytochrome3/neochrome1 (phy3/neo1) is a chimeric photoreceptor composed of a phytochrome-chromophore binding domain and an almost full-length phototropin. phy3 thus contains two different light-sensing modules; a red/far-red light receptor phytochrome and a blue light receptor phototropin. phy3 induces both red light- and blue light-dependent phototropism in phototropin-deficient Arabidopsis thaliana (phot1 phot2) seedlings. The red-light response is dependent on the phytochrome module of phy3, and the blue-light response is dependent on the phototropin module. We recently showed that both the phototropin-sensing module and the phytochrome-sensing module mediate the blue light-dependent phototropic response. Particularly under low-light conditions, these two light-sensing modules cooperate to induce the blue light-dependent phototropic response. This intramolecular co-action of two independent light-sensing modules in phy3 enhances light sensitivity, and perhaps allowed ferns to adapt to the low-light canopy conditions present in angiosperm forests.

  19. Light up-conversion from near-infrared to blue using a photoresponsive organic light-emitting device

    NASA Astrophysics Data System (ADS)

    Chikamatsu, Masayuki; Ichino, Yoshiro; Takada, Noriyuki; Yoshida, Manabu; Kamata, Toshihide; Yase, Kiyoshi

    2002-07-01

    A photoresponsive organic light-emitting device combining blue-emitting organic electroluminescent (EL) diode with titanyl phthalocyanine as a near-infrared (IR) sensitive layer was fabricated. By irradiating near-IR light to the device, blue emission occurred in the lower drive voltage (between 5 and 12 V). The result indicates that the device acts as a light switch and/or an up-converter from near-IR light (1.6 eV) to blue (2.6 eV). The EL response times of rise and decay using a near-IR light trigger were 260 and 330 mus, respectively. At a higher voltage (above 12 V), enhancement of blue emission was observed with near-IR light irradiation. The ON/OFF ratio reached a maximum of 103.

  20. Reactive oxygen species production in mitochondria of human gingival fibroblast induced by blue light irradiation.

    PubMed

    Yoshida, Ayaka; Yoshino, Fumihiko; Makita, Tetsuya; Maehata, Yojiro; Higashi, Kazuyoshi; Miyamoto, Chihiro; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Takahashi, Osamu; Lee, Masaichi Chang-il

    2013-12-05

    In recent years, it has become well known that the production of reactive oxygen species (ROS) induced by blue-light irradiation causes adverse effects of photo-aging, such as age-related macular degeneration of the retina. Thus, orange-tinted glasses are used to protect the retina during dental treatment involving blue-light irradiation (e.g., dental resin restorations or tooth bleaching treatments). However, there are few studies examining the effects of blue-light irradiation on oral tissue. For the first time, we report that blue-light irradiation by quartz tungsten halogen lamp (QTH) or light-emitting diode (LED) decreased cell proliferation activity of human gingival fibroblasts (HGFs) in a time-dependent manner (<5 min). Additionally, in a morphological study, the cytotoxic effect was observed in the cell organelles, especially the mitochondria. Furthermore, ROS generation induced by the blue-light irradiation was detected in mitochondria of HGFs using fluorimetry. In all analyses, the cytotoxicity was significantly higher after LED irradiation compared with cytotoxicity after QTH irradiation. These results suggest that blue light irradiation, especially by LED light sources used in dental aesthetic treatment, might have adverse effects on human gingival tissue. Hence, this necessitates the development of new dental aesthetic treatment methods and/or techniques to protect HGFs from blue light irradiation during dental therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Acute exposure to blue wavelength light during memory consolidation improves verbal memory performance.

    PubMed

    Alkozei, Anna; Smith, Ryan; Dailey, Natalie S; Bajaj, Sahil; Killgore, William D S

    2017-01-01

    Acute exposure to light within the blue wavelengths has been shown to enhance alertness and vigilance, and lead to improved speed on reaction time tasks, possibly due to activation of the noradrenergic system. It remains unclear, however, whether the effects of blue light extend beyond simple alertness processes to also enhance other aspects of cognition, such as memory performance. The aim of this study was to investigate the effects of a thirty minute pulse of blue light versus placebo (amber light) exposure in healthy normally rested individuals in the morning during verbal memory consolidation (i.e., 1.5 hours after memory acquisition) using an abbreviated version of the California Verbal Learning Test (CVLT-II). At delayed recall, individuals who received blue light (n = 12) during the consolidation period showed significantly better long-delay verbal recall than individuals who received amber light exposure (n = 18), while controlling for the effects of general intelligence, depressive symptoms and habitual wake time. These findings extend previous work demonstrating the effect of blue light on brain activation and alertness to further demonstrate its effectiveness at facilitating better memory consolidation and subsequent retention of verbal material. Although preliminary, these findings point to a potential application of blue wavelength light to optimize memory performance in healthy populations. It remains to be determined whether blue light exposure may also enhance performance in clinical populations with memory deficits.

  2. Exposure to blue light during lunch break: effects on autonomic arousal and behavioral alertness.

    PubMed

    Yuda, Emi; Ogasawara, Hiroki; Yoshida, Yutaka; Hayano, Junichiro

    2017-07-11

    Exposures to melanopsin-stimulating (melanopic) component-rich blue light enhance arousal level. We examined their effects in office workers. Eight healthy university office workers were exposed to blue and orange lights for 30 min during lunch break on different days. We compared the effects of light color on autonomic arousal level assessed by heart rate variability (HRV) and behavioral alertness by psychomotor vigilance tests (PVT). Heart rate was higher and high-frequency (HF, 0.150.45 Hz) power of HRV was lower during exposure to the blue light than to orange light. No significant difference with light color was observed, however, in any HRV indices during PVT or in PVT performance after light exposure. Exposure to blue light during lunch break, compared with that to orange light, enhances autonomic arousal during exposure, but has no sustained effect on autonomic arousal or behavioral alertness after exposure.

  3. Comparison of Riboflavin and Toluidine Blue O as Photosensitizers for Photoactivated Disinfection on Endodontic and Periodontal Pathogens In Vitro.

    PubMed

    Nielsen, Henrik Krarup; Garcia, Javier; Væth, Michael; Schlafer, Sebastian

    2015-01-01

    Photoactivated disinfection has a strong local antimicrobial effect. In the field of dentistry it is an emerging adjunct to mechanical debridement during endodontic and periodontal treatment. In the present study, we investigate the effect of photoactivated disinfection using riboflavin as a photosensitizer and blue LED light for activation, and compare it to photoactivated disinfection with the widely used combination of toluidine blue O and red light. Riboflavin is highly biocompatible and can be activated with LED lamps at hand in the dental office. To date, no reports are available on the antimicrobial effect of photoactivated disinfection using riboflavin/blue light on oral microorganisms. Planktonic cultures of eight organisms frequently isolated from periodontal and/or endodontic lesions (Aggregatibacter actinomycetemcomitans, Candida albicans, Enterococcus faecalis, Escherischia coli, Lactobacillus paracasei, Porphyromonas gingivalis, Prevotella intermedia and Propionibacterium acnes) were subjected to photoactivated disinfection with riboflavin/blue light and toluidine blue O/red light, and survival rates were determined by CFU counts. Within the limited irradiation time of one minute, photoactivated disinfection with riboflavin/blue light only resulted in minor reductions in CFU counts, whereas full kills were achieved for all organisms when using toluidine blue O/red light. The black pigmented anaerobes P. gingivalis and P. intermedia were eradicated completely by riboflavin/blue light, but also by blue light treatment alone, suggesting that endogenous chromophores acted as photosensitizers in these bacteria. On the basis of our results, riboflavin cannot be recommended as a photosensitizer used for photoactivated disinfection of periodontal or endodontic infections.

  4. Toxic wavelength of blue light changes as insects grow.

    PubMed

    Shibuya, Kazuki; Onodera, Shun; Hori, Masatoshi

    2018-01-01

    Short-wavelength visible light (blue light: 400-500 nm) has lethal effects on various insects, such as fruit flies, mosquitoes, and flour beetles. However, the most toxic wavelengths of blue light might differ across developmental stages. Here, we investigate how the toxicity of blue light changes with the developmental stages of an insect by irradiating Drosophila melanogaster with different wavelengths of blue light. Specifically, the lethal effect on eggs increased at shorter light wavelengths (i.e., toward 405 nm). In contrast, wavelengths from 405 to 466 nm had similar lethal effects on larvae. A wavelength of 466 nm had the strongest lethal effect on pupae; however, mortality declined as pupae grew. A wavelength of 417 nm was the most harmful to adults at low photon flux density, while 466 nm was the most harmful to adults at high photon flux density. These findings suggest that, as the morphology of D. melanogaster changes with growth, the most harmful wavelength also changes. In addition, our results indicated that reactive oxygen species influence the lethal effect of blue light. Our findings show that blue light irradiation could be used as an effective pest control method by adjusting the wavelength to target specific developmental stages.

  5. Blue light-promoted rice leaf bending and unrolling are due to up-regulated brassinosteroid biosynthesis genes accompanied by accumulation of castasterone.

    PubMed

    Asahina, Masashi; Tamaki, Yuji; Sakamoto, Tomoaki; Shibata, Kyomi; Nomura, Takahito; Yokota, Takao

    2014-08-01

    In this study the relationship between blue light- and brassinosteroid-enhanced leaf lamina bending and unrolling in rice was investigated. Twenty-four hours (h) irradiation with white or blue light increased endogenous brassinosteroid levels, especially those of typhasterol and castasterone, in aerial tissues of rice seedlings. There was an accompanying up-regulation of transcript levels of CYP85A1/OsDWARF, encoding an enzyme catalyzing C-6 oxidation, after 6h under either white or blue light. These effects were not observed in seedlings placed under far-red or red light regimes. It was concluded that blue light up-regulates the levels of several cytochrome P450 enzymes including CYP85A1, thereby promoting the synthesis of castasterone, a biologically active brassinosteroid in rice. Based on these findings, it is considered that blue light-mediated rice leaf bending and unrolling are consequences of the enhanced biosynthesis of endogenous castasterone. In contrast to aerial tissues, brassinosteroid synthesis in roots appeared to be negatively regulated by white, blue and red light but positively controlled by far-red light. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Protective effect of blue-light shield eyewear for adults against light pollution from self-luminous devices used at night.

    PubMed

    Ayaki, Masahiko; Hattori, Atsuhiko; Maruyama, Yusuke; Nakano, Masaki; Yoshimura, Michitaka; Kitazawa, Momoko; Negishi, Kazuno; Tsubota, Kazuo

    2016-01-01

    We investigated sleep quality and melatonin in 12 adults who wore blue-light shield or control eyewear 2 hours before sleep while using a self-luminous portable device, and assessed visual quality for the two eyewear types. Overnight melatonin secretion was significantly higher after using the blue-light shield (P < 0.05) than with the control eyewear. Sleep efficacy and sleep latency were significantly superior for wearers of the blue-light shield (P < 0.05 for both), and this group reported greater sleepiness during portable device use compared to those using the control eyewear. Participants rated the blue-light shield as providing acceptable visual quality.

  7. Antibacterial Activity of Blue Light against Nosocomial Wound Pathogens Growing Planktonically and as Mature Biofilms.

    PubMed

    Halstead, Fenella D; Thwaite, Joanne E; Burt, Rebecca; Laws, Thomas R; Raguse, Marina; Moeller, Ralf; Webber, Mark A; Oppenheim, Beryl A

    2016-07-01

    The blue wavelengths within the visible light spectrum are intrinisically antimicrobial and can photodynamically inactivate the cells of a wide spectrum of bacteria (Gram positive and negative) and fungi. Furthermore, blue light is equally effective against both drug-sensitive and -resistant members of target species and is less detrimental to mammalian cells than is UV radiation. Blue light is currently used for treating acnes vulgaris and Helicobacter pylori infections; the utility for decontamination and treatment of wound infections is in its infancy. Furthermore, limited studies have been performed on bacterial biofilms, the key growth mode of bacteria involved in clinical infections. Here we report the findings of a multicenter in vitro study performed to assess the antimicrobial activity of 400-nm blue light against bacteria in both planktonic and biofilm growth modes. Blue light was tested against a panel of 34 bacterial isolates (clinical and type strains) comprising Acinetobacter baumannii, Enterobacter cloacae, Stenotrophomonas maltophilia, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Klebsiella pneumoniae, and Elizabethkingia meningoseptica All planktonic-phase bacteria were susceptible to blue light treatment, with the majority (71%) demonstrating a ≥5-log10 decrease in viability after 15 to 30 min of exposure (54 J/cm(2) to 108 J/cm(2)). Bacterial biofilms were also highly susceptible to blue light, with significant reduction in seeding observed for all isolates at all levels of exposure. These results warrant further investigation of blue light as a novel decontamination strategy for the nosocomial environment, as well as additional wider decontamination applications. Blue light shows great promise as a novel decontamination strategy for the nosocomial environment, as well as additional wider decontamination applications (e.g., wound closure during surgery). This warrants further investigation. © Crown copyright 2016.

  8. Antibacterial Activity of Blue Light against Nosocomial Wound Pathogens Growing Planktonically and as Mature Biofilms

    PubMed Central

    Thwaite, Joanne E.; Burt, Rebecca; Laws, Thomas R.; Raguse, Marina; Moeller, Ralf; Webber, Mark A.; Oppenheim, Beryl A.

    2016-01-01

    ABSTRACT The blue wavelengths within the visible light spectrum are intrinisically antimicrobial and can photodynamically inactivate the cells of a wide spectrum of bacteria (Gram positive and negative) and fungi. Furthermore, blue light is equally effective against both drug-sensitive and -resistant members of target species and is less detrimental to mammalian cells than is UV radiation. Blue light is currently used for treating acnes vulgaris and Helicobacter pylori infections; the utility for decontamination and treatment of wound infections is in its infancy. Furthermore, limited studies have been performed on bacterial biofilms, the key growth mode of bacteria involved in clinical infections. Here we report the findings of a multicenter in vitro study performed to assess the antimicrobial activity of 400-nm blue light against bacteria in both planktonic and biofilm growth modes. Blue light was tested against a panel of 34 bacterial isolates (clinical and type strains) comprising Acinetobacter baumannii, Enterobacter cloacae, Stenotrophomonas maltophilia, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Klebsiella pneumoniae, and Elizabethkingia meningoseptica. All planktonic-phase bacteria were susceptible to blue light treatment, with the majority (71%) demonstrating a ≥5-log10 decrease in viability after 15 to 30 min of exposure (54 J/cm2 to 108 J/cm2). Bacterial biofilms were also highly susceptible to blue light, with significant reduction in seeding observed for all isolates at all levels of exposure. These results warrant further investigation of blue light as a novel decontamination strategy for the nosocomial environment, as well as additional wider decontamination applications. IMPORTANCE Blue light shows great promise as a novel decontamination strategy for the nosocomial environment, as well as additional wider decontamination applications (e.g., wound closure during surgery). This warrants further investigation. PMID:27129967

  9. Classical lepidopteran wing scale colouration in the giant butterfly-moth Paysandisia archon.

    PubMed

    Stavenga, Doekele G; Leertouwer, Hein L; Meglič, Andrej; Drašlar, Kazimir; Wehling, Martin F; Pirih, Primož; Belušič, Gregor

    2018-01-01

    The palm borer moth Paysandisia archon (Castniidae; giant butterfly-moths) has brown dorsal forewings and strikingly orange-coloured dorsal hindwings with white spots surrounded by black margins. Here, we have studied the structure and pigments of the wing scales in the various coloured wing areas, applying light and electron microscopy and (micro)spectrophotometry, and we analysed the spatial reflection properties with imaging scatterometry. The scales in the white spots are unpigmented, those in the black and brown wing areas contain various amounts of melanin, and the orange wing scales contain a blue-absorbing ommochrome pigment. In all scale types, the upper lamina acts as a diffuser and the lower lamina as a thin film interference reflector, with thickness of about 200 nm. Scale stacking plays an important role in creating the strong visual signals: the colour of the white eyespots is created by stacks of unpigmented blue scales, while the orange wing colour is strongly intensified by stacking the orange scales.

  10. Linking chloroplast relocation to different responses of photosynthesis to blue and red radiation in low and high light-acclimated leaves of Arabidopsis thaliana (L.).

    PubMed

    Pfündel, Erhard E; Latouche, Gwendal; Meister, Armin; Cerovic, Zoran G

    2018-01-27

    Low light (LL) and high light (HL)-acclimated plants of A. thaliana were exposed to blue (BB) or red (RR) light or to a mixture of blue and red light (BR) of incrementally increasing intensities. The light response of photosystem II was measured by pulse amplitude-modulated chlorophyll fluorescence and that of photosystem I by near infrared difference spectroscopy. The LL but not HL leaves exhibited blue light-specific responses which were assigned to relocation of chloroplasts from the dark to the light-avoidance arrangement. Blue light (BB and BR) decreased the minimum fluorescence ([Formula: see text]) more than RR light. This extra reduction of the [Formula: see text] was stronger than theoretically predicted for [Formula: see text] quenching by energy dissipation but actual measurement and theory agreed in RR treatments. The extra [Formula: see text] reduction was assigned to decreased light absorption of chloroplasts in the avoidance position. A maximum reduction of 30% was calculated. Increasing intensities of blue light affected the fluorescence parameters NPQ and q P to a lesser degree than red light. After correcting for the optical effects of chloroplast relocation, the NPQ responded similarly to blue and red light. The same correction method diminished the color-specific variations in q P but did not abolish it; thus strongly indicating the presence of another blue light effect which also moderates excitation pressure in PSII but cannot be ascribed to absorption variations. Only after RR exposure, a post-illumination overshoot of [Formula: see text] and fast oxidation of PSI electron acceptors occurred, thus, suggesting an electron flow from stromal reductants to the plastoquinone pool.

  11. Blue Light Enhances Bacterial Clearance and Reduces Organ Injury During Sepsis.

    PubMed

    Lewis, Anthony J; Zhang, Xianghong; Griepentrog, John E; Yuan, Du; Collage, Richard D; Waltz, Paul K; Angus, Derek C; Zuckerbraun, Brian S; Rosengart, Matthew R

    2018-05-04

    The physiology of nearly all mammalian organisms are entrained by light and exhibit circadian rhythm. The data derived from animal studies show that light influences immunity, and these neurophysiologic pathways are maximally entrained by the blue spectrum. Here, we hypothesize that bright blue light reduces acute kidney injury by comparison with either bright red or standard, white fluorescent light in mice subjected to sepsis. To further translational relevance, we performed a pilot clinical trial of blue light therapy in human subjects with appendicitis. Laboratory animal research, pilot human feasibility trial. University basic science laboratory and tertiary care hospital. Male C57BL/6J mice, adult (> 17 yr) patients with acute appendicitis. Mice underwent cecal ligation and puncture and were randomly assigned to a 24-hour photoperiod of bright blue, bright red, or ambient white fluorescent light. Subjects with appendicitis were randomized to receive postoperatively standard care or standard care plus high-illuminance blue light. Exposure to bright blue light enhanced bacterial clearance from the peritoneum, reduced bacteremia and systemic inflammation, and attenuated the degree of acute kidney injury. The mechanism involved an elevation in cholinergic tone that augmented tissue expression of the nuclear orphan receptor REV-ERBα and occurred independent of alterations in melatonin or corticosterone concentrations. Clinically, exposure to blue light after appendectomy was feasible and reduced serum interleukin-6 and interleukin-10 concentrations. Modifying the spectrum of light may offer therapeutic utility in sepsis.

  12. Effect of Red and Blue Light on Anthocyanin Accumulation and Differential Gene Expression in Strawberry (Fragaria × ananassa).

    PubMed

    Zhang, Yunting; Jiang, Leiyu; Li, Yali; Chen, Qing; Ye, Yuntian; Zhang, Yong; Luo, Ya; Sun, Bo; Wang, Xiaorong; Tang, Haoru

    2018-04-03

    Light conditions can cause quantitative and qualitative changes in anthocyanin. However, little is known about the underlying mechanism of light quality-regulated anthocyanin accumulation in fruits. In this study, light-emitting diodes (LEDs) were applied to explore the effect of red and blue light on strawberry coloration. The results showed contents of total anthocyanins (TA), pelargonidin 3-glucoside (Pg3G) and pelargonidin 3-malonylglucoside (Pg3MG) significantly increased after blue and red light treatment. Pg3G was the major anthocyanin component in strawberry fruits, accounting for more than 80% of TA, whereas Pg3MG accounted for a smaller proportion. Comparative transcriptome analysis was conducted using libraries from the treated strawberries. A total of 1402, 5034, and 3764 differentially-expressed genes (DEGs) were identified in three pairwise comparisons (red light versus white light, RL-VS-WL; blue light versus white light, BL-VS-WL; blue light versus red light, BL-VS-RL), respectively. Photoreceptors and light transduction components remained dynamic to up-regulate the expression of regulatory factors and structural genes related to anthocyanin biosynthesis under red and white light, whereas most genes had low expression levels that were not consistent with the highest total anthocyanin content under blue light. Therefore, the results indicated that light was an essential environmental factor for anthocyanin biosynthesis before the anthocyanin concentration reached saturation in strawberry fruits, and blue light could quickly stimulate the accumulation of anthocyanin in the fruit. In addition, red light might contribute to the synthesis of proanthocyanidins by inducing LAR and ANR .

  13. Preparation and characterization of ZnO-TiO{sub 2} nanocomposite for photocatalytic disinfection of bacteria and detoxification of cyanide under visible light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karunakaran, C., E-mail: karunakaranc@rediffmail.com; Abiramasundari, G.; Gomathisankar, P.

    2011-10-15

    Highlights: {yields} ZnO-TiO{sub 2} nanocomposite, obtained by modified ammonia-evaporation-induced synthetic method, absorbs visible light. {yields} ZnO-TiO{sub 2} nanoparticles catalyze bacteria disinfection and cyanide detoxification under sunlight. {yields} ZnO-TiO{sub 2} nanocomposite is selective in photocatalysis. -- Abstract: ZnO-TiO{sub 2} nanocomposite was prepared by modified ammonia-evaporation-induced synthetic method. It was characterized by powder X-ray diffraction, transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray, UV-visible diffuse reflectance, photoluminescence and electrochemical impedance spectroscopies. Incorporation of ZnO leads to visible light absorption, larger charge transfer resistance and lower capacitance. The nanocomposite effectively catalyzes the inactivation of E. coli under visible light. Further,more » the prepared nanocomposite displays selective photocatalysis. While its photocatalytic efficiency to detoxify cyanide with visible light is higher than that of TiO{sub 2} P25, its efficiency to degrade methylene blue, sunset yellow and rhodamine B dyes under UV-A light is less than that of TiO{sub 2} P25.« less

  14. Light-dependent magnetoreception in birds: the crucial step occurs in the dark.

    PubMed

    Wiltschko, Roswitha; Ahmad, Margaret; Nießner, Christine; Gehring, Dennis; Wiltschko, Wolfgang

    2016-05-01

    The Radical Pair Model proposes that the avian magnetic compass is based on spin-chemical processes: since the ratio between the two spin states singlet and triplet of radical pairs depends on their alignment in the magnetic field, it can provide information on magnetic directions. Cryptochromes, blue light-absorbing flavoproteins, with flavin adenine dinucleotide as chromophore, are suggested as molecules forming the radical pairs underlying magnetoreception. When activated by light, cryptochromes undergo a redox cycle, in the course of which radical pairs are generated during photo-reduction as well as during light-independent re-oxidation. This raised the question as to which radical pair is crucial for mediating magnetic directions. Here, we present the results from behavioural experiments with intermittent light and magnetic field pulses that clearly show that magnetoreception is possible in the dark interval, pointing to the radical pair formed during flavin re-oxidation. This differs from the mechanism considered for cryptochrome signalling the presence of light and rules out most current models of an avian magnetic compass based on the radical pair generated during photo-reduction. Using the radical pair formed during re-oxidation may represent a specific adaptation of the avian magnetic compass. © 2016 The Authors.

  15. Effect of Twice-Daily Blue Light Treatment on Matrix-Rich Biofilm Development.

    PubMed

    de Sousa, Denise Lins; Lima, Ramille Araújo; Zanin, Iriana Carla; Klein, Marlise I; Janal, Malvin N; Duarte, Simone

    2015-01-01

    The use of blue light has been proposed as a direct means of affecting local bacterial infections, however the use of blue light without a photosensitizer to prevent the biofilm development has not yet been explored. The aim of this study was to determine how the twice-daily treatment with blue light affects the development and composition of a matrix-rich biofilm. Biofilms of Streptococcus mutans UA159 were formed on saliva-coated hydroxyapatite discs for 5 days. The biofilms were exposed twice-daily to non-coherent blue light (LumaCare; 420 nm) without a photosensitizer. The distance between the light and the sample was 1.0 cm; energy density of 72 J cm-2; and exposure time of 12 min 56 s. Positive and negative controls were twice-daily 0.12% chlorhexidine (CHX) and 0.89% NaCl, respectively. Biofilms were analyzed for bacterial viability, dry-weight, and extra (EPS-insoluble and soluble) and intracellular (IPS) polysaccharides. Variable pressure scanning electron microscopy and confocal scanning laser microscopy were used to check biofilm morphology and bacterial viability, respectively. When biofilms were exposed to twice-daily blue light, EPS-insoluble was reduced significantly more than in either control group (CHX and 0.89% NaCl). Bacterial viability and dry weight were also reduced relative to the negative control (0.89% NaCl) when the biofilms were treated with twice-daily blue light. Different morphology was also visible when the biofilms were treated with blue light. Twice-daily treatment with blue light without a photosensitizer is a promising mechanism for the inhibition of matrix-rich biofilm development.

  16. Antimicrobial blue light inactivation of Pseudomonas aeruginosa by photo-excitation of endogenous porphyrins: In vitro and in vivo studies.

    PubMed

    Amin, Rehab M; Bhayana, Brijesh; Hamblin, Michael R; Dai, Tianhong

    2016-07-01

    Pseudomonas aeruginosa is among the most common pathogens that cause nosocomial infections and is responsible for about 10% of all hospital-acquired infections. In the present study, we investigated the potential development of tolerance of P. aeruginosa to antimicrobial blue light by carrying 10 successive cycles of sublethal blue light inactivation. The high-performance liquid chromatographic (HPLC) analysis was performed to identify endogenous porphyrins in P. aeruginosa cells. In addition, we tested the effectiveness of antimicrobial blue light in a mouse model of nonlethal skin abrasion infection by using a bioluminescent strain of P. aeruginosa. The results demonstrated that no tolerance was developed to antimicrobial blue light in P. aeruginosa after 10 cycles of sub-lethal inactivation. HPLC analysis showed that P. aeruginosa is capable of producing endogenous porphyrins in particularly, coproporphyrin III, which are assumed to be responsible for the photodynamic effects of blue light alone. P. aeruginosa infection was eradicated by antimicrobial blue light alone (48 J/cm(2) ) without any added photosensitizer molecules in the mouse model. In conclusion, endogenous photosensitization using blue light should gain considerable attention as an effective and safe alternative antimicrobial therapy for skin infections. Lasers Surg. Med. 48:562-568, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Editor's Highlight: Periodic Exposure to Smartphone-Mimic Low-Luminance Blue Light Induces Retina Damage Through Bcl-2/BAX-Dependent Apoptosis.

    PubMed

    Lin, Cheng-Hui; Wu, Man-Ru; Li, Ching-Hao; Cheng, Hui-Wen; Huang, Shih-Hsuan; Tsai, Chi-Hao; Lin, Fan-Li; Ho, Jau-Der; Kang, Jaw-Jou; Hsiao, George; Cheng, Yu-Wen

    2017-05-01

    Blue light-induced phototoxicity plays an important role in retinal degeneration and might cause damage as a consequence of smartphone dependency. Here, we investigated the effects of periodic exposure to blue light-emitting diode in a cell model and a rat retinal damage model. Retinal pigment epithelium (RPE) cells were subjected to blue light in vitro and the effects of blue light on activation of key apoptotic pathways were examined by measuring the levels of Bcl-2, Bax, Fas ligand (FasL), Fas-associated protein with death domain (FADD), and caspase-3 protein. Blue light treatment of RPE cells increased Bax, cleaved caspase-3, FasL, and FADD expression, inhibited Bcl-2 and Bcl-xL accumulation, and inhibited Bcl-2/Bax association. A rat model of retinal damage was developed with or without continuous or periodic exposure to blue light for 28 days. In this rat model of retinal damage, periodic blue light exposure caused fundus damage, decreased total retinal thickness, caused atrophy of photoreceptors, and injured neuron transduction in the retina. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bo; Zhang, Xiaosong, E-mail: zhangxiaosong@tjut.edu.cn; Li, Lan

    Trap-rich CdS nanocrystals were synthesized by employing CdSt{sub 2} and sulfur as precursors via thermal decomposition. Furthermore, X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), absorption and photoluminescence (PL) spectra were used to characterize structure, morphology and luminescence properties of CdS nanocrystals (NCs). CdS NCs have a broad emission across 500–700 nm under the excitation of blue light with 460 nm, consequently, white light can be produced by mixing broad emission from CdS NCs excited by blue light, with the remaining blue light. In addition, the broad emission generation is closely and inseparably related to surface defects. Moreover, LaMer modelmore » was used to explain the phenomenon that the intensity of the trap emission gradually decreases as the reaction time increases in contrast with that of the band-edge emission. - Graphical abstract: Trap-rich CdS nanocrystals were synthesized. Furthermore, white light is produced by mixing broad emission across 500–700 nm from CdS NCs excited by blue light, in combination with the remaining blue light. - Highlights: • Trap-rich CdS nanocrystals were synthesized. • CdS NCs have a broad emission across 500–700 nm under the excitation of blue light. • White light can be produced by mixing broad emission with the remaining blue light.« less

  19. Increased antioxidant activity and changes in phenolic profile of Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) specimens grown under supplemental blue light.

    PubMed

    Nascimento, Luana B S; Leal-Costa, Marcos V; Coutinho, Marcela A S; Moreira, Nattacha dos S; Lage, Celso L S; Barbi, Nancy dos S; Costa, Sônia S; Tavares, Eliana S

    2013-01-01

    Antioxidant compounds protect plants against oxidative stress caused by environmental conditions. Different light qualities, such as UV-A radiation and blue light, have shown positive effects on the production of phenols in plants. Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) is used for treating wounds and inflammations. Some of these beneficial effects are attributed to the antioxidant activity of plant components. We investigated the effects of blue light and UV-A radiation supplementation on the total phenol content, antioxidant activity and chromatographic profile of aqueous extracts from leaves of K. pinnata. Monoclonal plants were grown under white light, white plus blue light and white plus UV-A radiation. Supplemental blue light improved the antioxidant activity and changed the phenolic profile of the extracts. Analysis by HPLC of supplemental blue-light plant extracts revealed a higher proportion of the major flavonoid quercetin 3-O-α-L-arabinopyranosyl (1→2) α-L-rhamnopyranoside, as well as the presence of a wide variety of other phenolic substances. These findings may explain the higher antioxidant activity observed for this extract. Blue light is proposed as a supplemental light source in the cultivation of K. pinnata, to improve its antioxidant activity. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  20. Effect of blue light radiation on curcumin-induced cell death of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Zeng, X. B.; Leung, A. W. N.; Xia, X. S.; Yu, H. P.; Bai, D. Q.; Xiang, J. Y.; Jiang, Y.; Xu, C. S.

    2010-06-01

    In the present study, we have successfully set up a novel blue light source with the power density of 9 mW/cm2 and the wavelength of 435.8 nm and then the novel light source was used to investigate the effect of light radiation on curcumin-induced cell death. The cytotoxicity was investigated 24 h after the treatment of curcumin and blue light radiation together using MTT reduction assay. Nuclear chromatin was observed using a fluorescent microscopy with Hoechst33258 staining. The results showed blue light radiation could significantly enhance the cytotoxicity of curcumin on the MCF-7 cells and apoptosis induction. These findings demonstrated that blue light radiation could enhance curcumin-induced cell death of breast cancer cells, suggesting light radiation may be an efficient enhancer of curcumin in the management of breast cancer.

  1. Soybean stem growth under high-pressure sodium with supplemental blue lighting

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.

    1991-01-01

    To study high-pressure sodium (HPS) lamps used for plant lighting because of their high energy conversion efficiencies, 'McCall' soybean plants were grown for 28 days in growth chambers utilizing HPS lamps, with/without supplemental light from blue phosphor fluorescent lamps. Total photosynthetic photon flux levels, including blue fluorescent, were maintained near 300 or 500 micromol/sq m s. Results indicate that employment of HPS or other blue-deficient sources for lighting at low to moderate photosynthetic photon flux levels may cause abnormal stem elongation, but this can be prevented by the addition of a small amount of supplemental blue light.

  2. Gravireception of the sporangiophore of Phycomyces blakesleeanus

    NASA Astrophysics Data System (ADS)

    Galland, P.; Fries, V.; Grolig, F.; Schmidt, W.

    The sporangiophore of the zygomycete Phycomyces blakesleeanus displays negative gravitropism that manifests with a latency of some 5-15 min after stimulation. Sporangiophores possess an apical organelle that consists of some 200 lipid globules ( ρ = 0.79 g cm -3) held together in a spherical complex of a dense mesh of F-actin. The complex of lipid globules meets basic physical criteria for a function as gravisusceptor that operates by buoyancy. In addition to the lipid globules also vacuolar protein crystals that sediment upon reorientation contribute to gravitropic bending. The negative gravitropism of Phycomyces can be modulated by tonic irradiation with near-UV, blue and also by red light which indicates the presence of a red-light receptor or a red-light absorbing intermediate of the blue-light receptor. Exogenous Ca 2+ at concentrations above 10 -6 M enhances gravitropism when the vacuolar crystals are lacking. The findings are compatible with a model in which statoliths exert their function not by pressure but rather by contact and subsequent exchange of binding or redox molecules with the gravireceptor (contact model, (Eibel, P., Schimek, C., Fries, V., et al. Statoliths in it Phycomyces: characterization of octahedral protein crystals. Fungal Gen. Biol. 29, 211-220, 2000; Fries, V., Krockert, T., Grolig, F. et al. Statoliths in Phycomyces: spectrofluorometric characterization of octahedral protein crystals. J. Plant Physiol. 159, 39-47, 2002; Limbach, C., Hauslage, J., Schäfer, C., et al. How to activate a plant gravireceptor. Early mechanisms of gravity sensing studied in Characean rhizoids during parabolic flights. Plant Physiol. 139, 1030-1040, 2005).

  3. Optical Properties of Al-Doped ZnO Films in the Infrared Region and Their Absorption Applications

    NASA Astrophysics Data System (ADS)

    Zheng, Hua; Zhang, Rong-Jun; Li, Da-Hai; Chen, Xin; Wang, Song-You; Zheng, Yu-Xiang; Li, Meng-Jiao; Hu, Zhi-Gao; Dai, Ning; Chen, Liang-Yao

    2018-05-01

    The optical properties of aluminum-doped zinc oxide (AZO) thin films were calculated rapidly and accurately by point-by-point analysis from spectroscopic ellipsometry (SE) data. It was demonstrated that there were two different physical mechanisms, i.e., the interfacial effect and crystallinity, for the thickness-dependent permittivity in the visible and infrared regions. In addition, there was a blue shift for the effective plasma frequency of AZO when the thickness increased, and the effective plasma frequency did not exist for AZO ultrathin films (< 25 nm) in the infrared region, which demonstrated that AZO ultrathin films could not be used as a negative index metamaterial. Based on detailed permittivity research, we designed a near-perfect absorber at 2-5 μm by etching AZO-ZnO alternative layers. The alternative layers matched the phase of reflected light, and the void cylinder arrays extended the high absorption range. Moreover, the AZO absorber demonstrated feasibility and applicability on different substrates.

  4. ARC-1989-AC89-7019

    NASA Image and Video Library

    1989-08-23

    P-34666 This false color photograph of Neptune was reconstructed from two images taken by Voyager 2's wide angle camera, through the orange and two different methane filters. Objects that deep in the atmosphere are blue, while those at higher altitudes are white. Light at methane wavelengths is mostly absorbed in the deeper atmosphere. The bright, white feature is a high altitude cloud just south of the Great dark Spot. The hard, sharp inner boundary within the bright cloud is an artifact of computer processing on Earth. Other, smaller clouds associated with the Great Dark Spot are white or pink, and are also at high altitudes. Neptune's limb looks reddish because Voyager 2 is viewing it tangentially, and the sunlight is scattered back to space before it can be absorbed by methane. A long, narrow band of high-altitude clouds near the top of the image is located at 25 degrees north latitude, and faint hazes mark the equator and polor regions

  5. Cat colour vision: evidence for more than one cone process

    PubMed Central

    Daw, N. W.; Pearlman, A. L.

    1970-01-01

    1. The ability of cats to distinguish colours was investigated at mesopic and photopic levels to test the hypothesis that cats discriminate wavelength by using rods in conjunction with a single type of cone. 2. Cats were trained to distinguish red from cyan, and orange from cyan at the mesopic level. They retained the ability to make this discrimination when the coloured stimuli were placed against a background bright enough to saturate the rods. 3. One cat was also tested after being exposed to a bright white light of 9000 cd/m2 for a period of 5 min, and found able to distinguish red from cyan. 4. These results suggest that cats have more than one type of cone. Subsequent recordings from single units in the lateral geniculate nucleus showed that there are rare opponent colour units in layer B with input from a green-absorbing cone and a blue-absorbing cone. ImagesPlate 1 PMID:5500987

  6. Characterization and Comparison of Photocatalytic Activity Silver Ion doped on TiO2(TiO2/Ag+) and Silver Ion doped on Black TiO2(Black TiO2/Ag+)

    NASA Astrophysics Data System (ADS)

    Kim, Jin Yi; Sim, Ho Hyung; Song, Sinae; Noh, Yeoung Ah; Lee, Hong Woon; Taik Kim, Hee

    2018-03-01

    Titanium dioxide (TiO2) is one of the representative ceramic materials containing photocatalyst, optic and antibacterial activity. The hydroxyl radical in TiO2 applies to the intensive oxidizing agent, hence TiO2 is suitable to use photocatalytic materials. Black TiO2was prepared through reduction of amorphous TiO2 conducting under H2 which leads to color changes. Its black color is proven that absorbs 100% light across the whole-visible light, drawing enhancement of photocatalytic property. In this study, we aimed to compare the photocatalytic activity of silver ion doped on TiO2(TiO2/Ag+) and silver ion doped on black TiO2(black TiO2/Ag+) under visible light range. TiO2/Ag+ was fabricated following steps. 1) TiO2 was synthesized by a sol-gel method from Titanium tetraisopropoxide (TTIP). 2) Then AgNO3 was added during an aging process step for silver ion doping on the surface of TiO2. Moreover, Black TiO2/Ag+ was obtained same as TiO2/Ag+ except for calcination under H2. The samples were characterized X-ray diffraction (XRD), UV-visible reflectance (UV-vis DRS), and Methylene Blue degradation test. XRD analysis confirmed morphology of TiO2. The band gap of black TiO2/Ag+ was confirmed (2.6 eV) through UV-vis DRS, which was lower than TiO2/Ag+ (2.9 eV). The photocatalytic effect was conducted by methylene blue degradation test. It demonstrated that black TiO2/Ag+ had a photocatalytic effect under UV light also visible light.

  7. Improved High-Energy Response of AlGaAs/GaAs Solar Cells Using a Low-Cost Technology

    NASA Astrophysics Data System (ADS)

    Noorzad, Camron D.; Zhao, Xin; Harotoonian, Vache; Woodall, Jerry M.

    2016-12-01

    We report on an AlGaAs/GaAs solar cell with a significantly increased high-energy response that was produced via a modified liquid phase epitaxy (LPE) technique. This technique uses a one-step process in which the solid-liquid equilibrium Al-Ga-As:Zn melt in contact with an n-type vendor GaAs substrate simultaneously getters impurities in the substrate that shorten minority carrier lifetimes, diffuses Zn into the substrate to create a p- n junction, and forms a thin p-AlGaAs window layer that enables more high-energy light to be efficiently absorbed. Unlike conventional LPE, this process is performed isothermally. In our "double Al" method, the ratio of Al in the melt ("Al melt ratio") that was used in our process was two times more than what was previously reported in the record 1977 International Business Machines (IBM) solar cell. Photoluminescence (PL) results showed our double Al sample yielded a response to 405 nm light ("blue light"), which was more than twice as intense as the response from our replicated IBM cell. The original 1977 cell had a low-intensity spectral response to photon wavelengths under 443 nm (Woodall and Hovel in Sol Energy Mater Sol Cells 29:176, 1990). Secondary ion mass spectrometry results confirmed the increased blue light response was due to a large reduction in AlGaAs window layer thickness. These results proved increasing the Al melt ratio broadens the spectrum of light that can be transmitted through the window layer into the active GaAs region for absorption, increasing the overall solar cell efficiency. Our enhanced double Al method can pave the way for large-scale manufacturing of low-cost, high-efficiency solar cells.

  8. The Plasma Membrane H+-ATPase AHA1 Plays a Major Role in Stomatal Opening in Response to Blue Light1

    PubMed Central

    Yamauchi, Shota; Takemiya, Atsushi; Sakamoto, Tomoaki; Kurata, Tetsuya; Tsutsumi, Toshifumi

    2016-01-01

    Stomata open in response to a beam of weak blue light under strong red light illumination. A blue light signal is perceived by phototropins and transmitted to the plasma membrane H+-ATPase that drives stomatal opening. To identify the components in this pathway, we screened for mutants impaired in blue light-dependent stomatal opening. We analyzed one such mutant, provisionally named blus2 (blue light signaling2), and found that stomatal opening in leaves was impaired by 65%, although the magnitude of red light-induced opening was not affected. Blue light-dependent stomatal opening in the epidermis and H+ pumping in guard cell protoplasts were inhibited by 70% in blus2. Whole-genome resequencing identified a mutation in the AHA1 gene of the mutant at Gly-602. T-DNA insertion mutants of AHA1 exhibited a similar phenotype to blus2; this phenotype was complemented by the AHA1 gene. We renamed blus2 as aha1-10. T-DNA insertion mutants of AHA2 and AHA5 did not show any impairment in stomatal response, although the transcript levels of AHA2 and AHA5 were higher than those of AHA1 in wild-type guard cells. Stomata in ost2, a constitutively active AHA1 mutant, did not respond to blue light. A decreased amount of H+-ATPase in aha1-10 accounted for the reduced stomatal blue light responses and the decrease was likely caused by proteolysis of misfolded AHA1. From these results, we conclude that AHA1 plays a major role in blue light-dependent stomatal opening in Arabidopsis and that the mutation made the AHA1 protein unstable in guard cells. PMID:27261063

  9. The Plasma Membrane H+-ATPase AHA1 Plays a Major Role in Stomatal Opening in Response to Blue Light.

    PubMed

    Yamauchi, Shota; Takemiya, Atsushi; Sakamoto, Tomoaki; Kurata, Tetsuya; Tsutsumi, Toshifumi; Kinoshita, Toshinori; Shimazaki, Ken-Ichiro

    2016-08-01

    Stomata open in response to a beam of weak blue light under strong red light illumination. A blue light signal is perceived by phototropins and transmitted to the plasma membrane H(+)-ATPase that drives stomatal opening. To identify the components in this pathway, we screened for mutants impaired in blue light-dependent stomatal opening. We analyzed one such mutant, provisionally named blus2 (blue light signaling2), and found that stomatal opening in leaves was impaired by 65%, although the magnitude of red light-induced opening was not affected. Blue light-dependent stomatal opening in the epidermis and H(+) pumping in guard cell protoplasts were inhibited by 70% in blus2 Whole-genome resequencing identified a mutation in the AHA1 gene of the mutant at Gly-602. T-DNA insertion mutants of AHA1 exhibited a similar phenotype to blus2; this phenotype was complemented by the AHA1 gene. We renamed blus2 as aha1-10 T-DNA insertion mutants of AHA2 and AHA5 did not show any impairment in stomatal response, although the transcript levels of AHA2 and AHA5 were higher than those of AHA1 in wild-type guard cells. Stomata in ost2, a constitutively active AHA1 mutant, did not respond to blue light. A decreased amount of H(+)-ATPase in aha1-10 accounted for the reduced stomatal blue light responses and the decrease was likely caused by proteolysis of misfolded AHA1. From these results, we conclude that AHA1 plays a major role in blue light-dependent stomatal opening in Arabidopsis and that the mutation made the AHA1 protein unstable in guard cells. © 2016 American Society of Plant Biologists. All Rights Reserved.

  10. What determines the complex kinetics of stomatal conductance under blueless PAR in Festuca arundinacea? Subsequent effects on leaf transpiration.

    PubMed

    Barillot, Romain; Frak, Ela; Combes, Didier; Durand, Jean-Louis; Escobar-Gutiérrez, Abraham J

    2010-06-01

    Light quality and, in particular, its content of blue light is involved in plant functioning and morphogenesis. Blue light variation frequently occurs within a stand as shaded zones are characterized by a simultaneous decrease of PAR and blue light levels which both affect plant functioning, for example, gas exchange. However, little is known about the effects of low blue light itself on gas exchange. The aims of the present study were (i) to characterize stomatal behaviour in Festuca arundinacea leaves through leaf gas exchange measurements in response to a sudden reduction in blue light, and (ii) to test the putative role of Ci on blue light gas exchange responses. An infrared gas analyser (IRGA) was used with light transmission filters to study stomatal conductance (gs), transpiration (Tr), assimilation (A), and intercellular concentration of CO(2) (Ci) responses to blueless PAR (1.80 mumol m(-2) s(-1)). The results were compared with those obtained under a neutral filter supplying a similar photosynthetic efficiency to the blueless PAR filter. It was shown that the reduction of blue light triggered a drastic and instantaneous decrease of gs by 43.2% and of Tr by 40.0%, but a gradual stomatal reopening began 20 min after the start of the low blue light treatment, thus leading to new steady-states. This new stomatal equilibrium was supposed to be related to Ci. The results were confirmed in more developed plants although they exhibited delayed and less marked responses. It is concluded that stomatal responses to blue light could play a key role in photomorphogenetic mechanisms through their effect on transpiration.

  11. The role of light, temperature and wine bottle colour on pigment enhancement in white wine.

    PubMed

    Dias, Daniel A; Smith, Trevor A; Ghiggino, Kenneth P; Scollary, Geoffrey R

    2012-12-15

    Pigmentation enhancement in a Chardonnay wine with high flavan-3-ol concentration was examined by irradiating the wine under controlled conditions. Heating the wine in darkness required temperatures in excess of 50°C before enhanced pigmentation became apparent. It was found that ultraviolet and, to a lesser extent, low wavelength visible light contributed to pigment production. The development of pigmentation depended on wine bottle glass colour: Flint>Arctic Blue>French Green>Antique Green. This is in agreement with the transmission characteristics of the bottles with even the darkest (Antique Green) allowing the transmission of some ultraviolet light. Riboflavin, when added to the wine, degraded rapidly when exposed to radiation <400 nm. The degradation of riboflavin and the onset of colour development depended on the actual amounts as well as the ratio of riboflavin to flavan-3-ol, suggesting that a complex series of reactions are occurring. A degradation product of riboflavin may be contributing to the increase in absorbance in the visible region observed during light exposure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis

    PubMed Central

    Kircher, Stefan; Schopfer, Peter

    2012-01-01

    The most hazardous span in the life of green plants is the period after germination when the developing seedling must reach the state of autotrophy before the nutrients stored in the seed are exhausted. The need for an economically optimized utilization of limited resources in this critical period is particularly obvious in species adopting the dispersal strategy of producing a large amount of tiny seeds. The model plant Arabidopsis thaliana belongs to this category. Arabidopsis seedlings promote root development only in the light. This response to light has long been recognized and recently discussed in terms of an organ-autonomous feature of photomorphogenesis directed by the red/blue light absorbing photoreceptors phytochrome and cryptochrome and mediated by hormones such as auxin and/or gibberellin. Here we show that the primary root of young Arabidopsis seedlings responds to an interorgan signal from the cotyledons and that phloem transport of photosynthesis-derived sugar into the root tip is necessary and sufficient for the regulation of root elongation growth by light. PMID:22733756

  13. FIN219/JAR1 and cryptochrome1 antagonize each other to modulate photomorphogenesis under blue light in Arabidopsis

    PubMed Central

    2018-01-01

    Plant development is affected by the integration of light and phytohormones, including jasmonates (JAs). To address the molecular mechanisms of possible interactions between blue light and JA signaling in Arabidopsis thaliana, we used molecular and transgenic approaches to understand the regulatory relationships between FAR-RED INSENSITIVE 219 (FIN219)/JASMONATE RESISTANT1 (JAR1) and the blue-light photoreceptor cryptochrome1 (CRY1). FIN219 overexpression in the wild type resulted in a short-hypocotyl phenotype under blue light. However, FIN219 overexpression in cry1, cry2 and cry1cry2 double mutant backgrounds resulted in phenotypes similar to their respective mutant backgrounds, which suggests that FIN219 function may require blue light photoreceptors. Intriguingly, FIN219 overexpression in transgenic plants harboring ectopic expression of the C terminus of CRY1 (GUS-CCT1), which exhibits a hypersensitive short-hypocotyl phenotype in all light conditions including darkness, led to a rescued phenotype under all light conditions except red light. Further expression studies showed mutual suppression between FIN219 and CRY1 under blue light. Strikingly, FIN219 overexpression in GUS-CCT1 transgenic lines (FIN219-OE/GUS-CCT1) abolished GUS-CCT1 fusion protein under blue light, whereas GUS-CCT1 fusion protein was stable in the fin219-2 mutant background (fin219-2/GUS-CCT1). Moreover, FIN219 strongly interacted with COP1 under blue light, and methyl JA (MeJA) treatment enhanced the interaction between FIN219 and GUS-CCT1 under blue light. Furthermore, FIN219 level affected GUS-CCT1 seedling responses such as anthocyanin accumulation and bacterial resistance under various light conditions and MeJA treatment. Thus, FIN219/JAR1 and CRY1 antagonize each other to modulate photomorphogenic development of seedlings and stress responses in Arabidopsis. PMID:29561841

  14. FIN219/JAR1 and cryptochrome1 antagonize each other to modulate photomorphogenesis under blue light in Arabidopsis.

    PubMed

    Chen, Huai-Ju; Fu, Tsu-Yu; Yang, Shao-Li; Hsieh, Hsu-Liang

    2018-03-01

    Plant development is affected by the integration of light and phytohormones, including jasmonates (JAs). To address the molecular mechanisms of possible interactions between blue light and JA signaling in Arabidopsis thaliana, we used molecular and transgenic approaches to understand the regulatory relationships between FAR-RED INSENSITIVE 219 (FIN219)/JASMONATE RESISTANT1 (JAR1) and the blue-light photoreceptor cryptochrome1 (CRY1). FIN219 overexpression in the wild type resulted in a short-hypocotyl phenotype under blue light. However, FIN219 overexpression in cry1, cry2 and cry1cry2 double mutant backgrounds resulted in phenotypes similar to their respective mutant backgrounds, which suggests that FIN219 function may require blue light photoreceptors. Intriguingly, FIN219 overexpression in transgenic plants harboring ectopic expression of the C terminus of CRY1 (GUS-CCT1), which exhibits a hypersensitive short-hypocotyl phenotype in all light conditions including darkness, led to a rescued phenotype under all light conditions except red light. Further expression studies showed mutual suppression between FIN219 and CRY1 under blue light. Strikingly, FIN219 overexpression in GUS-CCT1 transgenic lines (FIN219-OE/GUS-CCT1) abolished GUS-CCT1 fusion protein under blue light, whereas GUS-CCT1 fusion protein was stable in the fin219-2 mutant background (fin219-2/GUS-CCT1). Moreover, FIN219 strongly interacted with COP1 under blue light, and methyl JA (MeJA) treatment enhanced the interaction between FIN219 and GUS-CCT1 under blue light. Furthermore, FIN219 level affected GUS-CCT1 seedling responses such as anthocyanin accumulation and bacterial resistance under various light conditions and MeJA treatment. Thus, FIN219/JAR1 and CRY1 antagonize each other to modulate photomorphogenic development of seedlings and stress responses in Arabidopsis.

  15. Blue-light irradiation up-regulates the ent-kaurene synthase gene and affects the avoidance response of protonemal growth in Physcomitrella patens.

    PubMed

    Miyazaki, Sho; Toyoshima, Hikaru; Natsume, Masahiro; Nakajima, Masatoshi; Kawaide, Hiroshi

    2014-07-01

    We report a novel physiological response to blue light in the moss Physcomitrella patens . Blue light regulates ent -kaurene biosynthesis and avoidance response to protonemal growth. Gibberellins (GAs) are a group of diterpene-type plant hormones biosynthesized from ent-kaurenoic acid via ent-kaurene. While the moss Physcomitrella patens has part of the GA biosynthetic pathway, from geranylgeranyl diphosphate to ent-kaurenoic acid, no GA is found in this species. Caulonemal differentiation in a P. patens mutant with a disrupted bifunctional ent-copalyl diphosphate synthase/ent-kaurene synthase (PpCPS/KS) gene is suppressed under red light, and is recovered by application of ent-kaurene and ent-kaurenoic acid. This indicates that derivatives of ent-kaurenoic acid, not GAs, might act as endogenous developmental regulators. Here, we found unique responses in the protonemal growth of P. patens under unilateral blue light, and these regulators were involved in the responses. When protonemata of the wild type were incubated under blue light, the chloronemal filaments grew in the opposite direction to the light source. Although this avoidance was not observed in the ent-kaurene deficient mutant, chloronemal growth toward a blue-light source in the mutant was suppressed by application of ent-kaurenoic acid, and the growth was rescued to that in the wild type. Expression analysis of the PpCPS/KS gene showed that the mRNA level under blue light was rapidly increased and was five times higher than under red light. These results suggest that regulators derived from ent-kaurenoic acid are strongly involved not only in the growth regulation of caulonemal differentiation under red light, but also in the light avoidance response of chloronemal growth under blue light. In particular, growth under blue light is regulated via the PpCPS/KS gene.

  16. Blue-light filtering alters angiogenic signaling in human retinal pigmented epithelial cells culture model.

    PubMed

    Vila, Natalia; Siblini, Aya; Esposito, Evangelina; Bravo-Filho, Vasco; Zoroquiain, Pablo; Aldrees, Sultan; Logan, Patrick; Arias, Lluis; Burnier, Miguel N

    2017-11-02

    Light exposure and more specifically the spectrum of blue light contribute to the oxidative stress in Age-related macular degeneration (AMD). The purpose of the study was to establish whether blue light filtering could modify proangiogenic signaling produced by retinal pigmented epithelial (RPE) cells under different conditions simulating risk factors for AMD. Three experiments were carried out in order to expose ARPE-19 cells to white light for 48 h with and without blue light-blocking filters (BLF) in different conditions. In each experiment one group was exposed to light with no BLF protection, a second group was exposed to light with BLF protection, and a control group was not exposed to light. The ARPE-19 cells used in each experiment prior to light exposure were cultured for 24 h as follows: Experiment 1) Normoxia, Experiment 2) Hypoxia, and Experiment 3) Lutein supplemented media in normoxia. The media of all groups was harvested after light exposure for sandwich ELISA-based assays to quantify 10 pro-angiogenic cytokines. A significant decrease in angiogenin secretion levels and a significant increase in bFGF were observed following light exposure, compared to dark conditions, in both normoxia and hypoxia conditions. With the addition of a blue light-blocking filter in normoxia, a significant increase in angiogenin levels was observed. Although statistical significance was not achieved, blue light filters reduce light-induced secretion of bFGF and VEGF to near normal levels. This trend is also observed when ARPE-19 cells are grown under hypoxic conditions and when pre-treated with lutein prior to exposure to experimental conditions. Following light exposure, there is a decrease in angiogenin secretion by ARPE-19 cells, which was abrogated with a blue light - blocking filter. Our findings support the position that blue light filtering affects the secretion of angiogenic factors by retinal pigmented epithelial cells under normoxic, hypoxic, and lutein-pretreated conditions in a similar manner.

  17. RNA-seq analysis of the transcriptional response to blue and red light in the extremophilic red alga, Cyanidioschyzon merolae.

    PubMed

    Tardu, Mehmet; Dikbas, Ugur Meric; Baris, Ibrahim; Kavakli, Ibrahim Halil

    2016-11-01

    Light is one of the main environmental cues that affects the physiology and behavior of many organisms. The effect of light on genome-wide transcriptional regulation has been well-studied in green algae and plants, but not in red algae. Cyanidioschyzon merolae is used as a model red algae, and is suitable for studies on transcriptomics because of its compact genome with a relatively small number of genes. In addition, complete genome sequences of the nucleus, mitochondrion, and chloroplast of this organism have been determined. Together, these attributes make C. merolae an ideal model organism to study the response to light stimuli at the transcriptional and the systems biology levels. Previous studies have shown that light significantly affects cell signaling in this organism, but there are no reports on its blue light- and red light-mediated transcriptional responses. We investigated the direct effects of blue and red light at the transcriptional level using RNA-seq. Blue and red lights were found to regulate 35 % of the total genes in C. merolae. Blue light affected the transcription of genes involved in protein synthesis while red light specifically regulated the transcription of genes involved in photosynthesis and DNA repair. Blue or red light regulated genes involved in carbon metabolism and pigment biosynthesis. Overall, our data showed that red and blue light regulate the majority of the cellular, cell division, and repair processes in C. merolae.

  18. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light.

    PubMed

    Ma, Dingbang; Li, Xu; Guo, Yongxia; Chu, Jingfang; Fang, Shuang; Yan, Cunyu; Noel, Joseph P; Liu, Hongtao

    2016-01-05

    Cryptochrome 1 (CRY1) is a blue light receptor that mediates primarily blue-light inhibition of hypocotyl elongation. Very little is known of the mechanisms by which CRY1 affects growth. Blue light and temperature are two key environmental signals that profoundly affect plant growth and development, but how these two abiotic factors integrate remains largely unknown. Here, we show that blue light represses high temperature-mediated hypocotyl elongation via CRY1. Furthermore, CRY1 interacts directly with PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) in a blue light-dependent manner to repress the transcription activity of PIF4. CRY1 represses auxin biosynthesis in response to elevated temperature through PIF4. Our results indicate that CRY1 signal by modulating PIF4 activity, and that multiple plant photoreceptors [CRY1 and PHYTOCHROME B (PHYB)] and ambient temperature can mediate morphological responses through the same signaling component-PIF4.

  19. 76 FR 62391 - Procurement List; Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... Blue, Size 5.5'' NSN: 6515-00-NIB-0722--Gloves, Surgical, Powder-free, Esteem Micro, Light Blue, Size 6'' NSN: 6515-00-NIB-0723--Gloves, Surgical, Powder-free, Esteem Micro, Light Blue, Size 6.5'' NSN: 6515-00-NIB-0724--Gloves, Surgical, Powder-free, Esteem Micro, Light Blue, Size 7'' NSN: 6515-00-NIB-0725...

  20. UV-A/blue-light responses in algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senger, H.; Hermsmeier, D.

    1994-12-31

    All life on earth depends on light. A variety of photoreceptors capture the light for a wide range of reactions. Photosynthetic organisms absorb the light necessary for energy transformation and charge separation facilitating photosynthesis. In addition to the bulk pigments there are a great diversity of photoreceptors present in minute concentrations that control development, metabolism and orientation of plants and microorganisms. Based on its spectral absorbance, the well-studied phytochrome system acts in the RL region as well as in the UV-A/BL region where the above mentioned reactions are mediated by a variety of photoreceptors whose natures are largely unknown. Phyllogeneticallymore » the UV-A/BL photoreceptors seem to be more ancient pigments that eventually were replaced by the phytochrome system. However, there are many reports that suggest a coaction between the UV-A/BL receptors and the phytochrome system. In several cases the UV-A/BL activation is the prerequisite for the phytochrome reaction. Historically it was the German botanist Julius Sachs who first discovered in 1864 that phototropism in plants was due to BL reactions. It took over 70 years until Bunning (1937) and Galston and Baker (1949) rediscovered the BL response. Since then, an ever-increasing attention has been paid to this effect. Two international conferences in 1979 and 1983 have been entirely dedicated to the BL phenomenon. In this contribution, the general aspect of UV-A/BL responses and especially the responsiveness of algae will be covered. There are numerous review articles covering the various aspects of UV-A/BL action and the photoreceptors involved.« less

  1. Compact high-power red-green-blue laser light source generation from a single lithium tantalate with cascaded domain modulation.

    PubMed

    Xu, P; Zhao, L N; Lv, X J; Lu, J; Yuan, Y; Zhao, G; Zhu, S N

    2009-06-08

    1W quasi-white-light source has been generated from a single lithium tantalate with cascaded domain modulation. The quasi-white-light is combined by proper proportion of the red, green and blue laser light. The red and the blue result from a compact self-sum frequency optical parametric oscillation when pumped by a single green laser. The efficiency of quasi-white-light from the green pump reaches 27%. This compact design can be employed not only as a stable and powerful RGB light source but also an effective blue laser generator.

  2. Ocular hazards of light sources: review of current knowledge.

    PubMed

    Ham, W T

    1983-02-01

    Retinal damage is the most important hazard from light. There are three types of retinal damage classified as structural, thermal and photochemical; damage type depends on wavelength, power level and exposure time. Photochemical damage from blue light produces solar retinitis and is postulated to accelerate aging which leads to senile macular degeneration. The lens protects the retina from blue light and near ultraviolet (UV) but at the expense of cataractogenesis. Lens removal exposes retina to near UV that is six times more dangerous than blue light. Filters are recommended to protect lens and retina from blue light and near UV.

  3. Combatant Eye Protection: An Introduction to the Blue Light Hazard

    DTIC Science & Technology

    2015-12-01

    visible solar radiation (i.e., blue light ), as well as from light - emitting diode (LED)-generated radiant energy remains a questionable factor under...Garcia, M., Picaud, S., Attia D. 2011. Light - emitting diodes (LED) for domestic lighting : Any risks for the eye?. Progress in retinal and eye research...C., Sliney, D. H., Rollag, M., D., Hanifin, J. P., and Brainard, G. C. 2011. Blue light from light - emitting diodes elicits a dose-dependent

  4. Measuring phosphate with an inexpensive, easy to build photometer

    NASA Astrophysics Data System (ADS)

    Simeonov, Valentin; Weijs, Steven; Parlange, Marc

    2013-04-01

    In the context of a course for first year students to get hands-on experience with measuring in the environment, a photometric system for measuring phosphate concentration was developed. The system makes use of a single LED as a light source, a Si photodiode-based light to frequency conversion IC and an Arduino electronic card as acquisition system. The instrument is designed as an easy to assemble system and assembling and alignment is part of the exercise. The phosphate measurement is based on the formation of phosphor-molybdate complex which is eventually reduced to a blue component. The absorbance at 710 nm of a phosphate-containing fluid with added indicator is then measured and calibrated with a known solution. The initial test has demonstrated the ability of the instrument to detect phosphates in tap water. Other components as nitrates or chlorophyll could be easily measured with the instrument using LED emitting at the respective wavelengths.

  5. Color me bad: microbial pigments as virulence factors

    PubMed Central

    Liu, George Y.; Nizet, Victor

    2009-01-01

    A hallmark feature of several pathogenic microbes is the distinctive color of their colonies when propagated in the clinical laboratory. Such pigmentation comes in a variety of hues, and has often proven useful in presumptive clinical diagnosis. Recent advances in microbial pigment biochemistry and the genetic basis of pigment production has sometimes revealed a more sinister aspect to these curious materials that change the color of reflected light by selective light absorbance. In many cases, the microbial pigment contributes to disease pathogenesis by interfering with host immune clearance mechanisms or by exhibiting pro-inflammatory or cytotoxic properties. Here, we review several examples of pigments that promote microbial virulence, including the golden staphyloxanthin of Staphylococcus aureus, the blue-green pyocyanin of Pseudomonas spp., and the dark brown or black melanin pigments of Cryptococcus neoformans and Aspergillus spp. Targeted pigment neutralization may represent a viable concept to enhance treatment of certain difficult infectious disease conditions. PMID:19726196

  6. A blue-LED-based device for selective photocoagulation of superficial abrasions: theoretical modeling and in vivo validation

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Pini, Roberto; De Siena, Gaetano; Massi, Daniela; Pavone, Francesco S.; Alfieri, Domenico; Cannarozzo, Giovanni

    2010-02-01

    The blue light (~400 nm) emitted by high power Light Emitting Diodes (LED) is selectively absorbed by the haemoglobin content of blood and then converted into heat. This is the basic concept in setting up a compact, low-cost, and easy-to-handle photohaemostasis device for the treatment of superficial skin abrasions. Its main application is in reducing bleeding from superficial capillary vessels during laser induced aesthetic treatments, such as skin resurfacing, thus reducing the treatment time and improving aesthetic results (reduction of scar formation). In this work we firstly present the preliminary modeling study: a Finite Element Model (FEM) of the LED induced photothermal process was set up, in order to estimate the optimal wavelength and treatment time, by studying the temperature dynamics in the tissue. Then, a compact, handheld illumination device has been designed: commercially available high power LEDs emitting in the blue region were mounted in a suitable and ergonomic case. The prototype was tested in the treatment of dorsal excoriations in rats. Thermal effects were monitored by an infrared thermocamera, experimentally evidencing the modest and confined heating effects and confirming the modeling predictions. Objective observations and histopathological analysis performed in a follow-up study showed no adverse reactions and no thermal damage in the treated areas and surrounding tissues. The device was then used in human patients, in order to stop bleeding during Erbium laser skin resurfacing procedure. By inducing LED-based photocoagulation, the overall treatment time was shortened and scar formation was reduced, thus enhancing esthetic effect of the laser procedure.

  7. Combined "dual" absorption and fluorescence smartphone spectrometers.

    PubMed

    Arafat Hossain, Md; Canning, John; Ast, Sandra; Cook, Kevin; Rutledge, Peter J; Jamalipour, Abbas

    2015-04-15

    A combined "dual" absorption and fluorescence smartphone spectrometer is demonstrated. The optical sources used in the system are the white flash LED of the smartphone and an orthogonally positioned and interchangeable UV (λex=370  nm) and blue (λex=450  nm) LED. The dispersive element is a low-cost, nano-imprinted diffraction grating coated with Au. Detection over a 300 nm span with 0.42 nm/pixel resolution was carried out with the camera CMOS chip. By integrating the blue and UV excitation sources into the white LED circuitry, the entire system is self-contained within a 3D printed case and powered from the smartphone battery; the design can be scaled to add further excitation sources. Using a customized app, acquisition of absorption and fluorescence spectra are demonstrated using a blue-absorbing and green-emitting pH-sensitive amino-naphthalimide-based fluorescent probe and a UV-absorbing and blue-emitting Zn2+-sensitive fluoro-ionophore.

  8. Early changes in staurosporine-induced differentiated RGC-5 cells indicate cellular injury response to nonlethal blue light exposure.

    PubMed

    Zhang, Pei; Huang, Chen; Wang, Wei; Wang, Minshu

    2015-06-01

    Blue light has been previously demonstrated to induce injury of retinal cells. The cellular responses to nonlethal blue light exposure for each type of retinal cell are of particular interest but remain undetermined. Based on the doses of blue light reported in previous research to be nonlethal to retinal pigment epithelial cells, here we investigated whether and to what extent such doses of blue light are cytotoxic to staurosporine-differentiated RGC-5 cells. RGC-5 cells were differentiated for 24 hours using 200 nM staurosporine. The resulting cells were cultured and exposed to blue light at three different energy levels (1, 10, and 50 J cm(-2)). Cellular morphologies were investigated with an inverted microscope and cell viability was assessed with a Cell Counting Kit-8 (CCK-8) assay. The generation of intracellular reactive oxygen species (ROS) was evaluated by H2DCFDA. After loading of MitoTracker Green FM dye, the mitochondrial contents were analyzed using flow cytometry. The lactate dehydrogenase (LDH) activities in the media were also measured. The level of lipid peroxidation was determined by measuring the amount of malondialdehyde (MDA). Treatment of the cells for 24 hours with 200 nM staurosporine successfully induced the differentiation of RGC-5 cells. No morphological changes were observed in the ssdRGC-5 cells exposed to blue light at 50 J cm(-2), which was the highest energy level tested. Exposure of the ssdRGC-5 cells to this energy level of blue light did, however, decrease their numbers by approximately 72.1% compared to the numbers of such cells found after being left in the dark. Remarkably, the levels of ROS generation and mitochondrial contents were, respectively, increased to 142% and 118% of those of the control by a 10 J cm(-2) exposure of blue light. The LDH activities and MDA levels exhibited no obvious changes in the blue light-exposed ssdRGC-5 cells compared to the control cells. In vitro nonlethal blue light exposure led to cellular damage of staurosporine-differentiated RGC-5 cells. These increases in oxidative stress and mitochondrial content were the early steps of the cellular response to the exposure of relatively low doses (10 J cm(-2)) of blue light.

  9. The Blue Light-Dependent Polyubiquitination and Degradation of Arabidopsis Cryptochrome2 Requires Multiple E3 Ubiquitin Ligases.

    PubMed

    Liu, Qing; Wang, Qin; Liu, Bin; Wang, Wei; Wang, Xu; Park, Joon; Yang, Zhenming; Du, Xinglin; Bian, Mingdi; Lin, Chentao

    2016-10-01

    Cryptochromes are blue light receptors regulated by light-dependent ubiquitination and degradation in both plant and animal lineages. The Arabidopsis genome encodes two cryptochromes, CRY1 and CRY2, of which CRY2 undergoes blue light-dependent ubiquitination and 26S proteasome-dependent degradation. The molecular mechanism regulating blue light-dependent proteolysis of CRY2 is still not fully understood. We found that the F-box proteins ZEITLUPE (ZTL) and Lov Kelch Protein2 (LKP2), which mediate blue light suppression of degradation of the CRY2 signaling partner CIB1, are not required for the blue light-dependent CRY2 degradation. We further showed that the previously reported function of the COP1-SPA1 protein complex in blue light-dependent CRY2 degradation is more likely to be attributable to its cullin 4 (CUL4)-based E3 ubiquitin ligase activity than its activity as the cryptochrome signaling partner. However, the blue light-dependent CRY2 degradation is only partially impaired in the cul4 mutant, the cop1-5 null mutant and the spa1234 quadruple mutant, suggesting a possible involvement of additional E3 ubiquitin ligases in the regulation of CRY2. Consistent with this hypothesis, we demonstrated that the blue light-dependent CRY2 degradation is significantly impaired in the temperature-sensitive cul1 mutant allele (axr6-3), especially under the non-permissive temperature. Based on these and other results presented, we propose that photoexcited CRY2 undergoes Lys48-linked polyubiquitination catalyzed by the CUL4- and CUL1-based E3 ubiquitin ligases. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Effects of morphology on the radiative properties of internally mixed light absorbing carbon aerosols with different aging status.

    PubMed

    Cheng, Tianhai; Wu, Yu; Chen, Hao

    2014-06-30

    Light absorbing carbon aerosols play a substantial role in climate change through radiative forcing, which is the dominant absorber of solar radiation. Radiative properties of light absorbing carbon aerosols are strongly dependent on the morphological factors and the mixing mechanism of black carbon with other aerosol components. This study focuses on the morphological effects on the optical properties of internally mixed light absorbing carbon aerosols using the numerically exact superposition T-matrix method. Three types aerosols with different aging status such as freshly emitted BC particles, thinly coated light absorbing carbon aerosols, heavily coated light absorbing carbon aerosols are studied. Our study showed that morphological factors change with the aging of internally mixed light absorbing carbon aerosols to result in a dramatic change in their optical properties. The absorption properties of light absorbing carbon aerosols can be enhanced approximately a factor of 2 at 0.67 um, and these enhancements depend on the morphological factors. A larger shell/core diameter ratio of volume-equivalent shell-core spheres (S/C), which indicates the degree of coating, leads to stronger absorption. The enhancement of absorption properties accompanies a greater enhancement of scattering properties, which is reflected in an increase in single scattering albedo (SSA). The enhancement of single scattering albedo due to the morphological effects can reach a factor of 3.75 at 0.67 μm. The asymmetry parameter has a similar yet smaller enhancement. Moreover, the corresponding optical properties of shell-and-core model determined by using Lorenz -Mie solutions are presented for comparison. We found that the optical properties of internally mixed light absorbing carbon aerosol can differ fundamentally from those calculated for the Mie theory shell-and-core model, particularly for thinly coated light absorbing carbon aerosols. Our studies indicate that the complex morphology of internally mixed light absorbing carbon aerosols must be explicitly considered in climate radiation balance.

  11. Anion channels and the stimulation of anthocyanin accumulation by blue light in Arabidopsis seedlings

    NASA Technical Reports Server (NTRS)

    Noh, B.; Spalding, E. P.; Evans, M. H. (Principal Investigator)

    1998-01-01

    Activation of anion channels by blue light begins within seconds of irradiation in seedlings and is related to the ensuing growth inhibition. 5-Nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) is a potent, selective, and reversible blocker of these anion channels in Arabidopsis thaliana. Here we show that 20 microM NPPB blocked 72% of the blue-light-induced accumulation of anthocyanin pigments in seedlings. Feeding biosynthetic intermediates to wild-type and tt5 seedlings provided evidence that NPPB prevented blue light from up-regulating one or more steps between and including phenylalanine ammonia lyase and chalcone isomerase. NPPB was found to have no significant effect on the blue-light-induced increase in transcript levels of PAL1, CHS, CHI, or DFR, which are genes that encode anthocyanin-biosynthetic enzymes. Immunoblots revealed that NPPB also did not inhibit the accumulation of the chalcone synthase, chalcone isomerase, or flavanone-3-hydroxylase proteins. This is in contrast to the reduced anthocyanin accumulation displayed by a mutant lacking the HY4 blue-light receptor, as hy4 displayed reduced expression of the above enzymes. Taken together, the data indicate that blue light acting through HY4 leads to an increase in the amount of biosynthetic enzymes but blue light must also act through a separate, anion-channel-dependent system to create a fully functional biosynthetic pathway.

  12. Effects of blue or violet light on the inactivation of Staphylococcus aureus by riboflavin-5'-phosphate photolysis.

    PubMed

    Wong, Tak-Wah; Cheng, Chien-Wei; Hsieh, Zong-Jhe; Liang, Ji-Yuan

    2017-08-01

    The light sensitive compound riboflavin-5'-phosphate (or flavin mononucleotide, FMN) generates reactive oxygen species (ROS) upon photo-irradiation. FMN is required by all flavoproteins because it is a cofactor of biological blue-light receptors. The photochemical effects of FMN after irradiation by blue or violet light on the inactivation of Staphylococcus aureus strains, including a methicillin-resistant strain (MRSA), were investigated in this study. Upon blue- or violet-light photo-treatment, FMN was shown to inactivate S. aureus due to the generated ROS. Effective bacterial inactivation can be achieved by FMN photolysis without an exogenous electron provider. Inactivation rates of 94.9 and 95.2% in S. aureus and MRSA, respectively, can be reached by blue light irradiation (2.0mW/cm 2 ) with 120μM FMN for 120min. A lower FMN concentration and a shorter time are required to reach similar effects by violet light irradiation. Inactivation rates of 96.3 and 97.0% in S. aureus and MRSA, respectively, can be reached by violet light irradiation (1.0mW/cm 2 ) with 30μM FMN for 30min. The sensitivity of the inherent photosensitizers is lower under blue-light irradiation. A long exposure photolytic treatment of FMN by blue light is required to inactivate S. aureus. Violet light was found to be more efficient in S. aureus inactivation at the same radiant intensity. FMN photolysis with blue or violet light irradiation enhanced the inactivation rates of S. aureus and MRSA. FMN photochemical treatment could be a supplemental technique in hygienic decontamination processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Blue light dosage affects carotenoids and tocopherols in microgreens.

    PubMed

    Samuolienė, Giedrė; Viršilė, Akvilė; Brazaitytė, Aušra; Jankauskienė, Julė; Sakalauskienė, Sandra; Vaštakaitė, Viktorija; Novičkovas, Algirdas; Viškelienė, Alina; Sasnauskas, Audrius; Duchovskis, Pavelas

    2017-08-01

    Mustard, beet and parsley were grown to harvest time under selected LEDs: 638+660+731+0% 445nm; 638+660+731+8% 445nm; 638+660+731+16% 445nm; 638+660+731+25% 445nm; 638+660+731+33% 445nm. From 1.2 to 4.3 times higher concentrations of chlorophylls a and b, carotenoids, α- and β-carotenes, lutein, violaxanthin and zeaxanthin was found under blue 33% treatment in comparison to lower blue light dosages. Meanwhile, the accumulation of metabolites, which were not directly connected with light reactions, such as tocopherols, was more influenced by lower (16%) blue light dosage, increasing about 1.3 times. Thus, microgreen enrichment of carotenoid and xanthophyll pigments may be achieved using higher (16-33%) blue light intensities. Changes in metabolite quantities were not the result of changes of other carotenoid concentration, but were more influenced by light treatment and depended on the species. Significant quantitative changes in response to blue light percentage were obtained for both directly and not directly light-dependent metabolite groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Influence of blue light on the leaf morphoanatomy of in vitro Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae).

    PubMed

    Leal-Costa, Marcos Vinicius; Nascimento, Luana Beatriz dos Santos; Moreira, Nattacha dos Santos; Reinert, Fernanda; Costa, Sônia Soares; Lage, Celso Luiz Salgueiro; Tavares, Eliana Schwartz

    2010-10-01

    Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) (air plant, miracle leaf) is popularly used to treat gastrointestinal disorders and wounds. Recently, the species was tested to treat cutaneous leishmaniasis with successful results. This medicinal activity was associated with the phenolic fraction of the plant. Blue light induces biosynthesis of phenolic compounds and many changes in anatomical characteristics. We studied the effects of supplementary blue light on the leaf morphology of in vitro K. pinnata. Plants cultured under white light (W plants) only and white light plus blue light (WB plants) show petioles with plain-convex section, amphistomatic leaf blades with simple epidermis, homogeneous mesophyll with densely packed cells, and a single collateral vascular bundle in the midrib. W plants have longer branches, a larger number of nodes per branch, and smaller leaves, whereas WB plant leaves have a thicker upper epidermis and mesophyll. Leaf fresh weight and leaf dry weight were similar in both treatments. Phenolic idioblasts were observed in the plants supplemented with blue light, suggesting that blue light plays an important role in the biosynthesis of phenolic compounds in K. pinnata.

  15. Transcriptome Analysis Reveals that Red and Blue Light Regulate Growth and Phytohormone Metabolism in Norway Spruce [Picea abies (L.) Karst].

    PubMed

    OuYang, Fangqun; Mao, Jian-Feng; Wang, Junhui; Zhang, Shougong; Li, Yue

    2015-01-01

    The mechanisms by which different light spectra regulate plant shoot elongation vary, and phytohormones respond differently to such spectrum-associated regulatory effects. Light supplementation can effectively control seedling growth in Norway spruce. However, knowledge of the effective spectrum for promoting growth and phytohormone metabolism in this species is lacking. In this study, 3-year-old Norway spruce clones were illuminated for 12 h after sunset under blue or red light-emitting diode (LED) light for 90 d, and stem increments and other growth traits were determined. Endogenous hormone levels and transcriptome differences in the current needles were assessed to identify genes related to the red and blue light regulatory responses. The results showed that the stem increment and gibberellin (GA) levels of the seedlings illuminated by red light were 8.6% and 29.0% higher, respectively, than those of the seedlings illuminated by blue light. The indoleacetic acid (IAA) level of the seedlings illuminated by red light was 54.6% lower than that of the seedlings illuminated by blue light, and there were no significant differences in abscisic acid (ABA) or zeatin riboside [ZR] between the two groups of seedlings. The transcriptome results revealed 58,736,166 and 60,555,192 clean reads for the blue-light- and red-light-illuminated samples, respectively. Illumina sequencing revealed 21,923 unigenes, and 2744 (approximately 93.8%) out of 2926 differentially expressed genes (DEGs) were found to be upregulated under blue light. The main KEGG classifications of the DEGs were metabolic pathway (29%), biosynthesis of secondary metabolites (20.49%) and hormone signal transduction (8.39%). With regard to hormone signal transduction, AUXIN-RESISTANT1 (AUX1), AUX/IAA genes, auxin-inducible genes, and early auxin-responsive genes [(auxin response factor (ARF) and small auxin-up RNA (SAUR)] were all upregulated under blue light compared with red light, which might have yielded the higher IAA level. DELLA and phytochrome-interacting factor 3 (PIF3), involved in negative GA signaling, were also upregulated under blue light, which may be related to the lower GA level. Light quality also affects endogenous hormones by influencing secondary metabolism. Blue light promoted phenylpropanoid biosynthesis, phenylalanine metabolism, flavonoid biosynthesis and flavone and flavonol biosynthesis, accompanied by upregulation of most of the genes in their pathways. In conclusion, red light may promote stem growth by regulating biosynthesis of GAs, and blue light may promote flavonoid, lignin, phenylpropanoid and some hormones (such as jasmonic acid) which were related to plant defense in Norway spruce, which might reduce the primary metabolites available for plant growth.

  16. Blue-Light Hazard From Gas Metal Arc Welding of Aluminum Alloys.

    PubMed

    Nakashima, Hitoshi; Takahashi, Jyunya; Fujii, Nobuyuki; Okuno, Tsutomu

    2017-10-01

    The objective was to quantify the blue-light hazard from gas metal arc welding (GMAW) of aluminum alloys. The exposure level is expected to depend on the welding conditions. Therefore, it is important to identify the blue-light hazard under various welding conditions. We experimentally conducted GMAW of aluminum alloys under various welding conditions and measured the spectral radiance of the arcs. The effective blue-light radiance, which the American Conference of Governmental Industrial Hygienists has defined to quantify the exposure level of blue light, was calculated from the measured spectral radiance. The maximum acceptable exposure duration per 10000 s for this effective blue-light radiance was calculated. The effective blue-light radiance measured in this study was in the range of 2.9-20.0 W cm-2·sr. The corresponding maximum acceptable exposure duration per 10000 s was only 5.0-34 s, so it is hazardous to view the welding arc. The effective blue-light radiance was higher at higher welding currents than at lower welding currents, when pulsed welding currents were used rather than steady welding currents, and when magnesium was included in the welding materials. It is very hazardous to view the arcs in GMAW of aluminum alloys. Welders and their helpers should use appropriate eye protection in arc-welding operations. They should also avoid direct light exposure when starting an arc-welding operation. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  17. A novel bio-degradable polymer stabilized Ag/TiO2 nanocomposites and their catalytic activity on reduction of methylene blue under natural sun light.

    PubMed

    Geetha, D; Kavitha, S; Ramesh, P S

    2015-11-01

    In the present work we defined a novel method of TiO2 doped silver nanocomposite synthesis and stabilization using bio-degradable polymers viz., chitosan (Cts) and polyethylene glycol (PEG). These polymers are used as reducing agents. The instant formation of AgNPs was analyzed by visual observation and UV-visible spectrophotometer. TiO2 nanoparticles doped at different concentrations viz., 0.03, 0.06 and 0.09mM on PEG/Cts stabilized silver (0.04wt%) were successfully synthesized. This study presents a simple route for the in situ synthesis of both metal and polymer confined within the nanomaterial, producing ternary hybrid inorganic-organic nanomaterials. The results reveal that they have higher photocatalytic efficiencies under natural sun light. The synthesized TiO2 doped Ag nanocomposites (NCs) were characterized by SEM/EDS, TEM, XRD, FTIR and DLS with zeta potential. The stability of Ag/TiO2 nanocomposite is due to the high negative values of zeta potential and capping of constituents present in the biodegradable polymer which is evident from zeta potential and FT-IR studies. The XRD and EDS pattern of synthesized Ag/TiO2 NCs showed their crystalline structure, with face centered cubic geometry oriented in (111) plane. AFM and DLS studies revealed that the diameter of stable Ag/TiO2 NCs was approximately 35nm. Moreover the catalytic activity of synthesize Ag/TiO2 NCs in the reduction of methylene blue was studied by UV-visible spectrophotometer. The synthesized Ag/TiO2 NCs are observed to have a good catalytic activity on the reduction of methylene blue by bio-degradable which is confirmed by the decrease in absorbance maximum value of methylene blue with respect to time using UV-vis spectrophotometer. The significant enhancement in the photocatalytic activity of Ag/TiO2 nanocomposites under sun light irradiation can be ascribed to the effect of noble metal Ag by acting as electron traps in TiO2 band gap. Copyright © 2015. Published by Elsevier Inc.

  18. Jupiter From 2.8 Million Miles

    NASA Image and Video Library

    2016-08-25

    This dual view of Jupiter was taken on August 23, when NASA's Juno spacecraft was 2.8 million miles (4.4 million kilometers) from the gas giant planet on the inbound leg of its initial 53.5-day capture orbit. The image on the left is a color composite taken with Junocam's visible red, green, and blue filters. The image on the right was also taken by JunoCam, but uses the camera's infrared filter, which is sensitive to the abundance of methane in the atmosphere. Bright features like the planet's Great Red Spot are higher in the atmosphere, and so have less of their light absorbed by the methane. http://photojournal.jpl.nasa.gov/catalog/PIA20884

  19. Effect of a combination of green and blue monochromatic light on broiler immune response.

    PubMed

    Zhang, Ziqiang; Cao, Jing; Wang, Zixu; Dong, Yulan; Chen, Yaoxing

    2014-09-05

    Our previous study suggested that green light or blue light would enhance the broiler immune response; this study was conducted to evaluate whether a combination of green and blue monochromatic light would result in improved immune response. A total of 192 Arbor Acre male broilers were exposed to white light, red light, green light, and blue light from 0 to 26 days. From 27 to 49 days, half of the broilers in green light and blue light were switched to blue light (G-B) and green light (B-G), respectively. The levels of anti-Newcastle disease virus (NDV) and anti-bovine serum albumin (BSA) IgG in G-B group were elevated by 11.9-40.3% and 17.4-48.7%, respectively, compared to single monochromatic lights (P<0.05). Moreover, the proliferation of peripheral blood T and B lymphocytes and the IL-2 concentration in the G-B groups increased by 10.4-36.2%, 10.0-50.0% and 24.7-60.3% (P<0.05), respectively, compared with the single monochromatic light groups. However, the serum TNF-α concentration in the G-B group was reduced by 3.64-40.5% compared to other groups, and no significant difference was found between the G-B and B-G groups in any type of detection index at the end of the experiment. These results suggested that the combination of G-B and B-G monochromatic light could effectively enhance the antibody titer, the proliferation index of lymphocytes and alleviate the stress response in broilers. Therefore, the combination of green and blue monochromatic light can improve the immune function of broilers. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling.

    PubMed

    Holtkotte, Xu; Ponnu, Jathish; Ahmad, Margaret; Hoecker, Ute

    2017-10-01

    Plants constantly adjust their growth, development and metabolism to the ambient light environment. Blue light is sensed by the Arabidopsis photoreceptors CRY1 and CRY2 which subsequently initiate light signal transduction by repressing the COP1/SPA E3 ubiquitin ligase. While the interaction between cryptochromes and SPA is blue light-dependent, it was proposed that CRY1 interacts with COP1 constitutively, i.e. also in darkness. Here, our in vivo co-immunoprecipitation experiments suggest that CRY1 and CRY2 form a complex with COP1 only after seedlings were exposed to blue light. No association between COP1 and CRY1 or CRY2 was observed in dark-grown seedlings. Thus, our results suggest that cryptochromes bind the COP1/SPA complex after photoactivation by blue light. In a spa quadruple mutant that is devoid of all four SPA proteins, CRY1 and COP1 did not interact in vivo, neither in dark-grown nor in blue light-grown seedlings. Hence, SPA proteins are required for the high-affinity interaction between CRY1 and COP1 in blue light. Yeast three-hybrid experiments also show that SPA1 enhances the CRY1-COP1 interaction. The coiled-coil domain of SPA1 which is responsible for COP1-binding was necessary to mediate a CRY1-SPA1 interaction in vivo, implying that-in turn-COP1 may be necessary for a CRY1-SPA1 complex formation. Hence, SPA1 and COP1 may act cooperatively in recognizing and binding photoactivated CRY1. In contrast, the blue light-induced association between CRY2 and COP1 was not dependent on SPA proteins in vivo. Similarly, ΔCC-SPA1 interacted with CRY2, though with a much lower affinity than wild-type SPA1. In total, our results demonstrate that CRY1 and CRY2 strongly differ in their blue light-induced interaction with the COP1/SPA complex.

  1. Blue-Light Filtering Spectacle Lenses: Optical and Clinical Performances.

    PubMed

    Leung, Tsz Wing; Li, Roger Wing-Hong; Kee, Chea-Su

    2017-01-01

    To evaluate the optical performance of blue-light filtering spectacle lenses and investigate whether a reduction in blue light transmission affects visual performance and sleep quality. Experiment 1: The relative changes in phototoxicity, scotopic sensitivity, and melatonin suppression of five blue-light filtering plano spectacle lenses were calculated based on their spectral transmittances measured by a spectrophotometer. Experiment 2: A pseudo-randomized controlled study was conducted to evaluate the clinical performance of two blue-light filtering spectacle lenses (BF: blue-filtering anti-reflection coating; BT: brown-tinted) with a regular clear lens (AR) serving as a control. A total of eighty computer users were recruited from two age cohorts (young adults: 18-30 yrs, middle-aged adults: 40-55 yrs). Contrast sensitivity under standard and glare conditions, and colour discrimination were measured using standard clinical tests. After one month of lens wear, subjective ratings of lens performance were collected by questionnaire. All tested blue-light filtering spectacle lenses theoretically reduced the calculated phototoxicity by 10.6% to 23.6%. Although use of the blue-light filters also decreased scotopic sensitivity by 2.4% to 9.6%, and melatonin suppression by 5.8% to 15.0%, over 70% of the participants could not detect these optical changes. Our clinical tests revealed no significant decrease in contrast sensitivity either with (95% confidence intervals [CI]: AR-BT [-0.05, 0.05]; AR-BF [-0.05, 0.06]; BT-BF [-0.06, 0.06]) or without glare (95% CI: AR-BT [-0.01, 0.03]; AR-BF [-0.01, 0.03]; BT-BF [-0.02, 0.02]) and colour discrimination (95% CI: AR-BT [-9.07, 1.02]; AR-BF [-7.06, 4.46]; BT-BF [-3.12, 8.57]). Blue-light filtering spectacle lenses can partially filter high-energy short-wavelength light without substantially degrading visual performance and sleep quality. These lenses may serve as a supplementary option for protecting the retina from potential blue-light hazard. ClinicalTrials.gov NCT02821403.

  2. Mechanism of rapid suppression of cell expansion in cucumber hypocotyls after blue-light irradiation

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1988-01-01

    Rapid suppression of hypocotyl elongation by blue light in cucumber (Cucumis sativus L.) was studied to examine possible hydraulic and wall changes responsible for diminished growth. Cell-sap osmotic pressure, measured by vapor-pressure osmometry, was not decreased by blue light; turgor pressure, measured by the pressure-probe technique, remained constant during the growth inhibition; and stem hydraulic conductance, measured by dynamic and static methods, was likewise unaffected by blue light. Wall yielding properties were assessed by the pressure-block technique for in-vivo stress relaxation. Blue light reduced the initial rate of relaxation by 77%, but had little effect on the final amount of relaxation. The results demonstrate that blue irradiation acts to decrease the wall yielding coefficient, but not the yield threshold. Stress-strain (Instron) analysis showed that irradiation of the seedlings had little effect on the mechanical extensibilities of the isolated wall. The results indicate that blue light can reduce cell-wall loosening without affecting bulk viscoelastic properties, and indicate a chemorheological mechanism of cell-wall expansion.

  3. A CRY-BIC negative-feedback circuitry regulating blue light sensitivity of Arabidopsis.

    PubMed

    Wang, Xu; Wang, Qin; Han, Yun-Jeong; Liu, Qing; Gu, Lianfeng; Yang, Zhaohe; Su, Jun; Liu, Bobin; Zuo, Zecheng; He, Wenjin; Wang, Jian; Liu, Bin; Matsui, Minami; Kim, Jeong-Il; Oka, Yoshito; Lin, Chentao

    2017-11-01

    Cryptochromes are blue light receptors that regulate various light responses in plants. Arabidopsis cryptochrome 1 (CRY1) and cryptochrome 2 (CRY2) mediate blue light inhibition of hypocotyl elongation and long-day (LD) promotion of floral initiation. It has been reported recently that two negative regulators of Arabidopsis cryptochromes, Blue light Inhibitors of Cryptochromes 1 and 2 (BIC1 and BIC2), inhibit cryptochrome function by blocking blue light-dependent cryptochrome dimerization. However, it remained unclear how cryptochromes regulate the BIC gene activity. Here we show that cryptochromes mediate light activation of transcription of the BIC genes, by suppressing the activity of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), resulting in activation of the transcription activator ELONGATED HYPOCOTYL 5 (HY5) that is associated with chromatins of the BIC promoters. These results demonstrate a CRY-BIC negative-feedback circuitry that regulates the activity of each other. Surprisingly, phytochromes also mediate light activation of BIC transcription, suggesting a novel photoreceptor co-action mechanism to sustain blue light sensitivity of plants under the broad spectra of solar radiation in nature. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  4. PtAUREO1a and PtAUREO1b knockout mutants of the diatom Phaeodactylum tricornutum are blocked in photoacclimation to blue light.

    PubMed

    Mann, Marcus; Serif, Manuel; Jakob, Torsten; Kroth, Peter G; Wilhelm, Christian

    2017-10-01

    Aureochromes are blue light receptors specifically found in photosynthetic Stramenopiles (algae). Four different Aureochromes have been identified in the marine diatom Phaeodactylum tricornutum (PtAUREO 1a, 1b, 1c, and 2). Since blue light is necessary for high light acclimation in diatoms, it has been hypothesized that Aureochromes might play an important role in the light acclimation capacity of diatoms. This hypothesis was supported by an RNAi knockdown line of PtAUREO1a, which showed a phenotype different from wild type cells when grown in either blue or red light. Here, we show for the first time the phenotype and the photoacclimation reaction of TALEN-mediated knockout mutants of PtAUREO1a and PtAUREO1b, clearly proving the necessity of Aureochromes for light acclimation under blue light. However, both mutants do also show specific differences in their respective phenotypes. Hence, PtAUREO1a and 1b are not functionally redundant in photoacclimation to blue light, and their specific contribution needs to be clarified further. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults.

    PubMed

    Cheung, Ivy N; Zee, Phyllis C; Shalman, Dov; Malkani, Roneil G; Kang, Joseph; Reid, Kathryn J

    2016-01-01

    Increasing evidence points to associations between light-dark exposure patterns, feeding behavior, and metabolism. This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal. Nineteen healthy adults completed this 4-day inpatient protocol under dim light conditions (<20lux). Participants were randomized to 3 hours of blue-enriched light exposure on Day 3 starting either 0.5 hours after wake (n = 9; morning group) or 10.5 hours after wake (n = 10; evening group). All participants remained in dim light on Day 2 to serve as their baseline. Subjective hunger and sleepiness scales were collected hourly. Blood was sampled at 30-minute intervals for 4 hours in association with the light exposure period for glucose, insulin, cortisol, leptin, and ghrelin. Homeostatic model assessment of insulin resistance (HOMA-IR) and area under the curve (AUC) for insulin, glucose, HOMA-IR and cortisol were calculated. Comparisons relative to baseline were done using t-tests and repeated measures ANOVAs. In both the morning and evening groups, insulin total area, HOMA-IR, and HOMA-IR AUC were increased and subjective sleepiness was reduced with blue-enriched light compared to dim light. The evening group, but not the morning group, had significantly higher glucose peak value during blue-enriched light exposure compared to dim light. There were no other significant differences between the morning or the evening groups in response to blue-enriched light exposure. Blue-enriched light exposure acutely alters glucose metabolism and sleepiness, however the mechanisms behind this relationship and its impacts on hunger and appetite regulation remain unclear. These results provide further support for a role of environmental light exposure in the regulation of metabolism.

  6. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults

    PubMed Central

    Cheung, Ivy N.; Zee, Phyllis C.; Shalman, Dov; Malkani, Roneil G.; Kang, Joseph; Reid, Kathryn J.

    2016-01-01

    Increasing evidence points to associations between light-dark exposure patterns, feeding behavior, and metabolism. This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal. Nineteen healthy adults completed this 4-day inpatient protocol under dim light conditions (<20lux). Participants were randomized to 3 hours of blue-enriched light exposure on Day 3 starting either 0.5 hours after wake (n = 9; morning group) or 10.5 hours after wake (n = 10; evening group). All participants remained in dim light on Day 2 to serve as their baseline. Subjective hunger and sleepiness scales were collected hourly. Blood was sampled at 30-minute intervals for 4 hours in association with the light exposure period for glucose, insulin, cortisol, leptin, and ghrelin. Homeostatic model assessment of insulin resistance (HOMA-IR) and area under the curve (AUC) for insulin, glucose, HOMA-IR and cortisol were calculated. Comparisons relative to baseline were done using t-tests and repeated measures ANOVAs. In both the morning and evening groups, insulin total area, HOMA-IR, and HOMA-IR AUC were increased and subjective sleepiness was reduced with blue-enriched light compared to dim light. The evening group, but not the morning group, had significantly higher glucose peak value during blue-enriched light exposure compared to dim light. There were no other significant differences between the morning or the evening groups in response to blue-enriched light exposure. Blue-enriched light exposure acutely alters glucose metabolism and sleepiness, however the mechanisms behind this relationship and its impacts on hunger and appetite regulation remain unclear. These results provide further support for a role of environmental light exposure in the regulation of metabolism. PMID:27191727

  7. Development of the Casparian strip is delayed by blue light in pea stems.

    PubMed

    Karahara, Ichirou; Takaya, Eliko; Fujibayashi, Shigetaka; Inoue, Hiroshi; Weller, James L; Reid, James B; Sugai, Michizo

    2011-11-01

    To understand the regulatory mechanisms involved in tissue development by light, the kinetics of regulation of Casparian strip (CS) development in garden pea stems was studied. We found that short-term irradiation with white light delayed the development of the CS and used this delay to assess the quantitative effect of light on CS development. We examined the effect of the duration and fluence rates of white light treatment on CS development and observed a significant relationship between fluence and the delay in CS development indicating that the Bunsen-Roscoe law of reciprocity holds for this response. The effect of white light irradiation was not inhibited in the presence of a photosynthetic inhibitor, DCMU, or a carotenoid biosynthesis inhibitor, Norflurazon, indicating that the delay in CS development by light is a photomorphogenetic response rather than a subsidiary effect mediated by photosynthetic activity. An action spectrum for the response displayed a major peak in the blue-light region, suggesting a dominant role for blue-light receptors. A minor peak in the red-light region also suggested the possible involvement of phytochromes. Although phytochromes are known to contribute to blue-light responses, phytochrome-deficient mutants showed a normal delay of CS development in response to blue light, indicating that the response is not mediated by phytochrome and suggesting a role for one or more specific blue-light receptors.

  8. Modeling methylene blue aggregation in acidic solution to the limits of factor analysis.

    PubMed

    Golz, Emily K; Vander Griend, Douglas A

    2013-01-15

    Methylene blue (MB(+)), a common cationic thiazine dye, aggregates in acidic solutions. Absorbance data for equilibrated solutions of the chloride salt were analyzed over a concentration range of 1.0 × 10(-3) to 2.6 × 10(-5) M, in both 0.1 M HCl and 0.1 M HNO(3). Factor analyses of the raw absorbance data sets (categorically a better choice than effective absorbance) definitively show there are at least three distinct molecular absorbers regardless of acid type. A model with monomer, dimer, and trimer works well, but extensive testing has resulted in several other good models, some with higher order aggregates and some with chloride anions. Good models were frequently indistinguishable from each other by quality of fit or reasonability of molar absorptivity curves. The modeling of simulated data sets demonstrates the cases and degrees to which signal noise in the original data obscure the true model. In particular, the more mathematically similar (less orthogonal) the molar absorptivity curves of the chemical species in a model are, the less signal noise it takes to obscure the true model from other potentially good models. Unfortunately, the molar absorptivity curves in dye aggregation systems like that of methylene blue tend to be sufficiently similar so as to lead to the obscuration of models even at the noise levels (0.0001 ABS) of typical benchtop spectrophotometers.

  9. Spectral effects of light-emitting diodes on plant growth and development: The importance of green and blue light

    NASA Astrophysics Data System (ADS)

    Cope, K. R.; Bugbee, B.

    2011-12-01

    Light-emitting diodes (LEDs) are an emerging technology for plant growth lighting. Due to their narrow spectral output, colored LEDs provide many options for studying the spectral effects of light on plants. Early on, efficient red LEDs were the primary focus of photobiological research; however, subsequent studies have shown that normal plant growth and development cannot be achieved under red light without blue light supplementation. More recent studies have shown that red and blue (RB) LEDs supplemented with green light increase plant dry mass. This is because green light transmits more effectively through the leaf canopy than red and blue light, thus illuminating lower plant leaves and increasing whole-plant photosynthesis. Red, green and blue (RGB) light can be provided by either a conventional white light source (such as fluorescent lights), a combination of RGB LEDs, or from recently developed white LEDs. White LEDs exceed the efficiency of fluorescent lights and have a comparable broad spectrum. As such, they have the potential to replace fluorescent lighting for growth-chamber-based crop production both on Earth and in space. Here we report the results of studies on the effects of three white LED types (warm, neutral and cool) on plant growth and development compared to combinations of RB and RGB LEDs. Plants were grown under two constant light intensities (200 and 500 μmol m-2 s-1). Temperature, environmental conditions and root-zone environment were uniformly maintained across treatments. Phytochrome photoequilbria and red/far-red ratios were similar among treatments and were comparable to conventional fluorescent lights. Blue light had a significant effect on both plant growth (dry mass gain) and development (dry mass partitioning). An increase in the absolute amount (μmol m-2 s-1) of blue light from 0-80 μmol m-2 s-1 resulted in a decrease in stem elongation, independent of the light intensity. However, an increase in the relative amount (%) of blue light caused a decrease in specific leaf area (leaf area per unit leaf mass). As the relative amount of blue light increased, chlorophyll concentration per unit leaf area increased, but chlorophyll concentration per unit leaf mass remained constant. The relative amount of blue light increased total dry mass in some species while it remained constant in others. An increase in the fraction of green light increased dry mass in radish. Overall, white LEDs provided a more uniform spectral distribution, reduced stem elongation and leaf area, and maintained or increased dry mass as compared to RB and RGB LEDs. Cool white LEDs are more electrically efficient than the other two white LEDs and have sufficient blue light for normal plant growth and development at both high and low light intensities. Compared to sunlight, cool white LEDs are perhaps deficient in red light and may therefore benefit from supplementation with red LEDs. Future studies will be conducted to test this hypothesis. These results have significant implication for LADA growth chambers which are currently used for vegetable production on the International Space Station.

  10. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light

    PubMed Central

    Ma, Dingbang; Li, Xu; Guo, Yongxia; Chu, Jingfang; Fang, Shuang; Yan, Cunyu; Noel, Joseph P.; Liu, Hongtao

    2016-01-01

    Cryptochrome 1 (CRY1) is a blue light receptor that mediates primarily blue-light inhibition of hypocotyl elongation. Very little is known of the mechanisms by which CRY1 affects growth. Blue light and temperature are two key environmental signals that profoundly affect plant growth and development, but how these two abiotic factors integrate remains largely unknown. Here, we show that blue light represses high temperature-mediated hypocotyl elongation via CRY1. Furthermore, CRY1 interacts directly with PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) in a blue light-dependent manner to repress the transcription activity of PIF4. CRY1 represses auxin biosynthesis in response to elevated temperature through PIF4. Our results indicate that CRY1 signal by modulating PIF4 activity, and that multiple plant photoreceptors [CRY1 and PHYTOCHROME B (PHYB)] and ambient temperature can mediate morphological responses through the same signaling component—PIF4. PMID:26699514

  11. White- and blue-light-emitting dysprosium(III) and terbium(III)-doped gadolinium titanate phosphors.

    PubMed

    Antić, Ž; Kuzman, S; Đorđević, V; Dramićanin, M D; Thundat, T

    2017-06-01

    Here we report the synthesis and structural, morphological, and photoluminescence analysis of white- and blue-light-emitting Dy 3 + - and Tm 3 + -doped Gd 2 Ti 2 O 7 nanophosphors. Single-phase cubic Gd 2 Ti 2 O 7 nanopowders consist of compact, dense aggregates of nanoparticles with an average size of ~25 nm for Dy 3 + -doped and ~50 nm for Tm 3 + -doped samples. The photoluminescence results indicated that ultraviolet (UV) light excitation of the Dy 3 + -doped sample resulted in direct generation of white light, while a dominant yellow emission was obtained under blue-light excitation. Intense blue light was obtained for Tm 3 + -doped Gd 2 Ti 2 O 7 under UV excitation suggesting that this material could be used as a blue phosphor. Copyright © 2016 John Wiley & Sons, Ltd.

  12. User-Wearable Devices that Monitor Exposure to Blue Light and Recommend Adjustments Thereto

    NASA Technical Reports Server (NTRS)

    Lee, Yong Jin (Inventor)

    2017-01-01

    Described herein are user-wearable devices that include an optical sensor, and methods for use therewith. In certain embodiments, an optical sensor of a user-wearable device (e.g., a wrist-worn device) is used to detect blue light that is incident on the optical sensor and to produce a blue light detection signal indicative thereof, and thus, indicative of the response of the user's intrinsically photosensitive Retinal Ganglion Cells (ipRGCs). In dependence on the blue light detection signal, there is a determination of a metric indicative of an amount of blue light detected by the optical sensor. The metric is compared to a corresponding threshold, and a user notification is triggered in dependence on results of the comparing, wherein the user notification informs a person wearing the user-wearable device to adjust their exposure to light.

  13. Aging reduces the stimulating effect of blue light on cognitive brain functions.

    PubMed

    Daneault, Véronique; Hébert, Marc; Albouy, Geneviève; Doyon, Julien; Dumont, Marie; Carrier, Julie; Vandewalle, Gilles

    2014-01-01

    Light exposure, particularly blue light, is being recognized as a potent mean to stimulate alertness and cognition in young individuals. Aging is associated with changes in alertness regulation and cognition. Whether the effect of light on cognitive brain function changes with aging is unknown, however. Cross-sectional study. Functional Neuroimaging Unit, University of Montreal Geriatric Institute. Sixteen younger (23 ± 4.1 y) and 14 older (61 ± 4.5 y) healthy participants were recruited in the current study. Blue light administration. We used functional magnetic resonance imaging to record brain responses to an auditory working memory task in young and older healthy individuals, alternatively maintained in darkness or exposed to blue light. Results show that the older brain remains capable of showing sustained responses to light in several brain areas. However, compared to young individuals, the effect of blue light is decreased in the pulvinar, amygdala, and tegmentum as well as in the insular, prefrontal, and occipital cortices in elderly individuals. The effect of blue light on brain responses diminishes with aging in areas typically involved in visual functions and in key regions for alertness regulation and higher executive processes. Our findings provide the first indications that the effect of light on cognition may be reduced in healthy aging.

  14. A comprehensive comparable study of the physiological properties of four microalgal species under different light wavelength conditions.

    PubMed

    Zhong, Yu; Jin, Peng; Cheng, Jay J

    2018-05-19

    Microalgae treated with blue light have potential for production of human nutrition supplement and biofuel due to their higher biomass productivity and favorable fatty acid composition. Chlorella vulgaris, Chlorella pyrenoidosa, Scenedesmus quadricauda and Scenedesmus obliquus are representative green microalgae which are widely reported for algal production. In this study, we provide a systematic investigation of the biomass productivity, photosynthetic pigments, chlorophyll fluorescence and fatty acid content of the four green microalgae. The strains were grown in two primary monochromatic light wavelengths [red and blue LEDs (light emitting diode)], and in white LED conditions, respectively. Among them, blue LED light was determined as the best light for growth rate, followed by red LED and white LED. The chlorophyll generation was more sensitive to the monochromatic blue light. The polyunsaturated fatty acids (PUFAs) such as α-linolenic acid (18:3), which were perfect for human nutrition supplementation, showed high concentrations in these algae strains under blue LED. Collectively, the results indicate that the blue LED is suitable for various food, feed, and algal biofuel productions due to both biomass and fatty acid productivity.

  15. Methylene blue, curcumin and ion pairing nanoparticles effects on photodynamic therapy of MDA-MB-231 breast cancer cell.

    PubMed

    Hosseinzadeh, Reza; Khorsandi, Khatereh

    2017-06-01

    The aim of current study was to use methylene blue-curcumin ion pair nanoparticles and single dyes as photosensitizer for comparison of photodynamic therapy (PDT) efficacy on MDA-MB-231 cancer cells, also various light sources effect on activation of photosensitizer (PS) was considered. Ion pair nanoparticles were synthesized using opposite charge ions precipitation and lyophilized. The PDT experiments were designed and the effect of PSs and light sources (Red LED (630nm; power density: 30mWcm -2 ) and blue LED (465nm; power density: 34mWcm -2 )) on the human breast cancer cell line were examined. The effect of PS concentration (0-75μg.mL -1 ), incubation time, irradiation time and light sources, and priority in irradiation of blue or red lights were determined. The results show that the ion pairing of methylene blue and curcumin enhance the photodynamic activity of both dyes and the cytotoxicity of ion pair nanoparticles on the MDA-231 breast cancer cell line. Blue and red LED light sources were used for photo activation of photosensitizers. The results demonstrated that both dyes can activate using red light LED better than blue light LED for singlet oxygen producing. Nano scale ion pair precipitating of methylene blue-curcumin enhanced the cell penetrating and subsequently cytotoxicity of both dyes together. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. FURTHER STUDIES ON THE INHIBITION OF CYPRIDINA LUMINESCENCE BY LIGHT, WITH SOME OBSERVATIONS ON METHYLENE BLUE

    PubMed Central

    Harvey, E. Newton

    1926-01-01

    1. Eosin, erythrosin, rose bengale, cyanosin, acridine, and methylene blue act photodynamically on the luminescence of a Cypridina luciferin-luciferase solution. In presence of these dyes inhibition of luminescence, which without the dye occurs only in blue-violet light, takes place in green, yellow, orange, or red light, depending on the position of the absorption bands of the dye. 2. Inhibition of Cypridina luminescence without photosensitive dye in blue-violet light, or with photosensitive dye in longer wave-lengths, does not occur in absence of oxygen. Light acts by accelerating the oxidation of luciferin without luminescence. Eosin or methylene blue act by making longer wave-lengths effective, but there is no evidence that these dyes become reduced in the process. 3. The luciferin-oxyluciferin system is similar to the methylene white-methylene blue system in many ways but not exactly similar in respect to photochemical change. Oxidation of the dye is favored in acid solution, reduction in alkaline solution. However, oxidation of luciferin is favored in all pH ranges from 4 to 10 but is much more rapid in alkaline solution, either in light or darkness. There is no evidence that reduction of oxyluciferin is favored in alkaline solution. Clark's observation that oxidation (blueing) of methylene white occurs in complete absence of oxygen has been confirmed for acid solutions. I observed no blueing in light in alkaline solution. PMID:19872301

  17. Solids-based concentrated solar power receiver

    DOEpatents

    None

    2018-04-10

    A concentrated solar power (CSP) system includes channels arranged to convey a flowing solids medium descending under gravity. The channels form a light-absorbing surface configured to absorb solar flux from a heliostat field. The channels may be independently supported, for example by suspension, and gaps between the channels are sized to accommodate thermal expansion. The light absorbing surface may be sloped so that the inside surfaces of the channels proximate to the light absorbing surface define downward-slanting channel floors, and the flowing solids medium flows along these floors. Baffles may be disposed inside the channels and oriented across the direction of descent of the flowing solids medium. The channels may include wedge-shaped walls forming the light-absorbing surface and defining multiple-reflection light paths for solar flux from the heliostat field incident on the light-absorbing surface.

  18. Light Emitting Diodes and Astronomy - a chance for restoration of the dark night sky - or for further loss

    NASA Astrophysics Data System (ADS)

    Wainscoat, Richard

    2015-08-01

    Across the planet, conventional light sources such as high pressure sodium, are rapidly being replaced by light emitting diodes (LEDs). As light fixtures are being replaced, there is a tremendous opportunity for restoration of dark night skies through replacement of poorly shielded fixtures by fully shielded fixtures. However, it is critically important to limit the amount of blue light from the LEDs.Sales people are strongly promoting LEDs with high correlated color temperature (CCT), such as 5000K. They are promoting them on energy efficiency grounds - higher energy efficiency is easier to sell. These LEDs have tremendous amounts of blue light near 450 nm. The photopic human eye is relatively insensitive to this blue light, but the dark adapted scotopic eye is much more sensitive, and CCDs are also very sensitive to this wavelength of light. As a consequence, both professional and amateur astronomers are very seriously impacted by high CCT LED lighting. The sodium lighting that the LEDs are replacing has relatively little blue light. Blue light is strongly scattered by air molecules in the atmosphere.Use of high CCT LED lighting will cause further deterioration of night sky quality.In contrast, use of LED lighting with low CCT (e.g., 2400K or 2700K), or use of filters to remove the blue light, can restore the dark night sky. LED lighting is much easier to direct, meaning that an area such as a roadway can be lit with many less lumens with LEDs compared to conventional lights such as high pressure sodium. And use of fully shielded fixtures will eliminate direct uplighting.It is therefore critically important at this time to require that all new LED lighting be fully shielded, and for strong limits to be placed the amount of blue light from LEDs. This is crucial near observatories, but is important everywhere.

  19. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation

    NASA Technical Reports Server (NTRS)

    Yorio, N. C.; Goins, G. D.; Kagie, H. R.; Wheeler, R. M.; Sager, J. C.

    2001-01-01

    Radish (Raphanus sativus L. cv. Cherriette), lettuce (Lactuca sativa L. cv. Waldmann's Green), and spinach (Spinacea oleracea L. cv. Nordic IV) plants were grown under 660-nm red light-emitting diodes (LEDs) and were compared at equal photosynthetic photon flux (PPF) with either plants grown under cool-white fluorescent lamps (CWF) or red LEDs supplemented with 10% (30 micromoles m-2 s-1) blue light (400-500 nm) from blue fluorescent (BF) lamps. At 21 days after planting (DAP), leaf photosynthetic rates and stomatal conductance were greater for plants grown under CWF light than for those grown under red LEDs, with or without supplemental blue light. At harvest (21 DAP), total dry-weight accumulation was significantly lower for all species tested when grown under red LEDs alone than when grown under CWF light or red LEDs + 10% BF light. Moreover, total dry weight for radish and spinach was significantly lower under red LEDs + 10% BF than under CWF light, suggesting that addition of blue light to the red LEDs was still insufficient for achieving maximal growth for these crops.

  20. Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes

    NASA Technical Reports Server (NTRS)

    Kim, Hyeon-Hye; Goins, Gregory D.; Wheeler, Raymond M.; Sager, John C.

    2004-01-01

    Plants will be an important component of future long-term space missions. Lighting systems for growing plants will need to be lightweight, reliable, and durable, and light-emitting diodes (LEDs) have these characteristics. Previous studies demonstrated that the combination of red and blue light was an effective light source for several crops. Yet the appearance of plants under red and blue lighting is purplish gray making visual assessment of any problems difficult. The addition of green light would make the plant leave appear green and normal similar to a natural setting under white light and may also offer a psychological benefit to the crew. Green supplemental lighting could also offer benefits, since green light can better penetrate the plant canopy and potentially increase plant growth by increasing photosynthesis from the leaves in the lower canopy. In this study, four light sources were tested: 1) red and blue LEDs (RB), 2) red and blue LEDs with green fluorescent lamps (RGB), 3) green fluorescent lamps (GF), and 4) cool-white fluorescent lamps (CWF), that provided 0%, 24%, 86%, and 51% of the total PPF in the green region of the spectrum, respectively. The addition of 24% green light (500 to 600 nm) to red and blue LEDs (RGB treatment) enhanced plant growth. The RGB treatment plants produced more biomass than the plants grown under the cool-white fluorescent lamps (CWF treatment), a commonly tested light source used as a broad-spectrum control.

  1. Optical manifold

    DOEpatents

    Falicoff, Waqidi; Chaves, Julio C.; Minano, Juan Carlos; Benitez, Pablo; Dross, Oliver; Parkyn, Jr., William A.

    2010-02-23

    Optical systems are described that have at least one source of a beam of blue light with divergence under 15.degree.. A phosphor emits yellow light when excited by the blue light. A collimator is disposed with the phosphor and forms a yellow beam with divergence under 15.degree.. A dichroic filter is positioned to transmit the beam of blue light to the phosphor and to reflect the beam of yellow light to an exit aperture. In different embodiments, the beams of blue and yellow light are incident upon said filter with central angles of 15.degree., 22.degree., and 45.degree.. The filter may reflect all of one polarization and part of the other polarization, and a polarization rotating retroreflector may then be provided to return the unreflected light to the filter.

  2. Sensitivity of Seven Diverse Species to Blue and Green Light: Interactions with Photon Flux.

    PubMed

    Snowden, M Chase; Cope, Kevin R; Bugbee, Bruce

    2016-01-01

    Despite decades of research, the effects of spectral quality on plant growth, and development are not well understood. Much of our current understanding comes from studies with daily integrated light levels that are less than 10% of summer sunlight thus making it difficult to characterize interactions between light quality and quantity. Several studies have reported that growth is increased under fluorescent lamps compared to mixtures of wavelengths from LEDs. Conclusions regarding the effect of green light fraction range from detrimental to beneficial. Here we report the effects of eight blue and green light fractions at two photosynthetic photon fluxes (PPF; 200 and 500 μmol m-2 s-1; with a daily light integral of 11.5 and 29 mol m-2 d-1) on growth (dry mass), leaf expansion, stem and petiole elongation, and whole-plant net assimilation of seven diverse plant species. The treatments included cool, neutral, and warm white LEDs, and combinations of blue, green and/or red LEDs. At the higher PPF (500), increasing blue light in increments from 11 to 28% reduced growth in tomato, cucumber, and pepper by 22, 26, and 14% respectively, but there was no statistically significant effect on radish, soybean, lettuce or wheat. At the lower PPF (200), increasing blue light reduced growth only in tomato (41%). The effects of blue light on growth were mediated by changes in leaf area and radiation capture, with minimal effects on whole-plant net-assimilation. In contrast to the significant effects of blue light, increasing green light in increments from 0 to 30% had a relatively small effect on growth, leaf area and net assimilation at either low or high PPF. Surprisingly, growth of three of the seven species was not reduced by a treatment with 93% green light compared to the broad spectrum treatments. Collectively, these results are consistent with a shade avoidance response associated with either low blue or high green light fractions.

  3. Sensitivity of Seven Diverse Species to Blue and Green Light: Interactions with Photon Flux

    PubMed Central

    Snowden, M. Chase; Cope, Kevin R.; Bugbee, Bruce

    2016-01-01

    Despite decades of research, the effects of spectral quality on plant growth, and development are not well understood. Much of our current understanding comes from studies with daily integrated light levels that are less than 10% of summer sunlight thus making it difficult to characterize interactions between light quality and quantity. Several studies have reported that growth is increased under fluorescent lamps compared to mixtures of wavelengths from LEDs. Conclusions regarding the effect of green light fraction range from detrimental to beneficial. Here we report the effects of eight blue and green light fractions at two photosynthetic photon fluxes (PPF; 200 and 500 μmol m-2 s-1; with a daily light integral of 11.5 and 29 mol m-2 d-1) on growth (dry mass), leaf expansion, stem and petiole elongation, and whole-plant net assimilation of seven diverse plant species. The treatments included cool, neutral, and warm white LEDs, and combinations of blue, green and/or red LEDs. At the higher PPF (500), increasing blue light in increments from 11 to 28% reduced growth in tomato, cucumber, and pepper by 22, 26, and 14% respectively, but there was no statistically significant effect on radish, soybean, lettuce or wheat. At the lower PPF (200), increasing blue light reduced growth only in tomato (41%). The effects of blue light on growth were mediated by changes in leaf area and radiation capture, with minimal effects on whole-plant net-assimilation. In contrast to the significant effects of blue light, increasing green light in increments from 0 to 30% had a relatively small effect on growth, leaf area and net assimilation at either low or high PPF. Surprisingly, growth of three of the seven species was not reduced by a treatment with 93% green light compared to the broad spectrum treatments. Collectively, these results are consistent with a shade avoidance response associated with either low blue or high green light fractions. PMID:27706176

  4. Photo Inactivation of Streptococcus mutans Biofilm by Violet-Blue light.

    PubMed

    Gomez, Grace F; Huang, Ruijie; MacPherson, Meoghan; Ferreira Zandona, Andrea G; Gregory, Richard L

    2016-09-01

    Among various preventive approaches, non-invasive phototherapy/photodynamic therapy is one of the methods used to control oral biofilm. Studies indicate that light at specific wavelengths has a potent antibacterial effect. The objective of this study was to determine the effectiveness of violet-blue light at 380-440 nm to inhibit biofilm formation of Streptococcus mutans or kill S. mutans. S. mutans UA159 biofilm cells were grown for 12-16 h in 96-well flat-bottom microtiter plates using tryptic soy broth (TSB) or TSB with 1 % sucrose (TSBS). Biofilm was irradiated with violet-blue light for 5 min. After exposure, plates were re-incubated at 37 °C for either 2 or 6 h to allow the bacteria to recover. A crystal violet biofilm assay was used to determine relative densities of the biofilm cells grown in TSB, but not in TSBS, exposed to violet-blue light. The results indicated a statistically significant (P < 0.05) decrease compared to the non-treated groups after the 2 or 6 h recovery period. Growth rates of planktonic and biofilm cells indicated a significant reduction in the growth rate of the violet-blue light-treated groups grown in TSB and TSBS. Biofilm viability assays confirmed a statistically significant difference between violet-blue light-treated and non-treated groups in TSB and TSBS. Visible violet-blue light of the electromagnetic spectrum has the ability to inhibit S. mutans growth and reduce the formation of S. mutans biofilm. This in vitro study demonstrated that violet-blue light has the capacity to inhibit S. mutans biofilm formation. Potential clinical applications of light therapy in the future remain bright in preventing the development and progression of dental caries.

  5. A phytochrome/phototropin chimeric photoreceptor of fern functions as a blue/far-red light-dependent photoreceptor for phototropism in Arabidopsis.

    PubMed

    Kanegae, Takeshi; Kimura, Izumi

    2015-08-01

    In the fern Adiantum capillus-veneris, the phototropic response of the protonemal cells is induced by blue light and partially inhibited by subsequent irradiation with far-red light. This observation strongly suggests the existence of a phytochrome that mediates this blue/far-red reversible response; however, the phytochrome responsible for this response has not been identified. PHY3/NEO1, one of the three phytochrome genes identified in Adiantum, encodes a chimeric photoreceptor composed of both a phytochrome and a phototropin domain. It was demonstrated that phy3 mediates the red light-dependent phototropic response of Adiantum, and that phy3 potentially functions as a phototropin. These findings suggest that phy3 is the phytochrome that mediates the blue/far-red response in Adiantum protonemata. In the present study, we expressed Adiantum phy3 in a phot1 phot2 phototropin-deficient Arabidopsis line, and investigated the ability of phy3 to induce phototropic responses under various light conditions. Blue light irradiation clearly induced a phototropic response in the phy3-expressing transgenic seedlings, and this effect was fully inhibited by simultaneous irradiation with far-red light. In addition, experiments using amino acid-substituted phy3 indicated that FMN-cysteinyl adduct formation in the light, oxygen, voltage (LOV) domain was not necessary for the induction of blue light-dependent phototropism by phy3. We thus demonstrate that phy3 is the phytochrome that mediates the blue/far-red reversible phototropic response in Adiantum. Furthermore, our results imply that phy3 can function as a phototropin, but that it acts principally as a phytochrome that mediates both the red/far-red and blue/far-red light responses. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  6. Photothermal effects from Au-Cu2O core-shell nanocubes, octahedra, and nanobars with broad near-infrared absorption tunability

    NASA Astrophysics Data System (ADS)

    Wang, Hsiang-Ju; Yang, Kung-Hsun; Hsu, Shih-Chen; Huang, Michael H.

    2015-12-01

    Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal-Cu2O nanocrystals have become useful by illuminating Au-Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au-Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au-Cu2O nanobars with a tunable longitudinal Au SPR absorption band covering a broad NIR range from ~1050 to 1400 nm. Because the Au SPR bands can become fixed with relatively thin Cu2O shells of less than 15 nm, ultrasmall nanobars having a size of 61 nm directly red-shift the Au SPR band to 1047 nm. And 73 nm nanobars can give a Au SPR band at 1390 nm. Truncated nanobars exposing {100}, {110}, and {111} facets give a very blue-shifted Au SPR band. The nanobars also exhibit photothermal activity when illuminated by 1064 nm light. These small Au-Cu2O nanocrystals represent the simplest nanostructure design to absorb light covering the entire NIR wavelengths.Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal-Cu2O nanocrystals have become useful by illuminating Au-Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au-Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au-Cu2O nanobars with a tunable longitudinal Au SPR absorption band covering a broad NIR range from ~1050 to 1400 nm. Because the Au SPR bands can become fixed with relatively thin Cu2O shells of less than 15 nm, ultrasmall nanobars having a size of 61 nm directly red-shift the Au SPR band to 1047 nm. And 73 nm nanobars can give a Au SPR band at 1390 nm. Truncated nanobars exposing {100}, {110}, and {111} facets give a very blue-shifted Au SPR band. The nanobars also exhibit photothermal activity when illuminated by 1064 nm light. These small Au-Cu2O nanocrystals represent the simplest nanostructure design to absorb light covering the entire NIR wavelengths. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06847a

  7. Effects of light quality on leaf morphogenesis of a heterophyllous amphibious plant, Rotala hippuris

    PubMed Central

    Momokawa, Naoko; Kadono, Yasuro; Kudoh, Hiroshi

    2011-01-01

    Background and Aims For heterophyllous amphibious plants that experience fluctuating water levels, it is critical to control leaf development precisely in response to environmental cues that can serve as a quantitative index of water depth. Light quality can serve as such a cue because the ratio of red light relative to far-red light (R/FR) increases and blue-light intensity decreases with increasing water depth. Growth experiments were conducted to examine how R/FR and blue-light intensity alter leaf morphology of a heterophyllous amphibious plant, Rotala hippuris. Methods Using combinations of far red (730 nm), red (660 nm) and blue (470 nm) light-emitting diodes (LEDs), growth experiments were used to quantitatively evaluate the effects of the R/FR ratio and blue-light intensity on leaf morphology. Key Results Under the natural light regime in an outside growth garden, R. hippuris produced distinct leaves under submerged and aerial conditions. R/FR and blue-light intensity were found to markedly affect heterophyllous leaf formation. Higher and lower R/FR caused leaf characters more typical of submerged and aerial leaves, respectively, in both aerial and submerged conditions, in accordance with natural distribution of leaf types and light under water. High blue light caused a shift of trait values toward those of typical aerial leaves, and the response was most prominent under conditions of R/FR that were expected near the water surface. Conclusions R/FR and blue-light intensity provides quantitative cues for R. hippuris to detect water depth and determine the developmental fates of leaves, especially near the water surface. The utilization of these quantitative cues is expected to be important in habitats where plants experience water-level fluctuation. PMID:21896573

  8. Effects of light quality on leaf morphogenesis of a heterophyllous amphibious plant, Rotala hippuris.

    PubMed

    Momokawa, Naoko; Kadono, Yasuro; Kudoh, Hiroshi

    2011-11-01

    For heterophyllous amphibious plants that experience fluctuating water levels, it is critical to control leaf development precisely in response to environmental cues that can serve as a quantitative index of water depth. Light quality can serve as such a cue because the ratio of red light relative to far-red light (R/FR) increases and blue-light intensity decreases with increasing water depth. Growth experiments were conducted to examine how R/FR and blue-light intensity alter leaf morphology of a heterophyllous amphibious plant, Rotala hippuris. Using combinations of far red (730 nm), red (660 nm) and blue (470 nm) light-emitting diodes (LEDs), growth experiments were used to quantitatively evaluate the effects of the R/FR ratio and blue-light intensity on leaf morphology. Under the natural light regime in an outside growth garden, R. hippuris produced distinct leaves under submerged and aerial conditions. R/FR and blue-light intensity were found to markedly affect heterophyllous leaf formation. Higher and lower R/FR caused leaf characters more typical of submerged and aerial leaves, respectively, in both aerial and submerged conditions, in accordance with natural distribution of leaf types and light under water. High blue light caused a shift of trait values toward those of typical aerial leaves, and the response was most prominent under conditions of R/FR that were expected near the water surface. R/FR and blue-light intensity provides quantitative cues for R. hippuris to detect water depth and determine the developmental fates of leaves, especially near the water surface. The utilization of these quantitative cues is expected to be important in habitats where plants experience water-level fluctuation.

  9. Do UV-A radiation and blue light during growth prime leaves to cope with acute high-light in photoreceptor mutants of Arabidopsis thaliana?

    PubMed

    Brelsford, Craig C; Morales, Luis O; Nezval, Jakub; Kotilainen, Titta K; Hartikainen, Saara M; Aphalo, Pedro J; Robson, T Matthew

    2018-04-28

    We studied how plants acclimated to growing conditions that included combinations of blue light and ultraviolet-A (UV-A) radiation, and whether their growing environment affected their photosynthetic capacity during and after a brief period of acute high light (as might happen during an under-canopy sunfleck). Arabidopsis thaliana Landsberg erecta wild-type were compared with mutants lacking functional blue-light-and-UV photoreceptors: phototropin 1PHOT1, cryptochromes (CRY1 and CRY2) and UV RESISTANT LOCUS 8 (uvr8). This was achieved using LED lamps in a controlled environment to create treatments with or without blue light, in a split-plot design with or without UV-A radiation. We compared the accumulation of phenolic compounds under growth conditions and after exposure to 30 minutes of high light at the end of the experiment (46 days), and likewise measured the operational efficiency of photosystem II (φPSII a proxy for photosynthetic performance) and dark-adapted maximum quantum yield (F v /F m to assess PSII damage). Our results indicate that cryptochromes are the main photoreceptors regulating phenolic-compound accumulation in response to blue light and UV-A radiation, and a lack of functional cryptochromes impairs photosynthetic performance under high light. Our findings also reveal a role for UVR8 in accumulating flavonoids in response to a low UV-A dose. Interestingly, phototropin 1 partially-mediated constitutive accumulation of phenolic compounds in the absence of blue light. Low irradiance blue light and UV-A did not improve φPSII and F v /F m upon our acute high light treatment, however CRYs played an important role in ameliorating high-light stress. This article is protected by copyright. All rights reserved.

  10. The response of visible/near infrared absorbance to wood-staining fungi

    Treesearch

    Brian K. Via; Lori G. Eckhardt; Chi-Leung So; Todd F. Shupe; Leslie H. Groom; Michael Stine

    2006-01-01

    The influence of blue-stain fungi [Ophiostoma minus (Hedgcock) H. and P. Sydow and Leptographium serpens (Goid.) Siemaszko] on absorbance at the visible and near infrared wavelengths was investigated. Forty trees were sampled at breast height from longleaf pine (Pinus palustris Mill.). One half of each increment...

  11. Comparative evaluation of methylene blue and demeclocycline for enhancing optical contrast of brain neoplasms

    NASA Astrophysics Data System (ADS)

    Wirth, Dennis J.

    Brain tumors cause significant morbidity and mortality even when benign. Completeness of resection of brain tumors has been associated with better quality of life. However, that is often difficult to accomplish. The goal of this study was to evaluate the feasibility of using contrast enhanced multimodal confocal imaging for intraoperative detection of brain neoplasms. Different types of benign and malignant, primary and metastatic brain tumors, stained with Methylene Blue (MB) as a contrast agent, were imaged. MB is a traditional histopathologic stain that absorbs light in the red spectral range and fluoresces in the near infrared. It is FDA-approved for in vivo staining of human skin and breast tissue. Optical images showed good correlation with histopathology, demonstrating the potential of contrast enhanced multimodal confocal imaging for intraoperative detection of brain neoplasms ex vivo. However, the safety of MB for staining human brain in vivo is questionable. Demeclocycline (DMN), an antibiotic of the tetracycline family, has shown to be effective in differentiating normal from cancerous tissue in various organs. DMN is a fluorophore, which absorbs light in the violet spectral range and has a broad emission band covering green and yellow wavelengths. It is commonly used to treat infection and inflammatory disorders, and could provide a safer alternative to MB. To test this hypothesis, fresh excess human brain tissues were bisected and stained with aqueous solutions of either MB or DMN and then imaged. Reflectance and fluorescence images acquired from tissues stained with the two dyes were compared, and correlated with processed H&E histopathology. Comparison showed similar staining patterns and contrast of diagnostic features in glioblastomas, stained using either MB or DMN. The results show potential of both MB and DMN for the intraoperative detection of microscopic nests of brain neoplasms. Further studies will establish safety and efficacy of these agents in vivo.

  12. Spectrally resolved infrared microscopy and chemometric tools to reveal the interaction between blue light (470nm) and methicillin-resistant Staphylococcus aureus.

    PubMed

    Bumah, Violet V; Aboualizadeh, Ebrahim; Masson-Meyers, Daniela S; Eells, Janis T; Enwemeka, Chukuka S; Hirschmugl, Carol J

    2017-02-01

    Blue light inactivates methicillin-resistant Staphylococcus aureus (MRSA), a Gram-positive antibiotic resistant bacterium that leads to fatal infections; however, the mechanism of bacterial death remains unclear. In this paper, to uncover the mechanism underlying the bactericidal effect of blue light, a combination of Fourier transform infrared (FTIR) spectroscopy and chemometric tools is employed to detect the photoreactivity of MRSA and its distinctive pathway toward apoptosis after treatment. The mechanism of action of UV light and vancomycin against MRSA is also investigated to support the findings. Principal component analysis followed by linear discriminant analysis (PCA- LDA) is employed to reveal clustering of five groups of MRSA samples, namely untreated (control I), untreated and incubated at ambient air (control II), irradiated with 470nm blue light, irradiated with 253.5 UV light, and vancomycin-treated MRSA. Loadings plot from PCA-LDA analysis reveals important functional groups in proteins (1683, 1656, 1596, 1542cm -1 ), lipids (1743, 1409cm -1 ), and nucleic acids region of the spectrum (1060, 1087cm -1 ) that are responsible for the classification of blue light irradiated spectra and control spectra. Cluster vector plots and scores plot reveals that UV light-irradiated spectra are the most biochemically similar to blue light- irradiated spectra; however, some wavenumbers experience a shift. The shifts between blue light and UV light irradiated loadings plot at ν asym PO 2- band (from 1228 to 1238cm -1 ), DNA backbone (from 970 to 966cm -1 ) and base pairing vibration of DNA (from 1717 to 1712cm -1 ) suggest distinctive changes in DNA conformation in response to irradiation. Our findings indicate that irradiation of MRSA with 470nm light induces A-DNA cleavage and that B-DNA is more resistant to damage by blue light. Blue light and UV light treatment of MRSA are complementary and distinct from the known antimicrobial effect of vancomycin. Moreover, it is known that UV-induced cleavage of DNA predominantly targets B-DNA, which is in agreement with the FTIR findings. Overall the results suggest that the combination of light and vancomycin could be a more robust approach in treating MRSA infections. Published by Elsevier B.V.

  13. Modulatory Effect of Monochromatic Blue Light on Heat Stress Response in Commercial Broilers.

    PubMed

    Abdo, Safaa E; El-Kassas, Seham; El-Nahas, Abeer F; Mahmoud, Shawky

    2017-01-01

    In a novel approach, monochromatic blue light was used to investigate its modulatory effect on heat stress biomarkers in two commercial broiler strains (Ross 308 and Cobb 500). At 21 days old, birds were divided into four groups including one group housed in white light, a second group exposed to blue light, a 3rd group exposed to white light + heat stress, and a 4th group exposed to blue light + heat stress. Heat treatment at 33°C lasted for five h for four successive days. Exposure to blue light during heat stress reduced MDA concentration and enhanced SOD and CAT enzyme activities as well as modulated their gene expression. Blue light also reduced the degenerative changes that occurred in the liver tissue as a result of heat stress. It regulated, though variably, liver HSP70 , HSP90 , HSF1 , and HSF3 gene expression among Ross and Cobb chickens. Moreover, the Cobb strain showed better performance than Ross manifested by a significant reduction of rectal temperature in the case of H + B. Furthermore, a significant linear relationship was found between the lowered rectal temperature and the expression of all HSP genes. Generally, the performance of both strains by most assessed parameters under heat stress is improved when using blue light.

  14. Modulatory Effect of Monochromatic Blue Light on Heat Stress Response in Commercial Broilers

    PubMed Central

    Abdo, Safaa E.; Mahmoud, Shawky

    2017-01-01

    In a novel approach, monochromatic blue light was used to investigate its modulatory effect on heat stress biomarkers in two commercial broiler strains (Ross 308 and Cobb 500). At 21 days old, birds were divided into four groups including one group housed in white light, a second group exposed to blue light, a 3rd group exposed to white light + heat stress, and a 4th group exposed to blue light + heat stress. Heat treatment at 33°C lasted for five h for four successive days. Exposure to blue light during heat stress reduced MDA concentration and enhanced SOD and CAT enzyme activities as well as modulated their gene expression. Blue light also reduced the degenerative changes that occurred in the liver tissue as a result of heat stress. It regulated, though variably, liver HSP70, HSP90, HSF1, and HSF3 gene expression among Ross and Cobb chickens. Moreover, the Cobb strain showed better performance than Ross manifested by a significant reduction of rectal temperature in the case of H + B. Furthermore, a significant linear relationship was found between the lowered rectal temperature and the expression of all HSP genes. Generally, the performance of both strains by most assessed parameters under heat stress is improved when using blue light. PMID:28698764

  15. Spectrophotometric Determination of 6-Propyl-2-Thiouracil in Pharmaceutical Formulations Based on Prussian Blue Complex Formation: An Undergraduate Instrumental Analysis Laboratory Experiment

    ERIC Educational Resources Information Center

    Zakrzewski, Robert; Skowron, Monika; Ciesielski, Witold; Rembisz, Zaneta

    2016-01-01

    The laboratory experiment challenges students to determine 6-propyl-2-thiouracil (PTU) based on Prussian blue complex formation. Prussian blue is formed by ferricyanide and Fe(II) ions which are generated in situ from Fe(III) ions reduced by PTU. The absorbance of this product was measured at a wavelength of 840 nm, after a reaction time of 30…

  16. Hubble's View of Little Blue Dots

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-02-01

    The recent discovery of a new type of tiny, star-forming galaxy is the latest in a zoo of detections shedding light on our early universe. What can we learn from the unique little blue dots found in archival Hubble data?Peas, Berries, and DotsGreen pea galaxies identified by citizen scientists with Galaxy Zoo. [Richard Nowell Carolin Cardamone]As telescope capabilities improve and we develop increasingly deeper large-scale surveys of our universe, we continue to learn more about small, faraway galaxies. In recent years, increasing sensitivity first enabled the detection of green peas luminous, compact, low-mass (10 billion solar masses; compare this to the Milky Ways 1 trillion solar masses!) galaxies with high rates of star formation.Not long thereafter, we discovered galaxies that form stars similarly rapidly, but are even smaller only 330 million solar masses, spanning less than 3,000 light-years in size. These tiny powerhouses were termed blueberries for their distinctive color.Now, scientists Debra and Bruce Elmegreen (of Vassar College and IBM Research Division, respectively) report the discovery of galaxies that have even higher star formation rates and even lower masses: little blue dots.Exploring Tiny Star FactoriesThe Elmegreens discovered these unique galaxies by exploring archival Hubble data. The Hubble Frontier Fields data consist of deep images of six distant galaxy clusters and the parallel fields next to them. It was in the archival data for two Frontier Field Parallels, those for clusters Abell 2744 and MAS J0416.1-2403, that the authors noticed several galaxies that stand out as tiny, bright, blue objects that are nearly point sources.Top: a few examples of the little blue dots recently identified in two Hubble Frontier Field Parallels. Bottom: stacked images for three different groups of little blue dots. [Elmegreen Elmegreen 2017]The authors performed a search through the two Frontier Field Parallels, discovering a total of 55 little blue dots with masses spanning 105.8107.4solar masses, specific star formation rates of 10-7.4, and redshifts of 0.5 z 5.4.Exploring these little blue dots, the Elmegreens find that the galaxies sizes tend to be just a few hundred light-years across. They are gas-dominated; gas currently outweighs stars in these galaxies by perhaps a factor of five. Impressively, based on the incredibly high specific star formation rates observed in these little blue dots, they appear to have formed all of their stars in the last 1% of the age of the universe for them.An Origin for Globulars?Log-log plot of star formation rate vs. mass for the three main groups of little blue dots (red, green, and blue markers), a fourth group of candidates with different properties (brown markers), and previously discovered local blueberry galaxies. The three main groups of little blue dots appear to be low-mass analogs of blueberries. [Elmegreen Elmegreen 2017]Intriguingly, this rapid star formation might be the key to answering a long-standing question: where do globular clusters come from? The Elmegreens propose that little blue dots might actually be an explanation for the origin of these orbiting, spherical, low-metallicity clusters of stars.The authors demonstrate that, if the current star formation rates observed in little blue dots were to persist for another 50 Myr before feedback or gas exhaustion halted star production, the little blue dots could form enough stars to create clusters of roughly a million solar masses which is large enough to explain the globular clusters we observe today.If little blue dots indeed rapidly produced such star clusters in the past, the clusters could later be absorbed into the halos of todays spiral and elliptical galaxies, appearing to us as the low-metallicity globular clusters that orbit large galaxies today.CitationDebra Meloy Elmegreen and Bruce G. Elmegreen 2017 ApJL 851 L44. doi:10.3847/2041-8213/aaa0ce

  17. Exposure to Blue Light Increases Subsequent Functional Activation of the Prefrontal Cortex During Performance of a Working Memory Task

    PubMed Central

    Alkozei, Anna; Smith, Ryan; Pisner, Derek A.; Vanuk, John R.; Berryhill, Sarah M.; Fridman, Andrew; Shane, Bradley R.; Knight, Sara A.; Killgore, William D.S.

    2016-01-01

    Study Objectives: Prolonged exposure to blue wavelength light has been shown to have an alerting effect, and enhances performance on cognitive tasks. A small number of studies have also shown that relatively short exposure to blue light leads to changes in functional brain responses during the period of exposure. The extent to which blue light continues to affect brain functioning during a cognitively challenging task after cessation of longer periods of exposure (i.e., roughly 30 minutes or longer), however, has not been fully investigated. Methods: A total of 35 healthy participants (18 female) were exposed to either blue (469 nm) (n = 17) or amber (578 nm) (n = 18) wavelength light for 30 minutes in a darkened room, followed immediately by functional magnetic resonance imaging (fMRI) while undergoing a working memory task (N-back task). Results: Participants in the blue light condition were faster in their responses on the N-back task and showed increased activation in the dorsolateral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex compared to those in the amber control light condition. Furthermore, greater activation within the VLPFC was correlated with faster N-back response times. Conclusions: This is the first study to suggest that a relatively brief, single exposure to blue light has a subsequent beneficial effect on working memory performance, even after cessation of exposure, and leads to temporarily persisting functional brain changes within prefrontal brain regions associated with executive functions. These findings may have broader implication for using blue-enriched light in a variety of work settings where alertness and quick decision-making are important. Citation: Alkozei A, Smith R, Pisner DA, Vanuk JR, Berryhill SM, Fridman A, Shane BR, Knight SA, Killgore WD. Exposure to blue light increases subsequent functional activation of the prefrontal cortex during performance of a working memory task. SLEEP 2016;39(9):1671–1680. PMID:27253770

  18. Daily light integral and day light quality: Potentials and pitfalls of nighttime UV treatments on cucumber powdery mildew.

    PubMed

    Suthaparan, Aruppillai; Solhaug, Knut Asbjørn; Stensvand, Arne; Gislerød, Hans Ragnar

    2017-10-01

    Nighttime ultraviolet (UV) radiation, if applied properly, has a significant potential for management of powdery mildews in many crop species. In this study, the role of growth light duration, irradiance, a combination of both (daily light integral) and light spectral quality (blue or red) on the efficacy of UV treatments against powdery mildew caused by Podosphaera xanthii and the growth performance of cucumber plants was studied in growth chambers. Increasing daily light integral provided by high-pressure sodium lamps (HPS) decreased efficacy of nighttime UV treatments against P. xanthii, but it increased plant growth. Furthermore, the efficacy of nighttime UV decreased when day length was increased from 16 to 20h at a constant daily light integral. The efficacy of nighttime UV increased if red light was applied after UV treatment, showing the possibility of day length extension without reducing the effect of UV. Increasing the dose of blue light during daytime reduced the efficacy of nighttime UV in controlling the disease, whereas blue deficient growth light (<6% of blue) caused UV mediated curling of young leaves. Furthermore, application of blue light after nighttime UV reduced its disease control efficacy. This showed the importance of maintaining a minimum of blue light in the growth light before nighttime UV treatment. Findings from this study showed that optimization of nighttime UV for management of powdery mildew is dependent on the spectral composition of the photosynthetically active radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Protecting the surface of a light absorber in a photoanode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Shu; Lewis, Nathan S.

    A photoanode includes a passivation layer on a light absorber. The passivation layer is more resistant to corrosion than the light absorber. The photoanode includes a surface modifying layer that is location on the passivation layer such that the passivation layer is between the light absorber and the surface modifying layer. The surface modifying layer reduces a resistance of the passivation layer to conduction of holes out of the passivation layer.

  20. Psychophysical Measurements of Luminance Contrast Sensitivity and Color Discrimination with Transparent and Blue-Light Filter Intraocular Lenses.

    PubMed

    da Costa, Marcelo Fernandes; Júnior, Augusto Paranhos; Lottenberg, Claudio Luiz; Castro, Leonardo Cunha; Ventura, Dora Fix

    2017-12-01

    The purpose of this study was to measure luminance contrast sensitivity and color vision thresholdfs in normal subjects using a blue light filter lens and transparent intraocular lens material. Monocular luminance grating contrast sensitivity was measured with Psycho for Windows (version 2.36; Cambridge Research Systems) at 3.0, 6.0, 12.0, 20.0, and 30.0 cycles per degree of visual angle (cpd) in 15 normal subjects (eight female), with a mean age of 21.6 years (SD = 3.8 years). Chromatic discrimination was assessed with the Cambridge colour test (CCT) along the protan, deutan, and tritan color confusion axes. Both tests were performed in a darkened room under two situations: with a transparent lens and with blue light filter lens. Subjective impressions were taken by subjects regarding their visual experience under both conditions. No difference was found between the luminance contrast sensitivity measured with transparent and blue light filter. However, 13/15 (87%) of the subjects reported more comfortable vision with the blue filter. In the color vision test, tritan thresholds were significantly higher for the blue filter compared with the transparent filter (p = 0.003). For protan and deutan thresholds no differences were found. Blue-yellow color vision is impaired with the blue light filter, and no impairment occurs with the transparent filter. No significant differences in thresholds were found in the luminance contrast sensitivity comparing the blue light and transparent filters. The impact of short wavelength light filtering on intrinsically photosensitive retinal ganglion cells is also discussed.

  1. Influences of light on growth, reproduction and hypocrellin production by Shiraia sp. SUPER-H168.

    PubMed

    Gao, Ruijie; Xu, Zhecun; Deng, Huaxiang; Guan, Zhengbing; Liao, Xiangru; Zhao, Ye; Zheng, Xiaohui; Cai, Yujie

    2018-06-11

    Light is a very important signal for fungi since it influences many different physiological responses. The effects of dark or light at different wavelengths on growth, reproduction and hypocrellins of Shiraia sp. SUPER-H168 were studied: dark, white, red, yellow, green, blue and purple. All incubations under different light conditions had significant stimulating effects on aerial hyphae and suppressing effects on hypocrellin biosynthesis compared with dark incubation. Under blue and purple light especially blue light, the colonies with profuse growth of aerial mycelium were formed. Hypocrellin production reached 13.73 mg per dish under dark condition, and decreased to 4.01 mg and 2.83 mg per dish under white and blue light, respectively. Light condition not only influenced hypocrellin production but also influenced the composition of hypocrellins. Four types of hyphae, namely surface, aerial, biofilm and penetrative hyphae, were observed by light microscopy and SEM. This study found that biofilm hyphae was so closely connected with production of secondary metabolites, and hypocrellins were only produced by biofilm hyphae. Light promoted sexual development and inhibited asexual reproduction, especially blue light strongly inhibited asexual development.

  2. Transmission of light in the visible spectrum (400-700 nm) and blue spectrum (360-540 nm) through CAD/CAM polymers.

    PubMed

    Güth, Jan-Frederik; Kauling, Ana Elisa Colle; Ueda, Kazuhiko; Florian, Beuer; Stimmelmayr, Michael

    2016-12-01

    CAD/CAM-fabricated long-term temporary restorations from high-density polymers can be applied for a wide range of indications. Milled from monolithic, mono-colored polymer blocks, the translucency of the material plays an important role for an esthetically acceptable result. The aim of this study was to compare the transmittance through visible light and blue light of CAD CAM polymers to a glass-ceramic material of the same color. Ambarino High-Class (AM), Telio-CAD (TC), Zenotec PMMA (ZT), Cercon base PMMA (CB), CAD Temp (CT), Artbloc Temp (AT), Polycon ae (PS), New Outline CAD (NC), QUATTRO DISK Eco PMMA (GQ), Lava Ultimate (LU), and Paradigm MZ 100 (PA) were employed in this study using the feldspathic glass-ceramic Vita Mark II (MK) as control group. Using a spectrophotometer, the overall light transmittance was measured for each material (n = 40) and was calculated as the integration (t c (λ) dλ [10 -5 ]) of all t c values for the wavelengths of blue light (360-540 nm). Results were compared to previous data of the authors for visible light (400 to 700 nm). Wilcoxon test showed significant differences between the light transmittance of visible and blue light for all materials. CAD/CAM polymers showed different translucency for blue and visible light. This means clinicians may not conclude from the visible translucency of a material to its permeability for blue light. This influences considerations regarding light curing. CAD/CAM polymers need to be luted adhesively; therefore, clinicians should be aware about the amount of blue light passing through a restoration.

  3. Protective effects of bilberry and lingonberry extracts against blue light-emitting diode light-induced retinal photoreceptor cell damage in vitro

    PubMed Central

    2014-01-01

    Background Blue light is a high-energy or short-wavelength visible light, which induces retinal diseases such as age-related macular degeneration and retinitis pigmentosa. Bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea) contain high amounts of polyphenols (anthocyanins, resveratrol, and proanthocyanidins) and thus confer health benefits. This study aimed to determine the protective effects and mechanism of action of bilberry extract (B-ext) and lingonberry extract (L-ext) and their active components against blue light-emitting diode (LED) light-induced retinal photoreceptor cell damage. Methods Cultured murine photoreceptor (661 W) cells were exposed to blue LED light following treatment with B-ext, L-ext, or their constituents (cyanidin, delphinidin, malvidin, trans-resveratrol, and procyanidin B2). 661 W cell viability was assessed using a tetrazolium salt (WST-8) assay and Hoechst 33342 nuclear staining, and intracellular reactive oxygen species (ROS) production was determined using CM-H2DCFDA after blue LED light exposure. Activation of p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor-kappa B (NF-κB), and LC3, an ubiquitin-like protein that is necessary for the formation of autophagosomes, were analyzed using Western blotting. Caspase-3/7 activation caused by blue LED light exposure in 661 W cells was determined using a caspase-3/7 assay kit. Results B-ext, L-ext, NAC, and their active components improved the viability of 661 W cells and inhibited the generation of intracellular ROS induced by blue LED light irradiation. Furthermore, B-ext and L-ext inhibited the activation of p38 MAPK and NF-κB induced by blue LED light exposure. Finally, B-ext, L-ext, and NAC inhibited caspase-3/7 activation and autophagy. Conclusions These findings suggest that B-ext and L-ext containing high amounts of polyphenols exert protective effects against blue LED light-induced retinal photoreceptor cell damage mainly through inhibition of ROS production and activation of pro-apoptotic proteins. PMID:24690313

  4. Light-dependent reversion gravitropism of the moss Pohlia nutans

    NASA Astrophysics Data System (ADS)

    Khorkavtsiv, O.

    Plants have evolved highly sensitive mechanisms adapting their growth to the environmental conditions. Light and gravity are critical importance factors, which exerts an essential and specific influence on the determination of the growth direction and regulation of the early stages of plants ontogeny, sometimes effects of these factors being independent. The negative gravitropic resp onse of moss protonemata causes their spatial orientation towards light, which in its turn is the source of photosynthetic efficiency and phototropism. The gravitropism system does not function independently of other sensory response systems in plants. The competence of protonemata to gravity might be altered and the gravitropic response be reversed from negative to positive by light. It has been shown that response of apical cells to light depend on wavelenght: red light (max = 660 nm) represses the gravitropism and blue ( = 450 nm) inverts the protonemal gravitropism. Light, has also been shown for seed plants to modulate gravitropism of roots and stems through the action of phy B in red/far-red reversible way and by phy A in a non-reversible, very - low-fluence response (Hangarter, 1997). In P. nutans blue light reversed the gravitropism protonemal filaments. The mean angle after 24 h blue irradiation was 83 0, like that of negative gravitropic protonemata in darkness. We compared the effect of blue light on gravitropism of chloronemal filaments of Funaria hygrometrica having very low sensitivity to gravity. After action of blue light, however, the positive gravitropism of F. hygrometrica chloronemata was fairly high - 370 . Among blue light spectrum the highest reversion effectiveness in P. nutans had the UV light ( = 350 nm) initiated bends in 90% of protonemata. If a far-red pulse (5 min per h) was added to the blue/UV the gravitropic growth of protonemata resembled that in the dark control. Phytochrome has maxima of absorption in blue and red spectrum region and in our experiments far-red pulse removed the action of the blue/UV light. This indicates to a participation of phytochrome in changing direction of gravitropism. Since red light inhibited the gravitropism it may be suggested that phytochrome is not directly responsible for positive direction of gravitropism. Probably phytochrome only modifies the activity of other receptors or signal systems participating in realization of the gravitropic reaction. Moveover, the competence of apical cells protonemata to grow in opposite directions might be genetically controlled via blue-light - dependent repressor proteins (Lamparter et al., 1998).

  5. Blue-Light Filtering Spectacle Lenses: Optical and Clinical Performances

    PubMed Central

    2017-01-01

    Purposes To evaluate the optical performance of blue-light filtering spectacle lenses and investigate whether a reduction in blue light transmission affects visual performance and sleep quality. Methods Experiment 1: The relative changes in phototoxicity, scotopic sensitivity, and melatonin suppression of five blue-light filtering plano spectacle lenses were calculated based on their spectral transmittances measured by a spectrophotometer. Experiment 2: A pseudo-randomized controlled study was conducted to evaluate the clinical performance of two blue-light filtering spectacle lenses (BF: blue-filtering anti-reflection coating; BT: brown-tinted) with a regular clear lens (AR) serving as a control. A total of eighty computer users were recruited from two age cohorts (young adults: 18–30 yrs, middle-aged adults: 40–55 yrs). Contrast sensitivity under standard and glare conditions, and colour discrimination were measured using standard clinical tests. After one month of lens wear, subjective ratings of lens performance were collected by questionnaire. Results All tested blue-light filtering spectacle lenses theoretically reduced the calculated phototoxicity by 10.6% to 23.6%. Although use of the blue-light filters also decreased scotopic sensitivity by 2.4% to 9.6%, and melatonin suppression by 5.8% to 15.0%, over 70% of the participants could not detect these optical changes. Our clinical tests revealed no significant decrease in contrast sensitivity either with (95% confidence intervals [CI]: AR–BT [–0.05, 0.05]; AR–BF [–0.05, 0.06]; BT–BF [–0.06, 0.06]) or without glare (95% CI: AR–BT [–0.01, 0.03]; AR–BF [–0.01, 0.03]; BT–BF [–0.02, 0.02]) and colour discrimination (95% CI: AR–BT [–9.07, 1.02]; AR–BF [–7.06, 4.46]; BT–BF [–3.12, 8.57]). Conclusion Blue-light filtering spectacle lenses can partially filter high-energy short-wavelength light without substantially degrading visual performance and sleep quality. These lenses may serve as a supplementary option for protecting the retina from potential blue-light hazard. Trial Registration ClinicalTrials.gov NCT02821403 PMID:28045969

  6. Synthesis and characterization of Sn-doped hematite as visible light photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Zhiqin; School of Materials Science and Engineering, Pan Zhihua University, Pan Zhihua 617000; Qin, Mingli, E-mail: qinml@mater.ustb.edu.cn

    2016-05-15

    Highlights: • Sn-doped hematite nanoparticles are prepared by SCS in one step. • The Sn doping have the ability to inhibit particle growth of hematite. • Sn can enhance visible light harvesting and e{sup −}/h{sup +} separation. • Sn-doped hematite degrades MB under visible light effectively. • The products with 5 mol% Sn have the highest photocatalytic activity. - Abstract: Sn-doped hematite nanoparticles are prepared by solution combustion synthesis. The products are characterized with various analytical and spectroscopic techniques to determine their structural, morphological, light absorption and photocatalytic properties. The results reveal that all the samples consist of nanocrystalline hematitemore » with mesoporous structures, and Sn has the ability to inhibit the growth of hematite particle. Compared to pure hematite, the doped hematite samples with appropriate amount of Sn show better activities for degradation of methylene blue under visible light irradiation. The highest activity is observed for 5% Sn doped hematite and this product has long-term stability and no selectivity for dye degradation. The enhanced performance of 5% Sn doped hematite is ascribed to the smaller particle size, increased ability to absorb in visible light, efficient charge separation as well as improved e{sup −} transfer associated with the effects of appropriate amount of Sn doped sample.« less

  7. NASA Galaxy Mission Celebrates Sixth Anniversary

    NASA Image and Video Library

    2009-04-28

    NASA Galaxy Evolution Explorer Mission celebrates its sixth anniversary studying galaxies beyond our Milky Way through its sensitive ultraviolet telescope, the only such far-ultraviolet detector in space. The mission studies the shape, brightness, size and distance of distant galaxies across 10 billion years of cosmic history, giving scientists a wealth of data to help us better understand the origins of the universe. One such object is pictured here, the galaxy NGC598, more commonly known as M33. This image is a blend of the Galaxy Evolution Explorer's M33 image and another taken by NASA's Spitzer Space Telescope. M33, one of our closest galactic neighbors, is about 2.9 million light-years away in the constellation Triangulum, part of what's known as our Local Group of galaxies. Together, the Galaxy Evolution Explorer and Spitzer can see a broad spectrum of sky. Spitzer, for example, can detect mid-infrared radiation from dust that has absorbed young stars' ultraviolet light. That's something the Galaxy Evolution Explorer cannot see. This combined image shows in amazing detail the beautiful and complicated interlacing of the heated dust and young stars. In some regions of M33, dust gathers where there is very little far-ultraviolet light, suggesting that the young stars are obscured or that stars further away are heating the dust. In some of the outer regions of the galaxy, just the opposite is true: There are plenty of young stars and very little dust. Far-ultraviolet light from young stars glimmers blue, near-ultraviolet light from intermediate age stars glows green, near-infrared light from old stars burns yellow and orange, and dust rich in organic molecules burns red. The small blue flecks outside the spiral disk of M33 are most likely distant background galaxies. This image is a four-band composite that, in addition to the two ultraviolet bands, includes near infrared as yellow/orange and far infrared as red. http://photojournal.jpl.nasa.gov/catalog/PIA11999

  8. The effect of RGB monochromatic and polychromatic LED lighting on growth performance, behavior, and development of broilers

    NASA Astrophysics Data System (ADS)

    Morrill, Waldirene B. B.; Barnabé, Janice M. C.; da Silva, Tatiana P. N.; Pandorfi, Héliton; Gouveia-Neto, Artur S.; Souza, Wellington S.

    2014-03-01

    Growth performance, behavior, and development of broilers reared under red, green, and blue monochromatic and/or multicolor LED-based illuminants is investigated. The lighting treatments were performed on a 24h lighting basis during six weeks. Monochromatic red(630 nm), green(520 nm), and blue(460 nm), and simultaneous blue-green, and whitelight housing illumination was employed. Bodyweight, food consumption, and behavior were monitored and compared amongst light treatments. The behavioral data showed that broilers reared under green lighting presented the lowest respiratory rate (87 mov. min-1) while those under red lighting presented the highest (96 mov. min-1). Results also showed that broilers under blue and/or green monochromatic illumination exhibited up to 6%, and 8.9 % increase in final bodyweight when compared to those under red or white-light, respectively. The highest feed intake, and lowest body weight gain was observed in broilers reared under blue and red illumination, respectively.

  9. Exposure to Blue Light Increases Subsequent Functional Activation of the Prefrontal Cortex During Performance of a Working Memory Task.

    PubMed

    Alkozei, Anna; Smith, Ryan; Pisner, Derek A; Vanuk, John R; Berryhill, Sarah M; Fridman, Andrew; Shane, Bradley R; Knight, Sara A; Killgore, William D S

    2016-09-01

    Prolonged exposure to blue wavelength light has been shown to have an alerting effect, and enhances performance on cognitive tasks. A small number of studies have also shown that relatively short exposure to blue light leads to changes in functional brain responses during the period of exposure. The extent to which blue light continues to affect brain functioning during a cognitively challenging task after cessation of longer periods of exposure (i.e., roughly 30 minutes or longer), however, has not been fully investigated. A total of 35 healthy participants (18 female) were exposed to either blue (469 nm) (n = 17) or amber (578 nm) (n = 18) wavelength light for 30 minutes in a darkened room, followed immediately by functional magnetic resonance imaging (fMRI) while undergoing a working memory task (N-back task). Participants in the blue light condition were faster in their responses on the N-back task and showed increased activation in the dorsolateral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex compared to those in the amber control light condition. Furthermore, greater activation within the VLPFC was correlated with faster N-back response times. This is the first study to suggest that a relatively brief, single exposure to blue light has a subsequent beneficial effect on working memory performance, even after cessation of exposure, and leads to temporarily persisting functional brain changes within prefrontal brain regions associated with executive functions. These findings may have broader implication for using blue-enriched light in a variety of work settings where alertness and quick decision-making are important. © 2016 Associated Professional Sleep Societies, LLC.

  10. Blue lighting accelerates post-stress relaxation: Results of a preliminary study.

    PubMed

    Minguillon, Jesus; Lopez-Gordo, Miguel Angel; Renedo-Criado, Diego A; Sanchez-Carrion, Maria Jose; Pelayo, Francisco

    2017-01-01

    Several authors have studied the influence of light on both human physiology and emotions. Blue light has been proved to reduce sleepiness by suppression of melatonin secretion and it is also present in many emotion-related studies. Most of these have a common lack of objective methodology since results and conclusions are based on subjective perception of emotions. The aim of this work was the objective assessment of the effect of blue lighting in post-stress relaxation, in comparison with white lighting, by means of bio-signals and standardized procedures. We conducted a study in which twelve healthy volunteers were stressed and then performed a relaxation session within a chromotherapy room with blue (test group) or white (control group) lighting. We conclude that the blue lighting accelerates the relaxation process after stress in comparison with conventional white lighting. The relaxation time decreased by approximately three-fold (1.1 vs. 3.5 minutes). We also observed a convergence time (3.5-5 minutes) after which the advantage of blue lighting disappeared. This supports the relationship between color of light and stress, and the observations reported in previous works. These findings could be useful in clinical and educational environments, as well as in daily-life context and emerging technologies such as neuromarketing. However, our study must be extended to draw reliable conclusions and solid scientific evidence.

  11. Blue lighting accelerates post-stress relaxation: Results of a preliminary study

    PubMed Central

    Lopez-Gordo, Miguel Angel; Renedo-Criado, Diego A.; Sanchez-Carrion, Maria Jose; Pelayo, Francisco

    2017-01-01

    Several authors have studied the influence of light on both human physiology and emotions. Blue light has been proved to reduce sleepiness by suppression of melatonin secretion and it is also present in many emotion-related studies. Most of these have a common lack of objective methodology since results and conclusions are based on subjective perception of emotions. The aim of this work was the objective assessment of the effect of blue lighting in post-stress relaxation, in comparison with white lighting, by means of bio-signals and standardized procedures. We conducted a study in which twelve healthy volunteers were stressed and then performed a relaxation session within a chromotherapy room with blue (test group) or white (control group) lighting. We conclude that the blue lighting accelerates the relaxation process after stress in comparison with conventional white lighting. The relaxation time decreased by approximately three-fold (1.1 vs. 3.5 minutes). We also observed a convergence time (3.5–5 minutes) after which the advantage of blue lighting disappeared. This supports the relationship between color of light and stress, and the observations reported in previous works. These findings could be useful in clinical and educational environments, as well as in daily-life context and emerging technologies such as neuromarketing. However, our study must be extended to draw reliable conclusions and solid scientific evidence. PMID:29049332

  12. Plasma Discharge with Different Electrode Diameters for Reducing Methylene Blue Concentration

    NASA Astrophysics Data System (ADS)

    Rasyidah, H.; Kusumandari; Saraswati, T. E.; Anwar, M.

    2018-03-01

    Recently, plasma technology has gained attention since it overcomes the shortcomings of water treatment. This research studies the effect of electrode diameter of plasma discharge reactors on the concentration reduction of methylene blue as an organic solution. The plasma discharge reactor was built from a pair of stainless needle electrodes connected with high-AC voltage. The electrodes were placed approximately 2 mm above the solution and stirred at 5.5 rpm. The diameters of the electrodes were 2, 3.2 and 4 mm. The times for plasma treatment were set at 2, 4, 6, 8 and 10 min. Absorbance, temperature and pH of the solution were measured to know the effects of electrode diameter of the plasma reactor. Absorbance and pH significantly decreased after plasma treatment. The best of the absorbance reduction were obtained when the sample was treated under plasma discharge using the smallest diameter electrodes for 8-10 min.

  13. Stomatal Responses to Light and Drought Stress in Variegated Leaves of Hedera helix1

    PubMed Central

    Aphalo, Pedro J.; Sánchez, Rodolfo A.

    1986-01-01

    Direct and indirect mechanisms underlying the light response of stomata were studied in variegated leaves of the juvenile phase of Hedera helix L. Dose response curves of leaf conductance were measured with blue and red light in leaves kept in normal or in an inverted position. In the green portions of the leaves, the sensitivity to blue light was nearly 100 times higher than that to red light. No response to red light was observed in the white portions of the leaves up to 90 micromoles per square meter per second. Red light indirectly affected leaf conductance while blue light had a direct effect. Leaf conductance was found to be more sensitive to drought stress and showed a more persistent aftereffect in the white portions of the leaves. A differential effect of drought stress on the responses to blue and red light was also observed. PMID:16664900

  14. Stomatal Responses to Light and Drought Stress in Variegated Leaves of Hedera helix.

    PubMed

    Aphalo, P J; Sánchez, R A

    1986-07-01

    Direct and indirect mechanisms underlying the light response of stomata were studied in variegated leaves of the juvenile phase of Hedera helix L. Dose response curves of leaf conductance were measured with blue and red light in leaves kept in normal or in an inverted position. In the green portions of the leaves, the sensitivity to blue light was nearly 100 times higher than that to red light. No response to red light was observed in the white portions of the leaves up to 90 micromoles per square meter per second. Red light indirectly affected leaf conductance while blue light had a direct effect. Leaf conductance was found to be more sensitive to drought stress and showed a more persistent aftereffect in the white portions of the leaves. A differential effect of drought stress on the responses to blue and red light was also observed.

  15. Exposure to blue wavelength light modulates anterior cingulate cortex activation in response to 'uncertain' versus 'certain' anticipation of positive stimuli.

    PubMed

    Alkozei, Anna; Smith, Ryan; Killgore, William D S

    2016-03-11

    Blue wavelength light has been used as an effective treatment for some types of mood disorders and circadian rhythm related sleep problems. We hypothesized that acute exposure to blue wavelength light would directly affect the functioning of neurocircuity implicated in emotion regulation (i.e., ventromedial prefrontal cortex, amygdala, insula, and anterior cingulate cortex [ACC]) during 'certain' and 'uncertain' anticipation of negative and positive stimuli. Thirty-five healthy adults were randomized to receive a thirty-minute exposure to either blue (active) or amber (placebo) light, immediately followed by an emotional anticipation task during functional magnetic resonance imaging (fMRI). In contrast to placebo, participants in the blue light group showed significantly reduced activation within the rostral ACC during 'uncertain' anticipation (i.e., uncertainty regarding whether a positive or negative stimulus would be shown) in comparison to 'certain' anticipation of a positive stimulus. These findings may be explicable in terms of interactions between blue light exposure and the influence of specific neuromodulators on ACC-mediated decision-making mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Progressive myopia or hyperopia can be induced in chicks and reversed by manipulation of the chromaticity of ambient light.

    PubMed

    Foulds, Wallace S; Barathi, Veluchamy A; Luu, Chi D

    2013-12-09

    To determine whether progressive ametropia can be induced in chicks and reversed by manipulation of the chromaticity of ambient light. One-day-old chicks were raised in red light (90% red, 10% yellow-green) or in blue light (85% blue, 15% green) with a 12 hour on/off cycle for 14 to 42 days. Refraction was determined by streak retinoscopy, and by automated infrared photoretinoscopy and ocular biometry by A-scan ultrasonography. Red light induced progressive myopia (mean refraction ± SD at 28 days, -2.83 ± 0.25 diopters [D]). Progressive hyperopia was induced by blue light (mean refraction at 28 days, +4.55 ± 0.21 D). The difference in refraction between the groups was highly significant at P < 0.001. Induced myopia or hyperopia was axial as confirmed by ultrasound biometry. Myopia induced by 21 days of red light (-2.21 ± 0.21 D) was reversed to hyperopia (+2.50 ± 0.29 D) by subsequent 21 days of blue light. Hyperopia induced by 21 days of blue light (+4.21 ± 0.19 D) was reversed to myopia (-1.23 ± 0.12 D) by 21 days of red light. Rearing chicks in red light caused progressive myopia, while rearing in blue light caused progressive hyperopia. Light-induced myopia or hyperopia in chicks can be reversed to hyperopia or myopia, respectively, by an alteration in the chromaticity of ambient light. Manipulation of chromaticity may be applicable to the management of human childhood myopia.

  17. Effects of hydroxycinnamic acids on blue color expression of cyanidin derivatives and their metal chelates.

    PubMed

    Sigurdson, G T; Robbins, R J; Collins, T M; Giusti, M M

    2017-11-01

    Mechanisms to recreate many anthocyanin blue hues in nature are not fully understood, but interactions with metal ions and phenolic compounds are thought to play important roles. Bluing effects of hydroxycinnamic acids on cyanidin and chelates were investigated by addition of the acids to triglycosylated cyanidin (0-50×[anthocyanin]) and by comparison to hydroxycinnamic acid monoacylated and diacylated Cy fractions by spectrophotometry (380-700nm) and colorimetry in pH 5-8. With no metal ions, λ max and absorbance was greatest for cyanidin with diacylation>monoacylation>increasing [acids]. Hydroxycinnamic acids added to cyanidin solutions weakly impacted color characteristics (ΔE<5); while acylation (covalent acid attachment) resulted in ΔE 5-15. Triglycosylated cyanidin expressed blue color (pH 7-8), suggesting glycosylation pattern also plays a role. Al 3+ chelation increased absorbance 2-42× and λ max ≳40nm (pH 5-6) compared to added hydroxycinnamic acids. Metal chelation and aromatic diacylation resulted in the most blue hues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Measurements of striae in CR+ doped YAG laser crystals

    NASA Astrophysics Data System (ADS)

    Cady, Fredrick M.

    1994-12-01

    Striations in Czochralski (CZ) grown crystals have been observed in materials such as GaAs, silicon, photorefractive crystals used for data storage, potassium titanyl phosphate crystals and LiNbO3. Several techniques have been used for investigating these defects including electron microscopy, laser scanning tomography, selective photoetching, X-ray diffuse scattering, interference orthoscopy, laser interferometry and micro-Fourier transform infrared spectroscopy mapping. A 2mm thick sample of the material to be investigated is illuminated with light that is absorbed and non-absorbed by the ion concentration to be observed. The back surface of the sample is focused onto a solid-state image detector and images of the input beam and absorbed (and diffracted) beams are captured at two wavelengths. The variation of the coefficient of absorption asa function of distance on the sample can be derived from these measurements. A Big Sky Software Beamcode system is used to capture and display images. Software has been written to convert the Beamcode data files to a format that can be imported into a spreadsheet program such as Quatro Pro. The spreadsheet is then used to manipulate and display data. A model of the intensity map of the striae collected by the imaging system has been proposed and a data analysis procedure derived. From this, the variability of the attenuation coefficient alpha can be generated. Preliminary results show that alpha may vary by a factor of four or five over distances of 100 mu m. Potential errors and problems have been discovered and additional experiments and improvements to the experimental setup are in progress and we must now show that the measurement techniques and data analysis procedures provide 'real' information. Striae are clearly visible at all wavelengths including white light. Their basic spatial frequency does not change radically, at least when changing from blue to green to white light. Further experimental and theoretical work can be done to improve the data collection techniques and to verify the data analysis procedures.

  19. Astrobiological implications of dim light phototrophy in deep-sea red clays.

    PubMed

    Das, Anindita; Singh, Tanya; LokaBharathi, P A; Dhakephalkar, Prashant K; Mallik, Sweta; Kshirsagar, Pranav R; Khadge, N H; Nath, B Nagender; Bhattacharya, Satadru; Dagar, Aditya Kumar; Kaur, Prabhjot; Ray, Dwijesh; Shukla, Anil D; Fernandes, Christabelle E G; Fernandes, Sheryl O; Thomas, Tresa Remya A; S S, Mamatha; Mourya, Babu Shashikant; Meena, Ram Murti

    2017-02-01

    Red clays of Central Indian Basin (CIB) under influence of trace of Rodriguez Triple Junction exhibited chemoautotrophy, low temperature hydrothermal alterations and photoautotrophic potential. Seamount flank TVBC-08, hosting such signatures revealed dominance of aerobic anoxygenic phototroph Erythrobacter, with 93% of total 454 pyrosequencing tags. Subsequently, enrichments for both aerobic (Erythrobacter) and anaerobic anoxygenic phototrophs (green and purple sulphur bacteria) under red and white LED light illumination, with average irradiance 30.66Wm -2 , were attempted for three red-clay sediment cores. Successful enrichments were obtained after incubation for c.a. 120 days at 4°± 2°C and 25°± 2°C, representing ambient psychrophilic and low temperature hydrothermal alteration conditions respectively. During hydrothermal cooling, a microbial succession from anaerobic chemolithotrophy to oxygenic photoautotrophy through anaerobic/aerobic anoxygenic phototrophic microbes is indicated. Spectral absorbance patterns of the methanol extracted cell pellets showed peaks corresponding to metal sulphide precipitations, the Soret band of chlorosome absorbance by photosystem II and absence of peaks at Qy transition band. Dendritic nano-structures of metal sulphides are common in these sediments and are comparable with other sulphidic paleo-marine Martian analogues. Significant blue and redshifts have been observed for the experimental samples relative to the un-inoculated medium. These observations indicate the propensity of metal-sulphide deposits contributing to chemiluminiscence supporting the growth of phototrophs at least partially, in the otherwise dark abyss. The effects of other geothermal heat and light sources are also under further consideration. The potential of phototrophic microbial cells to exhibit Doppler shift in absorbance patterns is significant towards understanding planetary microbial habitability. Planetary desiccation could considerably influence Doppler effects and consequently spectral detection techniques exo-planetary microbial life. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  20. BLUE STRAGGLERS IN GLOBULAR CLUSTER 47 TUCANAE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The core of globular cluster 47 Tucanae is home to many blue stragglers, rejuvenated stars that glow with the blue light of young stars. A ground-based telescope image (on the left) shows the entire crowded core of 47 Tucanae, located 15,000 light-years away in the constellation Tucana. Peering into the heart of the globular cluster's bright core, the Hubble Space Telescope's Wide Field and Planetary Camera 2 separated the dense clump of stars into many individual stars (image on right). Some of these stars shine with the light of old stars; others with the blue light of blue stragglers. The yellow circles in the Hubble telescope image highlight several of the cluster's blue stragglers. Analysis for this observation centered on one massive blue straggler. Astronomers theorize that blue stragglers are formed either by the slow merger of stars in a double-star system or by the collision of two unrelated stars. For the blue straggler in 47 Tucanae, astronomers favor the slow merger scenario. This image is a 3-color composite of archival Hubble Wide Field and Planetary Camera 2 images in the ultraviolet (blue), blue (green), and violet (red) filters. Color tables were assigned and scaled so that the red giant stars appear orange, main-sequence stars are white/green, and blue stragglers are appropriately blue. The ultraviolet images were taken on Oct. 25, 1995, and the blue and violet images were taken on Sept. 1, 1995. Credit: Rex Saffer (Villanova University) and Dave Zurek (STScI), and NASA

  1. The potential influence of LED lighting on mental illness.

    PubMed

    Bauer, Michael; Glenn, Tasha; Monteith, Scott; Gottlieb, John F; Ritter, Philipp S; Geddes, John; Whybrow, Peter C

    2018-02-01

    Two recent scientific breakthroughs may alter the treatment of mental illness, as discussed in this narrative review. The first was the invention of white light-emitting diodes (LEDs), which enabled an ongoing, rapid transition to energy-efficient LEDs for lighting, and the use of LEDs to backlight digital devices. The second was the discovery of melanopsin-expressing photosensitive retinal ganglion cells, which detect environmental irradiance and mediate non-image forming (NIF) functions including circadian entrainment, melatonin secretion, alertness, sleep regulation and the pupillary light reflex. These two breakthroughs are interrelated because unlike conventional lighting, white LEDs have a dominant spectral wavelength in the blue light range, near the peak sensitivity for the melanopsin system. Pertinent articles were identified. Blue light exposure may suppress melatonin, increase alertness, and interfere with sleep in young, healthy volunteers and in animals. Areas of concern in mental illness include the influence of blue light on sleep, other circadian-mediated symptoms, prescribed treatments that target the circadian system, measurement using digital apps and devices, and adolescent sensitivity to blue light. While knowledge in both fields is expanding rapidly, future developments must address the potential impact of blue light on NIF functions for healthy individuals and those with mental illness.

  2. Comparative study of the bactericidal effects of 5-aminolevulinic acid with blue and red light on Propionibacterium acnes.

    PubMed

    Choi, Myoung-Soon; Yun, Sook Jung; Beom, Hee Ju; Park, Hyoung Ryun; Lee, Jee-Bum

    2011-07-01

    Propionibacterium acnes naturally produces endogenous porphyrins that are composed of coproporphyrin III (CPIII) and protoporphyrin IX (PpIX). Red light alone and photodynamic therapy (PDT) improve acne vulgaris clinically, but there remains a paucity of quantitative data that directly examine the bactericidal effects that result from PDT on P. acnes itself in vitro. The purpose of this study was to measure the difference of bactericidal effects of 5-aminolevulinic acid (ALA)-PDT with red and blue light on P. acnes. P. acnes were cultured under anaerobic conditions and divided into two groups (ALA-treated group and control group), and were then illuminated with blue (415 nm) and red (635 nm) lights using a light-emitting diode (LED). The cultured P. acnes were killed with both blue and red LED light illumination. The efficacy increased with larger doses of light and a greater number of consecutive illuminations. We demonstrated that red light phototherapy was less effective for the eradication of P. acnes than blue light phototherapy without the addition of ALA. However, pretreatment with ALA could enhance markedly the efficacy of red light phototherapy. © 2010 Japanese Dermatological Association.

  3. Light-induced fluorescence changes in Phycomyces: evidence for blue light-receptor associated flavo-semiquinones.

    PubMed

    Galland, Paul; Tölle, Nadja

    2003-10-01

    Light-induced fluorescence changes (LIFCs) were detected in sporangiophores of the blue-light-sensitive fungus Phycomyces blakesleeanus (Burgeff). The LIFCs can be utilized as a spectrophotometric assay for blue-light photoreceptors and for the in vivo characterization of their photochemical primary reactions. Blue-light irradiation of sporangiophores elicited a transient decrease and subsequent regeneration of flavin-like fluorescence emission at 525 nm. The signals recovered in darkness in about 120 min. In contrast to blue light, near-UV (370 nm) caused an increase in the fluorescence emission at 525 nm. Because the LIFCs were altered in a light-insensitive madC mutant with a defective photoreceptor, the fluorescence changes must be associated with early photochemical events of the transduction chain. Action spectra for the fluorescence changes at 525 nm showed major peaks near 470 and 600 nm. Double-pulse experiments involving two consecutive pulses of either blue and near-UV, blue and red, or near-UV and red showed that the responses depended on the sequence in which the different wavelengths were applied. The results indicate a blue-light receptor with intermediates in the near-UV, blue and red spectral regions. We explain the results in the framework of a general model, in which the three redox states of the flavin photoreceptor, the oxidized flavin (Fl), the flavo-semiquinone (FlH*), and the flavo-hydroquinone (FlH2) are each acting as chromophores with their own characteristic photochemical primary reactions. These consist of the photoreduction of the oxidized flavin generating semiquinone, the photoreduction of the semiquinone generating hydroquinone, and the photooxidation of the flavo-hydroquinone regenerating the pool of oxidized flavins. The proposed mechanism represents a photocycle in which two antagonistic photoreceptor forms, Fl and FlH2, determine the pool size of the biological effector molecule, the flavo-semiquinone. The redox changes that are associated with the photocycle are maintained by redox partners, pterins, that function in the near-UV as secondary chromophores.

  4. Hot Dust Obscured Galaxies with Excess Blue Light: Dual AGN or Single AGN Under Extreme Conditions?

    NASA Astrophysics Data System (ADS)

    Assef, R. J.; Walton, D. J.; Brightman, M.; Stern, D.; Alexander, D.; Bauer, F.; Blain, A. W.; Diaz-Santos, T.; Eisenhardt, P. R. M.; Finkelstein, S. L.; Hickox, R. C.; Tsai, C.-W.; Wu, J. W.

    2016-03-01

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (I) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (II) a second unobscured AGN in the system; or (III) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13-050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M⊙ yr-1. Deep polarimetry observations could confirm the reflection hypothesis.

  5. HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assef, R. J.; Diaz-Santos, T.; Walton, D. J.

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGsmore » that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M{sub ⊙} yr{sup −1}. Deep polarimetry observations could confirm the reflection hypothesis.« less

  6. Retinal Effects Of Blue Light Exposure

    NASA Astrophysics Data System (ADS)

    Ham, William T.; Mueller, Harold A.; Ruffolo, J. J.

    1980-10-01

    Recent research has shown that blue light exposure is an important factor in certain types of retinal injury. The mammalian ocular media transmits the spectral band 400-1400 nm to the retina. The short wavelengths (400-550 nm) produce a photochemical or actinic type of damage, while the longer wavelengths (550-1400 nm) produce thermal damage. Distinction between the two types of retinal damage are discussed briefly and the importance of the blue light effect for solar retinitis and eclipse blindness is emphasized. The significance of blue light retinal injury is summarized for various environmental and occupational exposures.

  7. Combatant eye protection: an introduction to the blue light hazard

    NASA Astrophysics Data System (ADS)

    Lattimore, Morris R.

    2016-05-01

    Emerging evidence of metabolic vulnerability to visible blue light is vitally important, as it is indicative of a scalable threshold effect. Added stressors (e.g., increased altitude or contact lens wear) could shift the wavelength effects toward a more damaging clinical picture. Recent reports have indicated rod photo-pigment damage resulting from solar blue-light exposures, adversely affecting unaided night vision, a militarily important performance decrement. The activation wavelength for the daily synchronous setting of the Circadian Clock, which regulates the synchronization of all hormonal and organ systems throughout the body, falls within this blue light perceptual range.

  8. Age-related adaptive responses of mitochondria of the retinal pigment epithelium to the everyday blue LED lighting.

    PubMed

    Serezhnikova, N B; Pogodina, L S; Lipina, T V; Trofimova, N N; Gurieva, T S; Zak, P P

    2017-07-01

    The effect of everyday blue light (λ = 440-460 nm) on mitochondria of the retinal pigment epithelium of different age groups of Japanese quail was studied using electron microscopy, morphometric methods, and biochemical analysis. We have found a significant increase in the number of mitochondria, including those modified, mainly in young birds. In addition, cell metabolic activity increased in response to blue lighting. These changes are assumed to reflect an adaptive response of mitochondria aimed at neutralizing the phototoxic effect of blue light caused by accumulation of lipofuscin granules.

  9. Rapid Suppression of Growth by Blue Light 1

    PubMed Central

    Cosgrove, Daniel J.; Green, Paul B.

    1981-01-01

    The mechanism of the rapid inhibition of hypocotyl elongation by blue light was investigated in cucumber (Cucumis sativus L.) and sunflower (Helianthus annuus L.) seedlings by measuring the changes in turgor during the response. A special device, based on the resonance frequency principle, was built which permitted simultaneous and continuous measurements of both tissue rigidity (turgor) and growth rate on a single intact hypocotyl. The large decrease in growth rate following blue irradiation was consistently accompanied by a small increase in resonance frequency. This result indicates that blue light inhibits growth by decreasing the yielding properties of the cell walls, resulting in a slight rise in turgor because of the coupling between growth rate and turgor. The nature of the blue-light inhibition was further studied by measuring the influence of light dose and temperature on the time course of inhibition (lag-time, half-time of inhibition, and amount of inhibition) with the aid of a microcomputer-based system for measuring growth rate and for controlling light duration and energy. The light dose has no influence on either the lag-time or the half-time of inhibition, but strongly affects the amount of inhibition. In contrast, a 10°C drop in temperature (from 30 to 20°C) lengthened the lag-time of the blue-light response, but did not significantly affect the half-time or the per cent inhibition by blue light. The half-time for changes in hypocotyl length (induced by applying a hydrostatic pressure to the roots or to the cut end of seedlings with roots excised) was found to be the same as the half-time of the blue-light inhibition (15 to 25 seconds in cucumber; 90 to 150 seconds in sunflower). These results support the idea that blue light, after a fixed lag period, induces an immediate decrease in the yielding properties of the cell walls. The growth rate subsequently decreases with a half-time that depends on the time required for cell turgor pressures to reach their new steady-state values. PMID:16662124

  10. Monosodium Glutamate Analysis in Meatballs Soup

    NASA Astrophysics Data System (ADS)

    Marlina, D.; Amran, A.; Ulianas, A.

    2018-04-01

    The analysis of monosodium glutamate (MSG) in meatball soup using Cu2+ ion as a MSG complex by UV-Vis spectrophotometry has carried out. Reaction of MSG with Cu2+ ions have formed complex compounds [Cu(C5H8NO4)2]2+ characterized by the color change of Cu2+ ion solution from light blue to dark blue. Maximum of complex absorbance [Cu(C5H8NO4)2]2+ is at 621 nm wavelength. The results showed that, the greatest condition of complex [Cu(C5H8NO4)2]2+ was at pH 10, concentration of Cu2+ 0.01 M, complex time is a 30 minute and stable for 170 minutes. Linear response and detection limit of MSG analysis with Cu2+ ions are 0.0005-0.025 M (R2 = 0.994) and (LOD) 0.0003 M. repeatability and recovery method is quite good (% RSD = 0.89% and %recovery = 93%). The analysis of MSG content in meatball soup with MSG complex method was 0.00372 M in sample A and 0.00370 M in sample B.

  11. Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, R.H.; Schaffers, K.I.; Waide, P.A.

    We discuss the upconversion luminescence efficiencies of phosphors that generate red, green, and blue light. The phosphors studied are single crystals and powders co-doped with Er{sup 3+} and Yb{sup 3+}, and with Tm{sup 3+} and Yb{sup 3+}. The Yb ions are pumped near 980 nm; transfers of two or three quanta to the co-doped rare earth ion generate visible luminescence. The main contribution embodied in this work is the quantitative measurement of this upconversion efficiency, based on the use of a calibrated integrating sphere, determination of the fraction of pump light absorbed, and careful control of the pump laser beammore » profile. The green phosphors are the most efficient, yielding efficiency values as high as 4 %, with the red and blue materials giving 1 - 2 %. Saturation was observed in all cases, suggesting that populations of upconversion steps of the ions are maximized at higher power. Quasi-CW modeling of the intensity- dependent upconversion efficiency was attempted; input data included level lifetimes, transition cross sections, and cross-relaxation rate coefficients. The saturation of the Yb,Er:fluoride media is explained as the pumping of Er{sup 3+} ions into a bottleneck (long-lived state)- the {sup 4}I{sub 13/2} metastable level, making them unavailable for further excitation transfer. 32 refs., 5 figs., 3 tabs.« less

  12. A Dynamic Model for Prediction of Psoriasis Management by Blue Light Irradiation

    PubMed Central

    Félix Garza, Zandra C.; Liebmann, Joerg; Born, Matthias; Hilbers, Peter A. J.; van Riel, Natal A. W.

    2017-01-01

    Clinical investigations prove that blue light irradiation reduces the severity of psoriasis vulgaris. Nevertheless, the mechanisms involved in the management of this condition remain poorly defined. Despite the encouraging results of the clinical studies, no clear guidelines are specified in the literature for the irradiation scheme regime of blue light-based therapy for psoriasis. We investigated the underlying mechanism of blue light irradiation of psoriatic skin, and tested the hypothesis that regulation of proliferation is a key process. We implemented a mechanistic model of cellular epidermal dynamics to analyze whether a temporary decrease of keratinocytes hyper-proliferation can explain the outcome of phototherapy with blue light. Our results suggest that the main effect of blue light on keratinocytes impacts the proliferative cells. They show that the decrease in the keratinocytes proliferative capacity is sufficient to induce a transient decrease in the severity of psoriasis. To study the impact of the therapeutic regime on the efficacy of psoriasis treatment, we performed simulations for different combinations of the treatment parameters, i.e., length of treatment, fluence (also referred to as dose), and intensity. These simulations indicate that high efficacy is achieved by regimes with long duration and high fluence levels, regardless of the chosen intensity. Our modeling approach constitutes a framework for testing diverse hypotheses on the underlying mechanism of blue light-based phototherapy, and for designing effective strategies for the treatment of psoriasis. PMID:28184200

  13. Establishment of a blue light damage model of human retinal pigment epithelial cells in vitro.

    PubMed

    Su, G; Cai, S J; Gong, X; Wang, L L; Li, H H; Wang, L M

    2016-06-24

    To establish a blue-light damage model of human retinal pigment epithelium (RPE). Fourth-generation human RPE cells were randomly divided into two groups. In group A, cells were exposed to blue light (2000 ± 500 lux) for 0 (control), 3, 6, 9, and 12 h, and cell culture was stopped after 12 h. In group B, cells were exposed to blue light at the same intensity and time periods, but cell culture was stopped after 24 h. TdT-mediated dUTP nick-end labeling (TUNEL) assay was performed to determine the most suitable illuminating time with apoptotic index. Flow cytometry was used to determine apoptotic ratio of RPEs. In group A, the apoptotic index of cells that received 6, 9 and 12 h of blue light was higher than that of control. The apoptotic index of cells receiving 9 and 12 h was higher than that of 6 h (P = 0.000). In group B, the apoptotic index and RPE cell apoptosis ratio of cells exposed to 6, 9 and 12 h of blue light were higher than that of 3 h (P = 0.000); and cells receiving 9 and 12 h had higher values than that of 6 h. This study demonstrated that the best conditions to establish a blue light damage model of human retinal pigment epithelial cells in vitro are 2000 ± 500 lux light intensity for 6 h, with 24 h of cell culture post-exposure.

  14. Blue light inhibits proliferation of melanoma cells

    NASA Astrophysics Data System (ADS)

    Becker, Anja; Distler, Elisabeth; Klapczynski, Anna; Arpino, Fabiola; Kuch, Natalia; Simon-Keller, Katja; Sticht, Carsten; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2016-03-01

    Photobiomodulation with blue light is used for several treatment paradigms such as neonatal jaundice, psoriasis and back pain. However, little is known about possible side effects concerning melanoma cells in the skin. The aim of this study was to assess the safety of blue LED irradiation with respect to proliferation of melanoma cells. For that purpose we used the human malignant melanoma cell line SK-MEL28. Cell proliferation was decreased in blue light irradiated cells where the effect size depended on light irradiation dosage. Furthermore, with a repeated irradiation of the melanoma cells on two consecutive days the effect could be intensified. Fluorescence-activated cell sorting with Annexin V and Propidium iodide labeling did not show a higher number of dead cells after blue light irradiation compared to non-irradiated cells. Gene expression analysis revealed down-regulated genes in pathways connected to anti-inflammatory response, like B cell signaling and phagosome. Most prominent pathways with up-regulation of genes were cytochrome P450, steroid hormone biosynthesis. Furthermore, even though cells showed a decrease in proliferation, genes connected to the cell cycle were up-regulated after 24h. This result is concordant with XTT test 48h after irradiation, where irradiated cells showed the same proliferation as the no light negative control. In summary, proliferation of melanoma cells can be decreased using blue light irradiation. Nevertheless, the gene expression analysis has to be further evaluated and more studies, such as in-vivo experiments, are warranted to further assess the safety of blue light treatment.

  15. Effect of Stepwise Doping on Lifetime and Efficiency of Blue and White Phosphorescent Organic Light Emitting Diodes.

    PubMed

    Lee, Song Eun; Lee, Ho Won; Lee, Seok Jae; Koo, Ja-ryong; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Hye Jeong; Yoon, Seung Soo; Kim, Young Kwan

    2015-02-01

    We investigated a light emission mechanism of blue phosphorescent organic light emitting diodes (PHOLEDs), using a stepwise doping profile of 2, 8, and 14 wt.% within the emitting layer (EML). We fabricated several blue PHOLEDs with phosphorescent blue emitter iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,C2]picolinate doped in N,N'-dicarbazolyl-3,5-benzene as a p-type host material. A blue PHOLED with the highest doping concentration as part of the EML close to an electron transporting layer showed a maximum luminous efficiency of 20.74 cd/A, and a maximum external quantum efficiency of 10.52%. This can be explained by effective electron injection through a highly doped EML side. Additionally, a white OLED based on the doping profile was fabricated with two thin red EMLs within a blue EML maintaining a thickness of 30 nm for the entire EML. Keywords: Blue Phosphorescent Organic Light Emitting Diodes, Stepwise Doping Structure, Charge Trapping Effect.

  16. Phototropins But Not Cryptochromes Mediate the Blue Light-Specific Promotion of Stomatal Conductance, While Both Enhance Photosynthesis and Transpiration under Full Sunlight12[C][W][OA

    PubMed Central

    Boccalandro, Hernán E.; Giordano, Carla V.; Ploschuk, Edmundo L.; Piccoli, Patricia N.; Bottini, Rubén; Casal, Jorge J.

    2012-01-01

    Leaf epidermal peels of Arabidopsis (Arabidopsis thaliana) mutants lacking either phototropins 1 and 2 (phot1 and phot2) or cryptochromes 1 and 2 (cry1 and cry2) exposed to a background of red light show severely impaired stomatal opening responses to blue light. Since phot and cry are UV-A/blue light photoreceptors, they may be involved in the perception of the blue light-specific signal that induces the aperture of the stomatal pores. In leaf epidermal peels, the blue light-specific effect saturates at low irradiances; therefore, it is considered to operate mainly under the low irradiance of dawn, dusk, or deep canopies. Conversely, we show that both phot1 phot2 and cry1 cry2 have reduced stomatal conductance, transpiration, and photosynthesis, particularly under the high irradiance of full sunlight at midday. These mutants show compromised responses of stomatal conductance to irradiance. However, the effects of phot and cry on photosynthesis were largely nonstomatic. While the stomatal conductance phenotype of phot1 phot2 was blue light specific, cry1 cry2 showed reduced stomatal conductance not only in response to blue light, but also in response to red light. The levels of abscisic acid were elevated in cry1 cry2. We conclude that considering their effects at high irradiances cry and phot are critical for the control of transpiration and photosynthesis rates in the field. The effects of cry on stomatal conductance are largely indirect and involve the control of abscisic acid levels. PMID:22147516

  17. Phototropins but not cryptochromes mediate the blue light-specific promotion of stomatal conductance, while both enhance photosynthesis and transpiration under full sunlight.

    PubMed

    Boccalandro, Hernán E; Giordano, Carla V; Ploschuk, Edmundo L; Piccoli, Patricia N; Bottini, Rubén; Casal, Jorge J

    2012-03-01

    Leaf epidermal peels of Arabidopsis (Arabidopsis thaliana) mutants lacking either phototropins 1 and 2 (phot1 and phot2) or cryptochromes 1 and 2 (cry1 and cry2) exposed to a background of red light show severely impaired stomatal opening responses to blue light. Since phot and cry are UV-A/blue light photoreceptors, they may be involved in the perception of the blue light-specific signal that induces the aperture of the stomatal pores. In leaf epidermal peels, the blue light-specific effect saturates at low irradiances; therefore, it is considered to operate mainly under the low irradiance of dawn, dusk, or deep canopies. Conversely, we show that both phot1 phot2 and cry1 cry2 have reduced stomatal conductance, transpiration, and photosynthesis, particularly under the high irradiance of full sunlight at midday. These mutants show compromised responses of stomatal conductance to irradiance. However, the effects of phot and cry on photosynthesis were largely nonstomatic. While the stomatal conductance phenotype of phot1 phot2 was blue light specific, cry1 cry2 showed reduced stomatal conductance not only in response to blue light, but also in response to red light. The levels of abscisic acid were elevated in cry1 cry2. We conclude that considering their effects at high irradiances cry and phot are critical for the control of transpiration and photosynthesis rates in the field. The effects of cry on stomatal conductance are largely indirect and involve the control of abscisic acid levels.

  18. A pulse of blue light induces a transient increase in activity of apoplastic K+ in laminar pulvinus of Phaseolus vulgaris L.

    PubMed

    Okazaki, Y; Azuma, K; Nishizaki, Y

    2000-02-01

    A pulse of blue light induced both a transient increase in activity of apoplastic K+ and membrane depolarization in laminar pulvinus of Phaseolus vulgaris L. This shows that blue-light-induced net efflux of K+ from motor cells is closely related to membrane depolarization.

  19. Degradation of bromophenol blue molecule during argon plasma jet irradiation

    NASA Astrophysics Data System (ADS)

    Matinzadeh, Ziba; Shahgoli, Farhad; Abbasi, Hamed; Ghoranneviss, Mahmood; Salem, Mohammad Kazem

    2017-06-01

    The aim of this paper is to study degradation of a bromophenol blue molecule (C19H10Br4O5S) using direct irradiation of cold atmospheric argon plasma jet. The pH of the bromophenol blue solution has been measured as well as its absorbance spectra and conductivity before and after the irradiation of non-thermal plasma jet in various time durations. The results indicated that the lengths of conjugated systems in the molecular structure of bromophenol blue decreased, and that the bromophenol blue solution was decolorized as a result of the decomposition of bromophenol blue. This result shows that non-thermal plasma jet irradiation is capable of decomposing, and can also be used for water purification.

  20. Enhancement of autonomic and psychomotor arousal by exposures to blue wavelength light: importance of both absolute and relative contents of melanopic component.

    PubMed

    Yuda, Emi; Ogasawara, Hiroki; Yoshida, Yutaka; Hayano, Junichiro

    2017-01-31

    Blue light containing rich melanopsin-stimulating (melanopic) component has been reported to enhance arousal level, but it is unclear whether the determinant of the effects is the absolute or relative content of melanopic component. We compared the autonomic and psychomotor arousal effects of melanopic-enriched blue light of organic light-emitting diode (OLED) with those of OLED lights with lesser absolute amount of melanopic component (green light) and with greater absolute but lesser relative content (white light). Using a ceiling light consisting of 120 panels (55 × 55 mm square) of OLED modules with adjustable color and brightness, we examined the effects of blue, green, and white lights (melanopic photon flux densities, 0.23, 0.14, and 0.38 μmol/m 2 /s and its relative content ratios, 72, 17, and 14%, respectively) on heart rate variability (HRV) during exposures and on the performance of psychomotor vigilance test (PVT) after exposures in ten healthy subjects with normal color vision. For each of the three colors, five consecutive 10-min sessions of light exposures were performed in the supine position, interleaved by four 10-min intervals during which 5-min PVT was performed under usual fluorescent light in sitting position. Low-frequency (LF, 0.04-0.15 Hz) and high-frequency (HF, 0.15-0.40 Hz) power and LF-to-HF ratio (LF/HF) of HRV during light exposures and reaction time (RT) and minor lapse (RT >500 ms) of PVT were analyzed. Heart rate was higher and the HF power reflecting autonomic resting was lower during exposures to the blue light than the green and white lights, while LF/HF did not differ significantly. Also, the number of minor lapse and the variation of reaction time reflecting decreased vigilance were lower after exposures to the blue light than the green light. The effects of blue OLED light for maintaining autonomic and psychomotor arousal levels depend on both absolute and relative contents of melanopic component in the light.

  1. Neptune False Color Image of Haze

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This false color photograph of Neptune was made from Voyager 2 images taken through three filters: blue, green, and a filter that passes light at a wavelength that is absorbed by methane gas. Thus, regions that appear white or bright red are those that reflect sunlight before it passes through a large quantity of methane. The image reveals the presence of a ubiquitous haze that covers Neptune in a semitransparent layer. Near the center of the disk, sunlight passes through the haze and deeper into the atmosphere, where some wavelengths are absorbed by methane gas, causing the center of the image to appear less red. Near the edge of the planet, the haze scatters sunlight at higher altitude, above most of the methane, causing the bright red edge around the planet. By measuring haze brightness at several wavelengths, scientists are able to estimate the thickness of the haze and its ability to scatter sunlight. The image is among the last full disk photos that Voyager 2 took before beginning its endless journey into interstellar space. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.

  2. Hydrogen incorporation by plasma treatment gives mesoporous black TiO 2 thin films with visible photoelectrochemical water oxidation activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Syed Z.; Reed, Allen; Nagpure, Suraj

    2018-05-01

    In this work, we use neutron reflectometry (NR) to investigate the roles of hydrogen in plasma treated hydrogen doped mesoporous black titania thin films in their visible light absorption and enhanced photoactivity for water oxidation. The cubic ordered mesoporous TiO2 thin films are prepared by a surfactant-templated sol-gel method and are treated with hydrogen plasma, an approach hypothesized to capitalize on the high degree of disorder in the material and the high energy of the plasma species to achieve efficient hydrogen doping. UV-vis absorbance spectra indicate that H2 plasma treatment makes TiO2 films black, with broad-spectrum enhancement of visible lightmore » absorption, and XPS analysis shows peak for Ti3+ state in treated films. The presence of hydrogen in black mesoporous titania (H-TiO2) films is confirmed by the scattering length density (SLD) profiles obtained from neutron reflectometry measurements. The H-TiO2 shows ca. 28 times and 8 times higher photocurrent for photoelectrochemical water oxidation compared to undoped TiO2 films under UV (365 nm) and blue (455 nm) LED irradiation, respectively. These findings provide the first direct evidence that the dramatic change in visible light absorbance of H-treated black TiO2 is accompanied by significant hydrogen uptake and not just Ti3+ generation or surface disordering.« less

  3. Light might directly affect retinal ganglion cell mitochondria to potentially influence function.

    PubMed

    del Olmo-Aguado, Susana; Manso, Alberto G; Osborne, Neville N

    2012-01-01

    Visible light (360-760 nm) entering the eye impinges on the many ganglion cell mitochondria in the non-myelinated part of their axons. The same light also disrupts isolated mitochondrial function in vitro and kills cells in culture with the blue light component being particularly lethal whereas red light has little effect. Significantly, a defined light insult only affects the survival of fibroblasts in vitro that contain functional mitochondria supporting the view that mitochondrial photosensitizers are influenced by light. Moreover, a blue light insult to cells in culture causes a change in mitochondrial structure and membrane potential and results in a release of cytochrome c. Blue light also causes an alteration in mitochondria located components of the OXPHOS (oxidative phosphorylation system). Complexes III and IV as well as complex V are significantly upregulated whereas complexes I and II are slightly but significantly up- and downregulated, respectively. Also, blue light causes Dexras1 and reactive oxygen species to be upregulated and for mitochondrial located apoptosis-inducing factor to be activated. A blue light detrimental insult to cells in culture does not involve the activation of caspases but is known to be attenuated by necrostatin-1, typical of a death mechanism named necroptosis. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  4. Study of Selecting on Light Source Used for Micro-algae Cultivation in Space

    NASA Astrophysics Data System (ADS)

    Ai, Weidang; Ai, Weidang; Guo, Shuang-Sheng; Gao, Feng; Tang, Yong-Kang; Qin, Li-Feng

    To select suitable light source for micro-algae cultivation in future space station, the selected Spirulina plastensis(No.7) were cultured under different lightening qualities, including six light sources that were made up of different combinations of red and blue light-emitting diode(LED). The growth, photosynthetic efficiency and nutrition quality of the Spirulina, were analyzed. From the experiments, the red light may promote the cumulation of biomass of the Spirulina, and the cumulating rate was the highest under all red light source, but the syntheses of protein, phycobiliprotein, β-carotene, VE and other nutrients needs a certain portion of blue light; yet, the complete blue light condition is not favorable to the growth of Spirulina, and may bring pollution by chlorella and other kinds of micro-algae. It is concluded that the LEDs can be used as the light resource of micro-algae cultivation. The normal growth and development of microalgae need two light sources of both red and blue LEDs. The comprehensive analyses of the various factors that affect the growth of Spirulina, such as nutrition quality and photosynthetic activities, etc., showed that the combination of 80% red and 20% blue LED is the optimum one among those tested combinations. Key word: light-emitting diode; micro-algae; controlled ecological life support system (CELSS); space cultivation

  5. Blue light differentially represses mesophyll conductance in high vs low latitude genotypes of Populus trichocarpa Torr. & Gray.

    PubMed

    Momayyezi, Mina; Guy, Robert D

    2017-06-01

    To explore what role chloroplast positioning might have in relation to latitudinal variation in mesophyll conductance (g m ) of Populus trichocarpa Torr. & Gray (black cottonwood), we examined photosynthetic response to different blue light treatments in six representative genotypes (three northern and three southern). The proportion of blue (B) to red light was varied from 0:100, 10:90, 20:80, 40:60, and 60:40 while keeping the total photosynthetic photon flux density constant. Mesophyll conductance was estimated by monitoring chlorophyll fluorescence in combination with gas exchange. Compared to the control (10% B), g m was significantly lower with increasing blue light. Consistent with a change in chloroplast positioning, there was a simultaneous but reversible decrease in chlorophyll content index (CCI), as measured by foliar greenness, while the extracted, actual chlorophyll content (ACC) remained unchanged. Blue-light-induced decreases in g m and CCI were greater in northern genotypes than in southern genotypes, both absolutely and proportionally, consistent with their inherently higher photosynthetic rate. Treatment of leaves with cytochalasin D, an inhibitor of actin-based chloroplast motility, reduced both CCI and ACC but had no effect on the CCI/ACC ratio and fully blocked any effect of blue light on CCI. Cytochalasin D reduced g m by ∼56% under 10% B, but did not block the effect of 60% B on g m , which was reduced a further 20%. These results suggest that the effect of high blue light on g m is at least partially independent of chloroplast repositioning. High blue light reduced carbonic anhydrase activity by 20% (P<0.05), consistent with a possible reduction in protein-mediated facilitation of CO 2 diffusion. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Comparative transcriptomics of Pleurotus eryngii reveals blue-light regulation of carbohydrate-active enzymes (CAZymes) expression at primordium differentiated into fruiting body stage.

    PubMed

    Xie, Chunliang; Gong, Wenbing; Zhu, Zuohua; Yan, Li; Hu, Zhenxiu; Peng, Yuande

    2018-05-01

    Blue light is an important environmental factor which could induce mushroom primordium differentiation and fruiting body development. However, the mechanisms of Pleurotus eryngii primordium differentiation and development induced by blue light are still unclear. The CAZymes (carbohydrate-active enzymes) play important roles in degradation of renewable lignocelluloses to provide carbohydrates for fungal growth, development and reproduction. In the present research, the expression profiles of genes were measured by comparison between the Pleurotus eryngii at primordium differentiated into fruiting body stage after blue light stimulation and dark using high-throughput sequencing approach. After assembly and compared to the Pleurotus eryngii reference genome, 11,343 unigenes were identified. 539 differentially expressed genes including white collar 2 type of transcription factor gene, A mating type protein gene, MAP kinase gene, oxidative phosphorylation associated genes, CAZymes genes and other metabolism related genes were identified during primordium differentiated into fruiting body stage after blue light stimulation. KEGG results showed that carbon metabolism, glycolysis/gluconeogenesis and biosynthesis of amino acids pathways were affected during blue light inducing primordia formation. Most importantly, 319 differentially expressed CAZymes participated in carbon metabolism were identified. The expression patterns of six representative CAZymes and laccase genes were further confirmed by qRT-PCR. Enzyme activity results indicated that the activities of CAZymes and laccase were affected in primordium differentiated into fruiting body under blue light stimulation. In conclusion, the comprehensive transcriptome and CAZymes of Pleurotus eryngii at primordium differentiated into fruiting body stage after blue light stimulation were obtained. The biological insights gained from this integrative system represent a valuable resource for future genomic studies on this commercially important mushroom. Copyright © 2017. Published by Elsevier Inc.

  7. In vitro bactericidal activity of blue light (465 nm) phototherapy on meticillin-susceptible and meticillin-resistant Staphylococcus pseudintermedius.

    PubMed

    Schnedeker, Amy H; Cole, Lynette K; Lorch, Gwendolen; Diaz, Sandra F; Bonagura, John; Daniels, Joshua B

    2017-10-01

    Staphylococcus pseudintermedius is the most common cause of bacterial skin infections in dogs. Meticillin-resistant infections have become more common and are challenging to treat. Blue light phototherapy may be an option for treating these infections. The objective of this study was to measure the in vitro bactericidal activity of 465 nm blue light on meticillin-susceptible Staphylococcus pseudintermedius (MSSP) and meticillin-resistant Staphylococcus pseudintermedius (MRSP). We hypothesized that irradiation with blue light would kill MSSP and MRSP in a dose-dependent fashion in vitro as previously reported for meticillin-resistant Staphylococcus aureus (MRSA). In six replicate experiments, each strain [MSSP, n = 1; MRSP ST-71 (KM1381) n = 1; and MRSA (BAA-1680) n = 1] were cultivated on semisolid media, irradiated using a 465 nm blue light phototherapeutic device at the cumulative doses of 56.25, 112.5 and 225 J/cm 2 and incubated overnight at 35°C. Controls were not irradiated. Colony counts (CC) were performed manually. Descriptive statistics were performed and treatment effects assessed using the Wilcoxon-Mann-Whitney rank-sum test. Bonferroni-corrected rank-sum tests were performed for post hoc analysis when significant differences were identified. There was a significant decrease in CC with blue light irradiation at all doses for MRSA (P = 0.0006) but not for MSSP (P = 0.131) or MRSP (P = 0.589). Blue light phototherapy significantly reduced CC of MRSA, but not of MSSP or MRSP. The mechanism for the relative photosensitivity of the MRSA isolate is unknown, but is hypothesized to be due to an increased concentration of porphyrin in S. aureus relative to S. pseudintermedius, which would modulate blue light absorption. © 2017 ESVD and ACVD.

  8. [The dangers of blue light: True story!].

    PubMed

    Renard, G; Leid, J

    2016-05-01

    The dangers of the blue light are the object of numerous publications, for both the scientific community and the general public. The new prolific development of light sources emitting potentially toxic blue light (415-455nm) ranges from LED (Light Emitting Diodes) lamps for interior lighting to television screens, computers, digital tablets and smartphones using OLED (Organic Light Emitting Diode) or AMOLED (Active-Matrix Organic Light Emitting Diode) technology. First we will review some technical terms and the main characteristics of light perceived by the human eye. Then we will discuss scientific proof of the toxicity of blue light to the eye, which may cause cataract or macular degeneration. Analysis of the light spectra of several light sources, from natural light to LED lamps, will allow us to specify even better the dangers related to each light source. LED lamps, whether used as components for interior lighting or screens, are of concern if they are used for extended viewing times and at short distance. While we can protect ourselves from natural blue light by wearing colored glasses which filter out, on both front and back surfaces, the toxic wavelengths, it is more difficult to protect oneself from LED lamps in internal lighting, the use of which should be restricted to "white warmth" lamps (2700K). As far as OLED or AMOLED screens are concerned, the only effective protection consists of using them occasionally and only for a short period of time. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Effects of bright and blue light on acoustic reaction time and maximum handgrip strength in male athletes: a randomized controlled trial.

    PubMed

    Knaier, Raphael; Schäfer, Juliane; Rossmeissl, Anja; Klenk, Christopher; Hanssen, Henner; Höchsmann, Christoph; Cajochen, Christian; Schmidt-Trucksäss, Arno

    2017-08-01

    To assess which type of evening light exposure has the greatest effect on reaction time and maximum handgrip strength. These were pre-specified secondary outcomes in a trial which primarily investigated the influence of light on cycling performance. Seventy-four male athletes were allocated at random to either bright light (BRIGHT), monochromatic blue light (BLUE), or a control condition (CONTROL). Light exposure lasted for 60 min and started 17 h after the individual midpoint of sleep. Reaction time, handgrip strength, and melatonin levels were measured before and after the light exposure. We used analysis of covariance to compare the groups with respect to the investigated outcomes. Two participants had to be excluded retrospectively. The remaining 72 participants had a median age of 23 years. The adjusted difference in reaction time was -1 ms [95% confidence interval (CI) -8, 6] for participants in BRIGHT and 2 ms (95% CI -5, 9) for participants in BLUE, both relative to participants in CONTROL. The adjusted difference in handgrip strength was 0.9 kg (95% CI -1.5, 3.3) for participants in BRIGHT and -0.3 kg (95% CI -2.7, 2.0) for participants in BLUE, both relative to participants in CONTROL. After the light exposure, 17% of participants in BRIGHT, 22% in BLUE, and 29% in CONTROL showed melatonin concentrations of 2 pg/ml or higher. The results suggest that bright light might reduce melatonin levels but neither bright nor blue light exposure in the evening seem to improve reaction time or handgrip strength in athletes.

  10. Blue-light-induced PIN3 polarization for root negative phototropic response in Arabidopsis.

    PubMed

    Zhang, Kun-Xiao; Xu, Heng-Hao; Yuan, Ting-Ting; Zhang, Liang; Lu, Ying-Tang

    2013-10-01

    Root negative phototropism is an important response in plants. Although blue light is known to mediate this response, the cellular and molecular mechanisms underlying root negative phototropism remain unclear. Here, we report that the auxin efflux carrier PIN-FORMED (PIN) 3 is involved in asymmetric auxin distribution and root negative phototropism. Unilateral blue-light illumination polarized PIN3 to the outer lateral membrane of columella cells at the illuminated root side, and increased auxin activity at the illuminated side of roots, where auxin promotes growth and causes roots bending away from the light source. Furthermore, root negative phototropic response and blue-light-induced PIN3 polarization were modulated by a brefeldin A-sensitive, GNOM-dependent, trafficking pathway and by phot1-regulated PINOID (PID)/PROTEIN PHOSPHATASE 2A (PP2A) activity. Our results indicate that blue-light-induced PIN3 polarization is needed for asymmetric auxin distribution during root negative phototropic response. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  11. Understanding blue-light photoreceptors

    NASA Astrophysics Data System (ADS)

    Crane, Brian

    Blue-light sensing proteins coordinate many biological processes that include phototropism, photomorphism, stress responses, virulence and the entrainment of circadian clocks. Three major types of blue-light sensors all bind flavin nucleotides as chromophores, but the photochemistry employed and conformational responses invoked differ considerably among the classes. Nevertheless, photoinduced electron transfer reactions play a key role in many mechanisms. How such reactivity leads to conformational signaling will be discussed for both cryptochromes (CRYs) and light- oxygen- voltage (LOV) domains. In CRYs, blue-light mediated flavin reduction promotes proton transfer within the active center that then leads to displacement of a key signaling element. For LOV proteins, blue light causes formation of a covalent cysteinyl-flavin adduct, which rearranges hydrogen bonding and restructures the N-terminal region of the protein. Interestingly, a new class of LOV-like sensor does not undergo adduct formation and instead can operate by flavin photoreduction, like CRY. Conserved aspects of reactivity in these proteins provide lessons for the design of new photosensors, which may find use as tools in optogenetics Supported by NIH GM079679.

  12. Evaluation of window-tinting films for sunlight phototherapy.

    PubMed

    Vreman, Hendrik J; Slusher, Tina M; Wong, Ronald J; Schulz, Stephanie; Olusanya, Bolajoko O; Stevenson, David K

    2013-12-01

    We evaluated nine semi-transparent plastic window-tinting films for their ability to block ultraviolet A (UVA) and infrared (IR) radiation and transmit therapeutic blue light (400-520 nm) for treating jaundiced newborns. For indoor testing, three light sources (TL/52 special blue fluorescent, Black Light UVA and IR heat lamps) were positioned above each film and measured successively using a thermocouple thermometer, UVA radiometer and blue light irradiance meter, placed below each film. For outdoor testing, the same setup was used with the sun at zenith and a cloudless sky. Compared with unfiltered radiation, blue light transmission through films ranged from 24 to 83%, UVA transmission was 0.1-7.1% and reductions in IR heat were 6-12°C and 5-10°C for heat lamp and sun, respectively. The data suggest that most of the relatively low-cost window-tinting films tested can effectively reduce sunlight UV and IR and offer a range of significant attenuations of therapeutic blue light.

  13. The lizard celestial compass detects linearly polarized light in the blue.

    PubMed

    Beltrami, Giulia; Parretta, Antonio; Petrucci, Ferruccio; Buttini, Paola; Bertolucci, Cristiano; Foà, Augusto

    2012-09-15

    The present study first examined whether ruin lizards, Podarcis sicula, are able to orientate using plane-polarized light produced by an LCD screen. Ruin lizards were trained and tested indoors, inside a hexagonal Morris water maze positioned under an LCD screen producing white polarized light with a single E-vector, which provided an axial cue. White polarized light did not include wavelengths in the UV. Lizards orientated correctly either when tested with E-vector parallel to the training axis or after 90 deg rotation of the E-vector direction, thus validating the apparatus. Further experiments examined whether there is a preferential region of the light spectrum to perceive the E-vector direction of polarized light. For this purpose, lizards reaching learning criteria under white polarized light were subdivided into four experimental groups. Each group was tested for orientation under a different spectrum of plane-polarized light (red, green, cyan and blue) with equalized photon flux density. Lizards tested under blue polarized light orientated correctly, whereas lizards tested under red polarized light were completely disoriented. Green polarized light was barely discernible by lizards, and thus insufficient for a correct functioning of their compass. When exposed to cyan polarized light, lizard orientation performances were optimal, indistinguishable from lizards detecting blue polarized light. Overall, the present results demonstrate that perception of linear polarization in the blue is necessary - and sufficient - for a proper functioning of the sky polarization compass of ruin lizards. This may be adaptively important, as detection of polarized light in the blue improves functioning of the polarization compass under cloudy skies, i.e. when the alternative celestial compass based on detection of the sun disk is rendered useless because the sun is obscured by clouds.

  14. A novel blue-light phototropic response is revealed in roots of Arabidopsis thaliana in microgravity.

    PubMed

    Vandenbrink, Joshua P; Herranz, Raul; Medina, F Javier; Edelmann, Richard E; Kiss, John Z

    2016-12-01

    Blue-light positive phototropism in roots is masked by gravity and revealed in conditions of microgravity. In addition, the magnitude of red-light positive phototropic curvature is correlated to the magnitude of gravity. Due to their sessile nature, plants utilize environmental cues to grow and respond to their surroundings. Two of these cues, light and gravity, play a substantial role in plant orientation and directed growth movements (tropisms). However, very little is currently known about the interaction between light- (phototropic) and gravity (gravitropic)-mediated growth responses. Utilizing the European Modular Cultivation System on board the International Space Station, we investigated the interaction between phototropic and gravitropic responses in three Arabidopsis thaliana genotypes, Landsberg wild type, as well as mutants of phytochrome A and phytochrome B. Onboard centrifuges were used to create a fractional gravity gradient ranging from reduced gravity up to 1g. A novel positive blue-light phototropic response of roots was observed during conditions of microgravity, and this response was attenuated at 0.1g. In addition, a red-light pretreatment of plants enhanced the magnitude of positive phototropic curvature of roots in response to blue illumination. In addition, a positive phototropic response of roots was observed when exposed to red light, and a decrease in response was gradual and correlated with the increase in gravity. The positive red-light phototropic curvature of hypocotyls when exposed to red light was also confirmed. Both red-light and blue-light phototropic responses were also shown to be affected by directional light intensity. To our knowledge, this is the first characterization of a positive blue-light phototropic response in Arabidopsis roots, as well as the first description of the relationship between these phototropic responses in fractional or reduced gravities.

  15. A novel blue-light phototropic response is revealed in roots of Arabidopsis thaliana in microgravity

    PubMed Central

    Vandenbrink, Joshua P.; Herranz, Raul; Medina, F. Javier; Edelmann, Richard E.

    2017-01-01

    Main conclusion Blue-light positive phototropism in roots is masked by gravity and revealed in conditions of microgravity. In addition, the magnitude of red-light positive phototropic curvature is correlated to the magnitude of gravity. Due to their sessile nature, plants utilize environmental cues to grow and respond to their surroundings. Two of these cues, light and gravity, play a substantial role in plant orientation and directed growth movements (tropisms). However, very little is currently known about the interaction between light- (phototropic) and gravity (gravitropic)-mediated growth responses. Utilizing the European Modular Cultivation System on board the International Space Station, we investigated the interaction between phototropic and gravitropic responses in three Arabidopsis thaliana genotypes, Landsberg wild type, as well as mutants of phytochrome A and phytochrome B. Onboard centrifuges were used to create a fractional gravity gradient ranging from reduced gravity up to 1g. A novel positive blue-light phototropic response of roots was observed during conditions of microgravity, and this response was attenuated at 0.1g. In addition, a red-light pretreatment of plants enhanced the magnitude of positive phototropic curvature of roots in response to blue illumination. In addition, a positive phototropic response of roots was observed when exposed to red light, and a decrease in response was gradual and correlated with the increase in gravity. The positive red-light phototropic curvature of hypocotyls when exposed to red light was also confirmed. Both red-light and blue-light phototropic responses were also shown to be affected by directional light intensity. To our knowledge, this is the first characterization of a positive blue-light phototropic response in Arabidopsis roots, as well as the first description of the relationship between these phototropic responses in fractional or reduced gravities. PMID:27507239

  16. The relationship of spectral sensitivity with growth and reproductive response in avian breeders (Gallus gallus)

    PubMed Central

    Yang, Ye-Feng; Jiang, Jing-Song; Pan, Jin-Ming; Ying, Yi-Bin; Wang, Xiao-Shuang; Zhang, Ming-Li; Lu, Min-Si; Chen, Xian-Hui

    2016-01-01

    A previous study demonstrated that birds that are exposed to light at night develop advanced reproductive systems. However, spectrum might also affect the photoperiodic response of birds. The present study was aimed to investigate the effects of spectral composition on the growth and reproductive physiology of female breeders, using pure light-emitting diode spectra. A total of 1,000 newly hatched female avian breeders (Gallus gallus) were equally allocated to white-, red-, yellow-, green- and blue-light treated groups. We found that blue-light treated birds had a greater and faster weight gain than did red- and yellow-light treated birds (P = 0.02 and 0.05). The red light expedited the sexual maturation of the chicks, whose age at sexual maturity was 7 and 14 days earlier than that of the green- and blue-light treated birds, respectively. The accumulative egg production of the red-light treated birds was 9 and 8 eggs more than that of the blue- and green-light treated birds. The peak lay rate of the red-light treated groups was significantly greater than the blue-light treated birds (P = 0.028). In conclusion, exposure to short-wavelength light appears to promote growth of female breeder birds, whereas exposure to long-wavelength light appears to accelerate reproductive performance. PMID:26765747

  17. Peculiarities of light absorption by spherical microcapsules

    NASA Astrophysics Data System (ADS)

    Geints, Yurii E.; Panina, Ekaterina K.; Zemlyanov, Alexander A.

    2018-04-01

    Optical radiation absorption in the poly-layer spherical microparticles simulating the inorganic/organic polyshell absorbing microcapsules is considered. With the aim of the finite-difference time-domain technique, the spatial distribution of the absorbed light power in microcapsules of various sizes and internal structure is numerically calculated. For the purpose of light absorption enhancement, we have engineered the optimal structure of a capsule consisting of a strong-refracting transparent outer coating and an absorbing layer which covers a liquid core. The proposed microcapsule prototype provides for a manifold increase in the absorbed light power density in comparison with the usual single-layer absorbing capsule. We show that for light-wavelengths-scaled microcapsules it is optimal to use a material with the refractive index larger than two as an outer shell, for example, titanium dioxide (TiO2). The highest values of the absorbed power density can be obtained in microcapsules with absorbing shell thickness of approximately a tenth of a laser wavelength. When laser radiation is scattered by a dimer constituted by two identical absorbing microcapsules the absorbed power density can be maximized by the choosing of proper dimer spatial configuration. In the case of strongly absorbing particles, the absorption maximum corresponds to a shift of the capsules to a distance of about their diameter, and in the case of weakly absorbing particles the absorption is maximal when particles are in geometrical shades of each other.

  18. Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers

    PubMed Central

    Zhao, Dengwu; Duan, Haoze; Yu, Shengtao; Zhang, Yao; He, Jiaqing; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-01-01

    This report investigates the enhancement of localized evaporation via separated light absorbing particles (plasmonic absorbers) and scattering particles (polystyrene nanoparticles). Evaporation has been considered as one of the most important phase-change processes in modern industries. To improve the efficiency of evaporation, one of the most feasible methods is to localize heat at the top water layer rather than heating the bulk water. In this work, the mixture of purely light absorptive plasmonic nanostructures such as gold nanoparticles and purely scattering particles (polystyrene nanoparticles) are employed to confine the incident light at the top of the solution and convert light to heat. Different concentrations of both the light absorbing centers and the light scattering centers were evaluated and the evaporation performance can be largely enhanced with the balance between absorbing centers and scattering centers. The findings in this study not only provide a new way to improve evaporation efficiency in plasmonic particle-based solution, but also shed lights on the design of new solar-driven localized evaporation systems. PMID:26606898

  19. Blue-green and green phosphors for lighting applications

    DOEpatents

    Setlur, Anant Achyut; Chandran, Ramachandran Gopi; Henderson, Claire Susan; Nammalwar, Pransanth Kumar; Radkov, Emil

    2012-12-11

    Embodiments of the present techniques provide a related family of phosphors that may be used in lighting systems to generate blue or blue-green light. The phosphors include systems having a general formula of: ((Sr.sub.1-zM.sub.z).sub.1-(x+w)A.sub.wCe.sub.x).sub.3(Al.sub.1-ySi.s- ub.y)O.sub.4+y+3(x-w)F.sub.1-y-3(x-w) (I), wherein 0

  20. Light quality influences the virulence and physiological responses of Colletotrichum acutatum causing anthracnose in pepper plants.

    PubMed

    Yu, S-M; Ramkumar, G; Lee, Y H

    2013-08-01

    To explore the effects of light quality on the physiology and pathogenicity of Colletotrichum acutatum, we analysed the morphological traits, melanin production and virulence of the pathogen under different light wavelengths. The influence of light wavelength on the mycelial growth and conidial germination of C. acutatum was investigated using red, green, blue and white light sources. Red and green light reduced the mycelial growth in comparison with blue and white light, and dark conditions. The least percentage of conidial germination was observed under blue light, while the germination rate among white, red and green light, as well as in the dark, was insignificant. In comparison with its influence on mycelial growth and conidial germination, light wavelength significantly affected the pathogen's virulence towards hot pepper fruits. The highest disease severity was observed under blue light, which was at least a twofold increase compared with the disease severity under other light conditions. To elucidate the effect of light on the disparity in virulence, scytalone was assayed by HPLC, and scd1 gene expression was examined with real-time PCR. The highest and lowest scytalone production was observed in the cultures incubated under blue (10.9 mAU) and green light (1.5 mAU), respectively. Higher scd1 gene expression (~ 40-fold increase) was observed in cultures incubated under blue and white light in comparison with those incubated in the dark. This study revealed that light affects the growth, colonial morphology and virulence of C. acutatum. The pathogen needs light for its active melanin production and also to attain higher virulence. This is the first report on the effect of light quality on the virulence of C. acutatum. The findings of this study will broaden our knowledge of the influence of light on physiological responses of fungal pathogens. © 2013 The Society for Applied Microbiology.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Yaoqing; School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418; Zhang, Qinghong

    A new silicate garnet phosphor, Lu{sub 2−x}CaMg{sub 2}Si{sub 2.9}Ti{sub 0.1}O{sub 12}:xCe was synthesized by a high temperature solid-state reaction under reductive atmosphere. X-ray diffraction (XRD) showed that the powder was pure garnet phase. The emission and excitation spectrum indicated that the Lu{sub 2−x}CaMg{sub 2}Si{sub 2.9}Ti{sub 0.1}O{sub 12}:xCe phosphors could absorb blue light in the spectral range of 400–550 nm efficiently and exhibit bright yellow–orange emission in the range of 520–750 nm. With the increase of Ce{sup 3+} concentration, the emission band of Ce{sup 3+} showed a red shift. Interestingly, the concentration quenching occurred when the Ce{sup 3+} concentration exceeded 4more » mol%. The temperature-dependent luminescent properties of the phosphors were discussed and the Lu{sub 1.96}CaMg{sub 2}Si{sub 2.9}Ti{sub 0.1}O{sub 12}:0.04Ce phosphors showed good performances in color temperature (2430 K) and potential applications for warm white LEDs. - Graphical Abstract: This image shows that the phosphor of Lu{sub 1.96}CaMg{sub 2}Si{sub 2.9}Ti{sub 0.1}O{sub 12}:0.04Ce can generate a uniform yellow tint under natural light illumination and emit orange–red light when excited by blue light. With a fixed 467 nm emission light, warm white light can be produced by this phosphor, which indicates that the phosphor is potentially applicable in warm white light emitting diodes based on GaN chips. - Highlights: • A new silicate garnet phosphor was synthesized by solid-state method. • Secondary phases can be avoided when a small amount of Si{sup 4+} were replaced by Ti{sup 4+}. • A broad emission band of Ce{sup 3+} in the phosphors was described. • The phosphors are potentially applicable in warm white light emitting diodes.« less

  2. Regulation of ascorbic acid metabolism by blue LED light irradiation in citrus juice sacs.

    PubMed

    Zhang, Lancui; Ma, Gang; Yamawaki, Kazuki; Ikoma, Yoshinori; Matsumoto, Hikaru; Yoshioka, Terutaka; Ohta, Satoshi; Kato, Masaya

    2015-04-01

    In the present study, the effects of red and blue LED lights on the accumulation of ascorbic acid (AsA) were investigated in the juice sacs of three citrus varieties, Satsuma mandarin, Valencia orange, and Lisbon lemon. The results showed that the blue LED light treatment effectively increased the AsA content in the juice sacs of the three citrus varieties, whereas the red LED light treatment did not. By increasing the blue LED light intensity, the juice sacs of the three citrus varieties accumulated more AsA. Moreover, continuous irradiation with blue LED light was more effective than pulsed irradiation for increasing the AsA content in the juice sacs of the three citrus varieties. Gene expression results showed that the modulation of AsA accumulation by blue LED light was highly regulated at the transcription level. The up-regulation of AsA biosynthetic genes (CitVTC1, CitVTC2, CitVTC4, and CitGLDH), AsA regeneration genes (CitMDAR1, CitMDAR2, and CitDHAR) and two GSH-producing genes (CitGR and CitchGR) contributed to these increases in the AsA content in the three citrus varieties. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Blue light hazard optimization for white light-emitting diode sources with high luminous efficacy of radiation and high color rendering index

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Guo, Weihong; Xie, Bin; Yu, Xingjian; Luo, Xiaobing; Zhang, Tao; Yu, Zhihua; Wang, Hong; Jin, Xing

    2017-09-01

    Blue light hazard of white light-emitting diodes (LED) is a hidden risk for human's photobiological safety. Recent spectral optimization methods focus on maximizing luminous efficacy and improving color performances of LEDs, but few of them take blue hazard into account. Therefore, for healthy lighting, it's urgent to propose a spectral optimization method for white LED source to exhibit low blue light hazard, high luminous efficacy of radiation (LER) and high color performances. In this study, a genetic algorithm with penalty functions was proposed for realizing white spectra with low blue hazard, maximal LER and high color rendering index (CRI) values. By simulations, white spectra from LEDs with low blue hazard, high LER (≥297 lm/W) and high CRI (≥90) were achieved at different correlated color temperatures (CCTs) from 2013 K to 7845 K. Thus, the spectral optimization method can be used for guiding the fabrication of LED sources in line with photobiological safety. It is also found that the maximum permissible exposure duration of the optimized spectra increases by 14.9% than that of bichromatic phosphor-converted LEDs with equal CCT.

  4. Inversion of gravitropism by symmetric blue light on the clinostat.

    PubMed

    Sailer, H; Nick, P; Schafer, E

    1990-02-01

    Gravitropic stimulation of maize (Zea mays L.) seedlings resulted in a continuous curvature of the coleoptiles in a direction opposing the vector of gravity when the seedlings were rotated on a horizontal clinostat. The orientation of this response, however, was reversed when the gravitropic stimulation was preceded by symmetric preirradiation with blue light (12.7 micromoles photons m-2). The fluence-response curve of this blue light exhibited a lower threshold at 0.5 micromole m-2, and could be separated into two parts: fluences exceeding 5 micromoles m-2 reversed the direction of the gravitropic response, whereas for a range between the threshold and 4 micromoles m-2 a split population was obtained. In all cases a very strong curvature resulted either in the direction of gravity or in the opposite orientation. A minor fraction of seedlings, however, curved towards the caryopsis. Furthermore, the capacity of blue light to reverse the direction of the gravitropic response disappeared with the duration of gravitropic stimulation and it depended on the delay time between both stimulations. This tonic blue-light influence appears to be transient, which is in contrast to the stability observed for tropistic blue-light effects.

  5. Dissecting blue light signal transduction pathway in leaf epidermis using a pharmacological approach.

    PubMed

    Živanović, Branka D; Shabala, Lana I; Elzenga, Theo J M; Shabala, Sergey N

    2015-10-01

    Blue light signalling pathway in broad bean leaf epidermal cells includes key membrane transporters: plasma- and endomembrane channels and pumps of H (+) , Ca (2+) and K (+) ions, and plasma membrane redox system. Blue light signalling pathway in epidermal tissue isolated from the abaxial side of fully developed Vicia faba leaves was dissected by measuring the effect of inhibitors of second messengers on net K(+), Ca(2+) and H(+) fluxes using non-invasive ion-selective microelectrodes (the MIFE system). Switching the blue light on-off caused transient changes of the ion fluxes. The effects of seven groups of inhibitors were tested in this study: CaM antagonists, ATPase inhibitors, Ca(2+) anatagonists or chelators, agents affecting IP3 formation, redox system inhibitors, inhibitors of endomembrane Ca(2+) transport systems and an inhibitor of plasma membrane Ca(2+)-permeable channels. Most of the inhibitors had a significant effect on steady-state (basal) net fluxes, as well as on the magnitude of the transient ion flux responses to blue light fluctuations. The data presented in this study suggest that redox signalling and, specifically, plasma membrane NADPH oxidase and coupled Ca(2+) and K(+) fluxes play an essential role in blue light signal transduction.

  6. Evaluation of blue light exposure to beta brainwaves on simulated night driving

    NASA Astrophysics Data System (ADS)

    Purawijaya, Dandri Aly; Fitri, Lulu Lusianti; Suprijanto

    2015-09-01

    Numbers of night driving accident in Indonesia since 2010 are exponentially rising each year with total of loss more than 50 billion rupiah. One of the causes that contribute to night driving accident is drowsiness. Drowsiness is affected by circadian rhythm resulted from the difference of blue light quality and quantity between night and day. Blue light may effect on human physiology through non-visual pathway by suppressing melatonin hormone suppression that influence drowsiness. Meanwhile, the production of hormones and other activities in brain generate bioelectrical activity such as brainwaves and can be recorded using Electroencephalograph (EEG). Therefore, this research objective is to evaluate the effect of blue light exposure to beta brainwave emergence during night driving simulation to a driver. This research was conducted to 4 male subjects who are able to drive and have a legitimate car driving license. The driving simulator was done using SCANIA Truck Driving Simulator on freeform driving mode in dark environment. Subjects drove for total 32 minutes. The data collections were taken in 2 days with 16 minutes for each day. The 16 minutes were divided again into 8 minutes adaptation in dark and 8 minutes for driving either in blue light exposure or in total darkness. While driving the simulation, subjects' brainwaves were recorded using EEG EMOTIV 14 Channels, exposed by LED monochromatic blue light with 160 Lux from source and angle 45o and sat 1 m in front of the screen. Channels used on this research were for visual (O1; O2), cognition (F3; F4; P7; P8), and motor (FC5; FC6). EEG brainwave result was filtered with EEGLab to obtain beta waves at 13 - 30 Hz frequencies. Results showed that beta waves response to blue light varied for each subject. Blue light exposure either increased or decreased beta waves in 2 minutes pattern and maintaining beta waves on cognition and motor area in 3 out of 4 subjects. Meanwhile, blue light exposure did not maintain and induce beta waves fluctuation on visual area of another 2 subjects. The conclusion of this research is that blue light exposure affected the pattern of beta waves on frontal, parietal, premotor cortex and visual lobes.

  7. Rapid-Response Low Infrared Emission Broadband Ultrathin Plasmonic Light Absorber

    PubMed Central

    Tagliabue, Giulia; Eghlidi, Hadi; Poulikakos, Dimos

    2014-01-01

    Plasmonic nanostructures can significantly advance broadband visible-light absorption, with absorber thicknesses in the sub-wavelength regime, much thinner than conventional broadband coatings. Such absorbers have inherently very small heat capacity, hence a very rapid response time, and high light power-to-temperature sensitivity. Additionally, their surface emissivity can be spectrally tuned to suppress infrared thermal radiation. These capabilities make plasmonic absorbers promising candidates for fast light-to-heat applications, such as radiation sensors. Here we investigate the light-to-heat conversion properties of a metal-insulator-metal broadband plasmonic absorber, fabricated as a free-standing membrane. Using a fast IR camera, we show that the transient response of the absorber has a characteristic time below 13 ms, nearly one order of magnitude lower than a similar membrane coated with a commercial black spray. Concurrently, despite the small thickness, due to the large absorption capability, the achieved absorbed light power-to-temperature sensitivity is maintained at the level of a standard black spray. Finally, we show that while black spray has emissivity similar to a black body, the plasmonic absorber features a very low infra-red emissivity of almost 0.16, demonstrating its capability as selective coating for applications with operating temperatures up to 400°C, above which the nano-structure starts to deform. PMID:25418040

  8. Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Yaqoob, T.; Braito, V.; Dadina, M.

    2010-10-01

    Context. Blue-shifted Fe K absorption lines have been detected in recent years between 7 and 10 keV in the X-ray spectra of several radio-quiet AGNs. The derived blue-shifted velocities of the lines can often reach mildly relativistic values, up to 0.2-0.4c. These findings are important because they suggest the presence of a previously unknown massive and highly ionized absorbing material outflowing from their nuclei, possibly connected with accretion disk winds/outflows. Aims: The scope of the present work is to statistically quantify the parameters and incidence of the blue-shifted Fe K absorption lines through a uniform analysis on a large sample of radio-quiet AGNs. This allows us to assess their global detection significance and to overcome any possible publication bias. Methods: We performed a blind search for narrow absorption features at energies greater than 6.4 keV in a sample of 42 radio-quiet AGNs observed with XMM-Newton. A simple uniform model composed by an absorbed power-law plus Gaussian emission and absorption lines provided a good fit for all the data sets. We derived the absorption lines parameters and calculated their detailed detection significance making use of the classical F-test and extensive Monte Carlo simulations. Results: We detect 36 narrow absorption lines on a total of 101 XMM-Newton EPIC pn observations. The number of absorption lines at rest-frame energies higher than 7 keV is 22. Their global probability to be generated by random fluctuations is very low, less than 3 × 10-8, and their detection have been independently confirmed by a spectral analysis of the MOS data, with associated random probability <10-7. We identify the lines as Fe XXV and Fe XXVI K-shell resonant absorption. They are systematically blue-shifted, with a velocity distribution ranging from zero up to ~0.3c, with a peak and mean value at ~0.1c. We detect variability of the lines on both EWs and blue-shifted velocities among different XMM-Newton observations even on time-scales as short as a few days, possibly suggesting somewhat compact absorbers. Moreover, we find no significant correlation between the cosmological red-shifts of the sources and the lines blue-shifted velocities, ruling out any systematic contamination by local absorption. If we define ultra-fast outflows (UFOs) those highly ionized absorbers with outflow velocities higher than 104 km s-1, then the majority of the lines are consistent with being associated to UFOs and the fraction of objects with detected UFOs in the whole sample is at least ~35%. This fraction is similar for type 1 and type 2 sources. The global covering fraction of the absorbers is consequently estimated to be in the range C ˜ 0.4-0.6, thereby implying large opening angles. Conclusions: From our systematic X-ray spectral analysis on a large sample of radio-quiet AGNs we have been able to clearly assess the global veracity of the blue-shifted Fe K absorption lines at E > 7 keV and to overcome their publication bias. These lines indicate that UFOs are a rather common phenomenon observable in the central regions of these sources and they are probably the direct signature of AGN accretion disk winds/ejecta. The detailed photo-ionization modeling of these absorbers is presented in a companion paper. Appendices are only available in electronic form at http://www.aanda.org

  9. Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation.

    PubMed

    Sakai, T; Kagawa, T; Kasahara, M; Swartz, T E; Christie, J M; Briggs, W R; Wada, M; Okada, K

    2001-06-05

    UV-A/blue light acts to regulate a number of physiological processes in higher plants. These include light-driven chloroplast movement and phototropism. The NPH1 gene of Arabidopsis encodes an autophosphorylating protein kinase that functions as a photoreceptor for phototropism in response to low-intensity blue light. However, nph1 mutants have been reported to exhibit normal phototropic curvature under high-intensity blue light, indicating the presence of an additional phototropic receptor. A likely candidate is the nph1 homologue, npl1, which has recently been shown to mediate the avoidance response of chloroplasts to high-intensity blue light in Arabidopsis. Here we demonstrate that npl1, like nph1, noncovalently binds the chromophore flavin mononucleotide (FMN) within two specialized PAS domains, termed LOV domains. Furthermore, when expressed in insect cells, npl1, like nph1, undergoes light-dependent autophosphorylation, indicating that npl1 also functions as a light receptor kinase. Consistent with this conclusion, we show that a nph1 npl1 double mutant exhibits an impaired phototropic response under both low- and high-intensity blue light. Hence, npl1 functions as a second phototropic receptor under high fluence rate conditions and is, in part, functionally redundant to nph1. We also demonstrate that both chloroplast accumulation in response to low-intensity light and chloroplast avoidance movement in response to high-intensity light are lacking in the nph1 npl1 double mutant. Our findings therefore indicate that nph1 and npl1 show partially overlapping functions in two different responses, phototropism and chloroplast relocation, in a fluence rate-dependent manner.

  10. Suppression of vagal cardiac modulation by blue light in healthy subjects.

    PubMed

    Yuda, Emi; Ogasawara, Hiroki; Yoshida, Yutaka; Hayano, Junichiro

    2016-10-05

    In the contemporary life environments, our body is increasingly exposed to various sources of colored light, which may affect our physiological functions as non-image-forming effects. We examined the impacts of colored lights on the autonomic functions by the analysis of heart rate variability (HRV). A lighting device consisting of four organic light-emitting diode (OLED) modules (55 × 55 mm 2 ) with adjustable red-green-blue color was secured 24 cm above the eyes of subject lying supine in a light-shielded laboratory. Following a 15-min supine rest, electrocardiogram and respiration were measured continuously during 3-min darkness, 6-min colored OLED illumination, and 3-min darkness under paced breathing (15 breath/min). The measurements were repeated at a 45-min interval for red, green, and blue lights with melanopsin-stimulating photon flux density (MSPFD) of 0.00, 0.10, and 0.20 μmol/m 2 /s, respectively, in 12 healthy subjects (23 ± 2 years, two females). Additionally, the effects of blue lights with 0.20, 0.10, and 0.04 μmol/m 2 /s MSPFD were examined in four healthy subjects (25-39 years, two females). HRV was analyzed for low-frequency (LF, 0.04-0.15 Hz) and high-frequency (HF, 0.20-0.30 Hz) power and LF-to-HF ratio (LF/HF). Compared to darkness before lighting, HF power decreased (P < 0.001) and LF/HF increased (P = 0.024) during lighting on average of all color lights, whereas HF power showed a greater decrease with blue light than with red and green lights (P < 0.05 for both). The decrease in HF power lasted even during darkness after lighting (P < 0.001). HF power decreased with blue light with 0.20 μmol/m 2 /s MSPFD (P < 0.001) but not with that with 0.10 or 0.04 μmol/m 2 /s (P = 0.1 and 0.9, respectively). Vagal cardiac modulation is suppressed by OLED blue light in healthy subjects most likely through melanopsin-dependent non-image-forming effect.

  11. Optimum Solar Conversion Cell Configurations

    NASA Technical Reports Server (NTRS)

    Chen, Bin (Inventor)

    2015-01-01

    Methods for maximizing a fraction of light energy absorbed in each of three classes of light concentrators (rectangular parallelepipeds, paraboloids and prisms) by choice of incident angle of radiation and of one or more geometrical or physical parameters (absorber thickness, paraboloid dimensions, location of paraboloid focus, prism angles, concentrator material, cladding, prism angles, etc.). Alternatively, the light energy absorbed plus the light energy that escapes through non-total internal reflection within the light concentrator can be minimized.

  12. Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication

    PubMed Central

    Chi, Yu-Chieh; Hsieh, Dan-Hua; Lin, Chung-Yu; Chen, Hsiang-Yu; Huang, Chia-Yen; He, Jr-Hau; Ooi, Boon; DenBaars, Steven P.; Nakamura, Shuji; Kuo, Hao-Chung; Lin, Gong-Ru

    2015-01-01

    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120o with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10−3 over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems. PMID:26687289

  13. Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication

    NASA Astrophysics Data System (ADS)

    Chi, Yu-Chieh; Hsieh, Dan-Hua; Lin, Chung-Yu; Chen, Hsiang-Yu; Huang, Chia-Yen; He-Hau, Jr.; Ooi, Boon; Denbaars, Steven P.; Nakamura, Shuji; Kuo, Hao-Chung; Lin, Gong-Ru

    2015-12-01

    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120o with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10-3 over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems.

  14. Photochemical eradication of methicillin-resistant Staphylococcus aureus by blue light activation of riboflavin.

    PubMed

    Makdoumi, Karim; Goodrich, Ray; Bäckman, Anders

    2017-08-01

    To compare elimination of methicillin-resistant Staphylococcus aureus (MRSA) by exposure of blue light alone and with riboflavin. A reference strain of MRSA was cultured and diluted in PBS with and without riboflavin (0.01%). Fifteen microlitre was added on a microscope slide, creating a fluid layer with a thickness of around 400 microns. Both of the bacterial suspensions were exposed to blue light, and the effect between exposure with and without riboflavin was compared. Evaluation involved two different wavelengths (412 and 450 nm) of blue light with a lower (5.4 J/cm 2 ) and higher dose (approximately 28.5 J/cm 2 ). The effect of 412 nm light was also evaluated for a thicker fluid layer (1.17 mm). After exposure, colony-forming units (CFUs) were determined for each solution. All measurements were repeated eight times. The reductions in bacteria were similar for both wavelengths. With riboflavin, a statistically significant elimination was observed for both 412 and 450 nm (p < 0.001). At both dosages, the mean reduction was more pronounced with the presence of riboflavin than without it. Using the higher dose, CFU reduction was 99% and 98%, respectively, for 412 and 450 nm light. The bactericidal efficacy was high also in the deeper fluid layer (93%, higher dose). Riboflavin enhanced the antibacterial effect on the exposed MRSA strain of blue light for both 412 and 450 nm blue light. This indicates that blue light could be considered for possible implementation in deep corneal infections. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. Biological effects of blocking blue and other visible light on the mouse retina.

    PubMed

    Narimatsu, Toshio; Ozawa, Yoko; Miyake, Seiji; Kubota, Shunsuke; Yuki, Kenya; Nagai, Norihiro; Tsubota, Kazuo

    2014-08-01

    To elucidate the biological effects of blocking fluorescent light on the retina using specific blocking materials. Seven- to 8-week-old BALB/c mice were divided into three groups and placed in one of the three boxes: one blocked ultraviolet and violet wavelengths of light (violet blockade), one blocked ultraviolet, violet, blue and some other visible wavelengths (blue-plus blockade), and one allowed most visible light to pass through (control). They were then exposed to a white fluorescent lamp for 1 h at 5.65E-05 mW/cm(2) /s. After treatment, the electroretinogram, retinal outer nuclear layer thickness and retinal outer segment length were measured. In addition, retinal apoptotic cells were quantified by TdT-mediated dUTP nick-end labelling assay and c-Fos messenger RNA, and protein levels were measured by real-time reverse-transcription polymerase chain reaction and immunoblot analyses, respectively. The blue-plus blockade group retained a significantly better electroretinogram response following light exposure than the control or violet blockade groups. The blue-plus blockade group also exhibited greater outer nuclear layer thickness and greater outer-segment length, and fewer apoptotic cells after light exposure than the other groups. The c-Fos messenger RNA and protein levels were substantially reduced in the blue-plus blockade group and reduced to a lesser extent in the violet blockade group. The blockade of blue plus additional visible wavelengths of light was most effective in protecting the retina from light-induced damage. The blockade of violet light alone was also effective in reducing intracellular molecular responses, but these effects were not sufficient for attenuating retinal degeneration. © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  16. Blue light potentiates neurogenesis induced by retinoic acid-loaded responsive nanoparticles.

    PubMed

    Santos, Tiago; Ferreira, Raquel; Quartin, Emanuel; Boto, Carlos; Saraiva, Cláudia; Bragança, José; Peça, João; Rodrigues, Cecília; Ferreira, Lino; Bernardino, Liliana

    2017-09-01

    Neurogenic niches constitute a powerful endogenous source of new neurons that can be used for brain repair strategies. Neuronal differentiation of these cells can be regulated by molecules such as retinoic acid (RA) or by mild levels of reactive oxygen species (ROS) that are also known to upregulate RA receptor alpha (RARα) levels. Data showed that neural stem cells from the subventricular zone (SVZ) exposed to blue light (405nm laser) transiently induced NADPH oxidase-dependent ROS, resulting in β-catenin activation and neuronal differentiation, and increased RARα levels. Additionally, the same blue light stimulation was capable of triggering the release of RA from light-responsive nanoparticles (LR-NP). The synergy between blue light and LR-NP led to amplified neurogenesis both in vitro and in vivo, while offering a temporal and spatial control of RA release. In conclusion, this combinatory treatment offers great advantages to potentiate neuronal differentiation, and provides an innovative and efficient application for brain regenerative therapies. Controlling the differentiation of stem cells would support the development of promising brain regenerative therapies. Blue light transiently increased reactive oxygen species, resulting in neuronal differentiation and increased retinoic acid receptor (RARα) levels. Additionally, the same blue light stimulation was capable of triggering the release of RA from light-responsive nanoparticles (LR-NP). The synergy between blue light and LR-NP led to amplified neurogenesis, while offering a temporal and spatial control of RA release. In this sense, our approach relying on the modulation of endogenous stem cells for the generation of new neurons may support the development of novel clinical therapies. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Short Blue Light Pulses (30 Min) in the Morning Support a Sleep-Advancing Protocol in a Home Setting.

    PubMed

    Geerdink, Moniek; Walbeek, Thijs J; Beersma, Domien G M; Hommes, Vanja; Gordijn, Marijke C M

    2016-10-01

    Many people in our modern civilized society sleep later on free days compared to work days. This discrepancy in sleep timing will lead to so-called 'social jetlag' on work days with negative consequences for performance and health. Light therapy in the morning is often proposed as the most effective method to advance the circadian rhythm and sleep phase. However, most studies focus on direct effects on the circadian system and not on posttreatment effects on sleep phase and sleep integrity. In this placebo-controlled home study we investigated if blue light, rather than amber light therapy, can phase shift the sleep phase along with the circadian rhythm with preservation of sleep integrity and performance. We selected 42 participants who suffered from 'social jetlag' on workdays. Participants were randomly assigned to either high-intensity blue light exposure or amber light exposure (placebo) with similar photopic illuminance. The protocol consisted of 14 baseline days without sleep restrictions, 9 treatment days with either 30-min blue light pulses or 30-min amber light pulses in the morning along with a sleep advancing scheme and 7 posttreatment days without sleep restrictions. Melatonin samples were taken at days 1, 7, 14 (baseline), day 23 (effect treatment), and day 30 (posttreatment). Light exposure was recorded continuously. Sleep was monitored through actigraphy. Performance was measured with a reaction time task. As expected, the phase advance of the melatonin rhythm from day 14 to day 23 was significantly larger in the blue light exposure group, compared to the amber light group (84 min ± 51 (SD) and 48 min ± 47 (SD) respectively; t36 = 2.23, p < 0.05). Wake-up time during the posttreatment days was slightly earlier compared to baseline in the blue light group compared to slightly later in the amber light group (-21 min ± 33 (SD) and +12 min ± 33 (SD) respectively; F1,35 = 9.20, p < 0.01). The number of sleep bouts was significantly higher in the amber light group compared to the blue light group during sleep in the treatment period (F1,32 = 4.40, p < 0.05). Performance was significantly worse compared to baseline at all times during (F1,13 = 10.1, p < 0.01) and after amber light treatment (F1,13 = 17.1, p < 0.01), while only in the morning during posttreatment in the blue light condition (F1,10 = 9.8, p < 0.05). The data support the conclusion that blue light was able to compensate for the sleep integrity reduction and to a large extent for the performance decrement that was observed in the amber light condition, both probably as a consequence of the advancing sleep schedule. This study shows that blue light therapy in the morning, applied in a home setting, supports a sleep advancing protocol by phase advancing the circadian rhythm as well as sleep timing. © 2016 The Author(s).

  18. Violet/blue light activates Nrf2 signaling and modulates the inflammatory response of THP-1 monocytes.

    PubMed

    Trotter, L A; Patel, D; Dubin, S; Guerra, C; McCloud, V; Lockwood, P; Messer, R; Wataha, J C; Lewis, J B

    2017-06-14

    Several studies suggest that light in the UVA range (320-400 nm) activates signaling pathways that are anti-inflammatory and antioxidative. These effects have been attributed to Nrf2-mediated upregulation of "phase 2" genes such as heme oxygenase-1 (HO-1) that neutralize oxidative stress and metabolize electrophiles. Proteomics analysis previously had shown that small doses of blue light (400-500 nm) increased levels of peroxiredoxin phase 2 proteins in THP-1 monocytes, which led to our hypothesis that blue light activates Nrf2 signaling and thus may serve as an anti-inflammatory agent. THP-1 monocytes were treated with doses of blue light with and without lipopolysaccharide (LPS) inflammatory challenge. Cell lysates were tested for Nrf2 activation and HO-1 production. Treated cells were assessed for viability/mitochondrial activity via trypan blue exclusion and MTT assay, and secretion of two major pro-inflammatory cytokines, interleukin 8 (IL8) and tumor necrosis factor alpha (TNFα) was measured using ELISA. Blue light activated the phase 2 response in cultured THP-1 cells and was protective against LPS-induced cytotoxicity. Light pre-treatment also significantly reduced cytokine secretion in response to 0.1 μg ml -1 LPS, but had no anti-inflammatory effect at high LPS levels. This study is the first to report these effects using a light source that is approved for routine use on dental patients. Cellular responses to these light energies are worth further study and may provide therapeutic interventions for inflammation.

  19. Critical Reflectance Derived from MODIS: Application for the Retrieval of Aerosol Absorption over Desert Regions

    NASA Technical Reports Server (NTRS)

    Wells, Kelley C.; Martins, J. Vanderlei; Remer, Lorraine A.; Kreidenweis, Sonia M.; Stephens, Graeme L.

    2012-01-01

    Aerosols are tiny suspended particles in the atmosphere that scatter and absorb sunlight. Smoke particles are aerosols, as are sea salt, particulate pollution and airborne dust. When you look down at the earth from space sometimes you can see vast palls of whitish smoke or brownish dust being transported by winds. The reason that you can see these aerosols is because they are reflecting incoming sunlight back to the view in space. The reason for the difference in color between the different types of aerosol is that the particles arc also absorbing sunlight at different wavelengths. Dust appears brownish or reddish because it absorbs light in the blue wavelengths and scatters more reddish light to space, Knowing how much light is scattered versus how much is absorbed, and knowin that as a function of wavelength is essential to being able to quantify the role aerosols play in the energy balance of the earth and in climate change. It is not easy measuring the absorption properties of aerosols when they are suspended in the atmosphere. People have been doing this one substance at a time in the laboratory, but substances mix when they are in the atmosphere and the net absorption effect of all the particles in a column of air is a goal of remote sensing that has not yet been completely successful. In this paper we use a technique based on observing the point at which aerosols change from brightening the surface beneath to darkening it. If aerosols brighten a surface. they must scatter more light to space. If they darken the surface. they must be absorbing more. That cross over point is called the critical reflectance and in this paper we show that critical reflectance is a monotonic function of the intrinsic absorption properties of the particles. This parameter we call the single scattering albedo. We apply the technique to MODIS imagery over the Sahara and Sahel regions to retrieve the single scattering albedo in seven wavelengths, compare these retrievals to ground-based retrievals from AERONET instruments and compute error bars on each retrieval. The results show that we can retrieve single scattering albedo for pure dust to within +/-0.02 and mixtures of dust and smoke to within +/-0.03. No other space based instrument has achieved a retrieval of single scattering albedo that spans the spectrum from 0.47 microns to 2.13 microns and produces regional maps of aerosol absorption showing gradients and changes. Applied in a more operational fashion, such information will narrow uncertainties in estimating aerosol forcing on climate.

  20. Four Ways to See Saturn

    NASA Image and Video Library

    2004-04-22

    A montage of Cassini images, taken in four different regions of the spectrum from ultraviolet to near-infrared, demonstrates that there is more to Saturn than meets the eye. The pictures show the effects of absorption and scattering of light at different wavelengths by both atmospheric gas and clouds of differing heights and thicknesses. They also show absorption of light by colored particles mixed with white ammonia clouds in the planet's atmosphere. Contrast has been enhanced to aid visibility of the atmosphere. Cassini's narrow-angle camera took these four images over a period of 20 minutes on April 3, 2004, when the spacecraft was 44.5 million kilometers (27.7 million miles) from the planet. The image scale is approximately 267 kilometers (166 miles) per pixel. All four images show the same face of Saturn. In the upper left image, Saturn is seen in ultraviolet wavelengths (298 nanometers); at upper right, in visible blue wavelengths (440 nanometers); at lower left, in far red wavelengths just beyond the visible-light spectrum (727 nanometers; and at lower right, in near-infrared wavelengths (930 nanometers). The sliver of light seen in the northern hemisphere appears bright in the ultraviolet and blue (top images) and is nearly invisible at longer wavelengths (bottom images). The clouds in this part of the northern hemisphere are deep, and sunlight is illuminating only the cloud-free upper atmosphere. The shorter wavelengths are consequently scattered by the gas and make the illuminated atmosphere bright, while the longer wavelengths are absorbed by methane. Saturn's rings also appear noticeably different from image to image, whose exposure times range from two to 46 seconds. The rings appear dark in the 46-second ultraviolet image because they inherently reflect little light at these wavelengths. The differences at other wavelengths are mostly due to the differences in exposure times. http://photojournal.jpl.nasa.gov/catalog/PIA05388

  1. 23 CFR Appendix to Subpart F of... - Alternate Method of Determining the Color of Retroreflective Sign Materials and Pavement Marking...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....210 0.160 0.137 0.038 Light Blue 0.180 0.260 0.240 0.300 0.270 0.260 0.230 0.200 Purple 0.302 0.064 0... 3.0 12 2.5 11 Blue 1.0 10 1.0 10 1.0 10 Light Blue 12 40 18 40 8.0 25 Purple 2.0 10 2.0 10 2.0 10... Light Blue Chromaticity coordinates are yet to be determined. Note: Materials used as High-Conspicuity...

  2. 23 CFR Appendix to Subpart F of... - Alternate Method of Determining the Color of Retroreflective Sign Materials and Pavement Marking...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....210 0.160 0.137 0.038 Light Blue 0.180 0.260 0.240 0.300 0.270 0.260 0.230 0.200 Purple 0.302 0.064 0... 3.0 12 2.5 11 Blue 1.0 10 1.0 10 1.0 10 Light Blue 12 40 18 40 8.0 25 Purple 2.0 10 2.0 10 2.0 10... Light Blue Chromaticity coordinates are yet to be determined. Note: Materials used as High-Conspicuity...

  3. 23 CFR Appendix to Subpart F of... - Alternate Method of Determining the Color of Retroreflective Sign Materials and Pavement Marking...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....210 0.160 0.137 0.038 Light Blue 0.180 0.260 0.240 0.300 0.270 0.260 0.230 0.200 Purple 0.302 0.064 0... 3.0 12 2.5 11 Blue 1.0 10 1.0 10 1.0 10 Light Blue 12 40 18 40 8.0 25 Purple 2.0 10 2.0 10 2.0 10... Light Blue Chromaticity coordinates are yet to be determined. Note: Materials used as High-Conspicuity...

  4. The quantitative models for broiler chicken response to monochromatic, combined, and mixed light-emitting diode light: A meta-analysis.

    PubMed

    Yang, Yefeng; Pan, Chenhao; Zhong, Renhai; Pan, Jinming

    2018-06-01

    Although many experiments have been conducted to clarify the response of broiler chickens to light-emitting diode (LED) light, those published results do not provide a solid scientific basis for quantifying the response of broiler chickens. This study used a meta-analysis to establish light spectral models of broiler chickens. The results indicated that 455 to 495 nm blue LED light produced the greatest positive response in body weight by 10.66% (BW; P < 0.001) and 515 to 560 nm green LED light increased BW by 6.27% (P < 0.001) when compared with white light. Regression showed that the wavelength (455 to 660 nm) was negatively related to BW change of birds, with a decrease of about 4.9% BW for each 100 nm increase in wavelength (P = 0.002). Further analysis suggested that a combination of the two beneficial light sources caused a synergistic effect. BW was further increased in birds transferred either from green LED light to blue LED light (17.23%; P < 0.001) or from blue LED light to green LED light (17.52%; P < 0.001). Moreover, birds raised with a mixture of green and blue LED light showed a greater BW promotion (10.66%; P < 0.001) than those raised with green LED light (6.27%). A subgroup analysis indicated that BW response to monochromatic LED light was significant regardless of the genetic strain, sex, control light sources, light intensity and regime of LED light, environmental temperature, and dietary ME and CP (P > 0.05). However, there was an interaction between the FCR response to monochromatic LED light with those covariant factors (P < 0.05). Additionally, green and yellow LED light played a role in affecting the meat color, quality, and nutrition of broiler chickens. The results indicate that the optimal ratio of green × blue of mixed LED light or shift to green-blue of combined LED light may produce the optimized production performance, whereas the optimal ratio of green/yellow of mixed or combined LED light may result in the optimized meat quality.

  5. In vitro bactericidal activity of 465-470 nm blue light phototherapy and aminolevulinic acid on Staphylococcus pseudintermedius.

    PubMed

    Bae, Seulgi; Oh, Taeho

    2018-05-30

    Staphylococcus pseudintermedius is the principal pathogen causing bacterial skin infections in dogs. Photodynamic therapy (PDT) involving the combination of light and a topical photosensitizer is used to treat human skin infections. Although the antimicrobial effects of PDT have been demonstrated using in vivo and in vitro studies in humans, its effects on dogs and their pathogens are unclear. The aim of this study was to demonstrate the in vitro efficacy of PDT over a 465-470 nm spectrum to kill S. pseudintermedius using δ-aminolevulinic acid (ALA) as the photosensitizer. Six S. pseudintermedius isolates from canine skin were exposed to blue light-emitting diodes (LEDs) at 465-470 nm, with or without ALA. The light doses were 18.4, 36.8 and 55.2 J/cm 2 . The number of colony-forming units and optical densities of broth cultures were measured and then compared with Dunnett's test. Bacterial viability was monitored using fluorescence microscopy and the fluorescence intensity values were compared with a paired Student's t-test. Blue light inhibited the growth of S. pseudintermedius; the effect significantly increased with the addition of ALA as a photosensitizer and with increasing light doses. Live/dead staining confirmed that PDT reduced bacterial viability and exerted an antibacterial effect. Blue light has a strong antibacterial effect on S. pseudintermedius in a light dose-dependent manner. ALA alone did not exhibit bactericidal action, but its combination with blue light increased the effect of PDT compared to blue light alone. © 2018 ESVD and ACVD.

  6. Responses of Crepis japonica induced by supplemental blue light and UV-A radiation.

    PubMed

    Constantino, L F da S; Nascimento, L B Dos S; Casanova, L M; Moreira, N Dos S; Menezes, E A; Esteves, R L; Costa, S S; Tavares, E S

    2017-02-15

    Crepis japonica (L.) D.C. (Asteraceae), a weed with antioxidant, antiallergenic, antiviral and antitumor properties displays both medicinal properties and nutritional value. This study aims to assess the effects of a supplementation of blue light and UV-A radiation on the growth, leaf anatomical structure and phenolic profile of the aerial parts of Crepis japonica. Plants were grown under two light treatments: W (control - white light), W + B (white light supplemented with blue light) and W + UV-A (white light supplemented with UV-A radiation). We recorded the length, width, and weight of fresh and dry leaves, the thickness of the epidermis and mesophyll, and stomata density. The phenolic profiles of the aqueous extracts of the aerial parts were analyzed by HPLC-DAD. There was an increase in the leaf size, stomatal density, and phenolic production, and a thickening of the mesophyll and epidermis. UV-A radiation increased the phenolic production more than blue light. Blue light and UV-A radiation both improved the production of caffeic acid by about 6 and 3 times, respectively, in comparison to control. This compound was first reported as a constituent of the extract from the aerial parts together with caftaric acid. UV-A also promoted the production of chlorogenic acid (about 1.5 times in comparison to the control). We observed that the morphological and chemical parameters of C. japonica are modified in response to blue light and UV-A radiation, which can be used as tools in the cultivation of this species in order to improve its medicinal properties and nutritional value.

  7. Light quality modulates metabolic synchronization over the diel phases of crassulacean acid metabolism

    PubMed Central

    Ceusters, Johan; Borland, Anne M.; Taybi, Tahar; Frans, Mario; Godts, Christof; De Proft, Maurice P.

    2014-01-01

    Temporal compartmentation of carboxylation processes is a defining feature of crassulacean acid metabolism and involves circadian control of key metabolic and transport steps that regulate the supply and demand for carbon over a 24h cycle. Recent insights on the molecular workings of the circadian clock and its connection with environmental inputs raise new questions on the importance of light quality and, by analogy, certain photoreceptors for synchronizing the metabolic components of CAM. The present work tested the hypothesis that optimal coupling of stomatal conductance, net CO2 uptake, and the reciprocal turnover of carbohydrates and organic acids over the diel CAM cycle requires both blue and red light input signals. Contrasting monochromatic wavelengths of blue, green, and red light (i.e. 475, 530, 630nm) with low fluence rates (10 μmol m–2 s–1) were administered for 16 hours each diel cycle for a total treatment time of 48 hours to the obligate CAM bromeliad, Aechmea ‘Maya’. Of the light treatments imposed, low-fluence blue light was a key determinant in regulating stomatal responses, organic acid mobilization from the vacuole, and daytime decarboxylation. However, the reciprocal relationship between starch and organic acid turnover that is typical for CAM was uncoupled under low-fluence blue light. Under low-fluence red or green light, the diel turnover of storage carbohydrates was orchestrated in line with the requirements of CAM, but a consistent delay in acid consumption at dawn compared with plants under white or low-fluence blue light was noted. Consistent with the acknowledged influences of both red and blue light as input signals for the circadian clock, the data stress the importance of both red and blue-light signalling pathways for synchronizing the metabolic and physiological components of CAM over the day/night cycle. PMID:24803500

  8. Quantitative surface temperature measurement using two-color thermographic phosphors and video equipment

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M. (Inventor)

    1989-01-01

    A thermal imaging system provides quantitative temperature information and is particularly useful in hypersonic wind tunnel applications. An object to be measured is prepared by coating with a two-color, ultraviolet-activated, thermographic phosphor. The colors emitted by the phosphor are detected by a conventional color video camera. A phosphor emitting blue and green light with a ratio that varies depending on temperature is used so that the intensity of light in the blue and green wavelengths detected by the blue and green tubes in the video camera can be compared. Signals representing the intensity of blue and green light at points on the surface of a model in a hypersonic wind tunnel are used to calculate a ratio of blue to green light intensity which provides quantitative temperature information for the surface of the model.

  9. Measurements of Light Absorbing Particles on Tropical South American Glaciers

    NASA Astrophysics Data System (ADS)

    Schmitt, C. G.; All, J.; Schwarz, J. P.; Arnott, W. P.; Warthon, J.; Andrade, M.; Celestian, A. J.; Hoffmann, D.; Cole, R. J.; Lapham, E.; Horodyskyj, U. N.; Froyd, K. D.; Liao, J.

    2014-12-01

    Glaciers in the tropical Andes have been losing mass rapidly in recent decades. In addition to the documented increase in temperature, increases in light absorbing particulates deposited on glaciers could be contributing to the observed glacier loss. Here we present results of measurements of light absorbing particles from glaciers in Peru and Bolivia. Samples have been collected by American Climber Science Program volunteers and scientists at altitudes up to 6770 meters. Collected snow samples were melted and filtered in the field. A new inexpensive technique, the Light Absorption Heating Method (LAHM) has been developed for analysis of light absorbing particles collected on filters. Results from LAHM analysis are calibrated using filters with known amounts of fullerene soot, a common industrial surrogate for black carbon (BC). For snow samples collected at the same field location LAHM analysis and measurements from the Single Particle Soot Photometer (SP2) instrument are well correlated (r2 = 0.92). Co-located SP2 and LAHM filter analysis suggest that BC could be the dominant absorbing component of the light absorbing particles in some areas.

  10. 49 CFR 218.5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... distinguishable blue flag or blue light by day and a blue light at night. When attached to the operating controls... the exclusive control of mechanical department personnel. Controlling locomotive means a locomotive arranged as having the only controls over all electrical, mechanical and pneumatic functions for one or...

  11. 49 CFR 218.5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... distinguishable blue flag or blue light by day and a blue light at night. When attached to the operating controls... the exclusive control of mechanical department personnel. Controlling locomotive means a locomotive arranged as having the only controls over all electrical, mechanical and pneumatic functions for one or...

  12. Remote Sensing of Ocean Color

    NASA Astrophysics Data System (ADS)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats (e.g., seagrasses, kelps), eutrophication processes, oil spills, and a variety of hazards in the coastal zone.

  13. Low-energy light bulbs, computers, tablets and the blue light hazard.

    PubMed

    O'Hagan, J B; Khazova, M; Price, L L A

    2016-02-01

    The introduction of low energy lighting and the widespread use of computer and mobile technologies have changed the exposure of human eyes to light. Occasional claims that the light sources with emissions containing blue light may cause eye damage raise concerns in the media. The aim of the study was to determine if it was appropriate to issue advice on the public health concerns. A number of sources were assessed and the exposure conditions were compared with international exposure limits, and the exposure likely to be received from staring at a blue sky. None of the sources assessed approached the exposure limits, even for extended viewing times.

  14. Blue laser diode (LD) and light emitting diode (LED) applications

    NASA Astrophysics Data System (ADS)

    Bergh, Arpad A.

    2004-09-01

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography.As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc.Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity.Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care.

  15. Novel Ultraviolet Light Absorbing Polymers For Optical Applications

    NASA Astrophysics Data System (ADS)

    Doddi, Namassivaya; Yamada, Akira; Dunks, Gary B.

    1988-07-01

    Ultraviolet light absorbing monomers have been developed that can be copolymerized with acrylates. The composition of the resultant stable copolymers can be adjusted to totally block the transmission of light below about 430 nm. Fabrication of lenses from the materials is accomplished by lathe cutting and injection molding procedures. These ultraviolet light absorbing materials are non-mutagenic and non-toxic and are currently being used in intraocular lenses.

  16. Long-Term Effects of Red- and Blue-Light Emitting Diodes on Leaf Anatomy and Photosynthetic Efficiency of Three Ornamental Pot Plants

    PubMed Central

    Zheng, Liang; Van Labeke, Marie-Christine

    2017-01-01

    Light quality critically affects plant development and growth. Development of light-emitting diodes (LEDs) enables the use of narrow band red and/or blue wavelengths as supplementary lighting in ornamental production. Yet, long periods under these wavelengths will affect leaf morphology and physiology. Leaf anatomy, stomatal traits, and stomatal conductance, leaf hydraulic conductance (Kleaf), and photosynthetic efficiency were investigated in three ornamental pot plants, namely Cordyline australis (monocot), Ficus benjamina (dicot, evergreen leaves), and Sinningia speciosa (dicot, deciduous leaves) after 8 weeks under LED light. Four light treatments were applied at 100 μmol m−2 s−1 and a photoperiod of 16 h using 100% red (R), 100% blue (B), 75% red with 25% blue (RB), and full spectrum white light (W), respectively. B and RB resulted in a greater maximum quantum yield (Fv/Fm) and quantum efficiency (ΦPSII) in all species compared to R and W and this correlated with a lower biomass under R. B increased the stomatal conductance compared with R. This increase was linked to an increasing stomatal index and/or stomatal density but the stomatal aperture area was unaffected by the applied light quality. Leaf hydraulic conductance (Kleaf) was not significantly affected by the applied light qualities. Blue light increased the leaf thickness of F. benjamina, and a relative higher increase in palisade parenchyma was observed. Also in S. speciosa, increase in palisade parenchyma was found under B and RB, though total leaf thickness was not affected. Palisade parenchyma tissue thickness was correlated to the leaf photosynthetic quantum efficiency (ΦPSII). In conclusion, the role of blue light addition in the spectrum is essential for the normal anatomical leaf development which also impacts the photosynthetic efficiency in the three studied species. PMID:28611818

  17. Arabidopsis nph1 and npl1: Blue light receptors that mediate both phototropism and chloroplast relocation

    PubMed Central

    Sakai, Tatsuya; Kagawa, Takatoshi; Kasahara, Masahiro; Swartz, Trevor E.; Christie, John M.; Briggs, Winslow R.; Wada, Masamitsu; Okada, Kiyotaka

    2001-01-01

    UV-A/blue light acts to regulate a number of physiological processes in higher plants. These include light-driven chloroplast movement and phototropism. The NPH1 gene of Arabidopsis encodes an autophosphorylating protein kinase that functions as a photoreceptor for phototropism in response to low-intensity blue light. However, nph1 mutants have been reported to exhibit normal phototropic curvature under high-intensity blue light, indicating the presence of an additional phototropic receptor. A likely candidate is the nph1 homologue, npl1, which has recently been shown to mediate the avoidance response of chloroplasts to high-intensity blue light in Arabidopsis. Here we demonstrate that npl1, like nph1, noncovalently binds the chromophore flavin mononucleotide (FMN) within two specialized PAS domains, termed LOV domains. Furthermore, when expressed in insect cells, npl1, like nph1, undergoes light-dependent autophosphorylation, indicating that npl1 also functions as a light receptor kinase. Consistent with this conclusion, we show that a nph1npl1 double mutant exhibits an impaired phototropic response under both low- and high-intensity blue light. Hence, npl1 functions as a second phototropic receptor under high fluence rate conditions and is, in part, functionally redundant to nph1. We also demonstrate that both chloroplast accumulation in response to low-intensity light and chloroplast avoidance movement in response to high-intensity light are lacking in the nph1npl1 double mutant. Our findings therefore indicate that nph1 and npl1 show partially overlapping functions in two different responses, phototropism and chloroplast relocation, in a fluence rate-dependent manner. PMID:11371609

  18. Concentrating light in Cu(In,Ga)Se2 solar cells

    NASA Astrophysics Data System (ADS)

    Schmid, M.; Yin, G.; Song, M.; Duan, S.; Heidmann, B.; Sancho-Martinez, D.; Kämmer, S.; Köhler, T.; Manley, P.; Lux-Steiner, M. Ch.

    2016-09-01

    Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here we investigate light concentration for cost efficient thinfilm solar cells which show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe) which has a proven stabilized record efficiency of 22.6% and which - despite being a polycrystalline thin-film material - is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscale approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared to the large scale concentrators and promise compact high efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultra-thin absorbers for dielectric nanostructures) or horizontally (micro absorbers for concentrating lenses) and have significant potential for efficiency enhancement.

  19. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein.

    PubMed Central

    Ballario, P; Vittorioso, P; Magrelli, A; Talora, C; Cabibbo, A; Macino, G

    1996-01-01

    The Neurospora crassa blind mutant white collar-1 (wc-1) is pleiotropically defective in all blue light-induced phenomena, establishing a role for the wc-1 gene product in the signal transduction pathway. We report the cloning of the wc-1 gene isolated by chromosome walking and mutant complementation. The elucidation of the wc-1 gene product provides a key piece of the blue light signal transduction puzzle. The wc-1 gene encodes a 125 kDa protein whose encoded motifs include a single class four, zinc finger DNA binding domain and a glutamine-rich putative transcription activation domain. We demonstrate that the wc-1 zinc finger domain, expressed in Escherichia coli, is able to bind specifically to the promoter of a blue light-regulated gene of Neurospora using an in vitro gel retardation assay. Furthermore, we show that wc-1 gene expression is autoregulated and is transcriptionally induced by blue light irradiation. Images PMID:8612589

  20. Is the Lateralized Categorical Perception of Color a Situational Effect of Language on Color Perception?

    PubMed

    Zhong, Weifang; Li, You; Huang, Yulan; Li, He; Mo, Lei

    2018-01-01

    This study investigated whether and how a person's varied series of lexical categories corresponding to different discriminatory characteristics of the same colors affect his or her perception of colors. In three experiments, Chinese participants were primed to categorize four graduated colors-specifically dark green, light green, light blue, and dark blue-into green and blue; light color and dark color; and dark green, light green, light blue, and dark blue. The participants were then required to complete a visual search task. Reaction times in the visual search task indicated that different lateralized categorical perceptions (CPs) of color corresponded to the various priming situations. These results suggest that all of the lexical categories corresponding to different discriminatory characteristics of the same colors can influence people's perceptions of colors and that color perceptions can be influenced differently by distinct types of lexical categories depending on the context. Copyright © 2017 Cognitive Science Society, Inc.

  1. Individually tailored light intervention through closed eyelids to promote circadian alignment and sleep health

    PubMed Central

    Figueiro, Mariana G.

    2016-01-01

    Background Light is most effective at changing the timing of the circadian clock when applied close to the core body temperature minimum. The present study investigated, in a home setting, if individually tailored light treatment using flashing blue light delivered through closed eyelids during the early part of the sleep period delayed circadian phase and sleep in a population of healthy older adults and in those suffering from early awakening insomnia. Methods Twenty-eight participants (9 early awakening insomniacs) completed an 8-week, within-subjects study. Twice, participants collected data during two baseline weeks and one intervention week. During the intervention week, participants wore a flashing blue (active) or a flashing red (control) light mask during sleep. Light was expected to delay circadian phase. Saliva samples for dim light melatonin onset (DLMO) were collected at the end of each baseline and intervention week. Wrist actigraphy and Daysimeter, a calibrated light and activity meter, data were collected during the entire study. Results Compared to baseline, flashing blue light, but not flashing red light, significantly (p<0.05) delayed DLMO. The mean ± standard deviation phase shift (minutes) was 0:06 ± 0:30 for the flashing red light and 0:34 ± 0:30 for the flashing blue light. Compared to Day 1, sleep start times were significantly delayed (by approximately 46 minutes) at Day 7 after the flashing blue light. The light intervention did not affect sleep efficiency. Conclusions The present study demonstrated the feasibility of using light through closed eyelids during sleep for promoting circadian alignment and sleep health. PMID:26985450

  2. Bridgman growth and luminescence properties of dysprosium doped lead potassium niobate crystal

    NASA Astrophysics Data System (ADS)

    Liu, Wenbin; Tian, Tian; Yang, Bobo; Xu, Jiayue; Liu, Hongde

    2017-06-01

    Dy-doped lead potassium niobate (Pb2KNb5O15, PKN) single crystal was grown by the modified vertical Bridgman method through spontaneous nucleation. The crystal was brownish, transparent and inclusion free. Five excitation peaks of Dy3+ ions were clearly seen from near ultraviolet region to blue range. It was unique that the excitation peaks in blue range were more intense, especially the one centered at 455 nm. The emission bands consisted of blue, yellow and red emissions, which were at about 487 nm, 573 nm and 662 nm respectively. The CIE chromaticity diagram of PKN:Dy indicated that white light and yellow light could be emitted when the crystal was excited under near ultraviolet light and blue light, respectively. Thus PKN:Dy crystal is a candidate material whose emitting light could be tunable through changing the excited light wavelength.

  3. Effect of red dyes on blue light phototoxicity against VSC producing bacteria in an experimental oral biofilm.

    PubMed

    Jeffet, U; Nasrallah, R; Sterer, N

    2016-11-21

    Oral malodour is considered to be caused mainly by the production of volatile sulfide compounds (VSC) by anaerobic Gram-negative oral bacteria. Previous study showed that these bacteria were susceptible to blue light (wavelengths of 400-500 nm). In the present study, we tested the effect of blue light in the presence of red dyes on malodour production in an experimental oral biofilm. Biofilms were exposed to a plasma-arc light source for 30, 60, and 120 s (i.e. fluences of 41, 82, and 164 J cm -2 , respectively) with the addition of erythrosine, natural red and rose bengal (0.01, 0.1 and 1% w/v). Following light exposure biofilm samples were examined for malodour production (Odour judge), VSC production (Halimeter ™ ), VSC producing bacteria quantification using microscopy sulfide assay (MSA) and reactive oxygen species (ROS) production. Results showed that the exposure of experimental oral biofilm to blue light in the presence of rose bengal caused an increased reduction in VSC and malodour production concomitant with an increase in ROS production. These results suggest that rose bengal might be effective as a blue light photosensitizer against VSC producing bacteria.

  4. Photophoretic trampoline—Interaction of single airborne absorbing droplets with light

    NASA Astrophysics Data System (ADS)

    Esseling, Michael; Rose, Patrick; Alpmann, Christina; Denz, Cornelia

    2012-09-01

    We present the light-induced manipulation of absorbing liquid droplets in air. Ink droplets from a printer cartridge are used to demonstrate that absorbing liquids—just like their solid counterparts—can interact with regions of high light intensity due to the photophoretic force. It is shown that droplets follow a quasi-ballistic trajectory after bouncing off a high intensity light sheet. We estimate the intensities necessary for this rebound of airborne droplets and change the droplet trajectories through a variation of the manipulating light field.

  5. Effects of blue light on pigment biosynthesis of Monascus.

    PubMed

    Chen, Di; Xue, Chunmao; Chen, Mianhua; Wu, Shufen; Li, Zhenjing; Wang, Changlu

    2016-04-01

    The influence of different illumination levels of blue light on the growth and intracellular pigment yields of Monascus strain M9 was investigated. Compared with darkness, constant exposure to blue light of 100 lux reduced the yields of six pigments, namely, rubropunctatamine (RUM), monascorubramine (MOM), rubropunctatin (RUN), monascorubrin (MON), monascin (MS), and ankaflavin (AK). However, exposure to varying levels of blue light had different effects on pigment production. Exposure to 100 lux of blue light once for 30 min/day and to 100 lux of blue light once and twice for 15 min/day could enhance RUM, MOM, MS, and AK production and reduce RUN and MON compared with non-exposure. Exposure to 100 lux twice for 30 min/day and to 200 lux once for 45 min/day decreased the RUM, MOM, MS, and AK yields and increased the RUN and MON. Meanwhile, the expression levels of pigment biosynthetic genes were analyzed by real-time quantitative PCR. Results indicated that gene MpPKS5, mppR1, mppA, mppB, mmpC, mppD, MpFasA, MpFasB, and mppF were positively correlated with the yields of RUN and MON, whereas mppE and mppR2 were associated with RUM, MOM, MS, and AK production.

  6. Disruption of ROOT PHOTOTROPISM2 gene does not affect phototropin-mediated stomatal opening.

    PubMed

    Tsutsumi, Toshifumi; Takemiya, Atsushi; Harada, Akiko; Shimazaki, Ken-ichiro

    2013-03-01

    Phototropins (phot1 and phot2), blue light-receptor protein kinases in plants, mediate stomatal opening by activating the plasma membrane H(+)-ATPase in guard cells, but the signaling from phototropins to the H(+)-ATPase remains unknown. A recent study concluded that ROOT PHOTOTROPISM2 (RPT2) is involved in the primary step of this process. However, this conclusion is based solely on the determination of stomatal apertures in the epidermis. We investigated the role of RPT2 in blue light-dependent stomatal opening in more detail. We generated double mutants of rpt2 and phototropins (phot1 or phot2) in the Col ecotype background and obtained the typical phenotypes of rpt2 mutants, including the impairment in phototropism. In contrast, neither blue light-dependent H(+) pumping nor blue light-dependent H(+)-ATPase activation in guard cells was affected in the rpt2 mutants of rpt2, phot1 rpt2, and phot2 rpt2. Stomata in these rpt2 mutants opened widely by blue light in both epidermal peels and intact leaves, and no difference in the responses was found between the wild type and the mutants. From these results, we concluded that RPT2 gene disruption does not affect blue light-dependent stomatal opening. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Nrf2 protects photoreceptor cells from photo-oxidative stress induced by blue light.

    PubMed

    Chen, Wan-Ju; Wu, Caiying; Xu, Zhenhua; Kuse, Yoshiki; Hara, Hideaki; Duh, Elia J

    2017-01-01

    Oxidative stress plays a key role in age-related macular degeneration and hereditary retinal degenerations. Light damage in rodents has been used extensively to model oxidative stress-induced photoreceptor degeneration, and photo-oxidative injury from blue light is particularly damaging to photoreceptors. The endogenous factors protecting photoreceptors from oxidative stress, including photo-oxidative stress, are continuing to be elucidated. In this study, we evaluated the effect of blue light exposure on photoreceptors and its relationship to Nrf2 using cultured murine photoreceptor (661W) cells. 661W cells were exposed to blue light at 2500 lux. Exposure to blue light for 6-24 h resulted in a significant increase in intracellular reactive oxygen species (ROS) and death of 661W cells in a time-dependent fashion. Blue light exposure resulted in activation of Nrf2, as indicated by an increase in nuclear translocation of Nrf2. This was associated with a significant induction of expression of Nrf2 as well as an array of Nrf2 target genes, including antioxidant genes, as indicated by quantitative reverse transcription PCR (qRT-PCR). In order to determine the functional role of Nrf2, siRNA-mediated knockdown studies were performed. Nrf2-knockdown in 661W cells resulted in significant exacerbation of blue light-induced reactive oxygen species levels as well as cell death. Taken together, these findings indicate that Nrf2 is an important endogenous protective factor against oxidative stress in photoreceptor cells. This suggests that drugs targeting Nrf2 could be considered as a neuroprotective strategy for photoreceptors in AMD and other retinal conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Blue-light-activated phototropin2 trafficking from the cytoplasm to Golgi/post-Golgi vesicles.

    PubMed

    Aggarwal, Chhavi; Banaś, Agnieszka Katarzyna; Kasprowicz-Maluśki, Anna; Borghetti, Carolina; Labuz, Justyna; Dobrucki, Jerzy; Gabryś, Halina

    2014-07-01

    Phototropins are plasma membrane-localized UVA/blue light photoreceptors which mediate phototropism, inhibition of primary hypocotyl elongation, leaf positioning, chloroplast movements, and stomatal opening. Blue light irradiation activates the C-terminal serine/threonine kinase domain of phototropin which autophosphorylates the receptor. Arabidopsis thaliana encodes two phototropins, phot1 and phot2. In response to blue light, phot1 moves from the plasma membrane into the cytosol and phot2 translocates to the Golgi complex. In this study the molecular mechanism and route of blue-light-induced phot2 trafficking are demonstrated. It is shown that Atphot2 behaves in a similar manner when expressed transiently under 35S or its native promoter. The phot2 kinase domain but not blue-light-mediated autophosphorylation is required for the receptor translocation. Using co-localization and western blotting, the receptor was shown to move from the cytoplasm to the Golgi complex, and then to the post-Golgi structures. The results were confirmed by brefeldin A (an inhibitor of the secretory pathway) which disrupted phot2 trafficking. An association was observed between phot2 and the light chain2 of clathrin via bimolecular fluorescence complementation. The fluorescence was observed at the plasma membrane. The results were confirmed using co-immunoprecipitation. However, tyrphostin23 (an inhibitor of clathrin-mediated endocytosis) and wortmannin (a suppressor of receptor endocytosis) were not able to block phot2 trafficking, indicating no involvement of receptor endocytosis in the formation of phot2 punctuate structures. Protein turnover studies indicated that the receptor was continuously degraded in both darkness and blue light. The degradation of phot2 proceeded via a transport route different from translocation to the Golgi complex. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Blue and Red Light-Evoked Pupil Responses in Photophobic Subjects with TBI.

    PubMed

    Yuhas, Phillip T; Shorter, Patrick D; McDaniel, Catherine E; Earley, Michael J; Hartwick, Andrew T E

    2017-01-01

    Photophobia is a common symptom in individuals suffering from traumatic brain injury (TBI). Recent evidence has implicated blue light-sensitive intrinsically photosensitive retinal ganglion cells (ipRGCs) in contributing to the neural circuitry mediating photophobia in migraine sufferers. The goal of this work is to test the hypothesis that ipRGC function is altered in TBI patients with photophobia by assessing pupillary responses to blue and red light. Twenty-four case participants (mean age 43.3; 58% female), with mild TBI and self-reported photophobia, and 12 control participants (mean age 42.6; 58% female) were in this study. After 10 minutes of dark adaptation, blue (470 nm, 1 × 10 phots/s/cm) and red (625 nm, 7 × 10 phots/s/cm) flashing (0.1 Hz) light stimuli were delivered for 30 seconds to the dilated left eye while the right pupil was recorded. The amplitude of normalized pupil fluctuation (constriction and dilation) was quantified using Fourier fast transforms. In both case and control participants, the amplitude of pupil fluctuation was significantly less for the blue light stimuli as compared to the red light stimuli, consistent with a contribution of ipRGCs to these pupil responses. There was no significant difference in the mean pupil fluctuation amplitudes between the two participant groups, but case participants displayed greater variability in their pupil responses to the blue stimulus. Case and control participants showed robust ipRGC-mediated components in their pupil responses to blue light. The results did not support the hypothesis that ipRGCs are "hypersensitive" to light in TBI participants with photophobia. However, greater pupil response variability in the case subjects suggests that ipRGC function may be more heterogeneous in this group.

  10. Simple Improvisation to Enhance Utility of Fluorescein Sodium in Resection of Intracranial Lesions at Routine Neurosurgical Centers.

    PubMed

    Gollapudi, Prakash Rao; Mohammed, Imran; Pittala, Sandeep R; Kotha, Arjun Reddy; Reddycherla, Naga Raju; Ginjupally, Dhanunjaya Rao

    2018-04-01

    Fluorescein sodium is one of the fluorophores that is used in the resection of intracranial lesions. It is commonly used along with a customized microscope, which is expensive and not available universally. In this study, we describe a simple, inexpensive method for better visualization of intracranial and spinal cord lesions with fluorescein. After a test dose, 20 mg/kg of fluorescein sodium was administered intravenously at the time of intubation. A blue light source was used before resection for precise localization of the intracranial lesions after durotomy. Most of the resection was done under the white light, while the blue light was used intermittently to delineate the pathologic tissue from the normal tissue and to ensure safe maximal resection. The intensity of fluorescein staining under white light and blue light was noted. The study comprised 40 cases of gliomas, meningiomas, abscesses, spinal cord tumors, and cerebellopontine angle lesions. Thirty-five lesions showed good fluorescence under the blue light, which helped us achieve better resection of the pathologic lesions. Fluorescein sodium is a safe dye; it can be used to aid in precise localization and safe maximal resection of the pathologic tissue with the help of a blue light source at any center with challenged resources. The blue light enhances the fluorescence and visualization of the pathologic tissue, and this technique can be adopted by any surgeon without much difficulty even with a basic neurosurgical setup. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Blue light induced reactive oxygen species from flavin mononucleotide and flavin adenine dinucleotide on lethality of HeLa cells.

    PubMed

    Yang, Ming-Yeh; Chang, Chih-Jui; Chen, Liang-Yü

    2017-08-01

    Photodynamic therapy (PDT) is a safe and non-invasive treatment for cancers and microbial infections. Various photosensitizers and light sources have been developed for clinical cancer therapies. Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are the cofactor of enzymes and are used as photosensitizers in this study. Targeting hypoxia and light-triggering reactive oxygen species (ROS) are experimental strategies for poisoning tumor cells in vitro. HeLa cells are committed to apoptosis when treated with FMN or FAD and exposed to visible blue light (the maximum emitted wavelength of blue light is 462nm). Under blue light irradiation at 3.744J/cm 2 (=0.52mW/cm 2 irradiated for 2h), the minimal lethal dose is 3.125μM and the median lethal doses (LD 50 ) for FMN and FAD are 6.5μM and 7.2μM, respectively. Individual exposure to visible blue light irradiation or riboflavin photosensitizers does not produce cytotoxicity and no side effects are observed in this study. The western blotting results also show that an intrinsic apoptosis pathway is activated by the ROS during photolysis of riboflavin analogues. Blue light triggers the cytotoxicity of riboflavins on HeLa cells in vitro. Based on these results, this is a feasible and efficient of PDT with an intrinsic photosensitizer for cancer research. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The intrinsic far-UV spectrum of the high-redshift quasar B1422+231

    NASA Astrophysics Data System (ADS)

    O'Dowd, M.; Bate, N. F.; Webster, R. L.; Labrie, K.; King, A. L.; Yong, S.-. Y.

    2018-02-01

    We present new spectroscopy of the z = 3.62 gravitationally lensed quasar B1422+117 from the Gemini North GMOS integral field spectrograph. We observe significant differential magnifications between the broad emission lines and the continuum, as well as across the velocity structure of the Lyman-α line. We take advantage of this differential microlensing to algebraically decompose the quasar spectrum into the absorbed broad emission line and absorbed continuum components. We use the latter to derive the intrinsic Ly α forest absorption spectrum. The proximity effect is clearly detected, with a proximity zone edge of 8.6-17.3 Mpc from the quasar, implying (perhaps intermittent) activity over at least 28 Myr. The Ly α line profile exhibits a blue excess that is inconsistent with a symmetric fit to the unabsorbed red side. This has important implications for the use of this fitting technique in estimating the absorbed blue Ly α wings of Gunn-Peterson trough quasars.

  13. Blue Light Action on Mitochondria Leads to Cell Death by Necroptosis.

    PubMed

    Del Olmo-Aguado, Susana; Núñez-Álvarez, Claudia; Osborne, Neville N

    2016-09-01

    Blue light impinging on the many mitochondria associated with retinal ganglion cells (RGCs) in situ has the potential of eliciting necroptosis through an action on RIP1/RIP3 to stimulate RGC death in diseases like glaucoma and diabetic retinopathy. Cells in culture die when exposed to blue light. The death process is mitochondria-dependent and is known to involve a decrease in the production of ATP, a generation of ROS, the activation of poly-(ADP-ribose) polymerase, the stimulation of apoptosis-inducing factor (AIF) as well as the up-regulation of heme-oxygenase-1 (HO-1). Our present results show that blue light-induced activation of AIF is not directly linked with the stimulation of RIP1/RIP3. Down-regulation of RIP1/RIP3 did not influence AIF. AIF activation therefore appears to enhance the rate of necroptosis by a direct action on DNA breakdown, the end stage of necroptosis. This implies that silencing of AIF mRNA may provide a degree of protection to blue light insult. Also, necrostatin-1 attenuated an increased turnover of HO-1 mRNA caused by blue light to suggest an indirect inhibition of necroptosis, caused by the action of necrostatin-1 on RIP1/RIP3 to reduce oxidative stress. This is supported by the finding that gene silencing of RIP1 and RIP3 has no effect on HO-1. We therefore conclude that inhibitors of RIP kinase might be more specific than necrostatin-1 as a neuroprotective agent to blunt solely necroptosis caused by blue light.

  14. Daytime Blue Light Enhances the Nighttime Circadian Melatonin Inhibition of Human Prostate Cancer Growth

    PubMed Central

    Dauchy, Robert T; Hoffman, Aaron E; Wren-Dail, Melissa A; Hanifin, John P; Warfield, Benjamin; Brainard, George C; Xiang, Shulin; Yuan, Lin; Hill, Steven M; Belancio, Victoria P; Dauchy, Erin M; Smith, Kara; Blask, David E

    2015-01-01

    Light controls pineal melatonin production and temporally coordinates circadian rhythms of metabolism and physiology in normal and neoplastic tissues. We previously showed that peak circulating nocturnal melatonin levels were 7-fold higher after daytime spectral transmittance of white light through blue-tinted (compared with clear) rodent cages. Here, we tested the hypothesis that daytime blue-light amplification of nocturnal melatonin enhances the inhibition of metabolism, signaling activity, and growth of prostate cancer xenografts. Compared with male nude rats housed in clear cages under a 12:12-h light:dark cycle, rats in blue-tinted cages (with increased transmittance of 462–484 nm and decreased red light greater than 640 nm) evinced over 6-fold higher peak plasma melatonin levels at middark phase (time, 2400), whereas midlight-phase levels (1200) were low (less than 3 pg/mL) in both groups. Circadian rhythms of arterial plasma levels of linoleic acid, glucose, lactic acid, pO2, pCO2, insulin, leptin, and corticosterone were disrupted in rats in blue cages as compared with the corresponding entrained rhythms in clear-caged rats. After implantation with tissue-isolated PC3 human prostate cancer xenografts, tumor latency-to-onset of growth and growth rates were markedly delayed, and tumor cAMP levels, uptake–metabolism of linoleic acid, aerobic glycolysis (Warburg effect), and growth signaling activities were reduced in rats in blue compared with clear cages. These data show that the amplification of nighttime melatonin levels by exposing nude rats to blue light during the daytime significantly reduces human prostate cancer metabolic, signaling, and proliferative activities. PMID:26678364

  15. Daytime Blue Light Enhances the Nighttime Circadian Melatonin Inhibition of Human Prostate Cancer Growth.

    PubMed

    Dauchy, Robert T; Hoffman, Aaron E; Wren-Dail, Melissa A; Hanifin, John P; Warfield, Benjamin; Brainard, George C; Xiang, Shulin; Yuan, Lin; Hill, Steven M; Belancio, Victoria P; Dauchy, Erin M; Smith, Kara; Blask, David E

    2015-12-01

    Light controls pineal melatonin production and temporally coordinates circadian rhythms of metabolism and physiology in normal and neoplastic tissues. We previously showed that peak circulating nocturnal melatonin levels were 7-fold higher after daytime spectral transmittance of white light through blue-tinted (compared with clear) rodent cages. Here, we tested the hypothesis that daytime blue-light amplification of nocturnal melatonin enhances the inhibition of metabolism, signaling activity, and growth of prostate cancer xenografts. Compared with male nude rats housed in clear cages under a 12:12-h light:dark cycle, rats in blue-tinted cages (with increased transmittance of 462-484 nm and decreased red light greater than 640 nm) evinced over 6-fold higher peak plasma melatonin levels at middark phase (time, 2400), whereas midlight-phase levels (1200) were low (less than 3 pg/mL) in both groups. Circadian rhythms of arterial plasma levels of linoleic acid, glucose, lactic acid, pO2, pCO2, insulin, leptin, and corticosterone were disrupted in rats in blue cages as compared with the corresponding entrained rhythms in clear-caged rats. After implantation with tissue-isolated PC3 human prostate cancer xenografts, tumor latency-to-onset of growth and growth rates were markedly delayed, and tumor cAMP levels, uptake-metabolism of linoleic acid, aerobic glycolysis (Warburg effect), and growth signaling activities were reduced in rats in blue compared with clear cages. These data show that the amplification of nighttime melatonin levels by exposing nude rats to blue light during the daytime significantly reduces human prostate cancer metabolic, signaling, and proliferative activities.

  16. Cool white light-emitting three stack OLED structures for AMOLED display applications.

    PubMed

    Springer, Ramon; Kang, Byoung Yeop; Lampande, Raju; Ahn, Dae Hyun; Lenk, Simone; Reineke, Sebastian; Kwon, Jang Hyuk

    2016-11-28

    This paper demonstrates 2-stack and 3-stack white organic light-emitting diodes (WOLEDs) with fluorescent blue and phosphorescent yellow emissive units. The 2-stack and 3-stack WOLED comprises blue-yellow and blue-blue-yellow (blue-yellow-blue) combinations. The position of the yellow emitter and possible cavity lengths in different stack architectures are theoretically and experimentally investigated to reach Commission Internationale de L'Eclairage (CIE) coordinates of near (0.333/0.333). Here, a maximum external quantum efficiency (EQE) of 23.6% and current efficiency of 62.2 cd/A at 1000 cd/m2 as well as suitable CIE color coordinates of (0.335/0.313) for the blue-blue-yellow 3-stack hybrid WOLED structure is reported. In addition, the blue-yellow-blue 3-stack architecture exhibits an improved angular dependence compared to the blue-blue-yellow structure at a decreased EQE of 19.1%.

  17. Water Treatment Using Plasma Discharge with Variation of Electrode Materials

    NASA Astrophysics Data System (ADS)

    Chanan, N.; Kusumandari; Saraswati, T. E.

    2018-03-01

    This research studied water treatment using plasma discharge. Plasma generated in this study produced active species that played a role in organic compound decomposition. The plasma reactor consisted of two needle electrodes made from stainless steel, tungsten, aluminium and grafit. It placed approximately 2 mm above the solution and connected with high-AC voltage. A solution of methylene blue used as an organic solution model. Plasma treatment times were 2, 4, 6, 8 and 10 min. The absorbance, temperature and pH of the solution were measured before and after treatment using various electrodes. The best electrode used in plasma discharging for methylene blue absorbance reduction was the graphite electrode, which provided the highest degradation efficiency of 98% at 6 min of treatment time.

  18. Effects of Blue Light Emitting Diode Irradiation On the Proliferation, Apoptosis and Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Yuan, Ye; Yan, Gege; Gong, Rui; Zhang, Lai; Liu, Tianyi; Feng, Chao; Du, Weijie; Wang, Ying; Yang, Fan; Li, Yuan; Guo, Shuyuan; Ding, Fengzhi; Ma, Wenya; Idiiatullina, Elina; Pavlov, Valentin; Han, Zhenbo; Cai, Benzhi; Yang, Lei

    2017-01-01

    Blue light emitting diodes (LEDs) have been proven to affect the growth of several types of cells. The effects of blue LEDs have not been tested on bone marrow-derived mesenchymal stem cells (BMSCs), which are important for cell-based therapy in various medical fields. Therefore, the aim of this study was to determine the effects of blue LED on the proliferation, apoptosis and osteogenic differentiation of BMSCs. BMSCs were irradiated with a blue LED light at 470 nm for 1 min, 5 min, 10 min, 30 min and 60 min or not irradiated. Cell proliferation was measured by performing cell counting and EdU staining assays. Cell apoptosis was detected by TUNEL staining. Osteogenic differentiation was evaluated by ALP and ARS staining. DCFH-DA staining and γ-H2A.X immunostaining were used to measure intracellular levels of ROS production and DNA damage. Both cell counting and EdU staining assays showed that cell proliferation of BMSCs was significantly reduced upon blue LED irradiation. Furthermore, treatment of BMSCs with LED irradiation was followed by a remarkable increase in apoptosis, indicating that blue LED light induced toxic effects on BMSCs. Likewise, BMSC osteogenic differentiation was inhibited after exposure to blue LED irradiation. Further, blue LED irradiation was followed by the accumulation of ROS production and DNA damage. Taken together, our study demonstrated that blue LED light inhibited cell proliferation, inhibited osteogenic differentiation, and induced apoptosis in BMSCs, which are associated with increased ROS production and DNA damage. These findings may provide important insights for the application of LEDs in future BMSC-based therapies. © 2017 The Author(s). Published by S. Karger AG, Basel.

  19. Electrical tree initiation in polyethylene absorbing Penning gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, N.; Tohyama, N.; Sato, H.

    1996-12-31

    Ac tree initiation voltage was examined in untreated LDPE, vacuum degassed LDPE and LDPE absorbing He gas (He gas was absorbed after vacuum degassing). The authors have already reported that vacuum degassed LDPE shows much higher tree initiation voltage than untreated one because of absence of oxygen. Therefore they expected that LDPE absorbing He shows the same property with vacuum degassed LDPE. However tree initiation voltage of LDPE absorbing He is as low as that of untreated LDPE. LDPE absorbing Ar gas shows the same tendency. He or Ar gas does not change so much impulse tree initiation voltage. LDPEmore » absorbing He was not well dyed with methylene blue after ac voltage application, which indicates that active oxidation does not occur. Low ac tree initiation voltage in LDPE absorbing He or Ar may be caused by Penning ionization in free volume.« less

  20. Green light in photomorphogenic development

    NASA Astrophysics Data System (ADS)

    Maruhnich, Stefanie Anne

    Light quality, quantity, and duration provide essential environmental cues that shape plant growth and development. Over the last century, researchers have worked to discover how plants sense, integrate, and respond to red, blue, and far-red light. Green light is often considered a “benign” wavelength with little to no effect in plant development. However, sparse experiments in the literature demonstrate that green effects are often counterintuitive to normal light responses and oppose red- and blue-light-induced responses. Green light effects on plant growth and development are described here through the use of custom, tunable LED, light-emitting diode, chambers. These light sources allow for specific light qualities and quantities to be administered. The effects of green wavebands were assessed when red and blue photomorphogenic systems were active to answer the question: Are the effects of an inhibitor (green light) more evident in the presence of inducers (red and blue light)? In seedlings, supplemental green light increased hypocotyl elongation opposite to classical inhibition of hypocotyl elongation associated with growth in light and induced by red and blue wavebands. Results indicate that added green light induced a reversion of light-grown phenotypes. In mature plants, supplemental green light induced phenotypes typical of the shade-avoidance syndrome, including elongated petioles, smaller leaf areas, and leaf hyponasty. These responses are typical of lower-light conditions or far-red enriched environments. Contrary to far-red-light-induced shade-avoidance, data indicate green delays flowering. In Arabidopsis and strawberry plants, anthocyanin levels also decreased when green light was added to red and blue light treatments, which is again opposite to normal light-induced phenotypes. Photoreceptor mutants were tested and indicate green light effects in early development are cryptochromedependent. However, green-light-induced shade-avoidance responses were cryptochrome-independent. A candidate gene approach was used to identify other elements required for green light sensing and/or response. Defects in some green light responses were observed for mutants in CCD8/Max4, a putative carotenoid cleavage enzyme with high sequence similarity to a critical enzyme in animal vision. These data support a role for green light in plant development which opposes normal light-induced responses and indicate the existence of at least two green light sensing systems.

  1. Effects of smartphone use with and without blue light at night in healthy adults: A randomized, double-blind, cross-over, placebo-controlled comparison.

    PubMed

    Heo, Jung-Yoon; Kim, Kiwon; Fava, Maurizio; Mischoulon, David; Papakostas, George I; Kim, Min-Ji; Kim, Dong Jun; Chang, Kyung-Ah Judy; Oh, Yunhye; Yu, Bum-Hee; Jeon, Hong Jin

    2017-04-01

    Smartphones deliver light to users through Light Emitting Diode (LED) displays. Blue light is the most potent wavelength for sleep and mood. This study investigated the immediate effects of smartphone blue light LED on humans at night. We investigated changes in serum melatonin levels, cortisol levels, body temperature, and psychiatric measures with a randomized, double-blind, cross-over, placebo-controlled design of two 3-day admissions. Each subject played smartphone games with either conventional LED or suppressed blue light from 7:30 to 10:00PM (150 min). Then, they were readmitted and conducted the same procedure with the other type of smartphone. Serum melatonin levels were measured in 60-min intervals before, during and after use of the smartphones. Serum cortisol levels and body temperature were monitored every 120 min. The Profile of Mood States (POMS), Epworth Sleepiness Scale (ESS), Fatigue Severity Scale (FSS), and auditory and visual Continuous Performance Tests (CPTs) were administered. Among the 22 participants who were each admitted twice, use of blue light smartphones was associated with significantly decreased sleepiness (Cohen's d = 0.49, Z = 43.50, p = 0.04) and confusion-bewilderment (Cohen's d = 0.53, Z = 39.00, p = 0.02), and increased commission error (Cohen's d = -0.59, t = -2.64, p = 0.02). Also, users of blue light smartphones experienced a longer time to reach dim light melatonin onset 50% (2.94 vs. 2.70 h) and had increases in body temperature, serum melatonin levels, and cortisol levels, although these changes were not statistically significant. Use of blue light LED smartphones at night may negatively influence sleep and commission errors, while it may not be enough to lead to significant changes in serum melatonin and cortisol levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Blue light-dependent changes in loosely bound calcium in Arabidopsis mesophyll cells: an X-ray microanalysis study

    PubMed Central

    Łabuz, Justyna; Samardakiewicz, Sławomir; Hermanowicz, Paweł; Wyroba, Elżbieta; Pilarska, Maria; Gabryś, Halina

    2016-01-01

    Calcium is involved in the signal transduction pathway from phototropins, the blue light photoreceptor kinases which mediate chloroplast movements. The chloroplast accumulation response in low light is controlled by both phot1 and phot2, while only phot2 is involved in avoidance movement induced by strong light. Phototropins elevate cytosolic Ca2+ after activation by blue light. In higher plants, both types of chloroplast responses depend on Ca2+, and internal calcium stores seem to be crucial for these processes. Yet, the calcium signatures generated after the perception of blue light by phototropins are not well understood. To characterize the localization of calcium in Arabidopsis mesophyll cells, loosely bound (exchangeable) Ca2+ was precipitated with potassium pyroantimonate and analyzed by transmission electron microscopy followed by energy-dispersive X-ray microanalysis. In dark-adapted wild-type Arabidopsis leaves, calcium precipitates were observed at the cell wall, where they formed spherical structures. After strong blue light irradiation, calcium at the apoplast prevailed, and bigger, multilayer precipitates were found. Spherical calcium precipitates were also detected at the tonoplast. After red light treatment as a control, the precipitates at the cell wall were smaller and less numerous. In the phot2 and phot1phot2 mutants, calcium patterns were different from those of wild-type plants. In both mutants, no elevation of calcium after blue light treatment was observed at the cell periphery (including the cell wall and a fragment of cytoplasm). This result confirms the involvement of phototropin2 in the regulation of Ca2+ homeostasis in mesophyll cells. PMID:26957564

  3. Daytime Effect of Monochromatic Blue Light on EEG Activity Depends on Duration and Timing of Exposure in Young Men

    PubMed Central

    Iskra-Golec, Irena; Golonka, Krystyna; Wyczesany, Miroslaw; Smith, Lawrence; Siemiginowska, Patrycja; Wątroba, Joanna

    2017-01-01

    Growing evidence suggests an alerting effect of monochromatic blue light on brain activity. Little is known about the moderation of those effects by timing and duration of exposure. The present electroencephalography (EEG ) study examined such moderations on delta, theta, alpha1, alpha2, and beta EEG bands. A counterbalanced repeated-measures design was applied. The 16-hr daytime period was divided into three sessions: 07:00-12:20, 12:20-17:40, and 17:40-23:00 (timing of exposure). Two light conditions comparable in luminance but differing in wavelength were applied, namely polychromatic white light and monochromatic blue light (460 nm). There were two durations of exposure—the shorter one lasting 30 min and the longer one lasting 4 hrs. Thirty male students participated in the study. Four factors analyses of variance (ANOV As, for light conditions, timing of exposure, duration of exposure, and brain area) were performed on each EEG band. Results indicated an alerting effect of short exposure to monochromatic blue light at midday and in the evening, which was demonstrated by a decrease in lower frequency bands (alpha1, delta, and theta, respectively). Long exposure to blue light may have a reverse effect, especially in the morning and at midday, when increases in lower frequency bands (theta in the morning and theta and alpha1 at midday) were observed. It can be concluded that the daytime effect of monochromatic blue light on EEG activity depends on timing and duration of exposure. PMID:29062437

  4. 33 CFR 88.11 - Law enforcement vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... display a flashing blue light when engaged in direct law enforcement or public safety activities. This light must be located so that it does not interfere with the visibility of the vessel's navigation lights. (b) The blue light described in this section may be displayed by law enforcement vessels of the...

  5. 33 CFR 88.11 - Law enforcement vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... display a flashing blue light when engaged in direct law enforcement or public safety activities. This light must be located so that it does not interfere with the visibility of the vessel's navigation lights. (b) The blue light described in this section may be displayed by law enforcement vessels of the...

  6. 33 CFR 88.11 - Law enforcement vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... display a flashing blue light when engaged in direct law enforcement or public safety activities. This light must be located so that it does not interfere with the visibility of the vessel's navigation lights. (b) The blue light described in this section may be displayed by law enforcement vessels of the...

  7. 33 CFR 88.11 - Law enforcement vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... display a flashing blue light when engaged in direct law enforcement or public safety activities. This light must be located so that it does not interfere with the visibility of the vessel's navigation lights. (b) The blue light described in this section may be displayed by law enforcement vessels of the...

  8. 33 CFR 88.11 - Law enforcement vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... display a flashing blue light when engaged in direct law enforcement or public safety activities. This light must be located so that it does not interfere with the visibility of the vessel's navigation lights. (b) The blue light described in this section may be displayed by law enforcement vessels of the...

  9. Colour gamut enhancement with remote light conversion mechanism

    NASA Astrophysics Data System (ADS)

    Koseoglu, D.; Sezer, Y. S.; Karsli, K.

    2018-01-01

    The backlight unit spectrum of liquid crystal displays (LCD) directly affects the colour gamut. With the invention of GaN based blue light emitting diodes (LED), phosphors and quantum dots (QD) have gained considerable scientific interest due to their broad range of applications especially in lighting and display technologies. These phosphors and QDs are used to convert the blue light of the LEDs into white in general lighting. On the other hand, in display systems, they are used to generate red and green bands. There are different application methods such as on-chip and remote configurations. In this study, we concentrate on remote phosphor and QD backlight configurations where the light conversion is done away from the chips. In our display designs, we used GaN based blue LED lateral chips as an excitation source, on the other hand, light conversion layers were placed in backlight units as a thin film for the emission of green and red bands. The mixing ratios of these composite layers were arranged to match the emission spectrum of the blue LEDs and the light conversion layer to the colour filters of the LCD, so that the green, blue, and red bands efficiently widens the colour space. The results were also compared with the on-chip phosphor arrangements.

  10. Accelerator Development for the NRL (Naval Research Laboratory) Free Electron Laser Program

    DTIC Science & Technology

    1988-06-01

    reset CHARGE light 24 grey reset CHARGE light 26 purple reset gap pressure ON light . 27 blue RESET GAP PRESSURE switch 0 (bottom left) 28 red RESET...GAP PRESSURE switch (bottom middle) and chassis wire # 13 (red) 29 blue reset trigger FIRED light 30 orange reset gap pressure OFF light 31, orange ALL

  11. Enhanced Electron Injection and Exciton Confinement for Pure Blue Quantum-Dot Light-Emitting Diodes by Introducing Partially Oxidized Aluminum Cathode.

    PubMed

    Wang, Zhibin; Cheng, Tai; Wang, Fuzhi; Bai, Yiming; Bian, Xingming; Zhang, Bing; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao

    2018-05-31

    Stable and efficient red (R), green (G), and blue (B) light sources based on solution-processed quantum dots (QDs) play important roles in next-generation displays and solid-state lighting technologies. The brightness and efficiency of blue QDs-based light-emitting diodes (LEDs) remain inferior to their red and green counterparts, due to the inherently unfavorable energy levels of different colors of light. To solve these problems, a device structure should be designed to balance the injection holes and electrons into the emissive QD layer. Herein, through a simple autoxidation strategy, pure blue QD-LEDs which are highly bright and efficient are demonstrated, with a structure of ITO/PEDOT:PSS/Poly-TPD/QDs/Al:Al2O3. The autoxidized Al:Al2O3 cathode can effectively balance the injected charges and enhance radiative recombination without introducing an additional electron transport layer (ETL). As a result, high color-saturated blue QD-LEDs are achieved with a maximum luminance over 13,000 cd m -2 , and a maximum current efficiency of 1.15 cd A -1 . The easily controlled autoxidation procedure paves the way for achieving high-performance blue QD-LEDs.

  12. Performance characteristics of multicolor versus blue light and infrared imaging in the identification of reticular pseudodrusen.

    PubMed

    Badal, Josep; Biarnés, Marc; Monés, Jordi

    2018-02-01

    To describe the appearance of reticular pseudodrusen on multicolor imaging and to evaluate its diagnostic accuracy as compared with the two modalities that may be considered the current reference standard, blue light and infrared imaging. Retrospective study in which all multicolor images (constructed from images acquired at 486 nm-blue, 518 nm-green and 815 nm-infrared) of 45 consecutive patients visited in a single center was reviewed. Inclusion criteria involved the presence of >1 reticular pseudodrusen on a 30° × 30° image centered on the fovea as seen with the blue light channel derived from the multicolor imaging. Three experienced observers, masked to each other's results with other imaging modalities, independently classified the number of reticular pseudodrusen with each modality. The median interobserver agreement (kappa) was 0.58 using blue light; 0.65 using infrared; and 0.64 using multicolor images. Multicolor and infrared modalities identified a higher number of reticular pseudodrusen than blue light modality in all fields for all observers (p < 0.0001). Results were not different when multicolor and infrared were compared (p ≥ 0.27). These results suggest that multicolor and infrared are more sensitive and reproducible than blue light in the identification of RPD. Multicolor did not appear to add a significant value to infrared in the evaluation of RDP. Clinicians using infrared do not need to incorporate multicolor for the identification and quantification of RPD.

  13. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium.

    PubMed

    Hu, Baiyang; Fugetsu, Bunshi; Yu, Hongwen; Abe, Yoshiteru

    2012-05-30

    We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Light exposure via a head-mounted device suppresses melatonin and improves vigilant attention without affecting cortisol and comfort.

    PubMed

    Schmidt, Christina; Xhrouet, Marine; Hamacher, Manon; Delloye, Eric; LeGoff, Caroline; Cavalier, Etienne; Collette, Fabienne; Vandewalle, Gilles

    2018-06-26

    We aimed at assessing whether a head-mounted light therapy device, enriched in blue wavelengths, suppresses melatonin secretion and improves vigilant attention in the late evening hours. We also assessed whether using such light device is associated with discomfort and physiological stress. Seventeen healthy young participants (eight females) participated in a counterbalanced within-subject design during which they were exposed for 2 hr before habitual sleep time to a blue-enriched light (1500 lx) or to a lower intensity red-light (150 lx) control condition, using a new-generation light emitting diode (LED) head-mounted device. Compared to the red light control condition, blue-enriched light significantly reduced melatonin secretion and reaction times during a psychomotor vigilance task while no significant differences were detected in discomfort and cortisol levels. These results suggest that, compared to a control condition, blue-enriched light, delivered by a new-generation head-mounted device, elicits typical non-visual responses to light without detectable discomfort and physiological stress. They suggest that such devices might constitute an effective alternative to standard light boxes. © 2018 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  15. Spectral sensitivity of the circadian system

    NASA Astrophysics Data System (ADS)

    Figueiro, Mariana G.; Bullough, John D.; Rea, Mark S.

    2004-01-01

    Light exposure regulates several circadian functions in normal humans including the sleep-wake cycle. Individuals with Alzheimer"s Disease (AD) often do not have regular patterns of activity and rest, but, rather, experience random periods of sleep and agitation during both day and night. Bright light during the day and darkness at night has been shown to consolidate activity periods during the day and rest periods at night in AD patients. The important characteristics of bright light exposure (quantity, spectrum, distribution, timing and duration) for achieving these results in AD patients is not yet understood. Recent research has shown that moderate (~18 lx at the cornea) blue (~470 nm) light is effective at suppressing melatonin in normal humans. It was hypothesized that blue light applied just before AD patients retire to their beds for the night would have a measurable impact on their behavior. A pilot study was conducted for 30 days in a senior health care facility using four individuals diagnosed with mild to moderate levels of dementia. Four AD patients were exposed to arrays of blue light from light emitting diodes (max wavelength = 470 nm) in two-hour sessions (18:00 to 20:00 hours) for 10 days. As a control, they were exposed to red light (max wavelength = 640 nm) in two-hour sessions for 10 days prior to the blue light exposure. Despite the modest sample size, exposure to blue LEDs has shown to affect sleep quality and median body temperature peak of these AD patients. Median body temperature peak was delayed by approximately 2 hours after exposure to blue LEDs compared to exposure to red LEDs and sleep quality was improved. This pilot study demonstrated that light, especially LEDs, can be an important contribution to helping AD patients regulate their circadian functions.

  16. Lethal effects of short-wavelength visible light on insects.

    PubMed

    Hori, Masatoshi; Shibuya, Kazuki; Sato, Mitsunari; Saito, Yoshino

    2014-12-09

    We investigated the lethal effects of visible light on insects by using light-emitting diodes (LEDs). The toxic effects of ultraviolet (UV) light, particularly shortwave (i.e., UVB and UVC) light, on organisms are well known. However, the effects of irradiation with visible light remain unclear, although shorter wavelengths are known to be more lethal. Irradiation with visible light is not thought to cause mortality in complex animals including insects. Here, however, we found that irradiation with short-wavelength visible (blue) light killed eggs, larvae, pupae, and adults of Drosophila melanogaster. Blue light was also lethal to mosquitoes and flour beetles, but the effective wavelength at which mortality occurred differed among the insect species. Our findings suggest that highly toxic wavelengths of visible light are species-specific in insects, and that shorter wavelengths are not always more toxic. For some animals, such as insects, blue light is more harmful than UV light.

  17. Lethal effects of short-wavelength visible light on insects

    NASA Astrophysics Data System (ADS)

    Hori, Masatoshi; Shibuya, Kazuki; Sato, Mitsunari; Saito, Yoshino

    2014-12-01

    We investigated the lethal effects of visible light on insects by using light-emitting diodes (LEDs). The toxic effects of ultraviolet (UV) light, particularly shortwave (i.e., UVB and UVC) light, on organisms are well known. However, the effects of irradiation with visible light remain unclear, although shorter wavelengths are known to be more lethal. Irradiation with visible light is not thought to cause mortality in complex animals including insects. Here, however, we found that irradiation with short-wavelength visible (blue) light killed eggs, larvae, pupae, and adults of Drosophila melanogaster. Blue light was also lethal to mosquitoes and flour beetles, but the effective wavelength at which mortality occurred differed among the insect species. Our findings suggest that highly toxic wavelengths of visible light are species-specific in insects, and that shorter wavelengths are not always more toxic. For some animals, such as insects, blue light is more harmful than UV light.

  18. Effects of an advanced sleep schedule and morning short wavelength light exposure on circadian phase in young adults with late sleep schedules.

    PubMed

    Sharkey, Katherine M; Carskadon, Mary A; Figueiro, Mariana G; Zhu, Yong; Rea, Mark S

    2011-08-01

    We examined the effects of an advanced sleep/wake schedule and morning short wavelength (blue) light in 25 adults (mean age±SD=21.8±3 years; 13 women) with late sleep schedules and subclinical features of delayed sleep phase disorder (DSPD). After a baseline week, participants kept individualized, fixed, advanced 7.5-h sleep schedules for 6days. Participants were randomly assigned to groups to receive "blue" (470nm, ∼225lux, n=12) or "dim" (<1lux, n=13) light for 1h after waking each day. Head-worn "Daysimeters" measured light exposure; actigraphs and sleep diaries confirmed schedule compliance. Salivary dim light melatonin onset (DLMO), self-reported sleep, and mood were examined with 2×2 ANOVA. After 6days, both groups showed significant circadian phase advances, but morning blue light was not associated with larger phase shifts than dim-light exposure. The average DLMO advances (mean±SD) were 1.5±1.1h in the dim light group and 1.4±0.7h in the blue light group. Adherence to a fixed advanced sleep/wake schedule resulted in significant circadian phase shifts in young adults with subclinical DSPD with or without morning blue light exposure. Light/dark exposures associated with fixed early sleep schedules are sufficient to advance circadian phase in young adults. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Blue and green light-induced phototropism in Arabidopsis thaliana and Lactuca sativa L. seedlings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinitz, B.; Ren, Z.; Poff, K.L.

    1985-01-01

    Exposure time-response curves for blue and green light-induced phototropic bending in hypocotyls of Arabidopsis thaliana (L.) Heynh. and Lactuca sativa L. seedlings are presented. These seedlings show significant phototropic sensitivity up to 540 to 550 nanometers. Since wavelengths longer than 560 nanometers do not induce phototropic bending, it is suggested that the response to 510 to 550 nanometers light is mediated by the specific blue light photoreceptor of phototropism. The authors advise care in the use of green safelights for studies of phototropism.

  20. Ocular exposure to blue-enriched light has an asymmetric influence on neural activity and spatial attention.

    PubMed

    Newman, Daniel P; Lockley, Steven W; Loughnane, Gerard M; Martins, Ana Carina P; Abe, Rafael; Zoratti, Marco T R; Kelly, Simon P; O'Neill, Megan H; Rajaratnam, Shantha M W; O'Connell, Redmond G; Bellgrove, Mark A

    2016-06-13

    Brain networks subserving alertness in humans interact with those for spatial attention orienting. We employed blue-enriched light to directly manipulate alertness in healthy volunteers. We show for the first time that prior exposure to higher, relative to lower, intensities of blue-enriched light speeds response times to left, but not right, hemifield visual stimuli, via an asymmetric effect on right-hemisphere parieto-occipital α-power. Our data give rise to the tantalising possibility of light-based interventions for right hemisphere disorders of spatial attention.

  1. Ocular exposure to blue-enriched light has an asymmetric influence on neural activity and spatial attention

    PubMed Central

    Newman, Daniel P.; Lockley, Steven W.; Loughnane, Gerard M.; Martins, Ana Carina P.; Abe, Rafael; Zoratti, Marco T. R.; Kelly, Simon P.; O’Neill, Megan H.; Rajaratnam, Shantha M. W.; O’Connell, Redmond G.; Bellgrove, Mark A.

    2016-01-01

    Brain networks subserving alertness in humans interact with those for spatial attention orienting. We employed blue-enriched light to directly manipulate alertness in healthy volunteers. We show for the first time that prior exposure to higher, relative to lower, intensities of blue-enriched light speeds response times to left, but not right, hemifield visual stimuli, via an asymmetric effect on right-hemisphere parieto-occipital α-power. Our data give rise to the tantalising possibility of light-based interventions for right hemisphere disorders of spatial attention. PMID:27291291

  2. Blue and Green Light-Induced Phototropism in Arabidopsis thaliana and Lactuca sativa L. Seedlings 1

    PubMed Central

    Steinitz, Benjamin; Ren, Zhangling; Poff, Kenneth L.

    1985-01-01

    Exposure time-response curves for blue and green light-induced phototropic bending in hypocotyls of Arabidopsis thaliana (L.) Heynh. and Lactuca sativa L. seedlings are presented. These seedlings show significant phototropic sensitivity up to 540 to 550 nanometers. Since wave-lengths longer than 560 nanometers do not induce phototropic bending, it is suggested that the response to 510 to 550 nanometers light is mediated by the specific blue light photoreceptor of phototropism. We advise care in the use of green `safelights' for studies of phototropism. PMID:16664021

  3. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.

    PubMed

    Zhou, Lin; Tan, Yingling; Ji, Dengxin; Zhu, Bin; Zhang, Pei; Xu, Jun; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2016-04-01

    The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber-based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m(-2)). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices.

  4. Pulsing blue light through closed eyelids: effects on acute melatonin suppression and phase shifting of dim light melatonin onset.

    PubMed

    Figueiro, Mariana G; Plitnick, Barbara; Rea, Mark S

    2014-01-01

    Circadian rhythm disturbances parallel the increased prevalence of sleep disorders in older adults. Light therapies that specifically target regulation of the circadian system in principle could be used to treat sleep disorders in this population. Current recommendations for light treatment require the patients to sit in front of a bright light box for at least 1 hour daily, perhaps limiting their willingness to comply. Light applied through closed eyelids during sleep might not only be efficacious for changing circadian phase but also lead to better compliance because patients would receive light treatment while sleeping. Reported here are the results of two studies investigating the impact of a train of 480 nm (blue) light pulses presented to the retina through closed eyelids on melatonin suppression (laboratory study) and on delaying circadian phase (field study). Both studies employed a sleep mask that provided narrowband blue light pulses of 2-second duration every 30 seconds from arrays of light-emitting diodes. The results of the laboratory study demonstrated that the blue light pulses significantly suppressed melatonin by an amount similar to that previously shown in the same protocol at half the frequency (ie, one 2-second pulse every minute for 1 hour). The results of the field study demonstrated that blue light pulses given early in the sleep episode significantly delayed circadian phase in older adults; these results are the first to demonstrate the efficacy and practicality of light treatment by a sleep mask aimed at adjusting circadian phase in a home setting.

  5. Low-energy light bulbs, computers, tablets and the blue light hazard

    PubMed Central

    O'Hagan, J B; Khazova, M; Price, L L A

    2016-01-01

    The introduction of low energy lighting and the widespread use of computer and mobile technologies have changed the exposure of human eyes to light. Occasional claims that the light sources with emissions containing blue light may cause eye damage raise concerns in the media. The aim of the study was to determine if it was appropriate to issue advice on the public health concerns. A number of sources were assessed and the exposure conditions were compared with international exposure limits, and the exposure likely to be received from staring at a blue sky. None of the sources assessed approached the exposure limits, even for extended viewing times. PMID:26768920

  6. Optically Stimulated Luminescence (OSL) of dental enamel for retrospective assessment of radiation exposure

    PubMed Central

    Yukihara, E.G.; Mittani, J.; McKeever, S.W.S.; Simon, S.L.

    2009-01-01

    This paper briefly reviews the optically stimulated luminescence (OSL) properties of dental enamel and discusses the potential and challenges of OSL for filling the technology gap in biodosimetry required for medical triage following a radiological/nuclear accident or terrorist event. The OSL technique uses light to stimulate a radiation-induced luminescence signal from materials previously exposed to ionizing radiation. This luminescence originates from radiation-induced defects in insulating crystals and is proportional to the absorbed dose of ionizing radiation. In our research conducted to date, we focused on fundamental investigations of the OSL properties of dental enamel using extracted teeth and tabletop OSL readers. The objective was to obtain information to support the development of the necessary instrumentation for retrospective dosimetry using dental enamel in laboratory, or for in situ and non-invasive accident dosimetry using dental enamel in emergency triage. An OSL signal from human dental enamel was detected using blue, green, or IR stimulation. Blue/green stimulation associated with UV emission detection seems to be the most appropriate combination in the sense that there is no signal from un-irradiated samples and the shape of the OSL decay is clear. Improvements in the minimum detection level were achieved by incorporating an ellipsoidal mirror in the OSL system to maximize light collection. Other possibilities to improve the sensitivity and research steps necessary to establish the feasibility of the technique for retrospective assessment of radiation exposure are also discussed. PMID:19623269

  7. Prediction of wood mechanical and chemical properties in the presence and absence of blue stain using two near infrared instruments

    Treesearch

    Brian K. Via; Chi-Leung So; Todd F. Shupe; Lori G. Eckhardt; Michael Stine; Leslie H. Groom

    2005-01-01

    The objective of this research was to (a) determine if blue stain in solid wood influenced calibration equations developed from a nonstained wood population, (b) assess the bias introduced when scanning was performed by the slave instrument without calibration transfer from the master instrument and (c) partition absorbance-based variation by instrument, stain and...

  8. Brown Carbon Production in Aldehyde + Ammonium Sulfate Mixtures: Effects of Formaldehyde and Amines

    NASA Astrophysics Data System (ADS)

    Powelson, M.; De Haan, D. O.

    2012-12-01

    The formation of light-absorbing 'brown carbon,' or HULIS (humic- like substances), in atmospheric aerosol has an important impact on climate. However, the precursors responsible for brown carbon formation have not been identified. Several aldehydes present in clouds (methylglyoxal, glycolaldehyde, hydroxyacetone, glyoxal, and acetaldehyde) have the potential to create brown products when reacted with ammonium sulfate or primary amines such as methylamine or glycine. The formation of light-absorbing products from these reactions was characterized as a function of cloud-relevant pH (from 3- 6) using UV-Visible spectroscopy. Of the different aldehydes teste, the largest production rates of light-absorbing compounds were observed in reactions of glycolaldehyde and methylglyoxal. Primary amines produced more light- absorbing products than ammonium sulfate at lower concentrations. The addition of formaldehyde to any reaction with other aldehydes decreased the formation of light-absorbing products, while the addition of a small amount (1:5 mole ratio) of glycine to aldehyde + ammonium sulfate reactions can increase the production of light-absorbing products. These results suggest that the presence of primary amines significantly influence atmospheric brown carbon production by aldehydes even when much greater quantities of ammonium sulfate are present.

  9. White Light–Emitting Diodes (LEDs) at Domestic Lighting Levels and Retinal Injury in a Rat Model

    PubMed Central

    Shang, Yu-Man; Wang, Gen-Shuh; Sliney, David; Lee, Li-Ling

    2013-01-01

    Background: Light-emitting diodes (LEDs) deliver higher levels of blue light to the retina than do conventional domestic light sources. Chronic exposure to high-intensity light (2,000–10,000 lux) has previously been found to result in light-induced retinal injury, but chronic exposure to relatively low-intensity (750 lux) light has not been previously assessed with LEDs in a rodent model. Objective: We examined LED-induced retinal neuronal cell damage in the Sprague-Dawley rat using functional, histological, and biochemical measurements. Methods: We used blue LEDs (460 nm) and full-spectrum white LEDs, coupled with matching compact fluorescent lights, for exposures. Pathological examinations included electroretinogram, hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC), and transmission electron microscopy (TEM). We also measured free radical production in the retina to determine the oxidative stress level. Results: H&E staining and TEM revealed apoptosis and necrosis of photoreceptors, which indicated blue-light induced photochemical injury of the retina. Free radical production in the retina was increased in LED-exposed groups. IHC staining demonstrated that oxidative stress was associated with retinal injury. Although we found serious retinal light injury in LED groups, the compact fluorescent lamp (CFL) groups showed moderate to mild injury. Conclusion: Our results raise questions about adverse effects on the retina from chronic exposure to LED light compared with other light sources that have less blue light. Thus, we suggest a precautionary approach with regard to the use of blue-rich “white” LEDs for general lighting. Citation: Shang YM, Wang GS, Sliney D, Yang CH, Lee LL. 2014. White light–emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model. Environ Health Perspect 122:269–276; http://dx.doi.org/10.1289/ehp.1307294 PMID:24362357

  10. LED Lighting – Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity

    PubMed Central

    Monostori, István; Heilmann, Márk; Kocsy, Gábor; Rakszegi, Marianna; Ahres, Mohamed; Altenbach, Susan B.; Szalai, Gabriella; Pál, Magda; Toldi, Dávid; Simon-Sarkadi, Livia; Harnos, Noémi; Galiba, Gábor; Darko, Éva

    2018-01-01

    The use of light-emitting diode (LED) technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL) regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity. PMID:29780400

  11. LED Lighting - Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity.

    PubMed

    Monostori, István; Heilmann, Márk; Kocsy, Gábor; Rakszegi, Marianna; Ahres, Mohamed; Altenbach, Susan B; Szalai, Gabriella; Pál, Magda; Toldi, Dávid; Simon-Sarkadi, Livia; Harnos, Noémi; Galiba, Gábor; Darko, Éva

    2018-01-01

    The use of light-emitting diode (LED) technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL) regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity.

  12. Indium gallium nitride-based ultraviolet, blue, and green light-emitting diodes functionalized with shallow periodic hole patterns

    PubMed Central

    Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok

    2017-01-01

    In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results. PMID:28374856

  13. Indium gallium nitride-based ultraviolet, blue, and green light-emitting diodes functionalized with shallow periodic hole patterns.

    PubMed

    Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok

    2017-04-04

    In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results.

  14. The effects of treatment room lighting color on time perception and emotion.

    PubMed

    Han, Seulki; Lee, Daehee

    2017-07-01

    [Purpose] The purpose of this study was to investigate the perceived treatment times and emotional reactions under different light colors in the treatment room. [Subjects and Methods] Subjects in this study were 20 healthy young students in their 20s. Under each lighting condition (blue, red, white, and yellow) differentiated by color, each subject laid on a therapeutic bed and underwent ultrasound therapy. Subjects were instructed to press a stopwatch every 1 minute, for a total of 5 times, after therapy started according to their perception of time while the stopwatch's time indicator was blocked. After the experiments, self-administered questionnaires were given to subjects to measure their emotional reactions. [Results] In terms of K-POMS scores, the mood states of depression-dejection, anger-hostility, and confusion-bewilderment were higher scores for blue and red lights compared to yellow light. The mood state of vigor-activity were higher scores for yellow and white lights compared to blue and red lights. [Conclusion] Therefore, it is important to take necessary measures to prevent the negative effects that blue and red light-based therapy can have on patient mood.

  15. A Study of Gibberellin Homeostasis and Cryptochrome-Mediated Blue Light Inhibition of Hypocotyl Elongation1[W][OA

    PubMed Central

    Zhao, Xiaoying; Yu, Xuhong; Foo, Eloise; Symons, Gregory M.; Lopez, Javier; Bendehakkalu, Krishnaprasad T.; Xiang, Jing; Weller, James L.; Liu, Xuanming; Reid, James B.; Lin, Chentao

    2007-01-01

    Cryptochromes mediate blue light-dependent photomorphogenic responses, such as inhibition of hypocotyl elongation. To investigate the underlying mechanism, we analyzed a genetic suppressor, scc7-D (suppressors of cry1cry2), which suppressed the long-hypocotyl phenotype of the cry1cry2 (cryptochrome1/cryptochrome2) mutant in a light-dependent but wavelength-independent manner. scc7-D is a gain-of-expression allele of the GA2ox8 gene encoding a gibberellin (GA)-inactivating enzyme, GA 2-oxidase. Although scc7-D is hypersensitive to light, transgenic seedlings expressing GA2ox at a level higher than scc7-D showed a constitutive photomorphogenic phenotype, confirming a general role of GA2ox and GA in the suppression of hypocotyl elongation. Prompted by this result, we investigated blue light regulation of mRNA expression of the GA metabolic and catabolic genes. We demonstrated that cryptochromes are required for the blue light regulation of GA2ox1, GA20ox1, and GA3ox1 expression in transient induction, continuous illumination, and photoperiodic conditions. The kinetics of cryptochrome induction of GA2ox1 expression and cryptochrome suppression of GA20ox1 or GA3ox1 expression correlate with the cryptochrome-dependent transient reduction of GA4 in etiolated wild-type seedlings exposed to blue light. Therefore we propose that in deetiolating seedlings, cryptochromes mediate blue light regulation of GA catabolic/metabolic genes, which affect GA levels and hypocotyl elongation. Surprisingly, no significant change in the GA4 content was detected in the whole shoot samples of the wild-type or cry1cry2 seedlings grown in the dark or continuous blue light, suggesting that cryptochromes may also regulate GA responsiveness and/or trigger cell- or tissue-specific changes of the level of bioactive GAs. PMID:17644628

  16. Method for Non-Invasive Determination of Chemical Properties of Aqueous Solutions

    NASA Technical Reports Server (NTRS)

    Jones, Alan (Inventor); Thomas, Nathan A. (Inventor); Todd, Paul W. (Inventor)

    2016-01-01

    A method for non-invasively determining a chemical property of an aqueous solution is provided. The method provides the steps of providing a colored solute having a light absorbance spectrum and transmitting light through the colored solute at two different wavelengths. The method further provides the steps of measuring light absorbance of the colored solute at the two different transmitted light wavelengths, and comparing the light absorbance of the colored solute at the two different wavelengths to determine a chemical property of an aqueous solution.

  17. Pupillary response to direct and consensual chromatic light stimuli.

    PubMed

    Traustason, Sindri; Brondsted, Adam Elias; Sander, Birgit; Lund-Andersen, Henrik

    2016-02-01

    To assess whether the direct and consensual postillumination (ipRGC-driven) pupil light responses to chromatic light stimuli are equal in healthy subjects. Pupil responses in healthy volunteers were recorded using a prototype binocular chromatic pupillometer (IdeaMedical, Copenhagen), which is capable of both direct and consensual pupillometry measurements. The device uses a pair of dual monochromatic narrow bandwidth LED light sources, red (660 nm) and blue (470 nm). Pupil light responses were recorded with infrared video cameras and analysed using custom-made circuitry and software. Subjects were randomized to receive light stimuli at either the right or left eye after 5 min of dark adaptation. Pupil light responses were recorded in both eyes for 10 seconds before illumination, during illumination and 50 seconds after illumination with red and blue light. Three variables were defined for the recorded pupil responses: the maximal constriction amplitude (CAmax ), the pupil response during illumination and postillumination pupil response (PIPR). No difference was found in the pupil response to blue light. With red light, the pupil response during illumination was slightly larger during consensual illumination compared to direct illumination (0.54 and 0.52, respectively, p = 0.027, paired Wilcoxon's test, n = 12), while no differences were found for CAmax or the PIPR. No difference was found between direct and consensual pupil response to either red or blue light in the postillumination period. Direct and consensual responses can readily be compared when examining the postillumination pupil response to blue light as estimation of photosensitive retinal ganglion cell activation. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  18. Combinational light emitting diode-high frequency focused ultrasound treatment for HeLa cell.

    PubMed

    Choe, Se-Woon; Park, Kitae; Park, Chulwoo; Ryu, Jaemyung; Choi, Hojong

    2017-12-01

    Light sources such as laser and light emitting diode or ultrasound devices have been widely used for cancer therapy and regenerative medicines, since they are more cost-effective and less harmful than radiation therapy, chemotherapy or magnetic treatment. Compared to laser and low intensity ultrasound techniques, light emitting diode and high frequency focused ultrasound shows enhanced therapeutic effects, especially for small tumors. We propose combinational light emitting diode-high frequency focused ultrasound treatment for human cervical cancer HeLa cells. Individual red, green, and blue light emitting diode light only, high frequency focused ultrasound only, or light emitting diode light combined with high frequency focused ultrasound treatments were applied in order to characterize the responses of HeLa cells. Cell density exposed by blue light emitting diode light combined with high frequency focused ultrasound (2.19 ± 0.58%) was much lower than that of cells exposed by red and green light emitting diode lights (81.71 ± 9.92% and 61.81 ± 4.09%), blue light emitting diode light (11.19 ± 2.51%) or high frequency focused ultrasound only (9.72 ± 1.04%). We believe that the proposed combinational blue light emitting diode-high frequency focused ultrasound treatment could have therapeutic benefits to alleviate cancer cell proliferation.

  19. Plant Growth and Photosynthetic Characteristics of Mesembryanthemum crystallinum Grown Aeroponically under Different Blue- and Red-LEDs

    PubMed Central

    He, Jie; Qin, Lin; Chong, Emma L. C.; Choong, Tsui-Wei; Lee, Sing Kong

    2017-01-01

    Mesembryanthemum crystallinum is a succulent, facultative crassulacean acid metabolism (CAM) plant. Plant growth and photosynthetic characteristics were studied when M. crystallinum plants were grown indoor under light emitting diodes (LED)-lighting with adequate water supply. Plants were cultured aeroponically for a 16-h photoperiod at an equal photosynthetic photon flux density of 350 μmol m-2 s-1 under different red:blue LED ratios: (1) 100:0 (0B); (2) 90:10 (10B); (3) 80:20 (20B); (4) 70:30 (30B); (5) 50:50 (50B); and (6)100:0 (100B). M. crystallinum grown under 10B condition had the highest shoot and root biomass and shoot/root ratio while those grown under 0B condition exhibited the lowest values. Compared to plants grown under 0B condition, all other plants had similar but higher total chlorophyll (Chl) and carotenoids (Car) contents and higher Chl a/b ratios. However, there were no significant differences in Chl/Car ratio among all plants grown under different red- and blue-LEDs. Photosynthetic light use efficiency measured by photochemical quenching, non-photochemical quenching, and electron transport rate, demonstrated that plants grown under high blue-LED utilized more light energy and had more effective heat dissipation mechanism compared to plants grown under 0B or lower blue-LED. Statistically, there were no differences in photosynthetic O2 evolution rate, light-saturated CO2 assimilation rate (Asat), and light-saturated stomatal conductance (gssat) among plants grown under different combined red- and blue-LEDs but they were significantly higher than those of 0B plants. No statistically differences in total reduced nitrogen content were found among all plants. For the total soluble protein, all plants grown under different combined red- and blue-LEDs had similar values but they were significantly higher than that of plants grown under 0B condition. However, plants grown under higher blue-LEDs had significant higher ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) protein than those plants grown under lower blue-LED. High Asat and gssat but very low CAM acidity of all M. crystallinum plants during light period, imply that this facultative CAM plant performed C3 photosynthesis when supplied with adequate water. Results of this study suggest that compared to red- or blue-LED alone, appropriate combination of red- and blue-LED lighting enhanced plant growth and photosynthetic capacities of M. crystallinum. PMID:28367156

  20. One-pot ultrasonic-assisted method for preparation of Ag/AgCl sensitized ZnO nanostructures as visible-light-driven photocatalysts

    NASA Astrophysics Data System (ADS)

    Naghizadeh-Alamdari, Sara; Habibi-Yangjeh, Aziz; Pirhashemi, Mahsa

    2015-02-01

    Ultrasonic-assisted method was applied for preparation of Ag/AgCl sensitized ZnO nanostructures by one-pot procedure in water without using any post preparation treatments. The resultant nanocomposites were characterized by XRD, EDX, SEM, DRS, XPS, BET, and PL techniques. In the nanocomposites, ZnO and AgCl have wurtzite hexagonal and cubic crystalline phases, respectively and their surface morphologies remarkably change with increasing mole fraction of silver chloride. The EDX and XPS techniques show that the prepared samples are extremely pure. Ability of the nanocomposites for absorption of visible-light irradiation enhanced with increasing AgCl content. Photocatalytic examination of the nanocomposites was carried out using aqueous solution of methylene blue under visible-light irradiation. The degradation rate constant on the nancomposite rapidly increases with mole fraction of silver chloride up to 0.237. Enhancing activity of the nanocomposite was attributed to its ability for absorbing visible light and separation of electron-hole pairs. Furthermore, influence of ultrasonic irradiation time, calcination temperature, catalyst weight, pH of solution, and scavengers of reactive species on the degradation activity was investigated and the results were discussed. Finally, the photocatalyst has good activity after five successive cycles.

  1. [Blue-light induced expression of S-adenosy-L-homocysteine hydrolase-like gene in Mucor amphibiorum RCS1].

    PubMed

    Gao, Ya; Wang, Shu; Fu, Mingjia; Zhong, Guolin

    2013-09-04

    To determine blue-light induced expression of S-adenosyl-L-homocysteine hydrolase-like (sahhl) gene in fungus Mucor amphibiorum RCS1. In the random process of PCR, a sequence of 555 bp was obtained from M. amphibiorum RCS1. The 555 bp sequence was labeled with digoxin to prepare the probe for northern hybridization. By northern hybridization, the transcription of sahhl gene was analyzed in M. amphibiorum RCS1 mycelia culture process from darkness to blue light to darkness. Simultaneously real-time PCR method was used to the sahhl gene expression analysis. Compared with the sequence of sahh gene from Homo sapiens, Mus musculus and some fungi species, a high homology of the 555 bp sequence was confirmed. Therefore, the preliminary confirmation has supported that the 555 bp sequence should be sahhl gene from M. amphibiorum RCS1. Under the dark pre-culture in 24 h, a large amounts of transcript of sahhl gene in the mycelia can be detected by northern hybridization and real-time PCR in the condition of 24 h blue light. But a large amounts of transcript of sahhl gene were not found in other detection for the dark pre-culture of 48 h, even though M. amphibiorum RCS1 mycelia were induced by blue light. Blue light can induce the expression of sahhl gene in the vigorous growth of M. amphibiorum RCS1 mycelia.

  2. Blue light-dependent changes in loosely bound calcium in Arabidopsis mesophyll cells: an X-ray microanalysis study.

    PubMed

    Łabuz, Justyna; Samardakiewicz, Sławomir; Hermanowicz, Paweł; Wyroba, Elżbieta; Pilarska, Maria; Gabryś, Halina

    2016-06-01

    Calcium is involved in the signal transduction pathway from phototropins, the blue light photoreceptor kinases which mediate chloroplast movements. The chloroplast accumulation response in low light is controlled by both phot1 and phot2, while only phot2 is involved in avoidance movement induced by strong light. Phototropins elevate cytosolic Ca(2+) after activation by blue light. In higher plants, both types of chloroplast responses depend on Ca(2+), and internal calcium stores seem to be crucial for these processes. Yet, the calcium signatures generated after the perception of blue light by phototropins are not well understood. To characterize the localization of calcium in Arabidopsis mesophyll cells, loosely bound (exchangeable) Ca(2+) was precipitated with potassium pyroantimonate and analyzed by transmission electron microscopy followed by energy-dispersive X-ray microanalysis. In dark-adapted wild-type Arabidopsis leaves, calcium precipitates were observed at the cell wall, where they formed spherical structures. After strong blue light irradiation, calcium at the apoplast prevailed, and bigger, multilayer precipitates were found. Spherical calcium precipitates were also detected at the tonoplast. After red light treatment as a control, the precipitates at the cell wall were smaller and less numerous. In the phot2 and phot1phot2 mutants, calcium patterns were different from those of wild-type plants. In both mutants, no elevation of calcium after blue light treatment was observed at the cell periphery (including the cell wall and a fragment of cytoplasm). This result confirms the involvement of phototropin2 in the regulation of Ca(2+) homeostasis in mesophyll cells. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Dose-dependent collagen cross-linking of rabbit scleral tissue by blue light and riboflavin treatment probed by dynamic shear rheology.

    PubMed

    Schuldt, Carsten; Karl, Anett; Körber, Nicole; Koch, Christian; Liu, Qing; Fritsch, Anatol W; Reichenbach, Andreas; Wiedemann, Peter; Käs, Josef A; Francke, Mike; Iseli, Hans Peter

    2015-08-01

    To determine the visco-elastic properties of isolated rabbit scleral tissue and dose-dependent biomechanical and morphological changes after collagen cross-linking by riboflavin/blue light treatment. Scleral patches from 87 adult albino rabbit eyes were examined by dynamic shear rheology. Scleral patches were treated by riboflavin and different intensities of blue light (450 nm), and the impact on the visco-elastic properties was determined by various rheological test regimes. The relative elastic modulus was calculated from non-treated and corresponding treated scleral patches, and treatments with different blue light intensities were compared. Shear rheology enables us to study the material properties of scleral tissue within physiological relevant parameters. Cross-linking treatment increased the viscous as well as the elastic modulus and changed the ratio of the elastic versus viscous proportion in scleral tissue. Constant riboflavin application combined with different blue light intensities from 12 mW/cm(2) up to 100 mW/cm(2) increased the relative elastic modulus of scleral tissue by factors up to 1.8. Further enhancement of the applied light intensity caused a decline of the relative elastic modulus. This might be due to destructive changes of the collagen bundle structure at larger light intensities, as observed by histological examination. Collagen cross-linking by riboflavin/blue light application increases the biomechanical stiffness of the sclera in a dose-dependent manner up to certain light intensities. Therefore, this treatment might be a suitable therapeutic approach to stabilize the biomechanical properties of scleral tissue in cases of pathological eye expansion. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  4. Temporal change of photophobic step-up responses of Euglena gracilis investigated through motion analysis

    PubMed Central

    Ozasa, Kazunari; Won, June; Song, Simon; Tamaki, Shun; Ishikawa, Takahiro; Maeda, Mizuo

    2017-01-01

    The adaptation to a strong light is one of the essential characteristics of green algae, yet lacking relatively the information about the photophobic responses of Eukaryotic microalgae. We investigated the photophobic step-up responses of Euglena gracilis over a time course of several hours with alternated repetition of blue-light pulse illumination and spatially patterned blue-light illumination. Four distinctive photophobic motions in response to strong blue light were identified in a trace image analysis, namely on-site rotation, running and tumbling, continuous circular swimming, and unaffected straightforward swimming. The cells cultured in autotrophic conditions under weak light showed mainly the on-site rotation response at the beginning of blue-light illumination, but they acquired more blue-light tolerant responses of running and tumbling, circular swimming, or straightforward swimming. The efficiency of escaping from a blue-light illuminated area improved markedly with the development of these photophobic motions. Time constant of 3.0 h was deduced for the evolution of photophobic responses of E. gracilis. The nutrient-rich metabolic status of the cells resulting from photosynthesis during the experiments, i.e., the accumulation of photosynthesized nutrient products in balance between formation and consumption, was the main factor responsible for the development of photophobic responses. The reduction-oxidation status in and around E. gracilis cells did not affect their photophobic responses significantly, unlike the case of photophobic responses and phototaxis of Chlamydomonas reinhardtii cells. This study shows that the evolution of photophobic motion type of E. gracilis is dominated mainly by the nutrient metabolic status of the cells. The fact suggests that the nutrient-rich cells have a higher threshold for switching the flagellar motion from straightforward swimming to rotation under a strong light. PMID:28234984

  5. Light Effects on Behavioural Performance Depend on the Individual State of Vigilance

    PubMed Central

    Barba, Antonio; Padilla, Francisca

    2016-01-01

    Research has shown that exposure to bright white light or blue-enriched light enhances alertness, but this effect is not consistently observed in tasks demanding high-level cognition (e.g., Sustained Attention to Response Task—SART, which measures inhibitory control). Individual differences in sensitivity to light effects might be mediated by variations in the basal level of arousal. We tested this hypothesis by measuring the participants’ behavioural state of vigilance before light exposure, through the Psychomotor Vigilance Task. Then we compared the effects of a blue-enriched vs. dim light at nighttime on the performance of the auditory SART, by controlling for individual differences in basal arousal. The results replicated the alerting effects of blue-enriched light, as indexed by lower values of both proximal temperature and distal-proximal gradient. The main finding was that lighting effects on SART performance were highly variable across individuals and depended on their prior state of vigilance. Specifically, participants with higher levels of basal vigilance before light exposure benefited most from blue-enriched lighting, responding faster in the SART. These results highlight the importance of considering basal vigilance to define the boundary conditions of light effects on cognitive performance. Our study adds to current research delineating the complex and reciprocal interactions between lighting effects, arousal, cognitive task demands and behavioural performance. PMID:27820822

  6. Light Effects on Behavioural Performance Depend on the Individual State of Vigilance.

    PubMed

    Correa, Ángel; Barba, Antonio; Padilla, Francisca

    2016-01-01

    Research has shown that exposure to bright white light or blue-enriched light enhances alertness, but this effect is not consistently observed in tasks demanding high-level cognition (e.g., Sustained Attention to Response Task-SART, which measures inhibitory control). Individual differences in sensitivity to light effects might be mediated by variations in the basal level of arousal. We tested this hypothesis by measuring the participants' behavioural state of vigilance before light exposure, through the Psychomotor Vigilance Task. Then we compared the effects of a blue-enriched vs. dim light at nighttime on the performance of the auditory SART, by controlling for individual differences in basal arousal. The results replicated the alerting effects of blue-enriched light, as indexed by lower values of both proximal temperature and distal-proximal gradient. The main finding was that lighting effects on SART performance were highly variable across individuals and depended on their prior state of vigilance. Specifically, participants with higher levels of basal vigilance before light exposure benefited most from blue-enriched lighting, responding faster in the SART. These results highlight the importance of considering basal vigilance to define the boundary conditions of light effects on cognitive performance. Our study adds to current research delineating the complex and reciprocal interactions between lighting effects, arousal, cognitive task demands and behavioural performance.

  7. Engineering a palette of eukaryotic chromoproteins for bacterial synthetic biology.

    PubMed

    Liljeruhm, Josefine; Funk, Saskia K; Tietscher, Sandra; Edlund, Anders D; Jamal, Sabri; Wistrand-Yuen, Pikkei; Dyrhage, Karl; Gynnå, Arvid; Ivermark, Katarina; Lövgren, Jessica; Törnblom, Viktor; Virtanen, Anders; Lundin, Erik R; Wistrand-Yuen, Erik; Forster, Anthony C

    2018-01-01

    Coral reefs are colored by eukaryotic chromoproteins (CPs) that are homologous to green fluorescent protein. CPs differ from fluorescent proteins (FPs) by intensely absorbing visible light to give strong colors in ambient light. This endows CPs with certain advantages over FPs, such as instrument-free detection uncomplicated by ultra-violet light damage or background fluorescence, efficient Förster resonance energy transfer (FRET) quenching, and photoacoustic imaging. Thus, CPs have found utility as genetic markers and in teaching, and are attractive for potential cell biosensor applications in the field. Most near-term applications of CPs require expression in a different domain of life: bacteria. However, it is unclear which of the eukaryotic CP genes might be suitable and how best to assay them. Here, taking advantage of codon optimization programs in 12 cases, we engineered 14 CP sequences (meffRed, eforRed, asPink, spisPink, scOrange, fwYellow, amilGFP, amajLime, cjBlue, meffBlue, aeBlue, amilCP, tsPurple and gfasPurple) into a palette of Escherichia coli BioBrick plasmids. BioBricks comply with synthetic biology's most widely used, simplified, cloning standard. Differences in color intensities, maturation times and fitness costs of expression were compared under the same conditions, and visible readout of gene expression was quantitated. A surprisingly large variation in cellular fitness costs was found, resulting in loss of color in some overnight liquid cultures of certain high-copy-plasmid-borne CPs, and cautioning the use of multiple CPs as markers in competition assays. We solved these two problems by integrating pairs of these genes into the chromosome and by engineering versions of the same CP with very different colors. Availability of 14 engineered CP genes compared in E. coli , together with chromosomal mutants suitable for competition assays, should simplify and expand CP study and applications. There was no single plasmid-borne CP that combined all of the most desirable features of intense color, fast maturation and low fitness cost, so this study should help direct future engineering efforts.

  8. Cloning and analysis of the Glwc-1 and Glwc-2 genes encoding putative blue light photoreceptor from Ganoderma lucidum.

    PubMed

    Xu, Xinran; Chen, Xiangdong; Yu, Wumengxiao; Liu, Yu; Zhang, Weiwei; Lan, Jin

    2017-08-01

    Blue light plays an important role during the growth of Ganoderma lucidum, one of the best-known medicinal macrofungi in China. In the present study, we cloned Glwc-1 and Glwc-2, the homologue of the blue light photoreceptors Ncwc-1 and Ncwc-2 of Neurospora crassa, from G. lucidum. The deduced amino acid sequence of Glwc-1 contained the similar function domains as NcWC-1 including LOV, PAS B, PAS C, and PAC domains. The deduced amino acid sequence of Glwc-2 contained PAS domain and GATA-type zinc finger (Znf) domain as well as NcWC-2. Phylogenetic analysis based on fungal WC-1 and WC-2 supported GlWC-1 and GlWC-2 were blue light receptors. The expression of Glwc-1 and Glwc-2 indicated that they might play an important role during the primordium differentiation process of G. lucidum, and the external blue light stimulation increased the expression of Glwc-1 and Glwc-2. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fluorescent blue lights, injecting drug use and related health risk in public conveniences: findings from a qualitative study of micro-injecting environments.

    PubMed

    Parkin, Stephen; Coomber, Ross

    2010-07-01

    This paper presents findings relating to injecting drug users' experiences and opinions of public toilets illuminated with fluorescent blue lights and presents an empirical assessment of the intended deterrent effect of such installations. Data analysis identified that blue lights deterred less than half the sample interviewed. Furthermore over half (18/31) of the sample were prepared to inject in conditions specifically designed to deter injecting practice. Of these, 11 respondents were completely undeterred and 7 individuals were only partially deterred by blue light environments. These findings are discussed within the interpretative frameworks of Pierre Bourdieu's theory of habitus and symbolic violence. The authors conclude that fluorescent blue lights contribute towards the development of situated resistance by injecting drug users within a public injecting habitus; a resistance that produces and reproduces drug-related harm and is a behaviour that opposes the symbolic violence of harm reduction intervention. The paper concludes with suggestions for theory-driven practical intervention that may seek to disrupt the harmful elements of the public injecting habitus. 2010 Elsevier Ltd. All rights reserved.

  10. Masking of a circadian behavior in larval zebrafish involves the thalamo-habenula pathway.

    PubMed

    Lin, Qian; Jesuthasan, Suresh

    2017-06-22

    Changes in illumination can rapidly influence behavior that is normally controlled by the circadian clock. This effect is termed masking. In mice, masking requires melanopsin-expressing retinal ganglion cells that detect blue light and project to the thalamus. It is not known whether masking is wavelength-dependent in other vertebrates, nor is it known whether the thalamus is also involved or how it influences masking. Here, we address these questions in zebrafish. We find that diel vertical migration, a circadian behavior in larval zebrafish, is effectively triggered by blue, but not by red light. Two-photon calcium imaging reveals that a thalamic nucleus and a downstream structure, the habenula, have a sustained response to blue but not to red light. Lesioning the habenula reduces light-evoked climbing. These data suggest that the thalamo-habenula pathway is involved in the ability of blue light to influence a circadian behavior.

  11. Proper PIN1 Distribution Is Needed for Root Negative Phototropism in Arabidopsis

    PubMed Central

    Zhang, Kun-Xiao; Xu, Heng-Hao; Gong, Wen; Jin, Yan; Shi, Ya-Ya; Yuan, Ting-Ting; Li, Juan; Lu, Ying-Tang

    2014-01-01

    Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism. PMID:24465665

  12. Proper PIN1 distribution is needed for root negative phototropism in Arabidopsis.

    PubMed

    Zhang, Kun-Xiao; Xu, Heng-Hao; Gong, Wen; Jin, Yan; Shi, Ya-Ya; Yuan, Ting-Ting; Li, Juan; Lu, Ying-Tang

    2014-01-01

    Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism.

  13. Homogenous and heterogenous advanced oxidation of two commercial reactive dyes.

    PubMed

    Balcioglu, I A; Arslan, I; Sacan, M T

    2001-07-01

    Two commercial reactive dyes, the azo dye Reactive Black 5 and the copper phythalocyanine dye Reactive Blue 21, have been treated at a concentration of 75 mg l(-1) by titanium dioxide mediated photocatalytic (TiO2/UV), dark and UV-light assisted Fenton (Fe2+/H2O2) and Fenton-like (Fe3+/H2O2) processes in acidic medium. For the treatment of Reactive Black 5, all investigated advanced oxidation processes were quite effective in terms of colour, COD as well as TOC removal. Moreover, the relative growth inhibition of the azo dye towards the marine algae Dunaliella tertiolecta that was initially 70%, did not exhibit an increase during the studied advanced oxidation reactions and complete detoxification at the end of the treatment period could be achieved for all investigated treatment processes. However, for Reactive Blue 21, abatement in COD and UV-VIS absorbance values was mainly due to the adsorption of the dye on the photocatalyst surface and/or the coagulative effect of Fe3+/Fe2+ ions. Although only a limited fraction of the copper phythalocyanine dye underwent oxidative degradation, 47% of the total copper in the dye was already released after 1 h photocatalytic treatment.

  14. Advanced Micro-Polycrystalline Silicon Films Formed by Blue-Multi-Laser-Diode Annealing

    NASA Astrophysics Data System (ADS)

    Noguchi, Takashi; Chen, Yi; Miyahira, Tomoyuki; de Dieu Mugiraneza, Jean; Ogino, Yoshiaki; Iida, Yasuhiro; Sahota, Eiji; Terao, Motoyasu

    2010-03-01

    Semiconductor blue-multi-laser-diode annealing (BLDA) for amorphous Si film was performed to obtain a film containing uniform polycrystalline silicon (poly-Si) grains as a low temperature poly-Si (LTPS) process used for thin-film transistor (TFT). By adopting continuous wave (CW) mode at the 445 nm wavelength of the BLDA system, the light beam is efficiently absorbed into the thin amorphous silicon film of 50 nm thickness and can be crystallized stably. By adjusting simply the laser power below 6 W with controlled beam shape, the isotropic Si grains from uniform micro-grains to arbitral grain size of polycrystalline phase can be obtained with reproducible by fixing the scan speed at 500 mm/s. As a result of analysis using electron microscopy and atomic force microscopy (AFM), uniform distributed micro-poly-Si grains of smooth surface were observed at a power condition below 5 W and the preferred crystal orientation of (111) face was confirmed. As arbitral grain size can be obtained stably and reproducibly merely by controlling the laser power, BLDA is promising as a next-generation LTPS process for AM OLED panel including a system on glass (SoG).

  15. Concentrating light in Cu(In,Ga)Se2 solar cells

    NASA Astrophysics Data System (ADS)

    Schmid, Martina; Yin, Guanchao; Song, Min; Duan, Shengkai; Heidmann, Berit; Sancho-Martinez, Diego; Kämmer, Steven; Köhler, Tristan; Manley, Phillip; Lux-Steiner, Martha Ch.

    2017-01-01

    Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here, we investigate the light concentration for cost-efficient thin-film solar cells that show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe), which has a proven stabilized record efficiency of 22.6% and which-despite being a polycrystalline thin-film material-is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus, when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscaled approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared with the large scale concentrators and promise compact high-efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultrathin absorbers for dielectric nanostructures) or horizontally (microabsorbers for concentrating lenses) and have significant potential for efficiency enhancement.

  16. Global Picosecond Structural Dynamics of Orange Carotenoid Protein in Photo/Chemical Activated Signaling States

    NASA Astrophysics Data System (ADS)

    Deng, Yanting; Xu, Mengyang; Liu, Hanjun; Blankenship, Robert; Markelz, Andrea

    Light availability to photosynthetic organisms changes throughout the day. High light can over-saturate photosynthetic capacity and produce reactive oxygen which damages the photosynthetic apparatus and leads to cell death. Photosynthetic organisms have evolved multiple photo-protective strategies to prevent oxidative damage from light stress. For cyanobacteria, a blue-light photo-sensor orange carotenoid protein (OCP) responds to exposure to intense light. Upon high light stress, OCP converts from the orange inactive form (OCPO) to the red active form (OCPR) , with a large conformational change. And OCPR interacts with the light harvesting antenna phycobilisome (PB), and mediates the energy quenching of PB. We argue that both the susceptibility of OCP to large conformational change and its interaction with PB are associated with changes in the long range picosecond structural flexibility. To investigate the protein flexibility with signaling state dependence, temperature dependent terahertz time domain spectroscopy is performed in the range of 80 - 290 K on OCP solutions, as a function of illumination and chaotrope (NaSCN) concentration, which produces a long lived red state in the absence of photoexcitation. We characterize the global flexibility by both the net THz absorbance and the dynamical transition temperature, which scales with structural stability, and observed the dynamical transition occurred in the 180-220 K range. R.E.B. acknowledges DOE award DE-FG02- 07ER15902 and A.G.M. acknowledges NSF awards DBI 1556359 and MCB 1616529, and DOE award DE-SC0016317 for support of the work.

  17. Spectral tuning of Amazon parrot feather coloration by psittacofulvin pigments and spongy structures.

    PubMed

    Tinbergen, Jan; Wilts, Bodo D; Stavenga, Doekele G

    2013-12-01

    The feathers of Amazon parrots are brightly coloured. They contain a unique class of pigments, the psittacofulvins, deposited in both barbs and barbules, causing yellow or red coloured feathers. In specific feather areas, spongy nanostructured barb cells exist, reflecting either in the blue or blue-green wavelength range. The blue-green spongy structures are partly enveloped by a blue-absorbing, yellow-colouring pigment acting as a spectral filter, thus yielding a green coloured barb. Applying reflection and transmission spectroscopy, we characterized the Amazons' pigments and spongy structures, and investigated how they contribute to the feather coloration. The reflectance spectra of Amazon feathers are presumably tuned to the sensitivity spectra of the visual photoreceptors.

  18. Circadian and Sex Differences After Acute High-Altitude Exposure: Are Early Acclimation Responses Improved by Blue Light?

    PubMed

    Silva-Urra, Juan A; Núñez-Espinosa, Cristian A; Niño-Mendez, Oscar A; Gaitán-Peñas, Héctor; Altavilla, Cesare; Toro-Salinas, Andrés; Torrella, Joan R; Pagès, Teresa; Javierre, Casimiro F; Behn, Claus; Viscor, Ginés

    2015-12-01

    The possible effects of blue light during acute hypoxia and the circadian rhythm on several physiological and cognitive parameters were studied. Fifty-seven volunteers were randomly assigned to 2 groups: nocturnal (2200-0230 hours) or diurnal (0900-1330 hours) and exposed to acute hypoxia (4000 m simulated altitude) in a hypobaric chamber. The participants were illuminated by blue LEDs or common artificial light on 2 different days. During each session, arterial oxygen saturation (Spo2), blood pressure, heart rate variability, and cognitive parameters were measured at sea level, after reaching the simulated altitude of 4000 m, and after 3 hours at this altitude. The circadian rhythm caused significant differences in blood pressure and heart rate variability. A 4% to 9% decrease in waking nocturnal Spo2 under acute hypoxia was observed. Acute hypoxia also induced a significant reduction (4%-8%) in systolic pressure, slightly more marked (up to 13%) under blue lighting. Women had significantly increased systolic (4%) and diastolic (12%) pressures under acute hypoxia at night compared with daytime pressure; this was not observed in men. Some tendencies toward better cognitive performance (d2 attention test) were seen under blue illumination, although when considered together with physiological parameters and reaction time, there was no conclusive favorable effect of blue light on cognitive fatigue suppression after 3 hours of acute hypobaric hypoxia. It remains to be seen whether longer exposure to blue light under hypobaric hypoxic conditions would induce favorable effects against fatigue. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  19. Ultraviolet light absorbers having two different chromophors in the same molecule

    DOEpatents

    Vogl, O.; Li, S.

    1983-10-06

    This invention relates to novel ultraviolet light absorbers having two chromophors in the same molecule, and more particularly to benzotriazole substituted dihydroxybenzophenones and acetophenones. More particularly, this invention relates to 3,5-(di(2H-benzotriazole-2-yl))-2,4-dihydroxybenzophenone and 3,5-(di(2H-benzotriazole-2-yl))-2,4-dihydroxyacetophenone which are particularly useful as an ultraviolet light absorbers.

  20. Growth of cress seedlings and morphogenesis of root Gravisensors under clino-rotation and in unidirectional red or blue light

    NASA Astrophysics Data System (ADS)

    Rakleviciene, D.; Svegzdiene, D.; Tamulaitis, G.; Zukauskas, A.

    2005-08-01

    The growth rate and orientation of cress seedlings in response to the direction of illumination under clino- rotation were investigated at the initial stage of intensive hypocotyl elongation. Roots and hypocotyls growing in normal gravity conditions (1 g) and under clino-rotation at 3 rpm were illuminated with red (660 nm) or blue (450 nm) light from light-emitting diodes (LEDs). Unidirectional illumination in the direction opposite to the gravity vector promoted the growth rate of roots. Inhibition of gravitropism by clino-rotation reduced the growth of roots and stimulated the elongation of hypocotyls in both red and blue light. Illumination of roots invoked changes in the formation of gravisensing cells in the columella. Illumination under clino-rotation stimulated root statocyte growth and increased the number of amyloplasts in cells of the 3rd-6th columella rows. Also, an increase in the columella cell area, mainly caused by cell elongation in blue light and by enhanced radial growth in red light, was observed.

Top