Science.gov

Sample records for absorptiometry bone mineral

  1. Photon absorptiometry for non-invasive measurement of bone mineral content

    SciTech Connect

    Gupta, S.; Luna, E.; Belsky, J.; Gelfman, N.; Miller, K.; Davies, T.

    1984-08-01

    Bone mineral content of the distal radius was determined in 106 patients by single photon absorptiometry using iodine-125 monochromatic source. The technique provided a reliable means to assess the degree of mineral loss in conditions such as osteoporosis, renal osteodystrophy in patients on chronic maintenance dialysis, subjects on long-term steroid therapy, and those with diabetes mellitus. It is more sensitive than conventional radiography and completely noninvasive compared to bone biopsy. It is suggested that photon absorptiometry is a simple, sensitive, and reliable technique for assessment and follow-up of the bone mineral content in a host of disorders associated with bone demineralization.

  2. Determination of radial bone mineral content in low birth weight infants by photon absorptiometry

    SciTech Connect

    Greer, F.R.

    1988-07-01

    Studies at the University of Wisconsin have demonstrated that photon absorptiometry is a precise, accurate, and reproducible technique for measuring bone mineral content in premature infants and can be used to establish an intrauterine curve of bone mineralization in the fetus. Photon absorptiometry can also be used to measure bone width, thereby documenting appositional bone growth. The bone mineral content/bone width ratio may be helpful in identifying disorders of bone mineral metabolism in premature infants. The technique has been used to demonstrate that relatively poor bone mineralization (compared with the intrauterine curve) occurs in very low birth weight infants after birth, regardless of the type of feeding or the presence or absence of bronchopulmonary dysplasia. 31 references.

  3. SINISTER CAUSE OF HIGH BONE MINERAL DENSITY ON DUAL ENERGY X-RAY ABSORPTIOMETRY.

    PubMed

    Razi, Mairah; Hassan, Aamna

    2016-01-01

    Dual energy X-ray absorptiometry (DXA) has an established, well standardized role in the measurement of bone mineral density (BMD). In routine clinical practice, the main focus of bone densitometry is to identify low bone mass for the diagnosis and monitoring of osteoporosis particularly in postmenopausal females and in high risk individuals. Less commonly, elevated BMD can also be seen on routine DXA scanning usually due to degenerative disease. However, a range of other skeletal disorders can also lead to high BMD. Careful recognition of various artefacts and pathologic processes that can falsely elevate the BMD is essential for accurate DXA scan analysis and reporting. We present a case of high BMD in a patient of prostate carcinoma with widespread sclerotic metastases. PMID:27323594

  4. Dual photon absorptiometry using a gadolinium-153 source applied to measure equine bone mineral content

    NASA Astrophysics Data System (ADS)

    Moure, Alessandro; Reichmann, Peter; Remigio Gamba, Humberto

    2003-12-01

    The application of the dual photon absorptiometry (DPA) technique, using gadolinium-153 as the photon source, to evaluate the bone mineral density (BMD) of the third metacarpal bone of horses is presented. The radiation detector was implemented with a NaI(TI) scintillator coupled to a 14 stage photomultiplier. A modular mechanical system allows the position of the prototype to be adjusted in relation to the animal. A moveable carrier makes it possible to scan the third metacarpal with a velocity adjustable between 1 and 12 mm s-1, in steps of 1 mm s-1, for a total distance of 250 mm. The prototype was evaluated with a phantom of the third metacarpal bone made of perspex and aluminium, and in vitro with a transverse slice of the third metacarpal bone of a horse. The tests showed that the prototype has an accuracy and precision of, approximately, 10% and 6%, respectively, for a 6 s acquisition time. Preliminary studies carried out in three foals from birth to one year of age indicated that the prototype is well suited to in vivo and in situ analysis of the BMD of the third metacarpal bones of horses, making it possible to evaluate the changes of BMD levels on a monthly basis. Also, results indicated an exponential behaviour of the BMD curve during the first year of life of the studied horses.

  5. Accuracy of lumbar spine bone mineral content by dual photon absorptiometry

    SciTech Connect

    Gotfredsen, A.; Podenphant, J.; Norgaard, H.; Nilas, L.; Nielsen, V.A.; Christiansen, C.

    1988-02-01

    The accuracy of measurement of the bone mineral content (BMC, g) and bone mineral density (BMD, g/cm/sup 2/) of the lumbar spine by dual photon absorptiometry (DPA) was estimated by means of two different spine scanners (a Nuclear Data 2100 and a Lunar Radiation DP3). The lumbar spines of 13 cadavers were used. BMC and BMD were measured in situ and on the excised vertebrae in a solution of water/ethanol; and covered with ox muscle/porcine muscle/lard. The actual mineral weight and areal density were determined after chemical maceration, fat extraction, drying to a constant weight, ashing for 24 hr at 600 degrees C, and correction for the transverse processes. The true are was measured by parallax free X rays and planimetry. All measurements of BMC or BMD were highly interrelated (r = 0.94-0.99). The standard error of estimate (s.e.e.) of BMC in situ versus BMC in water/ethanol was 5.2%. The agreement between the BMD values of the two scanners was very good (s.e.e. = 2.9%). BMC in situ predicted the actual vertebral mineral mass with an s.e.e. of 8.1%. BMD in situ and BMD in water/ethanol predicted the actual area density with s.e.e.s of 10.3% and 5.0%, respectively. This study discloses the correlation and accuracy error of spinal DPA measurements in situ in whole cadavers versus the actual BMC and BMD. The error, which is underestimated in in vitro studies, amounts to 10%.

  6. Comparison of single- and dual-photon absorptiometry in postmenopausal bone mineral loss

    SciTech Connect

    Nilas, L.; Borg, J.; Gotfredsen, A.; Christiansen, C.

    1985-11-01

    The authors describe a single photon absorptiometric (SPA) technique, which enables differential estimation of the rates of loss from trabecular and cortical bone. Ten scans are obtained in the forearm: six in an area with about 7% trabecular bone and four scans in the adjacent distal area with a trabecular bone content of 25%. By comparing bone masses of these two sites in 19 postmenopausal and 53 premenopausal women, the postmenopausal trabecular bone loss was estimated to be approximately seven times greater than cortical loss within the first years of cessation of regular vaginal bleeding. On a group basis the bone loss at the distal forearm scan site (by SPA) corresponded closely to the spinal bone loss (by dual-photon absorptiometry). The reproducibility of the two scan sites in the forearm was 1-1.5% (CV%), which makes the method suitable for longitudinal studies. Corrections for variations in fatty tissue covering can be made without deterioration of the reproducibility.

  7. Quantitative computed tomographic evaluation of femoral bone mineral content in renal osteodystrophy compared with radial photon absorptiometry

    SciTech Connect

    Sakurai, K.; Marumo, F.; Iwanami, S.; Uchida, H.; Matsubayashi, T.

    1989-05-01

    The computed tomography (CT) numbers of cortical bone at the level of 20 cm (CT20) and of spongiosa in the lateral condyle at the level of 2 cm (CT02) from the distal end of the femur were obtained by a quantitative CT method and compared with the bone mineral density of mostly cortical bone within the radius (BMD) by photon absorptiometry. The study included 47 patients with chronic renal failure not dialyzed or induced to regular hemodialysis within 4 weeks of the study (group 1), 28 patients on regular hemodialysis for more than one month (group 2), and ten healthy volunteers (group 3). The measures of bone mineral content (BMC), namely CT20, CT02, and BMD, were compared in terms of their abilities to distinguish members in the various groups. For group 1 and group 3, the greatest variation in BMC was in the difference in CT02, which was primarily a measurement of the BMC of spongiosa. For groups 1 and 2, the greatest variation was in the difference in BMD, which was primarily a measurement of the BMC of cortex. The reproducibility of CT02 was estimated as almost equal to the difference in CT02 values at intervals of 10 months' duration of hemodialysis. The results indicated that CT02 was a useful measurement for evaluating the progress in the early stage of the renal osteodystrophy, and it is recommended that the bone mineral measurement with this QCT method should be performed once or twice a year.

  8. Comparison of nuclear magnetic resonance spectroscopy with dual-photon absorptiometry and dual-energy X-ray absorptiometry in the measurement of thoracic vertebral bone mineral density: compressive force versus bone mineral.

    PubMed

    Myers, T J; Battocletti, J H; Mahesh, M; Gulati, M; Wilson, C R; Pintar, F; Reinartz, J

    1994-05-01

    31P nuclear magnetic resonance spectroscopy (NMRS) measurements were made on human T2 and T3 vertebral bodies. The bone mineral content (BMC) of isolated vertebral bodies minus the posterior elements and disks was measured using (1) NMRS on a 3.5 T, 85 mm bore GE Medical Systems NT-150 superconducting spectrometer, (2) a Lunar Corporation DPX-L dual-energy X-ray absorptiometry (DXA) scanner in an anterior-posterior (AP) orientation, (3) a Norland Corporation XR26 DXA scanner, also in an AP direction, and (4) a Norland Corporation model 2600 dual-photon absorptiometry (DPA) densitometer in both the AP and superior-inferior (SI) directions. Vertebral body volumes were measured using a water displacement technique to determine volume bone mineral densities (VBMD). They were then compressed to failure using an electrohydraulic testing device, followed by ashing in a muffle furnace at 700 degrees C for 18 h. Correlations of BMC between NMRS and DPA, DXA and ashing were excellent (0.96 < or = r < or = 0.99); in a one-way analysis of variance (ANOVA) test, means were not statistically different at a p level of 0.757. The correlations of VBMD between NMRS and the other methods were not as good (0.83 < or = r < or = 0.95); in a one-way ANOVA test, means were not statistically different at a p level of 0.089. BMC was a better predictor of ultimate compressive failure than VBMD for all six methods. For NMRS, the regression coefficient for BMC was r2 = 0.806, compared with r2 = 0.505 for VBMD. NMRS may prove an alternative to present methods of determining bone mineral. PMID:8069051

  9. Is bone mineral density measurement using dual-energy X-ray absorptiometry affected by gamma rays?

    PubMed

    Xie, Liang-Jun; Li, Jian-Fang; Zeng, Feng-Wei; Jiang, Hang; Cheng, Mu-Hua; Chen, Yi

    2013-01-01

    The objective of this study was to determine whether the gamma rays emitted from the radionuclide effect bone mineral density (BMD) measurement. Nine subjects (mean age: 56 ± 17.96 yr) scheduled for bone scanning underwent BMD measurement using dual-energy X-ray absorptiometry (DXA) (Hologic/Discovery A) before and 1, 2, and 4 h after injection of technetium-99m-methylene diphosphonate (99mTc-MDP). Ten subjects (mean age: 41 ± 15.47 yr) scheduled for therapy of differentiated thyroid carcinoma with iodine-131 underwent BMD measurement before and 2 h after therapeutic radionuclide administration. All patients were given whole body BMD measurement, including head, arm, ribs, lumbar spine, pelvis, and leg sites. Besides, patients who referred to radioiodine therapy were given total hip and femoral neck BMD measurement as well. No statistically significant changes in BMD values were detected after 99mTc-MDP and iodine-131 administration for all measurement sites (p > 0.05), and individual difference of BMD before and after radionuclide imaging or therapy was less than the least significant change in lumbar spine, total hip, and femoral neck. In conclusion, BMD measurements are not influenced by the gamma rays emitted from technetium-99m and iodine-131. DXA bone densitometry may be performed simultaneously with bone scanning and radioiodine therapy.

  10. Quantitative Comparison of 2 Dual-Energy X-ray Absorptiometry Systems in Assessing Body Composition and Bone Mineral Measurements.

    PubMed

    Xu, Wenhua; Chafi, Hatim; Guo, Beibei; Heymsfield, Steven B; Murray, Kori B; Zheng, Jolene; Jia, Guang

    2016-01-01

    Dual-energy X-ray absorptiometry (DXA) is widely used in body composition measurement and evaluation. Because of its numerous applications, the probability of instrument discrepancies has increased dramatically. This study quantitatively compares 2 different DXA systems. In this study, 96 subjects (60 female and 36 male, aged 19-82 years) were recruited and scanned using a General Electric Lunar iDXA and a Hologic Discovery scanner. Four measurements (percent fat, total mass, bone mineral density [BMD], and bone mineral content [BMC]) were quantitatively compared in the whole body and in specific anatomic regions (arms, legs, trunk, android, gynoid, head, ribs, and pelvis). A simple linear regression of each measurement was performed to examine the correlation between the 2 systems. Percent fat, total mass, BMC, and BMD were highly correlated between the 2 DXA systems, with correlation r values greater than 0.854 for both the whole body and the individual anatomic regions except for BMC and BMD in ribs. The high correlation between the 2 DXA systems with systematic differences enabled development of calibration equations for extending the multisystem measurements to advanced quantitative analyses. PMID:26206525

  11. Bone mineral density assessment: comparison of dual-energy X-ray absorptiometry measurements at the calcaneus, spine, and hip.

    PubMed

    Sweeney, Ann T; Malabanan, Alan O; Blake, Michael A; Weinberg, Janice; Turner, Adrian; Ray, Patricia; Holick, Michael F

    2002-01-01

    It is widely accepted that bone mineral density (BMD) measurements obtained by dual-energy X-ray absorptiometry (DXA) at the spine, hip, and calcaneus predict fracture risk. Few published studies to date have examined the relationship between pDXA measurements at the calcaneus to those at the hip and spine. It has been demonstrated that T-score-based criteria cannot be universally applied to all skeletal sites and measurement technologies. Our goal was to define the calcaneal T-score threshold equivalent to low bone mass at the hip or spine. A total of 119 female patients between the ages of 33 and 76 yr of age were recruited at Boston University Medical Center for bone densitometry screening. Bone density measurements were obtained at the calcaneus using the portable Norland Apollo Densitometer (Norland Medical Systems, Fort Atkinson, WI) and at the hip and spine using the Norland Eclipse densitometer. By defining a pDXA T-score < or =-1 as a positive test and DXA scores < or =-1 as the presence of low bone mass, we obtained a specificity of 100% and a sensitivity of 73% (positive predictive value 100% and negative predictive value 80%) in detecting low bone mass at the femoral neck in women over age 65 yr. In women between 40 and 65 yr of age, we obtained a sensitivity of 50% and a specificity of 93% (positive predictive value 93% and negative predictive value 50%) in detecting low bone mass at the femoral neck. In women less than 40 yr of age, we obtained a sensitivity of 13% and a specificity of 100% (positive predictive value 100% and negative predictive value 75%) in detecting low bone mass at the femoral neck. From receiver operating characteristic curves, a calcaneal T-score < or =0.0 detects those with a T-score < or =-1 at the femoral neck and lumbar spine with 100% and 85% sensitivity, respectively. Peripheral DXA of the calcaneus is a sensitive and specific test to diagnose low bone mass in women over 65 yr of age. In women under 65 yr of age, this

  12. Dual-photon absorptiometry: Comparison of bone mineral and soft tissue mass measurements in vivo with established methods

    SciTech Connect

    Heymsfield, S.B.; Wang, J.; Heshka, S.; Kehayias, J.J.; Pierson, R.N.

    1989-06-01

    This study extended initial observations that indicated the potential of dual-photon absorptiometry (DPA) to measure total-body bone mineral (TBBM) and fat in vivo. DPA-derived TBBM and fat were compared with established methods in 13 subjects (aged 24-94 y) who underwent measurement of body density (Db), total-body water (TBW), potassium (TBK), calcium (TBCa, delayed-gamma neutron activation), and nitrogen (prompt-gamma neutron activation). TBBM was highly correlated with TBCa (r = 0.95, p less than 0.001) and the slope of TBCa vs TBBM (0.34) was similar to Ca content of ashed skeleton (0.34-0.38). DPA-measured fat (means +/- SD, 16.7 +/- 4.9 kg) correlated significantly (r = 0.79-0.94; p less than 0.01-0.001) with fat established by Db (16.3 +/- 5.4 kg), TBW (16.0 +/- 4.3 kg), TBK (17.7 +/- 4.6 kg), combined TBW-neutron activation (17.6 +/- 5.9 kg), and means of all four methods (16.9 +/- 4.8 kg). DPA thus offers a new opportunity to study human skeleton in vivo and to quantify fat by a method independent from the classical assumption that bone represents a fixed fraction of fat-free body mass.

  13. Validation and application of dual-energy X-ray absorptiometry to measure bone mineral density in rabbit vertebrae.

    PubMed

    Norris, S A; Pettifor, J M; Gray, D A; Biscardi, A; Buffenstein, R

    2000-01-01

    The rabbit could be a superior animal model to use in bone physiology studies, for the rabbit does attain true skeletal maturity. However, there are neither normative bone mineral density (BMD) data on the rabbit nor are there any validation studies on the use of dual-energy X-ray absorptiometry (DXA) to measure spinal BMD in the rabbit. Therefore, our aim was twofold: first, to investigate whether DXA could be used precisely and accurately to determine the bone mineral content (BMC). bone area (BA). and BMD of the rabbit lumbar spine: Second. to evaluate the new generation fan-beam DXA (Hologic QDR-4500) with small animal software by comparing two DXA methodologies QDR-1000 and QDR-4500 with each other, as well as against volumetric bone density (VBMD) derived from Archimedes principle. As expected. there was a magnification error in the QDR-4500 (BMC, BA. and BMD increased by 52%. 38%. and 10%, respectively, when the vertebrae were positioned flat against the scanning table). With the magnification error kept constant (vertebrae positioned 10 cm above the scanning table to match the height in vivo). there were no differences among the mean BMC. BA. and BMD of the rabbit vertebrae (Ll-L7) in vivo and in vitro using the QDR-4500 (p > 0.05). BMC, BA, and BMD differed between QDR-1000 and QDR-4500 in vitro because of a magnification error when the vertebrae were flat on the table (p <0.0001). and, consequently. the machines did not correlate with one another (p > 0.05). However, the BMC, BA, and BMD of the two DXAs did significantly correlate with each other in vivo and in vitro when the magnification error was compensated for (r = 0.44 and 0.52. i2 = 0.45 and 0.63. and 12 = 0.41 and 0.60. respectively. p < 0.05-0.008). The BMC and BMD (in vivo and in vitro) of the rabbit vertebrae measured by QDR-4500 was significantly correlated with VMBD, ash weight, and mineral content (,2 = 0.67-0.90,j <0.01-0.0001). Therefore, the QDR-4500 can be used to yield precise and

  14. Dual-photon Gd-153 absorptiometry of bone

    SciTech Connect

    Wahner, H.W.; Dunn, W.L.; Mazess, R.B.; Towsley, M.; Lindsay, R.; Markhard, L.; Dempster, D.

    1985-07-01

    Dual-photon absorptiometry with gadolinium 153 was used to measure the mineral content of lumbar vertebrae in cadavers, excised vertebrae with marrow, and dry, marrow-free vertebrae. The error introduced by the surrounding soft tissue of cadavers was 3%, and the error in determining mineral mass or density in excised vertebrae was about 5%. The correlation coefficient between the results of Gd-153 and corrected iodine 125 (single-photon) absorptiometry on 24 femoral necks was 0.99, and the predictive error was 3.7%. Dual-photon absorptiometry accurately indicates bone mass and bone density and is only slightly affected by either surrounding tissue or fat changes in bone marrow.

  15. Evaluation of the effects of hypergravity exposure and caging restraint on bone mineralization in the Beagle by in vivo photon absorptiometry

    NASA Technical Reports Server (NTRS)

    Fisher, G. L.; Berding, K. L.; Goldman, M.

    1975-01-01

    Photon absorptiometry was used to evaluate bone mineral kinetics associated with normal development and the possible perturbations to bone development resulting from hypergravity exposure over a period of six months in developing Beagles. A series of seven measurements were performed at specific times with the first measurement prior to treatment and subsequent measurements at 2, 5, 9, 14, 20 and 26 weeks from the onset of the experiment. Four groups of six male Beagle pups, ranging in age from 85 to 92 days were studied. Two groups were chronically exposed to hypergravity treatments by centrifugation of 2.0 G (18.0 RPM, 11.7 ft radius) and 2.6 G (18.0 RPM, 19.8 ft radius) for the 26 week period. A third group of six dogs served as a caged control to evaluate possible changes due to confinement in small plexiglass cages similar to those of the centrifuge. Thus this control group was subjected to limited exercise due to caging restraint. The fourth group of animals was housed in open runs to allow exercise without the spatial confinement of the smaller plexiglass cages. Results show highly significant differences in body weight, bone length, increase in bone density of control group relative to other groups, and a decrease in bone mineral content in the two gravity treated groups.

  16. Measurement of bone mineral density by dual-energy x-ray absorptiometry in patients with the Wisconsin hip, an uncemented femoral stem.

    PubMed

    Kiratli, B J; Checovich, M M; McBeath, A A; Wilson, M A; Heiner, J P

    1996-02-01

    Although qualitative evidence of femoral bone remodeling, secondary to total hip arthroplasty (THA), is apparent on radiographs, quantification of change in bone mass from radiographs is limited. Dual-energy x-ray absorptiometry overcomes many of the limitations and yields accurate and precise bone mineral density (BMD) data. In this study, regional changes in femoral BMD were examined in 89 THA patients with a 2-year follow-up period. Thirty-two patients were evaluated initially before surgery and followed through the first 2 postoperative years. A second group was comprised of 57 patients whose surgery had been performed 1 to 6 years prior to entry into the study; they were also followed for 2 years hence. Thus, both immediate and later bone responses were evaluated prospectively. Maximal bone remodeling was seen in the first 6 months after THA and with a near plateau by the end of the first year. A slow yearly decline in BMD appeared to occur as long as 8 years after THA, thus demonstrating the long-term effects of the introduction of a femoral stem. Variance in preoperative BMD was explained by disease only; no other factors (age, weight, sex) showed significant associations, and body weight was the only variable that affected rate of remodeling after THA (not age, weight, sex, prosthesis size, nor disease). All patients were healthy, relatively young individuals who were good candidates for uncemented implantation, and none showed evidence of clinical complications or surgical failure. It is therefore suggested that the patterns and results reported here be viewed as normative data, that is, the typical skeletal adaptation to THA. In future application, observation of disparate BMD results as compared with these "normal" data may be predictive of abnormal response to surgery and potential for later problems.

  17. Effect of ¹⁸F-FDG administration on measurements of bone mineral density and body composition by dual-energy X-ray absorptiometry.

    PubMed

    Kim, Dae-Weung; Kim, Woo Hyoung; Kim, Myoung Hyoun; Kim, Seong Su; Mo, Eun Hee; Lee, Chun Ho; Kim, Chang Guhn

    2013-01-01

    The purpose of this study was to determine whether antecedent administration of ¹⁸F-fluorodeoxyglucose (FDG) used in positron emission tomography (PET) scanning results in corruption of bone mineral density (BMD) and body composition measured by dual-energy X-ray absorptiometry (DXA) system. DXA measurements of BMD and body composition had been performed twice, before and after ¹⁸F-FDG PET scan in 30 patients. The comparison of pre-values and post-values of all BMD values showed a decrease after the injection. However, only the decrease of whole-body BMD (WB-BMD) was statistically significant (p < 0.05). Whole-body fat mass had increased and whole-body lean body mass had decreased after the injection of ¹⁸F-FDG, and these were statistically significant (p < 0.05). There is statistically significant correlation between the injected ¹⁸F-FDG dose and a decrease of WB-BMD (r = -0.405; p < 0.05). The findings of this study suggest that when both ¹⁸F-FDG PET and DXA measurements for whole-body composition are performed in close-time proximity, ¹⁸F-FDG PET scans should follow the DXA measurement. Otherwise, BMD measurements of total femur or lumbar spine could be followed by ¹⁸F-FDG PET in close-time proximity. PMID:23562363

  18. Effect of ¹⁸F-FDG administration on measurements of bone mineral density and body composition by dual-energy X-ray absorptiometry.

    PubMed

    Kim, Dae-Weung; Kim, Woo Hyoung; Kim, Myoung Hyoun; Kim, Seong Su; Mo, Eun Hee; Lee, Chun Ho; Kim, Chang Guhn

    2013-01-01

    The purpose of this study was to determine whether antecedent administration of ¹⁸F-fluorodeoxyglucose (FDG) used in positron emission tomography (PET) scanning results in corruption of bone mineral density (BMD) and body composition measured by dual-energy X-ray absorptiometry (DXA) system. DXA measurements of BMD and body composition had been performed twice, before and after ¹⁸F-FDG PET scan in 30 patients. The comparison of pre-values and post-values of all BMD values showed a decrease after the injection. However, only the decrease of whole-body BMD (WB-BMD) was statistically significant (p < 0.05). Whole-body fat mass had increased and whole-body lean body mass had decreased after the injection of ¹⁸F-FDG, and these were statistically significant (p < 0.05). There is statistically significant correlation between the injected ¹⁸F-FDG dose and a decrease of WB-BMD (r = -0.405; p < 0.05). The findings of this study suggest that when both ¹⁸F-FDG PET and DXA measurements for whole-body composition are performed in close-time proximity, ¹⁸F-FDG PET scans should follow the DXA measurement. Otherwise, BMD measurements of total femur or lumbar spine could be followed by ¹⁸F-FDG PET in close-time proximity.

  19. Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral densitometry may flaw osteopenic/osteoporotic interpretations and mislead assessment of antiresorptive therapy effectiveness.

    PubMed

    Bolotin, H H

    2001-05-01

    New, anatomically realistic simulation studies based on a cadaveric lumbar vertebra and a broad range of soft tissue anthropometric representations have quantitatively delineated inaccuracies inherent in dual-energy X-ray absorptiometry (DXA) in vivo bone mineral density (BMD) methodology. It is found that systematic inaccuracies in DXA BMD measurements may readily exceed +/-20% at typical in vivo lumbar vertebral sites, especially for osteopenic/osteoporotic, postmenopausal, and elderly patients. These findings are quantitatively compared with extensive clinical evidence of strong, positive correlations between soft tissue anthropometrics and DXA in vivo BMD upon which prior significant bone biology interpretations and implications have been based. The agreement is found to be both qualitatively and quantitatively excellent. Moreover, recent extensive multicenter clinical studies have also exposed new facets of strong linkages between body mass/percent body fat/body mass index (BMI) and DXA-measured BMD that are particularly relevant to osteopenia/osteoporosis and remedial effectiveness of antiresorptive drug therapy. These seemingly disparate and unrelated diagnostic and prognostic aspects of clinically observed associations between soft tissue anthropometrics and measured vertebral BMD are, in this study, self-consistently shown to share the common origin of being manifestations of systematic inherent inaccuracies in DXA in vivo BMD methodology, without the need to invoke any underlying biologically causal mechanism(s). These inaccuracies arise principally from absorptiometric disparities between the intra- and extraosseous soft tissues within the DXA scan region of interest. The present evaluative comparisons are based exclusively on an incisive and diverse body of clinical data that appears difficult to dismiss or discount. Previous invocations of biologically causal mechanisms responsible for this broad range of observations linking body mass, percent body

  20. A study on the effects of a calcium drug on the bone mineral density (BMD) by using dual-energy X-ray Absorptiometry (DXA)

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Hye; Kim, Ho-Sung; Dong, Kyung-Rae; Park, Yong-Soon; Chung, Woon-Kwan; Cho, Jae-Hwan

    2012-12-01

    Measurements of osteoporosis might contain errors caused by the calcium drug used in the prevention and the treatment of osteoporosis. This study conducted a lumbar spine phantom experiment to examine whether a calcium drug can influence the measured values of the bone mineral density (BMD) because of the drug taken by a real patient remaining undigested in the stomach. Dual-energy X-ray Absorptiometry (DXA) was used to measure the BMD for a calcium-drug in an equipment-dedicated lumbar spine phantom and 10 patients selected for the BMD measurement. Three types of drugs that are prescribed in actual clinical practice calcium drugs were used for the phantom experiment, and the drugs were divided into a fixed dose, 1/2 of the fixed dose, 1/4 of the fixed dose and 1/8 of the fixed dose. Without the drugs included, the phantom was scanned 60 times continuously to calculate the baseline BMD. The BMD was measured as the calcium drug coated with paraffin was placed in the lumbar vertebra 2 and the soft tissue region of the phantom. To determine when the drug was invisible to the naked eye are measured, the BMD at different drug dilutions. The measurements were conducted three times to calculate the mean. In the patient experiment, patients were selected who visited hospital after taking the drug before measuring the BMD. After a certain time had passed, the BMD was measured again to examine the difference in images and the change in BMD values due to the calcium-drug intake. The BMD measurements of lumbar 1-4 in the phantom were higher, with statistical significant, than the least significant change (LSC) in the bone region for all three drugs (Ca carbonate, Ca citrate and Ca cholecalciferol), showing a significant increase. On the other hand, there was no significant change in the soft tissue. When Ca Cholecalciferol was used in a fixed dose, the BMD of L2 increased by 11.6%, showing the largest increase among the drugs examined, but only a 2.8% increase in the BMD of L1

  1. Bone mineral density test

    MedlinePlus

    ... test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis-BMD ... common and accurate way uses a dual-energy x-ray absorptiometry (DEXA) scan. DEXA uses low-dose x- ...

  2. Measurement of spine and total body mineral by dual-photon absorptiometry

    NASA Technical Reports Server (NTRS)

    Mazess, R. B.; Young, D.

    1983-01-01

    The use of Gd-153 dual-photon absorptiometry at 43 and 100 keV to measure individual-bone and total-body bone minerals is discussed in a survey of recent studies on humans, phantoms, and monkeys. Precision errors of as low as 1 percent have been achieved in vivo, suggesting the use of sequential measurements in studies of immobilization and space-flight effects.

  3. Bone mineral measurements: a comparison of delayed gamma neutron activation, dual-energy X-ray absorptiometry and direct chemical analysis.

    PubMed

    Economos, C D; Nelson, M E; Fiatarone Singh, M A; Kehayias, J J; Dallal, G E; Heymsfield, S B; Wang, J; Yasumura, S; Ma, R; Pierson, R N

    1999-01-01

    A system in vitro consisting of a femur from a cadaver and soft-tissue equivalent material was used to test the agreement between several techniques for measuring bone mineral. Calcium values measured by delayed gamma neutron activation (DGNA) and bone mineral content (BMC) by Lunar, Hologic and Norland dual-energy X-ray absorptiometers (DXA) were compared with calcium and ash content determined by direct chemical analysis. To assess the effect of soft-tissue thickness on measurements of bone mineral, we had three phantom configurations ranging from 15.0 to 26.0 cm in thickness, achieved by using soft-tissue equivalent overlays. Chemical analysis of the femur gave calcium and ash content values of 61.83 g +/- 0.51 g and 154.120 +/- 0.004 g, respectively. Calcium measured by DGNA did not differ from the ashed amount of calcium at any of the phantom configurations. The BMC measured by DXA was significantly higher, by 3-5%, than the amount determined by chemical analysis for the Lunar densitometer and significantly lower, by 3-6%, for the Norland densitometer (p<0.001-0.024), but only 1% lower (not significant) for the Hologic densitometer. DXA instruments showed a decreasing trend in BMC as the thickness increased from 20.5 to 26.0 cm (p<0.05). However, within the entire thickness range (15.0-26.0 cm), the overall influence of thickness on BMC by DXA was very small. These findings offer insight into the differences in these currently available methods for bone mineral measurement and challenge the comparability of different methods. PMID:10525711

  4. Photon absorptiometry

    SciTech Connect

    Velchik, M.G.

    1987-01-01

    Recently, there has been a renewed interest in the detection and treatment of osteoporosis. This paper is a review of the merits and limitations of the various noninvasive modalities currently available for the measurement of bone mineral density with special emphasis placed upon the nuclear medicine techniques of single-photon and dual-photon absorptiometry. The clinicians should come away with an understanding of the relative advantages and disadvantages of photon absorptiometry and its optimal clinical application. 49 references.

  5. REVIEW: Photon absorptiometry, bone densitometry and the challenge of osteoporosis

    NASA Astrophysics Data System (ADS)

    Webber, Colin E.

    2006-07-01

    During the lifetime of Physics in Medicine and Biology, osteoporosis has been recognized as the cause of a major health burden for societies, particularly within developed countries. The health detriment is associated with the consequences of bone fractures and the subsequent increases in morbidity and mortality. Much of the credit for the current availability of means for identifying groups of subjects at risk of fracture and the provision of means for the effective treatment of excessive bone loss can be attributed to the technique of dual photon absorptiometry. In this review, the history of the development of techniques based on the interactions of x- and γ-rays with bone is considered and the ultimate dominance of x-ray based absorptiometry is described. The advantages and disadvantages of current absorptiometric techniques are presented and the likely future path for bone measurement is outlined.

  6. New segmental long bone defect model in sheep: quantitative analysis of healing with dual energy x-ray absorptiometry.

    PubMed

    den Boer, F C; Patka, P; Bakker, F C; Wippermann, B W; van Lingen, A; Vink, G Q; Boshuizen, K; Haarman, H J

    1999-09-01

    An appropriate animal model is required for the study of treatments that enhance bone healing. A new segmental long bone defect model was developed for this purpose, and dual energy x-ray absorptiometry was used to quantify healing of this bone defect. In 15 sheep, a 3-cm segmental defect was created in the left tibia and fixed with an interlocking intramedullary nail. In seven animals, the defect was left empty for the assessment of the spontaneous healing response. In eight animals serving as a positive control, autologous bone grafting was performed. After 12 weeks, healing was evaluated with radiographs, a torsional test to failure, and dual energy x-ray absorptiometry. The mechanical test results were used for the assessment of unions and nonunions. Radiographic determination of nonunion was not reliably accomplished in this model. By means of dual energy x-ray absorptiometry, bone mineral density and content were measured in the middle of the defect. Bone mineral density was 91+/-7% (mean +/- SEM) and 72+/-6% that of the contralateral intact tibia in, respectively, the autologous bone-grafting and empty defect groups (p = 0.04). For bone mineral content, the values were, respectively, 117+/-18 and 82+/-9% (p = 0.07). Torsional strength and stiffness were also higher, although not significantly, in the group with autologous bone grafting than in that with the empty defect. Bone mineral density and content were closely related to the torsional properties (r2 ranged from 0.76 to 0.85, p < or = 0.0001). Because interlocking intramedullary nailing is a very common fixation method in patients, the newly developed segmental defect model has clinical relevance. The interlocking intramedullary nail provided adequate stability without implant failure. This model may be useful for the study of treatments that affect bone healing, and dual energy x-ray absorptiometry may be somewhat helpful in the analysis of healing of this bone defect.

  7. Bone mineral density referral for dual-energy X-ray absorptiometry using quantitative ultrasound as a prescreening tool in postmenopausal women from the general population: a cost-effectiveness analysis.

    PubMed

    Marín, F; López-Bastida, J; Díez-Pérez, A; Sacristán, J A

    2004-03-01

    The aim of our study was to assess, from the perspective of the National Health Services in Spain, the cost-effectiveness of quantitative ultrasound (QUS) as a prescreen referral method for bone mineral density (BMD) assessment by dual-energy X-ray absorptiometry (DXA) in postmenopausal women of the general population. Using femoral neck DXA and heel QUS. We evaluated 267 consecutive postmenopausal women 65 years and older and attending primary care physician offices for any medical reason. Subjects were classified as osteoporotic or nonosteoporotic (normal or osteopenic) using the WHO definition for DXA. Effectiveness was assessed in terms of the sensitivity and specificity of the referral decisions based on the QUS measurement. Local costs were estimated from health services and actual resource used. Cost-effectiveness was evaluated in terms of the expected cost per true positive osteoporotic case detected. Baseline prevalence of osteoporosis evaluated by DXA was 55.8%. The sensitivity and specificity for the diagnosis of osteoporosis by QUS using the optimal cutoff thresholds for the estimated heel BMD T-score were 97% and 94%, respectively. The average cost per osteoporotic case detected based on DXA measurement alone was 23.85 euros. The average cost per osteoporotic case detected using QUS as a prescreen was 22.00 euros. The incremental cost-effectiveness of DXA versus QUS was 114.00 euros per true positive case detected. Our results suggest that screening for osteoporosis with QUS while applying strict cufoff values in postmenopausal women of the general population is not substantially more cost-effective than DXA alone for the diagnosis of osteoporosis. However, the screening strategy with QUS may be an option in those circumstances where the diagnosis of osteoporosis is deficient because of the difficulty in accessing DXA equipment.

  8. Comparison of Speed of Sound Measures Assessed by Multisite Quantitative Ultrasound to Bone Mineral Density Measures Assessed by Dual-Energy X-Ray Absorptiometry in a Large Canadian Cohort: the Canadian Multicentre Osteoporosis Study (CaMos).

    PubMed

    Olszynski, Wojciech P; Adachi, Jonathon D; Hanley, David A; Davison, Kenneth S; Brown, Jacques P

    2016-01-01

    Dual-energy X-ray absorptiometry (DXA) is an important tool for the estimate of fracture risk through the measurement of bone mineral density (BMD). Similarly, multisite quantitate ultrasound can prospectively predict future fracture through the measurement of speed of sound (SOS). This investigation compared BMD (at the femoral neck, total hip, and lumbar spine) and SOS measures (at the distal radius, tibia, and phalanx sites) in a large sample of randomly-selected and community-based individuals from the Canadian Multicentre Osteoporosis Study. Furthermore, mass, height, and age were also compared with both measures. There were 4123 patients included with an age range of 30-96.8 yr. Pearson product moment correlations between BMD and SOS measures were low (0.21-0.29; all p<0.001), irrespective of site. Mass was moderately correlated with BMD measures (0.40-0.58; p<0.001), but lowly correlated with SOS measures (0.03-0.13; p<0.05). BMD and SOS were negatively correlated to age (-0.17 to -0.44; p<0.001). When regression analyses were performed to predict SOS measures at the 3 sites, the models predicted 20%-23% of the variance, leaving 77%-80% unaccounted for. The SOS measures in this study were found to be largely independent from BMD measures. In areas with no or limited access to DXA, the multisite quantitative ultrasound may act as a valuable tool to assess fracture risk. In locales with liberal access to DXA, the addition of SOS to BMD and other clinical risk factors may improve the identification of those patients at high risk for future fracture.

  9. Effect of weight loss on bone mineral density determined by ultrasound of phalanges in obese women after Roux-en-y gastric bypass: conflicting results with dual-energy X-ray absorptiometry.

    PubMed

    Lima, Tatiana Pereira; Nicoletti, Carolina Ferreira; Marchini, Julio Sergio; Junior, Wilson Salgado; Nonino, Carla Barbosa

    2014-01-01

    The rapid weight loss that occurs in obese patients submitted to Roux-en-y gastric bypass (RYGB) as well as the changes in dietary pattern and the intestinal malabsorption result in changes in bone mineral density (BMD). The objective of the present study was to assess the changes in BMD after the weight loss induced by RYGB using ultrasound of the phalanges and compare the results with those obtained by dual-energy X-ray absorptiometry (DXA). We conducted a 1-yr prospective longitudinal study on women with grade III obesity submitted to RYGB. Anthropometric (weight, height, body mass index, and abdominal circumference) and body composition measurements by electrical bioimpedance, assessment of food consumption by 24-h recall, biochemical evaluation, and assessment of BMD by ultrasonography of the phalanges and DXA (BMD values are from the 33% radius site) were performed during the preoperative period and 3, 6, and 12 mo after surgery. The mixed-effects linear regression model was used to analyze the effect of postoperative time on the variable of interest, and the kappa coefficient (p < 0.05) was used to compare the concordance of the methods used for BMD evaluation. Twenty-nine patients were included in the study. During the 1-yr follow-up, a reduction of 39 ± 8 kg (71 ± 15% of excess weight) and 29 ± 7 kg of fat mass was observed. Calcium and zinc concentrations were reduced after 12 mo. No difference in caffeine, calcium, or sodium consumption was observed between the preoperative and postoperative periods. Analysis of BMD by ultrasonography of the phalanges 1 yr after surgery showed increased values of amplitude-dependent speed of sound (2064.6 ± 59.4 vs 2154.7 ± 63 m/s; p < 0.001) and ultrasound bone profile index (0.73 ± 0.13 vs 0.76 ± 0.14; p < 0.001). Analysis of BMD by DXA showed a reduction of BMD values (0.6 ± 0.04 vs 0.57 ± 0.05 g/cm³; p < 0.001) in the sixth month and maintenance of the values from the sixth to the 12th month. At the end of

  10. Dual photon absorptiometry: Validation of mineral and fat measurements

    SciTech Connect

    Heymsfield, S.B.; Wang, J.; Sulet, M.; Lichtman, S.; Pierson, R.N. Jr. ); Kehayias, J. . USDA Human Nutrition Research Center on Aging at Tufts Univ.); Kamen, Y.; Dilmanian, F.A. ); Lindsay, R. . Coll. of Physicians and Surgeons)

    1989-01-01

    Photons passing through human tissue undergo attenuation in relation to the specific chemical substances with which they interact. By selecting two appropriate photon energies and recording their attenuation, the investigator can solve simultaneous equations that subdivide body mass into two components: soft tissue and bone mineral ash. The aim of this paper is to describe and to validate the estimates of body composition derived by dual photon systems. The initial studies largely involved dual photon absorptiometers, although the discussion will also include the more recently developed dual energy x-ray absorptiometers. 13 refs., 7 figs., 4 tabs.

  11. Vegetarian lifestyle and bone mineral density.

    PubMed

    Marsh, A G; Sanchez, T V; Michelsen, O; Chaffee, F L; Fagal, S M

    1988-09-01

    The amount and type of dietary protein affect bone mineral loss after the menopause. This observation was substantiated in 10 y of studies by direct photon absorptiometry, four results of which follow. 1) Studies of 1600 women in southwestern Michigan revealed that those who had followed the lactoovovegetarian diet for at least 20 y had only 18% less bone mineral by age 80 whereas closely paired omnivores had 35% less bone mineral. 2) A study of self-selected weighed food intake showed no statistical difference in nutrient intakes but a difference in Ca:P ratio and acid-base formation of diet, each significant to p less than 0.001. 3) When sulfur intake of a fixed diet was increased, the titratable acidity of the urine increased proportionately. 4) Bone mineral densities of 304 older women from the continental United States closely paralleled those from earlier Michigan studies.

  12. Bone mineral content in normal US whites

    NASA Technical Reports Server (NTRS)

    Mazess, R. B.; Cameron, J. R.

    1974-01-01

    Photon absorptiometry with I-125 was used to measure the bone mineral content and the bone width on 763 children between the ages of 5 and 19 years, on 538 adults between the ages of 20 and 49 years, and on 550 adults over the age of 50 years. Measurements were made on the midshaft and the distal end of the radius and the ulna, and on the humerus midshaft. This has permitted analysis of annual bone growth in children, and the rate of change in elderly adults per decade. Male and female children grew at about the same rate until adolescence. After adolescence females grew at a slow rate until the mid-twenties, while males reached adult mineralization by age 20. Males remained relatively constant until the fifties, and females began their decline in the forties.

  13. Marked disparity between trabecular and cortical bone loss with age in healthy men. Measurement by vertebral computed tomography and radial photon absorptiometry

    SciTech Connect

    Meier, D.E.; Orwoll, E.S.; Jones, J.M.

    1984-11-01

    To define age-related changes in bone mineral content in normal men, we measured radial (proximal and distal) and vertebral bone mineral content in 62 men aged 30 to 92 years. Radial bone mineral content (largely cortical bone) was measured by single photon absorptiometry, and trabecular vertebral content (T12, L1 to L3) by computed tomography. Radial bone mineral content fell gradually (2% to 3.4% per decade) with age, but vertebral trabecular content fell more rapidly (12% per decade). Body size was not associated with the rate of bone loss from the distal radial and vertebral sites, but men with lower surface areas lost bone more rapidly at the predominantly cortical proximal radial site. The fact that radial cortical bone mineral content falls much less rapidly than vertebral trabecular content with age and is also associated with surface area indicates that trabecular and cortical bone compartments may be independently modulated. Age-related bone loss should not be considered a homogeneous process.

  14. Dual X-ray absorptiometry detects disease- and treatment-related alterations of bone density in prostate cancer patients.

    PubMed

    Smith, G L; Doherty, A P; Banks, L M; Dutton, J; Hanham, L W; Christmas, T J; Epstein, R J

    2000-01-01

    Metastatic bone disease is an important clinical problem which has proven difficult to study because of a lack of noninvasive investigative modalities. Here we show that dual-energy X-ray absorptiometry (DXA) scanning provides clinically useful information about the status of metastatic bone lesions in cancer patients undergoing palliative treatment. In the study group of 21 patients, a significant increase in metastatic bone mineral density (BMD) was confirmed in prostate (n = 14) relative to breast (n = 7) cancer patients. With respect to the prostate cancer cohort, further increases in lesional BMD were evident in all evaluable patients in whom biochemical progression occurred; conversely, lesional BMD declined in patients who had a partial response to therapy. BMD of uninvolved bone decreased with all types of androgen-deprivation therapy regardless of whether patients responded or relapsed. We conclude that BMD changes in both lesional and uninvolved bone are readily detectable in metastatic prostate cancer, and propose that DXA scanning represents a promising new approach to monitoring the natural history and therapeutic course of this disease.

  15. Bone mineral measurement using dual energy x ray densitometry

    NASA Technical Reports Server (NTRS)

    Smith, Steven W.

    1989-01-01

    Bone mineral measurements before and after space missions have shown that weightlessness greatly accelerates bone demineralization. Bone mineral losses as high as 1 to 3 percent per month were reported. Highly precise instrumentation is required to monitor this loss and thereby test the efficacy of treatment. During the last year, a significant improvement was made in Dual-Photon Absorptiometry by replacing the radioactive source with an x ray tube. Advantages of this system include: better precision, lower patient dose, better spacial resolution, and shorter scan times. The high precision and low radiation dose of this technique will allow detection of bone mineral changes of less than 1 percent with measurements conducted directly at the sites of interest. This will allow the required bone mineral studies to be completed in a shorter time with greater confidence.

  16. Quick benefits of interval training versus continuous training on bone: a dual-energy X-ray absorptiometry comparative study.

    PubMed

    Boudenot, Arnaud; Maurel, Delphine B; Pallu, Stéphane; Ingrand, Isabelle; Boisseau, Nathalie; Jaffré, Christelle; Portier, Hugues

    2015-12-01

    To delay age-related bone loss, physical activity is recommended during growth. However, it is unknown whether interval training is more efficient than continuous training to increase bone mass both quickly and to a greater extent. The aim of this study was to compare the effects of a 10-week interval training regime with a 14-week continuous training regime on bone mineral density (BMD). Forty-four male Wistar rats (8 weeks old) were separated into four groups: control for 10 weeks (C10), control for 14 weeks (C14), moderate interval training for 10 weeks (IT) and moderate continuous training for 14 weeks (CT). Rats were exercised 1 h/day, 5 day/week. Body composition and BMD of the whole body and femur respectively were assessed by dual-energy X-ray absorptiometry at baseline and after training to determine raw gain and weight-normalized BMD gain. Both trained groups had lower weight and fat mass gain when compared to controls. Both trained groups gained more BMD compared to controls when normalized to body weight. Using a 30% shorter training period, the IT group showed more than 20% higher whole body and femur BMD gains compared to the CT. Our data suggest that moderate IT was able to produce faster bone adaptations than moderate CT.

  17. Guidelines for Dual Energy X-Ray Absorptiometry Analysis of Trabecular Bone-Rich Regions in Mice: Improved Precision, Accuracy, and Sensitivity for Assessing Longitudinal Bone Changes.

    PubMed

    Shi, Jiayu; Lee, Soonchul; Uyeda, Michael; Tanjaya, Justine; Kim, Jong Kil; Pan, Hsin Chuan; Reese, Patricia; Stodieck, Louis; Lin, Andy; Ting, Kang; Kwak, Jin Hee; Soo, Chia

    2016-05-01

    Trabecular bone is frequently studied in osteoporosis research because changes in trabecular bone are the most common cause of osteoporotic fractures. Dual energy X-ray absorptiometry (DXA) analysis specific to trabecular bone-rich regions is crucial to longitudinal osteoporosis research. The purpose of this study is to define a novel method for accurately analyzing trabecular bone-rich regions in mice via DXA. This method will be utilized to analyze scans obtained from the International Space Station in an upcoming study of microgravity-induced bone loss. Thirty 12-week-old BALB/c mice were studied. The novel method was developed by preanalyzing trabecular bone-rich sites in the distal femur, proximal tibia, and lumbar vertebrae via high-resolution X-ray imaging followed by DXA and micro-computed tomography (micro-CT) analyses. The key DXA steps described by the novel method were (1) proper mouse positioning, (2) region of interest (ROI) sizing, and (3) ROI positioning. The precision of the new method was assessed by reliability tests and a 14-week longitudinal study. The bone mineral content (BMC) data from DXA was then compared to the BMC data from micro-CT to assess accuracy. Bone mineral density (BMD) intra-class correlation coefficients of the new method ranging from 0.743 to 0.945 and Levene's test showing that there was significantly lower variances of data generated by new method both verified its consistency. By new method, a Bland-Altman plot displayed good agreement between DXA BMC and micro-CT BMC for all sites and they were strongly correlated at the distal femur and proximal tibia (r=0.846, p<0.01; r=0.879, p<0.01, respectively). The results suggest that the novel method for site-specific analysis of trabecular bone-rich regions in mice via DXA yields more precise, accurate, and repeatable BMD measurements than the conventional method.

  18. Guidelines for Dual Energy X-Ray Absorptiometry Analysis of Trabecular Bone-Rich Regions in Mice: Improved Precision, Accuracy, and Sensitivity for Assessing Longitudinal Bone Changes.

    PubMed

    Shi, Jiayu; Lee, Soonchul; Uyeda, Michael; Tanjaya, Justine; Kim, Jong Kil; Pan, Hsin Chuan; Reese, Patricia; Stodieck, Louis; Lin, Andy; Ting, Kang; Kwak, Jin Hee; Soo, Chia

    2016-05-01

    Trabecular bone is frequently studied in osteoporosis research because changes in trabecular bone are the most common cause of osteoporotic fractures. Dual energy X-ray absorptiometry (DXA) analysis specific to trabecular bone-rich regions is crucial to longitudinal osteoporosis research. The purpose of this study is to define a novel method for accurately analyzing trabecular bone-rich regions in mice via DXA. This method will be utilized to analyze scans obtained from the International Space Station in an upcoming study of microgravity-induced bone loss. Thirty 12-week-old BALB/c mice were studied. The novel method was developed by preanalyzing trabecular bone-rich sites in the distal femur, proximal tibia, and lumbar vertebrae via high-resolution X-ray imaging followed by DXA and micro-computed tomography (micro-CT) analyses. The key DXA steps described by the novel method were (1) proper mouse positioning, (2) region of interest (ROI) sizing, and (3) ROI positioning. The precision of the new method was assessed by reliability tests and a 14-week longitudinal study. The bone mineral content (BMC) data from DXA was then compared to the BMC data from micro-CT to assess accuracy. Bone mineral density (BMD) intra-class correlation coefficients of the new method ranging from 0.743 to 0.945 and Levene's test showing that there was significantly lower variances of data generated by new method both verified its consistency. By new method, a Bland-Altman plot displayed good agreement between DXA BMC and micro-CT BMC for all sites and they were strongly correlated at the distal femur and proximal tibia (r=0.846, p<0.01; r=0.879, p<0.01, respectively). The results suggest that the novel method for site-specific analysis of trabecular bone-rich regions in mice via DXA yields more precise, accurate, and repeatable BMD measurements than the conventional method. PMID:26956416

  19. Effects of spaceflight on bone mineralization in the rhesus monkey.

    PubMed

    Zerath, E; Novikov, V; Leblanc, A; Bakulin, A; Oganov, V; Grynpas, M

    1996-07-01

    We combined dual-photon absorptiometry, iliac crest histomorphometry, and backscattered electrons analysis to characterize bone mineralization effects of a spaceflight on young monkeys. Two 4- to 5-kg male rhesus monkeys (Macaca mulatta) were flown during a 11.5-day spaceflight that took place onboard Cosmos 2229 biosatellite (Bion 10). Vivarium (n = 4) and Earth-based chair (n = 4) control situations were studied for comparison. Flight monkeys exhibited lower values of iliac cancellous bone volume, associated with nonsignificantly thinner trabeculae. Bone mineralization rate and the proportion of trabecular bone surface involved in mineralization processes were found markedly reduced after spaceflight. Analysis of embedded sections by backscattered electrons imaging showed a nonsignificant shift to lower mineralization in the flight biopsies vs. postflight mock-up biopsies. These results were in accordance with dual-photon absorptiometry evaluations showing a tendency for decreased bone mineral content during flight and recovery thereafter. The ground simulation experiment performed on the same monkeys more than 1 mo after landing suggests that the observed effects were specifically related to spaceflight and that the animals had only partially recovered. Additional animals on future flights will be required to confirm these findings.

  20. Bone mineral density, Bone mineral contents, MMP-8 and MMP-9 levels in Human Mandible and alveolar bone: Simulated microgravity

    NASA Astrophysics Data System (ADS)

    Rai, Balwant; Kaur, Jasdeep; Catalina, Maria

    Exposure to microgravity has been associated with several physiological changes in astronauts and cosmonauts, including an osteoporosis-like loss of bone mass. It has been reported that head-down tilt bed-rest studies mimic many of the observations seen in flights. There is no study on the correlation on effects of mandibular bone and alveolar bone loss in both sex in simulating microgravity. This study was designed to determine the Bone mineral density and GCF MMP-8 MMP-9 in normal healthy subject of both sexes in simulated microgravity condition of -6 head-down-tilt (HDT) bed rest. The subjects of this investigation were 10 male and 10 female volunteers participated in three weeks 6 HDT bed-rest exposure. The Bone density and bone mineral contents were measured by dual energy X-ray absorptiometry before and in simulated microgravity. The GCF MMP-8 MMP-8 were measured by Enzyme-linked immunosorbent assays (Human Quantikine MMP-8,-9 ELISA kit). The bone mineral density and bone mineral contents levels were significantly decreased in simulated microgravity condition in both genders, although insignificantly loss was higher in females as compared to males. MMP-8 MMP-9 levels were significantly increased in simulated microgravity as compared to normal condition although insignificantly higher in females as compared to males. Further study is required on large samples size including all factors effecting in simulated microgravity and microgravity. Keys words-Simulated microgravity condition, head-down-tilt, Bone loss, MMP-8, MMP-9, Bone density, Bone mineral contents.

  1. Mathematical model for bone mineralization

    PubMed Central

    Komarova, Svetlana V.; Safranek, Lee; Gopalakrishnan, Jay; Ou, Miao-jung Yvonne; McKee, Marc D.; Murshed, Monzur; Rauch, Frank; Zuhr, Erica

    2015-01-01

    Defective bone mineralization has serious clinical manifestations, including deformities and fractures, but the regulation of this extracellular process is not fully understood. We have developed a mathematical model consisting of ordinary differential equations that describe collagen maturation, production and degradation of inhibitors, and mineral nucleation and growth. We examined the roles of individual processes in generating normal and abnormal mineralization patterns characterized using two outcome measures: mineralization lag time and degree of mineralization. Model parameters describing the formation of hydroxyapatite mineral on the nucleating centers most potently affected the degree of mineralization, while the parameters describing inhibitor homeostasis most effectively changed the mineralization lag time. Of interest, a parameter describing the rate of matrix maturation emerged as being capable of counter-intuitively increasing both the mineralization lag time and the degree of mineralization. We validated the accuracy of model predictions using known diseases of bone mineralization such as osteogenesis imperfecta and X-linked hypophosphatemia. The model successfully describes the highly nonlinear mineralization dynamics, which includes an initial lag phase when osteoid is present but no mineralization is evident, then fast primary mineralization, followed by secondary mineralization characterized by a continuous slow increase in bone mineral content. The developed model can potentially predict the function for a mutated protein based on the histology of pathologic bone samples from mineralization disorders of unknown etiology. PMID:26347868

  2. Comparison of dual-photon absorptiometry systems for total-body bone and soft tissue measurements: Dual-energy X-rays versus gadolinium 153

    SciTech Connect

    Russell-Aulet, M.; Wang, J.; Thornton, J.; Pierson, R.N. Jr. )

    1991-04-01

    A total of 81 subjects (41 males and 40 females) were scanned by dual-photon absorptiometry by 153Gd source (DPA; Lunar DP4) and by dual-energy x-ray absorptiometry (DEXA; Lunar-DPX) within a 24 h period. Total-body bone mineral density (TBMD), calcium content (Ca), and soft tissue mass (ST) were determined with a precision of about 1-1.5% using DPA and 0.5-1.0% using DEXA. Measurements of TBMD, Ca, ST, bone area (area), percentage fat, and regional bone mineral densities (BMD) were compared. Paired t-tests showed small but significant differences between all measurements. Correlations (r) for TBMD, Ca, area, ST, percentage fat, arm BMD, leg BMD, and trunk BMD were 0.99, 0.99, 0.97, 0.99, 0.97, 0.99, 0.99, and 0.98. There were small systematic differences for TBMD (less than 1%), calcium (3%), bone area (3%), soft tissue mass (7%), and percentage fat (9%) between the two approaches. Regression equations are given relating these measurements.

  3. Mineral evolution of bone.

    PubMed

    Ravaglioli, A; Krajewski, A; Celotti, G C; Piancastelli, A; Bacchini, B; Montanari, L; Zama, G; Piombi, L

    1996-03-01

    A study on the evolution with age of the mineral composition of bones was performed on samples belonging to human and other common mammalian species (cattle, sheep, dog). The study was carried out on the ashes obtained by calcination of the bone samples (1 h at 900 degrees C). The calcined powders were carefully examined by X-ray diffraction, from which precise quantitative evaluation (also confirmed by chemical analysis) of the crystalline phases present was derived. These data were analysed as a function of the introduced fractional age phi, a new relative scale that allows even largely different lifespan species to be compared. An overall linear increase in (Ca + Mg)/P ratio with log phi was found and the other considerations on molecular constitution (especially as regards Mg2+ substituting for Ca2+ in very young subjects) of the various phases detected were formulated and relative implications evaluated. The results appear promising for an improvement of knowledge in the field of biomedical experimentation and clinical implantology.

  4. Non-invasive techniques for the measurement of bone mineral.

    PubMed

    Seeman, E; Martin, T J

    1989-05-01

    Non-invasive, safe and precise techniques for measuring bone mineral density are available and have an important role in the detection, prevention and treatment of bone loss associated with aging, menopause and many illnesses affecting women and men. The three most widely accessible and established techniques for measuring regional bone mineral density are single and dual photon absorptiometry and quantitative computed tomography. A technique of greater accuracy, dual energy X-ray absorptiometry, has only recently become available. These techniques have made it possible to measure the magnitude, time course and regional specificity of the skeleton's response to ageing, menopause and illness. A better understanding of the clinical epidemiology of fractures and the mechanisms responsible for bone loss has been obtained. Practical information has been obtained about the dose, duration and efficacy of oestrogen replacement therapy in preventing perimenopausal bone loss and the benefits and limitations of different forms of exercise on bone mineral density in healthy postmenopausal women. The beneficial effect of dietary calcium on peak bone mineral density and in decreasing bone loss in cortical bone has been documented. Information regarding the prevention and treatment of bone loss in exogenous hypercortisolism and the magnitude and reversibility of bone loss associated with many diseases which affect bone has been obtained. One of the most important clinical applications of these techniques is the assessment of the efficacy of treatment of patients with postmenopausal osteoporosis. As antifracture efficacy is not readily measurable, considerable information is being obtained about many potentially useful forms of therapy that may prevent bone loss and increase bone mineral density. The role of these non-invasive methods in the assessment of fracture risk and the need for oestrogen or other therapy in an individual who has attained a low peak bone mass or has risk

  5. Bone mineral density: testing for osteoporosis.

    PubMed

    Sheu, Angela; Diamond, Terry

    2016-04-01

    Primary osteoporosis is related to bone loss from ageing. Secondary osteoporosis results from specific conditions that may be reversible. A thoracolumbar X-ray is useful in identifying vertebral fractures, and dual energy X-ray absorptiometry is the preferred method of calculating bone mineral density. The density of the total hip is the best predictor for a hip fracture, while the lumbar spine is the best site for monitoring the effect of treatment. The T-score is a comparison of the patient's bone density with healthy, young individuals of the same sex. A negative T-score of -2.5 or less at the femoral neck defines osteoporosis. The Z-score is a comparison with the bone density of people of the same age and sex as the patient. A negative Z-score of -2.5 or less should raise suspicion of a secondary cause of osteoporosis. Clinical risk calculators can be used to predict the 10-year probability of a hip or major osteoporotic fracture. A probability of more than 5% for the hip or more than 20% for any fracture is abnormal and treatment may be warranted. PMID:27340320

  6. Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Jergas, M.; Breitenseher, M.; Gluer, C. C.; Yu, W.; Genant, H. K.

    1995-01-01

    To determine whether estimates of volumetric bone density from projectional scans of the lumbar spine have weaker associations with height and weight and stronger associations with prevalent vertebral fractures than standard projectional bone mineral density (BMD) and bone mineral content (BMC), we obtained posteroanterior (PA) dual X-ray absorptiometry (DXA), lateral supine DXA (Hologic QDR 2000), and quantitative computed tomography (QCT, GE 9800 scanner) in 260 postmenopausal women enrolled in two trials of treatment for osteoporosis. In 223 women, all vertebral levels, i.e., L2-L4 in the DXA scan and L1-L3 in the QCT scan, could be evaluated. Fifty-five women were diagnosed as having at least one mild fracture (age 67.9 +/- 6.5 years) and 168 women did not have any fractures (age 62.3 +/- 6.9 years). We derived three estimates of "volumetric bone density" from PA DXA (BMAD, BMAD*, and BMD*) and three from paired PA and lateral DXA (WA BMD, WA BMDHol, and eVBMD). While PA BMC and PA BMD were significantly correlated with height (r = 0.49 and r = 0.28) or weight (r = 0.38 and r = 0.37), QCT and the volumetric bone density estimates from paired PA and lateral scans were not (r = -0.083 to r = 0.050). BMAD, BMAD*, and BMD* correlated with weight but not height. The associations with vertebral fracture were stronger for QCT (odds ratio [QR] = 3.17; 95% confidence interval [CI] = 1.90-5.27), eVBMD (OR = 2.87; CI 1.80-4.57), WA BMDHol (OR = 2.86; CI 1.80-4.55) and WA-BMD (OR = 2.77; CI 1.75-4.39) than for BMAD*/BMD* (OR = 2.03; CI 1.32-3.12), BMAD (OR = 1.68; CI 1.14-2.48), lateral BMD (OR = 1.88; CI 1.28-2.77), standard PA BMD (OR = 1.47; CI 1.02-2.13) or PA BMC (OR = 1.22; CI 0.86-1.74). The areas under the receiver operating characteristic (ROC) curves for QCT and all estimates of volumetric BMD were significantly higher compared with standard PA BMD and PA BMC. We conclude that, like QCT, estimates of volumetric bone density from paired PA and lateral scans are

  7. Bone and mineral metabolism in adult celiac disease

    SciTech Connect

    Caraceni, M.P.; Molteni, N.; Bardella, M.T.; Ortolani, S.; Nogara, A.; Bianchi, P.A.

    1988-03-01

    Bone mineral density (/sup 125/I photon absorptiometry) was lower in 20 untreated adult celiac patients than in sex- and age-matched controls (p less than 0.001), and plasma alkaline phosphatase, parathyroid hormone, urinary hydroxyproline/creatinine levels were higher than normal (p less than 0.05, less than 0.001, less than 0.05, respectively). Gluten-free diet was started, and the patients were divided randomly into two treatment groups, one which received oral 25-hydroxyvitamin D 50 micrograms/day and one which did not. After 12 months' treatment, bone turnover markers showed a decrease, which did not reach statistical significance, and bone mineral density did not show significant modifications compared with base line in either group. It was found that a gluten-free diet followed for 1 yr can prevent further bone loss, but no significant differences were detected between the two groups.

  8. Disproportionate, age-related bone loss in long bone ends: a structural analysis based on dual-energy X-ray absorptiometry.

    PubMed

    Sievänen, H; Uusi-Rasi, K; Heinonen, A; Oja, P; Vuori, I

    1999-01-01

    The width of long bone diaphyses apparently increase with age, a phenomenon that is suggested to have some positive impact on bone strength. On the other hand, these changes in size that are site-specific may cause a deterioration in the local mechanical integrity of the whole bone. Physical activity and calcium intake are known to be able to modify bone mass and size. It is, however, not known whether these lifestyle habits can modify the postulated disproportionate changes in bone size. To address this question, bone mineral content (BMC)-derived estimates of cross-sectional areas (CSA) of femur and radius in 158 premenopausal (mean age 43, standard deviation 2 years) and 134 postmenopausal (63 (2) years), clinically healthy women with contrasting long-term histories in physical activity and calcium intake were determined from dual-energy X-ray absorptiometry (DXA) data. The DXA-obtained BMC correlated strongly with the actual CSA (r = 0.94) determined with peripheral quantitative computed tomography. The ratios between functionally interrelated CSA data (i.e., (radial shaft CSA/distal radius CSA), (trochanter CSA/femoral neck CSA), (femoral shaft CSA/trochanter CSA) and (femoral shaft CSA/femoral neck CSA)) were considered primary outcome variables. Neither physical activity nor calcium intake separately or interactively were associated with any CSA ratio. Age showed no interaction with physical activity or calcium intake but was independently associated with all CSA ratios, except the ratio of femoral shaft CSA to trochanteric CSA. This study indicated clearly that a preferential reduction in the cross-sectional area occupied by bone mineral occurs disproportionately at the long bone ends as compared with diaphyseal sites, and this apparently inherent, age-associated relative loss seems not to be prevented by physical activity or calcium intake. In particular, given the utmost clinical relevance of the proximal femur region, an observed loss in femoral neck CSA

  9. Bone Mineral Content and Bone Mineral Density Are Lower in Older than in Younger Females with Rett Syndrome

    PubMed Central

    Motil, Kathleen J.; Ellis, Kenneth J.; Barrish, Judy O.; Caeg, Erwin; Glaze, Daniel G.

    2008-01-01

    Although bone mineral deficits have been identified in Rett syndrome (RTT), the prevalence of low bone mineral density and its association with skeletal fractures and scoliosis has not been characterized fully in girls and women with RTT. Accordingly, we measured total body bone mineral content (BMC) and bone mineral density (BMD) using dual energy x-ray absorptiometry in a cross-sectional group of 50 females, ages 2-38 y, with RTT. Methyl-CpG-binding 2 (MECP2) mutations, skeletal fractures, and scoliosis were documented. The prevalence of BMC and BMD z-scores <-2 SD was 59% and 45%, respectively. Although absolute BMC and BMD increased significantly with increasing age, BMC and BMD z-scores were significantly lower in older than in younger females. The prevalence of fractures and scoliosis was 28% and 64%, respectively. Low BMD z-scores were positively associated with fractures and scoliosis. Deficits in BMD were identified across a broad range of MECP2 mutations. This study identified associations among low bone mineral density, fractures, and scoliosis, and underscored the need for better understanding of the molecular mechanisms of MECP2 in the regulation of bone mineral metabolism. PMID:18535484

  10. Bone quality and bone mass as assessed by quantitative ultrasound and dual energy x ray absorptiometry in women with rheumatoid arthritis: relationship with quadriceps strength

    PubMed Central

    Madsen, O; Sorensen, O; Egsmose, C

    2002-01-01

    Objective: To examine relationships of bone quality as assessed by quantitative ultrasound (QUS) and bone mineral density (BMD, g/cm2) with quadriceps strength (QS) in women with rheumatoid arthritis (RA). Methods: Sixty seven women with RA according to the 1987 American College of Rheumatology (ACR) criteria were examined. Mean (SD) age was 62 (13) years, mean disease duration 15 years. Most were or had been receiving glucocorticoid treatment. Calcaneal bone quality expressed as speed of sound (SOS, m/s), broadband ultrasound attenuation (BUA, dB/MHz), and stiffness was measured by QUS. BMD of the femoral neck, spine, and distal forearm was measured by dual energy x ray absorptiometry (DXA). Maximal voluntary isokinetic quadriceps strength (Nm) was assessed by isokinetic dynamometry. Pain was recorded on a visual analogue scale (VAS), disability was scored by the Stanford Health Assessment Questionnaire (HAQ), and the degree of physical impairment was expressed by the Steinbrocker index (SI). Results: In multiple regression analyses, QS predicted SOS, BUA, and stiffness (rpartial ranging from 0.36 to 0.45, p<0.005) and femoral neck BMD (rpartial=0.30, p<0.05) independently of age, height, weight, disease duration, HAQ, VAS, SI, and cumulative steroid dose. BMD of the spine and distal forearm was not associated with QS. After adjustment for covariates, women with subnormal BMD of the femoral neck (T score <-1), had a 20% lower QS than those with normal BMD (p<0.0001). Conclusions: Calcaneal bone quality and femoral neck BMD were associated with QS in women with RA. This finding indicates that physical activity including muscle strengthening exercises may play a part in the prevention of bone loss in these patients. PMID:11874835

  11. Bone mineral mass in adult lacto-ovo-vegetarian and omnivorous males.

    PubMed

    Marsh, A G; Sanchez, T V; Chaffee, F L; Mayor, G H; Mickelsen, O

    1983-03-01

    Past studies indicate postmenopausal women who eat meat may experience greater bone mineral loss than lacto-ovo-vegetarian women. The present study extends those findings by comparing bone mineral in adult lacto-ovo-vegetarian and omnivorous males. Bone mineral mass was determined by direct photon absorptiometry in 320 lacto-ovo-vegetarian and 320 omnivorous males 20 to 79 yr old. Lacto-ovo-vegetarians were Seventh-day Adventists committed to their diet for at least 20 yr. Measurements were made at a cortical site along the radius. No statistical differences were identified between bone mineral mass in the lacto-ovo-vegetarian and omnivorous males in any decade examined. When contrasted against significant differences between bone mineral mass in postmenopausal omnivores and lacto-ovo-vegetarians, the data presented here may be interpreted as indicating that some factor associated with meat consumption is increasing bone mineral losses in postmenopausal females while having no observable effect in males.

  12. Comparison of bone mineral density in the jaws of patients with and without chronic periodontitis

    PubMed Central

    Öztürk Tonguç, M; Ş Büyükkaplan, U; Fentoğlu, Ö; A Gümüş, B; S Çerçi, S; Y Kırzıoğlu, F

    2012-01-01

    Objectives Although several studies have addressed the relationship between systemic bone mineral status and the severity of periodontitis, there is little knowledge of the relationship between periodontal disease and locally detected bone mineral density. The aim of this study was to compare the mandibular bone mineral density of patients with chronic periodontitis with that of periodontally healthy subjects. Methods 48 systemically healthy subjects were included in the study and underwent a periodontal examination to determine their status. 24 subjects were periodontally healthy and the other 24 had moderate or severe chronic periodontitis. The mandibular bone mineral density of the subjects was determined by dual energy X-ray absorptiometry. The region of interest on the body of the mandible was independently determined on the dual energy absorptiometry radiographs, and a computer calculated the bone mineral density of these regions. Results The mandibular bone mineral density of the subjects with periodontitis was significantly lower than that of the periodontally healthy subjects (p < 0.01). There were significant negative correlations between the mandibular bone mineral density values and parameters related to the amount of periodontal destruction. Conclusions Low bone mineral density in the jaw may be associated with chronic periodontitis. PMID:22241867

  13. Treatment with growth hormone and IGF-I in growing rats increases bone mineral content but not bone mineral density.

    PubMed

    Rosen, H N; Chen, V; Cittadini, A; Greenspan, S L; Douglas, P S; Moses, A C; Beamer, W G

    1995-09-01

    Human growth hormone (hGH) and insulin-like growth factor I (IGF-I) both stimulate bone formation and have been proposed as therapeutic agents for osteoporosis. We examined the effect of hGH and IGF-I alone and in combination on bone size, bone mineral content (BMC), and bone mineral density (BMD) in 10- to 12-week old growing female Sprague-Dawley rats. Sixty rats were assigned to treatment with either placebo, hGH, IGF-I, or both for 4 weeks. After 4 weeks, the right femurs and tibias were excised, and ex vivo BMC and the area of the tibia and femur were measured by dual-energy X-ray absorptiometry (DXA); volume of these bones was measured by Archimedes' principle. In addition, proximal tibial bone density was measured directly by peripheral quantitative computerized tomography (pQCT). Bone length, area, and volume in all treated groups was greater than controls. Areal bone density by DXA (BMC/area) was higher in IGF-treated rats and lower in GH-treated rats than in controls. Volumetric bone density (BMC/volume) was lower in treated groups than in controls. Measurements by pQCT confirmed that true bone density was lower in all treated groups than in controls. We conclude that treatment with hGH or IGF-I increased bone size and mineral content but decreased bone density in growing rats. Because areal correction of BMC did not adequately correct for the increased bone volume in IGF-treated rats, results of areal bone density by DXA should be interpreted with caution when treatment causes a disparity in bone size between groups. PMID:7502707

  14. Relation between body composition and bone mineral density in young undregraduate students with different nutritional status

    PubMed Central

    Rodrigues, Edil de Albuquerque; dos Santos, Marcos André Moura; da Silva, Amanda Tabosa Pereira; Farah, Breno Quintella; Costa, Manoel da Cunha; Campos, Florisbela de Arruda Camara e Siqueira; Falcão, Ana Patrícia Siqueira Tavares

    2016-01-01

    ABSTRACT Objective To investigate the relationship between total and segmental body fat, bone mineral density and bone mineral content in undergraduate students stratified according to nutritional status. Methods The study included 45 male undergraduate students aged between 20 and 30 years. Total and segmental body composition, bone mineral density and bone mineral content assessments were performed using dual energy X-ray absorptiometry. Subjects were allocated into three groups (eutrophic, overweight and obese). Results With the exception of upper limb bone mineral content, significantly higher (p<0.05) mean bone mineral density, bone mineral content, and relative body fat values were documented in the obese group. Total body and segmental relative body fat (lower limbs and trunk) were positively correlated (p<0.05) with bone mineral density in the overweight group. Upper limb fat was negatively correlated (p<0.05) with bone mineral content in the normal and eutrophic groups. Conclusion Total body and segmental body fat were correlated with bone mineral density and bone mineral content in male undergraduate students, particularly in overweight individuals. PMID:27074228

  15. Increasing body fat mass reverses bone loss in osteopenia as detected by dual-energy X-ray absorptiometry scans

    PubMed Central

    Hedges, William P.; Bukhari, Marwan

    2016-01-01

    Objective Low body mass index (BMI) is a known risk factor for osteoporosis and is part of the FRAX™ 10-year fracture risk stratification tool for predicting fragility fractures. Little is known regarding the effects of changing body composition on bone mineral density (BMD). However, increasing fat mass (FM) improves BMD in young women with anorexia nervosa. This study aimed to assess whether changes in FM over time affected BMD in the general population. Material and Methods Data was collected from patients who underwent dual-energy X-ray absorptiometry (DEXA) assessment between 2004 and 2011. Patients were included if they had multiple scans, including FM measurements. Our scanners limited these to scans of the lumbar spine. Linear regression analysis was performed to identify the relationship between changes in FM and BMD. Backwards stepwise linear regression analysis was performed to identify confounding factors, including sex, risk factors, previous fractures, and baseline BMI. Results In this study, 23,239 patients were included, of which 702 met the inclusion criteria. There were 609 (86%) females and 93 (13%) males with a mean age of 64.5 (SD 11.2) years at first scan. We identified a strong positive correlation between increasing FM and BMD between scans (coefficient 28.4; p<0.01; 95% CI, 26.6–30.1). Previous pelvic and femur fractures and a history of inflammatory diseases were also associated with increasing FM (p<0.05). This relationship was true regardless of patients BMI at their first scan. Conclusion These findings suggest that patients at high risk of fragility fractures should be encouraged to increase their FM as long as they are at a low risk for disease states related to high FM. PMID:27708960

  16. On new opportunities for absorptiometry.

    PubMed

    Ferretti, J L; Schiessl, H; Frost, H M

    1998-01-01

    Mechanical loads cause bone strains; and muscle forces, not body weight, cause the largest strains. The strains help to control the effects of bone modeling and remodeling on bone strength and "mass." When strains exceed a threshold range, modeling increases bone strength and "mass." When strains stay below a smaller threshold range, remodeling begins removing bone next to marrow. As a result, increasing muscle strength increases bone strength and "mass," and decreasing muscle strength decreases bone strength and "mass." Estrogen apparently lowers the remodeling threshold, which reduces bone losses. Loss of estrogen raises that threshold to cause losses of bone next to marrow. Such facts help to explain: 1. Bone loss in aging adults. 2. An increase in bone "mass" in girls at menarche. 3. The loss of bone during menopause. 4. The greater bone "mass" in obese than in slender subjects, and in weightlifters than in marathon runners. 5. And the pathogenesis of physiologic osteopenias and true osteoporoses. Thus new standards are needed for the relationships between bone and muscle strengths, and as functions of sex, age, race, disease, endocrine status, nutrition, vitamin and mineral intakes, medications, puberty, and menopause. Obtaining those standards and studying such relationships provide many new opportunities for studies that involve dual energy X-ray absorptiometry (DXA) and peripheral quantitative computer tomography (pQCT) and, perhaps some day, ultrasound and magnetic resonance imaging (MRI) techniques. PMID:15304912

  17. Bone mineral density, adiposity, and cognitive functions.

    PubMed

    Sohrabi, Hamid R; Bates, Kristyn A; Weinborn, Michael; Bucks, Romola S; Rainey-Smith, Stephanie R; Rodrigues, Mark A; Bird, Sabine M; Brown, Belinda M; Beilby, John; Howard, Matthew; Criddle, Arthur; Wraith, Megan; Taddei, Kevin; Martins, Georgia; Paton, Athena; Shah, Tejal; Dhaliwal, Satvinder S; Mehta, Pankaj D; Foster, Jonathan K; Martins, Ian J; Lautenschlager, Nicola T; Mastaglia, Francis; Laws, Simon M; Martins, Ralph N

    2015-01-01

    Cognitive decline and dementia due to Alzheimer's disease (AD) have been associated with genetic, lifestyle, and environmental factors. A number of potentially modifiable risk factors should be taken into account when preventive or ameliorative interventions targeting dementia and its preclinical stages are investigated. Bone mineral density (BMD) and body composition are two such potentially modifiable risk factors, and their association with cognitive decline was investigated in this study. 164 participants, aged 34-87 years old (62.78 ± 9.27), were recruited for this longitudinal study and underwent cognitive and clinical examinations at baseline and after 3 years. Blood samples were collected for apolipoprotein E (APOE) genotyping and dual energy x-ray absorptiometry (DXA) was conducted at the same day as cognitive assessment. Using hierarchical regression analysis, we found that BMD and lean body mass, as measured using DXA were significant predictors of episodic memory. Age, gender, APOE status, and premorbid IQ were controlled for. Specifically, the List A learning from California Verbal Learning Test was significantly associated with BMD and lean mass both at baseline and at follow up assessment. Our findings indicate that there is a significant association between BMD and lean body mass and episodic verbal learning. While the involvement of modifiable lifestyle factors in human cognitive function has been examined in different studies, there is a need for further research to understand the potential underlying mechanisms. PMID:25741279

  18. Bone mineral density, adiposity, and cognitive functions

    PubMed Central

    Sohrabi, Hamid R.; Bates, Kristyn A.; Weinborn, Michael; Bucks, Romola S.; Rainey-Smith, Stephanie R.; Rodrigues, Mark A.; Bird, Sabine M.; Brown, Belinda M.; Beilby, John; Howard, Matthew; Criddle, Arthur; Wraith, Megan; Taddei, Kevin; Martins, Georgia; Paton, Athena; Shah, Tejal; Dhaliwal, Satvinder S.; Mehta, Pankaj D.; Foster, Jonathan K.; Martins, Ian J.; Lautenschlager, Nicola T.; Mastaglia, Francis; Laws, Simon M.; Martins, Ralph N.

    2015-01-01

    Cognitive decline and dementia due to Alzheimer's disease (AD) have been associated with genetic, lifestyle, and environmental factors. A number of potentially modifiable risk factors should be taken into account when preventive or ameliorative interventions targeting dementia and its preclinical stages are investigated. Bone mineral density (BMD) and body composition are two such potentially modifiable risk factors, and their association with cognitive decline was investigated in this study. 164 participants, aged 34–87 years old (62.78 ± 9.27), were recruited for this longitudinal study and underwent cognitive and clinical examinations at baseline and after 3 years. Blood samples were collected for apolipoprotein E (APOE) genotyping and dual energy x-ray absorptiometry (DXA) was conducted at the same day as cognitive assessment. Using hierarchical regression analysis, we found that BMD and lean body mass, as measured using DXA were significant predictors of episodic memory. Age, gender, APOE status, and premorbid IQ were controlled for. Specifically, the List A learning from California Verbal Learning Test was significantly associated with BMD and lean mass both at baseline and at follow up assessment. Our findings indicate that there is a significant association between BMD and lean body mass and episodic verbal learning. While the involvement of modifiable lifestyle factors in human cognitive function has been examined in different studies, there is a need for further research to understand the potential underlying mechanisms. PMID:25741279

  19. Bone age assessment by dual-energy X-ray absorptiometry in children: an alternative for X-ray?

    PubMed Central

    Heppe, D H M; Taal, H R; Ernst, G D S; Van Den Akker, E L T; Lequin, M M H; Hokken-Koelega, A C S; Geelhoed, J J M; Jaddoe, V W V

    2012-01-01

    Objective The aim of the study was to validate dual-energy X-ray absorptiometry (DXA) as a method to assess bone age in children. Methods Paired dual-energy X-ray absorptiometry (DXA) scans and X-rays of the left hand were performed in 95 children who attended the paediatric endocrinology outpatient clinic of University Hospital Rotterdam, the Netherlands. We compared bone age assessments by DXA scan with those performed by X-ray. Bone age assessment was performed by two blinded observers according to the reference method of Greulich and Pyle. Intra-observer and interobserver reproducibility were investigated using the intraclass correlation coefficient (ICC), and agreement was tested using Bland and Altman plots. Results The intra-observer ICCs for both observers were 0.997 and 0.991 for X-ray and 0.993 and 0.987 for DXA assessments. The interobserver ICC was 0.993 and 0.991 for X-ray and DXA assessments, respectively. The mean difference between bone age assessed by X-ray and DXA was 0.11 years. The limits of agreement ranged from −0.82 to 1.05 years, which means that 95% of all differences between the methods were covered by this range. Conclusions Results of bone age assessment by DXA scan are similar to those obtained by X-ray. The DXA method seems to be an alternative for assessing bone age in a paediatric hospital-based population. PMID:21586503

  20. Experimental studies on the bone metabolism of male rats chronically exposed to cadmium intoxication using dual-energy X-ray absorptiometry.

    PubMed

    Yokota, H; Tonami, H

    2008-04-01

    Cadmium (Cd) has been identified as the etiologic agent of itai-itai disease. The purpose of this study was to investigate whether chronic Cd exposure affects bone metabolism in a male rat model and to estimate the bone mineral density (BMD) differences in lumbar and femoral bone because of Cd exposure. Six-week-old male Hos Donryu rats were used in this experiment. Cadmium was administered at a dose of 200 ppm to rats in the diet to produce experimental chronic Cd poisoning. Bone mineral density was measured using dual-energy X-ray absorptiometry (DEXA) with a high-resolution scan collimator (0.25 mm diameter) (Hologic QDR-2000). The Cd content in renal tissue reached a critical concentration of 128.42 +/- 14.38 microg/g 10 months after the administration of the element (Table 3). The average blood urea nitrogen (BUN) value was increased throughout the period of the experiment, and the serum creatinine value of the experimental group showed an increase after 2 months of Cd administration (0.46 +/- 0.09 mg/dL). The concentration of urinary calcium changed in the experimental group after exposure to Cd for 12 months (15.4 +/- 0.13 mg/dL). DEXA showed a greater reduction in the bone mineral density of the 5th vertebral body (L5) in rats that had ingested Cd for 4 months (0.359 +/- 0.013 g/cm2) than in control rats (0.372 +/- 0.012 g/cm2, P < 0.01). On the contrary, the difference in bone mineral content between rats ingesting Cd for 6-8 months and control rats was not significant. However, significant reductions in bone mineral content were again noted in rats that had ingested Cd for 12 months (0.339 +/- 0.023 g/cm2) compared with the control group (0.385 +/- 0.012 g/cm2, P < 0.01). The bone mineral density of the right femoral bone in control rats was 0.328 +/- 0.018 g/cm2 and that in experimental rats was 0.306 +/- 0.012 g/cm2, and a meaningful difference was recognized (P < 0.05). Histological examination of the rats exposed to Cd for 12 months showed that the 5

  1. Impaired Vestibular Function and Low Bone Mineral Density: Data from the Baltimore Longitudinal Study of Aging.

    PubMed

    Bigelow, Robin T; Semenov, Yevgeniy R; Anson, Eric; du Lac, Sascha; Ferrucci, Luigi; Agrawal, Yuri

    2016-10-01

    Animal studies have demonstrated that experimentally induced vestibular ablation leads to a decrease in bone mineral density, through mechanisms mediated by the sympathetic nervous system. Loss of bone mineral density is a common and potentially morbid condition that occurs with aging, and we sought to investigate whether vestibular loss is associated with low bone mineral density in older adults. We evaluated this question in a cross-sectional analysis of data from the Baltimore Longitudinal Study of Aging (BLSA), a large, prospective cohort study managed by the National Institute on Aging (N = 389). Vestibular function was assessed with cervical vestibular evoked myogenic potentials (cVEMPs), a measure of saccular function. Bone mineral density was assessed using dual-energy X-ray absorptiometry (DEXA). In two-way t test analysis, we observed that individuals with reduced vestibular physiologic function had significantly lower bone mineral density. In adjusted multivariate linear regression analyses, we observed that older individuals with reduced vestibular physiologic function had significantly lower bone mineral density, specifically in weight-bearing hip and lower extremity bones. These results suggest that the vestibular system may contribute to bone homeostasis in older adults, notably of the weight-bearing hip bones at greatest risk of osteoporotic fracture. Further longitudinal analysis of vestibular function and bone mineral density in humans is needed to characterize this relationship and investigate the potential confounding effect of physical activity.

  2. Effect of hyperthyroidism and its treatment on bone mineral content

    SciTech Connect

    Toh, S.H.; Claunch, B.C.; Brown, P.H.

    1985-05-01

    Patients with hyperthyroidism may develop osteopenia associated with fractures; however, there has been no general agreement on the incidence of osteopenia in hyperthyroidism or the recovery of the mineral loss after treatment of hyperthyroidism. The authors conducted a longitudinal prospective study on the effect of hyperthyroidism and its treatment on bone mineral content (BMC) using photon absorptiometry. They observed that both young and older hyperthyroid patients showed a significantly decreased baseline BMC compared with age- and sex-matched controls. They also observed a slight recovery of BMC in hyperthyroid patients at the two-year interval after a euthyroid state had been achieved. However, the BMC was still much lower than that of controls, and they did not find any significant restoration of BMC following ''cure'' of hyperthyroidism.

  3. Single x-ray transmission system for bone mineral density determination

    SciTech Connect

    Jimenez-Mendoza, Daniel; Vargas-Vazquez, Damian; Giraldo-Betancur, Astrid L.; Hernandez-Urbiola, Margarita I.; Rodriguez-Garcia, Mario E.

    2011-12-15

    Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many different applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm{sup 2})], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones.

  4. Determinants of bone mineral density, bone mineral content, and body composition in a cohort of healthy children: influence of sex, age, puberty, and physical activity.

    PubMed

    Ausili, Emanuele; Rigante, Donato; Salvaggio, Elio; Focarelli, Benedetta; Rendeli, Claudia; Ansuini, Valentina; Paolucci, Valentina; Triarico, Silvia; Martini, Lucilla; Caradonna, Paolo

    2012-09-01

    Interventions directed to the recognition of abnormal bone mineral density, bone mineral content, and body composition in the pediatric age require the definition of factors influencing bone mass acquisition during growth. We have evaluated in a cross-sectional manner by dual-energy X-ray absorptiometry the impact of sex, age, puberty, and physical activity on total body areal bone mineral density, regional (lumbar and femoral) bone mineral densities, bone mineral content, and body composition (fat mass and lean mass) in a cohort of 359 healthy Italian children aged 3-14 years and investigated their specific contribution to bone mass accrual. Statistical multiple regression analysis was performed dividing the population in pre- and post-pubertal groups. Bone mineral density at the lumbar spine has resulted equally distributed in both sexes before puberty while has resulted higher at the femoral necks in males at whatever age. A significant effect on bone mass acquisition was exerted by male sex and lean mass. In the areas where the cortical bone is prevalent, males of the pre-pubertal group have presented the highest values; in the areas where the cancellous bone is prevalent, both sexes were equivalent until the age of 9 years, but after this age, females have presented higher increases, probably related to the inferior dimensional development of lumbar vertebrae. Conclusively, male sex and lean mass seem to represent independent predictors of bone mass accrual in the cortical bone of the examined children, while female sex and pubertal maturation are independent predictors of bone mass accrual in the trabecular bone. PMID:21809005

  5. Lower hip bone mass and proximal femur fractures in elderly patients: more valuable than lumbar vertebrae bone mineral density.

    PubMed

    Shin, Hun-Kyu; Choi, Jae-Yeol; Lee, Jinmyung; Jeong, Hwa Jae; Kim, Eugene; Park, Se-Jin; Jeon, Byeongsam; Lim, Jong-Jun

    2010-12-01

    A decreased bone mineral density, such as osteoporosis, has been considered a factor closely associated with proximal femur fractures. We studied the relationship between osteoporosis and proximal femur fractures. Dual energy radiograph absorptiometry was used to measure the bone mineral density of 121 patients with a femur neck fracture and 134 patients with an intertrochanteric fracture. The bone density of the femoral neck, Ward's triangle, and the trochanteric region were measured. Two hundred seventeen normal patients who had undergone a bone mineral density test and were found to have no proximal femur fracture were used as the control group. Comparative analysis was performed after the patients were subdivided into different groups depending on sex and fracture type. The bone mineral density of the lumbar vertebra in patients with a proximal femur fracture was not significantly different from that of the control group, but the bone mineral density of the proximal femur in patients with a proximal femur fracture was significantly less than that of the control group. The bone mineral density of the group with an intertrochanteric fracture was lower than that of the femur neck fracture group. However, the difference was statistically insignificant. In bone mineral density comparisons, no significant differences were observed between the displaced and undisplaced femur neck fracture group and between the stable and the unstable intertrochanteric fracture group. The bone mineral density of elderly patients with a proximal femur fracture was significantly less than that of normal individuals. However, femur neck fractures in elderly men were less likely to be associated with a decreased bone mineral density. Little correlation between bone mineral densities of the proximal femur and fracture location (neck vs intertrochanter) and type (nondisplaced vs displaced neck, stable vs unstable intertrochanter) was found.

  6. Effects of lactation on bone mineral content in healthy postpartum women

    SciTech Connect

    Hayslip, C.C.; Klein, T.A.; Wray, H.L.; Duncan, W.E.

    1989-04-01

    Bone mineral contents were estimated by dual photon absorptiometry of the lumbar spine (L2-L4) and single photon absorptiometry of the mid- and distal radius in 19 healthy women on their second postpartum day and at 6 months postpartum. All bone mineral measurements were performed by one technician, and the single and dual photon absorptiometry results were read by one observer. Daily oral calcium intakes were estimated from dietary histories obtained by a dietitian. Twelve women who breast-fed exclusively throughout the first 6 months postpartum were compared with seven formula-feeding women who did not breast-feed or who breast-fed for less than 3 months postpartum. No differences were found in age, parity, height, weight, or daily calcium intake between the breast- and formula-feeding women. Breast-feeding women had a significant decrease (averaging 6.5%) in bone mineral of the lumbar spine at 6 months postpartum as compared with 2 days postpartum (1.14 +/- 0.03 versus 1.22 +/- 0.03 g/cm2, mean +/- SEM; P less than .001), whereas no significant change occurred in the formula-feeding women at 6 months (1.24 +/- 0.03 versus 1.26 +/- 0.04 g/cm2). At 6 months postpartum, the breast-feeding women had a significantly lower mean bone mineral content of the lumbar spine than did formula-feeding women (P less than .05). No significant changes were noted in bone mineral content of the mid- or distal radius in either group of women during the period of evaluation. We conclude that during the first 6 months postpartum, breast-feeding is associated with bone mineral loss from the lumbar spine, but not from the mid- or distal radius.

  7. Regulation of bone mineral loss during lactation

    NASA Technical Reports Server (NTRS)

    Brommage, R.; Deluca, H. F.

    1985-01-01

    The effects of varyng dietary calcium and phosphorous levels, vitamin D deficiency, oophorectomy, adrenalectomy, and simultaneous pregnancy on bone mineral loss during lactation in rats are studied. The experimental procedures and evaluations are described. The femur ash weight of lactating and nonlactating rats are calculated. The data reveals that a decrease in dietary calcium of 0.02 percent results in an increased loss of bone mineral, an increase in calcium to 1.4 percent does not lessen bone mineral loss, and bone mineral loss in vitamin D deficient rats is independent of calcium levels. It is observed that changes in dietary phosphorous level, oophorectomy, adrenalectomy, and simultaneous pragnancy do not reduce bone mineral loss during lactation. The analysis of various hormones to determine the mechanism that triggers bone mineral loss during lactation is presented.

  8. Preoperative Periarticular Knee Bone Mineral Density in Osteoarthritic Patients Undergoing TKA

    PubMed Central

    Ishii, Yoshinori; Noguchi, Hideo; Sato, Junko; Todoroki, Koji; Ezawa, Nobukazu; Toyabe, Shin-ichi

    2016-01-01

    Background: Preoperative periarticular bone quality is affected by joint loading. The purpose of this study was to determine the periarticular bone mineral density of the knee joint of patients undergoing total knee arthroplasty, and whether the location of the load-bearing axis correlates with the measured bone mineral density. Materials and Methods: The bone mineral densities of the medial and lateral femoral condyles and the medial and lateral tibial condyles were analyzed in consecutive 116 osteoarthritic patients (130 knees) by dual energy x-ray absorptiometry. Results: The median bone mineral density values in the condyles were 1.138 in femoral medial, 0.767 in femoral lateral, 1.056 in tibial medial, and 0.714 in tibial lateral. The medial condyles showed significantly higher bone mineral densities than the lateral condyles in both the femur and tibia. In addition, the femoral medial showed significantly higher bone mineral density levels than the tibial medial, and the femoral lateral condyle had higher bone mineral density levels than the tibial lateral. The bone mineral density Medial/Lateral ratio was significantly negatively correlated with the location (tibial medial edge 0%, lateral edge 100%) of the load-bearing axis in the femur and tibia. Conclusion: Preoperative bone mineral density values may provide against the changes in bone mineral density after total knee arthroplasty by reflecting the correlation with joint loading axis. These results help explain why total knee arthroplasty has such good long-term clinical outcomes with a low frequency of component loosening and periarticular fractures despite a high degree of postoperative bone loss. PMID:27583058

  9. Usefulness of calcaneal quantitative ultrasound stiffness for the evaluation of bone health in HIV-1-infected subjects: comparison with dual X-ray absorptiometry

    PubMed Central

    Fantauzzi, Alessandra; Floridia, Marco; Ceci, Fabrizio; Cacciatore, Francesco; Vullo, Vincenzo; Mezzaroma, Ivano

    2016-01-01

    Objectives With the development of effective treatments and the resulting increase in life expectancy, bone mineral density (BMD) alteration has emerged as an important comorbidity in human immunodeficiency virus type-1 (HIV-1)-infected individuals. The potential contributors to the pathogenesis of osteopenia/osteoporosis include a higher prevalence of risk factors, combined antiretroviral therapy (cART)-exposure, HIV-1 itself and chronic immune activation/inflammation. Dual-energy X-ray absorptiometry (DXA) is the “gold standard” technique for assessing bone status in HIV-1 population. Methods We conducted a cross-sectional study to investigate bone mineral status in a group of 158 HIV-1-infected subjects. The primary endpoint was the feasibility of calcaneal quantitative ultrasound (QUS) as a screening tool for BMD. All subjects were receiving stable cART and were virologically suppressed (HIV-RNA <37 copies/mL) from at least 12 months. Calcaneal QUS parameters were analyzed to obtain information on bone mass and microarchitecture. The results were compared with those obtained by DXA. Results No correlations were found between DXA/QUS parameters and demographic or HIV-1-specific characteristics, also including cART strategies. In the univariate analyses BMD, QUS indexes, and Fracture Risk Assessment Tool scores conversely showed significant associations with one or more demographic or HIV-1-related variables. Moreover, a significant relationship between calcaneal quantitative ultrasound index/stiffness and femoral/lumbar BMD values from DXA was described. The multivariate analysis showed an independent association between calcaneal quantitative ultrasound index/stiffness and body mass index, higher CD4+ T-cell numbers and low 25-OH D2/D3 vitamin D levels <10 ng/mL (P-values: 0.004, 0.016, and 0.015, respectively). Conclusion As an alternative and/or integrative examination to DXA, calcaneal QUS could be proposed as a useful screening in HIV-1-infected

  10. Bone mineral measurement from Apollo experiment M-078. [derangement of bone mineral metabolism in spacecrews

    NASA Technical Reports Server (NTRS)

    Vogel, J. M.; Rambaut, P. C.; Smith, M. C., Jr.

    1974-01-01

    Loss of mineral from bone during periods of immobilization, recumbency, or weightlessness is examined. This report describes the instrumentation, technique, and bone mineral changes observed preflight and postflight for the Apollo 14, 15, and 16 missions. The bone mineral changes documented during the Apollo Program are reviewed, and their relevance to future missions is discussed.

  11. Mineralized three-dimensional bone constructs

    NASA Technical Reports Server (NTRS)

    Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)

    2011-01-01

    The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.

  12. Mineralized Three-Dimensional Bone Constructs

    NASA Technical Reports Server (NTRS)

    Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)

    2013-01-01

    The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.

  13. Bone Mineral Density in Elite DanceSport Athletes.

    PubMed

    Kruusamäe, Helena; Maasalu, Katre; Jürimäe, Jaak

    2016-03-01

    This study compared bone mineral density (BMD) variables of female and male elite dancesport athletes with untrained control subjects of the same gender. Sixty-six elite dancesport athletes (M 33, F 33) and 64 untrained controls (M 34, F 31) participated in this study. Elite dancesport athletes were dancing couples competing at the international level. Whole-body bone mineral content and whole-body, forearm, lumbar-spine, and femoral-neck BMD, as well as whole-body fat mass and fat free mass, were measured by dual-energy X-ray absorptiometry. There were no differences (p>0.05) in height and body mass between dancers and controls of the same gender, but percent body fat was lower (p<0.05) in dancers of both genders than in untrained controls. Elite dancesport athletes had significantly higher femoral-neck BMD, and male dancers also higher whole-body BMD values when compared with controls of the same gender. All other measured bone mineral values did not differ between the groups of the same gender. In addition, training experience was positively correlated with whole-body BMD (r=0.27; p<0.05) in dancesport athletes. Based on this study, it can be concluded that elite dancesport athletes have higher BMD values at the weight-bearing site (femoral-neck BMD), while other measured areas and whole-body bone mineral values do not differ from the corresponding values of healthy sedentary controls of the same gender. According to our results, low BMD is not an issue for elite female dancesport athletes, despite their lower percent body fat values. PMID:26966961

  14. Citrate bridges between mineral platelets in bone.

    PubMed

    Davies, Erika; Müller, Karin H; Wong, Wai Ching; Pickard, Chris J; Reid, David G; Skepper, Jeremy N; Duer, Melinda J

    2014-04-01

    We provide evidence that citrate anions bridge between mineral platelets in bone and hypothesize that their presence acts to maintain separate platelets with disordered regions between them rather than gradual transformations into larger, more ordered blocks of mineral. To assess this hypothesis, we take as a model for a citrate bridging between layers of calcium phosphate mineral a double salt octacalcium phosphate citrate (OCP-citrate). We use a combination of multinuclear solid-state NMR spectroscopy, powder X-ray diffraction, and first principles electronic structure calculations to propose a quantitative structure for this material, in which citrate anions reside in a hydrated layer, bridging between apatitic layers. To assess the relevance of such a structure in native bone mineral, we present for the first time, to our knowledge, (17)O NMR data on bone and compare them with (17)O NMR data for OCP-citrate and other calcium phosphate minerals relevant to bone. The proposed structural model that we deduce from this work for bone mineral is a layered structure with thin apatitic platelets sandwiched between OCP-citrate-like hydrated layers. Such a structure can explain a number of known structural features of bone mineral: the thin, plate-like morphology of mature bone mineral crystals, the presence of significant quantities of strongly bound water molecules, and the relatively high concentration of hydrogen phosphate as well as the maintenance of a disordered region between mineral platelets.

  15. Abnormal bone mineral density and bone turnover marker expression profiles in patients with primary spontaneous pneumothorax

    PubMed Central

    Yu, Lixin; Hou, Shengcai; Hu, Bin; Zhao, Liqiang; Miao, Jinbai; Wang, Yang; Li, Tong; Zhang, Zhenkui; You, Bin; Pang, Baosen; Liang, Yufang; Zhao, Yi; Hao, Wei

    2016-01-01

    Background To examine the bone mineral density (BMD) and the role of bone biomarkers, including bone formation marker procollagen type I aminoterminal propeptide (PINP) and N-terminal midmolecule fragment osteocalcin (N-MID), bone resorption marker b-C-telopeptides of type I collagen (b-CTX) and tartrate-resistant acid phosphatase 5b (TRACP5b) in the pathogenesis of PSP. Methods Eighty-three consecutive primary spontaneous pneumothorax (PSP) patients (PSP group) and 87 healthy individuals (control group) were enrolled in this study. General data, including gender, age, height, weight, and body mass index (BMI), were recorded. Dual-energy X-ray absorptiometry, electrochemiluminescence immunoassay (ECLIA), and ELISA were used to evaluate bone mineral density and expression levels of bone metabolism markers, including PINP, b-CTX, TRACP5b, N-MID, and 25-hydroxyvitamin D (25-OH VD). Results Mean height was significantly greater in the PSP group compared with the control group, whereas weight and BMI were lower. Patients in the PSP group had significantly lower average bone mineral density, which mainly manifested as osteopenia (11/12, 91.7%); however, only one patient (8.3%) developed osteoporosis. Serum overexpression of PINP, b-CTX, TRACP5b, and N-MID were found in PSP patients. Expression of 25-OH VD was low in PSP patients. Bone resorption markers showed positive linear relationships with bone formation markers in all participants; whereas only TRACP5b expression negatively correlated with 25-OH VD. Expression levels of all bone turnover markers negatively correlated with BMI. Regression analysis identified risk factors of PSP as age, height, weight, and TRACP5b and 25-OH VD expression levels; whereas gender and PINP, b-CTX, and N-MID expression levels were not significantly associated with the onset of PSP. Conclusions It had lower bone mineral density in PSP patients. Bone formation marker PINP, N-MID and bone resorption marker b-CTX, TRACP5b were upregulated in

  16. bone mineral densities and mechanical properties of retrieved femoral bone samples in relation to bone mineral densities measured in the respective patients.

    PubMed

    Haba, Yvonne; Skripitz, Ralf; Lindner, Tobias; Köckerling, Martin; Fritsche, Andreas; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    The bone mineral density (BMD) of retrieved cancellous bone samples is compared to the BMD measured in vivo in the respective osteoarthritic patients. Furthermore, mechanical properties, in terms of structural modulus (E(s)) and ultimate compression strength (σ(max)) of the bone samples, are correlated to BMD data. Human femoral heads were retrieved from 13 osteoarthritic patients undergoing total hip replacement. Subsequently, the BMD of each bone sample was analysed using dual energy X-ray absorptiometry (DXA) as well as ashing. Furthermore, BMDs of the proximal femur were analysed preoperatively in the respective patients by DXA. BMDs of the femoral neck and head showed a wide variation, from 1016 ± 166 mg/cm(2) to 1376 ± 404 mg/cm(2). BMDs of the bone samples measured by DXA and ashing yielded values of 315 ± 199 mg/cm(2) and 347 ± 113 mg/cm(3), respectively. E(s) and σ(max) amounted to 232 ± 151 N/mm(2) and 6.4 ± 3.7 N/mm(2). Significant correlation was found between the DXA and ashing data on the bone samples and the DXA data from the patients at the femoral head (r = 0.85 and 0.79, resp.). E(s) correlated significantly with BMD in the patients and bone samples as well as the ashing data (r = 0.79, r = 0.82, and r = 0.8, resp.).

  17. Vitamin D status is associated with bone mineral density and bone mineral content in preschool-aged children.

    PubMed

    Hazell, Tom J; Pham, Thu Trang; Jean-Philippe, Sonia; Finch, Sarah L; El Hayek, Jessy; Vanstone, Catherine A; Agellon, Sherry; Rodd, Celia J; Weiler, Hope A

    2015-01-01

    This study examined the associations between vitamin D status, bone mineral content (BMC), areal bone mineral density (aBMD), and markers of calcium homeostasis in preschool-aged children. Children (n=488; age range: 1.8-6.0 y) were randomly recruited from Montreal. The distal forearm was scanned using a peripheral dual-energy X-ray absorptiometry scanner (Lunar PIXI; GE Healthcare, Fairfield, CT). A subset (n=81) had clinical dual-energy X-ray absorptiometry (cDXA) scans (Hologic 4500A Discovery Series) of lumbar spine (LS) 1-4, whole body, and ultradistal forearm. All were assessed for plasma 25-hydroxyvitamin D [25(OH)D] and parathyroid hormone concentrations (Liaison; Diasorin), ionized calcium (ABL80 FLEX; Radiometer Medical A/S), and dietary vitamin D and calcium intakes by survey. Age (p<0.001) and weight-for-age Z-score (p<0.001) were positively associated with BMC and aBMD in all regression models, whereas male sex contributed positively to forearm BMC and aBMD. Having a 25(OH)D concentration of >75 nmol/L positively associated with forearm and whole body BMC and aBMD (p<0.036). Sun index related to (p<0.029) cDXA forearm and LS 1-4 BMC and whole-body aBMD. Nutrient intakes did not relate to BMC or aBMD. In conclusion, higher vitamin D status is linked to higher BMC and aBMD of forearm and whole body in preschool-aged children.

  18. Experimental assessment of bone mineral density using quantitative computed tomography in holstein dairy cows

    PubMed Central

    MAETANI, Ayami; ITOH, Megumi; NISHIHARA, Kahori; AOKI, Takahiro; OHTANI, Masayuki; SHIBANO, Kenichi; KAYANO, Mitsunori; YAMADA, Kazutaka

    2016-01-01

    The aim of this study was to assess the measurement of bone mineral density (BMD) by quantitative computed tomography (QCT), comparing the relationships of BMD between QCT and dual-energy X-ray absorptiometry (DXA) and between QCT and radiographic absorptiometry (RA) in the metacarpal bone of Holstein dairy cows (n=27). A significant positive correlation was found between QCT and DXA measurements (r=0.70, P<0.01), and a significant correlation was found between QCT and RA measurements (r=0.50, P<0.01). We conclude that QCT provides quantitative evaluation of BMD in dairy cows, because BMD measured by QCT showed positive correlations with BMD measured by the two conventional methods: DXA and RA. PMID:27075115

  19. Decreased bone mineral density and periodontal management.

    PubMed

    Reddy, Michael S; Morgan, Sarah L

    2013-02-01

    The definition of osteoporosis has evolved beyond low bone mineral density to include impaired bone morphology and matrix properties. As such, the subsequent bone density insufficiencies extend beyond the skeletal risks of fracture and have implications for oral health management patients. As our population ages there is a worldwide increase in the risk of decreased bone mineral density and its subsequent morbidity. This makes age an independent risk factor for fracture and decreased bone mineral density. Multiple examinations and diagnostic tests are currently used in combination to develop an algorithm to assess osteoporotic risk. Oral health care professionals should follow these principles and caution should be used in applying a single independent assessment to determine a patient's osteoporotic or bone metabolism risk. Therapeutic approaches for osteoporosis are often divided into nonpharmacological interventions and pharmacological therapies. The periodontist and other oral health care professionals should have a full understanding of the therapeutic options, benefits and implementation of preventive therapies. Bone turnover is a coupled event of bone formation and bone resorption and it is the imbalance of this homeostasis that results in osteoporosis. Based on this uncoupling of bone resorption and formation, osteoporosis or decreased bone mineral density and osteopenia, may be a risk factor for alveolar bone loss in periodontitis. The role of prevention and maintenance with a history of periodontitis and oesteopenia extends beyond biofilm control and should include management of bone mineral density. The chronic periodontal infection in a patient with osteopenia may place the patient at greatly increased risk for alveolar bone loss, gingival recession and root caries. A key component in the management is the oral health professional's knowledge of the interrelationship between skeletal health and periodontal health.

  20. [Inflammatory bowel disease and bone decreased bone mineral density].

    PubMed

    Hisamatsu, Tadakazu; Wada, Yasuyo; Kanai, Takanori

    2015-11-01

    Metabolic bone diseases such as osteopenia and osteoporosis increase the risk of bone fracture that negatively affects quality of life of individuals. Patients with inflammatory bowel disease(IBD), including ulcerative colitis(UC)and Crohn's disease(CD), have been shown to be at increased risk of decreased bone mineral density, however frequency of metabolic bone disease in IBD and identified risk factors are varied among reports. PMID:26503868

  1. Dual X-Ray Absorptiometry Whole Body Composition of Bone Tissue in Rheumatoid Arthritis – a Cross-Sectional Study

    PubMed Central

    POPESCU, Claudiu; BOJINCA, Violeta; OPRIS, Daniela; IONESCU, Ruxandra

    2015-01-01

    Objectives: Previous studies of bone tissue in rheumatoid arthritis (RA) using dual X-ray absorptiometry (DXA) concentrated on regions of interest that were used to diagnose osteoporosis. This study aimed to compare the whole body bone tissue (wbBT) of RA patients with healthy subjects and to identify the RA variables which significantly predict wbBT. Methods: The study was cross-sectionally designed to include postmenopausal RA patients and age-matched healthy female controls. All 107 RA patients and all 104 controls underwent clinical examination, laboratory tests and whole body DXA composition, which recorded total and regional bone indices. Non-parametric standard statistical test and regression models after data normalization were used to assess correlations, associations and differences. Results: Compared to controls, RA patients had significantly lower whole body and regional bone mass (14.9 kg compared to 15.5 kg; p = 0.031). Disease duration (r = -0.402 ; p < 0.001), C-reactive protein (r = -0.279; p = 0.015) and inflammation (2.5% wbBT compared to 2.9%; p = 0.043), radiographic damage (14.3 kg compared to 16.2 kg; p < 0.001), disease activity scores (r = -0.275 ; p = 0.018 for HAQ) are significantly correlated/associated with lower wbBT. Clinical structural damage is associated with lower wbBT and it can significantly predict them (R2 = 0.014; p = 0.001), while glucocorticoid treatment, even in low doses, was associated with lower wbBT percent (2.6% compared to 2.8%; p = 0.045). Treatment with biologics was associated with a lower rate of whole body osteoporosis (0% compared to 22.2%; p = 0.013). Conclusions: The main associated factors with the generalized bone loss in female RA patients are disease duration and disease activity. Clinical structural damage is the most powerful predictor of the whole body bone loss. These results suggest a general disturbance of skeletal bone metabolism in RA and could explain a greater risk of fragility fractures of non

  2. Bone mineral computation with a rectilinear scanner

    NASA Technical Reports Server (NTRS)

    Ullman, J.; Brown, S.; Silverstein, A.; Vogel, J. M.

    1974-01-01

    A portable rectilinear transmission scanner and associated computerized data reduction techniques for estimating bone mineral content are described. This unit can be easily disassembled for transport to various measurement sites and has been used to estimate the bone mineral content of the os calcis, radius, and ulna in the Apollo and Skylab astronauts. The scanner is used to obtain multiple rows of data from which a bone profile is derived. Bone edges are determined with the aid of a digital computer program which employs an algorithm that determines the greatest rate of change of the counting rate.

  3. Treatment of subclinical hypothyroidism does not affect bone mass as determined by dual-energy X-ray absorptiometry, peripheral quantitative computed tomography and quantitative bone ultrasound in Spanish women

    PubMed Central

    Roncero-Martin, Raul; Calderon-Garcia, Julian F.; Santos-Vivas, Mercedes; Vera, Vicente; Martínez-Alvárez, Mariana; Rey-Sanchez, Purificación

    2015-01-01

    Introduction The results of studies examining the influence of subclinical hypothyroidism (SCH) and levothyroxine (L-T4) replacement therapy on bone have generated considerable interest but also controversy. The present research aims to evaluate the effects of L-T4 treatment on different skeletal sites in women. Material and methods A group of 45 premenopausal (mean age: 43.62 ±6.65 years) and 180 postmenopausal (mean age: 59.51 ±7.90 years) women with SCH who were undergoing L-T4 replacement therapy for at least 6 months were compared to 58 pre- and 180 postmenopausal women with SCH (untreated) matched for age. The mean doses of L-T4 were 90.88 ±42.59 µg/day in the premenopausal women and 86.35 ±34.11 µg/day in the postmenopausal women. Bone measurements were obtained using quantitative bone ultrasound (QUS) for the phalanx, dual-energy X-ray absorptiometry (DXA) for the lumbar spine and hip, and peripheral quantitative computed tomography (pQCT) for the non-dominant distal forearm. Results No differences were observed between patients and untreated controls in these bone measurements except in the bone mineral density (BMD) of the spine (p = 0.0214) in postmenopausal women, which was greater in treated women than in untreated controls. Conclusions Our results indicate that adequate metabolic control through replacement treatment with L-T4 in pre- and postmenopausal women does not affect bone mass. PMID:26528344

  4. Age-related decrements in bone mineral density in women over 65

    NASA Technical Reports Server (NTRS)

    Steiger, P.; Cummings, S. R.; Black, D. M.; Spencer, N. E.; Genant, H. K.

    1992-01-01

    Age-related changes in bone density contribute to the risk of fractures. To describe the relationship between age and bone mass in elderly women, we studied a large cohort of women over age 65 years who were recruited from population-based lists in four cities in the United States. Bone density in g/cm2 was measured by single-photon absorptiometry (SPA) and dual x-ray absorptiometry (DXA) at the distal and proximal radius, the calcaneus, the lumbar spine, and the proximal femur. Centralized data collection was used to control data quality and consistency. We found a strong inverse relationship between bone density and age for most sites. Decrements in bone density between women aged 65-69 years and women 85 years and older exceeded 16% in all regions except the spine, where the difference between the two age groups was 6%. Ward's triangle and the calcaneus exhibited the largest decrements, with 26 and 21%, respectively. The estimates of annual changes in bone mineral density by linear regression at sites other than the spine ranged from -0.82% at the femoral neck and trochanter to -1.30% at Ward's triangle. Correlations between the different regions ranged from r = 0.51 between the proximal radius and Ward's triangle to r = 0.66 between the distal radius and calcaneus. We conclude that the inverse relationship between age and bone mass measured by absorptiometry techniques in white women continues into the ninth decade of life. The relationship is strongest for bone density of Ward's triangle and the calcaneus and weakest for the spine.

  5. Bone Mineral Density in Schizophrenia

    PubMed Central

    Tseng, Ping-Tao; Chen, Yen-Wen; Yeh, Pin-Yang; Tu, Kun-Yu; Cheng, Yu-Shian; Wu, Ching-Kuan

    2015-01-01

    Abstract Numerous reports have discussed bone mineral density (BMD) or the risk of osteoporosis in schizophrenia, but have yielded only controversial results. We conducted an update of meta-analysis to examine the overall change in BMD in patients with schizophrenia and the effect on BMD of different antipsychotic drugs. Electronic research through platform of PubMed. The inclusion criteria were as follows: articles with relevance to comparisons of BMD in patients with schizophrenia (SCHIZ) and healthy controls (HCs), or articles discussing comparisons of BMD in SCHIZ receiving prolactin-raising (PR) and prolactin-sparing (PS) antipsychotics; articles about clinical trials. In the current meta-analysis, we used the random-effect model to pool the results from 13 studies comparing BMD in SCHIZ and in HCs, and the results from 7 studies comparing BMD in patients receiving PR and PS. Our results revealed significantly lower BMD in SCHIZ than in HCs (P < 0.001). In the meta-regression, mean age of subjects modulated the difference in BMD between patients and control subjects (P < 0.001). In addition, the BMD in SCHIZ taking PR was significantly lower than in those taking PS (P = 0.006). Our study can only point to the phenomenon that BMD in SCHIZ is lower than that in HCs, and cannot reveal any possible pathophysiology or mechanism of this phenomenon. In addition, we could not rule out the possible effect of medication on BMD based on the results of the meta-analysis of comparison of BMD in SCHIZ receiving PR and PS. The main result of our meta-analysis suggests that BMD is significantly lower in SCHIZ than in HCs. Our study emphasizes the importance of further screening for the risk of osteoporosis in young-aged schizophrenic patients, especially those taking PR, which are in high risk of fracture. PMID:26632691

  6. Precision error in dual-photon absorptiometry related to source age

    SciTech Connect

    Ross, P.D.; Wasnich, R.D.; Vogel, J.M.

    1988-02-01

    An average, variable precision error of up to 6% related to source age was observed for dual-photon absorptiometry of the spine in a longitudinal study of bone mineral content involving 393 women. Application of a software correction for source decay compensated for only a portion of this error. The authors conclude that measurement of bone-loss rates using serial dual-photon bone mineral measurements must be interpreted with caution.

  7. Ethnic and sex differences in bone marrow adipose tissue and bone mineral density relationship

    PubMed Central

    Chen, J.; Gantz, M.; Punyanitya, M.; Heymsfield, S. B.; Gallagher, D.; Albu, J.; Engelson, E.; Kotler, D.; Pi-Sunyer, X.; Shapses, S.

    2012-01-01

    Summary The relationship between bone marrow adipose tissue and bone mineral density is different between African Americans and Caucasians as well as between men and women. This suggests that the mechanisms that regulate the differentiation and proliferation of bone marrow stromal cells may differ in these populations. Introduction It has long been established that there are ethnic and sex differences in bone mineral density (BMD) and fracture risk. Recent studies suggest that bone marrow adipose tissue (BMAT) may play a role in the pathogenesis of osteoporosis. It is unknown whether ethnic and sex differences exist in the relationship between BMAT and BMD. Methods Pelvic BMAT was evaluated in 455 healthy African American and Caucasian men and women (age 18–88 years) using whole-body T1-weighted magnetic resonance imaging. BMD was measured using whole-body dual-energy X-ray absorptiometry. Results A negative correlation was observed between pelvic BMAT and total body BMD or pelvic BMD (r=−0.533, −0.576, respectively; P<0.001). In multiple regression analyses with BMD as the dependent variable, ethnicity significantly entered the regression models as either an individual term or an interaction with BMAT. Menopausal status significantly entered the regression model with total body BMD as the dependent variable. African Americans had higher total body BMD than Caucasians for the same amount of BMAT, and the ethnic difference for pelvic BMD was greater in those participants with a higher BMAT. Men and premeno-pausal women had higher total body BMD levels than postmenopausal women for the same amount of BMAT. Conclusions An inverse relationship exists between BMAT and BMD in African American and Caucasian men and women. The observed ethnic and sex differences between BMAT and BMD in the present study suggest the possibility that the mechanisms regulating the differentiation and proliferation of bone marrow stromal cells may differ in these populations. PMID

  8. Gonadal steroid–dependent effects on bone turnover and bone mineral density in men

    PubMed Central

    Finkelstein, Joel S.; Lee, Hang; Leder, Benjamin Z.; Goldstein, David W.; Hahn, Christopher W.; Hirsch, Sarah C.; Linker, Alex; Perros, Nicholas; Servais, Andrew B.; Taylor, Alexander P.; Webb, Matthew L.; Youngner, Jonathan M.; Yu, Elaine W.

    2016-01-01

    BACKGROUND. Severe gonadal steroid deficiency induces bone loss in adult men; however, the specific roles of androgen and estrogen deficiency in hypogonadal bone loss are unclear. Additionally, the threshold levels of testosterone and estradiol that initiate bone loss are uncertain. METHODS. One hundred ninety-eight healthy men, ages 20–50, received goserelin acetate, which suppresses endogenous gonadal steroid production, and were randomized to treatment with 0, 1.25, 2.5, 5, or 10 grams of testosterone gel daily for 16 weeks. An additional cohort of 202 men was randomized to receive these treatments plus anastrozole, which suppresses conversion of androgens to estrogens. Thirty-seven men served as controls and received placebos for goserelin and testosterone. Changes in bone turnover markers, bone mineral density (BMD) by dual-energy x-ray absorptiometry (DXA), and BMD by quantitative computed tomography (QCT) were assessed in all men. Bone microarchitecture was assessed in 100 men. RESULTS. As testosterone dosage decreased, the percent change in C-telopeptide increased. These increases were considerably greater when aromatization of testosterone to estradiol was also suppressed, suggesting effects of both testosterone and estradiol deficiency. Decreases in DXA BMD were observed when aromatization was suppressed but were modest in most groups. QCT spine BMD fell substantially in all testosterone-dose groups in which aromatization was also suppressed, and this decline was independent of testosterone dose. Estradiol deficiency disrupted cortical microarchitecture at peripheral sites. Estradiol levels above 10 pg/ml and testosterone levels above 200 ng/dl were generally sufficient to prevent increases in bone resorption and decreases in BMD in men. CONCLUSIONS. Estrogens primarily regulate bone homeostasis in adult men, and testosterone and estradiol levels must decline substantially to impact the skeleton. TRIAL REGISTRATION. ClinicalTrials.gov, NCT00114114

  9. Varying ratios of omega-6: omega-3 fatty acids on the pre-and postmortem bone mineral density, bone ash, and bone breaking strength of laying chickens.

    PubMed

    Baird, H T; Eggett, D L; Fullmer, S

    2008-02-01

    The purpose of this study was to investigate the effects of varying ratios of n-6 to n-3 fatty acids in the diets of White Leghorn chickens on tibia bone characteristics [bone mineral density, bone mineral content (BMC), ash bone mineral content, bone morphology, and cortical thickness] and tibia bone strength parameters (ultimate force, bending stress, maximum strain, Young's modulus of elasticity, area under the curve, and moment of inertia). Seventy-five 16-wk-old female White Leghorn chickens were randomly assigned to 1 of 5 dietary ratios of n-6 to n-3 fatty acids: 47.8:1, 18.0:1, 7.6:1, 5.9:1, or 4.7:1. Corn oil was the n-6 fatty acid source, whereas flax oil provided the n-3 fatty acids. Bone density was measured on the left tibia via dual-energy x-ray absorptiometry (DXA) prior to killing and after excision. Bones were ashed in a muffle furnace at 500 degrees F. Tibia bones were broken by using a 3-point bending rig. Results showed no significant effect of diet on bone characteristics. There were no significant differences among diet groups for parameters of bone strength except cortical thickness (P < or = 0.01). Bone mineral content determined by ashing was significantly different by 9.2% (P < or = 0.0001) from BMC determined in vivo by DXA; however, there were no differences in ex vivo BMC and BMC ash, although they were highly correlated (r = 0.99, P < or = 0.0001). We concluded that there was no effect of n-3 fatty acids on tibia bone in mature White Leghorn chickens. The GE Lunar Prodigy DXA instrument significantly underestimated the in vivo BMC in chickens.

  10. Varying ratios of omega-6: omega-3 fatty acids on the pre-and postmortem bone mineral density, bone ash, and bone breaking strength of laying chickens.

    PubMed

    Baird, H T; Eggett, D L; Fullmer, S

    2008-02-01

    The purpose of this study was to investigate the effects of varying ratios of n-6 to n-3 fatty acids in the diets of White Leghorn chickens on tibia bone characteristics [bone mineral density, bone mineral content (BMC), ash bone mineral content, bone morphology, and cortical thickness] and tibia bone strength parameters (ultimate force, bending stress, maximum strain, Young's modulus of elasticity, area under the curve, and moment of inertia). Seventy-five 16-wk-old female White Leghorn chickens were randomly assigned to 1 of 5 dietary ratios of n-6 to n-3 fatty acids: 47.8:1, 18.0:1, 7.6:1, 5.9:1, or 4.7:1. Corn oil was the n-6 fatty acid source, whereas flax oil provided the n-3 fatty acids. Bone density was measured on the left tibia via dual-energy x-ray absorptiometry (DXA) prior to killing and after excision. Bones were ashed in a muffle furnace at 500 degrees F. Tibia bones were broken by using a 3-point bending rig. Results showed no significant effect of diet on bone characteristics. There were no significant differences among diet groups for parameters of bone strength except cortical thickness (P < or = 0.01). Bone mineral content determined by ashing was significantly different by 9.2% (P < or = 0.0001) from BMC determined in vivo by DXA; however, there were no differences in ex vivo BMC and BMC ash, although they were highly correlated (r = 0.99, P < or = 0.0001). We concluded that there was no effect of n-3 fatty acids on tibia bone in mature White Leghorn chickens. The GE Lunar Prodigy DXA instrument significantly underestimated the in vivo BMC in chickens. PMID:18212376

  11. [Mineral and bone disorders in renal transplantation].

    PubMed

    Bacchetta, Justine; Lafage-Proust, Marie-Hélène; Chapurlat, Roland

    2013-12-01

    The deregulation of bone and mineral metabolism during chronic kidney disease (CKD) is a daily challenge for physicians, its management aiming at decreasing the risk of both fractures and vascular calcifications. Renal transplantation in the context of CKD, with pre-existing renal osteodystrophy as well as nutritional impairment, chronic inflammation, hypogonadism and corticosteroids exposure, represents a major risk factor for bone impairment in the post-transplant period. The aim of this review is therefore to provide an update on the pathophysiology of mineral and bone disorders after renal transplantation. PMID:24176653

  12. Baseline Bone Mineral Density Measurements Key to Future Testing Intervals

    MedlinePlus

    ... on Research 2012 May 2012 (historical) Baseline Bone Mineral Density Measurements Key to Future Testing Intervals How often a woman should have bone mineral density (BMD) tests to track bone mass is ...

  13. Bone mineral density, quantitative ultrasound parameters and bone metabolism in postmenopausal women with depression.

    PubMed

    Atteritano, Marco; Lasco, Antonino; Mazzaferro, Susanna; Macrì, Ida; Catalano, Antonino; Santangelo, Antonino; Bagnato, Gianluca; Bagnato, Gianfilippo; Frisina, Nicola

    2013-09-01

    Low bone mineral density, which increases the risk of stress fragility fractures, is a frequent, often persistent finding in patients with major depressive disorder (MDD). The clinical association between major depressive disorder and osteopenia is still unclear, although several factors are associated with a loss of bone mass. The aim of our study, therefore, was to evaluate bone mineral density and bone metabolism in patients with MDD. Bone mineral density was evaluated in fifty postmenopausal women with MDD, and in 50 matched postmenopausal control women by dual-energy X-ray absorptiometry of the lumbar spine and femur, and by ultrasonography of the calcaneus and phalanges. Serum levels of 25-hydroxivitamin D, parathyroid hormone, Osteoprotegerin/Receptor Activator for Nuclear Factor κB Ligand ratio, bone turnover markers, serum and urinary cortisol were examined. Bone mineral density of the lumbar spine (BMD: 0.72 ± 0.06 vs. 0.82 ± 0.09 g/cm(2), p < 0.001), femoral neck (BMD: 0.58 ± 0.04 vs. 0.71 ± 0.07 g/cm(2), p < 0.001) and total femur (BMD 0.66 ± 0.09 vs. 0.54 ± 0.06 g/cm(2), p < 0.001); and ultrasound parameters at calcaneus (SI: 81.30 ± 6.10 vs. 93.80 ± 7.10, p < 0.001) and phalanges (AD-SOS: 1915.00 ± 37.70 vs. 2020.88 ± 39.46, p < 0.001; BTT : 1.30 ± 0.8 vs. 1.45 ± 0.9, p < 0.001) are significantly lower in patients with MDD compared with controls. Moreover bone turnover markers, parathyroid hormone levels and Receptor Activator for Nuclear Factor κB Ligand are significantly higher in MDD patients compared with controls, while serum levels of 25-hydroxivitamin D and osteoprotegerin are significantly lower. There are no differences in urinary excretion and serum cortisol between groups. Postmenopausal women with depressive disorder have an elevated risk for osteoporosis. Our data suggest that a high level of parathyroid hormone may play a role in the pathogenetic process underlying osteopenia in these patients.

  14. Practice of martial arts and bone mineral density in adolescents of both sexes

    PubMed Central

    Ito, Igor Hideki; Mantovani, Alessandra Madia; Agostinete, Ricardo Ribeiro; Costa, Paulo; Zanuto, Edner Fernando; Christofaro, Diego Giulliano Destro; Ribeiro, Luis Pedro; Fernandes, Rômulo Araújo

    2016-01-01

    Abstract Objective: The purpose of this study was to analyze the relationship between martial arts practice (judo, karate and kung-fu) and bone mineral density in adolescents. Methods: The study was composed of 138 (48 martial arts practitioners and 90 non-practitioners) adolescents of both sexes, with an average age of 12.6 years. Bone mineral density was measured using Dual-Energy X-ray Absorptiometry in arms, legs, spine, trunk, pelvis and total. Weekly training load and previous time of engagement in the sport modality were reported by the coach. Partial correlation tested the association between weekly training load and bone mineral density, controlled by sex, chronological age, previous practice and somatic maturation. Analysis of covariance was used to compare bone mineral density values according to control and martial arts groups, controlled by sex, chronological age, previous practice and somatic maturation. Significant relationships between bone mineral density and muscle mass were inserted into a multivariate model and the slopes of the models were compared using the Student t test (control versus martial art). Results: Adolescents engaged in judo practice presented higher values of bone mineral density than the control individuals (p-value=0.042; Medium Effect size [Eta-squared=0.063]), while the relationship between quantity of weekly training and bone mineral density was significant among adolescents engaged in judo (arms [r=0.308] and legs [r=0.223]) and kung-fu (arms [r=0.248] and spine [r=0.228]). Conclusions: Different modalities of martial arts are related to higher bone mineral density in different body regions among adolescents. PMID:27017002

  15. Relationship between mechanical properties and bone mineral density of human femoral bone retrieved from patients with osteoarthritis.

    PubMed

    Haba, Yvonne; Lindner, Tobias; Fritsche, Andreas; Schiebenhöfer, Ann-Kristin; Souffrant, Robert; Kluess, Daniel; Skripitz, Ralf; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    The objective of this study was to analyse retrieved human femoral bone samples using three different test methods, to elucidate the relationship between bone mineral density and mechanical properties. Human femoral heads were retrieved from 22 donors undergoing primary total hip replacement due to hip osteoarthritis and stored for a maximum of 24 hours postoperatively at + 6 °C to 8 °C.Analysis revealed an average structural modulus of 232±130 N/mm(2) and ultimate compression strength of 6.1±3.3 N/mm(2) with high standard deviations. Bone mineral densities of 385±133 mg/cm(2) and 353±172 mg/cm(3) were measured using thedual energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT), respectively. Ashing resulted in a bone mineral density of 323±97 mg/cm(3). In particular, significant linear correlations were found between DXA and ashing with r = 0.89 (p < 0.01, n = 22) and between structural modulus and ashing with r = 0.76 (p < 0.01, n = 22).Thus, we demonstrated a significant relationship between mechanical properties and bone density. The correlations found can help to determine the mechanical load capacity of individual patients undergoing surgical treatments by means of noninvasive bone density measurements.

  16. Evaluation of Lunar small animal software for measuring bone mineral content in excised rat bones.

    PubMed

    Kiebzak, G M; Meyer, M H; Meyer, R A

    1999-01-01

    The purpose of this study was to evaluate software from Lunar Corporation (Madison, WI) designed for the measurement of bone mineral content ([BMC],g) in excised rat femurs using dual-energy X-ray absorptiometry (DXA). Femurs were harvested from intact 2- to 12-mo-old female Sprague-Dawley rats, stripped of soft tissues, wrapped in saline-soaked gauze, and frozen at -20 degrees F. Thawed bones were scanned in air on a 1.7-cm-thick Lucite plate that was laid on the manufacturer's supplied Delrin platform. Bones were in an anteroposterior position and scanned in a proximal-to-distal manner. Small animal software version 1.0d was used with a Lunar DPX-L densitometer. Regions of interest (ROIs) were the middle one-third of the diaphysis, a small central area of the distal metaphysis, and the total bone. Precision (n = 6 femurs) was calculated for each region of interest. After DXA scanning, one group of bones (n = 10 femurs) was dried and incinerated in a muffle furnace to obtain bone ash. The ash was then digested in acid and aliquots assayed for calcium using atomic absorption spectrophotometry. This group of bones was used to correlate BMC with ash weight and areal bone mineral density (BMD) with calcium concentration. A second group of bones (n = 14 femurs) was used to correlate BMC with maximal load to failure (N), a biomechanical variable that provides information about bone strength. Precision of repetitive measurements for the three ROIs was 1.2, 3.0, and 0.65%, respectively. Total femur BMC and total femur ash weights were significantly correlated (r = 0.974, p <0.0001). Total femur area BMD (g/cm2) was significantly correlated with calcium concentration (microM) of the bone hydrolysate (r = 0.686, p = 0.029). Total femur BMC and maximum load to midshaft fracture were also significantly correlated (r = 0.914, p<0.0001). The greatest problem with the software was with edge detection: operator intervention was necessary to place edges manually during scan

  17. High-strength mineralized collagen artificial bone

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  18. Utilization of DXA Bone Mineral Densitometry in Ontario

    PubMed Central

    2006-01-01

    Executive Summary Issue Systematic reviews and analyses of administrative data were performed to determine the appropriate use of bone mineral density (BMD) assessments using dual energy x-ray absorptiometry (DXA), and the associated trends in wrist and hip fractures in Ontario. Background Dual Energy X-ray Absorptiometry Bone Mineral Density Assessment Dual energy x-ray absorptiometry bone densitometers measure bone density based on differential absorption of 2 x-ray beams by bone and soft tissues. It is the gold standard for detecting and diagnosing osteoporosis, a systemic disease characterized by low bone density and altered bone structure, resulting in low bone strength and increased risk of fractures. The test is fast (approximately 10 minutes) and accurate (exceeds 90% at the hip), with low radiation (1/3 to 1/5 of that from a chest x-ray). DXA densitometers are licensed as Class 3 medical devices in Canada. The World Health Organization has established criteria for osteoporosis and osteopenia based on DXA BMD measurements: osteoporosis is defined as a BMD that is >2.5 standard deviations below the mean BMD for normal young adults (i.e. T-score <–2.5), while osteopenia is defined as BMD that is more than 1 standard deviation but less than 2.5 standard deviation below the mean for normal young adults (i.e. T-score< –1 & ≥–2.5). DXA densitometry is presently an insured health service in Ontario. Clinical Need   Burden of Disease The Canadian Multicenter Osteoporosis Study (CaMos) found that 16% of Canadian women and 6.6% of Canadian men have osteoporosis based on the WHO criteria, with prevalence increasing with age. Osteopenia was found in 49.6% of Canadian women and 39% of Canadian men. In Ontario, it is estimated that nearly 530,000 Ontarians have some degrees of osteoporosis. Osteoporosis-related fragility fractures occur most often in the wrist, femur and pelvis. These fractures, particularly those in the hip, are associated with increased

  19. Osteoporotic-like effects of cadmium on bone mineral density and content in aged ovariectomized beagles

    SciTech Connect

    Sacco-Gibson, N.; Abrams, J.; Chaudhry, S.; Hurst, D.; Peterson, D.; Bhattacharyya, M.

    1992-12-31

    Our purpose was to evaluate the effects of ovariectomy in conjunction with cadmium (Cd) exposure on bone. Aged female beagles with {sup 45}Ca-labeled skeletons ovariectomized and exposed to Cd. Successive vertebral scans by dual photon absorptiometry monitored changes in bone mineral density (BMD) in each dog with time. Results showed that ovariectomy or Cd exposure alone caused significant decreases in BMD; ovariectomy with Cd exposure caused the greatest decrease. Ovariectomy alone did not decrease BMD in the distal end or mid-shaft of the tibia while BMD of the distal tibia decreased significantly due to Cd exposure alone. Combination treatment resulted in significant decreases in BMD of both tibial regions. At necropsy, tibiae, humeri, lumbar vertebrae and ribs were obtained for biochemical analysis. No group-to-group differences in bone weights (wet, dry, ash), in ash/dry ratios, or in long bone and vertebral Ca/dry or Ca/ash ratios were observed. Significantly higher total {sup 45}Ca content and {sup 45}Ca/dry and {sup 45}Ca/ash ratios were observed in long bones and vertebrae of OV- and OV+ groups. In contrast, intact ribs showed significantly decreased Ca/dry and Ca/ash ratios compared to the SO-group. Quartered ribs demonstrated regional responses to specific treatment; decreases in total Ca content were greatest in the mid-rib region ({minus}36 to {minus}46%). Results suggest that in the aged female beagle, bone mineral loss associated with estrogen depletion is not only related to bone type (trabecular versus cortical) but also to bone Ca pools. Our results also suggest that a regional heterogeneity of bone plays a role in responsiveness to ovariectomy and Cd exposure. These aspects suggest that Cd is an exogenous factor affecting bone mineral loss independently of estrogen depletion. However, estrogen depletion primes bone for responsiveness to Cd-induced bone mineral loss.

  20. Comparison of nutritional intake, body composition, bone mineral density, and isokinetic strength in collegiate female dancers

    PubMed Central

    Lim, Se-Na; Chai, Joo-Hee; Song, Jong Kook; Seo, Myong-Won; Kim, Hyun-Bae

    2015-01-01

    This study compared nutritional intake, body composition, bone mineral density, and isokinetic strength by dance type in collegiate female dancers. The study subjects included Korean dancers (n=12), ballet dancers (n=13), contemporary dancers (n=8), and controls (n=12). Nutritional intake was estimated using the Computer Aided Nutritional Analysis Program. Body composition and bone mineral density were measured using dual-energy X-ray absorptiometry. Isokinetic knee joint strength was measured by Cybex 770-NORM. All statistical analyses were performed by SAS 9.2. Means and standard deviations were calculated using descriptive statistics. One-way analysis of variance was applied to evaluate nutritional intake, body composition, bone mineral density, and isokinetic strength differences. Duncan multiple range test was used for post hoc testing. A level of significance was set at P<0.05. The study results indicated no significant differences in nutritional in-take among dancer types. Despite no significant differences in body composition among dancer types, contemporary and ballet dancers had lower body fat percentages than controls (P<0.05). No significant differences were seen in bone mineral density and bone mineral contents among dancer types. No significant differences were found in isokinetic strength in right or left knee flexion and extension at 60°/sec (P<0.05). There were significant differences in body composition and isokinetic strength between dancer groups and the control group. Further studies of different professional dance type and more scientific methods of dance training are needed. PMID:26730387

  1. Bone turnover in passive smoking female rat: relationships to change in bone mineral density

    PubMed Central

    2011-01-01

    Background Many studies have identified smoking as a risk factor for osteoporosis, but it is unclear whether passive smoking has an effect on bone mineral density and bone turnover and if such an effect could cause osteoporosis.The purpose of the study was to investigate the effect of passive smoking on bone mineral density (BMD) and bone turnover and the relationship between BMD and bone turnover in female rat. Methods Forty-eight female Wistar rats were randomized into six groups: 2-month, 3-month,4-month smoke-exposed rats and their controls. A rat model of passive cigarette smoking was prepared by breeding female rats in a cigarette-smoking box for 2, 3 or 4 months. Serums were analyzed for levels of osteocalcin, bone-specific alkaline phosphatase (b-ALP) and Tartrate-resistant acid phosphatase 5b (TRACP 5b). BMD was assessed at lumbar vertebrae and femur by dual energy X-ray absorptiometry in passive smoking rats and in control rats. Results BMD of lumbar spine and femur was lower in 4-month smoke-exposed female rats than that in controls. However, there was no significant difference in serum osteocalcin levels between smoke-exposed rats and controls. Significantly lower b-ALP and higher TRACP 5b were found in the 3-month or 4-month smoke-exposed rats compared to controls. Subsequent analysis showed that b-ALP positively correlated with BMD of the lumbar vertebrae(r = 0.764, P = 0.027) and femur(r = 0.899, P = 0.002) in 4-month smoke-exposed female rats. Furthermore, TRACP 5b levels negatively correlated with BMD of lumbar vertebrae (r = -0.871, P = 0.005) and femur (r = -0.715, P = 0.046) in 4-month smoke-exposed female rats. Conclusion Our data suggest that smoke exposure can inhibit bone formation and increase bone resorption. The hazardous effects of passive smoking on bone status are associated with increased bone turnover in female rat. PMID:21663694

  2. Mathematical Model for the Mineralization of Bone

    NASA Technical Reports Server (NTRS)

    Martin, Bruce

    1994-01-01

    A mathematical model is presented for the transport and precipitation of mineral in refilling osteons. One goal of this model was to explain calcification 'halos,' in which the bone near the haversian canal is more highly mineralized than the more peripheral lamellae, which have been mineralizing longer. It was assumed that the precipitation rate of mineral is proportional to the difference between the local concentration of calcium ions and an equilibrium concentration and that the transport of ions is by either diffusion or some other concentration gradient-dependent process. Transport of ions was assumed to be slowed by the accumulation of mineral in the matrix along the transport path. ne model also mimics bone apposition, slowing of apposition during refilling, and mineralization lag time. It was found that simple diffusion cannot account for the transport of calcium ions into mineralizing bone, because the diffusion coefficient is two orders of magnitude too low. If a more rapid concentration gradient-driven means of transport exists, the model demonstrates that osteonal geometry and variable rate of refilling work together to produce calcification halos, as well as the primary and secondary calcification effect reported in the literature.

  3. Mathematical Model for the Mineralization of Bone

    NASA Technical Reports Server (NTRS)

    Martin, Bruce

    1994-01-01

    A mathematical model is presented for the transport and precipitation of mineral in refilling osteons. One goal of this model was to explain calcification 'halos,' in which the bone near the haversian canal is more highly mineralized than the more peripheral lamellae, which have been mineralizing longer. It was assumed that the precipitation rate of mineral is proportional to the difference between the local concentration of calcium ions and an equilibrium concentration and that the transport of ions is by either diffusion or some other concentration gradient-dependent process. Transport of ions was assumed to be slowed by the accumulation of mineral in the matrix along the transport path. The model also mimics bone apposition, slowing of apposition during refilling, and mineralization lag time. It was found that simple diffusion cannot account for the transport of calcium ions into mineralizing bone, because the diffusion coefficient is two orders of magnitude too low. If a more rapid concentration gradient-driven means of transport exists, the model demonstrates that osteonal geometry and variable rate of refilling work together to produce calcification halos, as well as the primary and secondary calcification effect reported in the literature.

  4. Bone Mineral Density at Diagnosis of Celiac Disease and after 1 Year of Gluten-Free Diet

    PubMed Central

    Pantaleoni, Stefano; Luchino, Massimo; Adriani, Alessandro; Pellicano, Rinaldo; Stradella, Davide; Ribaldone, Davide Giuseppe; Sapone, Nicoletta; Isaia, Gian Carlo; Di Stefano, Marco; Astegiano, Marco

    2014-01-01

    Atypical or silent celiac disease may go undiagnosed for many years and can frequently lead to loss of bone mineral density, with evolution to osteopenia or osteoporosis. The prevalence of the latter conditions, in case of new diagnosis of celiac disease, has been evaluated in many studies but, due to the variability of epidemiologic data and patient features, the results are contradictory. The aim of this study was to evaluate bone mineral density by dual-energy X-ray absorptiometry in 175 consecutive celiac patients at time of diagnosis (169 per-protocol, 23 males, 146 females; average age 38.9 years). Dual-energy X-ray absorptiometry was repeated after 1 year of gluten-free diet in those with T-score value <−1 at diagnosis. Stratification of patients according to sex and age showed a higher prevalence of low bone mineral density in men older than 30 years and in women of all ages. A 1-year gluten-free diet led to a significant improvement in lumbar spine and femoral neck mean T-score value. We propose that dual-energy X-ray absorptiometry should be performed at diagnosis of celiac disease in all women and in male aged >30 years, taking into account each risk factor in single patients. PMID:25379519

  5. Preoperative bone quality as a factor in dual-energy X-ray absorptiometry analysis comparing bone remodelling between two implant types

    PubMed Central

    Rahmy, Ali; Grimm, Bernd; Heyligers, Ide; Tonino, Alphons

    2006-01-01

    Recently it was shown that the design changes from the ABG-I to ABG-II hip stem resulted in a better, although not significant, proximal bone preservation. Our hypothesis was that by matching patients for preoperative bone quality, statistical power would increase and that the trend of better proximal bone preservation in ABG-II might become significant. Twenty-four ABG-II patients were compared to two different ABG-I groups: (1) 25 patients from our earlier prospective study and (2) a group of 24 patients selected to perfectly match the ABG-II group regarding gender, age and preoperative bone quality. Postoperative changes in periprosthetic bone mineral density (BMD) were quantified at 2 years postoperatively using DEXA scanning. Bone preservation (less BMD loss) was better for the ABG-II than the ABG-I (all two groups) in the proximal zones 1 and 7. In Gruen zone 7, a statistically significant difference was found for group B (p = 0.03). By matching patients for preoperative bone quality and gender, a statistical significant difference was found in proximal bone preservation in favour of ABG-II. In future comparative bone remodelling studies using DEXA, patients should be matched for preoperative bone quality and gender. PMID:17086429

  6. Changes in bone mineral density and bone-specific alkaline phosphatase in ovariectomized ewes.

    PubMed

    Turner, A S; Alvis, M; Myers, W; Stevens, M L; Lundy, M W

    1995-10-01

    An animal model of human osteoporosis which adequately meets many of the criteria needed to test new therapeutic agents is currently unavailable. The old ewe may serve this purpose, as changes in bone remodeling occur within 3 months, and a difference in bone mass has been indicated 6 months after ovariectomy. In the current study, we have measured longitudinal changes in bone mass and bone-specific alkaline phosphatase (BSAP) for six months in 7-9 year old ovariectomized (OVX) ewes. Thirty ewes were divided into three groups: sham-treated (n = 9), OVX (n = 12) and OVX with estrogen implants (OVXE, n = 9). Bone mineral density (BMD) was determined at 0, 3 and 6 months in the vertebrae (L4-L6/L5-L7), calcaneus (CAL) and distal radius (DR) using dual-energy X-ray absorptiometry (DEXA). Bone-Specific Alkaline Phosphatase (Tandem-R Ostase; Hybritech) was determined at monthly intervals. Body weight did not significantly change in any group during treatment compared to sham, although a trend of increasing body weight at 3 and 6 months was apparent in both OVX groups. Luteinizing hormone increased in all OVX ewes as a function of time as expected, demonstrating successful ovariectomies. Uterine weight was significantly increased (p < 0.01) in the OVXE animals compared to Sham and OVX groups. BMD did not change significantly during the 6-month treatment period in the CAL or DR. BMD in the vertebrae (L4-L6/L5-L7) was significantly lower in the OVX group compared to sham (p < 0.08).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8579943

  7. Enzyme Directed Templating of Artificial Bone Mineral**

    PubMed Central

    Spoerke, Erik D.; Anthony, Shawn G.; Stupp, Samuel I.

    2010-01-01

    Bone is one of Nature’s most remarkable materials, not only for its mechanical properties but also for its ability to repair fractures and remodel its microstructure in response to stress. At the nanoscale bone is a supramolecular matrix of collagen fibers reinforced by hydroxyapatite crystals with a high degree of order. Emulating elements of the biological synthesis of this composite could help develop strategies for advanced materials. Previous work has demonstrated the use of functionalized peptide amphiphile nanofibers in a two-dimensional system to emulate hydroxyapatite mineralization in natural bone. We describe here an artificial, in vitro biomineralization process that allows a similar process to occur in three dimensions. The system employs the natural enzyme alkaline phosphatase and a phosphorylated, anionic nanofiber gel matrix to template hydroxyapatite nanocrystals with size, shape, and crystallographic orientation resembling natural bone mineral. The formation of this biomimetic mineral in three dimensions results from the synergy of fiber-induced nucleation and the temporal control of phosphate ion harvesting by the enzyme. Gradual enzymatic harvesting of ions for crystal growth and the strong nucleating ability of the phosphorylated fibers suppresses uncontrolled precipitation of mineral. The strategy could lead to biomimetic materials to promote bone regeneration or the synthesis of hybrid materials with crystallographically defined structures. PMID:22068437

  8. [In vivo measurement of the mineral content of renal calculi by dual-photon absorptiometry. Correlation with its fragility to extracorporeal shockwave lithotripsy].

    PubMed

    Zanchetta, J R; Bogado, C E; Sánchez, T V; Gigler, C; Ghirlanda, J

    1995-01-01

    After a few years of experience with extracorporeal shock wave lithotripsy (ESWL) and other fragmentation techniques, it has become apparent that stone fragility is a significant clinical distinction that should be taken into consideration when selecting a treatment program. In 30 unselected patients, stone mineral content, density and area were measured in vivo by dual-photon absorptiometry prior to perform ESWL treatment. Stone area determinations showed a median of 4.21 with a range of 0.46 to 49.7 cm2. Stone mineral content (g) and stone density (g/cm2) values were 2.47 and 0.46 with ranges of 0.37 to 13.7 and 0.167 to 1.203 respectively. The number of shocks needed for total fragmentation were 2375 with a range of 1200 to 7800. No correlation could be found between the number of shocks needed for fragmentation and the stone area or density. On the other hand, a strong linear correlation (r = 0.81, p < 0.001) (Fig. 1) could be demonstrated between stone mineral content and the number of shocks needed for fragmentation. Our results support the concept that size alone is not always a suitable criterion for selecting a stone as appropiate for ESWL, since no correlation could be found between stone area and the number of shocks needed for total fragmentation. We were also unable to find any correlation between in vivo stone density measured by dual-photon absorptiometry and the number of shocks required for stone fragmentation. Instead, a strong linear correlation between stone mineral content and its resistance to shock wave fragmentation was found. Therefore, calculation of mineral content appears to be the determinant of the amount of energy required for total fragmentation. Our results strongly suggest that in vivo stone mineral content measurement provides helpful information for predicting the fragmentation prospect of a stone.

  9. [Osteoplastic effectiveness of mineralized bone matrix].

    PubMed

    2013-01-01

    In the experiment conducted on 50 Wistar rats, the peculiarities of the reparative osteogenesis were studied using scanning electron microscopy, x-ray electron-probe microanalysis and histological techniques. Granulated mineralized bone matrix (MBM) obtained without thermal and demineralizing treatment, was implanted into the tibial defect. MBM was found to possess marked osteoinductive and osteoconductive properties. It induced a prolonged activation of reparative osteogenesis after the implantation, as well as deep bone tissue ingrowth into the implant, acceleration of organotypic remodeling of regenerated bone, intense angiogenesis and early restoration of the damaged

  10. [Osteoplastic effectiveness of mineralized bone matrix].

    PubMed

    2013-01-01

    In the experiment conducted on 50 Wistar rats, the peculiarities of the reparative osteogenesis were studied using scanning electron microscopy, x-ray electron-probe microanalysis and histological techniques. Granulated mineralized bone matrix (MBM) obtained without thermal and demineralizing treatment, was implanted into the tibial defect. MBM was found to possess marked osteoinductive and osteoconductive properties. It induced a prolonged activation of reparative osteogenesis after the implantation, as well as deep bone tissue ingrowth into the implant, acceleration of organotypic remodeling of regenerated bone, intense angiogenesis and early restoration of the damaged PMID:23805618

  11. Physical activity and lifestyle effects on bone mineral density among young adults: sociodemographic and biochemical analysis

    PubMed Central

    Alghadir, Ahmad H.; Gabr, Sami A.; Al-Eisa, Einas

    2015-01-01

    [Purpose] The purpose of this study was to assess the possible role of physical activities, calcium consumption and lifestyle factors in both bone mineral density and bone metabolism indices in 350 young adult volunteers. [Subjects and Methods] All volunteers were recruited for the assessment of lifestyle behaviors and physical activity traits using validated questioners, and bone mineral density (BMD), serum osteocalcin (s-OC), bone-specific alkaline phosphatase (BAP), and calcium were estimated using dual-energy X-ray absorptiometry analysis, and immunoassay techniques. [Results] Male participants showed a significant increase in BMD along with an increase in bone metabolism markers compared with females in all groups. However, younger subjects showed a significant increase in BMD, OC, BAP, and calcium compared with older subjects. Osteoporosis was more common in older subjects linked with abnormal body mass index and waist circumference. Bone metabolism markers correlated positively with BMD, physically activity and negatively with osteoporosis in all stages. Also, moderate to higher calcium and milk intake correlated positively with higher BMD. However, low calcium and milk intake along with higher caffeine, and carbonated beverage consumption, and heavy cigarette smoking showed a negative effect on the status of bone mineral density. Stepwise regression analysis showed that life style factors including physical activity and demographic parameters explained around 58–69.8% of the bone mineral density variation in young adults especially females. [Conclusion] body mass index, physical activity, low calcium consumption, and abnormal lifestyle have role in bone mineral density and prognosis of osteoporosis in young adults. PMID:26311965

  12. Physical activity and lifestyle effects on bone mineral density among young adults: sociodemographic and biochemical analysis.

    PubMed

    Alghadir, Ahmad H; Gabr, Sami A; Al-Eisa, Einas

    2015-07-01

    [Purpose] The purpose of this study was to assess the possible role of physical activities, calcium consumption and lifestyle factors in both bone mineral density and bone metabolism indices in 350 young adult volunteers. [Subjects and Methods] All volunteers were recruited for the assessment of lifestyle behaviors and physical activity traits using validated questioners, and bone mineral density (BMD), serum osteocalcin (s-OC), bone-specific alkaline phosphatase (BAP), and calcium were estimated using dual-energy X-ray absorptiometry analysis, and immunoassay techniques. [Results] Male participants showed a significant increase in BMD along with an increase in bone metabolism markers compared with females in all groups. However, younger subjects showed a significant increase in BMD, OC, BAP, and calcium compared with older subjects. Osteoporosis was more common in older subjects linked with abnormal body mass index and waist circumference. Bone metabolism markers correlated positively with BMD, physically activity and negatively with osteoporosis in all stages. Also, moderate to higher calcium and milk intake correlated positively with higher BMD. However, low calcium and milk intake along with higher caffeine, and carbonated beverage consumption, and heavy cigarette smoking showed a negative effect on the status of bone mineral density. Stepwise regression analysis showed that life style factors including physical activity and demographic parameters explained around 58-69.8% of the bone mineral density variation in young adults especially females. [Conclusion] body mass index, physical activity, low calcium consumption, and abnormal lifestyle have role in bone mineral density and prognosis of osteoporosis in young adults. PMID:26311965

  13. Mineral and bone disorder after kidney transplantation

    PubMed Central

    Taweesedt, Pahnwat T; Disthabanchong, Sinee

    2015-01-01

    After successful kidney transplantation, accumulated waste products and electrolytes are excreted and regulatory hormones return to normal levels. Despite the improvement in mineral metabolites and mineral regulating hormones after kidney transplantation, abnormal bone and mineral metabolism continues to present in most patients. During the first 3 mo, fibroblast growth factor-23 (FGF-23) and parathyroid hormone levels decrease rapidly in association with an increase in 1,25-dihydroxyvitamin D production. Renal phosphate excretion resumes and serum calcium, if elevated before, returns toward normal levels. FGF-23 excess during the first 3-12 mo results in exaggerated renal phosphate loss and hypophosphatemia occurs in some patients. After 1 year, FGF-23 and serum phosphate return to normal levels but persistent hyperparathyroidism remains in some patients. The progression of vascular calcification also attenuates. High dose corticosteroid and persistent hyperparathyroidism are the most important factors influencing abnormal bone and mineral metabolism in long-term kidney transplant (KT) recipients. Bone loss occurs at a highest rate during the first 6-12 mo after transplantation. Measurement of bone mineral density is recommended in patients with estimated glomerular filtration rate > 30 mL/min. The use of active vitamin D with or without bisphosphonate is effective in preventing early post-transplant bone loss. Steroid withdrawal regimen is also beneficial in preservation of bone mass in long-term. Calcimimetic is an alternative therapy to parathyroidectomy in KT recipients with persistent hyperparathyroidism. If parathyroidectomy is required, subtotal to near total parathyroidectomy is recommended. Performing parathyroidectomy during the waiting period prior to transplantation is also preferred in patients with severe hyperparathyroidism associated with hypercalcemia. PMID:26722650

  14. Serum Bicarbonate and Bone Mineral Density in US Adults

    PubMed Central

    Chen, Wei; Melamed, Michal L.; Abramowitz, Matthew K.

    2014-01-01

    Background Chronic metabolic acidosis leads to bone mineral loss and results in lower bone mineral density (BMD), which is a risk factor for osteoporosis-related fractures. The effect of low-level metabolic acidosis on bone density in the general population is unknown. Study Design Cross-sectional study. Setting & Participants 9,724 nationally representative adults aged 20 years or older in the National Health and Nutrition Examination Survey 1999-2004. Factor Serum bicarbonate level. Outcomes Lumbar and total BMD as well as low lumbar and total bone mass defined as 1.0 SD below sex-specific mean of young adults. Measurements BMD was measured by dual-energy X-ray absorptiometry and serum bicarbonate levels were measured in all participants. Results Both men and women with lower serum bicarbonate levels were more likely to be current smokers and had higher body mass index and estimated net endogenous acid production. There was a significant linear trend across quartiles of serum bicarbonate with lumbar BMD among the total population as well as in sex-specific models (p=0.02 for all three models, p=0.1 for interaction). For total BMD, a significant association was seen with serum bicarbonate levels among women but not men (p=0.02 and p=0.1, respectively; p=0.8 for interaction); and a significant association was seen among post-menopausal women but not pre-menopausal women (p=0.02 and p=0.2, respectively; p=0.5 for interaction). Compared to women with serum bicarbonate level <24 mEq/L, those with serum bicarbonate ≥27 mEq/L had 0.018 g/cm2 higher total BMD (95% CI, 0.004-0.032; p=0.01) and had 31% lower odds of having low total bone mass (OR, 0.68; 95% CI, 0.46-0.99; p=0.05). Limitations Cross-sectional study using a single measurement of serum bicarbonate level. The subgroup differences are not definitive. Conclusions Lower serum bicarbonate levels are associated with lower BMD in US adults. Further studies should examine whether serum bicarbonate levels should be

  15. Bone mineral density and blood metals in premenopausal women

    SciTech Connect

    Pollack, A.Z.; Mumford, S.L.; Wactawski-Wende, J.; Yeung, E.; Mendola, P.; Mattison, D.R.; Schisterman, E.F.

    2013-01-15

    Exposure to metals, specifically cadmium, lead, and mercury, is widespread and is associated with reduced bone mineral density (BMD) in older populations, but the associations among premenopausal women are unclear. Therefore, we evaluated the relationship between these metals in blood and BMD (whole body, total hip, lumbar spine, and non-dominant wrist) quantified by dual energy X-ray absorptiometry in 248 premenopausal women, aged 18-44. Participants were of normal body mass index (mean BMI 24.1), young (mean age 27.4), 60% were white, 20% non-Hispanic black, 15% Asian, and 6% other race group, and were from the Buffalo, New York region. The median (interquartile range) level of cadmium was 0.30 {mu}g/l (0.19-0.43), of lead was 0.86 {mu}g/dl (0.68-1.20), and of mercury was 1.10 {mu}g/l (0.58-2.00). BMD was treated both as a continuous variable in linear regression and dichotomized at the 10th percentile for logistic regression analyses. Mercury was associated with reduced odds of decreased lumbar spine BMD (0.66, 95% confidence interval: 0.44, 0.99), but overall, metals at environmentally relevant levels of exposure were not associated with reduced BMD in this population of healthy, reproductive-aged women. Further research is needed to determine if the blood levels of cadmium, lead, and mercury in this population are sufficiently low that there is no substantive impact on bone, or if effects on bone can be expected only at older ages.

  16. Bone mineral density and blood metals in premenopausal women

    PubMed Central

    Pollack, AZ; Mumford, SL; Wactawski-Wende, J; Yeung, E; Mendola, P; Mattison, DR; Schisterman, EF

    2012-01-01

    Exposure to metals, specifically cadmium, lead, and mercury, is widespread and is associated with reduced bone mineral density (BMD) in older populations, but the associations among premenopausal women are unclear. Therefore, we evaluated the relationship between these metals in blood and BMD (whole body, total hip, lumbar spine, and non-dominant wrist) quantified by dual energy x-ray absorptiometry in 248 premenopausal women, aged 18–44. Participants were of normal body mass index (mean BMI 24.1), young (mean age 27.4), 60% were white, 20% non-Hispanic black, 15% Asian, and 6% other race group, and were from the Buffalo, New York region. The median (interquartile range) level of cadmium was 0.30 μg/l (0.19–0.43), of lead was 0.86 μg/dl (0.68–1.20), and of mercury was, 1.10 μg/l (0.58–2.00). BMD was treated both as a continuous variable in linear regression and dichotomized at the 10th percentile for logistic regression analyses. Mercury was associated with reduced odds of decreased lumbar spine BMD (0.66, 95% confidence interval: 0.44, 0.99), but overall, metals at environmentally relevant levels of exposure were not associated with reduced BMD in this population of healthy, reproductive-aged women. Further research is needed to determine if the blood levels of cadmium, lead, and mercury in this population are sufficiently low that there is no substantive impact on bone, or if effects on bone can be expected only at older ages. PMID:23122770

  17. Exercise Training and Bone Mineral Density.

    ERIC Educational Resources Information Center

    Lohman, Timothy G.

    1995-01-01

    The effect of exercise on total and regional bone mineral density (BMD) in postmenopausal women is reviewed. Studies on non-estrogen-replete postmenopausal women show 1-2% changes in regional BMD with 1 year of weight-bearing exercises. Studies of exercise training in the estrogen-replete postmenopausal population suggest large BMD changes.…

  18. Longitudinal bone mineral content and density in Rett syndrome and their contributing factors.

    PubMed

    Jefferson, Amanda; Fyfe, Sue; Downs, Jenny; Woodhead, Helen; Jacoby, Peter; Leonard, Helen

    2015-05-01

    Bone mass and density are low in females with Rett syndrome. This study used Dual energy x-ray absorptiometry to measure annual changes in z-scores for areal bone mineral density (aBMD) and bone mineral content (BMC) in the lumbar spine and total body in an Australian Rett syndrome cohort at baseline and then after three to four years. Bone mineral apparent density (BMAD) was calculated in the lumbar spine. Annual changes in lean tissue mass (LTM) and bone area (BA) were also assessed. The effects of age, genotype, mobility, menstrual status and epilepsy diagnosis on these parameters were also investigated. The baseline sample included 97 individuals who were representative of the total live Australian Rett syndrome population under 30years in 2005 (n=274). Of these 74 had a follow-up scan. Less than a quarter of females were able to walk on their own at follow-up. Bone area and LTM z-scores declined over the time between the baseline and follow-up scans. Mean height-standardised z-scores for the bone outcomes were obtained from multiple regression models. The lumbar spine showed a positive mean annual BMAD z-score change (0.08) and a marginal decrease in aBMD (-0.04). The mean z-score change per annum for those 'who could walk unaided' was more positive for LS BMAD (p=0.040). Total body BMD mean annual z-score change from baseline to follow-up was negative (-0.03). However this change was positive in those who had achieved menses prior to the study (0.03, p=0,040). Total body BMC showed the most negative change (-0.60), representing a decrease in bone mineral content over time. This normalised to a z-score change of 0.21 once adjusted for the reduced lean tissue mass mean z-score change (-0.21) and bone area mean z-score change (-0.14). Overall, the bone mineral content, bone mineral density, bone area and lean tissue mass z-scores for all outcome measures declined, with the TB BMC showing significant decreases. Weight, height and muscle mass appear to have

  19. Low bone mineral density in Friedreich ataxia.

    PubMed

    Eigentler, Andreas; Nachbauer, Wolfgang; Donnemiller, Eveline; Poewe, Werner; Gasser, Rudolf W; Boesch, Sylvia

    2014-10-01

    Friedreich ataxia (FRDA) is the most common inherited neurodegenerative ataxia. Apart from predominant neurological features an involvement of the skeletal system in terms of scoliosis and foot deformities is frequent. Disease-related falls, mobility restrictions, and wheelchair-dependency in later disease stages might additionally compromise bone structure in FRDA. The aim of this pilot study was to systematically evaluate the bone status in a representative FRDA cohort. Twenty-eight FRDA patients became enrolled in this cross-sectional study. Neurological assessment, a questionnaire comprising the history of fractures and osteoporosis as well as osteodensitometric measurements complemented with general and bone-specific laboratory parameters were performed. The WHO Fracture Risk Assessment tool (FRAX®) was applied, calculating the 10-year risk of suffering an osteoporotic fracture. Six patients (21.4 %) presented with a bone mineral density below the expected range for age in at least one of the examined sites (femoral neck, lumbar spine, and forearm) irrespective of their gender. Corresponding Z scores were significantly lower compared to normative values for the femoral neck and lumbar spine. Vitamin D status was insufficient in 11 and deficient in 8 FRDA patients. There was a strong negative correlation between ataxia severity, GAA repeat expansion and bone density in the femoral neck of FRDA patients. This is the first report of an increased rate of low bone mineral density in FRDA. Given the increased risk of falls, this data rectifies routine bone mineral density measurements in FRDA which may help to initiate therapeutic interventions to prevent this condition.

  20. Kinetic aspects of bone mineral metabolism

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1973-01-01

    Two techniques were studied for measuring changes in bone mass in rats. One technique measures the Ar-37 produced from calcium during neutron irradiation and the other measures the changes in the Na-22 content which has been incorporated within the rat bone. Both methods are performed in VIVO and cause no significant physiological damage. The Ar-37 leaves the body of a rat within an hour after being produced, and it can be quantitatively collected and measured with a precision of - or + 2% on the same rat. With appropriate irradiation conditions it appears that the absolute quantity of calcuim in any rat can be determined within - or + 3% regardless of animal size. The Na-22 when uniformly distributed in bone, can be used to monitor bone mineral turnover and this has been demonstrated in conditions of calcium deficiency during growth and also pregnancy coupled with calcium deficiency.

  1. Evaluation of the effect of cola drinks on bone mineral density and associated factors.

    PubMed

    Ogur, Recai; Uysal, Bulent; Ogur, Torel; Yaman, Halil; Oztas, Emin; Ozdemir, Aysegul; Hasde, Metin

    2007-05-01

    The aim of the study was to determine bone mineral density changes caused by consumption of cola drinks and the associated factors. Thirty Sprague-Dawley rats were divided into four groups. Groups 1 and 2, consisting of 10 male and 10 female rats, respectively, were provided with as much food, water and cola drinks as they wanted. Groups 3 and 4, consisting of five rats each, received only rat chow and water. The bone mineral density of the rats was measured using dual energy X-ray absorptiometry at the end of 30 days. The blood values and weights of the animals were also determined. The oesophagus and kidneys were removed for histopathological examination. The weight gain was higher in the groups consuming cola drinks than the control group rats (P < 0.05). Water consumption decreased 5.9 times while total fluid consumption increased 1.6-1.9 times in the group consuming cola drinks. No significant change was detected in the blood calcium levels. There was a significant decrease in the bone mineral density of test groups when compared to the control groups (P < 0.05). While we did not detect any pathological oesophageal changes in the rats consuming cola drinks, examination of the kidneys revealed general glomerular congestion and intertubular bleeding. We suggest that the decrease in bone mineral density might be related to the renal damage caused by cola drinks in addition to other related factors. PMID:17448120

  2. Relationship between bone mineral density, leptin and insulin concentration in Brazilian obese adolescents.

    PubMed

    do Prado, Wagner Luiz; de Piano, Aline; Lazaretti-Castro, Marise; de Mello, Marco Túlio; Stella, Sérgio Garcia; Tufik, Sergio; do Nascimento, Cláudia Maria Oller; Oyama, Lila Missae; Lofrano, Mara Cristina; Tock, Lian; Caranti, Danielle Arisa; Dâmaso, Ana Raimunda

    2009-01-01

    Despite the epidemic of adolescent obesity, the effect of obesity and hormones on bone mineral accrual during growth is poorly understood. Studies using dual-energy X-ray to examine the effect of obesity on bone mass in children and adolescents have yielded conflicting results. The aim of this study was to explore the combined and independent contributions of body mass index, body composition, leptin, insulin, glucose levels and Homeostasis Model Assessment Insulin Resistance (HOMA-IR) to bone mineral density (BMD) and bone mineral content in a group of Brazilian obese adolescents. This study included 109 post-pubescent obese adolescents. A whole-body dual-energy X-ray absorptiometry scan was performed,using a HOLOGIC QDR4200, to determine whole-body BMD and body composition. Blood samples were collected in the outpatient clinic after an overnight fast, and evaluated for fasting blood glucose and immunoreactive insulin. Leptin levels were assessed with a radioimmunoassay kit. Insulin resistance was assessed by HOMA-IR and the quantitative insulin sensitivity check index. Our results showed that insulin levels and HOMA-IR correlated negatively with BMD and a linear regression analysis showed that serum leptin is inversely associated to BMD adjusted for body mass. In conclusion, our data support the hypothesis that leptin, insulin and HOMA-IR are inversely associated with BMD and play a significant direct role in bone metabolism. PMID:19466592

  3. High resolution bone mineral densitometry with a gamma camera

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Jhingran, S.; Johnson, P.

    1983-01-01

    A technique by which the regional distribution of bone mineral can be determined in bone samples from small animals is described. The technique employs an Anger camera interfaced to a medical computer. High resolution imaging is possible by producing magnified images of the bone samples. Regional densitometry of femurs from oophorectomised and bone mineral loss.

  4. Effect of leg rotation on hip bone mineral density measurements.

    PubMed

    Lekamwasam, Sarath; Lenora, Robolge Sumith Janaka

    2003-01-01

    Bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) is widely used in the management of patients with osteoporosis. Factors, which are specific to machine or to operator, can influence the accuracy and precision of BMD estimations. We studied the effect of leg rotation by 10 degrees either internally or externally from the standard position in a group of 50 women (average age 54.9, SD = 11.1 yr) who were free of bone active diseases or medications. External rotation of leg by 10 degrees from the customary position increased the average BMD by 0.005, 0.003, and 0.036 g/cm2 in the femoral neck, trochanter, and Ward's area (p = 0.119, 0.309, and <0.001), respectively. Internal rotation of leg by 10 degrees from the customary position decreased the average BMD by 0.009, 0.005, and 0.006 g/cm2 in the femoral neck, trochanter, and Ward's area (p = <0.001, 0.008, and <0.001), respectively. The number of subjects qualified for the diagnosis of osteoporosis based on the T-scores (equal to or below -2.5) of the femoral neck and trochanter did not change significantly in three different positions (18% in the customary position and after the external rotation and 14% after the internal rotation). A significant change in the femoral neck BMD (defined as 2.77 x precision error) was seen in 12% of subjects after the internal rotation and 8% after the external rotation. Our data emphasize the need for proper positioning of the hip during DXA scanning. Malrotation of the hip can be an important confounding factor when interpreting serial BMD values.

  5. Bone mineral density in periodontally healthy and edentulous postmenopausal women.

    PubMed

    Bando, K; Nitta, H; Matsubara, M; Ishikawa, I

    1998-07-01

    (Osteoporosis is the most common metabolic disease among postmenopausal women. Reduced masticatory function caused by tooth loss may be a contributing risk factor of osteoporosis. The present study examined the effect of dentate state on skeletal bone mineral density (BMD) in postmenopausal women. Fourteen periodontally healthy dentate subjects (group H; mean age: 64.0 + 5.5 years) and 12 edentulous subjects (group E; mean age: 67.1 + 2.9 years) were randomly selected from the clinics of the departments of Periodontology and Gerodontology, respectively. Informed consent was obtained from all participants. BMD of the lumbar spine (L2-L4) was measured by dual energy x-ray absorptiometry. In addition, occlusal force was measured in 11 group H subjects and 8 group E subjects by using an occlusal diagnostic system. Risk factors associated with osteoporosis including age, calcium intake, physical activity, and cigarette smoking and causes of tooth loss were assessed by interview and questionnaire sent to all participants. The BMD of group H was 1.07 t 0.21 g/cm2 and that of group E was 0.89 + 0.17 g/cm2, which was significantly different(P< 0.05). The occlusal force of group H and E patients was 312.4 + 148 Nand 56.3 + 36 N, respectively, which was significantly different (P< 0.05). Risk factors such as calcium intake, physical activity, and smoking did not differ significantly between the 2 groups. Thus, the periodontally healthy dentate women, who showed about 6 times higher occlusal force than edentulous women, maintained significantly higher BMD of the lumbar spine than edentulous women. Our results suggest that sufficient masticatory function with periodontally healthy dentition may inhibit or delay the progress of osteoporotic change in skeletal bone or that edentulous women may be more susceptible to osteoporosis.

  6. Association of Circulating Renin and Aldosterone With Osteocalcin and Bone Mineral Density in African Ancestry Families.

    PubMed

    Kuipers, Allison L; Kammerer, Candace M; Pratt, J Howard; Bunker, Clareann H; Wheeler, Victor W; Patrick, Alan L; Zmuda, Joseph M

    2016-05-01

    Hypertension is associated with accelerated bone loss, and the renin-angiotensin-aldosterone system is a key regulator of blood pressure. Although components of this system are expressed in human bone cells, studies in humans are sparse. Thus, we studied the association of circulating renin and aldosterone with osteocalcin and bone mineral density. We recruited 373 African ancestry family members without regard to health status from 6 probands (mean family size: 62 and relative pairs: 1687). Participants underwent a clinical examination, dual-energy x-ray absorptiometry, and quantitative computed tomographic scans. Renin activity, aldosterone concentration, and osteocalcin were measured in fasting blood samples. Aldosterone/renin ratio was calculated as aldosterone concentration/renin activity. All models were analyzed using pedigree-based variance components methods. Full models included adjustment for age, sex, body composition, comorbidities, lifestyle factors, blood pressure, and antihypertensive medication. Higher renin activity was significantly associated with lower total osteocalcin and with higher trabecular bone mineral density (both P<0.01). There were also significant genetic correlations between renin activity and whole-body bone mineral density. There were no associations with aldosterone concentration in any model and results for aldosterone/renin ratio were similar to those for renin activity. This is the first study to report a significant association between renin activity and a marker of bone turnover and bone mineral density in generally healthy individuals. Also, there is evidence for significant genetic pleiotropy and, thus, there may be a shared biological mechanism underlying both the renin-angiotensin-aldosterone system and bone metabolism that is independent of hypertension. PMID:26975710

  7. Bone mineral content and bone mineral density are lower in older than in younger females with Rett syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although bone mineral deficits have been identified in Rett syndrome (RTT), the prevalence of low bone mineral density (BMD) and its association with skeletal fractures and scoliosis has not been characterized fully in girls and women with RTT. Accordingly, we measured total body bone mineral conten...

  8. Increased bone mineral content and bone size in the femoral neck of men with hip osteoarthritis

    PubMed Central

    Arokoski, J; Arokoski, M; Jurvelin, J; Helminen, H; Niemitukia, L; Kroger, H

    2002-01-01

    Objectives: Even though clinical findings support the idea that hip osteoarthritis (OA) is associated with increased bone mineral density (BMD), the subject remains controversial. This study was therefore initiated to investigate the relation between the severity of hip OA and femoral and calcaneal BMD. Methods: On the basis of the American College of Rheumatology criteria on classification of OA of the hip, 27 men (aged 47–64 years) with unilateral or bilateral hip OA and 30 age matched randomly selected healthy men were studied. Plain radiographs were graded using Li's scale from 0 (no OA) to 4 (severe OA). According to the side of the highest radiographic score from the patients with clinical hip OA, 29.6% had grade 1, 29.6% grade 2, and 40.8% grade 3 OA. Bone mineral content (BMC), areal BMD (BMDareal), and bone dimensions (area and width) were measured by dual x ray absorptiometry at the proximal femur. BMDareal of the calcaneus was measured from the central area of the bone. Volumetric measurements from magnetic resonance images of the femoral neck were used to create a BMD measure that was corrected for the femoral neck volume (BMDmri). Results: There were no differences in weight, or body mass index between the study groups. There were no significant BMDareal differences in any of the subregions of the proximal femur (femoral neck and trochanter) or calcaneus between the OA and control groups. Neither did the BMDmri of the femoral neck differ between the groups. However, the BMC of the femoral neck was 18% higher (p<0.01) in patients with OA than in controls. Similarly femoral neck bone width and volume were 9% and 18% respectively higher (p<0.001) in patients with OA. Conclusions: The results suggest that men with hip OA have larger femoral neck size and consequently higher BMC than healthy controls matched for age and sex. There is no significant difference in femoral neck BMD (BMDareal or BMDmri) between the groups. Furthermore, increased BMDareal was

  9. Anthropometric, bone age, and bone mineral density changes after a family-based treatment for obese children.

    PubMed

    Bermudez de la Vega, J Antonio; Vázquez, M Angeles; Bernal, Susana; Gentil, F Javier; Gonzalez-Hachero, Jose; Montoya, M Jose; Pérez-Cano, Ramón

    2007-10-01

    Our objective was to identify anthropometric, bone age, and bone mineral density (BMD) changes after a family-based treatment program for obese children. We conducted a longitudinal prospective study of 50 obese children (body mass index percentage [BMI%] > or =120%) aged 9.12 +/- 1.72 years (range 6-13) at baseline. A family-based treatment program, based on inadequate feeding style with progressive modification, aerobic physical exercise increase, active parental involvement, and the use of behavioural strategies (contracting, self-monitoring, social reinforcement), was developed during a 12-month period. Anthropometric data, lumbar spine (L2-L4) BMD by dual-energy X-ray absorptiometry, bone age (BA), bone age to chronological age ratio (BA/CA), and predicted adult height (PAH) were determined at baseline and 12 months. The statistical method used was analysis of variance and the paired Student t-test. Mean BMI standard deviation score (SDS) loss was -0.61 +/- 0.76 and BMI% loss was -5.17 +/- 9.73%. Height SDS significantly decreased, BA/CA ratio also decreased significantly, and PAH change was not significant. Lumbar spine BMD SDS and BMD% did not significantly change. A family-based treatment program was effective in obese children by reducing by 5% the BMI in 1 year and increasing the activity level. Treatment reduced growth velocity and delayed bone maturation rate without affecting PAH, reflecting a situation of previous early maturation. The treatment did not modify gaining bone mass.

  10. Assessment of bone mineral density by DXA and the trabecular microarchitecture of the calcaneum by texture analysis in pre- and postmenopausal women in the evaluation of osteoporosis.

    PubMed

    Karunanithi, R; Ganesan, S; Panicker, T M R; Korath, M Paul; Jagadeesan, K

    2007-10-01

    The in vivo evaluation of trabecular bone structure could be useful in the diagnosis of osteoporosis for the characterization of therapeutic response and understanding the role of parameters other than bone mineral density (BMD) in defining skeletal status. This study was made to evaluate changes taking place in the trabecular architecture of bone with age and menopausal status in women. The findings are compared with the femoral neck bone as well as the trochantar bone mineral density determined by dual energy X-ray absorptiometry (DXA), which is a standard reference test for evaluation of osteoporosis. Seventy females were recruited for the study, 25 premenopausal (mean age ± SD: 39.4 ± 3.8) and 45 postmenopausal (mean age ± SD: 57.9 ± 7.9) women. The right femoral neck bone mineral density was measured for them by dual energy X-ray absorptiometry (DXA). For the same individuals, lateral view radiographs of the right calcaneum were taken as well. The radiographs were digitized and the region of interest (ROI) of 256 × 256 pixels was selected, the run length matrix was computed for calculating seven parameters [Table 1] and the two dimensional fast Fourier transform of the image was calculated. Using the FFT, the power spectral density (PSD) was derived and the root mean square (RMS) value was determined. Our results confirm that age has a significant influence on the texture of the trabecular bone and bone mineral density. PMID:21224926

  11. [The relationship between the parameters of mineral density of bone tissue and somatotype in women residing in the Republic of Karelia].

    PubMed

    Pashkova, I G; Gaivoronskiy, I V; Aleksina, L A; Kornev, M A

    2014-01-01

    Comprehensive anthropometric and densitometric study using the dual x-ray absorptiometry was conducted to determine the relationship between the mineral density of bone tissue and somatotype in 360 women aged 20 to 87 years, permanently residing in the Republic of Karelia. Significant direct correlation was detected between the somatotype and the amount of mineral substances in the vertebrae, bone mineral density and the area of the lumbar vertebrae. Bone mineral density level of the lumbar vertebrae was higher in women with europlastic and athletic somatotypes, which were characterized by high values of body mass and length, body muscle and fat mass. Low values of bone mineral density of vertebrae were identified in women belonging to subathletic, mesoplastic and stenoplastic somatotypes. The risk of developing osteopenia and osteoporosis is increased in women with low body muscle mass. PMID:25823293

  12. The effects of Acanthopanax senticosus extract on bone turnover and bone mineral density in Korean postmenopausal women.

    PubMed

    Hwang, You-Cheol; Jeong, In-Kyung; Ahn, Kyu Jeung; Chung, Ho Yeon

    2009-01-01

    The purpose of this prospective randomized study was to investigate the effects of the extract of Acanthopanax senticosus (AS extract), a widely used oriental herb, on bone remodeling and bone mineral density in Korean postmenopausal women. A total of 81 postmenopausal women with osteopenia or osteoporosis, an age of less than 65 years, were enrolled in the study. Subjects were randomly assigned to two groups: (1) the control group (n = 40), calcium intake (500 mg per day), and (2) the treatment group (n = 41), calcium (500 mg per day) plus AS extract (3 g per day). After treatment with AS extract for 6 months, the AS extract group showed a significant increase in serum osteocalcin levels compared with the control group (P = 0.041). However, no significant changes in bone mineral density were observed by dual-energy X-ray absorptiometry (DXA). AS extract was generally well tolerated, and no differences were observed between the two groups in terms of adverse events. This study suggests that AS extract supplementation may have beneficial effects on bone remodeling in Korean postmenopausal women and that it has no significant adverse events.

  13. Comparison of the relationship between bone marrow adipose tissue and volumetric bone mineral density in children and adults.

    PubMed

    Shen, Wei; Velasquez, Gilbert; Chen, Jun; Jin, Ye; Heymsfield, Steven B; Gallagher, Dympna; Pi-Sunyer, F Xavier

    2014-01-01

    Several large-scale studies have reported the presence of an inverse relationship between bone mineral density (BMD) and bone marrow adipose tissue (BMAT) in adults. We aim to determine if there is an inverse relationship between pelvic volumetric BMD (vBMD) and pelvic BMAT in children and to compare this relationship in children and adults. Pelvic BMAT and bone volume (BV) was evaluated in 181 healthy children (5-17yr) and 495 healthy adults (≥18yr) with whole-body magnetic resonance imaging (MRI). Pelvic vBMD was calculated using whole-body dual-energy X-ray absorptiometry to measure pelvic bone mineral content and MRI-measured BV. An inverse correlation was found between pelvic BMAT and pelvic vBMD in both children (r=-0.374, p<0.001) and adults (r=-0.650, p<0.001). In regression analysis with pelvic vBMD as the dependent variable and BMAT as the independent variable, being a child or adult neither significantly contribute to the pelvic BMD (p=0.995) nor did its interaction with pelvic BMAT (p=0.415). The inverse relationship observed between pelvic vBMD and pelvic BMAT in children extends previous findings that found the inverse relationship to exist in adults and provides further support for a reciprocal relationship between adipocytes and osteoblasts.

  14. Relationship between nanoscale mineral properties and calcein labeling in mineralizing bone surfaces.

    PubMed

    Aido, Marta; Kerschnitzki, Michael; Hoerth, Rebecca; Burghammer, Manfred; Montero, Cédric; Checa, Sara; Fratzl, Peter; Duda, Georg N; Willie, Bettina M; Wagermaier, Wolfgang

    2014-08-01

    Bone's mineral properties, such as particle thickness and degree of alignment have been associated with bone quality. Bone formation, remodeling, aging of the tissue and mineral homeostasis influence mineral particle properties leading to specific patterns across bone. Scanning small angle X-ray scattering (sSAXS) with synchrotron radiation is a powerful tool, which allows us to study bone's nanoscale mineral properties in a position-resolved way. We used sSAXS, fluorescence light microscopy and backscattered electron (BSE) imaging to study bone's mineral properties at the tibial midshaft of in vivo-loaded mice. By combining these techniques, we could detect local changes in mineral properties. Regions labeled with calcein fluorochrome have lower mean mineral thickness and degree of mineral alignment. We also observed thinner and less aligned mineral particles near blood vessels. We conclude that mineral properties (i) are altered by fluorochrome labeling and (ii) depend on the proximity to blood vessels.

  15. Bone mineral density in children and young adults with neurofibromatosis type 1.

    PubMed

    Lodish, Maya B; Dagalakis, Urania; Sinaii, Ninet; Bornstein, Ethan; Kim, Aerang; Lokie, Kelsey B; Baldwin, Andrea M; Reynolds, James C; Dombi, Eva; Stratakis, Constantine A; Widemann, Brigitte C

    2012-12-01

    Concern for impaired bone health in children with neurofibromatosis type 1 (NF-1) has led to increased interest in bone densitometry in this population. Our study assessed bone mineral apparent density (BMAD) and whole-body bone mineral content (BMC)/height in pediatric patients with NF-1 with a high plexiform neurofibroma burden. Sixty-nine patients with NF-1 (age range 5.2-24.8; mean 13.7 ± 4.8 years) were studied. Hologic dual-energy X-ray absorptiometry scans (Hologic, Inc., Bedford, MA, USA) were performed on all patients. BMD was normalized to derive a reference volume by correcting for height through the use of the BMAD, as well as the BMC. BMAD of the lumbar spine (LS 2-4), femoral neck (FN), and total body BMC/height were measured and Z-scores were calculated. Impaired bone mineral density was defined as a Z-score ≤-2. Forty-seven percent of patients exhibited impaired bone mineral density at any bone site, with 36% at the LS, 18% at the FN, and 20% total BMC/height. BMAD Z-scores of the LS (-1.60 ± 1.26) were more impaired compared with both the FN (-0.54 ± 1.58; P=0.0003) and the whole-body BMC/height Z-scores (-1.16 ± 0.90; P=0.036). Plexiform neurofibroma burden was negatively correlated with LS BMAD (r(s)=-0.36, P=0.01). In pediatric and young adult patients with NF-1, LS BMAD was more severely affected than the FN BMAD or whole-body BMC/height.

  16. Bone mineral content in postmenopausal women: comparison of omnivores and vegetarians.

    PubMed

    Hunt, I F; Murphy, N J; Henderson, C; Clark, V A; Jacobs, R M; Johnston, P K; Coulson, A H

    1989-09-01

    This cross-sectional study of bone mineral content (BMC)/bone width (BW) (BMC/BW, cortical radius) was conducted in elderly, free-living Methodist omnivores (n = 146) and Seventh-day Adventist vegetarians (n = 144) in southern California. The purpose was to investigate relationships between BMC/BW and dietary factors (primarily vegetarianism and intakes of protein and calcium) and use of prescribed drugs. BMC was measured by single-photon absorptiometry. Dietary intakes during current and early periods of life were assessed by 24-h dietary recall and frequency methods. Information about drug use was obtained by interview. BMC/BW was not different in omnivores vs vegetarians. There were no significant relationships or trends between current or early dietary intakes and BMC/BW in either group. In multiple-regression analysis, age, weight, and use of estrogen and thiazide diuretics were predictive of 31% of the variability in BMC/BW in the total group.

  17. Bone mineral density in patients with destructive arthrosis of the hip joint.

    PubMed

    Okano, Kunihiko; Aoyagi, Kiyoshi; Enomoto, Hiroshi; Osaki, Makoto; Chiba, Ko; Yamaguchi, Kazumasa

    2014-05-01

    Recent reports have shown the existence of subchondral insufficiency fracture in rapidly destructive arthrosis of the hip joint (RDA), and the findings suggest that osteopenia is related to the pathogenesis of the rapid progression of this disease. Therefore, we measured bone mineral density (BMD) in RDA patients. We measured BMD of the lumbar spine, radius, and calcaneus using dual-energy X-ray absorptiometry in 19 patients with RDA and 75 with osteoarthritis of the hip (OA) and compared BMD at different skeletal sites between RDA and OA patients. No significant differences were observed in BMD of the lumbar spine, ultradistal radius, mid-radius, and calcaneous between the RDA and OA groups. Our data suggest that RDA is not accompanied by generalized osteoporosis. Factors other than generalized bone status, for example, BMD around the affected hip joint before destruction, need to be analyzed to elucidate the pathophysiological mechanism of RDA.

  18. Exposure to cadmium and persistent organochlorine pollutants and its association with bone mineral density and markers of bone metabolism on postmenopausal women

    SciTech Connect

    Rignell-Hydbom, A.; Skerfving, S.; Lundh, T.; Lindh, C.H.; Elmstahl, S.; Bjellerup, P.; Juensson, B.A.G.; Struemberg, U.; Akesson, A.

    2009-11-15

    Environmental contaminants such as cadmium and persistent organochlorine pollutants have been proposed as risk factors of osteoporosis, and women may be at an increased risk. To assess associations between exposure to cadmium and two different POPs (2,2',4,4',5,5'-hexachlorobiphenyl CB-153, 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene p,p'-DDE), on one hand, and bone effects, on the other, in a population-based study among postmenopausal (60-70 years) Swedish women with biobanked blood samples. The study included 908 women and was designed to have a large contrast of bone mineral densities, measured with a single photon absorptiometry technique in the non-dominant forearm. Biochemical markers related to bone metabolism were analyzed in serum. Exposure assessment was based on cadmium concentrations in erythrocytes and serum concentrations of CB-153 and p,p'-DDE. Cadmium was negatively associated with bone mineral density and parathyroid hormone, positively with the marker of bone resorption. However, this association disappeared after adjustment for smoking. The major DDT metabolite (p,p'-DDE) was positively associated with bone mineral density, an association which remained after adjustment for confounders, but the effect was weak. There was no evidence that the estrogenic congener (CB-153) was associated with any of the bone markers. In conclusion, no convincing associations were observed between cadmium and POPs, on one hand, and bone metabolism markers and BMD, on the other.

  19. Effect of Three-year Multi-Component Exercise Training on Bone Mineral Density and Content in a Postmenopausal Woman with Osteoporosis: A Case Report.

    PubMed

    Movaseghi, Farzaneh; Sadeghi, Heydar

    2015-05-01

    The purpose of the present study was to examine the effect of 3-years of moderate multi-component exercise training on bone mineral density and bone mineral content in a female subject with osteoporosis. A 57-year-old postmenopausal woman, a known case of osteoporosis following an accident, participated in this study. Bone mineral density and bone mineral content was measured in the femoral neck area and the lumbar spine by dual energy X-ray absorptiometry. The measurements lasted four years, first year without any exercise training and three succeeding years with exercise intervention. After three years of exercise training, bone mineral density and bone mineral content were improved in both regions, despite the increase in age and decrease in weight. This case highlights the importance of exercise training in maintaining and increasing bone mineral density and bone mineral content of the spine and hip in post-menopausal women. Considering its positive effects, regular and lifelong exercise training must be incorporated into peoples' life due to the chronic nature of bone loss in aging process.

  20. Reloading partly recovers bone mineral density and mechanical properties in hind limb unloaded rats

    NASA Astrophysics Data System (ADS)

    Zhao, Fan; Li, Dijie; Arfat, Yasir; Chen, Zhihao; Liu, Zonglin; Lin, Yu; Ding, Chong; Sun, Yulong; Hu, Lifang; Shang, Peng; Qian, Airong

    2014-12-01

    Skeletal unloading results in decreased bone formation and bone mass. During long-term space flight, the decreased bone mass is impossible to fully recover. Therefore, it is necessary to develop the effective countermeasures to prevent spaceflight-induced bone loss. Hindlimb Unloading (HLU) simulates effects of weightlessness and is utilized extensively to examine the response of musculoskeletal systems to certain aspects of space flight. The purpose of this study is to investigate the effects of a 4-week HLU in rats and subsequent reloading on the bone mineral density (BMD) and mechanical properties of load-bearing bones. After HLU for 4 weeks, the rats were then subjected to reloading for 1 week, 2 weeks and 3 weeks, and then the BMD of the femur, tibia and lumbar spine in rats were assessed by dual energy X-ray absorptiometry (DXA) every week. The mechanical properties of the femur were determined by three-point bending test. Dry bone and bone ash of femur were obtained through Oven-Drying method and were weighed respectively. Serum alkaline phosphatase (ALP) and serum calcium were examined through ELISA and Atomic Absorption Spectrometry. The results showed that 4 weeks of HLU significantly decreased body weight of rats and reloading for 1 week, 2 weeks or 3 weeks did not recover the weight loss induced by HLU. However, after 2 weeks of reloading, BMD of femur and tibia of HLU rats partly recovered (+10.4%, +2.3%). After 3 weeks of reloading, the reduction of BMD, energy absorption, bone mass and mechanical properties of bone induced by HLU recovered to some extent. The changes in serum ALP and serum calcium induced by HLU were also recovered after reloading. Our results indicate that a short period of reloading could not completely recover bone after a period of unloading, thus some interventions such as mechanical vibration or pharmaceuticals are necessary to help bone recovery.

  1. Total body composition by dual-photon (153Gd) absorptiometry

    SciTech Connect

    Mazess, R.B.; Peppler, W.W.; Gibbons, M.

    1984-10-01

    The lean-fat composition (%FATR) of soft tissue and the mineral mass of the skeleton were determined in vivo using dual-photon (153Gd) absorptiometry (dose under 2 mrem). A rectilinear raster scan was made over the entire body in 18 subjects (14 female, 4 male). Single-photon absorptiometry (125I) measured bone mineral content on the radius. Percentage fat (%FATD) was determined in the same subjects using body density (from underwater weighing with correction for residual lung volume). Lean body mass (LBM) was determined using both %FATR and %FATD. Percentage fat from absorptiometry and from underwater density were correlated (r . 0.87). The deviation of %FATD from %FATR was due to the amount of skeletal mineral as a percentage of the LBM (r . 0.90). Therefore, skeletal variability, even in normal subjects, where mineral ranges only from 4 to 8% of the LBM, essentially precludes use of body density as a composition indicator unless skeletal mass is measured. Anthropometry (fatfolds and weight) predicted %FATR and LBM at least as well as did underwater density. The predictive error of %FATR from fatfolds was 5% while the predictive error in predicting LBM from anthropometry was 2 to 3 kg (3%).

  2. Comparisons of bone mineral density and bone quality in adult rock climbers, resistance-trained men, and untrained men.

    PubMed

    Sherk, Vanessa D; Bemben, Michael G; Bemben, Debra A

    2010-09-01

    The nature of muscular contractions and episodes of impact loading during technical rock climbing are often varied and complex, and the resulting effects on bone health are unclear. The purpose of this study was to compare total body, lumbar spine, proximal femur, and forearm areal bone mineral density (aBMD) and tibia and forearm bone quality in male rock climbers (RC) (n = 15), resistance trained men (RT) (n = 16), and untrained male controls (CTR) (n = 16). Total body, anteroposterior (AP) lumbar spine, proximal femur, and forearm aBMD and body composition were measured using dual-energy X-ray absorptiometry (DXA) (Lunar Prodigy, v. 10.50.086; GE Healthcare, Waukesha, Wisconsin, U.S.A.). Volumetric BMD (vBMD), bone content, bone area, and muscle cross-sectional area (MCSA) of the tibia and forearm were measured using pQCT (peripheral quantitative computed tomography; Stratec XCT 3000, Pforzheim, Germany). No significant group differences were seen in bone-free lean body mass. CTR had significantly (p < 0.05) greater body fat % than RC and RT and significantly (p < 0.05) greater fat mass than RC. Lumbar spine and femoral neck aBMD were significantly (p < 0.05) greater in RT compared to both RC and CTR. RC had significantly (p < 0.05) lower aBMD at the 33% radius site than CTR. Forearm MCSA was significantly (p < 0.05) lower in CTR than in the other groups. No significant differences were seen between groups for vBMD or bone area of the tibia and forearm. In conclusion, resistance-trained men had higher bone density at the central skeletal sites than rock climbers; however, bone quality variables of the peripheral limbs were similar in rock climber and resistance-trained groups.

  3. Effects of Exercise on Bone Mineral Content in Postmenopausal Women.

    ERIC Educational Resources Information Center

    Rikli, Roberta E.; McManis, Beth G.

    1990-01-01

    Study tested the effect of exercise programs on bone mineral content (BMC) and BMC/bone width in 31 postmenopausal women. Subjects were placed in groups with aerobic exercise, aerobics plus upper-body weight training, or no exercise. Results indicate that regular exercise programs positively affect bone mineral maintenance in postmenopausal women.…

  4. Bone mineral density, muscle strength, and recreational exercise in men

    NASA Technical Reports Server (NTRS)

    Snow-Harter, C.; Whalen, R.; Myburgh, K.; Arnaud, S.; Marcus, R.

    1992-01-01

    Muscle strength has been shown to predict bone mineral density (BMD) in women. We examined this relationship in 50 healthy men who ranged in age from 28 to 51 years (average 38.3 years). BMD of the lumbar spine, proximal femur, whole body, and tibia were measured by dual-energy x-ray absorptiometry (Hologic QDR 1000W). Dynamic strength using one repetition maximum was assessed for the biceps, quadriceps, and back extensors and for the hip abductors, adductors, and flexors. Isometric grip strength was measured by dynamometry. Daily walking mileage was assessed by 9 week stepmeter records and kinematic analysis of video filming. Subjects were designated as exercisers and nonexercisers. Exercisers participated in recreational exercise at least two times each week. The results demonstrated that BMD at all sites correlated with back and biceps strength (p < 0.01 to p = 0.0001). Body weight correlated with tibia and whole-body BMD (p < 0.001); age negatively correlated with Ward's triangle BMD (p < 0.01). In stepwise multiple regressions, back strength was the only independent predictor of spine and femoral neck density (R2 = 0.27). Further, back strength was the most robust predictor of BMD at the trochanter, Ward's triangle, whole body, and tibia, although biceps strength, age, body weight, and leg strength contributed significantly to BMD at these skeletal sites, accounting for 35-52% of the variance in BMD. Exercisers and nonexercisers were similar for walking (3.97 versus 3.94 miles/day), age (37.8 versus 38.5) years, and weight (80.0 versus 77.7 kg). However, BMD and muscle strength were significantly greater in exercises than in nonexercisers.(ABSTRACT TRUNCATED AT 250 WORDS).

  5. Exercise and bone mineral density in mature female athletes.

    PubMed

    Dook, J E; James, C; Henderson, N K; Price, R I

    1997-03-01

    An understanding of the relationship between weight-bearing activity and bone mineral density (BMD) is important in devising strategies to maximize and maintain skeletal strength in the female population, particularly those entering menopause. Three contrasting groups (N = 20) of mature female athletes (42-50 yr) with long-term (> 20 yr) histories of significant training and performance in their chosen sport were studied cross-sectionally. The groups were: (i) high impact sport (netball/basketball; HIGH), (ii) medium impact sport (running/field hockey; MED) and (iii) a nonimpact sport (swimming; NON) and (iv) a nonsport control group (CON; N = 20). Whole body and regional BMD and body composition (fat and lean mass) were measured by dual-energy x-ray absorptiometry. Isometric strength of dominant arm flexors and leg extensors was measured by a strain tensiometer. With an alpha level of significance of 0.05, HIGH showed significantly greater whole body and regional leg BMD than NON or CON. MED registered higher values than CON for whole body and regional leg BMD. Only HIGH had significantly greater leg strength than CON. Regional arm BMD was significantly greater in all exercising groups compared with CON, but no significant difference in arm strength was found between any groups. The athletic groups all had significantly lower body fat and higher height-corrected lean mass than CON. Height-corrected lean mass, height and leg extensor strength, but not calcium intake, arm flexor strength or body fat, were significant predictors of whole body and regional arm and leg BMD. Using the significant predictors as covariates, the impact groups (HIGH/MED) had significantly higher whole body BMD than CON. HIGH also had significantly higher whole body BMD than NON and both impact groups were greater than NON in regional leg BMD. Results suggest that females who participate regularly in the premenopausal years in high impact physical activity tend to have higher BMD than

  6. Experimental investigation of bone mineral density in Thoroughbreds using quantitative computed tomography

    PubMed Central

    YAMADA, Kazutaka; SATO, Fumio; HIGUCHI, Tohru; NISHIHARA, Kaori; KAYANO, Mitsunori; SASAKI, Naoki; NAMBO, Yasuo

    2015-01-01

    ABSTRACT Bone mineral density (BMD) is one of the indications of the strength and health. BMD measured by quantitative computed tomography (QCT) was compared with that measured by dual energy X-ray absorptiometry (DXA) and radiographic bone aluminum equivalence (RBAE). Limbs were removed from horses that had been euthanized for reasons not associated with this study. Sixteen limbs (left and right metacarpals and metatarsals) from 4 horses were used to compare BMD as measured by QCT with those measured by DXA and RBAE. There was a strong correlation between BMD values measured by QCT and those measured by DXA (R2=0.85); correlation was also observed between values obtained by QCT and those obtained by RBAE (R2=0.61). To investigate changes in BMD with age, 37 right metacarpal bones, including 7 from horses euthanized because of fracture were examined by QCT. The BMD value of samples from horses dramatically increased until 2 years of age and then plateaued, a pattern similar to the growth curve. The BMD values of bone samples from horses euthanized because of fracture were within the population range, and samples of morbid fracture were not included. The relationship between BMD and age provides a reference for further quantitative studies of bone development and remodeling. Quantitative measurement of BMD using QCT may have great potential for the evaluation of bone biology for breeding and rearing management. PMID:26435681

  7. Experimental investigation of bone mineral density in Thoroughbreds using quantitative computed tomography.

    PubMed

    Yamada, Kazutaka; Sato, Fumio; Higuchi, Tohru; Nishihara, Kaori; Kayano, Mitsunori; Sasaki, Naoki; Nambo, Yasuo

    2015-01-01

    Bone mineral density (BMD) is one of the indications of the strength and health. BMD measured by quantitative computed tomography (QCT) was compared with that measured by dual energy X-ray absorptiometry (DXA) and radiographic bone aluminum equivalence (RBAE). Limbs were removed from horses that had been euthanized for reasons not associated with this study. Sixteen limbs (left and right metacarpals and metatarsals) from 4 horses were used to compare BMD as measured by QCT with those measured by DXA and RBAE. There was a strong correlation between BMD values measured by QCT and those measured by DXA (R(2)=0.85); correlation was also observed between values obtained by QCT and those obtained by RBAE (R(2)=0.61). To investigate changes in BMD with age, 37 right metacarpal bones, including 7 from horses euthanized because of fracture were examined by QCT. The BMD value of samples from horses dramatically increased until 2 years of age and then plateaued, a pattern similar to the growth curve. The BMD values of bone samples from horses euthanized because of fracture were within the population range, and samples of morbid fracture were not included. The relationship between BMD and age provides a reference for further quantitative studies of bone development and remodeling. Quantitative measurement of BMD using QCT may have great potential for the evaluation of bone biology for breeding and rearing management. PMID:26435681

  8. Pathophysiology of chronic kidney disease-mineral and bone disorder.

    PubMed

    Mac Way, Fabrice; Lessard, Myriam; Lafage-Proust, Marie-Hélène

    2012-12-01

    Chronic kidney disease (CKD) alters the metabolism of several minerals, thereby inducing bone lesions and vessel-wall calcifications that can cause functional impairments and excess mortality. The histological bone abnormalities seen in CKD, known as renal osteodystrophy, consist of alterations in the bone turnover rate, which may be increased (osteitis fibrosa [OF]) or severely decreased (adynamic bone disease [AD]); abnormal mineralization (osteomalacia [OM]), and bone loss. Secondary hyperparathyroidism is related to early phosphate accumulation (responsible for FGF23 overproduction by bone tissue), decreased calcitriol production by the kidneys, and hypocalcemia. Secondary hyperparathyroidism is associated with OF. Other factors that affect bone include acidosis, chronic inflammation, nutritional deficiencies, and iatrogenic complications.

  9. [Modification of bone quality by extreme physical stress. Bone density measurements in high-performance athletes using dual-energy x-ray absorptiometry].

    PubMed

    Sabo, D; Reiter, A; Pfeil, J; Güssbacher, A; Niethard, F U

    1996-01-01

    The treatment of osteoporosis is still controversial. Rehabilitation programs which stress strengthening exercises as well as impact loading activities increase the bone mass. On the other side activity level early in life has not been proven to correlate with increased bone mineral content later in life. Little is known on the influence of high performance sports on the bone density especially in athletes with high demands on weight bearing of the spine. In (n = 40) internationally top ranked high performance athletes of different disciplines (n = 28 weight-lifters, n = 6 sports-boxers and n = 6 bicycle-racers) bone density measurements of the lumbar spine and the left hip were performed. The measurements were carried out by dual-photonabsorptiometry (DEXA; QDR 2000, Siemens) and evaluated by an interactive software-programme (Hologic Inc.). The results were compared to the measurements of 21 age-matched male control individuals. In the high performance weight lifters there was an increase of bone density compared to the control individuals of 23% in the Ward's triangle (p < 0.01). The sports-boxers had an increase up to 17% (lumbar spine), 9% (hip) and 7% (Wards' triangle). In the third athletes group (Tour de France-bikers) BMD was decreased 10% in the lumbar spine, 14% in the hip and 17% in the Wards' triangle. Our results show that training programs stressing axial loads of the skeletal system may lead to an increase of BMD in the spine and the hip of young individuals. Other authors findings, that the BMD of endurance athletes may decrease, is confirmed. Nevertheless the bikers BMD-loss of 10 to 17% was surprisingly high.

  10. [Bone turnover and mineralization in patients with kidney failure].

    PubMed

    James, Junichiro

    2016-09-01

    Bone remodeling is a device to accomplish "the buffering of the extracellular fluid mineral", which is one of the two major physiological functions of bone. Bone turnover is a term to express the frequency of bone remodeling, and its last step is calcification. When remodeling is induced, at first a large amount of mineral is released from bone to extracellular fluid transiently, and thereafter mineral is slowly and steadily drawn into bone. The extracellular minerals, especially calcium, are maintained by this repetition. When kidney is injured, bone turnover takes a wide spectrum from remarkably high cases to low cases. Primary calcification also shows marked individual differences. The classic renal bone diseases 5 classification clearly categorizes these disease condition, which is synonymous with renal osteodystrophy today. PMID:27561340

  11. Hypermineralized whale rostrum as the exemplar for bone mineral

    PubMed Central

    Li, Zhen; Pasteris, Jill D.; Novack, Deborah

    2013-01-01

    Although bone is a nanocomposite of mineral and collagen, mineral has been the more elusive component to study. A standard for bone mineral clearly is needed. We hypothesized that the most natural, least-processed bone mineral could be retrieved from the most highly mineralized bone. We therefore studied the rostrum of the toothed whale Mesoplodon densirostris, which has the densest recognized bone. Essential to establishment of a standard for bone mineral is documentation that the proposed tissue is bone-like in all properties except for its remarkably high concentration of mineral. Transmitted-light microscopy of unstained sections of rostral material shows normal bone morphology in osteon geometry, lacunae concentration, and vasculature development. Stained sections reveal extremely low density of thin collagen fibers throughout most of the bone, but enrichment in and thicker collagen fibers around vascular holes and in a minority of osteons. FE-SEM shows the rostrum to consist mostly of dense mineral prisms. Most rostral areas have the same chemical-structural features, Raman spectroscopically dominated by strong bands at ~962 Δcm−1 and weak bands at ~2940 Δcm−1. Spectral features indicate that the rostrum is composed mainly of the calcium phosphate mineral apatite and has only about 4 wt.% organic content. The degree of carbonate substitution (~8.5 wt.% carbonate) in the apatite is in the upper range found in most types of bone. We conclude that, despite its enamel-like extraordinarily high degree of mineralization, the rostrum is in all other features bone-like. Its mineral component is the long-sought uncontaminated, unaltered exemplar of bone mineral. PMID:23586370

  12. Sequential bone mineral content in small preterm infants with and without fractures and rickets

    SciTech Connect

    Koo, W.W.; Sherman, R.; Succop, P.; Oestreich, A.E.; Tsang, R.C.; Krug-Wispe, S.K.; Steichen, J.J.

    1988-04-01

    Seventy-four infants with birth weights 1009 +/- 28 grams and gestational age 28.6 +/- 0.3 weeks (M +/- SEM) were studied prospectively to test the hypotheses that bone mineral content (BMC) measured by photon absorptiometry, would be: (1) lower in very low birth weight (VLBW) infants with radiographic evidence of fractures and/or rickets (F/R), and (2) will continue to be lower over the first year when compared to VLBW infants without F/R. BMC and bone width (BW) of the distal one-third of left radius and ulna were measured at 5 weeks (n = 8), 14 weeks (n = 61), 26 weeks (n = 58), 40 weeks (n = 59), and 1 year (n = 52). Standardized radiographs of both forearms, and weight, length, and head circumference were also determined at each study age. Investigators and technicians involved in the photon absorptiometry measurements were unaware of the radiographic findings and vice versa. Twenty-three of 74 infants were found to have F/R. BMC of studied infants remained markedly below our previously determined range of intrauterine bone mineralization, even at 26 weeks after birth. There was no significant difference in BMC or BW between infants with and without F/R, either at the time of confirmation of F/R or during early follow-up; however, BMC was lower at greater than or equal to 6 months and BW was lower at greater than or equal to 9 months in infants with F/R. We suggest that the extremely low BMC measurements in early infancy predispose all VLBW infants to fractures and rickets.

  13. The Mineral-Collagen Interface in Bone.

    PubMed

    Stock, S R

    2015-09-01

    The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone's remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material's performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions. PMID:25824581

  14. [MINERAL BONE DENSITY AND BODY COMPOSITION IN PARTICIPANTS IN EXPERIMENT MARS-500].

    PubMed

    Novikov, V E; Oganov, V S; Kabitskaya, O E; Murashko, L M; Naidina, V P; Chernikhova, E A

    2016-01-01

    Investigations of the bone system and body composition in Mars-500 test-subjects (prior to and on completion of the experiment) involved dual-energy X-ray absorptiometry (DXA) using the HOLOGIC Delphy densitometer and the protocol performed to examine cosmonauts. Bone density of lumber vertebrae and femoral proximal epiphysis, and body composition were measured. Reliable changes in vertebral density found in 3 test-subjects displayed different trends from +2.6 to -2.4%. At the same time, the experiment decreased significantly mineral density of the femoral proximal epiphysis, including the neck, in all test-subjects. Four test-subjects had cranial mineralization increased by 5-9%, same as in some cosmonauts after space flight. All tests-subjects incurred adipose loss from 2 to 7 kg; one test-subject lost 20 kg, i.e. his adipose mass became three times less. Changes in lean mass (1-3 kg) typically were negative; as for changes in lean mass of extremities, they could be linked with adherence to one or another type of physical activity. Therefore, extended exposure to confinement may affect mineralization of some parts of the skeleton. Unlike real space missions and long-term bedrest studies conducted at the Institute of Biomedical Problems in the past, Mars-500 did not cause clinically significant mineral losses (osteoporosis, osteopenia), probably because of the absence of effects of microgravity.

  15. [MINERAL BONE DENSITY AND BODY COMPOSITION IN PARTICIPANTS IN EXPERIMENT MARS-500].

    PubMed

    Novikov, V E; Oganov, V S; Kabitskaya, O E; Murashko, L M; Naidina, V P; Chernikhova, E A

    2016-01-01

    Investigations of the bone system and body composition in Mars-500 test-subjects (prior to and on completion of the experiment) involved dual-energy X-ray absorptiometry (DXA) using the HOLOGIC Delphy densitometer and the protocol performed to examine cosmonauts. Bone density of lumber vertebrae and femoral proximal epiphysis, and body composition were measured. Reliable changes in vertebral density found in 3 test-subjects displayed different trends from +2.6 to -2.4%. At the same time, the experiment decreased significantly mineral density of the femoral proximal epiphysis, including the neck, in all test-subjects. Four test-subjects had cranial mineralization increased by 5-9%, same as in some cosmonauts after space flight. All tests-subjects incurred adipose loss from 2 to 7 kg; one test-subject lost 20 kg, i.e. his adipose mass became three times less. Changes in lean mass (1-3 kg) typically were negative; as for changes in lean mass of extremities, they could be linked with adherence to one or another type of physical activity. Therefore, extended exposure to confinement may affect mineralization of some parts of the skeleton. Unlike real space missions and long-term bedrest studies conducted at the Institute of Biomedical Problems in the past, Mars-500 did not cause clinically significant mineral losses (osteoporosis, osteopenia), probably because of the absence of effects of microgravity. PMID:27344855

  16. Dual-energy X-ray absorptiometry, peripheral quantitative computed tomography, and micro-computed tomography techniques are discordant for bone density and geometry measurements in the guinea pig.

    PubMed

    Mak, Ivy L; DeGuire, Jason R; Lavery, Paula; Agellon, Sherry; Weiler, Hope A

    2016-05-01

    This study aims to examine agreement among bone mineral content (BMC) and density (BMD) estimates obtained using dual-energy X-ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT), and micro-computed tomography (μCT) against high-resolution μCT and bone ash of the guinea pig femur. Middle-aged (n = 40, 86 weeks) male guinea pigs underwent in vivo followed by ex vivo DXA (Hologic QDR 4500A) scanning for intact and excised femur BMC and areal density. To assess bone architecture and strength, excised femurs were scanned on pQCT (Stratec XCT 2000L) as well as on two μCT scanners (LaTheta LCT-200; Skyscan 1174), followed by three-point bending test. Reproducibility was determined using triplicate scans; and agreement assessed using Bland-Altman plots with reference methods being high-resolution μCT (Skyscan) for BMD and bone ashing for BMC. All techniques showed satisfactory ex vivo precision (CV 0.05-4.3 %). However, bias compared to the reference method was highest (207.5 %) in trabecular bone volume fraction (BV/TV) measured by LaTheta, and unacceptable in most total femur and cortical bone measurements. Volumetric BMD (vBMD) and BV/TV derived by LaTheta and pQCT at the distal metaphysis were biased from the Skyscan by an average of 49.3 and 207.5 %, respectively. Variability of vBMD, BV/TV and cross-sectional area at the diaphysis ranged from -5.5 to 30.8 %. LaTheta best quantified total femur BMC with an upper bias of 3.3 %. The observed differences among imaging techniques can be attributable to inherent dissimilarity in construction design, calibration, segmentation and scanning resolution used. These bone imaging tools are precise but are not comparable, at least when assessing guinea pig bones.

  17. Evaluation of bone mineral density using three-dimensional solid state phosphorus-31 NMR projection imaging.

    PubMed

    Wu, Y; Ackerman, J L; Chesler, D A; Li, J; Neer, R M; Wang, J; Glimcher, M J

    1998-06-01

    A solid state magnetic resonance imaging technique is used to measure true three-dimensional mineral density of synthetic hydroxyapatite phantoms and specimens of bone ex vivo. The phosphorus-31 free induction decay at 2.0 T magnetic field strength is sampled following application of a short, hard radiofrequency excitation pulse in the presence of a fixed amplitude magnetic field gradient. Multiple gradient directions covering the unit sphere are used in an efficient spherical polar to Cartesian interpolation and Fourier transform projection reconstruction scheme to image the three-dimensional distribution of phosphorus within the specimen. Using 3-6 Gauss/cm magnetic field gradients, a spatial resolution of 0.2 cm over a field of view of 10 cm is achieved in an imaging time of 20-35 minutes. Comparison of solid state magnetic resonance imaging with dual energy X-ray absorptiometry (DXA), gravimetric analysis, and chemical analysis of calcium and phosphorus demonstrates good quantitative accuracy. Direct measurement of bone mineral by solid state magnetic resonance opens up the possibility of imaging variations in mineral composition as well as density. Advantages of the solid state magnetic resonance technique include avoidance of ionizing radiation; direct measurement of a constituent of the mineral without reliance on assumptions about, or models of, tissue composition; the absence of shielding, beam hardening, or multiple scattering artifacts; and its three-dimensional character. Disadvantages include longer measurement times and lower spatial resolution than DXA and computed tomography, and the inability to scan large areas of the body in a single measurement, although spatial resolution is sufficient to resolve cortical from trabecular bone for the purpose of measuring bone mineral density. PMID:9576979

  18. Solid state NMR study of bone mineral

    SciTech Connect

    Wu, Y.

    1992-01-01

    In high field (9.4 T) CP MASS (cross polarization magic angle sample spinning) studies, in contrast to the scheme in the literature that infers the presence of minor constituents in spectra, we developed a new scheme to suppress the main part of the spectra to show the minor constituents. In order to perform in vivo solid state NMR studies, a double tuned two port surface coil probe was constructed. This probe is a modified version of the traditional Cross probe, which utilizes two 1/4 wave length 50 ohm transmission line, one with open ended and the other with shorted end, to isolate the high and low frequency circuits. The two resonance frequencies in Cross probe were proton and carbon. Our probe is designed to resonate at the proton and phosphorus frequencies, which are much closer to each other and hence more difficult to be tuned and matched simultaneously. Our approach to solve this problem is that instead of using standard 50 ohm transmission lines, we constructed a low capacity open end coaxial transmission line and low inductance shorted end coaxial transmission line. The Q of the phosphorus channel is high. We developed a short contact time cross polarization technique for non-MASS spectroscopy which reduces the signal of the major component of bone mineral to emphasize the minor component. By applying this technique on intact pork bone samples with our home made surface coil, we observed the wide line component, acid phosphate, for the first time. Hydroxyapatite, brushite and octacalcium are considered in the literature to be the model compounds for bone mineral. Cross polarization dynamics has been studied on hydroxyapatite and brushite, which yielded an NMR value for the distance between proton and phosphorus. One and two dimensional CP MASS spectroscopy of octacalcium phosphate were also studied, which revealed the different cross polarization rates and anisotropic channel shifts of acid phosphate and phosphate ions in octacalcium phosphate.

  19. Maternal beef and postweaning herring diets increase bone mineral density and strength in mouse offspring.

    PubMed

    Hussain, Aysha; Olausson, Hanna; Nilsson, Staffan; Nookaew, Intawat; Khoomrung, Sakda; Andersson, Louise; Koskela, Antti; Tuukkanen, Juha; Ohlsson, Claes; Holmäng, Agneta

    2013-12-01

    The maternal diet during gestation and lactation affects the long-term health of the offspring. We sought to determine whether maternal and postweaning crossover isocaloric diets based on fish or meat affect the geometry, mineral density, and biomechanical properties of bone in mouse offspring in adulthood. During gestation and lactation, C57BL/6 dams were fed a herring- or beef-based diet. After weaning, half of the pups in each group were fed the same diet as their dams, and half were fed the other diet. Areal bone mineral density (aBMD) and bone mineral content (BMC) of the whole body and lumbar spine were measured in the offspring by dual X-ray absorptiometry at 9 and 21 weeks of age. At 22-26 weeks, tibia bone geometry (length, cortical volumetric (v) BMD, BMC, area and thickness) was analyzed by peripheral quantitative computed tomography, and the biomechanical properties of the tibia were analyzed by the three-point bending test. Plasma insulin-like growth factor-1 was analyzed at 12 weeks. In comparison to the maternal herring diet, the maternal beef diet increased aBMD and BMC in the whole body and lumbar spine of adult offspring, as well as cortical vBMD, BMC, bone area, and thickness at the mid-diaphyseal region of the tibia and the biomechanical properties of tibia strength. In contrast, a postweaning beef diet decreased aBMD in the lumbar spine and BMC in the whole body and lumbar spine compared with a postweaning herring diet, which instead increased plasma insulin-like growth factor-1 levels. The change from a maternal beef diet before weaning to a herring diet after weaning decreased body weight and increased the cortical area, vBMD, BMC, thickness, and strength of the tibia. These significant crossover effects indicate that a preweaning maternal beef diet and a postweaning herring diet are optimal for increasing BMC and bone strength in offspring in adulthood.

  20. Pilot study of bone mineral density in breast cancer patients treated with adjuvant chemotherapy

    NASA Technical Reports Server (NTRS)

    Headley, J. A.; Theriault, R. L.; LeBlanc, A. D.; Vassilopoulou-Sellin, R.; Hortobagyi, G. N.

    1998-01-01

    The objective of this cross-sectional study was to determine lumbar spine bone mineral density (BMD) in breast cancer patients previously treated with adjuvant chemotherapy. Sixteen of 27 patients who received adjuvant chemotherapy became permanently amenorrheic as a result of chemotherapy. BMD was measured at the lumbar spine using dual energy X-ray absorptiometry (DEXA). Chemotherapy drugs and dosages along with a history of risk factors for reduced bone density including activity level, tobacco and/or alcohol use, metabolic bone disease, family history, and hormone exposure were identified. Results showed that women who became permanently amenorrheic as a result of chemotherapy had BMD 14% lower than women who maintained menses after chemotherapy. Chemotherapy-treated women who maintained ovarian function had normal BMD. This study suggests that women who have premature menopause as a result of chemotherapy for breast cancer are at increased risk of bone loss and may be at risk for early development of osteoporosis. Women who maintain menses do not appear to be at risk for accelerated trabecular bone loss.

  1. Isotopic bone mineralization rates in maintenance dialysis patients

    SciTech Connect

    Cochran, M.; Stephens, E.

    1983-09-01

    The expanding pool model of radiocalcium kinetics has been used in 13 maintenance dialysis patients to measure bone mineralization rate. No difficulties were met in applying the data to the model, and values for the bone mineralization rate ranged from 0.0 to 2.0 mmol/kg Ca++ per day. The bone histology obtained at the time of the study showed a correlation between the degree of secondary hyperparathyroidism and the bone mineralization rate, with low values of the latter occurring in atypical osteomalacia (two patients) or inactive-looking bone (one patient) and raised values in seven patients. The plasma alkaline phosphatase and immunoassayable parathyroid hormone levels each correlated significantly with the bone mineralization rate. These findings suggest that the technique is valid when applied to hemodialysis patients and provides quantitative information about skeletal calcium metabolism in different types of renal bone disease.

  2. Bone Mineral Density as a Marker of Cumulative Estrogen Exposure in Psychotic Disorder: A 3 Year Follow-Up Study

    PubMed Central

    van der Leeuw, Christine; Peeters, Sanne; Domen, Patrick; van Kroonenburgh, Marinus; van Os, Jim; Marcelis, Machteld

    2015-01-01

    Altered estrogen-induced neuroprotection has been implicated in the etiology of psychotic disorders. Using bone mineral density as a marker of lifetime estrogen exposure, a longitudinal family study was conducted to discriminate between etiological mechanisms and secondary effects of disease and treatment. Dual X-ray absorptiometry scans were acquired twice, with an interval of 3 years, in 30 patients with psychotic disorder (male (M)/female (F): 24/6, mean age of 32 years at second measurement), 44 non-psychotic siblings of patients with a psychotic disorder (M/F: 26/18, mean age 32) and 27 controls (M/F: 7/20, mean age 35). Total bone mineral density, Z-scores and T-scores were measured in the lumbar spine and proximal femur. Associations between group and bone mineral density changes were investigated with multilevel random regression analyses. The effect of prolactin-raising antipsychotic medication was evaluated. (Increased risk of) psychotic disorder was not associated with disproportionate bone mineral density loss over a three year period. Instead, femoral bone mineral density measures appeared to decrease less in the patient versus control comparison (total BMD: B = 0.026, 95% CI 0.002 to 0.050, p = 0.037; Z-score: B = 0.224, 95% CI 0.035 to 0.412, p = 0.020; and T-score: B = 0.193, 95% CI 0.003 to 0.382, p = 0.046). Current or past use of a prolactin-raising antipsychotic medication was not associated with bone mineral density changes. In this small longitudinal study, there was no evidence of ongoing estrogen deficiency in psychotic disorder as there was no excessive loss of bone mineral density over a 3-year period in patients using antipsychotic medication. PMID:26309037

  3. Correlation between serum leptin and bone mineral density in hemodialysis patients

    PubMed Central

    Ghorban-Sabbagh, Mahin; Nazemian, Fatemeh; Naghibi, Massih; Shakeri, Mohammad-Taghi; Ahmadi-Simab, Saeedeh; Javidi-Dasht-Bayaz, Reza

    2016-01-01

    Introduction: For diagnosing of specific types of bone lesions in hemodialysis (HD) patients, it is necessary to conduct a bone biopsy as the gold standard method. However, it is an invasive procedure. While different markers have been suggested as alternative methods, none of them has been selected. The frequency of hip fractures is 80 fold in HD patients who have two-fold mortality as compared with general population. Objectives: Recently, serum leptin has been suggested as a bone density marker. This study tries to confirm this proposal. Patients and Methods: In this study about 104 HD patients (53.8% male and 46.2% female) were enrolled. The average age was 38.28±7.89 years. Serum leptin, bone alkaline phosphatase, intact parathyroid hormone (iPTH), 25(OH)D, calcium, phosphorus and bone mineral density (BMD) (at the femoral neck and lumbar spine, as measured by dual-energy x-ray absorptiometry [DXA]) were assessed. Results: Analysis by polynomial regression revealed no correlation between BMD Z-score at two points and serum leptin level. According to the thresholds of 25 ng/mL and 18-24 ng/mL in some studies, we detected 25 ng/mL as the threshold in our patients. Under this threshold, the leptin effect on bone mass was negative, and above the threshold of 25 ng/mL, we found leptin had positive effect on bone mass. Conclusion: In this investigation, we found, leptin has a bimodal effect on bone mass. Cortical bones assessment may be a better option for assessment. PMID:27689105

  4. Bisphophonates in CKD Patients with Low Bone Mineral Density

    PubMed Central

    Liu, Wen-Chih; Yen, Jen-Fen; Lu, Kuo-Cheng

    2013-01-01

    Patients with chronic kidney disease-mineral and bone disorder (CKD-MBD) have a high risk of bone fracture because of low bone mineral density and poor bone quality. Osteoporosis also features low bone mass, disarranged microarchitecture, and skeletal fragility, and differentiating between osteoporosis and CKD-MBD in low bone mineral density is a challenge and usually achieved by bone biopsy. Bisphosphonates can be safe and beneficial for patients with a glomerular filtration rate of 30 mL/min or higher, but prescribing bisphosphonates in advanced CKD requires caution because of the increased possibility of low bone turnover disorders such as osteomalacia, mixed uremic osteodystrophy, and adynamic bone, even aggravating hyperparathyroidism. Therefore, bone biopsy in advanced CKD is an important consideration before prescribing bisphosphonates. Treatment also may induce hypocalcemia in CKD patients with secondary hyperparathyroidism, but vitamin D supplementation may ameliorate this effect. Bisphosphonate treatment can improve both bone mineral density and vascular calcification, but the latter becomes more unlikely in patients with stage 3-4 CKD with vascular calcification but no decreased bone mineral density. Using bisphosphonates requires considerable caution in advanced CKD, and the lack of adequate clinical investigation necessitates more studies regarding its effects on these patients. PMID:24501586

  5. Bisphophonates in CKD patients with low bone mineral density.

    PubMed

    Liu, Wen-Chih; Yen, Jen-Fen; Lang, Cheng-Lin; Yan, Ming-Tso; Lu, Kuo-Cheng

    2013-01-01

    Patients with chronic kidney disease-mineral and bone disorder (CKD-MBD) have a high risk of bone fracture because of low bone mineral density and poor bone quality. Osteoporosis also features low bone mass, disarranged microarchitecture, and skeletal fragility, and differentiating between osteoporosis and CKD-MBD in low bone mineral density is a challenge and usually achieved by bone biopsy. Bisphosphonates can be safe and beneficial for patients with a glomerular filtration rate of 30 mL/min or higher, but prescribing bisphosphonates in advanced CKD requires caution because of the increased possibility of low bone turnover disorders such as osteomalacia, mixed uremic osteodystrophy, and adynamic bone, even aggravating hyperparathyroidism. Therefore, bone biopsy in advanced CKD is an important consideration before prescribing bisphosphonates. Treatment also may induce hypocalcemia in CKD patients with secondary hyperparathyroidism, but vitamin D supplementation may ameliorate this effect. Bisphosphonate treatment can improve both bone mineral density and vascular calcification, but the latter becomes more unlikely in patients with stage 3-4 CKD with vascular calcification but no decreased bone mineral density. Using bisphosphonates requires considerable caution in advanced CKD, and the lack of adequate clinical investigation necessitates more studies regarding its effects on these patients. PMID:24501586

  6. Fracture risk and bone mineral density in Turner syndrome.

    PubMed

    Bakalov, Vladimir K; Bondy, Carolyn A

    2008-06-01

    Bone health is a major lifelong concern in caring for women and girls with Turner syndrome (TS). There is an approximately 25% increase in fracture risk most of which is related to medium or high impact trauma. The long bones, especially of the forearm are predominantly affected. This fact may be due to a selective cortical bone deficiency in TS which is unrelated to hypogonadism. In addition, lack of adequate estrogen replacement can lead to trabecular bone deficiency and increase in vertebral compression fractures after age 45. Evaluation of bone density by dual X-ray absorptiometry (DEXA) is important, however, it should be used judiciously in TS in view of its inherent tendency to underestimate the bone density of people with short stature. Bone size-independent methods, such as QCT or volumetric transformation of DEXA data should be used in individuals shorter than 150 cm. Achieving optimal bone density is of critical importance for fracture prevention in TS, and should be pursued by timely introduction of hormone replacement therapy, adequate dose of estrogens during the young adult life, optimal calcium and vitamin D intake and regular physical exercise. In addition, other measures to prevent fall and trauma should be considered, including optimizing hearing and vision, avoiding contact sports and exercise to improve coordination. PMID:18415020

  7. Effect of parity on bone mineral density in female rhesus macaques from Cayo Santiago.

    PubMed

    Cerroni, Antonietta M; Tomlinson, George A; Turnquist, Jean E; Grynpas, Marc D

    2003-07-01

    This cross-sectional study investigates the relationship between parity, bone mineral density, and spontaneous osteopenia/osteoporosis in a large skeletal population of female rhesus macaques (Macaca mulatta) from the free-ranging colony of Cayo Santiago, Puerto Rico. The sample consists of 119 mature female monkeys aged 4.0-22.2 years at time of death. The data consist of measurements of bone mineral content (BMC) and bone mineral density (BMD), obtained from dual-energy X-ray absorptiometry (DEXA) of the last lumbar vertebra. After controlling for age, there is a significant increase in BMD of the spine with increasing parity (P = 0.0006), up to a parity of 7 offspring. Thus, high parity initially has a positive effect on BMD in female rhesus monkeys, but this positive effect disappears with parities that are greater than 7 offspring. After controlling for parity, however, age has a negative (P = 0.015) effect on BMD, beginning several years after the attainment of peak BMD (age 9.5 years). Thus, it appears that parity initially mitigates the effects of aging, but the positive effect of parity on BMD is eventually overwhelmed by the aging process. Mean BMC and BMD values are higher in parous females compared to nulliparous females in the same age range. Similarly, females with low parity have significantly lower mean BMD values than do age-matched high-parity controls, and the frequency of osteopenia and osteoporosis is greater in low-parity females. Forty-three percent (43%) of the osteopenic/osteoporotic females in the sample are members of the low-parity group, even though it composes only 13% (16/119) of the entire sample. This study demonstrates that the free-ranging female rhesus monkeys from Cayo Santiago are a good nonhuman primate model for the study of bone mineral density, parity, osteopenia, and osteoporosis. PMID:12772213

  8. Bone mineral density of vegetarian and non-vegetarian adults in Taiwan.

    PubMed

    Wang, Yuh-Feng; Chiu, Jainn-Shiun; Chuang, Mei-Hua; Chiu, Jing-Er; Lin, Chin-Lon

    2008-01-01

    Diet is thought to be one of the leading causes of bone mineral loss in aging people. In this study, we explored the potential impact of a vegetarian diet on bone mineral density (BMD) in adult Taiwanese men and women. This was a cross-sectional study of the relationship between diet (vegetarian versus non-vegetarian) and BMD and the incidence of osteoporosis. Bone mineral density was determined in a cohort of 1865 adult male and female patients who underwent routine examination in a regional teaching hospital in Taiwan between February 2003 and February 2004. Subjects with definite vertebral problems, known osteopathy, or poor posture were excluded. Dual-energy X-ray absorptiometry (DEXA) was used to determine BMD, on the right hip in men and on lumbar vertebrae L2 to L4 in women. The subjects were grouped according to sex and diet, and were then stratified by age within each of the four groups. The outcome measures were the BMD value and the incidence of osteopenia or osteoporosis according to defined criteria. Bone mineral density gradually declined with increasing age in Taiwanese men, while Taiwanese women showed a precipitous decrease in BMD after the 5th decade. However, no statistical differences in BMD were observed between vegetarians and non-vegetarians of either sex. The proportion of subjects with osteopenia or osteoporosis also appeared comparable between vegetarians and non-vegetarians of either sex. BMD shows an age-related decline in Taiwanese men and women, and eating a vegetarian diet does not appear to affect this decline.

  9. A Comparison of Bone Mineral Density in Amateur Male Boxers and Active Non-boxers.

    PubMed

    Bolam, K A; Skinner, T L; Sax, A T; Adlard, K N; Taaffe, D R

    2016-08-01

    To examine the site-specific osteogenic effect of upper limb impact-loading activity we compared the forearm and arm bone mineral density (BMD) of male boxers to that of active controls. A cross-sectional study was performed with 30 amateur male boxers (aged 18-44 years) and 32 age-matched, non-boxing, active controls. Participants had their regional and whole body BMD and bone mineral content (BMC) assessed by dual-energy X-ray absorptiometry. Hand grip strength, testosterone, oestradiol, sex hormone-binding globulin, vitamin D, lean and fat mass, and past and current physical activity were also assessed. Forearm and arm BMD were 1.5-2.2% higher in boxers than the control group although this was not statistically significant (p>0.05), with no significant difference for BMC (p>0.05). There were no differences between groups for spine, hip, or whole body BMD or BMC, or for body composition or hormone status. Within the arms, lean mass was associated with BMD and BMC in both boxers and the control group (BMD, r=0.60-0.76, p<0.001; BMC, r=0.67-0.82, p<0.001). There were no significant differences between amateur boxers and the control group for upper limb BMD and BMC. However, muscle mass appears to be particularly important to bone health of the upper limbs. PMID:27203576

  10. Estimation of bone mineral content using gamma camera: A real possibility

    SciTech Connect

    Levy, L.M.; Hoory, S.; Bandyopadhyay, D.

    1985-05-01

    Osteopenia and Osteoporosis are the diseases related to loss of bone minerals. At present, dual photon absorptiometry using a dedicated specially built scanner along with a very high source of Gd-153 is being used as a diagnostic tool for the early detection of bone loss. The present study was undertaken to explore the possibility that gamma cameras which are widely available in all Nuclear Medicine departments could be used successfully to evaluate bone mineral content. A Siemens LFOV gamma camera equipped with a converging collimator was used for this purpose. A fixed source (100 mCi) of Gd-153 was placed at the focal point of the collimator. A series of calcium chloride solutions of varying concentrations in plastic vials were placed near the center of the collimator and imaged both in air and water. Both 44 Kev and 100 Kev images were digitized in 128 x 128 matrices and processed in a CD and A Delta system attached to a VAX 11-750 computer. Uniformity corrections for each field of view were applied and the attenuation coefficients of calcium chloride for both peaks of Gd-153 were evaluated. In addition, due to the high count rate, corrections for the dead time losses were also found to be essential. An excellent concordance between the estimated Calcium contents and that actually present were obtained by this technic. In conclusion, use of gamma camera for the routine evaluation of Osteoporosis appears to be highly promising and worth pursuing.

  11. Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection.

    PubMed

    Christoffersen, J; Christoffersen, M R; Kolthoff, N; Bärenholdt, O

    1997-01-01

    Preparation and analyses of a series of hydroxyapatites (HA) containing 1-10 mol % of Ca2+ replaced by Sr2+ is reported. The solubility of these apatites is found to increase with increasing content of Sr2+, 10% SrHA dissolves faster than CaHA at given values of Ca2+ and phosphate concentrations, but with a similar rate at the same degree of saturation. Sr2+ is found to inhibit the rates of both dissolution and growth of CaHA and 10% SrHA at pH 7.2, CaHA being more strongly inhibited by Sr2+ than 10% SrHA. The effect of partial substitution of Ca2+ in hydroxyapatite by Sr2+ on bone mineral content (BMC) and bone mineral density (BMD) measured by dual energy X-ray absorptiometry has been studied using three commercial densitometers. Extrapolating the absorption data for up to 10% replacement of Ca2+ by Sr2+ to 100% substitution of Ca2+ by Sr2+ in HA leads to an apparent increase in BMC or BMD of about a factor of 10. This factor is in agreement with theoretical calculations using attenuation coefficients of the atoms concerned. It is concluded that existing BMC scanners register artificially high values of BMC if the bone contains significant amounts of Sr2+ or other metal ions with atomic number larger than calcium. PMID:8988347

  12. Techniques for deriving tissue structure from multiple projection dual-energy x-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor); Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor)

    2004-01-01

    Techniques for deriving bone properties from images generated by a dual-energy x-ray absorptiometry apparatus include receiving first image data having pixels indicating bone mineral density projected at a first angle of a plurality of projection angles. Second image data and third image data are also received. The second image data indicates bone mineral density projected at a different second angle. The third image data indicates bone mineral density projected at a third angle. The third angle is different from the first angle and the second angle. Principal moments of inertia for a bone in the subject are computed based on the first image data, the second image data and the third image data. The techniques allow high-precision, high-resolution dual-energy x-ray attenuation images to be used for computing principal moments of inertia and strength moduli of individual bones, plus risk of injury and changes in risk of injury to a patient.

  13. Tendon gradient mineralization for tendon to bone interface integration.

    PubMed

    Qu, Jin; Thoreson, Andrew R; Chen, Qingshan; An, Kai-Nan; Amadio, Peter C; Zhao, Chunfeng

    2013-11-01

    Tendon-to-bone integration is a great challenge for tendon or ligament reconstruction regardless of use of autograft or allograft tendons. We mineralized the tendon, thus transforming the tendon-to-bone into a "bone-to-bone" interface for healing. Sixty dog flexor digitorum profundus (FDP) tendons were divided randomly into five groups: (1) normal FDP tendon, (2) CaP (non-extraction and mineralization without fetuin), (3) CaPEXT (Extraction by Na2 HPO4 and mineralization without fetuin), (4) CaPFetuin (non-extraction and mineralization with fetuin), and (5) CaPEXTFetuin (extraction and mineralization with fetuin). The calcium and phosphate content significantly increased in tendons treated with combination of extraction and fetuin compared to the other treatments. Histology also revealed a dense mineral deposition throughout the tendon outer layers and penetrated into the tendon to a depth of 200 µm in a graded manner. Compressive moduli were significantly lower in the four mineralized groups compared with normal control group. No significant differences in maximum failure strength or stiffness were found in the suture pull-out test among all groups. Mineralization of tendon alters the interface from tendon to bone into mineralized tendon to bone, which may facilitate tendon-to-bone junction healing following tendon or ligament reconstruction.

  14. Agreement between bioelectrical impedance and dual energy X-ray absorptiometry in assessing fat, lean and bone mass changes in adults after a lifestyle intervention.

    PubMed

    Macfarlane, Duncan J; Chan, Natalie T-Y; Tse, Michael A; Joe, Glen M

    2016-01-01

    We aimed to assess the agreement of a commercially available bioelectrical impedance analysis (BIA) device in measuring changes in fat, lean and bone mass over a 10-week lifestyle intervention, with dual energy X-ray absorptiometry (DXA) as reference. A sample of 136 volunteers (18-66 years) underwent a physical activity intervention to enhance lean mass and reduce fat mass. BIA (Tanita BC545) and DXA (Hologic Explorer) measures of whole-body composition were taken at baseline and at the end of the intervention. After an average of 74 ± 18 days intervention, DXA showed significant changes in 2 of 3 outcome variables: reduced fat mass of 0.802 ± 1.092 kg (P < 0.001), increased lean mass of 0.477 ± 0.966 kg (P < 0.001); minor non-significant increase of 0.007 ± 0.041 kg of bone mass (P = 0.052). The respective changes in BIA measures were a significant reduction of 0.486 ± 1.539 kg fat (P < 0.001), but non-significant increases of 0.084 ± 1.201 kg lean mass (P = 0.425), and 0.014 ± 0.091 kg bone (P = 0.074). Significant, but moderately weak, correlations were seen in absolute mass changes between DXA and BIA: 0.511 (fat), 0.362 (lean) and 0.172 (bone). Compared to DXA, BIA demonstrated mediocre agreement to changes in fat mass, but poor agreement to lean mass changes. BIA significantly underestimated the magnitude of changes in fat and lean mass compared to DXA.

  15. Derangements in bone mineral parameters and bone mineral density in south Indian subjects on antiepileptic medications

    PubMed Central

    Koshy, George; Varghese, Ron Thomas; Naik, Dukhabandhu; Asha, Hesargatta Shyamsunder; Thomas, Nihal; Seshadri, Mandalam Subramaniam; Alexander, Mathew; Thomas, Maya; Aaron, Sanjith; Paul, Thomas Vizhalil

    2014-01-01

    Background: Although there are reports describing the association of alternations of bone and mineral metabolism in epileptic patients with long-term anticonvulsant therapy, there are only limited Indian studies which have looked at this aspect. Objectives: This study was done to compare the prevalence of changes in bone mineral parameters and bone mineral density (BMD) in ambulant individuals on long-term anticonvulsant therapy with age- and body mass index (BMI)-matched healthy controls. Materials and Methods: There were 55 men (on medications for more than 6 months) and age- and BMI-matched 53 controls. Drug history, dietary calcium intake (DCI), and duration of sunlight exposure were recorded. Bone mineral parameters and BMD were measured. Results: The control group had a significantly higher daily DCI with mean ± SD of 396 ± 91 mg versus 326 ± 101 mg (P = 0.007) and more sunlight exposure of 234 ± 81 vs 167 ± 69 min (P = 0.05). BMD at the femoral neck was significantly lower in cases (0.783 ± 0.105 g/cm2) when compared to controls (0.819 ± 0.114 g/cm2). Majority of the patients (61%) had low femoral neck BMD (P = 0.04). There was no significant difference in the proportion of subjects with vitamin D deficiency (<20 ng/mL) between cases (n = 32) and controls (n = 37) (P = 0.234). Conclusions: Vitamin D deficiency was seen in both the groups in equal proportions, highlighting the existence of a high prevalence of this problem in India. Low femoral neck BMD found in cases may stress the need for supplementing calcium and treating vitamin D deficiency in this specific group. However, the benefit of such intervention has to be studied in a larger proportion of epileptic patients. PMID:25221394

  16. Measurement of spinal or peripheral bone mass to estimate early postmenopausal bone loss

    SciTech Connect

    Riis, B.J.; Christiansen, C.

    1988-04-01

    This report presents data from 153 healthy, early postmenopausal women who were randomly allocated to two years of treatment with estrogen or placebo. Bone mineral content in the forearms was measured by single-photon absorptiometry, and bone mineral density of the lumbar spine and total-body bone mineral by dual-photon absorptiometry, before and after one and two years of treatment. At the end of the two years, there were highly significant differences of 6 to 7 percent between the estrogen and the placebo groups at all sites measured. The range of the changes of the spine measurement was twice that of the forearm and total-body measurements. It is concluded that measurement of the forearm by single-photon absorptiometry is superior to measurement of the spine by dual-photon absorptiometry both in clinical studies and in the individual patient for detecting estrogen-dependent bone loss and its treatment by estrogen replacement.

  17. Effect of chronic activity-based therapy on bone mineral density and bone turnover in persons with spinal cord injury

    PubMed Central

    Harness, Eric T.; Witzke, Kara A.

    2014-01-01

    Purpose Osteoporosis is a severe complication of spinal cord injury (SCI). Many exercise modalities are used to slow bone loss, yet their efficacy is equivocal. This study examined the effect of activity-based therapy (ABT) targeting the lower extremities on bone health in individuals with SCI. Methods Thirteen men and women with SCI (age and injury duration = 29.7 ± 7.8 and 1.9 ± 2.7 years) underwent 6 months of ABT. At baseline and after 3 and 6 months of training, blood samples were obtained to assess bone formation (serum procollagen type 1 N propeptide (PINP) and bone resorption (serum C-terminal telopeptide of type I collagen (CTX), and participants underwent dual-energy X-ray absorptiometry scans to obtain total body and regional estimates of bone mineral density (BMD). Results Results demonstrated significant increases (p < 0.05) in spine BMD (+4.8 %; 1.27 ± 0.22–1.33 ± 0.24 g/cm2) and decreases (p < 0.01) in total hip BMD (−6.1 %; 0.98 ± 0.18–0.91 ± 0.16 g/cm2) from 0 to 6 months of training. BMD at the bilateral distal femur (−7.5 to −11.0 %) and proximal tibia (− 8.0 to −11.2 %) declined but was not different (p > 0.05) versus baseline. Neither PINP nor CTX was altered (p> 0.05) with training. Conclusions Chronic activity-based therapy did not reverse bone loss typically observed soon after injury, yet reductions in BMD were less than the expected magnitude of decline in lower extremity BMD in persons with recent SCI. PMID:24097172

  18. Minerals

    MedlinePlus

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including building bones, making ... regulating your heartbeat. There are two kinds of minerals: macrominerals and trace minerals. Macrominerals are minerals your ...

  19. The effect of 5alpha-reductase inhibition with finasteride and dutasteride on bone mineral density in older men with benign prostatic hyperplasia.

    PubMed

    Mačukat, Indira Radin; Spanjol, Josip; Orlič, Zeljka Crncevič; Butorac, Marta Zuvič; Marinovič, Marin; Ćupič, Dora Fučkar

    2014-09-01

    Testosterone is converted to dihyrotestosterone by two isoenzymes of 5alpha-reductase. Finasteride and dutasteride are 5alpha-reductase inhibitors commonly used in the treatment of benign prostatic hyperplasia. We compared indices of bone mineral density in 50 men treated with finasteride, 50 men treated with dutasteride and 50 men as control. Bone mineral density of spine and hip were measured using dual energy X-ray absorptiometry. Bone formation was assessed by measuring serum osteocalcin and bone resorptionby measuring serum C-terminal telopeptide of collagen type 1. In addition serum total testosteron and estradiol were determined. The dutasteride group had significantly higher mean bone min- eral density, mean bone mineral content, mean T score, mean Z score at femoral neck and mean total hip Z score than control. Mean total testosterone and estradiol levels were higher in the dutasteride group. There were no significant dif- ferences between the groups in lumbar spine bone density parameters or bone turnover markers. Our results provide evidence that long-term 5alpha-reductase suppression does not adversely affect bone mineral density. Dutasteride therapy could have beneficial effect on bone density. PMID:25507347

  20. The effect of 5alpha-reductase inhibition with finasteride and dutasteride on bone mineral density in older men with benign prostatic hyperplasia.

    PubMed

    Mačukat, Indira Radin; Spanjol, Josip; Orlič, Zeljka Crncevič; Butorac, Marta Zuvič; Marinovič, Marin; Ćupič, Dora Fučkar

    2014-09-01

    Testosterone is converted to dihyrotestosterone by two isoenzymes of 5alpha-reductase. Finasteride and dutasteride are 5alpha-reductase inhibitors commonly used in the treatment of benign prostatic hyperplasia. We compared indices of bone mineral density in 50 men treated with finasteride, 50 men treated with dutasteride and 50 men as control. Bone mineral density of spine and hip were measured using dual energy X-ray absorptiometry. Bone formation was assessed by measuring serum osteocalcin and bone resorptionby measuring serum C-terminal telopeptide of collagen type 1. In addition serum total testosteron and estradiol were determined. The dutasteride group had significantly higher mean bone min- eral density, mean bone mineral content, mean T score, mean Z score at femoral neck and mean total hip Z score than control. Mean total testosterone and estradiol levels were higher in the dutasteride group. There were no significant dif- ferences between the groups in lumbar spine bone density parameters or bone turnover markers. Our results provide evidence that long-term 5alpha-reductase suppression does not adversely affect bone mineral density. Dutasteride therapy could have beneficial effect on bone density. PMID:25420363

  1. Tibolone increases bone mineral density but also relapse in breast cancer survivors: LIBERATE trial bone substudy

    PubMed Central

    2012-01-01

    Introduction The Livial Intervention Following Breast Cancer: Efficacy, Recurrence and Tolerability Endpoints (LIBERATE: Clinical http://Trials.gov number NCT00408863), a randomized, placebo-controlled, double-blind trial that demonstrated that tibolone (Livial), a tissue-selective hormone-replacement therapy (HRT), increased breast cancer (BC) recurrence HR 1.40 (95% CI, 1.14 to 1.70; P = 0.001). A subgroup of women was entered into a study of bone mineral density (BMD). Methods Women with surgically excised primary BC (T1-3, N0-2, M-0) within the last 5 years, complaining of vasomotor symptoms, were assigned to tibolone, 2.5 mg daily, or placebo treatment for a maximum of 5 years. The BMD substudy enrolled 763 patients, using dual-energy X-ray absorptiometry (DXA) scanning at baseline and at 2 years. Results In the bone substudy, 699 of 763 women were eligible (345 allocated to tibolone, and 354, to placebo). After undergoing DXA scans, 300 (43%) women had normal BMD; 317 (45%), osteopenia; and 82 (11.7%), osteoporosis. Low body-mass index (P < 0.001), Asian race (P < 0.001), and late age at menarche (P < 0.04) predicted low bone mass at baseline. Tibolone increased BMD by 3.2% at the lumbar spine and 2.9% at the hip compared with placebo (both P < 0.001). The majority of fractures (55%) occurred in osteopenic patients. Women with normal BMD had increased recurrence with tibolone, 22 (15.6%) of 141 compared with placebo, 11 (6.9%) of 159 (P = 0.016), whereas no increased BC recurrence was seen in women with low BMD; 15 (7.4%) of 204 taking tibolone versus 13 (6.7%) of 195 taking placebo. Conclusions Tibolone is contraindicated after BC treatment, as it increases BMD and BC recurrence. Risk of BC recurrence was elevated in BC women with normal BMD (compared with low) who took tibolone. PMID:22251615

  2. Trends in Bone Mineral Density in Young Adults with Cystic Fibrosis over a 15 Year Period

    PubMed Central

    Putman, Melissa S.; Baker, Joshua F.; Uluer, Ahmet; Herlyn, Karen; Lapey, Allen; Sicilian, Leonard; Tillotson, Angela Pizzo; Gordon, Catherine M.; Merkel, Peter A.; Finkelstein, Joel S.

    2015-01-01

    Background Improvements in clinical care have led to increased life expectancy in patients with cystic fibrosis (CF) over the past several decades. Whether these improvements have had significant effects on bone health in patients with CF is unclear. Methods This is a cross-sectional study comparing clinical characteristics and bone mineral density (BMD) measured by dual energy X-ray absorptiometry (DXA) in adults with CF evaluated in 1995–1999 to age-, race-, and gender matched patients with CF evaluated in 2011–2013 at the same center on calibrated DXA machines. Results The cohorts were similar in terms of age, BMI, pancreatic insufficiency, presence of F508del mutation, and reproductive history. In the most recent cohort, pulmonary function was superior, and fewer patients had vitamin D deficiency or secondary hyperparathyroidism. Areal BMD measures of the PA spine, lateral spine, and distal radius were similarly low in the two cohorts. Conclusions Although pulmonary function and vitamin D status were better in patients in the present-day cohort, areal BMD of the spine was reduced in a significant number of patients and was no different in patients with CF today than in the late 1990s. Further attention to optimizing bone health may be necessary to prevent CF-related bone disease. PMID:25698451

  3. Bone Mineral Density in Adolescent Females Using Injectable or Oral Contraceptives: A 24 Month Prospective Study

    PubMed Central

    Cromer, Barbara A.; Bonny, Andrea E.; Stager, Margaret; Lazebnik, Rina; Rome, Ellen; Ziegler, Julie; Camlin-Shingler, Kelly; Secic, Michelle

    2008-01-01

    Study Objective To determine whether bone mineral density (BMD) is lower in hormonal contraceptive users than that in an untreated, comparison group. Design Observational, prospective cohort; duration: 24 months. Setting Adolescent clinics in a midwestern, metropolitan setting. Patients 433 postmenarcheal girls, aged 12–18 years, on depot medroxyprogesterone acetate (DMPA) [n=58], oral contraceptives (OC) [n=187], or untreated (n=188). Intervention DMPA and OC containing 100 mcg levonorgestrel and 20 mcg ethinyl estradiol. Main Outcome Measure BMD measurements at spine and femoral neck were obtained with dual x-ray absorptiometry (DXA) at baseline and 6-month intervals. Results Over 24 months, mean percent change in spine BMD was: DMPA −1.5%, OC +4.2%, and untreated +6.3%. Mean percent change in femoral neck BMD was: DMPA −5.2%, OC +3.0%, untreated +3.8%. Statistical significance was found between the DMPA group and other two groups (p<.001). In the DMPA group, mean percent change in spine BMD over the first 12 months was −1.4%; the rate of change slowed to −0.1% over the second 12 months. No bone density loss reached the level of osteopenia. Conclusions Adolescent girls receiving DMPA had significant loss in BMD compared with bone gain in the OC and untreated group. However, its clinical significance is mitigated by slowed loss after the first year of DMPA use and general maintenance of bone density values within the normal range. PMID:18222431

  4. Bone histology in chronic kidney disease-related mineral and bone disorder.

    PubMed

    Kazama, Junichiro James

    2011-06-01

    A quantitative histological analysis of biopsied bone samples is currently regarded as the gold standard for a diagnosing procedure for bone diseases associated with chronic kidney disease-related mineral and bone disorder. Conventionally, "bone cell activities" and "bone mineralization" are applied as two independent assessment axes, and the histology results are classified into five categories according to these axes. Recently, a new bone histology classification system called the Turnover-Mineralization-Volume system, which applied "cancellous bone volume" as another major assessing axis, was advocated; however, both classification systems have many unsolved problems. Clinicians must realize the limitations in evaluating bone metabolism by bone histology. We will need to establish a new classification method for renal bone diseases independent of histological findings.

  5. Tendon Gradient Mineralization for Tendon to Bone Interface Integration

    PubMed Central

    Qu, Jin; Thoreson, Andrew R.; Chen, Qingshan; An, Kai-Nan; Amadio, Peter C.; Zhao, Chunfeng

    2014-01-01

    Tendon-to-bone integration is a great challenge for tendon or ligament reconstruction regardless of use of autograft or allograft tendons. We mineralized the tendon, thus transforming the tendon-to-bone into a “bone-to-bone” interface for healing. Sixty dog flexor digitorum profundus (FDP) tendons were divided randomly into 5 groups: 1) normal FDP tendon, 2) CaP (Non-extraction and mineralization without fetuin), 3) CaPEXT (Extraction by Na2HPO4 and mineralization without fetuin), 4) CaPFetuin (Non-extraction and mineralization with fetuin), and 5) CaPEXTFetuin (Extraction and mineralization with fetuin). The calcium and phosphate content significantly increased in tendons treated with combination of extraction and fetuin compared to the other treatments. Histology also revealed a dense mineral deposition throughout the tendon outer layers and penetrated into the tendon to a depth of 200 μm in a graded manner. Compressive moduli were significantly lower in the four mineralized groups compared with normal control group. No significant differences in maximum failure strength or stiffness were found in the suture pull-out test among all groups. Mineralization of tendon alters the interface from tendon to bone into mineralized tendon to bone, which may facilitate tendon-to-bone junction healing following tendon or ligament reconstruction. PMID:23939935

  6. Suspension criteria for dual energy X ray absorptiometry.

    PubMed

    McLean, I D

    2013-02-01

    The use of dual-energy X-ray absorptiometry (DXA) units primarily for the assessment of fracture risk and in the diagnosis of osteoporosis is ubiquitous in Europe and ever-expanding in its implementation worldwide. DXA is known for its reported low radiation dose and precision in the determination of bone mineral density. However, the use of simple suspension criteria, as proposed in the new EC report RP-162, will identify units that are unfit for useful and safe diagnosis. Such suspension levels, however, are not a substitute for regular maintenance, quality control testing and optimisation of clinical outcomes.

  7. Evaluation of Bone Mineral Density and Bone Biomarkers in Patients With Type 2 Diabetes Treated With Canagliflozin

    PubMed Central

    Watts, Nelson B.; Usiskin, Keith; Polidori, David; Fung, Albert; Sullivan, Daniel; Rosenthal, Norm

    2016-01-01

    Context: Canagliflozin is a sodium glucose cotransporter 2 inhibitor developed to treat type 2 diabetes mellitus (T2DM). Objective: Our objective is to describe the effects of canagliflozin on bone mineral density (BMD) and bone biomarkers in patients with T2DM. Design: This was a randomized study, consisting of a 26-week, double-blind, placebo-controlled period and a 78-week, double-blind, placebo-controlled extension. Setting: This study was undertaken in 90 centers in 17 countries. Patients: Patients were aged 55–80 years (N = 716) and whose T2DM was inadequately controlled on a stable antihyperglycemic regimen. Interventions: Canagliflozin 100 or 300 mg or placebo were administered once daily. Outcome and Measures: BMD was assessed using dual-energy x-ray absorptiometry at weeks 26, 52, and 104. Bone strength was assessed using quantitative computed tomography and finite element analysis at week 52. Serum collagen type 1 β-carboxy-telopeptide, osteocalcin, and estradiol were assessed at weeks 26 and 52. Results: Canagliflozin doses of 100 and 300 mg were associated with a decrease in total hip BMD over 104 weeks, (placebo-subtracted changes: −0.9% and −1.2%, respectively), but not at other sites measured (femoral neck, lumbar spine, or distal forearm). No meaningful changes in bone strength were observed. At week 52, canagliflozin was associated with an increase in collagen type 1 β-carboxy-telopeptide that was significantly correlated with a reduction in body weight, an increase in osteocalcin, and, in women, a decrease in estradiol. Conclusions: In older patients with T2DM, canagliflozin showed small but significant reductions in total hip BMD and increases in bone formation and resorption biomarkers, due at least in part to weight loss. PMID:26580234

  8. Molecular packing in bone collagen fibrils prior to mineralization

    NASA Astrophysics Data System (ADS)

    Hsiao, Benjamin; Zhou, Hong-Wen; Burger, Christian; Chu, Benjamin; Glimcher, Melvin J.

    2012-02-01

    The three-dimensional packing of collagen molecules in bone collagen fibrils has been largely unknown because even in moderately mineralized bone tissues, the organic matrix structure is severely perturbed by the deposition of mineral crystals. During the past decades, the structure of tendon collagen (e.g. rat tail) --- a tissue that cannot mineralize in vivo, has been assumed to be representative for bone collagen fibrils. Small-angle X-ray diffraction analysis of the native, uncalcified intramuscular fish bone has revealed a new molecular packing scheme, significantly different from the quasi-hexagonal arrangement often found in tendons. The deduced structure in bone collagen fibrils indicates the presence of spatially discrete microfibrils, and an arrangement of intrafibrillar space to form ``channels'', which could accommodate crystals with dimensions typically found in bone apatite.

  9. Porous tantalum tibial component prevents periprosthetic loss of bone mineral density after total knee arthroplasty for five years-a matched cohort study.

    PubMed

    Minoda, Yukihide; Kobayashi, Akio; Ikebuchi, Mitsuhiko; Iwaki, Hiroyoshi; Inori, Fumiaki; Nakamura, Hiroaki

    2013-12-01

    In 21 knees receiving porous tantalum tibial component and 21 knees receiving a cemented cobalt-chromium tibial component, dual x-ray absorptiometry scans were performed for five years post-operatively. The postoperative decrease in the bone mineral density in the lateral aspect of the tibia was significantly less in knees with porous tantalum tibial components (11.6%) than in knees with cemented cobalt-chromium tibial components (29.6%) at five years (p < 0.05). No prosthetic migration or periprosthetic fracture was detected in either group. The present study is one of the studies with the longest follow-up period on bone mineral density after total knee arthroplasty. Porous tantalum tibial component has a favorable effect on the bone mineral density of the proximal tibia after total knee arthroplasty up to five years.

  10. Effect of body composition on bone mineral density in Moroccan patients with juvenile idiopathic arthritis

    PubMed Central

    El Badri, Dalal; Rostom, Samira; Bouaddi, Ilham; Hassani, Asmae; Chkirate, Bouchra; Amine, Bouchra; Hajjaj-Hassouni, Najia

    2014-01-01

    Introduction The link between bone mass and body composition is widely recognized, but only few works were selectively performed on subjects with juvenile idiopathic arthritis. The aim of our study was to investigate the effect of body composition on bone mineral density (BMD) in Moroccan patients with juvenile idiopathic arthritis. Methods Thirty three children with juvenile idiopathic arthritis (JIA) were included in a cross-sectional study. The diagnosis of JIA was made according to the criteria of the International League of Association of Rheumatology (ILAR). Body mass index (BMI) was calculated from the ratio of weight/height2(kg/m2). Pubertal status was determined according to the Tanner criteria. Bone status, body composition and bone mineral content (BMC) were analyzed by using dual-energy X-ray absorptiometry (DXA). BMD was assessed at the lumbar spine (L1-L4) and at total body in (g/cm2). Total body fat tissue mass (FTM) and lean tissue mass (LTM) were also analyzed by DXA and expressed in kilograms. In children, low BMD was defined as a Z-score less than -2 and osteoporosis was defined as a Z-score less than -2 with a fracture history. Results A cross-sectional study was conducted in 33 Moroccan patients with JIA aged between 4 and 16 years, Fat mass was not related to bone density; in contrast, BMD was positively associated to LTM in total body(r = =0.41, p= 0.04) but not in lumbar spine (r = 0.29, p= 0.17). There exist significant correlation between BMC and BMD in total body (r = 0.51, p = 0.01). Conclusion This study suggests that the LTM is a determining factor of the BMD during adolescence. Other studies with a broader sample would be useful to confirm this relation. PMID:25120859

  11. Evaluation of Bone Mineral Density by Computed Tomography in Patients with Obstructive Sleep Apnea

    PubMed Central

    Hamada, Satoshi; Ikezoe, Kohei; Hirai, Toyohiro; Oguma, Tsuyoshi; Tanizawa, Kiminobu; Inouchi, Morito; Handa, Tomohiro; Oga, Toru; Mishima, Michiaki; Chin, Kazuo

    2016-01-01

    Study Objectives: Clinical studies have investigated whether obstructive sleep apnea (OSA) can modulate bone metabolism but data are conflicting. Bone mineral density (BMD) measured by dual-energy x-ray absorptiometry is the standard technique for quantifying bone strength but has limitations in overweight patients (body mass index [BMI] ≥ 25 kg/m2). The aim of this study was to examine the association between OSA and BMD by examining CT images that allow true volumetric measurements of the bone regardless of BMI. Methods: Lumbar vertebrae BMD was evaluated in 234 persons (180 males and 54 females) by CT scan. The method was calibrated by a phantom containing a known concentration of hydroxyapatite. Results: BMD was lower in male patients with severe OSA (apnea-hypopnea index [AHI] ≥ 30/h) than non OSA (AHI < 5; p < 0.05), while OSA and BMD had no association in females. Linear and multiple regression analyses revealed that age (p < 0.0001, β = −0.52), hypertension (p = 0.0068, β = −0.17), and the alveolar-arterial oxygen pressure difference (A-aDO2) (p = 0.012, β = −0.15) in males were associated with BMD, while only age (p < 0.0001, β = −0.68) was associated with BMD in females. Conclusion: Males with severe OSA had a significantly lower BMD than non OSA participants. Age, hypertension, and elevation of A-aDO2 were significant factors for BMD by CT imaging. The usefulness of measuring BMD in OSA patients by CT scanning should be studied in future. Citation: Hamada S, Ikezoe K, Hirai T, Oguma T, Tanizawa K, Inouchi M, Handa T, Oga T, Mishima M, Chin K. Evaluation of bone mineral density by computed tomography in patients with obstructive sleep apnea. J Clin Sleep Med 2016;12(1):25–34. PMID:26235157

  12. Recovery of Spaceflight-induced Bone Loss: Bone Mineral Density after Long-Duration Missions as Fitted with an Exponential Function

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Evans, H. J.; Sung, H. G.; Spector, E. R.; Lang, T. F.; Oganov, V. S.; Bakulin, A. V.; Shackelford, L. C.; LeBlanc, A. D.

    2007-01-01

    The loss of bone mineral in NASA astronauts during spaceflight has been investigated throughout the more than 40 years of space travel. Consequently, it is a medical requirement at NASA Johnson Space Center (JSC) that changes in bone mass be monitored in crew members by measuring bone mineral density (BMD) with dual-energy x-ray absorptiometry (DXA) before and after flight on astronauts who serve on long-duration missions (4-6 months). We evaluated this repository of medical data to track whether there is recovery of bone mineral that was lost during spaceflight. Our analysis was supplemented by BMD data from cosmonauts ( by convention, a space traveler formally employed by the Russia Aviation and Space Agency or by the previous Soviet Union) who had also flown on long-duration missions. Data from a total of 45 individual crew members -- a small number of whom flew on more than one mission -- were used in this analysis. Changes in BMD (between 56 different sets of pre- and postflight measurements) were plotted as a function of time (days after landing). Plotted BMD changes were fitted to an exponential mathematical function that estimated: i) BMD change on landing day (day 0) and ii) the number of days after landing when 50% of the lost bone would be recovered ("50% recovery time") in the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. In sum, averaged losses of bone mineral after long-duration spaceflight ranged between 2-9% across all sites with our recovery model predicting a 50% restoration of bone loss for all sites to be within 9 months.

  13. Recovery of spaceflight-induced bone loss: bone mineral density after long-duration missions as fitted with an exponential function.

    PubMed

    Sibonga, J D; Evans, H J; Sung, H G; Spector, E R; Lang, T F; Oganov, V S; Bakulin, A V; Shackelford, L C; LeBlanc, A D

    2007-12-01

    The loss of bone mineral in NASA astronauts during spaceflight has been investigated throughout the more than 40 years of space travel. Consequently, it is a medical requirement at NASA Johnson Space Center (JSC) that changes in bone mass be monitored in crew members by measuring bone mineral density (BMD), with dual-energy X-ray absorptiometry (DXA) before and after flight, of astronauts who serve on long-duration missions (4-6 months). We evaluated this repository of medical data to track whether there is recovery of bone mineral that was lost during spaceflight. Our analysis was supplemented by BMD data from cosmonauts (by convention, a space traveler formally employed by the Russia Aviation and Space Agency or by the previous Soviet Union) who had also flown on long-duration missions. Data from a total of 45 individual crew members - a small number of whom flew on more than one mission - were used in this analysis. Changes in BMD (between 56 different sets of pre- and postflight measurements) were plotted as a function of time (days after landing). Plotted BMD changes were fitted to an exponential mathematical function that estimated: (i) BMD change on landing day (day 0) and (ii) the number of days after landing when 50% of the lost bone would be recovered ("50% recovery time") in the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. In sum, averaged losses of bone mineral after long-duration spaceflight ranged between 2% and 9% across all sites with our recovery model predicting a 50% restoration of bone loss for all sites to be within 9 months.

  14. Bone mineral density testing in social context.

    PubMed

    Kazanjian, A; Green, C J; Bassett, K; Brunger, F

    1999-01-01

    Bone mineral density (BMD) testing of healthy women continues to increase, despite widespread discrediting of this test as a valid means to predict fracture risk. To find an explanation for this expanding utilization, we turn to the literature of sociology and political science. Two interdisciplinary approaches proved particularly useful in critical examination of technologies related to women and aging: feminist analysis and cross-cultural analysis. BMD testing has grown because it is marketed in ways that draw upon and perpetuate two trends in western popular culture: a) the medical model of the aging female body; and b) the fear of aging, with its associated disability, dependency, and immobility. The feedback loop between popular and scientific knowledge has created and perpetuated the notion that the aging female body is a diseased body. The trend toward defining osteoporosis entirely on the basis of BMD diagnostic criteria has resulted in the transformation of a risk factor into a disease entity. As the onus for managing risk falls increasingly on women as individuals, and as they strive to reach the preferred ideal of normality, the area that defines normality on the continuum is shrinking, while that defining abnormality is increasing. The power relations and private interests served by this altered continuum remain largely unexamined. The effect, however, is to encourage the demand for screening and diagnostic technologies, giving rise to the rapid diffusion of such technologies, even where the research evidence does not support their use. PMID:10645109

  15. Effects of Exemestane and Tamoxifen treatment on bone texture analysis assessed by TBS in comparison with bone mineral density assessed by DXA in women with breast cancer.

    PubMed

    Kalder, Matthias; Hans, Didier; Kyvernitakis, Ioannis; Lamy, Olivier; Bauer, Martina; Hadji, Peyman

    2014-01-01

    We performed an analysis of a substudy of the randomized Tamoxifen Exemestane Adjuvant Multinational trial to determine the effects of exemestane (EXE) and tamoxifen (TAM) adjuvant treatment on bone mineral density (BMD) measured by dual-energy X-ray absorptiometry compared with the trabecular bone score, a novel grey-level texture measurement that correlates with 3-dimensional parameters of bone texture in postmenopausal women with hormone receptor-positive breast cancer for the first time. In total, 36 women were randomized to receive TAM (n = 17) or EXE (n = 19). Patients receiving TAM showed a mean increase of BMD in lumbar spine from baseline of 1.0%, 1.5%, and 1.9% and in trabecular bone score of 2.2%, 3.5%, and 3.3% at 6-, 12-, and 24-mo treatment, respectively. Conversely, patients receiving EXE showed a mean decrease from baseline in lumbar spine BMD of -2.3%, -3.6%, and -5.3% and in trabecular bone score of -0.9%, -1.7%, and -2.3% at 6-, 12-, and 24-mo treatment, respectively. Changes in trabecular bone score from baseline at spine were also significantly different between EXE and TAM: p = 0.05, 0.007, and 0.006 at 6, 12, and 24 mo, respectively. TAM induced an increase in BMD and bone texture analysis, whereas EXE resulted in decreases. The results were independent from each other.

  16. Effect of acemannan, an extracted polysaccharide from Aloe vera, on BMSCs proliferation, differentiation, extracellular matrix synthesis, mineralization, and bone formation in a tooth extraction model.

    PubMed

    Boonyagul, Sani; Banlunara, Wijit; Sangvanich, Polkit; Thunyakitpisal, Pasutha

    2014-07-01

    Aloe vera is a traditional wound healing medicine. We hypothesized acemannan, a polysaccharide extracted from Aloe vera gel, could affect bone formation. Primary rat bone marrow stromal cells (BMSCs) were treated with various concentrations of acemannan. New DNA synthesis, VEGF, BMP-2, alkaline phosphatase activity, bone sialoprotein, osteopontin expression, and mineralization were determined by [(3)H] thymidine incorporation assay, ELISA, biochemical assay, western blotting, and Alizarin Red staining, respectively. In an animal study, mandibular right incisors of male Sprague-Dawley rats were extracted and an acemannan treated sponge was placed in the socket. After 1, 2, and 4 weeks, the mandibles were dissected. Bone formation was evaluated by dual-energy X-ray absorptiometry and histopathological examination. The in vitro results revealed acemannan significantly increased BMSC proliferation, VEGF, BMP-2, alkaline phosphatase activity, bone sialoprotein and osteopontin expression, and mineralization. In-vivo results showed acemannan-treated groups had higher bone mineral density and faster bone healing compared with untreated controls. A substantial ingrowth of bone trabeculae was observed in acemannan-treated groups. These data suggest acemannan could function as a bioactive molecule inducing bone formation by stimulating BMSCs proliferation, differentiation into osteoblasts, and extracellular matrix synthesis. Acemannan could be a candidate natural biomaterial for bone regeneration.

  17. Method for improved prediction of bone fracture risk using bone mineral density in structural analysis

    NASA Technical Reports Server (NTRS)

    Cann, Christopher E. (Inventor); Faulkner, Kenneth G. (Inventor)

    1992-01-01

    A non-invasive in-vivo method of analyzing a bone for fracture risk includes obtaining data from the bone such as by computed tomography or projection imaging which data represents a measure of bone material characteristics such as bone mineral density. The distribution of the bone material characteristics is used to generate a finite element method (FEM) mesh from which load capability of the bone can be determined. In determining load capability, the bone is mathematically compressed, and stress, strain force, force/area versus bone material characteristics are determined.

  18. Teriparatide Increases Bone Formation and Bone Mineral Density in Adult Women With Anorexia Nervosa

    PubMed Central

    Wang, Irene S.; Miller, Karen K.; Herzog, David B.; Misra, Madhusmita; Lee, Hang; Finkelstein, Joel S.; Bouxsein, Mary L.; Klibanski, Anne

    2014-01-01

    Context: Anorexia nervosa (AN), a prevalent psychiatric disorder predominantly affecting women, is characterized by self-induced starvation and low body weight. Increased clinical fractures are common, and most women have low bone mineral density (BMD). Previously investigated treatments have led to no or modest increases in BMD in AN. Objective: Our objective was to investigate the effect of teriparatide (TPT; human PTH[1–34]), an anabolic agent, on low bone mass in women with AN. Design, Setting, and Patients: This randomized, placebo-controlled trial at a clinical research center included 21 women with AN: 10 (mean age ± SEM, 47 ± 2.7 years) treated with TPT and 11 (47.1 ± 2.3 years) treated with placebo. Interventions: TPT (20 μg SC) or placebo was administered for 6 months. Main Outcome Measures: Our primary outcome measure was change in BMD of the spine and hip by dual-energy x-ray absorptiometry. Secondary outcome measures included changes in serum N-terminal propeptide of type 1 procollagen (P1NP), C-terminal collagen cross-links, sclerostin, and IGF-1 levels. Results: At 6 months, spine BMD increased significantly more with TPT (posteroanterior spine, 6.0% ± 1.4%; lateral spine, 10.5% ± 2.5%) compared with placebo (posteroanterior spine, 0.2% ± 0.7%, P < .01; lateral spine, −0.6% ± 1.0%; P < .01). The results remained significant after controlling for baseline body mass index, P1NP, and IGF-1. Changes in femoral neck (P = .4) and total hip (P = 0.8) BMD were comparable in both groups, as were changes in weight. Serum P1NP levels increased after 3 months of TPT treatment and remained at this higher level at 6 months, whereas P1NP levels were unchanged in the placebo group (P = .02). TPT was well-tolerated by all subjects. Conclusions: This study demonstrates that TPT administration increases spine BMD substantially after only 6 months of therapy in women with AN. PMID:24456286

  19. Autophagy in osteoblasts is involved in mineralization and bone homeostasis.

    PubMed

    Nollet, Marie; Santucci-Darmanin, Sabine; Breuil, Véronique; Al-Sahlanee, Rasha; Cros, Chantal; Topi, Majlinda; Momier, David; Samson, Michel; Pagnotta, Sophie; Cailleteau, Laurence; Battaglia, Séverine; Farlay, Delphine; Dacquin, Romain; Barois, Nicolas; Jurdic, Pierre; Boivin, Georges; Heymann, Dominique; Lafont, Frank; Lu, Shi Shou; Dempster, David W; Carle, Georges F; Pierrefite-Carle, Valérie

    2014-01-01

    Bone remodeling is a tightly controlled mechanism in which osteoblasts (OB), the cells responsible for bone formation, osteoclasts (OC), the cells specialized for bone resorption, and osteocytes, the multifunctional mechanosensing cells embedded in the bone matrix, are the main actors. Increased oxidative stress in OB, the cells producing and mineralizing bone matrix, has been associated with osteoporosis development but the role of autophagy in OB has not yet been addressed. This is the goal of the present study. We first show that the autophagic process is induced in OB during mineralization. Then, using knockdown of autophagy-essential genes and OB-specific autophagy-deficient mice, we demonstrate that autophagy deficiency reduces mineralization capacity. Moreover, our data suggest that autophagic vacuoles could be used as vehicles in OB to secrete apatite crystals. In addition, autophagy-deficient OB exhibit increased oxidative stress and secretion of the receptor activator of NFKB1 (TNFSF11/RANKL), favoring generation of OC, the cells specialized in bone resorption. In vivo, we observed a 50% reduction in trabecular bone mass in OB-specific autophagy-deficient mice. Taken together, our results show for the first time that autophagy in OB is involved both in the mineralization process and in bone homeostasis. These findings are of importance for mineralized tissues which extend from corals to vertebrates and uncover new therapeutic targets for calcified tissue-related metabolic pathologies.

  20. Bone mineral density, osteopenia, and osteoporosis in the rhesus macaques of Cayo Santiago.

    PubMed

    Cerroni, A M; Tomlinson, G A; Turnquist, J E; Grynpas, M D

    2000-11-01

    This cross-sectional study investigates metabolic bone disease and the relationship between age and bone mineral density (BMD) in males and females of a large, well-documented skeletal population of free-ranging rhesus monkeys (Macaca mulatta), from the Caribbean Primate Research Center Museum collection from Cayo Santiago, Puerto Rico. The sample consists of 254 individuals aged 1.0-20+ years. The data consist of measurements of bone mineral content and bone mineral density, obtained from dual-energy X-ray absorptiometry (DEXA), of the last lumbar vertebra from each monkey. The pattern of BMD differs between male and female rhesus macaques. Females exhibit an initial increase in BMD with age, with peak bone density occurring around age 9.5 years, and remaining constant until 17.2 years, after which there is a steady decline in BMD. Males acquire bone mass at a faster rate, and attain a higher peak BMD at an earlier age than do females, at around 7 years of age, and BMD remains relatively constant between ages 7-18.5 years. After age 7 there is no apparent effect of age on BMD in the males of this sample; males older than 18.5 years were excluded due to the presence of vertebral osteophytosis, which interferes with DEXA. The combined frequency of osteopenia and osteoporosis in this population is 12.4%. BMD values of monkeys with vertebral wedge fractures are generally higher than those of virtually all of the nonfractured osteopenic/osteoporotic individuals, thus supporting the view that BMD as measured by DEXA is a useful but imperfect predictor of fracture risk, and that low BMD may not always precede fractures in vertebral bones. Other factors such as bone quality (i.e., trabecular connectivity) should also be considered. The skeletal integrity of a vertebra may be compromised by the loss of key trabeculae, resulting in structural failure, but the spine may still show a BMD value within normal limits, or within the range of osteopenia. PMID:11042540

  1. Bone minerals changes in obese women during a moderate weight loss with and without calcium supplementation.

    PubMed

    Jensen, L B; Kollerup, G; Quaade, F; Sørensen, O H

    2001-01-01

    A significant relationship between body weight (BW) and bone mass (BM) has been established previously. A diet-induced weight loss is accompanied by a significant decrease in bone mineral density (BMD) and total body bone mineral (TBBM), but the underlying mechanisms are not clarified. Sixty-two obese women were included in the study. Dual-energy X-ray absorptiometry (DXA) and measurements of a series of calcium-regulating hormones and biochemical markers of bone turnover were performed at baseline and after 1 month and 3 months on a low calorie diet. Thirty of the women were randomized to a daily supplement of 1 g of calcium. After an additional 3 months without dietary prescriptions or calcium supplements, a subgroup of 48 subjects (24 from each group) were scanned again using DXA. There was a significant decrease in TBBM after 1 month and 3 months. A similar pattern was observed in the bone mineral content (BMC) of the lumbar spine in the patients who did not receive a calcium supplement, whereas no changes occurred in the supplemented group. The initial calcium supplementation seemed to protect against bone loss in the lumbar spine but not in the TBBM. In the nonsupplemented group, a statistically significant inverse correlation was found between the calcium/creatinine ratio in the morning urine and the changes in BMC of the lumbar spine. Such a relationship was not seen in the calcium-supplemented group. In the nonsupplemented group, no significant biochemical changes were observed, whereas a significant decrease in serum parathyroid hormone (PTH) was seen in the calcium-supplemented group. This might explain some of the protective effects of calcium supplementation on trabecular bone mass. We conclude that a diet-induced weight loss is accompanied by a generalized bone loss, which probably is explained mainly by a reduced mechanical strain on the skeleton. This loss can be partly inhibited by a high calcium intake. Therefore, a calcium supplementation should

  2. Bone mineral densitometry substantially influences health-related behaviors of postmenopausal women.

    PubMed

    Marci, C D; Anderson, W B; Viechnicki, M B; Greenspan, S L

    2000-02-01

    Although bone mineral density measurements are helpful in predicting future risk for osteoporotic fractures, there is limited information available on how the results of bone densitometry influence a woman's use of therapeutic alternatives. To assess the role of bone mineral densitometry in influencing postmenopausal women to change health behaviors associated with osteoporosis, we prospectively followed, for an average of 2.9 years, 701 postmenopausal women over 50 years of age referred to an osteoporosis prevention program in a large metropolitan area. Assessments included bone mineral densitometry by dual-energy X-ray absorptiometry (with classification of skeletal health), medical history, use of hormone replacement therapy, calcium intake, caffeine intake, exercise, smoking habits, and fall precaution measures. Women classified at baseline with moderate low bone mass were twice as likely (33%), and women with severe low bone mass more than three times as likely (47%) to start hormone replacement therapy compared with women with a normal result (13%, P < 0.001). This was true regardless of whether they had taken hormone replacement therapy in the past. Below-normal BMD was a strong predictor of a woman's initiation of hormone replacement therapy (OR 4.2; 95% CI 2.7-6.4; P < 0.05) even after adjustment for age, education, history of osteoporosis or fracture, and medical condition related to osteoporosis. Women with moderate or severe low bone mass were also much more likely to start calcium supplements (81-90% versus 67%), increase dietary calcium (71-82% versus 60%), decrease use of caffeine (44-60% versus 34%), start exercising (61-76% versus 52%), and quit smoking (22-24% versus 11%) relative to their behaviors prior to testing (P < 0.01). In conclusion, postmenopausal women report that the results of bone densitometry substantially influence the decision to begin hormone replacement therapy and calcium supplements, increase dietary calcium, decrease caffeine

  3. Changes in bone mineral density of the acetabulum and proximal femur after total hip resurfacing arthroplasty.

    PubMed

    Huang, Qiang; Shen, Bin; Yang, Jing; Zhou, Zong-ke; Kang, Peng-de; Pei, Fu-xing

    2013-12-01

    Our aim was to investigate the changes in bone mineral density (BMD) of acetabulum and proximal femur after total hip resurfacing arthroplasty. A comparative study was carried out on 51 hips in 48 patients. Group A consisted of 25 patients (26 hips) who had undergone total hip resurfacing and group B consisted of 23 patients (25 hips) who had had large-diameter metal-on-metal total hip arthroplasty (THA). BMDs around the acetabulum and proximal femur were measured using dual-energy x-ray absorptiometry (DEXA) at 2 weeks, 6 months, 1 year and annually thereafter during the 3 years after surgery. At final follow-up, the acetabular net mean BMD decreased by 11% in group A and 10% in group B with no differences between two groups (P = .35). For the femoral side, in Gruen zone 1, the mean BMD increased by 4% in group A, whereas it decreased by 11% in group B (P = .029). In Gruen zone 7, the mean BMD increased by 8% at the final follow-up in group A, whereas it decreased by 13% in group B (P = .02). In both groups the mean BMD increased by 3% in Gruen zones 3, 4, 5, and 6. Stress-related bone loss of the acetabulum was comparable for MOM THA and resurfacing devices, but proximal femoral bone density increased in the resurfacing group and decreased in the THA group.

  4. Yerba Mate (Ilex paraguariensis) consumption is associated with higher bone mineral density in postmenopausal women.

    PubMed

    Conforti, Andrea S; Gallo, María E; Saraví, Fernando D

    2012-01-01

    Yerba Mate (Ilex paraguariensis) tea consumption is higher in Argentina and other South American countries than those of coffee or tea (Camellia sinensis). The effects of Yerba Mate on bone health have not previously been explored. From a program for osteoporosis prevention and treatment, postmenopausal women who drank at least 1 L of Yerba Mate tea daily during 4 or more years (n=146) were identified, and matched by age and time since menopause with an equal number of women who did not drink Yerba Mate tea. Their bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry (DXA) at the lumbar spine and femoral neck. Yerba Mate drinkers had a 9.7% higher lumbar spine BMD (0.952 g/cm(2) versus 0.858 g/cm(2): p<0.0001) and a 6.2% higher femoral neck BMD (0.817 g/cm(2) versus 0.776 g/cm(2); p=0.0002). In multiple regression analysis, Yerba Mate drinking was the only factor, other than body mass index, which showed a positive correlation with BMD at both the lumbar spine (p<0.0001) and the femoral neck (p=0.0028). Results suggest a protective effect of chronic Yerba Mate consumption on bone.

  5. Association of chemerin levels and bone mineral density in Chinese obese postmenopausal women

    PubMed Central

    Shi, Liang; Mao, Chaoming; Wang, Xuefeng; Liu, Rencong; Li, Lin; Mou, Xiao; Xu, Ping; Li, Hongli; Xu, Chengcheng; Yuan, Guoyue; Wang, Bin; Zhang, Hao

    2016-01-01

    Abstract Increasing evidence suggests the association between obesity and bone metabolism. However, whether excessive fat accumulation has a beneficial or adverse effect on bone health remains controversial. Chemerin is a novel adipocyte-derived hormone and a chemoattractant cytokine that regulates adipogenesis. This study was performed to investigate the associations of serum chemerin with bone mineral density (BMD) and serum pro-inflammatory cytokine levels in 543 Chinese obese postmenopausal women. BMD of the femoral neck and lumbar spine, lean mass, and fat mass were measured using dual energy X-ray absorptiometry. Anthropometric assessment and laboratory measurements were performed. The age, time after menopause, and fat mass were negatively correlated with femoral and lumbar BMD, whereas lean mass was positively correlated with aforementioned variables. Furthermore, BMD at the lumbar spine was inversely associated with serum chemerin and TNF-α levels (r = −0.155, P = 0.001; r = −0.147, P = 0.001). Multiple linear regression analyses showed that serum chemerin levels were negatively correlated with BMD at the lumbar site after controlling for the age, lean, and fat mass (β = −0.125, P = 0.001). Chronic low-grade inflammation state in obese population has an inverse effect on bone mass. Chemerin as an adipocytokine and chemoattractant negatively affects the bone mass of Chinese obese postmenopausal women. Further studies are needed to confirm the potential role of chemerin in the crosstalk between bone and fat accumulation in obese population. PMID:27583869

  6. Combat sports practice favors bone mineral density among adolescent male athletes.

    PubMed

    Nasri, Raouf; Hassen Zrour, Saoussen; Rebai, Haithem; Neffeti, Fadoua; Najjar, Mohamed Fadhel; Bergaoui, Naceur; Mejdoub, Hafedh; Tabka, Zouhair

    2015-01-01

    The aim of this study was to determine the impact of combat sports practice on bone mineral density (BMD) and to analyze the relationship between bone parameters and anthropometric measurements, bone markers, and activity index (AI). In other words, to detect the most important determinant of BMD in the adolescent period among combat sports athletes. Fifty athletes engaged in combat sports, mean age 17.1±0.2 yr, were compared with 30 sedentary subjects who were matched for age, height, and pubertal stage. For all subjects, the whole-body BMD, lumbar spine BMD (L2-L4), and BMD in the pelvis, arms, and legs was measured by dual-energy X-ray absorptiometry, and anthropometric measurements were evaluated. Daily calcium intake, bone resorption, and formation markers were measured. BMD measurements were greater in the combat sports athletes than in the sedentary group (p<0.01). Weight, body mass index, and lean body mass were significantly correlated with BMD in different sites. Daily calcium consumption lower than daily calcium intake recommended in both athletes and sedentary group. AI was strongly correlated with all BMD measurements particularly with the whole body, legs, and arms. Negative correlations were observed between bone markers and BMD in different sites. The common major predictor of BMD measurements was AI (p<0.0001). AI associated to lean body mass determined whole-body BMD until 74%. AI explained both BMD in arms and L2-L4 at 25%. AI associated to height can account for 63% of the variance in BMD legs. These observations suggested that the best model predicting BMD in different sites among adolescent combat sports athletes was the AI. Children and adolescents should be encouraged to participate in combat sports to maximize their bone accrual. PMID:24176431

  7. Association of chemerin levels and bone mineral density in Chinese obese postmenopausal women.

    PubMed

    Shi, Liang; Mao, Chaoming; Wang, Xuefeng; Liu, Rencong; Li, Lin; Mou, Xiao; Xu, Ping; Li, Hongli; Xu, Chengcheng; Yuan, Guoyue; Wang, Bin; Zhang, Hao

    2016-08-01

    Increasing evidence suggests the association between obesity and bone metabolism. However, whether excessive fat accumulation has a beneficial or adverse effect on bone health remains controversial. Chemerin is a novel adipocyte-derived hormone and a chemoattractant cytokine that regulates adipogenesis. This study was performed to investigate the associations of serum chemerin with bone mineral density (BMD) and serum pro-inflammatory cytokine levels in 543 Chinese obese postmenopausal women. BMD of the femoral neck and lumbar spine, lean mass, and fat mass were measured using dual energy X-ray absorptiometry. Anthropometric assessment and laboratory measurements were performed. The age, time after menopause, and fat mass were negatively correlated with femoral and lumbar BMD, whereas lean mass was positively correlated with aforementioned variables. Furthermore, BMD at the lumbar spine was inversely associated with serum chemerin and TNF-α levels (r = -0.155, P = 0.001; r = -0.147, P = 0.001). Multiple linear regression analyses showed that serum chemerin levels were negatively correlated with BMD at the lumbar site after controlling for the age, lean, and fat mass (β = -0.125, P = 0.001). Chronic low-grade inflammation state in obese population has an inverse effect on bone mass. Chemerin as an adipocytokine and chemoattractant negatively affects the bone mass of Chinese obese postmenopausal women. Further studies are needed to confirm the potential role of chemerin in the crosstalk between bone and fat accumulation in obese population. PMID:27583869

  8. Bone mineral density testing after fragility fracture

    PubMed Central

    Posen, Joshua; Beaton, Dorcas E.; Sale, Joanna; Bogoch, Earl R.

    2013-01-01

    Abstract Objective To determine the proportion of patients with fragility fractures who can be expected to have low bone mineral density (BMD) at the time of fracture and to assist FPs in deciding whether to refer patients for BMD testing. Data sources MEDLINE, EMBASE, and CINAHL were searched from the earliest available dates through September 2009. Study selection English-language articles reporting BMD test results of patients with fragility fractures who were managed in an orthopedic environment (eg, fracture clinic, emergency management by orthopedic surgeons, inpatients) were eligible for review. While the orthopedic environment has been identified as an ideal point for case finding, FPs are often responsible for investigation and treatment. Factors that potentially influenced BMD test results (eg, selection of fracture types, exclusion criteria) were identified. Studies with 2 or more selection factors of potential influence were flagged, and rates of low BMD were calculated including and excluding these studies. Synthesis The distribution of the proportion of persons with low BMD was summarized across studies using descriptive statistics. We calculated lower boundaries on this distribution, using standard statistical thresholds, to determine a lower threshold of the expected rate of low BMD. Conclusion Family physicians evaluating patients with fragility fractures can expect that at least two-thirds of patients with fragility fractures who are older than 50 years of age will have low BMD (T score ≤ −1.0). With this a priori expectation, FPs might more readily conduct a fracture risk assessment and pursue warranted fracture risk reduction strategies following fragility fracture. PMID:24336562

  9. Vitamin D Deficiency and Low Bone Mineral Density in Pediatric and Young Adult Intestinal Failure

    PubMed Central

    Ubesie, Agozie C; Heubi, James E; Kocoshis, Samuel A; Henderson, Carol J; Mezoff, Adam G; Rao, Marepalli B; Cole, Conrad R

    2013-01-01

    Objectives To determine the prevalence and predisposing factors for vitamin D deficiency and low bone mineral density (BMD) in patients with intestinal failure (IF). Methods A retrospective review of patients with IF managed at the Cincinnati Children’s Hospital Medical Center. IF was defined as history of parenteral nutrition (PN) >30 days. Vitamin D deficiency was defined as serum 25-OH vitamin D [25(OH) D] < 20ng/dL. Reduced bone mineral density (BMD) was defined using dual x-ray absorptiometry (DXA) Z-score ≤− 2. A binary logistic regression model was used to test for association of significant risk factors and the outcome variables after univariate analyses. Results One hundred and twenty three patients with median age of 4 years (range 3–22 years) were evaluated. Forty-nine (39.8%) patients had at least a documented serum 25 (OH) D deficiency during the study interval while 10 out of 80 patients (12.5%) with DXA scans done had a low BMD Z-score. Age at study entry was associated with both 25 (OH) D deficiency (P= 0. 01) and low BMD Z-score (P = 0. 03). Exclusive PN at study entry was associated with reduced bone mass (P=0.03). There was no significant association between vitamin D deficiency and low BMD Z-score (P=0.31). Conclusion The risk of 25 (OH) D deficiency and low BMD Z-score increases with age among patients with IF. Strategies for monitoring and preventing abnormal bone health in older children receiving exclusive PN need to be developed and evaluated. PMID:23698025

  10. Assessment of trabecular bone quality in human cadaver calcaneus using scanning confocal ultrasound and dual x-ray absorptiometry (DEXA) measurements

    NASA Astrophysics Data System (ADS)

    Qin, Yixian; Xia, Yi; Lin, Wei; Rubin, Clinton; Gruber, Barry

    2004-10-01

    Microgravity and aging induced bone loss is a critical skeleton complication, occurring particularly in the weight-supporting skeleton, which leads to osteoporosis and fracture. Advents in quantitative ultrasound (QUS) provide a unique method for evaluating bone strength and density. Using a newly developed scanning confocal acoustic diagnostic (SCAD) system, QUS assessment for bone quality in the real body region was evaluated. A total of 19 human cadaver calcanei, age 66 to 97 years old, were tested by both SCAD and nonscan mode. The scanning region covered an approximate 40×40 mm2 with 0.5 mm resolution. Broadband ultrasound attenuation (BUA, dB/MHz), energy attenuation (ATT, dB), and ultrasound velocity (UV, m/s) were measured. The QUS properties were then correlated to the bone mineral density (BMD) measured by DEXA. Correlations between BMD and QUS parameters were significantly improved by using SCAD as compared to nonscan mode, yielding correlations between BMD and SCAD QUS parameters as R=0.82 (BUA), and R=0.86 (est. BMD). It is suggested that SCAD is feasible for in vivo bone quality mapping. It can be potentially used for monitoring instant changes of bone strength and density. [Work supported by the National Space Biomedical Research Institute (TD00207), and New York Center for Biotechnology.

  11. Utilization of DXA Bone Mineral Densitometry in Ontario

    PubMed Central

    2006-01-01

    Executive Summary Issue Systematic reviews and analyses of administrative data were performed to determine the appropriate use of bone mineral density (BMD) assessments using dual energy x-ray absorptiometry (DXA), and the associated trends in wrist and hip fractures in Ontario. Background Dual Energy X-ray Absorptiometry Bone Mineral Density Assessment Dual energy x-ray absorptiometry bone densitometers measure bone density based on differential absorption of 2 x-ray beams by bone and soft tissues. It is the gold standard for detecting and diagnosing osteoporosis, a systemic disease characterized by low bone density and altered bone structure, resulting in low bone strength and increased risk of fractures. The test is fast (approximately 10 minutes) and accurate (exceeds 90% at the hip), with low radiation (1/3 to 1/5 of that from a chest x-ray). DXA densitometers are licensed as Class 3 medical devices in Canada. The World Health Organization has established criteria for osteoporosis and osteopenia based on DXA BMD measurements: osteoporosis is defined as a BMD that is >2.5 standard deviations below the mean BMD for normal young adults (i.e. T-score <–2.5), while osteopenia is defined as BMD that is more than 1 standard deviation but less than 2.5 standard deviation below the mean for normal young adults (i.e. T-score< –1 & ≥–2.5). DXA densitometry is presently an insured health service in Ontario. Clinical Need   Burden of Disease The Canadian Multicenter Osteoporosis Study (CaMos) found that 16% of Canadian women and 6.6% of Canadian men have osteoporosis based on the WHO criteria, with prevalence increasing with age. Osteopenia was found in 49.6% of Canadian women and 39% of Canadian men. In Ontario, it is estimated that nearly 530,000 Ontarians have some degrees of osteoporosis. Osteoporosis-related fragility fractures occur most often in the wrist, femur and pelvis. These fractures, particularly those in the hip, are associated with increased

  12. Bone Mineral Status in Children with Congenital Adrenal Hyperplasia

    PubMed Central

    Fleischman, Amy; Ringelheim, Julie; Feldman, Henry A.; Gordon, Catherine M.

    2013-01-01

    Congenital adrenal hyperplasia (CAH) is caused by a deficiency in an adrenal enzyme resulting in alterations in Cortisol and aldosterone production. Bone status is affected by chronic glucocorticoid therapy and excess androgen exposure in children with CAH. This cross-sectional study enrolled participants with 21-hydroxylase deficiency from a pediatric referral center. Bone mineral density in the participants was normal when compared to age, gender and ethnicity adjusted standards, with respect to chronological age or bone age. Lean body mass was positively correlated with bone mineral content (BMC), independent of fat mass (p <0.001). There was no significant correlation between glucocorticoid dose or serum androgen levels and skeletal endpoints. In conclusion, lean body mass appears to be an important correlate of BMC in patients with CAH. The normal bone status may be explained by the differential effects of glucocorticoids on growing bone, beneficial androgen effects, or other disease specific factors. PMID:17396440

  13. Bone mineralization pathways during the rapid growth of embryonic chicken long bones.

    PubMed

    Kerschnitzki, Michael; Akiva, Anat; Ben Shoham, Adi; Asscher, Yotam; Wagermaier, Wolfgang; Fratzl, Peter; Addadi, Lia; Weiner, Steve

    2016-07-01

    The uptake and transport of ions from the environment to the site of bone formation is only partially understood and, for the most part, based on disparate observations in different animals. Here we study different aspects of the biomineralization pathways in one system, the rapidly forming long bones of the chicken embryo. We mainly used cryo-fixation and cryo-electron imaging to preserve the often unstable mineral phases in the tissues. We show the presence of surprisingly large amounts of mineral particles located inside membrane-delineated vesicles in the bone forming tissue between the blood vessels and the forming bone surface. Some of these particles are also located inside mitochondrial networks. The surfaces of the forming bones in the extracellular space contain abundant aggregates of amorphous calcium phosphate particles, but these are not enveloped by vesicle membranes. In the bone resorbing region, osteoclasts also contain many particles in both mitochondrial networks and within vesicles. Some of these particles are present also between cells. These observations, together with the previously reported observation that CaP mineral particles inside membranes are present in blood vessels, leads us to the conclusion that important components of the bone mineralization pathways in rapidly forming chicken bone are dense phase mineral particles bound within membranes. It remains to be determined whether these mineral particles are transported to the site of bone formation in the solid state, fluid state or dissolve and re-precipitate. PMID:27108185

  14. Bone mineralization pathways during the rapid growth of embryonic chicken long bones.

    PubMed

    Kerschnitzki, Michael; Akiva, Anat; Ben Shoham, Adi; Asscher, Yotam; Wagermaier, Wolfgang; Fratzl, Peter; Addadi, Lia; Weiner, Steve

    2016-07-01

    The uptake and transport of ions from the environment to the site of bone formation is only partially understood and, for the most part, based on disparate observations in different animals. Here we study different aspects of the biomineralization pathways in one system, the rapidly forming long bones of the chicken embryo. We mainly used cryo-fixation and cryo-electron imaging to preserve the often unstable mineral phases in the tissues. We show the presence of surprisingly large amounts of mineral particles located inside membrane-delineated vesicles in the bone forming tissue between the blood vessels and the forming bone surface. Some of these particles are also located inside mitochondrial networks. The surfaces of the forming bones in the extracellular space contain abundant aggregates of amorphous calcium phosphate particles, but these are not enveloped by vesicle membranes. In the bone resorbing region, osteoclasts also contain many particles in both mitochondrial networks and within vesicles. Some of these particles are present also between cells. These observations, together with the previously reported observation that CaP mineral particles inside membranes are present in blood vessels, leads us to the conclusion that important components of the bone mineralization pathways in rapidly forming chicken bone are dense phase mineral particles bound within membranes. It remains to be determined whether these mineral particles are transported to the site of bone formation in the solid state, fluid state or dissolve and re-precipitate.

  15. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS

  16. Association between Dietary Intake and Bone Mineral Density in Japanese Postmenopausal Women: The Yokogoshi Cohort Study.

    PubMed

    Hirata, Harumi; Kitamura, Kaori; Saito, Toshiko; Kobayashi, Ryosaku; Iwasaki, Masanori; Yoshihara, Akihiro; Watanabe, Yumi; Oshiki, Rieko; Nishiwaki, Tomoko; Nakamura, Kazutoshi

    2016-01-01

    Diet and food intake play an important role in the development of osteoporosis. However, apart from calcium and vitamin D, how nutrients affect bone status is not fully understood. The purpose of this study was to determine cross-sectional and longitudinal associations between dietary intake and bone mineral density (BMD) in Japanese postmenopausal women. This 5-year cohort study included 600 community-dwelling women aged 55-74 years at baseline in 2005. Information on demographics, nutrition, and lifestyle was obtained through interviews, and nutritional and dietary intake was assessed using a validated food frequency questionnaire. BMD measurements were performed by dual energy X-ray absorptiometry. In 2010, 498 women underwent follow-up BMD examinations. Multiple linear regression analysis was performed to determine associations of predictor variables with BMD, adjusting for confounders. In cross-sectional analyses, coffee or black tea consumption was positively associated with lumbar spine (P = 0.004) and total hip (P = 0.003) BMD, and alcohol intake was positively associated with femoral neck (P = 0.005) and total hip (P = 0.001) BMD. In longitudinal analyses, vitamin K (P = 0.028) and natto (fermented soybeans) (P = 0.023) were positively associated with lumbar spine BMD, and meat or meat product consumption was inversely associated with total hip (P = 0.047) BMD. In conclusion, dietary factors other than calcium and vitamin D intake are predictors of bone mass and bone loss in Japanese postmenopausal women. In particular, natto intake is recommended for preventing postmenopausal bone loss on the basis of current evidence.

  17. Association between Dietary Intake and Bone Mineral Density in Japanese Postmenopausal Women: The Yokogoshi Cohort Study.

    PubMed

    Hirata, Harumi; Kitamura, Kaori; Saito, Toshiko; Kobayashi, Ryosaku; Iwasaki, Masanori; Yoshihara, Akihiro; Watanabe, Yumi; Oshiki, Rieko; Nishiwaki, Tomoko; Nakamura, Kazutoshi

    2016-01-01

    Diet and food intake play an important role in the development of osteoporosis. However, apart from calcium and vitamin D, how nutrients affect bone status is not fully understood. The purpose of this study was to determine cross-sectional and longitudinal associations between dietary intake and bone mineral density (BMD) in Japanese postmenopausal women. This 5-year cohort study included 600 community-dwelling women aged 55-74 years at baseline in 2005. Information on demographics, nutrition, and lifestyle was obtained through interviews, and nutritional and dietary intake was assessed using a validated food frequency questionnaire. BMD measurements were performed by dual energy X-ray absorptiometry. In 2010, 498 women underwent follow-up BMD examinations. Multiple linear regression analysis was performed to determine associations of predictor variables with BMD, adjusting for confounders. In cross-sectional analyses, coffee or black tea consumption was positively associated with lumbar spine (P = 0.004) and total hip (P = 0.003) BMD, and alcohol intake was positively associated with femoral neck (P = 0.005) and total hip (P = 0.001) BMD. In longitudinal analyses, vitamin K (P = 0.028) and natto (fermented soybeans) (P = 0.023) were positively associated with lumbar spine BMD, and meat or meat product consumption was inversely associated with total hip (P = 0.047) BMD. In conclusion, dietary factors other than calcium and vitamin D intake are predictors of bone mass and bone loss in Japanese postmenopausal women. In particular, natto intake is recommended for preventing postmenopausal bone loss on the basis of current evidence. PMID:27238552

  18. Decreased Bone Mineral Density in Adults Born with Very Low Birth Weight: A Cohort Study

    PubMed Central

    Hovi, Petteri; Andersson, Sture; Järvenpää, Anna-Liisa; Eriksson, Johan G.; Strang-Karlsson, Sonja; Kajantie, Eero; Mäkitie, Outi

    2009-01-01

    Background Very-low-birth-weight (VLBW, <1,500 g) infants have compromised bone mass accrual during childhood, but it is unclear whether this results in subnormal peak bone mass and increased risk of impaired skeletal health in adulthood. We hypothesized that VLBW is associated with reduced bone mineral density (BMD) in adulthood. Methods and Findings The Helsinki Study of Very Low Birth Weight Adults is a multidisciplinary cohort study representative of all VLBW births within the larger Helsinki area from 1978 to 1985. This study evaluated skeletal health in 144 such participants (all born preterm, mean gestational age 29.3 wk, birth weight 1,127 g, birth weight Z score 1.3), and in 139 comparison participants born at term, matched for sex, age, and birth hospital. BMD was measured by dual energy X-ray absorptiometry at age 18.5 to 27.1 y. Adults born with VLBW had, in comparison to participants born at term, a 0.51-unit (95% confidence interval [CI] 0.28–0.75) lower lumbar spine Z score and a 0.56-unit (95% CI 0.34–0.78) lower femoral neck Z score for areal BMD. These differences remained statistically significant after adjustment for the VLBW adults' shorter height and lower self-reported exercise intensity. Conclusions Young adults born with VLBW, when studied close to the age of peak bone mass, have significantly lower BMD than do their term-born peers. This suggests that compromised childhood bone mass accrual in preterm VLBW children translates into increased risk for osteoporosis in adulthood, warranting vigilance in osteoporosis prevention. Please see later in the article for the Editors' Summary PMID:19707270

  19. Short-term changes in bone and mineral metabolism following gastrectomy in gastric cancer patients.

    PubMed

    Baek, Ki Hyun; Jeon, Hae Myung; Lee, Seong Su; Lim, Dong Jun; Oh, Ki Won; Lee, Won Young; Rhee, Eun Jung; Han, Je Ho; Cha, Bong Yun; Lee, Kwang Woo; Son, Ho Young; Kang, Sung Koo; Kang, Moo Il

    2008-01-01

    Changes in bone and mineral metabolism that occur after gastrectomy have long been recognized. Gastrectomy has been identified as a risk factor for decreased bone mass and the increased fracture incidence. Previous investigations concerning postgastrectomy bone disease have been observational studies. No prospective studies have been reported that quantify the amount of bone loss after gastrectomy within the same patients. This study investigated 46 patients undergoing gastrectomy for gastric adenocarcinoma and analyzed 36 patients (58.1+/-10.8 years, 24 men and 12 women) who had dual energy X-ray absorptiometry (DXA) performed before and 1 year after gastrectomy. Systemic adjuvant chemotherapy was administered to 14 patients. Blood was sampled from all patients to determine serum calcium, phosphorous, and bone turnover marker levels before gastrectomy and at 1, 3, 6 and 12 months after surgery and for serum parathyroid hormone (PTH) and 25-hydroxyvitamin D levels before and 12 months after surgery. The mean bone loss in the lumbar spine, total hip, femoral neck, and trochanter, which was calculated as the percentage change from the baseline to the level measured at 12 months, was 5.7% (P<0.01), 5.4% (P<0.01), 6.6% (P<0.01) and 8.7% (P<0.01), respectively. Bone loss was generally greater in the group receiving chemotherapy. The serum calcium and phosphorous levels were not changed significantly and remained within the normal range throughout the observation period. After gastrectomy, the level of ICTP increased and reached a peak at 1 and 3 months, and progressively declined to baseline by 12 months. The osteocalcin levels were not coupled to an increase before 6 months. The level of 25-hydroxyvitamin D at 12 months postgastrectomy was not significantly changed compared to the baseline, however, the PTH levels increased by a mean of 63.6% at 12 months compared to the baseline (P<0.01). Significant correlations were found between the percent change in the BMD at the

  20. MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women

    PubMed Central

    Chen, J.; Punyanitya, M.; Shapses, S.; Heshka, S.; Heymsfield, S. B.

    2007-01-01

    Introduction Recent studies suggest that bone marrow adipose tissue (BMAT) might play a role in the pathogenesis of osteoporosis. Previous research using regional magnetic resonance spectroscopy methods to measure BMAT has reported inconsistent findings on the relationship between BMAT and dual-energy absorptiometry (DXA)-measured bone mineral density (BMD). Methods In the present study, total body and pelvic BMAT were evaluated in 56 healthy women (age 18–88 yrs, mean±SD, 47.4±17.6 yrs; BMI, 24.3±4.2 kg/m2) with T1-weighted whole-body magnetic resonance imaging (MRI). BMD was measured using the whole-body DXA mode (GE Lunar DPX, software version 4.7). Results A strong negative correlation was observed between pelvic BMAT and BMD (total-body BMD, R=− 0.743, P<0.001; pelvic BMD, R=− 0.646, P<0.001), and between total-body BMAT and BMD (total-body BMD, R=− 0.443, P<0.001; pelvic BMD, R=− 0.308, P < 0.001). The inverse association between pelvic BMAT and BMD remained strong after adjusting for age, weight, total body fat, and menopausal status (partial correlation: total-body BMD, R=− 0.553, P< 0.001; pelvic BMD, R=− 0.513, P<0.001). BMAT was also highly correlated with age (pelvic BMAT, R=0.715, P< 0.001; total-body BMAT, R=0.519, P<0.001). Conclusion MRI-measured BMAT is thus strongly inversely correlated with DXA-measured BMD independent of other predictor variables. These observations, in the context of DXA technical concerns, support the growing evidence linking BMAT with low bone density. PMID:17139464

  1. The relationships among total body fat, bone mineral content and bone marrow adipose tissue in early-pubertal girls

    PubMed Central

    L Newton, Anna; J Hanks, Lynae; Davis, Michelle; Casazza, Krista

    2013-01-01

    Investigation of the physiologic relevance of bone marrow adipose tissue (BMAT) during growth may promote understanding of the bone-fat axis and confluence with metabolic factors. The objective of this pilot investigation was two-fold: (1) to evaluate the relationships among total body fat, bone mineral content (BMC) and femoral BMAT during childhood and underlying metabolic determinants and (2) to determine if the relationships differ by race. Participants included white and non-Hispanic black girls (n=59) ages 4–10 years. Femoral BMAT volume was measured by magnetic resonance imaging, BMC and body fat by dual-energy X-ray absorptiometry. Metabolic parameters were assessed in the fasted state. Total fat and BMC were positively associated with BMAT; however, simultaneous inclusion of BMC and body fat in the statistical model attenuated the association between BMC and BMAT. Differences in BMAT volume were observed, non-Hispanic black girls exhibiting marginally greater BMAT at age eight (P=0.05) and white girls exhibiting greater BMAT at age ten (P<0.001). Metabolic parameters conferred differential impact by race, such that, a positive association for BMAT and leptin (P=0.02) and adiponectin (P=0.002) in white girls while BMAT and insulin were inversely related in non-Hispanic black girls (P=0.008). Our findings revealed a positive relationship between BMAT, body fat and BMC, although body fat, respective to leptin, contributed partly to the relationship between BMAT and BMC. Despite large differences in total fat between non-Hispanic black and white, the relationship between BMAT and BMC was similar to white girls. However, this relationship appeared to be impacted through different mechanisms according to race. PMID:23951544

  2. The relationships among total body fat, bone mineral content and bone marrow adipose tissue in early-pubertal girls.

    PubMed

    L Newton, Anna; J Hanks, Lynae; Davis, Michelle; Casazza, Krista

    2013-01-01

    Investigation of the physiologic relevance of bone marrow adipose tissue (BMAT) during growth may promote understanding of the bone-fat axis and confluence with metabolic factors. The objective of this pilot investigation was two-fold: (1) to evaluate the relationships among total body fat, bone mineral content (BMC) and femoral BMAT during childhood and underlying metabolic determinants and (2) to determine if the relationships differ by race. Participants included white and non-Hispanic black girls (n=59) ages 4-10 years. Femoral BMAT volume was measured by magnetic resonance imaging, BMC and body fat by dual-energy X-ray absorptiometry. Metabolic parameters were assessed in the fasted state. Total fat and BMC were positively associated with BMAT; however, simultaneous inclusion of BMC and body fat in the statistical model attenuated the association between BMC and BMAT. Differences in BMAT volume were observed, non-Hispanic black girls exhibiting marginally greater BMAT at age eight (P=0.05) and white girls exhibiting greater BMAT at age ten (P<0.001). Metabolic parameters conferred differential impact by race, such that, a positive association for BMAT and leptin (P=0.02) and adiponectin (P=0.002) in white girls while BMAT and insulin were inversely related in non-Hispanic black girls (P=0.008). Our findings revealed a positive relationship between BMAT, body fat and BMC, although body fat, respective to leptin, contributed partly to the relationship between BMAT and BMC. Despite large differences in total fat between non-Hispanic black and white, the relationship between BMAT and BMC was similar to white girls. However, this relationship appeared to be impacted through different mechanisms according to race.

  3. Adynamic Bone Decreases Bone Toughness During Aging by Affecting Mineral and Matrix.

    PubMed

    Ng, Adeline H; Omelon, Sidney; Variola, Fabio; Allo, Bedilu; Willett, Thomas L; Alman, Benjamin A; Grynpas, Marc D

    2016-02-01

    Adynamic bone is the most frequent type of bone lesion in patients with chronic kidney disease; long-term use of antiresorptive therapy may also lead to the adynamic bone condition. The hallmark of adynamic bone is a loss of bone turnover, and a major clinical concern of adynamic bone is diminished bone quality and an increase in fracture risk. Our current study aims to investigate how bone quality changes with age in our previously established mouse model of adynamic bone. Young and old mice (4 months old and 16 months old, respectively) were used in this study. Col2.3Δtk (DTK) mice were treated with ganciclovir and pamidronate to create the adynamic bone condition. Bone quality was evaluated using established techniques including bone histomorphometry, microcomputed tomography, quantitative backscattered electron imaging, and biomechanical testing. Changes in mineral and matrix properties were examined by powder X-ray diffraction and Raman spectroscopy. Aging controls had a natural decline in bone formation and resorption with a corresponding deterioration in trabecular bone structure. Bone turnover was severely blunted at all ages in adynamic animals, which preserved trabecular bone loss normally associated with aging. However, the preservation of trabecular bone mass and structure in old adynamic mice did not rescue deterioration of bone mechanical properties. There was also a decrease in cortical bone toughness in old adynamic mice that was accompanied by a more mature collagen matrix and longer bone crystals. Little is known about the effects of metabolic bone disease on bone fracture resistance. We observed an age-related decrease in bone toughness that was worsened by the adynamic condition, and this decrease may be due to material level changes at the tissue level. Our mouse model may be useful in the investigation of the mechanisms involved in fractures occurring in elderly patients on antiresorptive therapy who have very low bone turnover. PMID:26332924

  4. Body composition and bone mineral density of national football league players.

    PubMed

    Dengel, Donald R; Bosch, Tyler A; Burruss, T Pepper; Fielding, Kurt A; Engel, Bryan E; Weir, Nate L; Weston, Todd D

    2014-01-01

    The purpose of the present study was to examine the body composition of National Football League (NFL) players before the start of the regular season. Four hundred eleven NFL players were measured for height, weight and lean, fat, and bone mass using dual-energy x-ray absorptiometry (DXA). Subjects were categorized by their offensive or defensive position for comparison. On average, positions that mirror each other (i.e., offensive lineman [OL] vs. defensive lineman [DL]) have very similar body composition. Although OL had more fat mass than DL, they were similar in total and upper and lower lean mass. Linebackers (LB) and running backs (RB) were similar for all measures of fat and lean mass. Tight ends were unique in that they were similar to RB and LB on measures of fat mass; however, they had greater lean mass than both RB and LB and upper-body lean mass that was similar to OL. Quarterbacks and punters/kickers were similar in fat and lean masses. All positions had normal levels of bone mineral density. The DXA allowed us to measure differences in lean mass between arms and legs for symmetry assessments. Although most individuals had similar totals of lean mass in each leg and or arms, there were outliers who may be at risk for injury. The data presented demonstrate not only differences in total body composition, but also show regional body composition differences that may provide positional templates.

  5. Associations of Polyunsaturated Fatty Acid Intake with Bone Mineral Density in Postmenopausal Women

    PubMed Central

    Harris, Margaret; Farrell, Vanessa; Houtkooper, Linda; Going, Scott; Lohman, Timothy

    2015-01-01

    A secondary analysis of cross-sectional data was analyzed from 6 cohorts (Fall 1995–Fall 1997) of postmenopausal women (n = 266; 56.6 ± 4.7 years) participating in the Bone Estrogen Strength Training (BEST) study (a 12-month, block-randomized, clinical trial). Bone mineral density (BMD) was measured at femur neck and trochanter, lumbar spine (L2–L4), and total body BMD using dual-energy X-ray absorptiometry (DXA). Mean dietary polyunsaturated fatty acids (PUFAs) intakes were assessed using 8 days of diet records. Multiple linear regression was used to examine associations between dietary PUFAs and BMD. Covariates included in the models were total energy intake, body weight at year 1, years after menopause, exercise, use of hormone therapy (HT), total calcium, and total iron intakes. In the total sample, lumbar spine and total body BMD had significant negative associations with dietary PUFA intake at P < 0.05. In the non-HT group, no significant associations between dietary PUFA intake and BMD were seen. In the HT group, significant inverse associations with dietary PUFA intake were seen in the spine, total body, and Ward's triangle BMD, suggesting that HT may influence PUFA associations with BMD. This study is registered with clinicaltrials.gov, identifier: NCT00000399. PMID:25785226

  6. Mandibular bone mineral density in patients with Behçet’s disease

    PubMed Central

    Asutay, Fatih; Atalay, Yusuf; Acar, Ahmet Hüseyin; Asutay, Hilal; Eroğlu, Selma; Burdurlu, Muammer Çağrı

    2015-01-01

    Objectives Behçet’s disease (BD) is a chronic, recurring vasculitis of unknown etiology. Patients with BD may use a lot of medications associated with the clinical symptoms. Drugs that are used in the treatment of BD may cause bone loss. The aims of the current study were to compare the bone mineral density (BMD) values between BD and healthy volunteers and describe the effect of disease duration on mandibular BMD. Materials and methods The study comprised 30 healthy volunteers (15 males and 15 females, mean age 35.50±6.80 years) and 45 patients with BD (24 males and 21 females, mean age 38.93±8.93 years). The BD group was subdivided according to disease duration (0–5, 6–10, and >10 years). The BMD value of the mandibular body was determined by the dual energy X-ray absorptiometry technique. Results The mean mandibular body BMD values were 1.294±0.21 g/cm2 in the control group and 1.216±0.22 g/cm2 in the BD patients, although there was no statistically significant difference. The BMD was observed to decrease with increased disease duration but not to a statistically significant degree. Conclusion The results of this study showed that although the BMD value decreased as the duration of the disease increased, no statistically significant difference was found between the BD patients and the healthy control group. PMID:26508868

  7. Relation between grip strength and radial bone mineral density in young athletes.

    PubMed

    Tsuji, S; Tsunoda, N; Yata, H; Katsukawa, F; Onishi, S; Yamazaki, H

    1995-03-01

    In this study, we evaluated the relationship between bone mineral density (BMD) and muscle strength in young athletes who had not yet experienced age-related bone loss. Radial BMD and grip strength were measured in 10 male college wrestlers, 16 female college basketball players, and 12 female college tennis players. Radial BMD was measured in the distal and middle radius by dual energy x-ray absorptiometry (DEXA). Isometric grip strength was assessed with a hand-held dynamometer. The dominant forearm was examined in the amateur wrestlers and basketball players for grip strength and BMD. Both forearms were examined in the tennis players. A significant positive correlation was found between radial BMD and grip strength in the dominant forearm, and between radial BMD and body weight. Moreover, to eliminate a possible effect of body weight on radial BMD, we compared radial BMD with grip strength in both the dominant and nondominant arm of 12 college tennis players. Grip strength in the dominant forearm was significantly greater than in the nondominant forearm. The midradial BMD of the dominant forearm was also significantly higher than in the nondominant forearm. Based on these findings, we conclude that grip strength is one of the determinant factors of radial BMD in the dominant forearm of young college athletes.

  8. Bone Health and Osteoporosis.

    PubMed

    Lupsa, Beatrice C; Insogna, Karl

    2015-09-01

    Osteoporosis is characterized by low bone mass and microarchitectural deterioration of bone tissue leading to decreased bone strength and an increased risk of low-energy fractures. Central dual-energy X-ray absorptiometry measurements are the gold standard for determining bone mineral density. Bone loss is an inevitable consequence of the decrease in estrogen levels during and following menopause, but additional risk factors for bone loss can also contribute to osteoporosis in older women. A well-balanced diet, exercise, and smoking cessation are key to maintaining bone health as women age. Pharmacologic agents should be recommended in patients at high risk for fracture.

  9. Mineral maturity and crystallinity index are distinct characteristics of bone mineral

    PubMed Central

    Farlay, Delphine; Panczer, Gérard; Rey, Christian; Delmas, Pierre; Boivin, Georges

    2010-01-01

    The purpose of this study was to test the hypothesis that mineral maturity and crystallinity index are two different characteristics of bone mineral. To this end, Fourier Transform InfraRed Microspectroscopy (FTIRM) was used. To test our hypothesis, synthetic apatites and human bone samples were used for the validation of the two parameters using FTIRM. Iliac crest samples from seven human controls and two with skeletal fluorosis were analyzed at the bone structural unit (BSU) level by FTIRM on 2–4 μm-thick sections. Mineral maturity and crystallinity index were highly correlated in synthetic apatites, but poorly correlated in normal human bone. In skeletal fluorosis, crystallinity index was increased and maturity decreased, supporting the fact of separate measurement of these two parameters. Moreover, results obtained in fluorosis suggested that mineral characteristics can be modified independently of bone remodeling. In conclusion, mineral maturity and crystallinity index are two different parameters measured separately by FTIRM and offering new perspectives to assess bone mineral traits in osteoporosis. PMID:20091325

  10. Bone mineral measurement, experiment M078. [space flight effects on human bone composition

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.; Vogel, J. M.; Ullmann, J.; Brown, S.; Kolb, F., III

    1973-01-01

    Measurement tests revealed few deviations from baseline bone mineral measurements after 56 days in a Skylab-type environment. No mineral change was observed in the right radius. One individual, however, showed a possible mineral loss in the left os calcis and another gained mineral in the right ulna. The cause of the gain is unclear but may be attributable to the heavy exercise routines engaged in by the crewmember in question. Equipment problems were identified during the experiment and rectified.

  11. Reduced bone mineral content and normal serum osteocalcin in non-steroid-treated patients with juvenile rheumatoid arthritis.

    PubMed Central

    Polito, C; Strano, C G; Rea, L; Alessio, M; Iammarrone, C S; Todisco, N; Marotta, A; Iaccarino, E; Pirozzi, M

    1995-01-01

    OBJECTIVES--To distinguish the effects of juvenile rheumatoid arthritis (JRA) on bone mineralisation from those possibly caused by steroid therapy. METHODS--Bone mineral status was evaluated in 20 children (five boys and 15 girls) with active JRA who never received steroids. Seven had oligoarticular, nine had polyarticular, and four had systemic JRA. Bone mineral content (BMC) was assessed by single beam photon absorptiometry and expressed as a Z score relative to normal values in healthy children. Serum calcium, phosphate, and alkaline phosphatase were measured by colorimetric methods. Whole parathyroid hormone was assayed by Immuno Radiometric Assay. Serum osteocalcin was measured by specific radioimmunoassay. Nutrient intake was assessed by a 24 hours dietary recall. BMC and nutrient intake were also assessed in an age and sex matched control group. RESULTS--BMC was -1.5 (SEM 0.8) Z scores in patients and 0.4 (0.3) in the control group (p = 0.02). BMC averaged -4.9 (2) Z scores in the systemic JRA group, -1 (0.6) in the polyarticular group and 0.3 (0.7) in oligoarticular JRA patients. Serum calcium, phosphate and osteocalcin values were normal in all patients. No significant difference was found between JRA patients and controls in calcium, phosphate, energy, and protein intake. CONCLUSION--JRA subjects have significantly reduced BMC even in the absence of any steroid therapy. Bone demineralisation appears to depend more on disease activity and on reduced motility than on reduced nutrient intake. PMID:7748017

  12. Correlation between bone mineral density and serum trace element contents of elderly males in Beijing urban area

    PubMed Central

    Wang, Liang; Yu, Haotian; Yang, Guohua; Zhang, Yan; Wang, Wenjiao; Su, Tianjiao; Ma, Weifeng; Yang, Fan; Chen, Liying; He, Li; Ma, Yuanzheng; Zhang, Yan

    2015-01-01

    Trace element levels are associated with the incidence of osteoporotic fractures, but related mechanisms remain unknown. Trace elements may interfere with growth, development and maintenance of bones. Therefore, we investigated whether plasma trace element levels are associated with bone mineral density in elderly males in Beijing. After epidemiologically investigating 91 elderly males with age ranging from 50 years to 80 years, we obtained a total of 30 healthy (group 1), 31 osteopoenic (group 2) and 30 osteoporotic (group 3) subjects. Blood was collected, and serum concentrations of trace elements were detected. Elderly males in the three groups were carefully matched in terms of body mass index. Iron, manganese, zinc, copper, selenium, cadmium and lead were analysed by inductively coupled plasma-mass spectrometry. Bone mineral density (BMD) was measured by QDR-2000 dual-energy X-ray absorptiometry. Correlation between BMD and serum element contents was analysed using SPSS16.0. The plasma levels of manganese, zinc, copper, selenium and lead were similar in all of the groups (P>0.05). Cadmium was significantly and negatively correlated with BMD of the lumbar vertebrae (P<0.05). Moreover, cadmium and iron contents significantly differed in osteoporotic and healthy groups. These elements may directly and correlatively affect BMD in elderly males. Many trace elements may directly and correlatively influence BMD. Future studies should be conducted to evaluate serum and bone levels of these trace elements to determine the relationship of these trace elements with osteoporosis. PMID:26770561

  13. Phantom-less bone mineral density (BMD) measurement using dual energy computed tomography-based 3-material decomposition

    NASA Astrophysics Data System (ADS)

    Hofmann, Philipp; Sedlmair, Martin; Krauss, Bernhard; Wichmann, Julian L.; Bauer, Ralf W.; Flohr, Thomas G.; Mahnken, Andreas H.

    2016-03-01

    Osteoporosis is a degenerative bone disease usually diagnosed at the manifestation of fragility fractures, which severely endanger the health of especially the elderly. To ensure timely therapeutic countermeasures, noninvasive and widely applicable diagnostic methods are required. Currently the primary quantifiable indicator for bone stability, bone mineral density (BMD), is obtained either by DEXA (Dual-energy X-ray absorptiometry) or qCT (quantitative CT). Both have respective advantages and disadvantages, with DEXA being considered as gold standard. For timely diagnosis of osteoporosis, another CT-based method is presented. A Dual Energy CT reconstruction workflow is being developed to evaluate BMD by evaluating lumbar spine (L1-L4) DE-CT images. The workflow is ROI-based and automated for practical use. A dual energy 3-material decomposition algorithm is used to differentiate bone from soft tissue and fat attenuation. The algorithm uses material attenuation coefficients on different beam energy levels. The bone fraction of the three different tissues is used to calculate the amount of hydroxylapatite in the trabecular bone of the corpus vertebrae inside a predefined ROI. Calibrations have been performed to obtain volumetric bone mineral density (vBMD) without having to add a calibration phantom or to use special scan protocols or hardware. Accuracy and precision are dependent on image noise and comparable to qCT images. Clinical indications are in accordance with the DEXA gold standard. The decomposition-based workflow shows bone degradation effects normally not visible on standard CT images which would induce errors in normal qCT results.

  14. Bone mineral density and body composition of collegiate modern dancers.

    PubMed

    Friesen, Karlie J; Rozenek, Ralph; Clippinger, Karen; Gunter, Kathy; Russo, Albert C; Sklar, Susan E

    2011-03-01

    This study investigates body composition (BC), bone mineral density (BMD), eating behaviors, and menstrual dysfunction in collegiate modern dancers. Thirty-one female collegiate modern dance majors (D), 18 to 25 years of age, and 30 age-matched controls (C) participated in the study. BC and BMD were measured using dual energy x-ray absorptiometry (DXA). Upper and lower body strength was assessed by chest and leg press one-repetition maximum tests. Participants completed three-day food records, and the diet was analyzed using nutritional software. Menstrual dysfunction (MD) and history of eating disorder (ED) data were collected via questionnaires. BC and BMD variables were analyzed using MANCOVA and frequency of ED and MD by Chi-Square analysis. BMD was greater in D than C at the spine (1.302 ± 0.135 g/cm(2) vs. 1.245 ± 0.098 g/cm(2)), and both the right hip (1.163 ± 0.111 g/cm(2) vs. 1.099 ± 0.106 g/cm(2)) and left hip (1.160 ± 0.114 g/cm(2) vs. 1.101 ± 0.104 g/cm(2); p ≤ 0.05). Total body fat percentage was lower in D than C (25.9 ± 4.2% vs. 32.0 ± 5.9%; p ≤ 0.05), and percent of fat distributed in the android region was also lower in D than C (28.0 ± 6.2% vs. 37.6 ± 8.6%; p ≤ 0.05). With regard to diet composition, only percent fat intake was lower in D than C (27.54 ± 6.8% vs. 31.5 ± 7.4%, p ≤ 0.05). A greater incidence of ED was reported by D than C (12.9% vs. 0%; p ≤ 0.05), as well as a greater incidence of secondary amenorrhea (41.9% vs 13.3%; p ≤ 0.05). No differences were found for incidence of primary amenorrhea, oligomenorrhea, or use of birth control. Strength values were higher in D than C for both chest press (30.1 ± 0.9 kg vs. 28.4 ± 1.0 kg; p ≤ 0.05) and leg press (170.7 ± 4.2 kg vs.163.1 ± 3.9 kg; p ≤ 0.05). It is concluded that the dancers in our study had a healthy body weight, yet reported a higher incidence of eating disorders and menstrual dysfunction, than non-dancers. These dancers' higher BMD may be

  15. [Bone mineral density in cosmonauts after flights lasting 4.5-6 months on the Mir orbital station].

    PubMed

    Oganov, V S; Grigor'ev, A I; Voronin, L I; Rakhmanov, A S; Bakulin, A V; Schneider, V S; LeBlanc, A D

    1992-01-01

    A technique of quantitative digital roentgenography (QDR) being a current modification of dual photon absorptiometry (DPA) was used to measure bone mineral density (BMD) in the crewmembers of the 6-9th expeditions onboard Mir orbital station after space missions of 132 to 176 days in duration. Total mineral losses were, on average, 0.4% of a preflight level, and in the most test subjects the postflight BMD of the skull, ribs and arms increased and that of lumbar vertebrae, pelvis and legs decreased. The most marked local postflight mineral losses occurred in the proximal femur bone (the femoral neck and the greater trochanter--up to 14%). The observed changes did not depend on flight duration. These findings are being compared to the results of similar studies conducted during the 120-day (NASA) and 370-day (IBMP) hypokinesia experiments. The possibility of existing the general mechanism of modifying mineral status of the skeleton due to different situation related deficiency of musculoskeletal load.

  16. Vitamin D Status, Bone Mineral Density and Mental Health in Young Australian Women: The Safe-D Study

    PubMed Central

    Reavley, Nicola; Garland, Suzanne M.; Gorelik, Alexandra; Wark, John D.

    2015-01-01

    Background. Vitamin D deficiency has been associated with both poor bone health and mental ill-health. More recently, a number of studies have found individuals with depressive symptoms tend to have reduced bone mineral density. To explore the interrelationships between vitamin D status, bone mineral density and mental-ill health we are assessing a range of clinical, behavioural and lifestyle factors in young women (Part A of the Safe-D study). Design and methods. Part A of the Safe-D study is a cross-sectional study aiming to recruit 468 young females aged 16-25 years living in Victoria, Australia, through Facebook advertising. Participants are required to complete an extensive, online questionnaire, wear an ultra-violet dosimeter for 14 consecutive days and attend a study site visit. Outcome measures include areal bone mineral measures at the lumbar spine, total hip and whole body, as well as soft tissue composition using dual energy x-ray absorptiometry. Trabecular and cortical volumetric bone density at the tibia is measured using peripheral quantitative computed tomography. Other tests include serum 25-hydroxyvitamin D, serum biochemistry and a range of health markers. Details of mood disorder/s and depressive and anxiety symptoms are obtained by self-report. Cutaneous melanin density is measured by spectrophotometry. Expected impact. The findings of this cross-sectional study will have implications for health promotion in young women and for clinical care of those with vitamin D deficiency and/or mental ill-health. Optimising both vitamin D status and mental health may protect against poor bone health and fractures in later life. Significance for public health Vitamin D deficiency, depression and osteoporosis are all major public health issues. Vitamin D deficiency has been associated with both reduced bone mineral density and depressive symptoms. Moreover, cohort studies have found that subjects with depression have lower bone mineral density when compared

  17. Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content.

    PubMed

    Kotha, S P; Guzelsu, N

    2007-01-01

    A porous composite model is developed to analyze the tensile mechanical properties of cortical bone. The effects of microporosity (volksman's canals, osteocyte lacunae) on the mechanical properties of bone tissue are taken into account. A simple shear lag theory, wherein tensile loads are transferred between overlapped mineral platelets by shearing of the organic matrix, is used to model the reinforcement provided by mineral platelets. It is assumed that the organic matrix is elastic in tension and elastic-perfectly plastic in shear until it fails. When organic matrix shear stresses at the ends of mineral platelets reach their yield values, the stress-strain curve of bone tissue starts to deviate from linear behavior. This is referred as the microscopic yield point. At the point where the stress-strain behavior of bone shows a sharp curvature, the organic phase reaches its shear yield stress value over the entire platelet. This is referred as the macroscopic yield point. It is assumed that after macroscopic yield, mineral platelets cannot contribute to the load bearing capacity of bone and that the mechanical behavior of cortical bone tissue is determined by the organic phase only. Bone fails when the principal stress of the organic matrix is reached. By assuming that mechanical properties of the organic matrix are dependent on bone mineral content below the macroscopic yield point, the model is used to predict the entire tensile mechanical behavior of cortical bone for different mineral contents. It is found that decreased shear yield stresses and organic matrix elastic moduli are required to explain the mechanical behavior of bones with lowered mineral contents. Under these conditions, the predicted values (elastic modulus, 0.002 yield stress and strain, and ultimate stress and strain) are within 15% of experimental data.

  18. Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content.

    PubMed

    Kotha, S P; Guzelsu, N

    2007-01-01

    A porous composite model is developed to analyze the tensile mechanical properties of cortical bone. The effects of microporosity (volksman's canals, osteocyte lacunae) on the mechanical properties of bone tissue are taken into account. A simple shear lag theory, wherein tensile loads are transferred between overlapped mineral platelets by shearing of the organic matrix, is used to model the reinforcement provided by mineral platelets. It is assumed that the organic matrix is elastic in tension and elastic-perfectly plastic in shear until it fails. When organic matrix shear stresses at the ends of mineral platelets reach their yield values, the stress-strain curve of bone tissue starts to deviate from linear behavior. This is referred as the microscopic yield point. At the point where the stress-strain behavior of bone shows a sharp curvature, the organic phase reaches its shear yield stress value over the entire platelet. This is referred as the macroscopic yield point. It is assumed that after macroscopic yield, mineral platelets cannot contribute to the load bearing capacity of bone and that the mechanical behavior of cortical bone tissue is determined by the organic phase only. Bone fails when the principal stress of the organic matrix is reached. By assuming that mechanical properties of the organic matrix are dependent on bone mineral content below the macroscopic yield point, the model is used to predict the entire tensile mechanical behavior of cortical bone for different mineral contents. It is found that decreased shear yield stresses and organic matrix elastic moduli are required to explain the mechanical behavior of bones with lowered mineral contents. Under these conditions, the predicted values (elastic modulus, 0.002 yield stress and strain, and ultimate stress and strain) are within 15% of experimental data. PMID:16434048

  19. In Vivo Ectopic Bone Formation by Devitalized Mineralized Stem Cell Carriers Produced Under Mineralizing Culture Condition

    PubMed Central

    Chai, Yoke Chin; Geris, Liesbet; Bolander, Johanna; Pyka, Grzegorz; Van Bael, Simon; Luyten, Frank P.

    2014-01-01

    Abstract Functionalization of tissue engineering scaffolds with in vitro–generated bone-like extracellular matrix (ECM) represents an effective biomimetic approach to promote osteogenic differentiation of stem cells in vitro. However, the bone-forming capacity of these constructs (seeded with or without cells) is so far not apparent. In this study, we aimed at developing a mineralizing culture condition to biofunctionalize three-dimensional (3D) porous scaffolds with highly mineralized ECM in order to produce devitalized, osteoinductive mineralized carriers for human periosteal-derived progenitors (hPDCs). For this, three medium formulations [i.e., growth medium only (BM1), with ascorbic acid (BM2), and with ascorbic acid and dexamethasone (BM3)] supplemented with calcium (Ca2+) and phosphate (PO43−) ions simultaneously as mineralizing source were investigated. The results showed that, besides the significant impacts on enhancing cell proliferation (the highest in BM3 condition), the formulated mineralizing media differentially regulated the osteochondro-related gene markers in a medium-dependent manner (e.g., significant upregulation of BMP2, bone sialoprotein, osteocalcin, and Wnt5a in BM2 condition). This has resulted in distinguished cell populations that were identifiable by specific gene signatures as demonstrated by the principle component analysis. Through devitalization, mineralized carriers with apatite crystal structures unique to each medium condition (by X-ray diffraction and SEM analysis) were obtained. Quantitatively, BM3 condition produced carriers with the highest mineral and collagen contents as well as human-specific VEGF proteins, followed by BM2 and BM1 conditions. Encouragingly, all mineralized carriers (after reseeded with hPDCs) induced bone formation after 8 weeks of subcutaneous implantation in nude mice models, with BM2-carriers inducing the highest bone volume, and the lowest in the BM3 condition (as quantitated by nano

  20. In vivo ectopic bone formation by devitalized mineralized stem cell carriers produced under mineralizing culture condition.

    PubMed

    Chai, Yoke Chin; Geris, Liesbet; Bolander, Johanna; Pyka, Grzegorz; Van Bael, Simon; Luyten, Frank P; Schrooten, Jan

    2014-12-01

    Functionalization of tissue engineering scaffolds with in vitro-generated bone-like extracellular matrix (ECM) represents an effective biomimetic approach to promote osteogenic differentiation of stem cells in vitro. However, the bone-forming capacity of these constructs (seeded with or without cells) is so far not apparent. In this study, we aimed at developing a mineralizing culture condition to biofunctionalize three-dimensional (3D) porous scaffolds with highly mineralized ECM in order to produce devitalized, osteoinductive mineralized carriers for human periosteal-derived progenitors (hPDCs). For this, three medium formulations [i.e., growth medium only (BM1), with ascorbic acid (BM2), and with ascorbic acid and dexamethasone (BM3)] supplemented with calcium (Ca(2+)) and phosphate (PO4 (3-)) ions simultaneously as mineralizing source were investigated. The results showed that, besides the significant impacts on enhancing cell proliferation (the highest in BM3 condition), the formulated mineralizing media differentially regulated the osteochondro-related gene markers in a medium-dependent manner (e.g., significant upregulation of BMP2, bone sialoprotein, osteocalcin, and Wnt5a in BM2 condition). This has resulted in distinguished cell populations that were identifiable by specific gene signatures as demonstrated by the principle component analysis. Through devitalization, mineralized carriers with apatite crystal structures unique to each medium condition (by X-ray diffraction and SEM analysis) were obtained. Quantitatively, BM3 condition produced carriers with the highest mineral and collagen contents as well as human-specific VEGF proteins, followed by BM2 and BM1 conditions. Encouragingly, all mineralized carriers (after reseeded with hPDCs) induced bone formation after 8 weeks of subcutaneous implantation in nude mice models, with BM2-carriers inducing the highest bone volume, and the lowest in the BM3 condition (as quantitated by nano-computed tomography

  1. In vivo ectopic bone formation by devitalized mineralized stem cell carriers produced under mineralizing culture condition.

    PubMed

    Chai, Yoke Chin; Geris, Liesbet; Bolander, Johanna; Pyka, Grzegorz; Van Bael, Simon; Luyten, Frank P; Schrooten, Jan

    2014-12-01

    Functionalization of tissue engineering scaffolds with in vitro-generated bone-like extracellular matrix (ECM) represents an effective biomimetic approach to promote osteogenic differentiation of stem cells in vitro. However, the bone-forming capacity of these constructs (seeded with or without cells) is so far not apparent. In this study, we aimed at developing a mineralizing culture condition to biofunctionalize three-dimensional (3D) porous scaffolds with highly mineralized ECM in order to produce devitalized, osteoinductive mineralized carriers for human periosteal-derived progenitors (hPDCs). For this, three medium formulations [i.e., growth medium only (BM1), with ascorbic acid (BM2), and with ascorbic acid and dexamethasone (BM3)] supplemented with calcium (Ca(2+)) and phosphate (PO4 (3-)) ions simultaneously as mineralizing source were investigated. The results showed that, besides the significant impacts on enhancing cell proliferation (the highest in BM3 condition), the formulated mineralizing media differentially regulated the osteochondro-related gene markers in a medium-dependent manner (e.g., significant upregulation of BMP2, bone sialoprotein, osteocalcin, and Wnt5a in BM2 condition). This has resulted in distinguished cell populations that were identifiable by specific gene signatures as demonstrated by the principle component analysis. Through devitalization, mineralized carriers with apatite crystal structures unique to each medium condition (by X-ray diffraction and SEM analysis) were obtained. Quantitatively, BM3 condition produced carriers with the highest mineral and collagen contents as well as human-specific VEGF proteins, followed by BM2 and BM1 conditions. Encouragingly, all mineralized carriers (after reseeded with hPDCs) induced bone formation after 8 weeks of subcutaneous implantation in nude mice models, with BM2-carriers inducing the highest bone volume, and the lowest in the BM3 condition (as quantitated by nano-computed tomography

  2. Circulating PTH, Vitamin D and IGF-I levels in relation to bone mineral density in elderly women.

    PubMed

    Lumachi, Franco; Camozzi, Valentina; Doretto, Paolo; Tozzoli, Renato; Basso, Stefano M M

    2013-01-01

    Age and reduced bone mineral density (BMD) represent major risk factors for vertebral fracture risk, especially in pos-tmenopausal women, and measurement of BMD is currently considered of value in estimating bone mineralization. BMD correlates with demographics and anthropometric parameters, as well as with several markers of bone metabolism and calcium-regulating hormones, such as leptin, osteoprotegerin, parathyroid hormone (PTH), vitamin D, insulin-like growth factor-I (IGF-I) and sex steroid hormones. The aim of this study was to evaluate the relationship between PTH, 25(OH) vitamin D [25(OH)D], IGF-I and BMD in a selected group of elderly women. Thirty-one post-menopausal women over the age of 65, who were not estrogen, vitamin D or bisphosphonate users and did not have a history of fracture, bone disease or malignancy, were prospectively enrolled in the study. All the patients underwent lumbar spine dual-energy x-ray absorptiometry (DXA) and serum calcium, creatinine, PTH, 25(OH)D and IGF-I measurements. As expected, a weakly-inverse correlation between age and 25(OH)D (R=-0.50, p=0.020), and between BMD and PTH (R=-0.48, p=0.027) was found. There was a strong relationship between IGF-I and BMD (R=0.64, p=0.0016), and between age and IGF-I (R=-0.70, p<0.001), while IGF-I did not correlate with 25(OH)D (R=-0.16, p=0.48) or BMI (R=-0.089, p=0.70). In conclusion, in this selected group of elderly women, we found a strong relationship of increased bone resorption, expressed as BMD, to calcium-regulating hormones PTH and IGF-I, while 25(OH)D and BMI seem to be independent of bone mineralization status. PMID:23606700

  3. Mineral metabolism in isolated mouse long bones: Opposite effects of microgravity on mineralization and resorption

    NASA Technical Reports Server (NTRS)

    Veldhuijzen, Jean Paul; Vanloon, Jack J. W. A.

    1994-01-01

    An experiment using isolated skeletal tissues under microgravity, is reported. Fetal mouse long bones (metatarsals) were cultured for 4 days in the Biorack facility of Spacelab during the IML-1 (International Microgravity Laboratory) mission of the Space Shuttle. Overall growth was not affected, however glucose consumption was significantly reduced under microgravity. Mineralization of the diaphysis was also strongly reduced under microgravity as compared to the on-board 1 g group. In contrast, mineral resorption by osteoclasts was signficantly increased. These results indicate that these fetal mouse long bones are a sensitive and useful model to further study the cellular mechanisms involved in the changed mineral metabolism of skeletal tissues under microgravity.

  4. Augmentation of femoral neck fracture fixation with an injectable calcium-phosphate bone mineral cement.

    PubMed

    Stankewich, C J; Swiontkowski, M F; Tencer, A F; Yetkinler, D N; Poser, R D

    1996-09-01

    The first goal of this study was to determine if augmentation with an injectable, in situ setting, calcium-phosphate cement that is capable of being remodeled and was designed to mimic bone mineral significantly improved the strength and stiffness of fixation in a cadaveric femoral neck fracture model. The second goal was to determine if greater increases in fixation strength were achieved as the bone density of the specimen decreased. Sixteen pairs of fresh cadaveric human femora with a mean age of 70.9 years (SD = 17.2 years) were utilized. The bone density of the femoral neck was measured with dual-energy x-ray absorptiometry. The femoral head was impacted vertically with the femoral shaft fixed in 12 degrees of adduction using a materials testing machine to create a fully displaced fracture. Following fracture, 30% inferior comminution was created in each specimen. One randomly chosen femur from each pair underwent anatomic reduction and fixation with three cannulated cancellous bone screws, 7 mm in diameter, in an inverted triangle configuration. The contralateral femur underwent the same fixation augmented with calcium-phosphate cement. Specimens were preconditioned followed by 1.000 cycles to one body weight (611.6 N) at 0.5 Hz to simulate single-limb stance loading. The stiffness in the first cycle was observed to be significantly greater in cement-augmented specimens compared with unaugmented controls (p < 0.05). After cycling, each specimen was loaded at 10 mm/min until complete displacement of the fracture surface and failure of fixation occurred. Specimens augmented with bone mineral cement failed at a mean of 4,573 N (SD = 1,243 N); this was significantly greater (p < 0.01) than the mean for controls (3,092 N, SD = 1,258 N). The relative improvement in fixation strength (augmented/control x 100%) was not inversely correlated to femoral neck bone density (p = 0.25, R2 = 0.09), was weakly correlated to the volume of cement injected (p = 0.07, R2 = 0

  5. Can Dental Cone Beam Computed Tomography Assess Bone Mineral Density?

    PubMed Central

    2014-01-01

    Mineral density distribution of bone tissue is altered by active bone modeling and remodeling due to bone complications including bone disease and implantation surgery. Clinical cone beam computed tomography (CBCT) has been examined whether it can assess oral bone mineral density (BMD) in patient. It has been indicated that CBCT has disadvantages of higher noise and lower contrast than conventional medical computed tomography (CT) systems. On the other hand, it has advantages of a relatively lower cost and radiation dose but higher spatial resolution. However, the reliability of CBCT based mineral density measurement has not yet been fully validated. Thus, the objectives of this review are to discuss 1) why assessment of BMD distribution is important and 2) whether the clinical CBCT can be used as a potential tool to measure the BMD. Brief descriptions of image artefacts associated with assessment of gray value, which has been used to account for mineral density, in CBCT images are provided. Techniques to correct local and conversion errors in obtaining the gray values in CBCT images are also introduced. This review can be used as a quick reference for users who may encounter these errors during analysis of CBCT images. PMID:25006568

  6. Tooth dentin defects reflect genetic disorders affecting bone mineralization

    PubMed Central

    Vital, S. Opsahl; Gaucher, C.; Bardet, C.; Rowe, P.S.; George, A.; Linglart, A.; Chaussain, C.

    2012-01-01

    Several genetic disorders affecting bone mineralization may manifest during dentin mineralization. Dentin and bone are similar in several aspects, especially pertaining to the composition of the extracellular matrix (ECM) which is secreted by well-differentiated odontoblasts and osteoblasts, respectively. However, unlike bone, dentin is not remodelled and is not involved in the regulation of calcium and phosphate metabolism. In contrast to bone, teeth are accessible tissues with the shedding of deciduous teeth and the extractions of premolars and third molars for orthodontic treatment. The feasibility of obtaining dentin makes this a good model to study biomineralization in physiological and pathological conditions. In this review, we focus on two genetic diseases that disrupt both bone and dentin mineralization. Hypophosphatemic rickets is related to abnormal secretory proteins involved in the ECM organization of both bone and dentin, as well as in the calcium and phosphate metabolism. Osteogenesis imperfecta affects proteins involved in the local organization of the ECM. In addition, dentin examination permits evaluation of the effects of the systemic treatment prescribed to hypophosphatemic patients during growth. In conclusion, dentin constitutes a valuable tool for better understanding of the pathological processes affecting biomineralization. PMID:22296718

  7. Computerized tomographic determination of spinal bone mineral content

    NASA Technical Reports Server (NTRS)

    Cann, C. E.; Genant, H. K.

    1980-01-01

    The aims of the study were three-fold: to determine the magnitude of vertebral cancellous mineral loss in normal subjects during bedrest, to compare this loss with calcium balance and mineral loss in peripheral bones, and to use the vertebral measurements as an evaluative criterion for the C12MDP treatment and compare it with other methods. The methods used are described and the results from 14 subjects are presented.

  8. Short-Term Effects of Kefir-Fermented Milk Consumption on Bone Mineral Density and Bone Metabolism in a Randomized Clinical Trial of Osteoporotic Patients

    PubMed Central

    Tung, Yu-Tang; Kao, Chao-Chih; Hu, Fu-Chang; Chen, Chuan-Mu

    2015-01-01

    Milk products are good sources of calcium that may reduce bone resorption and help prevent bone loss as well as promote bone remodeling and increase bone formation. Kefir is a product made by kefir grains that degrade milk proteins into various peptides with health-promoting effects, including antithrombotic, antimicrobial and calcium-absorption enhancing bioactivities. In a controlled, parallel, double-blind intervention study over 6 months, we investigated the effects of kefir-fermented milk (1,600 mg) supplemented with calcium bicarbonate (CaCO3, 1,500 mg) and bone metabolism in 40 osteoporosis patients, and compared them with CaCO3 alone without kefir supplements. Bone turnover markers were measured in fasting blood samples collected before therapy and at 1, 3, and 6 months. Bone mineral density (BMD) values at the spine, total hip, and hip femoral neck were assessed by dual-energy x-ray absorptiometry (DXA) at baseline and at 6 months. Among patients treated with kefir-fermented milk, the relationships between baseline turnover and 6 months changes in DXA-determined BMD were significantly improved. The serum β C-terminal telopeptide of type I collagen (β-CTX) in those with T-scores > -1 patients significantly decreased after three months treatment. The formation marker serum osteocalcin (OC) turned from negative to positive after 6 months, representing the effect of kefir treatment. Serum parathyroid hormone (PTH) increased significantly after treatment with kefir, but decreased significantly in the control group. PTH may promote bone remodeling after treatment with kefir for 6 months. In this pilot study, we concluded that kefir-fermented milk therapy was associated with short-term changes in turnover and greater 6-month increases in hip BMD among osteoporotic patients. Trial Registration: ClinicalTrials.gov NCT02361372 PMID:26655888

  9. Relationship of lean body mass with bone mass and bone mineral density in the general Korean population.

    PubMed

    Moon, Seong-Su

    2014-09-01

    We investigated association of lean body mass with bone mass (BM) and bone mineral density (BMD) according to gender and menopausal status in the general Korean population. Participants included 4,299 males and 5,226 females who were 20 years of age or older from the fourth and fifth Korea National Health and Nutritional Examination Surveys (2009-2010). Dual-energy X-ray absorptiometry was used for measurement of BMD and body composition. BMD was measured in the femur and lumbar spine. Appendicular skeletal muscle mass (ASM) was defined as the sum of the lean soft tissue masses for the arms and legs. Analysis was performed after categorizing participants into four groups (males <50 years, males ≥ 50 years, premenopausal females, and postmenopausal females). In males, the highest ASM was observed in the 20-29-year group and then showed a gradual decrease as age increased, and BM and BMD showed similar patterns of change, while in females, ASM, BMD, and BM reached the peak level in the 40-49-year group and then decreased. In multiple regression analysis, after adjusting for confounding factors, the results showed an independent association of ASM with an increase in BM and BMD (P < 0.05). After adjusting for confounding factors, total fat mass showed a significant association with BM (P < 0.05). These aforementioned relationships were commonly observed on both femur and lumbar spine in every group. Lean body mass showed an independent association with increased BM and BMD, regardless of gender, age in men, and menopausal status in women. PMID:24415174

  10. Low bone mineral density in professional scuba divers.

    PubMed

    Pereira Silva, J A; Costa Dias, F; Fonseca, J E; Canhao, H; Resende, C; Viana Queiroz, M

    2004-02-01

    Scuba diving is associated with a 90% reduction in effective weight and with the loss of a weight-bearing effect on joints. These conditions are very similar to the continuous weightlessness that occurs in spaceflight and bed-rest, which are clearly associated with significant bone mass loss. Here, we studied the bone mineral density (BMD) of 66 professional scuba divers using a dual-photon densitometer, and have depicted a reduction in the BMD in comparison to a matched control group of non-divers. Our results suggest that diving is also an activity where the unloading effect alters bone metabolism, leading to a reduction in BMD.

  11. Vitamin D–Binding Protein Modifies the Vitamin D–Bone Mineral Density Relationship

    PubMed Central

    Powe, Camille E; Ricciardi, Catherine; Berg, Anders H; Erdenesanaa, Delger; Collerone, Gina; Ankers, Elizabeth; Wenger, Julia; Karumanchi, S Ananth; Thadhani, Ravi; Bhan, Ishir

    2011-01-01

    Studies examining the relationship between total circulating 25-hydroxyvitamin D [25(OH)D] levels and bone mineral density (BMD) have yielded mixed results. Vitamin D–binding protein (DBP), the major carrier protein for 25(OH)D, may alter the biologic activity of circulating vitamin D. We hypothesized that free and bioavailable 25(OH)D, calculated from total 25(OH)D, DBP, and serum albumin levels, would be more strongly associated with BMD than levels of total 25(OH)D. We measured total 25(OH)D, DBP, and serum albumin levels in 49 healthy young adults enrolled in the Metabolic Abnormalities in College-Aged Students (MACS) study. Lumbar spine BMD was measured in all subjects using dual-energy X-ray absorptiometry. Clinical, diet, and laboratory information also was gathered at this time. We determined free and bioavailable (free + albumin-bound) 25(OH)D using previously validated formulas and examined their associations with BMD. BMD was not associated with total 25(OH)D levels (r = 0.172, p = .236). In contrast, free and bioavailable 25(OH)D levels were positively correlated with BMD (r = 0.413, p = .003 for free, r = 0.441, p = .002 for bioavailable). Bioavailable 25(OH)D levels remained independently associated with BMD in multivariate regression models adjusting for age, sex, body mass index, and race (p = .03). It is concluded that free and bioavailable 25(OH)D are more strongly correlated with BMD than total 25(OH)D. These findings have important implications for vitamin D supplementation in vitamin D–deficient states. Future studies should continue to explore the relationship between free and bioavailable 25(OH)D and health outcomes. © 2011 American Society for Bone and Mineral Research. PMID:21416506

  12. Effects of Cushing Disease on Bone Mineral Density in a Pediatric Population

    PubMed Central

    Lodish, Maya B.; Hsiao, Hui-Pin; Sermbis, Anastasios; Sinaii, Ninet; Rothenbuhler, Anya; Keil, Margaret F; Boikos, Sosipatros A.; Reynolds, James C.; Stratakis, Constantine A

    2009-01-01

    Objective To evaluate bone mineral density (BMD) in children with Cushing disease before and after transphenoidal surgery (TSS). Study design Hologic dual-energy x-ray absorptiometry (DXA) scans of 35 children with Cushing disease were analyzed retrospectively. Sixteen of the 35 patients had follow up DXA scans 13–18 months after TSS. BMD and bone mineral apparent density (BMAD) for lumbar spine (LS) L1–L4 and femoral neck (FN) were calculated. Results Preoperatively, 38% and 23% of patients had osteopenia of the LS and FN, respectively. Both BMD and BMAD Z-scores of the LS were worse than those for the FN (−1.60 ± 1.37 vs. −1.04 ± 1.19, p=0.003), and (−1.90 ± 1.49 vs. −0.06 ± 1.90, p<.001); postoperative improvement in BMD and BMAD were more pronounced in LS as compared with the FN (0.84 ± 0.88 vs. 0.15 ± 0.62, p<.001) and (0.73 ± 1.13 vs −0.26 ± 1.21, p=0.015). Pubertal stage, cortisol levels, and length of disease had no effects on BMD. Conclusions In children with Cushing disease, vertebral BMD was more severely affected than femoral BMD and was independent of degree or duration of hypercortisolism. BMD for the LS improved significantly after TSS; osteopenia in this group may be reversible. PMID:20223476

  13. Teriparatide Versus Alendronate for the Preservation of Bone Mineral Density After Total Hip Arthroplasty - A randomized Controlled Trial.

    PubMed

    Kobayashi, Naomi; Inaba, Yutaka; Uchiyama, Makoto; Ike, Hiroyuki; Kubota, So; Saito, Tomoyuki

    2016-01-01

    In this study, the effect of teriparatide for the prevention of bone mineral density (BMD) loss after THA was compared with alendronate in a randomized controlled trial. Forty-eight patients were assigned to three groups, namely, the teriparatide, alendronate, and no medication groups. Dual-energy x-ray absorptiometry (DEXA) was performed at 1 week post-surgery as a baseline reference, followed by subsequent measurements at 12, 24, and 48 weeks postoperatively. For periprosthetic BMD loss, a significant effect of teriparatide was demonstrated, though its effect was similar to alendronate. On the other hand, higher lumbar BMD was observed in the teriparatide group than in the alendronate group at 48 weeks post-surgery. Teriparatide administration may be one reasonable option for osteoporotic patient to preserve the periprosthetic BMD after THA.

  14. Bones of Contention: Bone Mineral Density Recovery in Celiac Disease—A Systematic Review

    PubMed Central

    Grace-Farfaglia, Patricia

    2015-01-01

    Metabolic bone disease is a frequent co-morbidity in newly diagnosed adults with celiac disease (CD), an autoimmune disorder triggered by the ingestion of dietary gluten. This systematic review of studies looked at the efficacy of the gluten-free diet, physical activity, nutrient supplementation, and bisphosphonates for low bone density treatment. Case control and cohort designs were identified from PubMed and other academic databases (from 1996 to 2015) that observed newly diagnosed adults with CD for at least one year after diet treatment using the dual-energy x-ray absorptiometry (DXA) scan. Only 20 out of 207 studies met the inclusion criteria. Methodological quality was assessed using the Strengthening of the Reporting of Observational Studies in Epidemiology (STROBE) statement checklist. Gluten-free diet adherence resulted in partial recovery of bone density by one year in all studies, and full recovery by the fifth year. No treatment differences were observed between the gluten-free diet alone and diet plus bisphosphonates in one study. For malnourished patients, supplementation with vitamin D and calcium resulted in significant improvement. Evidence for the impact of physical activity on bone density was limited. Therapeutic strategies aimed at modifying lifestyle factors throughout the lifespan should be studied. PMID:25961322

  15. Bones of contention: bone mineral density recovery in celiac disease--a systematic review.

    PubMed

    Grace-Farfaglia, Patricia

    2015-05-01

    Metabolic bone disease is a frequent co-morbidity in newly diagnosed adults with celiac disease (CD), an autoimmune disorder triggered by the ingestion of dietary gluten. This systematic review of studies looked at the efficacy of the gluten-free diet, physical activity, nutrient supplementation, and bisphosphonates for low bone density treatment. Case control and cohort designs were identified from PubMed and other academic databases (from 1996 to 2015) that observed newly diagnosed adults with CD for at least one year after diet treatment using the dual-energy x-ray absorptiometry (DXA) scan. Only 20 out of 207 studies met the inclusion criteria. Methodological quality was assessed using the Strengthening of the Reporting of Observational Studies in Epidemiology (STROBE) statement checklist. Gluten-free diet adherence resulted in partial recovery of bone density by one year in all studies, and full recovery by the fifth year. No treatment differences were observed between the gluten-free diet alone and diet plus bisphosphonates in one study. For malnourished patients, supplementation with vitamin D and calcium resulted in significant improvement. Evidence for the impact of physical activity on bone density was limited. Therapeutic strategies aimed at modifying lifestyle factors throughout the lifespan should be studied.

  16. Age and disease-related changes in the mineral of bone.

    PubMed

    Grynpas, M

    1993-01-01

    Bone mineralization changes with age and disease. The distribution of mineral particles in a given bone (mineralization profile) has been studied using density fractionation as well as microradiography and electron backscattering imaging. The biological determinant of mineralization is the rate of turnover. During rapid growth and periods of high remodeling, mineralization is shifted towards lower mineral density (hypomineralization). During aging and periods of low remodeling, mineralization is shifted towards higher mineral densities (hypermineralization). Chemicals can also influence the mineralization profile of bone. Fluoride induces hypermineralization by stabilizing the apatite lattice and reducing bone mineral solubility, whereas strontium induces hypomineralization by loosening the apatite lattice and increasing bone mineral solubility. Drugs such as bisphosphonates induce hypermineralization by inhibiting resorption and acting as crystal poison. Finally, mineralization can be impaired by defects as in rickets and osteomalacia or made excessive by continuous accretion of mineral without resorption as in osteopetrosis. PMID:8275381

  17. Skeletal muscle mass, bone mineral density, and walking performance in masters cyclists.

    PubMed

    Abe, Takashi; Nahar, Vinayak K; Young, Kaelin C; Patterson, Kaitlyn M; Stover, Caitlin D; Lajza, David G; Tribby, Aaron C; Geddam, David A R; Ford, M Allison; Bass, Martha A; Loftin, Mark

    2014-06-01

    Exercise mode and intensity/duration are important factors for influencing muscle morphology and function as well as bone. However, it is unknown whether masters cyclists who undergo regular moderate- to high-intensity exercise maintain lower-body skeletal muscle mass (SM) and function and bone health when compared with young adults. The purpose of this study was to compare SM, areal bone mineral density (aBMD), and gait performance between masters cyclists and young adults. Fourteen male masters cyclists (aged 53-71 years) and 13 moderately active young men (aged 20-30 years, exercising less than twice a week) volunteered. The masters cyclists were all training actively (four to five times per week, ∼200 miles per week) for on average the last 17 years (range 7-38 years). Thigh SM was estimated from an ultrasound-derived prediction equation using muscle thickness (MTH). Appendicular lean mass (aLM) and aBMD were also estimated using dual-energy X-ray absorptiometry. There were no significant differences (p<0.05) in thigh SM, anterior and posterior thigh MTH ratio, or aLM between masters cyclists and young men. Maximum straight and zigzag walking times were also similar between groups. Lumbar spine (L1-L4) aBMD was not different between groups, but femoral neck aBMD was lower (p<0.05) in the cyclists than in the young men. Our results suggest that appendicular as well as site-specific thigh muscle loss with aging were not observed in masters cyclists. This maintenance of muscle mass in masters cyclists may preserve walking performance to similar levels as moderately active young adults. However, long-term cycling does not preserve femoral neck aBMD. PMID:24460174

  18. Skeletal muscle mass, bone mineral density, and walking performance in masters cyclists.

    PubMed

    Abe, Takashi; Nahar, Vinayak K; Young, Kaelin C; Patterson, Kaitlyn M; Stover, Caitlin D; Lajza, David G; Tribby, Aaron C; Geddam, David A R; Ford, M Allison; Bass, Martha A; Loftin, Mark

    2014-06-01

    Exercise mode and intensity/duration are important factors for influencing muscle morphology and function as well as bone. However, it is unknown whether masters cyclists who undergo regular moderate- to high-intensity exercise maintain lower-body skeletal muscle mass (SM) and function and bone health when compared with young adults. The purpose of this study was to compare SM, areal bone mineral density (aBMD), and gait performance between masters cyclists and young adults. Fourteen male masters cyclists (aged 53-71 years) and 13 moderately active young men (aged 20-30 years, exercising less than twice a week) volunteered. The masters cyclists were all training actively (four to five times per week, ∼200 miles per week) for on average the last 17 years (range 7-38 years). Thigh SM was estimated from an ultrasound-derived prediction equation using muscle thickness (MTH). Appendicular lean mass (aLM) and aBMD were also estimated using dual-energy X-ray absorptiometry. There were no significant differences (p<0.05) in thigh SM, anterior and posterior thigh MTH ratio, or aLM between masters cyclists and young men. Maximum straight and zigzag walking times were also similar between groups. Lumbar spine (L1-L4) aBMD was not different between groups, but femoral neck aBMD was lower (p<0.05) in the cyclists than in the young men. Our results suggest that appendicular as well as site-specific thigh muscle loss with aging were not observed in masters cyclists. This maintenance of muscle mass in masters cyclists may preserve walking performance to similar levels as moderately active young adults. However, long-term cycling does not preserve femoral neck aBMD.

  19. Effects of lead and cadmium co-exposure on bone mineral density in a Chinese population.

    PubMed

    Chen, Xiao; Wang, Keyue; Wang, Zhongqiu; Gan, Caohui; He, Ping; Liang, Yihuai; Jin, Taiyi; Zhu, Guoying

    2014-06-01

    It has been indicated that both cadmium (Cd) and lead (Pb) may have adverse effects on the bone. However, most studies have only focused on a single factor. The primary and main and interactive effects of Cd and Pb on bone mineral density (BMD) in a Chinese population were observed in this study. A total of 321 individuals (202 women and 119 men), aged 27 years and older, living in control and polluted areas, were recruited to participate in this study. The BMD was measured through dual energy X-ray absorptiometry (DXA) at the proximal radius and ulna. The samples of urine and blood were collected to determine the levels of Cd and Pb in the urine (UCd and UPb) and blood (BCd and BPb). The Cd and Pb levels of people living in the polluted area were significantly higher than those living in the control area (p<0.05). The BMD of women living in polluted area was significantly lower than that of women living in the control area (p<0.05). Furthermore, the BMD decreased with increasing of BCd (p<0.05), BPb and UPb in women. The likelihood of low BMD was associated with higher BCd in women (OR=2.5, 95% CI: 1.11-5.43) and BPb in men (OR=4.49, 95% CI: 1.37-14.6). The relative extra risk index of low BMD for female and male subjects with both high levels of BCd and BPb was 0.45 and 1.16, respectively. This study strengthens previous evidence that cadmium and lead may influence the bone and also demonstrates that cadmium and lead may have interactive effects on BMD.

  20. Bone-composition imaging using coherent-scatter computed tomography: Assessing bone health beyond bone mineral density

    SciTech Connect

    Batchelar, Deidre L.; Davidson, Melanie T.M.; Dabrowski, Waldemar; Cunningham, Ian A.

    2006-04-15

    Quantitative analysis of bone composition is necessary for the accurate diagnosis and monitoring of metabolic bone diseases. Accurate assessment of the bone mineralization state is the first requirement for a comprehensive analysis. In diagnostic imaging, x-ray coherent scatter depends upon the molecular structure of tissues. Coherent-scatter computed tomography (CSCT) exploits this feature to identify tissue types in composite biological specimens. We have used CSCT to map the distributions of tissues relevant to bone disease (fat, soft tissue, collagen, and mineral) within bone-tissue phantoms and an excised cadaveric bone sample. Using a purpose-built scanner, we have measured hydroxyapatite (bone mineral) concentrations based on coherent-scatter patterns from a series of samples with varying hydroxyapatite content. The measured scatter intensity is proportional to mineral density in true g/cm{sup 3}. Repeated measurements of the hydroxyapatite concentration in each sample were within, at most, 2% of each other, revealing an excellent precision in determining hydroxyapatite concentration. All measurements were also found to be accurate to within 3% of the known values. Phantoms simulating normal, over-, and under-mineralized bone were created by mixing known masses of pure collagen and hydroxyapatite. An analysis of the composite scatter patterns gave the density of each material. For each composite, the densities were within 2% of the known values. Collagen and hydroxyapatite concentrations were also examined in a bone-mimicking phantom, incorporating other bone constituents (fat, soft tissue). Tomographic maps of the coherent-scatter properties of each specimen were reconstructed, from which material-specific images were generated. Each tissue was clearly distinguished and the collagen-mineral ratio determined from this phantom was also within 2% of the known value. Existing bone analysis techniques cannot determine the collagen-mineral ratio in intact

  1. Correlation of vitamin D, bone mineral density and parathyroid hormone levels in adults with low bone density

    PubMed Central

    Kota, Sunil; Jammula, Sruti; Kota, Siva; Meher, Lalit; Modi, Kirtikumar

    2013-01-01

    Background: Bone mineral densiy (BMD) is known to be affected by serum 25-hydroxyvitamin D (25(OH) D) levels, intact parathyroid hormone (iPTH) levels. Indian data pertinent to above observation is scant. Our study aimed to investigate the relationships between serum 25-hydroxyvitamin D (25(OH) D) levels, intact parathyroid hormone (iPTH) levels and bone mineral density (BMD) in a cohort of Indian patients. Materials and Methods: Adults with or without fragility fractures with low BMD at the hip or lumbar spine were evaluated clinically along with laboratory investigations. T-scores of the hip and spine were derived from BMD-DEXA (dual-energy X-ray absorptiometry). Multivariate regression models were used to investigate the relationships between serum 25(OH) D, iPTH and BMD. Results: Total of 102 patients (male:female = 38:64) with a mean age of 62.5 ± 6.4 years were included in the study. Forty-four patients had osteopenia. Osteoporosis was present in 58 patients. The mean values for serum 25(OH) D and iPTH levels were 21.3 ± 0.5 ng/ml and 53.1 ± 22.3 pg/ml, respectively. In 84.3% of patients, serum 25(OH) D levels were below 30 ng/ml (Normal = 30-74 ng/ml), confirming vitamin D deficiency. There was no association between 25(OH) D levels and BMD at the hip or lumbar spine (P = 0.473 and 0.353, respectively). Both at the hip and lumbar spine; iPTH levels, male gender, body mass index (BMI) and age were found to be significant predictors of BMD. Patients with higher BMI had significantly lower BMD and T-score. At levels <30 ng/ml, 25(OH) D was negatively associated with iPTH (P = 0.041). Conclusion: Among our cohort of patients with low BMD, no direct relationship between serum 25(OH) D levels and BMD was observed. However, a negative correlation between iPTH and 25(OH) D at serum 25(OH) D concentrations <30 ng/ml. Serum iPTH levels showed a significant negative association with BMD at the hip and lumbar spine. Our findings underscore the critical role of

  2. Probing carbonate in bone forming minerals on the nanometre scale.

    PubMed

    Kłosowski, Michał M; Friederichs, Robert J; Nichol, Robert; Antolin, Nikolas; Carzaniga, Raffaella; Windl, Wolfgang; Best, Serena M; Shefelbine, Sandra J; McComb, David W; Porter, Alexandra E

    2015-07-01

    To devise new strategies to treat bone disease in an ageing society, a more detailed characterisation of the process by which bone mineralises is needed. In vitro studies have suggested that carbonated mineral might be a precursor for deposition of bone apatite. Increased carbonate content in bone may also have significant implications in altering the mechanical properties, for example in diseased bone. However, information about the chemistry and coordination environment of bone mineral, and their spatial distribution within healthy and diseased tissues, is lacking. Spatially resolved analytical transmission electron microscopy is the only method available to probe this information at the length scale of the collagen fibrils in bone. In this study, scanning transmission electron microscopy combined with electron energy-loss spectroscopy (STEM-EELS) was used to differentiate between calcium-containing biominerals (hydroxyapatite, carbonated hydroxyapatite, beta-tricalcium phosphate and calcite). A carbon K-edge peak at 290 eV is a direct marker of the presence of carbonate. We found that the oxygen K-edge structure changed most significantly between minerals allowing discrimination between calcium phosphates and calcium carbonates. The presence of carbonate in carbonated HA (CHA) was confirmed by the formation of peak at 533 eV in the oxygen K-edge. These observations were confirmed by simulations using density functional theory. Finally, we show that this method can be utilised to map carbonate from the crystallites in bone. We propose that our calibration library of EELS spectra could be extended to provide spatially resolved information about the coordination environment within bioceramic implants to stimulate the development of structural biomaterials.

  3. Relationship of bone mineral density to progression of knee osteoarthritis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective. To evaluate the longitudinal relationship between bone mineral density (BMD) and BMD changes and the progression of knee osteoarthritis (OA), as measured by cartilage outcomes. Methods. We used observational cohort data from the Vitamin D for Knee Osteoarthritis trial. Bilateral femoral ...

  4. Race/ethnic differences in bone mineral density in men

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The epidemiology of osteoporosis in male and minority populations is understudied. To address this concern, we conducted a study of skeletal health in a diverse population of adult males, comparing Bone Mineral Density (BMD) in 367 Black, 401 Hispanic, and 451 White men aged 30-79 years who were ran...

  5. [Mineral and bone disorder in chronic kidney disease].

    PubMed

    Matuszkiewicz-Rowińska, Joanna; Kulicki, Paweł

    2014-01-01

    Chronic kidney disease-mineral bone disorder (CKD-MBD) is characterized by at least one ofthefollowing: 1. biochemical abnormalities in calcium, phosphate, parathormone (PTH) and vitamin D metabolism; 2. renal osteodystrophy; and 3. cardiovascular or other soft tissue calcifications. All these abnormalities are interrelated and significantly contribute to the increased morbidity and mortality in patients with CKD. PMID:25782203

  6. Difference in Bone Mineral Density between Young versus Midlife Women

    ERIC Educational Resources Information Center

    Sanderson, Sonya; Anderson, Pamela S.; Benton, Melissa J.

    2016-01-01

    Background: Older age is a risk factor for low bone mineral density (BMD). Older women have been found to have lower BMD than younger women. Recent trends for decreased calcium consumption and physical activity may place younger women at greater risk than previously anticipated. Purpose: The purpose of this study was to evaluate the effect of age…

  7. Assessing bone mineral density in vivo: digitized fluoroscopy and ultrasound.

    PubMed

    Fleming, R H; Korver, D; McCormack, H A; Whitehead, C C

    2004-02-01

    The genetic component of osteoporosis in caged laying hens is large, and a method for detecting hens susceptible to fracture could be useful in breeding programs. A radiographic absorptiometry film method was modified by video digitization from an image intensifier and computer analysis and termed digitized fluoroscopy (DF). Humeral and ulnar DF values were measured in 165 hens during lay. Relationships (P < 0.001) were seen between DF assessments from 25 wk onward and postmortem measurements at 70 wk. We conclude that DF can detect poor bones in hens early but is problematic. Quantitative ultrasound was also investigated. We measured amplitude-dependent speed-of-sound (Ad-SoS) in the third toe in hens. Nutritional studies revealed Ad-SoS values correlated with postmortem peripheral quantitative computerized tomography, (control group, r = 0.48, P < 0.001; treatment group, r = 0.39, P < 0.001). In caged and free-range hens, Ad-SoS correlated with shear strength (r = 0.33, P < 0.001, all hens) and radiographic density values (r = 0.53, P < 0.001, all hens) measured postmortem. The Ad-SoS values were higher in free-range than in caged hens (1,904 vs. 1,850 m/s, P < 0.001). Ad-SoS measurements were made in hens from a study where divergent genetic selection has produced high and low bone index lines with 92% difference in tibia strength. The value in high bone index hens was higher than in low bone index hens at 32 (P < 0.001), 42 (P < 0.001), 52 (P < 0.05), and 62 wk (P < 0.001) in generation 8. In an Ad-SoS heritability study, heritability estimates ranged from 0.15 to 0.39. We conclude that Ad-SoS is a heritable trait, reflects other bone measurements, and rapidly detects poor bone quality in hens.

  8. Risk assessment instruments for screening bone mineral density in a Mediterranean population

    PubMed Central

    Christodoulou, Sotirios; Drosos, Georgios I; Ververidis, Athanasios; Galanos, Antonios; Anastassopoulos, George; Kazakos, Konstantinos

    2016-01-01

    AIM To evaluate the power of six osteoporosis-screening instruments in women in a Mediterranean country. METHODS Data concerning several osteoporosis risk factors were prospectively collected from 1000 postmenopausal women aged 42-87 years who underwent dual-energy X-ray absorptiometry (DEXA) screening. Six osteoporosis risk factor screening tools were applied to this sample to evaluate their performance and choose the most appropriate tool for the study population. RESULTS The most important screening tool for osteoporosis status was the Simple Calculated Osteoporosis Risk Estimation, which had an area under the curve (AUC) of 0.678, a sensitivity of 72%, and a specificity of 72%, with a cut-off point of 20.75. The most important screening tool for osteoporosis risk was the Osteoporosis Self-assessment Tool, which had an AUC of 0.643, a sensitivity of 77%, and a specificity of 46%, with a cut-off point of -2.9. CONCLUSION Some commonly used clinical risk instruments demonstrate high sensitivity for distinguishing individuals with DEXA-ascertained osteoporosis or reduced bone mineral density. PMID:27672571

  9. Prediction of low bone mineral density in patients with inflammatory bowel diseases

    PubMed Central

    Schüle, Solvey; Rossel, Jean-Benoît; Frey, Diana; Biedermann, Luc; Scharl, Michael; Zeitz, Jonas; Freitas-Queiroz, Natália; Pittet, Valérie; Vavricka, Stephan R; Rogler, Gerhard

    2016-01-01

    Background Low bone mineral density (BMD) remains a frequent problem in patients with inflammatory bowel diseases (IBD). There is no general agreement regarding osteoporosis screening in IBD patients. Methods Cases of low BMD and disease characteristics were retrieved from 3172 patients of the Swiss IBD cohort study. Multivariate logistic regression analysis was conducted for predictive modeling. In a subgroup of 877 patients, 253 dual-energy X-ray absorptiometry (DXA) scans were available for validation. Results Low BMD was prevalent in 19% of patients. We identified seven predictive factors: type of IBD, age, recent steroid usage, low body mass index, perianal disease, recent high disease activity and malabsorption syndrome. Low BMD could be predicted with a sensitivity of 79% and a specificity of 64%, a positive predictive value (PPV) of 35% and a negative predictive value (NPV) of 93%. The area under the curve of the receiver operating characteristics was 0.78. In the validation cohort we calculated a PPV of 26% and an NPV of 88%. Conclusion We provide a comprehensive analysis of risk factors for low BMD and propose a predictive model with seven clinical variables. The high NPV of models such as ours might help in excluding low BMD to prevent futile investigations.

  10. Cardiorespiratory fitness and hip bone mineral density in women: a 6-year prospective study.

    PubMed

    Tucker, Larry A; Nokes, Neil R; Bailey, Bruce W; Lecheminant, James D

    2014-10-01

    Cross-sectional studies and short term interventions focusing on fitness and bone mineral density (BMD) are common. However, few investigations have studied the effect of fitness on BMD over an extended period of time. The present study was conducted to determine the extent to which cardiorespiratory fitness influences risk of BMD loss at the hip over 6 yr. A prospective cohort design was used with 245 healthy, middle-aged women. Hip BMD was assessed using dual energy x-ray absorptiometry. Calcium and vitamin D were measured using the Block Food Frequency Questionnaire. Menopause status was measured by a questionnaire. Results showed that fit and unfit women experienced similar changes in hip BMD over time. Specifically, unfit women experienced a non-significant 7% increased risk of losing hip BMD compared to their counterparts (RR = 1.07, 95% CI = 0.66, 1.73). Adjusting statistically for differences in age, initial body weight, and hip BMD, weight change, menopause status, calcium and vitamin D intake, and time between assessments had little effect on the relationship. Fitness level did not influence risk of hip BMD loss over time.

  11. Decreased bone mineral density is associated with coronary atherosclerosis in healthy postmenopausal women

    PubMed Central

    Seo, Seok Kyo; Yun, Bo Hyon; Noe, Eun Bee; Suh, Jong Wook; Choi, Young Sik

    2015-01-01

    Objective This study aimed to assess the association between bone mineral density (BMD) and coronary atherosclerosis in healthy postmenopausal women. Methods We performed a retrospective review of 252 postmenopausal women who had visited a health promotion center for a routine checkup. BMD of the lumbar spine (L1-L4) and femoral neck was evaluated using dual-energy X-ray absorptiometry, and coronary atherosclerosis was assessed using 64-row multidetector computed tomography. Participants were divided into normal BMD and osteopenia-osteoporosis groups, according to the T-scores of their lumbar spine or femoral neck. Results Participants with osteopenia-osteoporosis had a significantly higher proportion of coronary atherosclerosis than did those with normal BMD at the lumbar spine (P=0.003) and femoral neck (P=0.004). Osteopenia-osteoporosis at the lumbar spine (odds ratio [OR], 2.86; 95% confidence interval [CI], 1.12 to 7.27) or femoral neck (OR, 3.35; 95% CI, 1.07 to 10.57) was associated with coronary atherosclerosis, after controlling for age and cardiovascular risk factors. Conclusion Decreased BMD is associated with coronary atherosclerosis in healthy postmenopausal women, independent of age and cardiovascular risk factors. Postmenopausal women with decreased BMD may have a higher risk of developing coronary atherosclerosis. PMID:25798428

  12. Risk assessment instruments for screening bone mineral density in a Mediterranean population

    PubMed Central

    Christodoulou, Sotirios; Drosos, Georgios I; Ververidis, Athanasios; Galanos, Antonios; Anastassopoulos, George; Kazakos, Konstantinos

    2016-01-01

    AIM To evaluate the power of six osteoporosis-screening instruments in women in a Mediterranean country. METHODS Data concerning several osteoporosis risk factors were prospectively collected from 1000 postmenopausal women aged 42-87 years who underwent dual-energy X-ray absorptiometry (DEXA) screening. Six osteoporosis risk factor screening tools were applied to this sample to evaluate their performance and choose the most appropriate tool for the study population. RESULTS The most important screening tool for osteoporosis status was the Simple Calculated Osteoporosis Risk Estimation, which had an area under the curve (AUC) of 0.678, a sensitivity of 72%, and a specificity of 72%, with a cut-off point of 20.75. The most important screening tool for osteoporosis risk was the Osteoporosis Self-assessment Tool, which had an AUC of 0.643, a sensitivity of 77%, and a specificity of 46%, with a cut-off point of -2.9. CONCLUSION Some commonly used clinical risk instruments demonstrate high sensitivity for distinguishing individuals with DEXA-ascertained osteoporosis or reduced bone mineral density.

  13. Association of Renal Function and Menopausal Status with Bone Mineral Density in Middle-aged Women

    PubMed Central

    Sheng, Yueh-Hsuan; Chen, Jen-Hau; Chiou, Jeng-Min; Tsai, Keh-Sung; Lee, Yue-Yuan; Tsao, Chwen-Keng; Chen, Yen-Ching

    2015-01-01

    The association between mild renal dysfunction and bone mineral density (BMD) has not been fully explored. It is also unclear how menopausal status and the use of Chinese herb affect this association. This is a cross-sectional study that included a total of 1,419 women aged 40 to 55 years old who were recruited from the MJ Health Management Institution in Taiwan between 2009 and 2010. Spinal BMD was assessed by dual-energy X-ray absorptiometry. Renal function was assessed using estimated glomerular filtration rate (eGFR) and creatinine clearance rate (CCr). The multivariable logistic regression and general linear models were employed to assess the association between renal function and BMD. Stratification analyses were performed by menopausal status and use of Chinese herbs. Low CCr levels were significantly associated with low BMD [adjusted odds ratio (AOR) = 1.48, 95% confidence interval (CI) = 1.15–1.90]. This association was observed in premenopausal women (AOR = 1.43, 95% CI = 1.07–1.92) and in women not taking Chinese herbs (AOR = 1.48, 95% CI = 1.14–1.94). CCr is a better predictor for low BMD in middle-aged women. Menopausal status and the use of Chinese herbs also affected this association. PMID:26459876

  14. Increased bone mineral density in Aboriginal and Torres Strait Islander Australians: impact of body composition differences.

    PubMed

    Maple-Brown, L J; Hughes, J; Piers, L S; Ward, L C; Meerkin, J; Eisman, J A; Center, J R; Pocock, N A; Jerums, G; O'Dea, K

    2012-07-01

    Bone mineral density (BMD) has been reported to be both higher and lower in Indigenous women from different populations. Body composition data have been reported for Indigenous Australians, but there are few published BMD data in this population. We assessed BMD in 161 Indigenous Australians, identified as Aboriginal (n=70), Torres Strait Islander (n=68) or both (n=23). BMD measurements were made on Norland-XR46 (n=107) and Hologic (n=90) dual-energy X-ray absorptiometry (DXA) machines. Norland BMD and body composition measurements in these individuals, and also in 36 Caucasian Australians, were converted to equivalent Hologic BMD (BMD(H)) and body composition measurements for comparison. Femoral neck (FN) and lumbar spine Z-scores were high in Indigenous participants (mean FN Z-score: Indigenous men +0.98, p<0.0001 vs. mean zero; Indigenous women +0.82, p<0.0001 vs. mean zero). FN BMD(H) was higher in Aboriginal and/or Torres Strait Islander than Caucasian participants, after adjusting for age, gender, diabetes and height and remained higher in men after addition of lean mass to the model. We conclude that FN BMD is higher in Aboriginal and/or Torres Strait Islander Australians than Caucasian Australian reference ranges and these differences still remained significant in men after adjustment for lean mass. It remains to be seen whether these BMD differences translate to differences in fracture rates.

  15. Association between duration of playing video games and bone mineral density in Chinese adolescents.

    PubMed

    Shao, Haiyu; Xu, Shaonan; Zhang, Jun; Zheng, Jiayin; Chen, Jinping; Huang, Yazeng; Ru, Bin; Jin, Yongming; Zhang, Qi; Ying, Qifeng

    2015-01-01

    The aim of the study was to investigate the association between duration of playing video games and bone mineral density (BMD) in Chinese adolescents. Three hundred eighty-four Chinese adolescents aged 14-18 yr (148 males and 236 females) were analyzed. Anthropometric measurements were obtained using standard procedures. Total body and regional BMD were measured using dual-energy X-ray absorptiometry. Duration of playing video games, defined as hours per day, was measured by a self-report questionnaire. We examined the association between duration of playing video games and BMD using multiple linear regression analysis. After adjustment for age, sex, pubertal stage, parental education, body mass index, adolescents with longer video game duration were more likely to have lower legs, trunk, pelvic, spine, and total BMD (p < 0.05). We concluded that duration of video game was negatively associated with BMD in Chinese adolescents. These findings provide support for reducing duration of playing video games as a possible means to increase BMD in adolescents. Future research is needed to elucidate the underlined mechanisms linking playing video games and osteoporosis.

  16. Relationship of regional body composition to bone mineral density in college females.

    PubMed

    Nichols, D L; Sanborn, C F; Bonnick, S L; Gench, B; DiMarco, N

    1995-02-01

    The purpose of this study was to examine relationships between regional body composition and bone mineral density (BMD) in college females. Subjects were 12 nonathletic females (< 3 h.wk-1 of exercise) and 46 female varsity athletes: basketball (N = 14), volleyball (N = 13), gymnastics (N = 13), and tennis (N = 6). Dual energy x-ray absorptiometry was used to determine BMD and body composition. The mean (+/- SD) age, height, weight, and menarche for the subjects were 19.9 +/- 2.1 yr, 167.9 +/- 9.4 cm, 62.1 +/- 9.0 kg, and 13.6 +/- 1.7 yr, respectively. Mean lumbar (1.327 g.cm-2), femoral neck (1.172 g.cm-2), and total body (1.200 g.cm-2) BMD of the athletes were significantly greater than nonathletes (P < 0.05) but did not differ among the teams. Significant correlations were found between regional leg BMD and leg lean tissue mass (LTM) (r = 0.59, P < 0.001) and between arm LTM and arm and lumbar BMD (r = 0.47 and 0.56, respectively). Significant correlations were also found between leg fat mass and leg BMD (r = 0.40). However, only regional LTM was a significant predictor of BMD using stepwise multiple regression. In summary, regional LTM appears to be a better predictor of BMD than regional fat mass.

  17. Bone Mineral Status in Children and Adolescents with Klinefelter Syndrome

    PubMed Central

    Stagi, Stefano; Di Tommaso, Mariarosaria; Manoni, Cristina; Scalini, Perla; Chiarelli, Francesco; Verrotti, Alberto; Lapi, Elisabetta; Giglio, Sabrina; Dosa, Laura; de Martino, Maurizio

    2016-01-01

    Objective. Klinefelter syndrome (KS) has long-term consequences on bone health. However, studies regarding bone status and metabolism during childhood and adolescence are very rare. Patients. This cross-sectional study involved 40 (mean age: 13.7 ± 3.8 years) KS children and adolescents and 80 age-matched healthy subjects. For both patient and control groups, we evaluated serum levels of ionised and total calcium, phosphate, total testosterone, luteinising hormone, follicle stimulating hormone, parathyroid hormone (PTH), 25-hydroxyvitamin D (25(OH)D), 1,25-dihydroxyvitamin D, osteocalcin, bone alkaline phosphatase, and urinary deoxypyridinoline concentrations. We also calculated the z-scores of the phalangeal amplitude-dependent speed of sound (AD-SoS) and the bone transmission time (BTT). Results. KS children and adolescents showed significantly reduced AD-SoS (p < 0.005) and BTT (p < 0.0005) z-scores compared to the controls. However, KS patients presented significantly higher PTH (p < 0.0001) and significantly lower 25(OH)D (p < 0.0001), osteocalcin (p < 0.05), and bone alkaline phosphatase levels (p < 0.005). Interestingly, these metabolic bone disorders were already present in the prepubertal subjects. Conclusions. KS children and adolescents exhibited impaired bone mineral status and metabolism with higher PTH levels and a significant reduction of 25-OH-D and bone formation markers. Interestingly, this impairment was already evident in prepubertal KS patients. Follow-ups should be scheduled with KS patients to investigate and ameliorate bone mineral status and metabolism until the prepubertal ages. PMID:27413371

  18. Random field assessment of inhomogeneous bone mineral density from DXA scans can enhance the differentiation between postmenopausal women with and without hip fractures

    PubMed Central

    Dong, Xuanliang Neil; Pinninti, Rajeshwar; Lowe, Timothy; Cussen, Patricia; Ballard, Joyce E.; Paolo, David Di; Shirvaikar, Mukul

    2015-01-01

    Bone mineral density (BMD) measurements from Dual-energy X-ray Absorptiometry (DXA) alone cannot account for all factors associated with the risk of hip fractures. For example, the inhomogeneity of bone mineral density in the hip region also contributes to bone strength. In the stochastic assessment of bone inhomogeneity, the BMD map in the hip region is considered as a random field and stochastic predictors can be calculated by fitting a theoretical model onto the experimental variogram of the BMD map. The objective of this study was to compare the ability of bone mineral density and stochastic assessment of inhomogeneous distribution of bone mineral density in predicting hip fractures for postmenopausal women. DXA scans in the hip region were obtained from postmenopausal women with hip fractures (N=47, Age: 71.3±11.4 years) and without hip fractures (N=45, Age: 66.7±11.4 years). Comparison of BMD measurements and stochastic predictors in assessing bone fragility was based on the area under the receiver operating characteristic curves (AUC) from logistic regression analyses. Although stochastic predictors offered higher accuracy (AUC=0.675) in predicting the risk of hip fractures than BMD measurements (AUC=0.625), such difference was not statistically significant (p=0.548). Nevertheless, the combination of stochastic predictors and BMD measurements had significantly (p=0.039) higher prediction accuracy (AUC=0.748) than BMD measurements alone. This study demonstrates that stochastic assessment of bone mineral distribution from DXA scans can serve as a valuable tool in enhancing the prediction of hip fractures for postmenopausal women in addition to BMD measurements. PMID:25683520

  19. Differential influence of physical activity on lumbar spine and femoral neck bone mineral density in the elderly population.

    PubMed

    Vuillemin, A; Guillemin, F; Jouanny, P; Denis, G; Jeandel, C

    2001-06-01

    This study investigates the relationship between lifetime physical activity and bone mineral density (BMD) at various sites in 129 healthy men and women aged 72.1 +/- 6.5 years. BMD was measured by dual energy x-ray absorptiometry, and physical activity was assessed by using the QUANTAP system (Quantification de l'Activité Physique), a standardized and structured computer-assisted interview tool designed to assess lifetime physical activity. Linear regression models controlling for age, gender, height, body mass, lean mass, and smoking habits were performed. Higher levels of sporting activity during youth were associated with greater lumbar spine BMD ( p < .001). Similarly, femoral neck BMD was greatest in subjects who reported regularly taking part in sports over the previous 20 years ( p <. 05) and during their whole lifetime ( p < 0.05). Sporting activity at the time of bone mass development increases subsequent lumbar spine BMD, and more recent sporting activity contributes to the preservation of femoral neck BMD. These results suggest that physical activity has a differential influence on BMD at different sites and at different ages, possibly related to the processes of bone construction and bone aging taking place at the time.

  20. Differential influence of physical activity on lumbar spine and femoral neck bone mineral density in the elderly population.

    PubMed

    Vuillemin, A; Guillemin, F; Jouanny, P; Denis, G; Jeandel, C

    2001-06-01

    This study investigates the relationship between lifetime physical activity and bone mineral density (BMD) at various sites in 129 healthy men and women aged 72.1 +/- 6.5 years. BMD was measured by dual energy x-ray absorptiometry, and physical activity was assessed by using the QUANTAP system (Quantification de l'Activité Physique), a standardized and structured computer-assisted interview tool designed to assess lifetime physical activity. Linear regression models controlling for age, gender, height, body mass, lean mass, and smoking habits were performed. Higher levels of sporting activity during youth were associated with greater lumbar spine BMD ( p < .001). Similarly, femoral neck BMD was greatest in subjects who reported regularly taking part in sports over the previous 20 years ( p <. 05) and during their whole lifetime ( p < 0.05). Sporting activity at the time of bone mass development increases subsequent lumbar spine BMD, and more recent sporting activity contributes to the preservation of femoral neck BMD. These results suggest that physical activity has a differential influence on BMD at different sites and at different ages, possibly related to the processes of bone construction and bone aging taking place at the time. PMID:11382786

  1. Effects of aluminum exposure on bone mineral density, mineral, and trace elements in rats.

    PubMed

    Li, Xinwei; Hu, Chongwei; Zhu, Yanzhu; Sun, Hao; Li, Yanfei; Zhang, Zhigang

    2011-10-01

    The purpose of the study was to investigate the effects of aluminum (Al) exposure on bone mineral elements, trace elements, and bone mineral density (BMD) in rats. One hundred Wistar rats were divided randomly into two groups. Experimental rats were given drinking water containing aluminum chloride (AlCl(3), 430 mg Al(3+)/L), whereas control rats were given distilled water for up to 150 days. Ten rats were sacrificed in each group every 30 days. The levels of Al, calcium (Ca), phosphorus (P), magnesium (Mg), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), selenium (Se), boron (B), and strontium (Sr) in bone and the BMD of femur were measured. Al-treated rats showed lower deposition of Ca, P, and Mg compared with control rats. Levels of trace elements (Zn, Fe, Cu, Mn, Se, B, and Sr) were significantly lower in the Al-treated group than in the control group from day 60, and the BMD of the femur metaphysis in the Al-treated group was significantly lower than in the control group on days 120 and 150. These findings indicate that long-term Al exposure reduces the levels of mineral and trace elements in bone. As a result, bone loss was induced (particularly in cancellous bone). PMID:20886309

  2. Magnetic resonance imaging of the calcaneus: preliminary assessment of trabecular bone-dependent regional variations in marrow relaxation time compared with dual X-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Guglielmi, G.; Selby, K.; Blunt, B. A.; Jergas, M.; Newitt, D. C.; Genant, H. K.; Majumdar, S.

    1996-01-01

    RATIONALE AND OBJECTIVES: Marrow transverse relaxation time (T2*) in magnetic resonance (MR) imaging may be related to the density and structure of the surrounding trabecular network. We investigated regional variations of T2* in the human calcaneus and compared the findings with bone mineral density (BMD), as measured by dual X-ray absorpiometry (DXA). Short- and long-term precisions were evaluated first to determine whether MR imaging would be useful for the clinical assessment of disease status and progression in osteoporosis. METHODS: Gradient-recalled echo MR images of the calcaneus were acquired at 1.5 T from six volunteers. Measurements of T2* were compared with BMD and (for one volunteer) conventional radiography. RESULTS: T2* values showed significant regional variation; they typically were shortest in the superior region of the calcaneus. There was a linear correlation between MR and DXA measurements (r = .66 for 1/T2* versus BMD). Differences in T2* attributable to variations in analysis region-of-interest placement were not significant for five of the six volunteers. Sagittal MR images had short- and long-term precision errors of 4.2% and 3.3%, respectively. For DXA, the precision was 1.3% (coefficient of variation). CONCLUSION: MR imaging may be useful for trabecular bone assessment in the calcaneus. However, given the large regional variations in bone density and structure, the choice of an ROI is likely to play a major role in the accuracy, precision, and overall clinical efficacy of T2* measurements.

  3. The Choice of Normative Pediatric Reference Database Changes Spine Bone Mineral Density Z-scores But Not The Relationship Between Bone Mineral Density and Prevalent Vertebral Fractures

    PubMed Central

    Ma, Jinhui; Siminoski, Kerry; Alos, Nathalie; Halton, Jacqueline; Ho, Josephine; Lentle, Brian; Matzinger, MaryAnn; Shenouda, Nazih; Atkinson, Stephanie; Barr, Ronald; Cabral, David A.; Couch, Robert; Cummings, Elizabeth A.; Fernandez, Conrad V.; Grant, Ronald M.; Rodd, Celia; Sbrocchi, Anne Marie; Scharke, Maya; Rauch, Frank; Ward, Leanne M.

    2015-01-01

    Objectives Our objectives were to assess the magnitude of the disparity in lumbar spine bone mineral density (LSBMD) Z-scores generated by different reference databases and to evaluate whether the relationship between LSBMD Z-scores and vertebral fractures (VF) varies by choice of database. Patients and Design Children with leukemia underwent LSBMD by cross-calibrated dual energy x-ray absorptiometry, with Z-scores generated according to Hologic and Lunar databases. VF were assessed by the Genant method on spine radiographs. Logistic regression was used to assess the association between fractures and LSBMD Z-scores. Net reclassification improvement (NRI) and area under the receiver operating characteristic curve (AUC) were calculated to assess the predictive accuracy of LSBMD Z-scores for VF. Results For the 186 children from 0–18 years of age, 6 different age ranges were studied. The Z-scores generated for the 0 to 18 group were highly correlated (r ≥ 0.90), but the proportion of children with LSBMD Z-scores ≤ −2.0 among those with VF varied substantially (from 38 to 66%). Odds ratios (OR) for the association between LSBMD Z-score and VF were similar regardless of database (OR = 1.92, 95% confidence interval (CI): 1.44, 2.56 to OR = 2.70, 95% CI: 1.70, 4.28). AUC and NRI ranged from 0.71 to 0.75 and −0.15 to 0.07 respectively. Conclusions Although the use of a LSBMD Z-score threshold as part of the definition of osteoporosis in a child with VF does not appear valid, the study of relationships between BMD and VF is valid regardless of the BMD database that is used. PMID:25494661

  4. Effect of Probiotics Supplementation on Bone Mineral Content and Bone Mass Density

    PubMed Central

    Parvaneh, Kolsoom; Jamaluddin, Rosita; Karimi, Golgis; Erfani, Reza

    2014-01-01

    A few studies in animals and a study in humans showed a positive effect of probiotic on bone metabolism and bone mass density. Most of the investigated bacteria were Lactobacillus and Bifidobacterium . The positive results of the probiotics were supported by the high content of dietary calcium and the high amounts of supplemented probiotics. Some of the principal mechanisms include (1) increasing mineral solubility due to production of short chain fatty acids; (2) producing phytase enzyme by bacteria to overcome the effect of mineral depressed by phytate; (3) reducing intestinal inflammation followed by increasing bone mass density; (4) hydrolysing glycoside bond food in the intestines by Lactobacillus and Bifidobacteria. These mechanisms lead to increase bioavailability of the minerals. In conclusion, probiotics showed potential effects on bone metabolism through different mechanisms with outstanding results in the animal model. The results also showed that postmenopausal women who suffered from low bone mass density are potential targets to consume probiotics for increasing mineral bioavailability including calcium and consequently increasing bone mass density. PMID:24587733

  5. Kinetic measurements of bone mineral metabolism: The use of Na-22 as a tracer for long-term bone mineral turnover studies

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1978-01-01

    Sodium-22 was studied as a tracer for bone mineral metabolism in rats and dogs. When incorporated into bone during growth from birth to adulthood, the bone becomes uniformly tagged with (22)Na which is released through the metabolic turnover of the bone. The (22)Na which is not incorporated in the bone matrix is rapidly excreted within a few days when animals are fed high but nontoxic levels of NaCl. The (22)Na tracer can be used to measure bone mineral loss in animals during space flight and in research on bone disease.

  6. International longitudinal pediatric reference standards for bone mineral content.

    PubMed

    Baxter-Jones, Adam D G; Burrows, Melonie; Bachrach, Laura K; Lloyd, Tom; Petit, Moira; Macdonald, Heather; Mirwald, Robert L; Bailey, Don; McKay, Heather

    2010-01-01

    To render a diagnosis pediatricians rely upon reference standards for bone mineral density or bone mineral content, which are based on cross-sectional data from a relatively small sample of children. These standards are unable to adequately represent growth in a diverse pediatric population. Thus, the goal of this study was to develop sex and site-specific standards for BMC using longitudinal data collected from four international sites in Canada and the United States. Data from four studies were combined; Saskatchewan Paediatric Bone Mineral Accrual Study (n=251), UBC Healthy Bones Study (n=382); Penn State Young Women's Health Study (n=112) and Stanford's Bone Mineral Accretion study (n=423). Males and females (8 to 25 years) were measured for whole body (WB), total proximal femur (PF), femoral neck (FN) and lumbar spine (LS) BMC (g). Data were analyzed using random effects models. Bland-Altman was used to investigate agreement between predicted and actual data. Age, height, weight and ethnicity independently predicted BMC accrual across sites (P<0.05). Compared to White males, Asian males had 31.8 (6.8) g less WB BMC accrual; Hispanic 75.4 (28.2) g less BMC accrual; Blacks 82.8 (26.3) g more BMC accrual with confounders of age, height and weight controlled. We report similar findings for the PF and FN. Models for females for all sites were similar with age, height and weight as independent significant predictors of BMC accrual (P<0.05). We provide a tool to calculate a child's BMC Z-score, accounting for age, size, sex and ethnicity. In conclusion, when interpreting BMC in pediatrics we recommend standards that are sex, age, size and ethnic specific. PMID:19854308

  7. Unique biochemical and mineral composition of whale ear bones.

    PubMed

    Kim, Sora L; Thewissen, J G M; Churchill, Morgan M; Suydam, Robert S; Ketten, Darlene R; Clementz, Mark T

    2014-01-01

    Abstract Cetaceans are obligate aquatic mammals derived from terrestrial artiodactyls. The defining characteristic of cetaceans is a thick and dense lip (pachyosteosclerotic involucrum) of an ear bone (the tympanic). This unique feature is absent in modern terrestrial artiodactyls and is suggested to be important in underwater hearing. Here, we investigate the mineralogical and biochemical properties of the involucrum, as these may hold clues to the aquatic adaptations of cetaceans. We compared bioapatites (enamel, dentine, cementum, and skeletal bone) of cetaceans with those of terrestrial artiodactyls and pachyosteosclerotic ribs of manatees (Sirenia). We investigated organic, carbonate, and mineral composition as well as crystal size and crystallinity index. In all studied variables, bioapatites of the cetacean involucrum were intermediate in composition and structure between those of tooth enamel on the one hand and those of dentine, cementum, and skeletal bone on the other. We also studied the amino acid composition of the cetacean involucrum relative to that of other skeletal bone. The central involucrum had low glycine and hydroxyproline concentrations but high concentrations of nonessential amino acids, unlike most bone samples but similar to the tympanic of hippos and the (pachyosteosclerotic) ribs of manatees. These amino acid results are evidence of rapid bone development. We hypothesize that the mineralogical and amino acid composition of cetacean bullae differs from that of other bone because of (1) functional modifications for underwater sound reception and (2) structural adaptations related to rapid ossification.

  8. Unique biochemical and mineral composition of whale ear bones.

    PubMed

    Kim, Sora L; Thewissen, J G M; Churchill, Morgan M; Suydam, Robert S; Ketten, Darlene R; Clementz, Mark T

    2014-01-01

    Abstract Cetaceans are obligate aquatic mammals derived from terrestrial artiodactyls. The defining characteristic of cetaceans is a thick and dense lip (pachyosteosclerotic involucrum) of an ear bone (the tympanic). This unique feature is absent in modern terrestrial artiodactyls and is suggested to be important in underwater hearing. Here, we investigate the mineralogical and biochemical properties of the involucrum, as these may hold clues to the aquatic adaptations of cetaceans. We compared bioapatites (enamel, dentine, cementum, and skeletal bone) of cetaceans with those of terrestrial artiodactyls and pachyosteosclerotic ribs of manatees (Sirenia). We investigated organic, carbonate, and mineral composition as well as crystal size and crystallinity index. In all studied variables, bioapatites of the cetacean involucrum were intermediate in composition and structure between those of tooth enamel on the one hand and those of dentine, cementum, and skeletal bone on the other. We also studied the amino acid composition of the cetacean involucrum relative to that of other skeletal bone. The central involucrum had low glycine and hydroxyproline concentrations but high concentrations of nonessential amino acids, unlike most bone samples but similar to the tympanic of hippos and the (pachyosteosclerotic) ribs of manatees. These amino acid results are evidence of rapid bone development. We hypothesize that the mineralogical and amino acid composition of cetacean bullae differs from that of other bone because of (1) functional modifications for underwater sound reception and (2) structural adaptations related to rapid ossification. PMID:24940922

  9. Osteoblast mineralization with composite nanofibrous substrate for bone tissue regeneration.

    PubMed

    Venugopal, Jayarama Reddy; Giri Dev, Venkateshwarapuram Rengaswami; Senthilram, Thinakaran; Sathiskumar, Dhayalan; Gupta, Deepika; Ramakrishna, Seeram

    2011-01-01

    Several studies are currently ongoing to construct synthetic bone-like materials with composites of natural and polymeric materials with HA (hydroxyapatite). The present study aims to fabricate composite nanofibrous substrate of Chit/HA (chitosan/HA - 80:25) prepared by dissolving in TFA/DCM (trifluoroacetic acid/dichloromethane) (70:30, w/w) for 5 days and electrospun to fabricate a scaffold for bone tissue engineering. HA (25 wt %) was sonicated for 30 min to obtain a homogenous dispersion of nanoparticles within the Chit (80 wt %) matrix for fabricating composite nanofibrous scaffold (Chit/HA). The nanofibres of Chit and Chit/HA were obtained with fibre diameters of 274 ± 75 and 510 ± 198 nm, respectively, and characterized by FESEM (field emission scanning electron microscopy) and FTIR (Fourier transform infrared). The interaction of hFOBs (human fetal osteoblasts) and nanofibrous substrates were analysed for cell morphology (FESEM), mineralization [ARS (Alizarin Red-S) staining], quantification of minerals and finally identified the elements present in Chit/HA/osteoblasts by EDX (energy-dispersive X-ray) analysis. EDX analysis confirmed that the spherulites contain calcium and phosphorus, the major constituents in calcium phosphate apatite, the mineral phase of the bone. Mineralization was increased significantly (P<0.001) up to 108% in Chit/HA compared with Chit nanofibres. These results confirmed that the electrospun composite Chit/HA nanofibrous substrate is a potential biocomposite material for the proliferation and mineralization of hFOBs required for enhanced bone tissue regeneration. PMID:20923413

  10. Bone mineral density in developing children with osteogenesis imperfecta

    PubMed Central

    Sakkers, Ralph J B; Pruijs, Hans E H; Joosse, Pieter; Castelein, René M

    2013-01-01

    Background and purpose — Osteogenesis imperfecta (OI) is a heritable disorder of connective tissue caused by a defect in collagen type I synthesis. For bone, this includes fragility, low bone mass, and progressive skeletal deformities, which can result in various degrees of short stature. The purpose of this study was to investigate development of bone mineral density in children with OI. Patients and methods — Development of lumbar bone mineral density was studied retrospectively in a cohort of 74 children with OI. Mean age was 16.3 years (SD 4.3). In 52 children, repeated measurements were available. Mean age at the start of measurement was 8.8 years (SD 4.1), and mean follow-up was 9 years (SD 2.7). A longitudinal data analysis was performed. In the total cohort (74 children), a cross-sectional analysis was performed with the latest-measured BMD. Age at the latest BMD measurement was almost equal for girls and boys: 17.4 and 17.7 years respectively. Result — Mean annual increase in BMD in the 52 children was 0.038 g/cm2/year (SD 0.024). Annual increase in BMD was statistically significantly higher in girls, in both the unadjusted and adjusted analysis. In cross-sectional analysis, in the whole cohort the latest-measured lumbar BMD was significantly higher in girls, in the children with OI of type I, in walkers, and in those who were older, in both unadjusted and adjusted analysis. Interpretation — During 9 years of follow-up, there appeared to be an increase in bone mineral density, which was most pronounced in girls. One possible explanation might be a later growth spurt and older age at peak bone mass in boys. PMID:23992144

  11. MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older Adults

    PubMed Central

    Shen, Wei; Chen, Jun; Gantz, Madeleine; Punyanitya, Mark; Heymsfield, Steven B; Gallagher, Dympna; Albu, Jeanine; Engelson, Ellen; Kotler, Donald; Pi-Sunyer, Xavier; Gilsanz, Vicente

    2012-01-01

    Background/Objective Recent research has shown an inverse relationship between bone marrow adipose tissue (BMAT) and bone mineral density (BMD). There is a lack of evidence at the macro-imaging level to establish whether increased BMAT is a cause or effect of bone loss. This cross-sectional study compared the BMAT and BMD relationship between a younger adult group at or approaching peak bone mass (PBM) (age 18.0-39.9 yrs) and an older group with potential bone loss (PoBL) (age 40.0-88 yrs). Subjects/Methods Pelvic BMAT was evaluated in 560 healthy men and women with T1-weighted whole body magnetic resonance imaging. BMD was measured using whole body dual-energy x-ray absorptiometry. Results An inverse correlation was observed between pelvic BMAT and pelvic, total, and spine BMD in the younger PBM group (r=-0.419 to -0.461, P<0.001) and in the older PoBL group (r=-0.405 to -0.500, P<0.001). After adjusting for age, sex, ethnicity, menopausal status, total body fat, skeletal muscle, subcutaneous and visceral adipose tissue, neither subject group (younger PBM vs. older PoBL) nor its interaction with pelvic BMAT significantly contributed to the regression models with BMD as dependent variable and pelvic BMAT as independent variable (P=0.434 to 0.928). Conclusion Our findings indicate that an inverse relationship between pelvic BMAT and BMD is present both in younger subjects who have not yet experienced bone loss and also in older subjects. These results provide support at the macro-imaging level for the hypothesis that low BMD may be a result of preferential differentiation of mesenchymal stem cells from osteoblasts to adipocytes. PMID:22491495

  12. WNT16 Influences Bone Mineral Density, Cortical Bone Thickness, Bone Strength, and Osteoporotic Fracture Risk

    PubMed Central

    Eriksson, Joel; Paternoster, Lavinia; Yerges-Armstrong, Laura M.; Lehtimäki, Terho; Bergström, Ulrica; Kähönen, Mika; Leo, Paul J.; Raitakari, Olli; Laaksonen, Marika; Nicholson, Geoffrey C.; Viikari, Jorma; Ladouceur, Martin; Lyytikäinen, Leo-Pekka; Medina-Gomez, Carolina; Rivadeneira, Fernando; Prince, Richard L.; Sievanen, Harri; Leslie, William D.; Mellström, Dan; Eisman, John A.; Movérare-Skrtic, Sofia; Goltzman, David; Hanley, David A.; Jones, Graeme; St. Pourcain, Beate; Xiao, Yongjun; Timpson, Nicholas J.; Smith, George Davey; Reid, Ian R.; Ring, Susan M.; Sambrook, Philip N.; Karlsson, Magnus; Dennison, Elaine M.; Kemp, John P.; Danoy, Patrick; Sayers, Adrian; Wilson, Scott G.; Nethander, Maria; McCloskey, Eugene; Vandenput, Liesbeth; Eastell, Richard; Liu, Jeff; Spector, Tim; Mitchell, Braxton D.; Streeten, Elizabeth A.; Brommage, Robert; Pettersson-Kymmer, Ulrika; Brown, Matthew A.; Ohlsson, Claes; Richards, J. Brent; Lorentzon, Mattias

    2012-01-01

    We aimed to identify genetic variants associated with cortical bone thickness (CBT) and bone mineral density (BMD) by performing two separate genome-wide association study (GWAS) meta-analyses for CBT in 3 cohorts comprising 5,878 European subjects and for BMD in 5 cohorts comprising 5,672 individuals. We then assessed selected single-nucleotide polymorphisms (SNPs) for osteoporotic fracture in 2,023 cases and 3,740 controls. Association with CBT and forearm BMD was tested for ∼2.5 million SNPs in each cohort separately, and results were meta-analyzed using fixed effect meta-analysis. We identified a missense SNP (Thr>Ile; rs2707466) located in the WNT16 gene (7q31), associated with CBT (effect size of −0.11 standard deviations [SD] per C allele, P = 6.2×10−9). This SNP, as well as another nonsynonymous SNP rs2908004 (Gly>Arg), also had genome-wide significant association with forearm BMD (−0.14 SD per C allele, P = 2.3×10−12, and −0.16 SD per G allele, P = 1.2×10−15, respectively). Four genome-wide significant SNPs arising from BMD meta-analysis were tested for association with forearm fracture. SNP rs7776725 in FAM3C, a gene adjacent to WNT16, was associated with a genome-wide significant increased risk of forearm fracture (OR = 1.33, P = 7.3×10−9), with genome-wide suggestive signals from the two missense variants in WNT16 (rs2908004: OR = 1.22, P = 4.9×10−6 and rs2707466: OR = 1.22, P = 7.2×10−6). We next generated a homozygous mouse with targeted disruption of Wnt16. Female Wnt16−/− mice had 27% (P<0.001) thinner cortical bones at the femur midshaft, and bone strength measures were reduced between 43%–61% (6.5×10−13bone strength, and risk of fracture. PMID:22792071

  13. Lean Mass and Body Fat Percentage Are Contradictory Predictors of Bone Mineral Density in Pre-Menopausal Pacific Island Women

    PubMed Central

    Casale, Maria; von Hurst, Pamela R.; Beck, Kathryn L.; Shultz, Sarah; Kruger, Marlena C.; O’Brien, Wendy; Conlon, Cathryn A.; Kruger, Rozanne

    2016-01-01

    Anecdotally, it is suggested that Pacific Island women have good bone mineral density (BMD) compared to other ethnicities; however, little evidence for this or for associated factors exists. This study aimed to explore associations between predictors of bone mineral density (BMD, g/cm2), in pre-menopausal Pacific Island women. Healthy pre-menopausal Pacific Island women (age 16–45 years) were recruited as part of the larger EXPLORE Study. Total body BMD and body composition were assessed using Dual X-ray Absorptiometry and air-displacement plethysmography (n = 83). A food frequency questionnaire (n = 56) and current bone-specific physical activity questionnaire (n = 59) were completed. Variables expected to be associated with BMD were applied to a hierarchical multiple regression analysis. Due to missing data, physical activity and dietary intake factors were considered only in simple correlations. Mean BMD was 1.1 ± 0.08 g/cm2. Bone-free, fat-free lean mass (LMO, 52.4 ± 6.9 kg) and age were positively associated with BMD, and percent body fat (38.4 ± 7.6) was inversely associated with BMD, explaining 37.7% of total variance. Lean mass was the strongest predictor of BMD, while many established contributors to bone health (calcium, physical activity, protein, and vitamin C) were not associated with BMD in this population, partly due to difficulty retrieving dietary data. This highlights the importance of physical activity and protein intake during any weight loss interventions to in order to minimise the loss of muscle mass, whilst maximizing loss of adipose tissue. PMID:27483314

  14. Measurement of the subcutaneous fat in the distal forearm by single photon absorptiometry

    SciTech Connect

    Hassager, C.; Borg, J.; Christiansen, C.

    1989-02-01

    The influence of subcutaneous fat on single photon (/sup 125/I) absorptiometry (SPA) measurement of bone mineral content of the distal forearm was investigated. A fat correction model was tested by measurements on eight lean subjects with different amounts of porcine fat around their forearm, and further validated from measurements on 128 females. In addition, it is shown that the fat content in the distal forearm can be measured by SPA with a short-term precision at 1.9% in an obese subject and that it correlates well with total body fat (r2 = .7) measured by dual photon absorptiometry, skinfold thickness (r2 = .5), and body mass index (r2 = .6). By using this method in a double-blind placebo-controlled trial, hormonal substitutional therapy significantly decreased the forearm fat content without affecting the body weight in postmenopausal osteoporotic women.

  15. Grip strength is a predictor of bone mineral density among adolescent combat sport athletes.

    PubMed

    Nasri, Raouf; Hassen Zrour, Saoussen; Rebai, Haithem; Fadhel Najjar, Mohamed; Neffeti, Fadoua; Bergaoui, Naceur; Mejdoub, Hafedh; Tabka, Zouhair

    2013-01-01

    The aim of this study was firstly to investigate the correlation between bone parameters and grip strength (GS) in hands, explosive legs power (ELP), and hormonal parameters; second, to identify the most determinant variables of bone mineral density (BMD) among adolescent combat sport athletes. Fifty combat sport athletes aged 17.1 ± 0.2 year were compared with 30 sedentary subjects matched for age, height, and pubertal stage. For all subjects, the BMD in deferent sites associated with anthropometric parameters were measured by dual-energy X-ray absorptiometry. The growth hormone (GH) and testosterone (TESTO) concentrations were tested. The GS in dominant (GSDA) and nondominant arms (GSNDA) and ELP were evaluated. All BMD measured were greater in athletes than in sedentary group (p<0.01). The GS and ELP showed higher values in athletes than in sedentary group (p<0.01). The BMD in all sites were correlated with weight, but without correlation with height. The GSNDA and ELP were significantly correlated with BMD of both spine and legs. The GH was correlated with the BMD of whole body and spine (p<0.05). The TESTO was only correlated with BMD of the arms (p<0.01). The best predictor of BMD measurements is GSNDA. This study has proved the osteogenic effect of combat sports practice, especially judo and karate kyokushinkai. Therefore, children and adolescent should be encouraged to participate in combat sport. Moreover, it suggested that the best model predicting BMD in different sites among adolescent combat sports athletes was the GSNDA. PMID:22980488

  16. The association between hip muscle cross-sectional area, muscle strength, and bone mineral density.

    PubMed

    Ahedi, Harbeer; Aitken, Dawn; Scott, David; Blizzard, Leigh; Cicuttini, Flavia; Jones, Graeme

    2014-07-01

    Studies examining the association between muscle size, muscle strength, and bone mineral density (BMD) are limited. Thus, this study aimed to describe the association between hip muscles cross-sectional area (CSA), muscle strength, and BMD of the hip and spine. A total of 321 subjects from the Tasmanian Older Adult Cohort study with a right hip MRI scan conducted between 2004 and 2006 were included. Hip muscles were measured on MR images by OsiriX (Geneva) software measuring maximum muscle CSA (cm(2)) of gluteus maximus, obturator externus, gemelli, quadratus femoris, piriformis, pectineus, sartorius, and iliopsoas. Dual-energy X-ray absorptiometry measured total hip, femoral neck, and spine BMD, and lower limb muscle strength was assessed by dynamometer. Muscle CSA of the hip flexors (pectineus, sartorius, and iliopsoas) and the hip rotators, obturator externus, and quadratus femoris were associated with both total hip and femoral neck BMD (all p < 0.05). The associations between CSA of pectineus and sartorius and BMD were stronger in women (p = 0.01-0.001) compared to men (p = 0.12-0.54). Additionally, only gemelli CSA was associated with BMD of the spine (p = 0.002). Gluteus maximus and piriformis showed no relationship with BMD. CSA of most hip muscles (except gluteus maximus and gemelli) were positively associated with leg strength (p = 0.02 to <0.001). Lastly, leg strength was weakly associated with BMD (p = 0.11-0.007). Hip muscle CSA, and to a lesser extent muscle strength, were positively associated with hip BMD. These data suggest that both higher muscle mass and strength may contribute to the maintenance of bone mass and prevention of disease progression in older adults. PMID:24829114

  17. Negative association between metabolic syndrome and bone mineral density in Koreans, especially in men.

    PubMed

    Kim, Ha Young; Choe, Jae Won; Kim, Hong Kyu; Bae, Sung Jin; Kim, Beom Jun; Lee, Seung Hun; Koh, Jung-Min; Han, Ki Ok; Park, Hyoung Moo; Kim, Ghi Su

    2010-05-01

    Cardiovascular disease and osteoporosis are thought to share common risk factors, and metabolic syndrome (MS) is composed of major risk factors for cardiovascular disease. This study was performed to investigate the relationships between specific MS components and bone mineral density (BMD). BMD was measured at the femoral neck of Korean men aged 40 years or more (n = 1,780) and postmenopausal women (n = 1,108) using dual-energy X-ray absorptiometry. We identified subjects with MS as defined by two criteria, International Diabetes Federation (IDF) and American Heart Association/National Heart, Lung, and Blood Institute (AHA/NHLBI). Body fat and lean mass were measured via bioimpedance analysis. The prevalence of MS was 19.8% and 7.7% in men and 20.8% and 11.6% in postmenopausal women according to the AHA/NHLBI definition and the IDF definition, respectively. After multivariate adjustment, femoral neck BMD was significantly lower in subjects with MS regardless of diagnostic criteria. BMD decreased as the number of MS components increased (P < 0.001 for trends in both sexes). Among MS components, waist circumference was the most important factor in this negative association. When multiple linear regression models were applied to each 5-kg weight stratum to test for a linear trend, waist circumference and fat mass were negatively associated with BMD and lean mass was positively associated with BMD in men but not in women. MS was associated with a lower BMD in Korean men and postmenopausal women, suggesting that visceral fat may lead to bone loss, especially in men. PMID:20354685

  18. Low bone mineral density and associated risk factors in HIV-infected patients

    PubMed Central

    Chiţu-Tișu, Cristina-Emilia; Barbu, Ecaterina-Constanţa; Lazăr, Mihai; Ion, Daniela Adriana; Bădărău, Ioana Anca

    2016-01-01

    Background Aging of persons with human immunodeficiency virus (HIV) resulted in high rates of osteopenia and osteoporosis. Multiple cohort studies have reported an increased prevalence of bone demineralization among HIV-infected individuals. The aim of this study was to evaluate bone mineral density (BMD) and risk factors for osteopenia/osteoporosis among HIV-positive patients attending the National Institute for Infectious Diseases “Prof.Dr. Matei Balș”, Bucharest, Romania. Methods We performed a cross-sectional study that enrolled 60 patients with HIV. The association between BMD and lifestyle habits (smoking), body mass index (BMI), nadir cluster of differentiation 4 (CD4) cell count, current CD4 cell count, HIV viral load and history of combination antiretroviral therapy (cART) were investigated. The BMD was measured at the lumbar spine, hips and total body using dual-energy X-ray absorptiometry (DEXA). Results In the present study, DEXA evaluation showed an overall prevalence of osteoporosis of 16.66% (ten patients) and a prevalence of osteopenia of 48.33% (29 patients). In men, low BMI and cigarette smoking showed significant association with the diagnosis of lumbar spine demineralization (p=0.034 and p=0.041, respectively). Duration of exposure to cART classes in relation to BMD was also evaluated. The use of non-nucleoside reverse-transcriptase inhibitors (NNRTIs) was associated with low lumbar spine BMD in all patients (p=0.015). Reduced BMD was significantly associated with protease inhibitors (PIs)-containing treatment (p=0.043) in women. Conclusion At lumbar spine DEXA, male gender was statistically associated with reduced BMD. At the left hip Ward’s area, decreased BMD T scores were significantly associated with aging. The reduced BMD was higher in patients receiving PI- or NNRTI-containing regimens. PMID:27482514

  19. Prolonged Practice of Swimming Is Negatively Related to Bone Mineral Density Gains in Adolescents

    PubMed Central

    Ribeiro-dos-Santos, Marcelo R.; Lynch, Kyle R.; Maillane-Vanegas, Santiago; Turi-Lynch, Bruna; Ito, Igor H.; Luiz-de-Marco, Rafael; Rodrigues-Junior, Mario A.; Fernandes, Rômulo A.

    2016-01-01

    Background The practice of swimming in "hypogravity" conditions has potential to decrease bone formation because it decreases the time engaged in weight-bearing activities usually observed in the daily activities of adolescents. Therefore, adolescents competing in national levels would be more exposed to these deleterious effects, because they are engaged in long routines of training during most part of the year. To analyze the effect of swimming on bone mineral density (BMD) gain among adolescents engaged in national level competitions during a 9-month period. Methods Fifty-five adolescents; the control group contained 29 adolescents and the swimming group was composed of 26 athletes. During the cohort study, BMD, body fat (BF) and fat free mass (FFM) were assessed using a dual-energy x-ray absorptiometry scanner. Body weight was measured with an electronic scale, and height was assessed using a stadiometer. Results During the follow-up, swimmers presented higher gains in FFM (Control 2.35 kg vs. Swimming 5.14 kg; large effect size [eta-squared (ES-r)=0.168]) and BMD-Spine (Swimming 0.087 g/cm2 vs. Control 0.049 g/cm2; large effect size [ES-r=0.167]) compared to control group. Male swimmers gained more FFM (Male 10.63% vs. Female 3.39%) and BMD-Spine (Male 8.47% vs. Female 4.32%) than females. Longer participation in swimming negatively affected gains in upper limbs among males (r=-0.438 [-0.693 to -0.085]), and in spine among females (r=-0.651 [-0.908 to -0.036]). Conclusions Over a 9-month follow-up, BMD and FFM gains were more evident in male swimmers, while longer engagement in swimming negatively affected BMD gains, independently of sex.

  20. Grip strength is a predictor of bone mineral density among adolescent combat sport athletes.

    PubMed

    Nasri, Raouf; Hassen Zrour, Saoussen; Rebai, Haithem; Fadhel Najjar, Mohamed; Neffeti, Fadoua; Bergaoui, Naceur; Mejdoub, Hafedh; Tabka, Zouhair

    2013-01-01

    The aim of this study was firstly to investigate the correlation between bone parameters and grip strength (GS) in hands, explosive legs power (ELP), and hormonal parameters; second, to identify the most determinant variables of bone mineral density (BMD) among adolescent combat sport athletes. Fifty combat sport athletes aged 17.1 ± 0.2 year were compared with 30 sedentary subjects matched for age, height, and pubertal stage. For all subjects, the BMD in deferent sites associated with anthropometric parameters were measured by dual-energy X-ray absorptiometry. The growth hormone (GH) and testosterone (TESTO) concentrations were tested. The GS in dominant (GSDA) and nondominant arms (GSNDA) and ELP were evaluated. All BMD measured were greater in athletes than in sedentary group (p<0.01). The GS and ELP showed higher values in athletes than in sedentary group (p<0.01). The BMD in all sites were correlated with weight, but without correlation with height. The GSNDA and ELP were significantly correlated with BMD of both spine and legs. The GH was correlated with the BMD of whole body and spine (p<0.05). The TESTO was only correlated with BMD of the arms (p<0.01). The best predictor of BMD measurements is GSNDA. This study has proved the osteogenic effect of combat sports practice, especially judo and karate kyokushinkai. Therefore, children and adolescent should be encouraged to participate in combat sport. Moreover, it suggested that the best model predicting BMD in different sites among adolescent combat sports athletes was the GSNDA.

  1. Prolonged Practice of Swimming Is Negatively Related to Bone Mineral Density Gains in Adolescents

    PubMed Central

    Ribeiro-dos-Santos, Marcelo R.; Lynch, Kyle R.; Maillane-Vanegas, Santiago; Turi-Lynch, Bruna; Ito, Igor H.; Luiz-de-Marco, Rafael; Rodrigues-Junior, Mario A.; Fernandes, Rômulo A.

    2016-01-01

    Background The practice of swimming in "hypogravity" conditions has potential to decrease bone formation because it decreases the time engaged in weight-bearing activities usually observed in the daily activities of adolescents. Therefore, adolescents competing in national levels would be more exposed to these deleterious effects, because they are engaged in long routines of training during most part of the year. To analyze the effect of swimming on bone mineral density (BMD) gain among adolescents engaged in national level competitions during a 9-month period. Methods Fifty-five adolescents; the control group contained 29 adolescents and the swimming group was composed of 26 athletes. During the cohort study, BMD, body fat (BF) and fat free mass (FFM) were assessed using a dual-energy x-ray absorptiometry scanner. Body weight was measured with an electronic scale, and height was assessed using a stadiometer. Results During the follow-up, swimmers presented higher gains in FFM (Control 2.35 kg vs. Swimming 5.14 kg; large effect size [eta-squared (ES-r)=0.168]) and BMD-Spine (Swimming 0.087 g/cm2 vs. Control 0.049 g/cm2; large effect size [ES-r=0.167]) compared to control group. Male swimmers gained more FFM (Male 10.63% vs. Female 3.39%) and BMD-Spine (Male 8.47% vs. Female 4.32%) than females. Longer participation in swimming negatively affected gains in upper limbs among males (r=-0.438 [-0.693 to -0.085]), and in spine among females (r=-0.651 [-0.908 to -0.036]). Conclusions Over a 9-month follow-up, BMD and FFM gains were more evident in male swimmers, while longer engagement in swimming negatively affected BMD gains, independently of sex. PMID:27622179

  2. Precision errors, least significant change, and monitoring time interval in pediatric measurements of bone mineral density, body composition, and mechanostat parameters by GE lunar prodigy.

    PubMed

    Jaworski, Maciej; Pludowski, Pawel

    2013-01-01

    Dual-energy X-ray absorptiometry (DXA) method is widely used in pediatrics in the study of bone density and body composition. However, there is a limit to how precise DXA can estimate bone and body composition measures in children. The study was aimed to (1) evaluate precision errors for bone mineral density, bone mass and bone area, body composition, and mechanostat parameters, (2) assess the relationships between precision errors and anthropometric parameters, and (3) calculate a "least significant change" and "monitoring time interval" values for DXA measures in children of wide age range (5-18yr) using GE Lunar Prodigy densitometer. It is observed that absolute precision error values were different for thin and standard technical modes of DXA measures and depended on age, body weight, and height. In contrast, relative precision error values expressed in percentages were similar for thin and standard modes (except total body bone mineral density [TBBMD]) and were not related to anthropometric variables (except TBBMD). Concluding, due to stability of percentage coefficient of variation values in wide range of age, the use of precision error expressed in percentages, instead of absolute error, appeared as convenient in pediatric population.

  3. The pleiotropic effects of paricalcitol: Beyond bone-mineral metabolism.

    PubMed

    Egido, Jesús; Martínez-Castelao, Alberto; Bover, Jordi; Praga, Manuel; Torregrosa, José Vicente; Fernández-Giráldez, Elvira; Solozábal, Carlos

    2016-01-01

    Secondary hyperparathyroidism (SHPT) is a common complication in patients with chronic kidney disease (CKD) that is characterised by elevated parathyroid hormone (PTH) levels and a series of bone-mineral metabolism anomalies. In patients with SHPT, treatment with paricalcitol, a selective vitamin D receptor activator, has been shown to reduce PTH levels with minimal serum calcium and phosphorus variations. The classic effect of paricalcitol is that of a mediator in mineral and bone homeostasis. However, recent studies have suggested that the benefits of treatment with paricalcitol go beyond PTH reduction and, for instance, it has a positive effect on cardiovascular disease and survival. The objective of this study is to review the most significant studies on the so-called pleiotropic effects of paricalcitol treatment in patients with CKD. PMID:26705959

  4. The pleiotropic effects of paricalcitol: Beyond bone-mineral metabolism.

    PubMed

    Egido, Jesús; Martínez-Castelao, Alberto; Bover, Jordi; Praga, Manuel; Torregrosa, José Vicente; Fernández-Giráldez, Elvira; Solozábal, Carlos

    2016-01-01

    Secondary hyperparathyroidism (SHPT) is a common complication in patients with chronic kidney disease (CKD) that is characterised by elevated parathyroid hormone (PTH) levels and a series of bone-mineral metabolism anomalies. In patients with SHPT, treatment with paricalcitol, a selective vitamin D receptor activator, has been shown to reduce PTH levels with minimal serum calcium and phosphorus variations. The classic effect of paricalcitol is that of a mediator in mineral and bone homeostasis. However, recent studies have suggested that the benefits of treatment with paricalcitol go beyond PTH reduction and, for instance, it has a positive effect on cardiovascular disease and survival. The objective of this study is to review the most significant studies on the so-called pleiotropic effects of paricalcitol treatment in patients with CKD.

  5. Bone mineral alterations and Mg content in aging.

    PubMed

    Mongiorgi, R; Gnudi, S; Moroni, A; Bertocchi, G; Galliani, I; Benfenati, L

    1990-07-01

    The authors propose to determine whether the quantity of bone mass reduction linked to aging is accompanied by qualitative modifications of the mineral structure. To this end, 18 samples of cancellous bone from the femoral heads of two groups of patients (Groups A & B), were examined. Group A was made up of 8 old osteopenic patients suffering from fracture of the femur neck (age 62-84). Group B consisted of 10 young non-osteopenic subjects (age 34-53). Through chemical analysis a statistically significant percentage increase in Mg++ was noted in Group A and, by X-Ray diffraction, significant presence of beta-TCP. Mineral structure alterations occur in the process of aging of the skeletal tissue.

  6. Correlation between bone mineral density and serum trace elements in response to supervised aerobic training in older adults

    PubMed Central

    Alghadir, Ahmad H; Gabr, Sami A; Al-Eisa, Einas S; Alghadir, Muaz H

    2016-01-01

    Background Life style and physical activity play a pivotal role in prevention and treatment of osteoporosis. The mechanism for better bone metabolism and improvement of physical disorders is not clear yet. Trace minerals such as Ca, Mn, Cu, and Zn are essential precursors for most vital biological process, especially those of bone health. Objective The main target of this study was evaluating the effective role of supervised aerobic exercise for 1 hour/day, 3 days/week for 12 weeks in the functions of trace elements in bone health through measuring bone mineral density (BMD), osteoporosis (T-score), bone markers, and trace element concentrations in healthy subjects aged 30–60 years with age average of 41.2±4.9. Methods A total of 100 healthy subjects (47 males, 53 females; age range 30–60 years) were recruited for this study. Based on dual-energy x-ray absorptiometry (DEXA) scan analysis, the participants were classified into three groups: normal (n=30), osteopenic (n=40), and osteoporotic (n=30). Following, 12 weeks of moderate aerobic exercise, bone-specific alkaline phosphatase (BAP), BMD, T-score, and trace elements such as Ca, Mn, Cu, and Zn were assessed at baseline and post-intervention. Results Significant improvement in serum BAP level, T-score, and BMD were observed in all participants following 12 weeks of moderate exercise. Participants with osteopenia and osteoporosis showed significant increase in serum Ca and Mn, along with decrease in serum Cu and Zn levels following 12 weeks of aerobic training. In control group, the improvements in serum trace elements and body mass index were significantly linked with the enhancement in the levels of BAP, BMD hip, and BMD spine. These results supported the preventive effects of moderate exercise in healthy subjects against osteoporosis. In both sexes, the changes in serum trace elements significantly correlated (P<0.05) with the improvement in BAP, BMD hip, BMD spine, and body mass index in all groups

  7. Update on Mineral and Bone Disorders in Chronic Kidney Disease.

    PubMed

    Foster, Jonathan D

    2016-11-01

    The inappropriate phosphorus retention observed in chronic kidney disease is central to the pathophysiology of mineral and bone disorders observed in these patients. Subsequent derangements in serum fibroblast growth factor 23, parathyroid hormone, and calcitriol concentrations play contributory roles. Therapeutic intervention involves dietary phosphorus restriction and intestinal phosphate binders in order to correct phosphorus retention and maintain normocalcemia. Additional therapies may be considered to normalize serum fibroblast growth factor 23 and parathyroid hormone. PMID:27436330

  8. Relationships between bone protein and mineral in developing porcine long bone and calvaria.

    PubMed

    Sodek, K L; Tupy, J H; Sodek, J; Grynpas, M D

    2000-02-01

    Several proteins in the bone matrix have been implicated in the regulation of mineral crystal formation and growth. To investigate the relationships between these proteins and the mineral phase at various stages of mineral maturation, fetal porcine calvariae and long bones were fragmented and the particles (20 microm) separated by density gradient sedimentation into fractions of increasing density (1.8 to >2.2 g/cm3). Samples from each fraction were analyzed by X-ray diffraction to obtain the average crystal size/strain and chemical composition. Other samples were sequentially extracted, first with 4.0 mol/L guanidium hydrochloride (GuHCl) (G1), then with 0.5 mol/L ethylene-diamine tetraacetic acid (EDTA) (E), and again with 4.0 mol/L Gu-HCI (G2), for analysis of proteins in different tissue compartments. Based on the mineral density distribution and crystal size, fetal porcine bone protein content was determined for tissue residue and each extract and the protein composition analyzed by sodium dodecyl-polyacrylamide gel electrophoresis (SDS-PAGE). Although the insoluble organic matrix decreased with mineral density the collagen and protein content remained fairly constant, representing approximately 10% of the tissue weight, except in the highest density fraction. Whereas the total extractable protein, representing predominantly noncollagenous proteins, did not show density-related differences, differences were observed for individual proteins on SDS-PAGE. Consistent with their presence in osteoid, the content of bone sialoprotein (BSP), tyrosine-rich acidic matrix protein (TRAMP), and a series of small proteins with cell attachment properties in the G1 extract decreased with mineral density, whereas TRAMP and BSP were increased in G2 extracts. Mineral-associated proteins, including alpha2HS-glycoprotein, BSP, osteopontin (OPN), and osteocalcin, increased with mineral density, whereas secreted protein acidic and rich in cysteine (SPARC)/osteonectin, and some minor

  9. The GH secretagogues ipamorelin and GH-releasing peptide-6 increase bone mineral content in adult female rats.

    PubMed

    Svensson, J; Lall, S; Dickson, S L; Bengtsson, B A; Rømer, J; Ahnfelt-Rønne, I; Ohlsson, C; Jansson, J O

    2000-06-01

    Growth hormone (GH) is of importance for normal bone remodelling. A recent clinical study demonstrated that MK-677, a member of a class of GH secretagogues (GHSs), increases serum concentrations of biochemical markers of bone formation and bone resorption. The aim of the present study was to investigate whether the GHSs, ipamorelin (IPA) and GH-releasing peptide-6 (GHRP-6), increase bone mineral content (BMC) in young adult female rats. Thirteen-week-old female Sprague-Dawley rats were given IPA (0.5 mg/kg per day; n=7), GHRP-6 (0.5 mg/kg per day; n=8), GH (3.5 mg/kg per day; n=7), or vehicle administered continuously s.c. via osmotic minipumps for 12 weeks. The animals were followed in vivo by dual X-ray absorptiometry (DXA) measurements every 4th week. After the animals were killed, femurs were analysed in vitro by mid-diaphyseal peripheral quantitative computed tomography (pQCT) scans. After this, excised femurs and vertebrae L6 were analysed by the use of Archimedes' principle and by determinations of ash weights. All treatments increased body weight and total tibial and vertebral BMC measured by DXA in vivo compared with vehicle-treated controls. However, total BMC corrected for the increase in body weight (total BMC:body weight ratio) was unaffected. Tibial area bone mineral density (BMD, BMC/area) was increased, but total and vertebral area BMDs were unchanged. The pQCT measurements in vitro revealed that the increase in the cortical BMC was due to an increased cross-sectional bone area, whereas the cortical volumetric BMD was unchanged. Femur and vertebra L6 volumes were increased but no effect was seen on the volumetric BMDs as measured by Archimedes' principle. Ash weight was increased by all treatments, but the mineral concentration was unchanged. We conclude that treatment of adult female rats with the GHSs ipamorelin and GHRP-6 increases BMC as measured by DXA in vivo. The results of in vitro measurements using pQCT and Archimedes' principle, in

  10. Bone and Mineral Metabolism in Patients with Primary Aldosteronism

    PubMed Central

    Petramala, Luigi; Zinnamosca, Laura; Settevendemmie, Amina; Marinelli, Cristiano; Nardi, Matteo; Concistrè, Antonio; Corpaci, Francesco; Tonnarini, Gianfranco; De Toma, Giorgio; Letizia, Claudio

    2014-01-01

    Primary aldosteronism represents major cause of secondary hypertension, strongly associated with high cardiovascular morbidity and mortality. Aldosterone excess may influence mineral homeostasis, through higher urinary calcium excretion inducing secondary increase of parathyroid hormone. Recently, in a cohort of PA patients a significant increase of primary hyperparathyroidism was found, suggesting a bidirectional functional link between the adrenal and parathyroid glands. The aim of this study was to evaluate the impact of aldosterone excess on mineral metabolism and bone mass density. In 73 PA patients we evaluated anthropometric and biochemical parameters, renin-angiotensin-aldosterone system, calcium-phosphorus metabolism, and bone mineral density; control groups were 73 essential hypertension (EH) subjects and 40 healthy subjects. Compared to HS and EH, PA subjects had significantly lower serum calcium levels and higher urinary calcium excretion. Moreover, PA patients showed higher plasma PTH, lower serum 25(OH)-vitamin D levels, higher prevalence of vitamin D deficiency (65% versus 25% and 25%; P < 0.001), and higher prevalence of osteopenia/osteoporosis (38.5 and 10.5%) than EH (28% and 4%) and NS (25% and 5%), respectively. This study supports the hypothesis that bone loss and fracture risk in PA patients are potentially the result of aldosterone mediated hypercalciuria and the consecutive secondary hyperparathyroidism. PMID:24864141

  11. Side-to-side comparisons of bone mineral density in upper and lower limbs of collegiate athletes.

    PubMed

    McClanahan, Barbara S; Harmon-Clayton, Karen; Ward, Kenneth D; Klesges, Robert C; Vukadinovich, Christopher M; Cantler, Edwin D

    2002-11-01

    This cross-sectional study investigated the effects of participation in various sports on side-to-side (contralateral) differences in bone mineral density (BMD) of the upper and lower limbs. The BMD of the arms and legs was measured using dual energy X-ray absorptiometry. The subjects were 184 collegiate athletes, both men and women, who participated in NCAA Division I-A baseball, basketball, football, golf, soccer, tennis, cross-country, indoor/outdoor track, and volleyball. Results revealed greater BMD of the right arms compared with the left arms for all teams, with the most pronounced differences observed in men's and women's tennis and men's baseball. Differences in the lower limbs were less common. No significant differences in lower limb BMD were found in the women. In men, differences in lower limb BMD were found in the football and tennis teams, with the nondominant leg having greater bone mass. Recognition of contralateral differences in bone density may be of particular interest to strength and conditioning professionals as they consider the need to include bilateral and unilateral training programs in an effort to maximize performance and minimize stress-related injuries.

  12. Mineralized polymer composites as biogenic bone substitute material

    NASA Astrophysics Data System (ADS)

    Shah, Rushita; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2015-05-01

    Mineralized polymer composites (MPC) are recognized as potential fillers of bone defects. Though bioceramics exhibits quite a good bone-bonding and vascularization, it is considered to be too stiff and brittle for using alone. Thus, the use of polymer scaffold instead of bioceramics has several advantages including combining the osteoconductivity and bone-bonding potential of the inorganic phase with the porosity and interconnectivity of the three-dimensional construction. Aiming the advantages of ceramic-polymer composite scaffolds, the calcium carbonate (CaCO3) based biomineralized scaffold was prepared, where the PVP-CMC hydrogel was used as an extracellular matrix. This paper is reported about the morphology, swelling trend (in physiological solution) and viscoelastic behavior of (90 min mineralized) MPC. The dry MPC are off-white, coarse in texture, comparatively less flexible than the original PVP-CMC based hydrogel film, and the deposition of granular structures on the surface of the hydrogel film confirms about the development of biomineralized scaffold/polymer composites. Irrespective of thickness, the dry MPC shows higher values of swelling ratio within 30 min, which varies between 200-250 approximately. The dynamic viscoelastic nature of freshly prepared MPC was investigated applying 1% and 10% strain. At higher strain the viscoelastic moduli (G' and G") show significant change, and the nature of MPC turns from elastic to viscous. Based on the observed basic properties, the MPC (calcite based polymer composites) can be recommended for the treatment of adyanamic bone disorder.

  13. Implications of combined ovariectomy and glucocorticoid (dexamethasone) treatment on mineral, microarchitectural, biomechanical and matrix properties of rat bone.

    PubMed

    Govindarajan, Parameswari; Khassawna, Thaqif; Kampschulte, Marian; Böcker, Wolfgang; Huerter, Britta; Dürselen, Lutz; Faulenbach, Miriam; Heiss, Christian

    2013-12-01

    Osteoporosis is one of the deleterious side effects of long-term glucocorticoid therapy. Since the condition is particularly aggressive in postmenopausal women who are on steroid therapy, in this study we have attempted to analyse the combined effect of glucocorticoid (dexamethasone) treatment and cessation of oestrogen on rat bone. The dual aim was to generate osteoporotic bone status in a short time scale and to characterise the combination of glucocorticoid-postmenopausal osteoporotic conditions. Sprague Dawley rats (N = 42) were grouped randomly into three groups: untreated control, sham-operated and ovariectomized-steroid (OVX-Steroid) rats. Control animals were euthanized with no treatment [Month 0 (M0)], while sham and OVX-Steroid rats were monitored up to 1 month (M1) and 3 months (M3) post laparotomy/post OVX-Steroid treatment. Histology, dual-energy X-ray absorptiometry (DXA), micro-computed tomography (micro-CT), and biomechanical and mRNA expression analysis of collagenous, non-collagenous matrix proteins and osteoclast markers were examined. The study indicated enhanced osteoclastogenesis and significantly lower bone mineral density (BMD) in the OVX-Steroid rats with Z-scores below -2.5, reduced torsional strength, reduced bone volume (BV/TV%), significantly enhanced trabecular separation (Tb.S), and less trabecular number (Tb.N) compared with sham rats. Osteoclast markers, cathepsin K and MMP 9 were upregulated along with Col1α1 and biglycan with no significant expression variation in fibronectin, MMP 14, LRP-5, Car II and TNC. These results show higher bone turnover with enhanced bone resorption accompanied with reduced torsional strength in OVX-Steroid rats; and these changes were attained within a short timeframe. This could be a useful model which mimics human postmenopausal osteoporosis that is associated with steroid therapy and could prove of value both in disease diagnosis and for testing generating and testing biological agents which could

  14. Serum bone gla protein (BGP) and other markers of bone mineral metabolism in postmenopausal osteoporosis.

    PubMed

    Ismail, F; Epstein, S; Pacifici, R; Droke, D; Thomas, S B; Avioli, L V

    1986-10-01

    Bone gla protein, the vitamin K-dependent protein synthesized by osteoblasts and measured in blood by radioimmunoassay, has been used as an index of the rate of bone turnover. The relationship of bone gla protein with other markers of bone mineral metabolism was determined in 31 untreated postmenopausal women with the osteoporotic syndrome. In addition to serum osteocalcin (BGP) we measured parathyroid hormone (PTH) (carboxyl and mid-molecule fragments), 25(OH)D, alkaline phosphatase, estradiol (E2), estrone (E1), dietary calcium intake, 24 hour urinary calcium excretion, and bone mineral density by CT scan of the lumbar vertebrae. Significant osteopenia was present on CT in untreated postmenopausal osteoporotic women (bone density in 18 out of 31 was below the critical value of 60 mg/cm3). Serum BGP correlated positively with CT scan (r + 0.647, P less than 0.001). CT and age were negatively correlated (r - 0.661, P less than 0.001) while CT and E2 showed a positive correlation (r + 0.554, P less than 0.01). Unexpectedly, BGP and age revealed a significant negative correlation (r - 0.421, P less than 0.05). These findings suggest a state of low bone turnover in this group with untreated postmenopausal osteoporosis.

  15. Evaluation of bone mineral density, bone metabolism, osteoprotegerin and receptor activator of the NFκB ligand serum levels during treatment with infliximab in patients with rheumatoid arthritis

    PubMed Central

    Vis, M; Havaardsholm, E A; Haugeberg, G; Uhlig, T; Voskuyl, A E; van de Stadt, R J; Dijkmans, B A C; Woolf, A D; Kvien, T K; Lems, W F

    2006-01-01

    Objectives To examine whether treatment with anti‐tumour necrosis factor (TNF) α prevents loss of bone mineral density (BMD) at the spine and hip (generalised) and in the hands (local) of patients with rheumatoid arthritis, and to study the changes in markers of bone metabolism, including receptor activator of the NFκB ligand (RANKL) and osteoprotegerin (OPG), during anti‐TNF treatment. Patients and methods 102 patients with active rheumatoid arthritis, who were treated with infliximab during 1 year, were included in this open cohort study. The BMD of the spine and hip (dual x ray absorptiometry ) and hands dual x ray radiogrammetry was measured before the start of treatment and after 1 year. Changes in osteocalcin formation, β‐isomerised carboxy terminal telopeptide of type 1 collagen (β‐CTx, resorption), RANKL and OPG were determined at 0, 14, 30 and 46 weeks. Results The BMD of the spine and hip was unchanged during treatment with infliximab, whereas BMD of the hand decreased significantly by 0.8% (p<0.01). The BMD of the hip in patients with a good European League Against Rheumatism response showed a favourable change compared with patients not achieving such a response. Serum β‐CTx and RANKL were both considerably decreased compared with baseline at all time points. The decrease in β‐CTx was associated with the decrease in Disease Activity Score of 28 joints and C reactive protein during the 0–14 weeks interval. Conclusion In patients with rheumatoid arthritis treated with infliximab, spine and hip bone loss is arrested, whereas metacarpal cortical hand bone loss is not stopped. The outcome of the study also supports a relationship between clinical response, in terms of reduced inflammatory activity, and changes in bone loss of the spine, hip and hands. PMID:16606653

  16. Distribution of fat, non-osseous lean and bone mineral mass in international Rugby Union and Rugby Sevens players.

    PubMed

    Higham, D G; Pyne, D B; Anson, J M; Dziedzic, C E; Slater, G J

    2014-06-01

    Differences in the body composition of international Rugby Union and Rugby Sevens players, and between players of different positions are poorly understood. The purpose of this study was to examine differences in the quantity and regional distribution of fat, non-osseous lean and bone mineral mass between playing units in Rugby Union and Rugby Sevens. Male Rugby Union (n=21 forwards, 17 backs) and Rugby Sevens (n=11 forwards, 16 backs) players from the Australian national squads were measured using dual-energy X-ray absorptiometry. The digital image of each player was partitioned into anatomical regions including the arms, legs, trunk, and android and gynoid regions. Compared with backs, forwards in each squad were heavier and exhibited higher absolute regional fat (Union 43-67%; ±~17%, range of % differences; ±~95% confidence limits (CL); Sevens 20-26%; ±~29%), non-osseous lean (Union 14-22%; ±~5.8%; Sevens 6.9-8.4%; ±~6.6%) and bone mineral (Union 12-26%; ±~7.2%; Sevens 5.0-11%; ±~7.2%) mass. When tissue mass was expressed relative to regional mass, differences between Rugby Sevens forwards and backs were mostly unclear. Rugby Union forwards had higher relative fat mass (1.7-4.7%; ±~1.9%, range of differences; ±~95% CL) and lower relative non-osseous lean mass (-4.2 to -1.8%; ±~1.8%) than backs in all body regions. Competing in Rugby Union or Rugby Sevens characterized the distribution of fat and non-osseous lean mass to a greater extent than a player's positional group, whereas the distribution of bone mineral mass was associated more with a player's position. Differences in the quantity and distribution of tissues appear to be related to positional roles and specific demands of competition in Rugby Union and Rugby Sevens.

  17. Decreased bone tissue mineralization can partly explain subchondral sclerosis observed in osteoarthritis.

    PubMed

    Cox, L G E; van Donkelaar, C C; van Rietbergen, B; Emans, P J; Ito, K

    2012-05-01

    For many years, pharmaceutical therapies for osteoarthritis (OA) were focused on cartilage. However, it has been theorized that bone changes such as increased bone volume fraction and decreased bone matrix mineralization may play an important role in the initiation and pathogenesis of OA as well. The mechanisms behind the bone changes are subject of debate, and a better understanding may help in the development of bone-targeting OA therapies. In the literature, the increase in bone volume fraction has been hypothesized to result from mechanoregulated bone adaptation in response to decreased mineralization. Furthermore, both changes in bone volume fraction and mineralization have been reported to be highest close to the cartilage, and bone volume fraction has been reported to be correlated with cartilage degeneration. These data indicate that cartilage degeneration, bone volume fraction, and bone matrix mineralization may be related in OA. In the current study, we aimed to investigate the relationships between cartilage degeneration, bone matrix mineralization and bone volume fraction at a local level. With microCT, we determined bone matrix mineralization and bone volume fraction as a function of distance from the cartilage in osteochondral plugs from human OA tibia plateaus with varying degrees of cartilage degeneration. In addition, we evaluated whether mechanoregulated bone adaptation in response to decreased bone matrix mineralization may be responsible for the increase in bone volume fraction observed in OA. For this purpose, we used the experimentally obtained mineralization data as input for bone adaptation simulations. We simulated the effect of mechanoregulated bone adaptation in response to different degrees of mineralization, and compared the simulation results to the experimental data. We found that local changes in subchondral bone mineralization and bone volume fraction only occurred underneath severely degenerated cartilage, indicating that bone

  18. Early loss of bone mineral density is correlated with a gain of fat mass in patients starting a protease inhibitor containing regimen: the prospective Lipotrip study

    PubMed Central

    2013-01-01

    Background HIV-infected patients starting antiretroviral treatment (ART) experience deep and early disorders in fat and bone metabolism, leading to concomitant changes in fat mass and bone mineral density. Methods We conducted a prospective study in treatment-naive HIV-infected patients randomized to receive two nucleoside reverse transcriptase inhibitors in combination with either a protease inhibitor (PI) or a non-nucleosidic reverse transcriptase inhibitor (NNRTI), to evaluate early changes in body composition, bone mineral density and metabolic markers as differentially induced by antiretroviral therapies. We measured changes in markers of carbohydrate, of fat and bone metabolism, and, using dual-emission X-ray absorptiometry (DXA), body composition and bone mineral density (BMD). Complete data on changes between baseline and after 21 months treatment were available for 35 patients (16 in the PI group and 19 in the NNRTI group). Results A significant gain in BMI and in total and lower limb fat mass was recorded only in patients receiving PI. A loss of lumbar BMD was observed in both groups, being higher with PI. Plasma markers of bone metabolism (alkaline phosphatase, osteocalcin, collagen crosslaps) and levels of parathormone and of 1,25diOH-vitamin D3 significantly increased in both groups, concomitant with a decline in 25OH-vitamin D3. Lipids and glucose levels increased in both groups but rise in triglyceride was more pronounced with PI. A correlation between loss of BMD and gain of fat mass is observed in patients starting PI. Conclusions We evidenced an early effect of ART on lipid and bone metabolisms. PI lead to a significant gain in fat mass correlated with a sharp drop in BMD but active bone remodelling is evident with all antiretroviral treatments, associated with low vitamin D levels and hyperparathyroidism. In parallel, signs of metabolic restoration are evident. However, early increases in lean and fat mass, triglycerides, waist circumference and

  19. Bone Mineral Density in Healthy Female Adolescents According to Age, Bone Age and Pubertal Breast Stage

    PubMed Central

    Moretto, M.R; Silva, C.C; Kurokawa, C.S; Fortes, C.M; Capela, R.C; Teixeira, A.S; Dalmas, J.C; Goldberg, T.B

    2011-01-01

    Objectives: This study was designed to evaluate bone mineral density (BMD) in healthy female Brazilian adolescents in five groups looking at chronological age, bone age, and pubertal breast stage, and determining BMD behavior for each classification. Methods: Seventy-two healthy female adolescents aged between 10 to 20 incomplete years were divided into five groups and evaluated for calcium intake, weight, height, body mass index (BMI), pubertal breast stage, bone age, and BMD. Bone mass was measured by bone densitometry (DXA) in lumbar spine and proximal femur regions, and the total body. BMI was estimated by Quetelet index. Breast development was assessed by Tanner’s criteria and skeletal maturity by bone age. BMD comparison according to chronologic and bone age, and breast development were analyzed by Anova, with Scheffe’s test used to find significant differences between groups at P≤0.05. Results: BMD (g·cm-2) increased in all studied regions as age advanced, indicating differences from the ages of 13 to 14 years. This group differed to the 10 and 11 to 12 years old groups for lumbar spine BMD (0.865±0.127 vs 0.672±0.082 and 0.689±0.083, respectively) and in girls at pubertal development stage B3, lumbar spine BMD differed from B5 (0.709±0.073 vs 0.936±0.130) and whole body BMD differed from B4 and B5 (0.867±0.056 vs 0.977±0.086 and 1.040±0.080, respectively). Conclusion: Bone mineralization increased in the B3 breast maturity group, and the critical years for bone mass acquisition were between 13 and 14 years of age for all sites evaluated by densitometry. PMID:21966336

  20. Lateral Packing of Mineral Crystals in Bone Collagen

    SciTech Connect

    Burger, C.; Zhou, H; Wang, H; Sics, I; Hsiao, B; Chu, B; Graham, L; Glimcher, M

    2008-01-01

    Combined small-angle x-ray scattering and transmission electron microscopy studies of intramuscular fish bone (shad and herring) indicate that the lateral packing of nanoscale calcium-phosphate crystals in collagen fibrils can be represented by irregular stacks of platelet-shaped crystals, intercalated with organic layers of collagen molecules. The scattering intensity distribution in this system can be described by a modified Zernike-Prins model, taking preferred orientation effects into account. Using the model, the diffuse fan-shaped small-angle x-ray scattering intensity profile, dominating the equatorial region of the scattering pattern, could be quantitatively analyzed as a function of the degree of mineralization. The mineral platelets were found to be very thin (1.5nm{approx}2.0nm), having a narrow thickness distribution. The thickness of the organic layers between adjacent mineral platelets within a stack is more broadly distributed with the average value varying from 6nm to 10nm, depending on the extent of mineralization. The two-dimensional analytical scheme also leads to quantitative information about the preferred orientation of mineral stacks and the average height of crystals along the crystallographic c axis.

  1. Preservation of bone structure and function by Lithothamnion sp. derived minerals.

    PubMed

    Aslam, Muhammad Nadeem; Bergin, Ingrid; Jepsen, Karl; Kreider, Jaclynn M; Graf, Kristin H; Naik, Madhav; Goldstein, Steven A; Varani, James

    2013-12-01

    Progressive bone mineral loss and increasing bone fragility are hallmarks of osteoporosis. A combination of minerals isolated from the red marine algae, Lithothamnion sp. was examined for ability to inhibit bone mineral loss in female mice maintained on either a standard rodent chow (control) diet or a high-fat western diet (HFWD) for 5, 12, and 18 months. At each time point, femora were subjected to μ-CT analysis and biomechanical testing. A subset of caudal vertebrae was also analyzed. Following this, individual elements were assessed in bones. Serum levels of the 5b isoform of tartrate-resistant acid phosphatase (TRAP) and procollagen type I propeptide (P1NP) were also measured. Trabecular bone loss occurred in both diets (evident as early as 5 months). Cortical bone increased through month 5 and then declined. Cortical bone loss was primarily in mice on the HFWD. Inclusion of the minerals in the diet reduced bone mineral loss in both diets and improved bone strength. Bone mineral density was also enhanced by these minerals. Of several cationic minerals known to be important to bone health, only strontium was significantly increased in bone tissue from animals fed the mineral diets, but the increase was large (5-10 fold). Serum levels of TRAP were consistently higher in mice receiving the minerals, but levels of P1NP were not. These data suggest that trace minerals derived from marine red algae may be used to prevent progressive bone mineral loss in conjunction with calcium. Mineral supplementation could find use as part of an osteoporosis-prevention strategy. PMID:24096551

  2. Preservation of bone structure and function by Lithothamnion sp. derived minerals.

    PubMed

    Aslam, Muhammad Nadeem; Bergin, Ingrid; Jepsen, Karl; Kreider, Jaclynn M; Graf, Kristin H; Naik, Madhav; Goldstein, Steven A; Varani, James

    2013-12-01

    Progressive bone mineral loss and increasing bone fragility are hallmarks of osteoporosis. A combination of minerals isolated from the red marine algae, Lithothamnion sp. was examined for ability to inhibit bone mineral loss in female mice maintained on either a standard rodent chow (control) diet or a high-fat western diet (HFWD) for 5, 12, and 18 months. At each time point, femora were subjected to μ-CT analysis and biomechanical testing. A subset of caudal vertebrae was also analyzed. Following this, individual elements were assessed in bones. Serum levels of the 5b isoform of tartrate-resistant acid phosphatase (TRAP) and procollagen type I propeptide (P1NP) were also measured. Trabecular bone loss occurred in both diets (evident as early as 5 months). Cortical bone increased through month 5 and then declined. Cortical bone loss was primarily in mice on the HFWD. Inclusion of the minerals in the diet reduced bone mineral loss in both diets and improved bone strength. Bone mineral density was also enhanced by these minerals. Of several cationic minerals known to be important to bone health, only strontium was significantly increased in bone tissue from animals fed the mineral diets, but the increase was large (5-10 fold). Serum levels of TRAP were consistently higher in mice receiving the minerals, but levels of P1NP were not. These data suggest that trace minerals derived from marine red algae may be used to prevent progressive bone mineral loss in conjunction with calcium. Mineral supplementation could find use as part of an osteoporosis-prevention strategy.

  3. Changes in bone mineral density in response to 24 weeks of resistance training in college-age men and women.

    PubMed

    Almstedt, Hawley C; Canepa, Jacqueline A; Ramirez, David A; Shoepe, Todd C

    2011-04-01

    Osteoporosis is a chronic disease of major public health concern. Characterized by low bone mass and increasing risk for fracture, osteoporosis occurs to a greater extent in women. Resistance training is a mode of exercise that can be used to build peak bone mass during youth, thereby preventing osteoporosis later in life. Our aim was to evaluate the effectiveness of a resistance training protocol designed to apply loads to the hip and spine in men and women. We recruited recreationally active men (n = 12) and women (n = 12), ages of 18-23. An additional 10 participants (5 men, 5 women) served as controls. Volunteers completed questionnaires to assess health history, physical activity, dietary intake, and menstrual history. The training program was performed for 24 weeks, on 3 nonconsecutive days per week, including exercises for the upper, lower, and core musculature, marked by an undulating periodization varying between 67 and 95% of 1 repetition maximum (1RM) on the multijoint exercises of bench press, squats, and deadlifts. Dual energy X-ray absorptiometry (Hologic Explorer, Waltham, MA, USA) was used to assess bone mineral density (BMD, g · cm(-2)). A 2-tailed analysis of covariance, controlling for body mass index, revealed that in comparison to women, men had significantly greater increases in BMD at the lateral spine and femoral neck. Male exercisers were found to increase BMD by 2.7-7.7%, whereas percent change in women ranged from -0.8 to 1.5%, depending on the bone site. Both male and female controls demonstrated about 1% change at any bone site. Results indicate that 24 weeks of resistance training, including squat and deadlift exercises, is effective in increasing BMD in young healthy men. Similar benefits were not derived by women who followed the same protocol. PMID:20647940

  4. Effects of electromagnetic radiation exposure on bone mineral density, thyroid, and oxidative stress index in electrical workers

    PubMed Central

    Kunt, Halil; Şentürk, İhsan; Gönül, Yücel; Korkmaz, Mehmet; Ahsen, Ahmet; Hazman, Ömer; Bal, Ahmet; Genç, Abdurrahman; Songur, Ahmet

    2016-01-01

    Background In the literature, some articles report that the incidence of numerous diseases increases among the individuals who live around high-voltage electric transmission lines (HVETL) or are exposed vocationally. However, it was not investigated whether HVETL affect bone metabolism, oxidative stress, and the prevalence of thyroid nodule. Methods Dual-energy X-ray absorptiometry (DEXA) bone density measurements, serum free triiodothyronine (FT3), free thyroxine (FT4), RANK, RANKL, osteoprotegerin (OPG), alkaline phosphatase (ALP), phosphor, total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels were analyzed to investigate this effect. Results Bone mineral density levels of L1–L4 vertebrae and femur were observed significantly lower in the electrical workers. ALP, phosphor, RANK, RANKL, TOS, OSI, and anteroposterior diameter of the left thyroid lobe levels were significantly higher, and OPG, TAS, and FT4 levels were detected significantly lower in the study group when compared with the control group. Conclusion Consequently, it was observed that the balance between construction and destruction in the bone metabolism of the electrical workers who were employed in HVETL replaced toward destruction and led to a decrease in OPG levels and an increase in RANK and RANKL levels. In line with the previous studies, long-term exposure to an electromagnetic field causes disorders in many organs and systems. Thus, it is considered that long-term exposure to an electromagnetic field affects bone and thyroid metabolism and also increases OSI by increasing the TOS and decreasing the antioxidant status. PMID:26929645

  5. Bone mineralization: from tissue to crystal in normal and pathological contexts.

    PubMed

    Bala, Y; Farlay, D; Boivin, G

    2013-08-01

    Bone is a complex and structured material; its mechanical behavior results from an interaction between the properties of each level of its structural hierarchy. The degree of mineralization of bone (bone density measured at tissue level) and the characteristics of the mineral deposited (apatite crystals) are major determinants of bone strength. Bone remodeling activity acts as a regulator of the degree of mineralization and of the distribution of mineral at the tissue level, directly impacting bone mechanical properties. Recent findings have highlighted the need to understand the underlying process occurring at the nanostructure level that may be independent of bone remodeling itself. A more global comprehension of bone qualities will need further works designed to characterize what are the consequences on whole bone strength of changes at nano- or microstructure levels relative to each other.

  6. Prevalence and predictors of low bone mineral density and fragility fractures among HIV-infected patients at one Italian center after universal DXA screening: sensitivity and specificity of current guidelines on bone mineral density management.

    PubMed

    Mazzotta, Elena; Ursini, Tamara; Agostinone, Adriana; Di Nicola, Angelo Domenico; Polilli, Ennio; Sozio, Federica; Vadini, Francesco; Pieri, Alessandro; Trave, Francesca; De Francesco, Valerio; Capasso, Lorenzo; Borderi, Marco; Manzoli, Lamberto; Viale, Pierluigi; Parruti, Giustino

    2015-04-01

    Low bone mineral density (BMD) is frequent in HIV infection regardless of the use of antiretroviral therapy (ART). Uncertainties remain, however, as to when in HIV infection BMD screening should be performed. We designed a prospective study to estimate the efficacy of universal BMD screening by dual-energy X-ray absorptiometry (DXA). Since April 2009 through March 2011, HIV patients attending our Center were offered femoral/lumbar DXA to screen BMD. Low BMD for chronological age, that is significant osteopenia, was defined as a Z-score ≤ -2.0 at femur and lumbar spine. Nontraumatic bone fractures (NTBFs) were evaluated. The final sample included 163 patients. A Z-score ≤ -2.0 at any site was observed in 19.6% of cases: among these, 18.8% had no indication to DXA using current Italian HIV guidelines for BMD screening. A lower femoral Z-score was independently associated with lower BMI, AIDS diagnosis, HCV co-infection, antiretroviral treatment, and NTBFs; a lower lumbar Z-score with age, BMI, Nadir CD4 T-cell counts, and NTBFs. Prevalence of NTBFs was 27.0%, predictors being male gender, HCV co-infection, and lower femoral Z-scores. Our results suggest that measuring BMD by DXA in all HIV patients regardless of any further specification may help retrieving one-fifth of patients with early BMD disorders not identified using current criteria for selective screening of BMD.

  7. Comparison of bone mineral density between athletic and non-athletic Chinese male adolescents.

    PubMed

    Tsai, S C; Kao, C H; Wang, S J

    1996-10-01

    For the evaluation of the effect of exercise on bone mineral density of adolescent athletes, twenty-nine Chinese male adolescent athletes, each of whom had regular training in his major sport which included baseball, swimming, judo and middle/long-distance running for one to six years and eight age-matched non-athletic controls were included in this study. Bone mineral density (BMD) was measured in all study subjects using dual photo absorptiometry at the second to fourth lumbar spines (L2-4) and the right femoral neck (FN). The results revealed the following: (1) the combined group of athletes had significantly greater BMD of L2-4 (1.08 +/- 0.09 g/cm2) than the control group (0.99 +/- 0.08 g/cm2) and a tendency for greater BMD of FN (1.15 +/- 0.13 g/cm2) than the control group (1.09 +/- 0.13 g/cm2); (2) judo majors had significantly greater BMD of L2-4 than baseball majors (P < 0.05), swimming majors (P < 0.01), track majors (P < 0.05) and controls (P < 0.005); (3) baseball majors had significantly greater BMD of L2-4 than controls (P < 0.05) and greater BMD of FN than swimming majors (P < 0.05), judo majors (P < 0.05), track majors (P < 0.005) and controls (P < 0.005); (4) body weight and body mass index (BMI) had good correlation with BMD of L2-4 and FN in control group, (5) in the combined group of athletes, weight and BMI were only strongly linked to BMD of FN, and not to BMD of L2-4. There was no good correlation between BMI and BMD of L2-4 and FN in any group of athletes. We concluded that (1) physical activity during adolescence may contribute significantly towards increasing BMD of athletes and (2) the training type may provide a specific stimulus for increasing BMD at specific localized sites experienced in training.

  8. Sclerostin, Osteocytes, and Chronic Kidney Disease - Mineral Bone Disorder.

    PubMed

    Moysés, Rosa M A; Schiavi, Susan C

    2015-01-01

    Osteocytes respond to kidney damage by increasing production of secreted factors important to bone and mineral metabolism. These circulating proteins include the antianabolic factor, sclerostin, and the phosphaturic hormone, fibroblast growth factor 23 (FGF23). Elevated sclerostin levels correlate with increased FGF23, localized reduction in Wnt/β-catenin signaling in the skeleton and reduced osteoblast differentiation/activity. Decreased Wnt/β-catenin signaling occurs regardless of the overall changes in bone formation rates, suggesting that a reduction in the anabolic response may be a common feature of renal bone disorders but additional mechanisms may contribute to the diversity of osteodystrophy phenotypes. Recent preclinical studies support this hypothesis, as treatment with antisclerostin antibodies improved bone quality in the context of low but not high turnover renal osteodystrophy. Sclerostin also appears in the circulation suggesting additional roles outside the skeleton in normal and disease states. In patients with chronic kidney disease (CKD), serum levels are elevated several fold relative to healthy individuals. Emerging data suggest that these changes are associated with increased fracture rates but the relationship between sclerostin and cardiovascular disease is unclear. Additional epidemiologic studies that examine stage specific and patient sub-populations are needed to assess whether sclerostin elevations influence comorbidities associated with CKD. PMID:26288182

  9. Women and CKD-mineral and bone disorder.

    PubMed

    Ho, L Tammy; Sprague, Stuart M

    2013-09-01

    Development of CKD-mineral and bone disorder (MBD) increases morbidity and mortality in men and women with CKD. The corresponding link among bone disease, fracture, and extraskeletal calcifications has been the subject of much focus. In the general population, the incidence of cardiovascular disease is higher in men than women, and this gender differences in degree of calcification and morbidity is maintained in kidney disease. Gender differences in phosphorus and fibroblast growth factor-23 (FGF-23) have been described. Increases in both have been linked with increasing likelihood of death in the CKD population as a whole; however, this link is not as well described when looking at women alone. The clinical significance of these differences, and the potential associated outcomes, are poorly understood. Traditional understanding of bone disease in women without kidney disease may not be fully applicable in women with CKD. Use of bone densitometry is limited in this population, and the traditional preventative interventions may not be fully transferrable to women with CKD. PMID:23978548

  10. Bone mineral density in systemic lupus erythematosus women one year after rituximab therapy.

    PubMed

    Mendoza Pinto, C; García Carrasco, M; Etchegaray Morales, I; Jiménez Hernández, M; Méndez Martínez, S; Jiménez Hernández, C; Briones Rojas, R; Ramos Alvarez, G; Rodríguez Gallegos, A; Montiel Jarquín, A; López Colombo, A; Cervera, R

    2013-10-01

    The objective of this study was to assess the effects of rituximab on bone mineral density (BMD) in women with systemic lupus erythematosus (SLE) 1 year after treatment. Thirty active female SLE patients treated with rituximab were compared with 43 SLE women not treated with rituximab. BMD was measured using dual energy X-ray absorptiometry (DEXA) before initiating biologic therapy and after 1 year. The mean age was 38.5 ± 2.1 years; median disease duration was 7 years. In the rituximab group, after 1 year of follow-up, BMD at the femoral neck (FN) decreased from 0.980 ± 0.130 g/cm(2) to 0.809 ± 0.139 g/cm(2) (-17.4%; p=0.001). Similarly, BMD at the lumbar spine (LS) decreased from 1.062 ± 0.137 g/cm(2) to 0.893 ± 0.194 g/cm(2) (-15.8%; p=0.001). In control subjects, BMD at the FN decreased from 0.914 ± 0.193 g/cm(2) to 0.890 ± 0.135 g/cm(2) (-2.6%; p=0.001), and BMD at the LS decreased from 0.926 ± 0.128 g/cm(2) to 0.867 ± 0.139 g/cm(2) (-6.2%; p=0.09). After 1 year, SLE patients had lower BMD at both the FN and LS, but the loss was greater in postmenopausal patients who had received rituximab therapy.

  11. Vitamin D receptor alleles and bone mineral density in a normal premenopausal Brazilian female population.

    PubMed

    Lazaretti-Castro, M; Duarte-de-Oliveira, M A; Russo, E M; Vieira, J G

    1997-08-01

    Studies on the association between vitamin D receptor (VDR) polymorphism and bone mineral density (BMD) in different populations have produced conflicting results probably due to ethnic differences in the populations studied. The Brazilian population is characterized by a very broad genetic background and a high degree of miscegenation. Of an initial group of 164, we studied 127 women from the city of São Paulo, aged 20 to 47 years (median, 31 years), with normal menses, a normal diet and no history of diseases or use of any medication that could alter BMD. VDR genotype was assessed by PCR amplification followed by BsmI digestion of DNA isolated from peripheral leukocytes. BMD was measured using dual energy X-ray absorptiometry (Lunar DPX) at the lumbar site (L2-L4) and femoral neck. Most of the women (77.6%) were considered to be of predominantly European ancestry (20.6% of them reported also native American ancestry), 12.8% were of African-Brazilian ancestry and 9.6% of Asian ancestry, 41.0% (52) were classified as bb, 48.8% (62) as Bb and 10.2% (13) as BB. The BB, Bb and bb groups did not differ in age, height, weight, body mass index or age at menarche. Lumbar spine BMD was significantly higher in the bb group (1.22 +/- 0.16 g/cm2) than in the BB group (1.08 +/- 0.14; P < 0.05), and the Bb group presented an intermediate value (1.17 +/- 0.15). Femoral neck BMD was higher in the bb group (0.99 +/- 0.11 g/cm2) compared to Bb (0.93 +/- 0.12) and BB (0.90 +/- 0.09) (P < 0.05). These data indicate that there is a significant correlation between the VDR BsmI genotype and BMD in healthy Brazilian premenopausal females. PMID:9361720

  12. Dose-response effects of estradiol implants on bone mineral density in ovariectomized ewes.

    PubMed

    Turner, A S; Mallinckrodt, C H; Alvis, M R; Bryant, H U

    1995-10-01

    In a longitudinal in vivo study, we studied the effect of two different doses of 17 beta-estradiol (E2) administered in the form of a subcutaneous implant, on bone mineral density (BMD) of the lumbar vertebrae (L4, L5, L4-L6/L5-L7), the calcaneus (CAL) and the distal radius (DR) in ovariectomized (OVX) ewes. The BMD of various regions of the femur, tibia and humerus were studied at autopsy. Skeletally mature ewes (n = 45) were divided into four groups: sham operated (n = 12), OVX (n = 15), OVX plus one E2 implant (OVXE, n = 12) and OVX plus two E2 implants (OVX2E, n = 6). BMD of L4, L5, L4-L6/L5-L7, CAL and DR was determined at 0, 6 and 12 months using dual-energy X-ray absorptiometry. In-vivo precision of BMD for the last three lumbar vertebrae ranged from 1.4-4.3%, and 1.5% and 3.5% for CAL and DR respectively. In the in vivo study, there were no significant changes in the mean BMD in the sham group at any time point (each group served as its own control). In the OVX group, mean BMD was significantly lower at L5 and DR at 6 months and significantly lower at L4 at 12 months. In the OVXE group, the mean BMD was significantly higher at L5, CAL and DR at 12 months. In the OVX2E group, BMD was significantly higher at CAL but significantly lower at L4 at 12 months. None of the treatments produced significant changes of mean BMD of L4-L6/L5-L7 at any time point.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8579947

  13. Correlates of Use of Antifracture Therapy in Older Women with Low Bone Mineral Density

    PubMed Central

    Ryder, Kathryn M; Shorr, Ronald I; Tylavsky, Frances A; Bush, Andrew J; Bauer, Douglas C; Simonsick, Eleanor M; Strotmeyer, Elsa S; Harris, Tamara B

    2006-01-01

    BACKGROUND Guidelines exist for treatment of low bone mineral density (BMD). Little is known about patient characteristics associated with use of treatment. OBJECTIVES To determine patient-related correlates of medication use following screening dual x-ray absorptiometry (DXA) of older adults. DESIGN Secondary analysis of a prospective cohort study. SETTING Pittsburgh, PA and Memphis, TN. PARTICIPANTS Community-dwelling women between the ages 70 and 79 years enrolled in the Health, Aging, and Body Composition (Health ABC) Study. MEASUREMENTS Risk factors for fracture and BMD of the hip were assessed at baseline. Patients and their community physicians were supplied the results of the DXA scan. Prescription and over-the-counter medication use was collected at annual exams for 2 years. RESULTS Of 1,584 women enrolled in Health ABC, 378 had an indication for antifracture therapy and were not receiving such treatment at baseline. By the second annual follow-up examination, prescription antiresorptive medication was reported in 49 (13.0%), whereas 65 (17.2%) received calcium and/or vitamin D supplementation. In adjusted models, the strongest predictor for use of any antifracture medicine was presence of osteoporosis [vs osteopenia, odds ratio (OR), 2.9 (1.7 to 4.7)], white race [OR, 2.6 (1.5 to 4.8)], and receipt of the flu shot [OR, 2.2 (1.3 to 3.8)]. Neither a history of falls nor prior fracture was associated with use of antifracture medications. CONCLUSION Even when physicians of study participants were provided with DXA scan results, 70% of older high-functioning women with an indication for therapy did not start or remain on an antifracture therapy. Substantial room for improvement exists in fracture prevention following a diagnosis of low BMD—especially among women with a history of falls, prior fractures, and among black women. PMID:16808749

  14. Living near a Freeway is Associated with Lower Bone Mineral Density among Mexican Americans

    PubMed Central

    Chen, Zhanghua; Salam, Muhammad T.; Karim, Roksana; Toledo-Corral, Claudia M.; Watanabe, Richard M.; Xiang, Anny H.; Buchanan, Thomas A.; Habre, Rima; Bastain, Theresa M.; Lurmann, Fred; Taher, Maryam; Wilson, John P.; Trigo, Enrique; Gilliland, Frank D.

    2015-01-01

    Purpose Adults residing in rural areas have been linked with higher bone mineral density (BMD). We aimed to determine if this difference is due in part to air pollution by examining the relationships between traffic metrics and ambient air pollution with total body and pelvic BMD. Methods Mexican-American adults (n=1,175; mean 34 years; 72% female) who had participated in the BetaGene study of air pollution, obesity and insulin resistance were included in this analysis. Total body and pelvic BMD were estimated using dual-energy X-ray absorptiometry. Traffic and ambient air pollutant exposures were estimated at residences using location and ambient monitoring data. Variance component models were used to analyze the associations between residential distance to the nearest freeway and ambient air pollutants with BMD. Results Residential proximity to a freeway was associated with lower total body BMD (p-trend=0.01) and pelvic BMD (p-trend=0.03) after adjustment for age, sex, weight and height. The adjusted mean total body and pelvic BMD in participants living within 500m of a freeway were 0.02 g/cm2 and 0.03 g/cm2 lower than participants living greater than 1,500m from a freeway. These associations did not differ significantly by age, sex or obesity status. Results were similar after further adjustment for body fat and weekly physical activity minutes. Ambient air pollutants (NO2, O3 and PM2.5) were not significantly associated with BMD. Conclusions Traffic-related exposures in overweight and obese Mexican-Americans may adversely affect BMD. Our findings indicate that long-term exposures to traffic may contribute to the occurrence of osteoporosis and its consequences. PMID:25677718

  15. Bone mineral density and leg muscle strength in young Caucasian, Hispanic, and Asian women.

    PubMed

    Liang, Michael T C; Bassin, Stanley; Dutto, Darren; Braun, William; Wong, Nathan; Pontello, Andria M; Cooper, Dan M; Arnaud, Sara B

    2007-01-01

    Differences in bone mineral density (BMD) of ethnically diverse populations are usually attributed to anthropometric characteristics, but may also be due to life style or diet. We studied healthy young sedentary women with Asian (ASN, n=40), Hispanic (HIS, n=39), or Caucasian (CAU, n=36) backgrounds. Body composition and regional BMD were measured by dual-energy X-ray absorptiometry (Hologic) or PIXI (Lunar GE) for the heel and wrist). Leg strength was quantified with a leg press and dietary calcium was estimated with 3-d diet records. CAU were taller than HIS and ASN (p<0.01). ASN had lower body weights, fat mass, lean body mass, and leg strength than HIS or CAU (p<0.01). Differences in BMD among groups were not eliminated by adjusting for body weight and height at the arm, trochanter, femoral neck, and total hip where BMD values remained lower in the ASN than in HIS or CAU (p<0.01). Conversely, adjusted BMD at the wrist was 7.3% higher in ASN and 8.3% higher in HIS and at the heel, 7.3% higher in ASN and 7.0% higher in HIS than in CAU (p<0.05). Leg strength was a significant predictor of BMD in the hip in CAU (R=0.53, p=0.004), in the hip with dietary calcium in ASN (R=0.65, p=0.02), and in the heel with height in HIS (R=0.57, p=0.03). We conclude that significant factors underlying BMD in ethnically diverse young women vary as a function of ethnicity and include leg strength and dietary calcium as well as anthropometric characteristics.

  16. Testosterone Replacement and Bone Mineral Density in Male Pituitary Tumor Patients

    PubMed Central

    Lee, Min Jeong; Ryu, Hyoung Kyu; An, So-Yeon; Jeon, Ja Young; Lee, Ji In

    2014-01-01

    Background Hypopituitarism is associated with osteoporosis and osteopenia especially when hypogonadotropic hypogonadism is present. Despite hypopituitarism being an important cause of secondary osteoporosis, osteoporosis in patients receiving surgery for pituitary tumors in Korea has not been studied. In this study, we evaluated the effects of testosterone replacement therapy (TRT) on bone mineral density (BMD) in postoperative hypogonadal patients with pituitary tumors. Methods To examine the effect of TRT on BMD, we performed a retrospective observational study in 21 postoperative male patients who underwent pituitary tumor surgery between 2003 and 2012 at the Ajou University Hospital. Testosterone was replaced in postoperative hypogonadal patients by regular intramuscular injection, daily oral medication, or application of transdermal gel. BMD (g/cm2) measurements of central skeletal sites (lumbar spine, femoral neck, and total femur) were obtained using dual-energy X-ray absorptiometry (GE Lunar). For lumbar spine BMD, L1 to L4 values were chosen for analysis. Femur neck and total femur were also analyzed. Results During the follow-up period (mean, 56 months; range, 12 to 99 months) serum testosterone levels increased with the administration of TRT (P=0.007). There was significant improvement (4.56%±9.81%) in the lumbar spine BMD compared to baseline BMD. There were no significant changes in the femur neck BMD or total femur BMD. We did not find any statistically significant relationships between changes in testosterone levels and BMD using Spearman correlation analysis. Conclusion Our results indicated that TRT used in the postoperative period for hypogonadal pituitary tumor surgery patients may have beneficial effects on the BMD of the spine. PMID:24741454

  17. Development of an Automated Bone Mineral Density Software Application: Facilitation Radiologic Reporting and Improvement of Accuracy.

    PubMed

    Tsai, I-Ta; Tsai, Meng-Yuan; Wu, Ming-Ting; Chen, Clement Kuen-Huang

    2016-06-01

    The conventional method of bone mineral density (BMD) report production by dictation and transcription is time consuming and prone to error. We developed an automated BMD reporting system based on the raw data from a dual energy X-ray absorptiometry (DXA) scanner for facilitating the report generation. The automated BMD reporting system, a web application, digests the DXA's raw data and automatically generates preliminary reports. In Jan. 2014, 500 examinations were randomized into an automatic group (AG) and a manual group (MG), and the speed of report generation was compared. For evaluation of the accuracy and analysis of errors, 5120 examinations during Jan. 2013 and Dec. 2013 were enrolled retrospectively, and the context of automatically generated reports (AR) was compared with the formal manual reports (MR). The average time spent for report generation in AG and in MG was 264 and 1452 s, respectively (p < 0.001). The accuracy of calculation of T and Z scores in AR is 100 %. The overall accuracy of AR and MR is 98.8 and 93.7 %, respectively (p < 0.001). The mis-categorization rate in AR and MR is 0.039 and 0.273 %, respectively (p = 0.0013). Errors occurred in AR and can be grouped into key-in errors by technicians and need for additional judgements. We constructed an efficient and reliable automated BMD reporting system. It facilitates current clinical service and potentially prevents human errors from technicians, transcriptionists, and radiologists.

  18. Dietary calcium and bone mineral density in premenopausal women with systemic lupus erythematosus.

    PubMed

    Chong, H C; Chee, S S; Goh, E M L; Chow, S K; Yeap, S S

    2007-02-01

    The primary objective of this study was to determine the relationship between dietary calcium intake and bone mineral density (BMD) in premenopausal women with systemic lupus erythematosus (SLE) on corticosteroids (CS). The secondary aim was to identify other risk factors for osteoporosis in these patients. A cross-sectional sample of patients attending the SLE Clinic at a teaching hospital was recruited. BMD was measured using dual-energy X-ray absorptiometry. Daily dietary calcium intake was assessed using a structured validated food frequency questionnaire, in which patients were asked to estimate their food intake based on their recent 2-month dietary habits. Sixty subjects were recruited with a mean age of 33.70+/-8.46 years. The median duration of CS use was 5.5 years (range 0.08-24). The median cumulative dose of steroids was 17.21 g (range 0.16-91.37). The median daily dietary calcium intake was 483 mg (range 78-2101). There was no significant correlation between calcium intake and BMD, even after correcting for CS use. There were also no correlations between BMD and the duration of SLE, cumulative CS use, duration of CS use, smoking, alcohol intake, and SLE disease activity index score. Twenty-eight (46.7%) patients had normal BMD, 28 (46.7%) had osteopenia, and four (6.6%) had osteoporosis. Duration of SLE significantly correlated with cumulative CS dosage. In conclusion, 6.7% of these Asian premenopausal SLE women had osteoporosis and only 46.7% had normal BMD. Daily dietary calcium intake did not correlate with BMD. PMID:16565892

  19. Association between Sleep Duration, Insomnia Symptoms and Bone Mineral Density in Older Boston Puerto Rican Adults

    PubMed Central

    Niu, Jinya; Sahni, Shivani; Liao, Susu; Tucker, Katherine L.; Dawson-Hughes, Bess; Gao, Xiang

    2015-01-01

    Objective To examine the association between sleep patterns (sleep duration and insomnia symptoms) and total and regional bone mineral density (BMD) among older Boston Puerto Rican adults. Materials/Methods We conducted a cross-sectional study including 750 Puerto Rican adults, aged 47–79 y living in Massachusetts. BMD at 3 hip sites and the lumbar spine were measured using dual-energy X-ray absorptiometry. Sleep duration (≤5 h, 6 h, 7 h, 8 h, or ≥9 h/d) and insomnia symptoms (difficulty initiating sleep, difficulty maintaining sleep, early-morning awaking, and non-restorative sleep) were assessed by a questionnaire. Multivariable regression was used to examine sex-specific associations between sleep duration, insomnia symptoms and BMD adjusting for standard confounders and covariates. Results Men who slept ≥9h/d had significantly lower femoral neck BMD, relative to those reporting 8 h/d sleep, after adjusting for age, education level, smoking, physical activity, depressive symptomatology, comorbidity and serum vitamin D concentration. This association was attenuated and lost significance after further adjustment for urinary cortisol and serum inflammation biomarkers. In contrast, the association between sleep duration and BMD was not significant in women. Further, we did not find any significant associations between insomnia symptoms and BMD in men or women. Conclusions Our study does not support the hypothesis that shorter sleep duration and insomnia symptoms are associated with lower BMD levels in older adults. However, our results should be interpreted with caution. Future studies with larger sample size, objective assessment of sleep pattern, and prospective design are needed before a conclusion regarding sleep and BMD can be reached. PMID:26147647

  20. Asymmetric loading and bone mineral density at the asymptomatic knees of subjects with unilateral hip osteoarthritis

    PubMed Central

    Shakoor, Najia; Dua, Anisha; Thorp, Laura; Mikolaitis, Rachel A.; Wimmer, Markus A.; Foucher, Kharma C.; Fogg, Louis F.; Block, Joel A.

    2011-01-01

    Objective The contralateral knee of those with unilateral endstage hip OA is known to be at greater risk for endstage knee OA compared to the ipsilateral, same side knee. Likewise, in endstage hip OA, this contralateral knee is known to have increased dynamic joint loads compared to the ipsilateral knee. Here, we study a population with unilateral hip OA, who are asymptomatic at the knees, for early asymmetries in knee loading. Methods Data from 62 subjects with unilateral hip OA were evaluated. Subjects underwent gait analyses for evaluation of dynamic knee loads as well as dual energy X-ray absorptiometry for evaluation of bone mineral density (BMD) at both knees. Differences between knees were compared. Results Peak dynamic knee loads were significantly higher at the contralateral knee compared to the ipsilateral knee (2.46±0.71 vs 2.23±0.81 %BW*ht, p=0.029). Similarly, medial compartment tibial BMD was significantly higher at the contralateral knee compared to the ipsilateral knee (0.897±0.208 vs 0.854±0.206 gm/c2, p=0.033). Interestingly, there was a direct correlation between contralteral:ipsilateral dynamic knee load and contralateral:ipsilateral medial compartment tibial BMD (Spearman’s rho= 0.287, p=0.036). Conclusions This study demonstrates that at the contralateral knees of patients with unilateral hip OA, which are at higher risk of developing progressive symptomatic OA compared to the ipsilateral knees, loading and structural asymmetries appear early in the disease course, while the knees are still asymptomatic. These early biomechanical asymmetries may have corresponding long term consequences, providing further support for the potential role of loading in OA onset and progression. PMID:22127702

  1. Mechanisms of Bone Mineralization and Effects of Mechanical Loading

    NASA Technical Reports Server (NTRS)

    Babich, Michael

    1996-01-01

    The data suggest that PTH and PKC inhibit nodule formation, and that alternative energy sources are utilized by osteoblasts in the process of mineralization. The conditions and techniques to grow, fix, photograph, and measure bone mineralization in vitro were defined. The results are presently in preliminary form and require further assessment as follows; quantitate the surface area of nodules + treatments via computer-aided image analysis; use PTH + inhibitors of signaling pathways to determine the mechanism of nodule formation; determine how protein kinase C is involved as a promotor of nodule formation; cell proliferation vs. cell death affected by modulation of signal transduction (i.e., PTH, enzyme inhibitors and activators); identify mRNA induced or decreased in response to PTH and signaling modulators that encode proteins that regulate cell morphology, proliferation, and nodule formation. Therefore, several follow-up studies between the laboratories at NASA-Ames Research Center and my laboratory at the University of Illinois have been initiated.

  2. Bone mineral density of 704 amateur sportsmen involved in different physical activities.

    PubMed

    Morel, J; Combe, B; Francisco, J; Bernard, J

    2001-01-01

    The aim of the study was to analyze the relation between sports and bone mass. Seven hundred and four men with no history of chronic disease were questioned on their adolescent and adult sporting activities. Their total body (TB) and regional (head, spine, arms and legs) bone mineral density (BMD) were measured by dual-energy X-ray absorptiometry. BMD measurements and ratios of regional BMD to TB BMD were compared using a multiple regression analysis. Probands (mean age 30 years) were engaged in 14 sports activities: rugby, soccer, other team sports, endurance running, fighting sports, bodybuilding, multiple weightbearing activities, swimming, swimming with flippers, biking, rowing, climbing, triathlon and multiple mixed activities. They stated that they were practising a physical activity at the amateur level: 7.1 h/week between the ages of 11 and 18 years and 9 h/week between age 18 years and the day of the interview (no significant difference between physical activities). Rowers and swimmers had low TB BMD (1.22 and 1.17 g/cm2) and low leg BMD (1.37 and 1.31 g/cm2). Participants in rugby, soccer, other team sports and fighting sports had a high TB BMD (1.27-1.35 g/cm2) and high leg BMD (1.41-1.5 g/cm2). For head BMD, there was no stastistical difference among the different groups. Constructed ratios pointed out the site-specific adaptation of the skeleton: soccer player and runners had a higher leg ratio; bodybuilders, fighters, climbers and swimmers had a higher arm ratio; rugby players had a higher spine ratio. Head ratio was higher in non-weightbearing sports (rowing, swimming) than in weightbearing sports (rugby, team sports, soccer, fighting sports and bodybuilding). Thus the BMD and ratio differences among the 14 disciplines seem to be site-specific and related to the supposedly high and unusual strains created at certain sites during sport training by muscle stress and gravitational forces. Head ratio is closely related to the type of practice; its value

  3. Bone mineral crystal size and organization vary across mature rat bone cortex.

    PubMed

    Turunen, Mikael J; Kaspersen, Jørn D; Olsson, Ulf; Guizar-Sicairos, Manuel; Bech, Martin; Schaff, Florian; Tägil, Magnus; Jurvelin, Jukka S; Isaksson, Hanna

    2016-09-01

    The macro- and micro-features of bone can be assessed by using imaging methods. However, nano- and molecular features require more detailed characterization, such as use of e.g., vibrational spectroscopy and X-ray scattering. Nano- and molecular features also affect the mechanical competence of bone tissue. The aim of the present study was to reveal the effects of mineralization and its alterations on the mineral crystal scale, by investigating the spatial variation of molecular composition and mineral crystal structure across the cross-section of femur diaphyses in young rats, and healthy and osteoporotic mature rats (N=5). Fourier transform infrared spectroscopy and scanning small- and wide-angle X-ray scattering (SAXS/WAXS) techniques with high spatial resolution were used at identical locations over the whole cross-section. This allowed quantification of point-by-point information about the spatial distribution of mineral crystal volume. All measured parameters (crystal dimensions, degree of orientation and predominant orientation) varied across the cortex. Specifically, the crystal dimensions were lower in the central cortex than in the endosteal and periosteal regions. Mineral crystal orientation followed the cortical circumference in the periosteal and endosteal regions, but was less well-oriented in the central regions. Central cortex is formed rapidly during development through endochondral ossification. Since rats possess no osteonal remodeling, this bone remains (until old age). Significant linear correlations were observed between the dimensional and organizational parameters, e.g., between crystal length and degree of orientation (R(2)=0.83, p<0.001). Application of SAXS/WAXS provides valuable information on bone nanostructure and its constituents, effects of diseases and, prospectively, mechanical competence. PMID:27417019

  4. A two-year program of aerobics and weight training enhances bone mineral density of young women.

    PubMed

    Friedlander, A L; Genant, H K; Sadowsky, S; Byl, N N; Glüer, C C

    1995-04-01

    Previous research suggests that physical activity may have a beneficial effect on bone mineral density (BMD) in women. This relationship was explored in a 2-year, randomized, intervention trial investigating the efficacy of exercise and calcium supplementation on increasing peak bone mass in young women. One hundred and twenty-seven subjects (ages of 20-35 years) were randomly assigned either to an exercise program that contained both aerobics and weight training components or to a stretching program. Calcium supplementation (up to 1500 mg/day including dietary intake) or placebo was given in a double-blinded design to all subjects. Spinal trabecular BMD was determined using quantitative computed tomography (QCT). Spinal integral, femoral neck, and trochanteric BMD were measured by dual X-ray absorptiometry (DXA) and calcaneal BMD by single photon absorptiometry (SPA). Fitness variables included maximal aerobic capacity (VO2max), and isokinetic muscle performance of the trunk and thigh. Measurements were made at baseline, 1 year, and 2 years. Sixty-three subjects (32 exercise, 31 stretching) completed the study, and all the measured bone parameters indicated a positive influence of the exercise intervention. There were significant positive differences in BMD between the exercise and stretching groups for spinal trabecular (2.5%), femoral neck (2.4%), femoral trochanteric (2.3%), and calcaneal (6.4%) measurements. The exercise group demonstrated a significant gain in BMD for spinal integral (1.3 +/- 2.8%, p < 0.02), femoral trochanteric (2.6 +/- 6.1%, p < 0.05), and calcaneal (5.6 +/- 5.1, p < 0.01) measurements. In contrast to exercise, the calcium intervention had no positive effect on any of the bone parameters. In regard to fitness parameters, the exercise group completed the study with significant gains in VO2max and isokinetic (peak torque) values for the knee flexion and extension and trunk extension. This study indicates that over a 2-year period, a combined

  5. A two-year program of aerobics and weight training enhances bone mineral density of young women

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Genant, H. K.; Sadowsky, S.; Byl, N. N.; Gluer, C. C.

    1995-01-01

    Previous research suggests that physical activity may have a beneficial effect on bone mineral density (BMD) in women. This relationship was explored in a 2-year, randomized, intervention trial investigating the efficacy of exercise and calcium supplementation on increasing peak bone mass in young women. One hundred and twenty-seven subjects (ages of 20-35 years) were randomly assigned either to an exercise program that contained both aerobics and weight training components or to a stretching program. Calcium supplementation (up to 1500 mg/day including dietary intake) or placebo was given in a double-blinded design to all subjects. Spinal trabecular BMD was determined using quantitative computed tomography (QCT). Spinal integral, femoral neck, and trochanteric BMD were measured by dual X-ray absorptiometry (DXA) and calcaneal BMD by single photon absorptiometry (SPA). Fitness variables included maximal aerobic capacity (VO2max), and isokinetic muscle performance of the trunk and thigh. Measurements were made at baseline, 1 year, and 2 years. Sixty-three subjects (32 exercise, 31 stretching) completed the study, and all the measured bone parameters indicated a positive influence of the exercise intervention. There were significant positive differences in BMD between the exercise and stretching groups for spinal trabecular (2.5%), femoral neck (2.4%), femoral trochanteric (2.3%), and calcaneal (6.4%) measurements. The exercise group demonstrated a significant gain in BMD for spinal integral (1.3 +/- 2.8%, p < 0.02), femoral trochanteric (2.6 +/- 6.1%, p < 0.05), and calcaneal (5.6 +/- 5.1, p < 0.01) measurements. In contrast to exercise, the calcium intervention had no positive effect on any of the bone parameters. In regard to fitness parameters, the exercise group completed the study with significant gains in VO2max and isokinetic (peak torque) values for the knee flexion and extension and trunk extension. This study indicates that over a 2-year period, a combined

  6. Lack of association of vitamin D receptor BsmI gene polymorphism with bone mineral density in Spanish postmenopausal women

    PubMed Central

    Rodriguez-Velasco, Francisco J.; Vera, Vicente; Lavado-Garcia, Jesus M.; Fernandez, Pilar

    2015-01-01

    Osteoporosis is a polygenic disorder that is determined by the effects of several genes, each with relatively modest effects on bone mass. The aim of this study was to determine whether the vitamin D receptor single nucleotide polymorphism BsmI is associated with bone mineral density (BMD) in Spanish postmenopausal women. A total of 210 unrelated healthy postmenopausal women aged 60 ± 8 years were genotyped using TaqMan® SNP Genotyping Assays. Lumbar and femoral BMD were determined by dual-energy X-ray absorptiometry (DEXA). Daily calcium and vitamin D intake were determined by a food questionnaire. No differences were found in the femoral neck, trochanter, Ward’s Triangle, L2, L3, L4, L2-L4, or between the femoral neck and total hip BMD after further adjustment for potential confounding factors (P > 0.05) (age, BMI, years since menopause and daily calcium intake). The BsmI polymorphism in the VDR gene was not associated with BMD in Spanish postmenopausal women. PMID:26157644

  7. Influence of different DXA acquisition modes on monitoring the changes in bone mineral density after hip resurfacing arthroplasty.

    PubMed

    Hakulinen, Mikko A; Borg, Håkan; Häkkinen, Arja; Parviainen, Tapani; Kiviranta, Ilkka; Jurvelin, Jukka S

    2012-01-01

    Dual-energy X-ray absorptiometry (DXA) is a technique enabling the measurement of bone mineral density (BMD) around prostheses after hip resurfacing arthroplasty (HRA). In this study, we evaluated the consistency of different DXA acquisition modes with 33 patients who had undergone HRA. Patients were scanned with DXA immediately after surgery and at 3-, 6-, and 12-mo time points. All the patients were scanned with dual femur and orthopedic hip acquisition modes and analyzed using 10-region ROI model. With both acquisition modes, a statistically significant decrease (p<0.05, Wilcoxon's test) in BMD at 3mo was revealed in 3 ROIs, located to upper and lateral upper femur. Both acquisition modes detected similarly (p<0.01) preservation of the femoral bone stock within 12mo in all but 1 ROI. The applied acquisition protocols involved the use of different footplates for hip fixation. Because the differences between acquisition modes ranged between +1.6% and -7.1% and the reproducibility of BMD values can vary by as much as 28% due to hip rotation, it is proposed that both dual femur and orthopedic hip acquisition modes can be used to monitor the changes in BMD after HRA. However, the same hip rotation is recommended for all DXA measurements.

  8. Basal plasma levels of calcitonin and bone mineral mass in normal and uremic women. Effect of menopause.

    PubMed

    Corghi, E; Ortolani, S; Bianchi, M L; Favini, P; Vigo, P; Polli, E E

    1984-01-01

    Basal plasma levels of immunoreactive calcitonin (iCT), forearm bone mineral content (BMC) as measured by 125I photon absorptiometry and 24-hour urinary hydroxyproline/creatinine ratio (OHPr/Cr) were determined in 32 healthy women (13 pre-menopausal, aged 40 to 54 years, and 19 post-menopausal, aged 41 to 54 years). The basal plasma levels of iCT were significantly higher in the pre-menopausal group (mean value 96 vs 54 pg/ml, P less than 0.025). The BMC value of the radius was also significantly greater in the same group (mean +/- SEM 656 +/- 13 vs. 620 +/- 9 mg/cm2, P less than 0.05), while the urinary OHPr/Cr ratio was higher in the post-menopausal group (29.9 +/- 1.5 vs. 38.7 +/- 2.7 mg/g, P less than 0.02). These results suggest that basal plasma levels of iCT decrease after the menopause and support the hypothesis that a deficiency of CT could be involved in the pathogenesis of post-menopausal bone loss. Similar results were obtained in 25 uremic women on maintenance hemodialysis (9 pre-menopausal and 16 post-menopausal) aged 30 to 65 yrs.: both basal iCT levels and BMC values were significantly higher in the pre-menopausal group.

  9. Evidence of association of vitamin D receptor Apa I gene polymorphism with bone mineral density in postmenopausal women with osteoporosis.

    PubMed

    Dundar, Umit; Solak, Mustafa; Kavuncu, Vural; Ozdemir, Mujgan; Cakir, Tuncay; Yildiz, Handan; Evcik, Deniz

    2009-10-01

    The vitamin D receptor (VDR) was the first candidate gene to be studied in relation to osteoporosis, and most attention has focused on polymorphisms situated near the 3' flank of VDR. The aim of this study was to investigate the association about VDR gene Apa I polymorphism with bone mineral density (BMD) in postmenopausal women with osteoporosis. We studied a total of 136 postmenopausal women with a mean age of 56.36 +/- 10.29 years. Among them, a total of 75 had osteoporosis, 37 had osteopenia, and 24 had normal BMD. Venous blood samples were obtained for evaluation of bone metabolism and genotyping. The VDR Apa I genotype was determined by polymerase chain reaction-restriction fragment length polymorphism. BMDs at the lumbar spine and hip were measured by dual-energy X-ray absorptiometry. Postmenopausal women with aa genotype had significantly lower BMD values (grams per centimeter square) at lumbar spines compared to persons with AA genotype. Also, postmenopausal women with AA genotype had significantly higher serum Ca level than the subjects with aa genotype. In conclusion, our result may indicate that VDR Apa I gene polymorphism may be responsible for a important part of the heritable component of lumbar spine BMD in postmenopausal women, possibly related to impaired calcium absorption from the bowel.

  10. The use of Na-22 as a tracer for long-term bone mineral turnover studies.

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.; Rieksts, G. A.; Palmer, R. F.; Gillis, M. F.

    1979-01-01

    Sodium-22 has been studied as a tracer for bone mineral metabolism in rats and dogs. When incorporated into bone during growth from birth to adulthood, the bone becomes uniformly tagged with Na-22, which is released through the metabolic turnover of the bone. The Na-22 not incorporated in the bone matrix is rapidly excreted within a few days when animals are fed high, but nontoxic levels of NaCl. The Na-22 tracer can be used to measure bone mineral loss in animals during space flight and in research on bone disease.

  11. On the pathway of mineral deposition in larval zebrafish caudal fin bone.

    PubMed

    Akiva, Anat; Malkinson, Guy; Masic, Admir; Kerschnitzki, Michael; Bennet, Mathieu; Fratzl, Peter; Addadi, Lia; Weiner, Steve; Yaniv, Karina

    2015-06-01

    A poorly understood aspect of bone biomineralization concerns the mechanisms whereby ions are sequestered from the environment, concentrated, and deposited in the extracellular matrix. In this study, we follow mineral deposition in the caudal fin of the zebrafish larva in vivo. Using fluorescence and cryo-SEM-microscopy, in combination with Raman and XRF spectroscopy, we detect the presence of intracellular mineral particles located between bones, and in close association with blood vessels. Calcium-rich particles are also located away from the mineralized bone, and these are also in close association with blood vessels. These observations challenge the view that mineral formation is restricted to osteoblast cells juxtaposed to bone, or to the extracellular matrix. Our results, derived from observations performed in living animals, contribute a new perspective to the comprehensive mechanism of bone formation in vertebrates, from the blood to the bone. More broadly, these findings may shed light on bone mineralization processes in other vertebrates, including humans.

  12. Relationship between Body Mass Composition, Bone Mineral Density, Skin Fibrosis and 25(OH) Vitamin D Serum Levels in Systemic Sclerosis.

    PubMed

    Corrado, Addolorata; Colia, Ripalta; Mele, Angiola; Di Bello, Valeria; Trotta, Antonello; Neve, Anna; Cantatore, Francesco Paolo

    2015-01-01

    A reduced bone mineral density (BMD) is observed in several rheumatic autoimmune diseases, including Systemic Sclerosis (SSc); nevertheless, data concerning the possible determinants of bone loss in this disease are not fully investigated. The aim of this study is to evaluate the relationship between BMD, body mass composition, skin sclerosis and serum Vitamin D levels in two subsets of SSc patients. 64 post-menopausal SSc patients, classified as limited cutaneous (lcSSc) or diffuse cutaneous (dcSSc) SSc, were studied. As control, 35 healthy post-menopausal women were recruited. Clinical parameters were evaluated, including the extent of skin involvement. BMD at lumbar spine, hip, femoral neck and body mass composition were determined by dual-energy X-ray absorptiometry. Serum calcium, phosphorus, alkaline phosphatase, urine pyridinium cross-links, intact parathyroid hormone and 25-hydroxyvitamin D (25OHD) were measured. BMD at spine, femoral neck and total hip was significantly lower in SSc patients compared to controls. In dcSSc subset, BMD at spine, femoral neck and total hip was significantly lower compared to lcSSc. No differences in both fat and lean mass were found in the three study groups even if patients with dcSSc showed a slightly lower total body mass compared to healthy controls. Total mineral content was significantly reduced in dSSc compared to both healthy subjects and lcSSc group. Hypovitaminosis D was observed both in healthy post-menopausal women and in SSc patients, but 25OHD levels were significantly lower in dcSSc compared to lcSSc and inversely correlated with the extent of skin thickness. These results support the hypothesis that the extent of skin involvement in SSc patients could be an important factor in determining low circulating levels of 25OHD, which in turn could play a significant role in the reduction of BMD and total mineral content. PMID:26375284

  13. Relationship between Body Mass Composition, Bone Mineral Density, Skin Fibrosis and 25(OH) Vitamin D Serum Levels in Systemic Sclerosis

    PubMed Central

    Corrado, Addolorata; Colia, Ripalta; Mele, Angiola; Di Bello, Valeria; Trotta, Antonello; Neve, Anna; Cantatore, Francesco Paolo

    2015-01-01

    A reduced bone mineral density (BMD) is observed in several rheumatic autoimmune diseases, including Systemic Sclerosis (SSc); nevertheless, data concerning the possible determinants of bone loss in this disease are not fully investigated. The aim of this study is to evaluate the relationship between BMD, body mass composition, skin sclerosis and serum Vitamin D levels in two subsets of SSc patients. 64 post-menopausal SSc patients, classified as limited cutaneous (lcSSc) or diffuse cutaneous (dcSSc) SSc, were studied. As control, 35 healthy post-menopausal women were recruited. Clinical parameters were evaluated, including the extent of skin involvement. BMD at lumbar spine, hip, femoral neck and body mass composition were determined by dual-energy X-ray absorptiometry. Serum calcium, phosphorus, alkaline phosphatase, urine pyridinium cross-links, intact parathyroid hormone and 25-hydroxyvitamin D (25OHD) were measured. BMD at spine, femoral neck and total hip was significantly lower in SSc patients compared to controls. In dcSSc subset, BMD at spine, femoral neck and total hip was significantly lower compared to lcSSc. No differences in both fat and lean mass were found in the three study groups even if patients with dcSSc showed a slightly lower total body mass compared to healthy controls. Total mineral content was significantly reduced in dSSc compared to both healthy subjects and lcSSc group. Hypovitaminosis D was observed both in healthy post-menopausal women and in SSc patients, but 25OHD levels were significantly lower in dcSSc compared to lcSSc and inversely correlated with the extent of skin thickness. These results support the hypothesis that the extent of skin involvement in SSc patients could be an important factor in determining low circulating levels of 25OHD, which in turn could play a significant role in the reduction of BMD and total mineral content. PMID:26375284

  14. The effect of interleukin-1alpha polymorphisms on bone mineral density and the risk of vertebral fractures.

    PubMed

    Knudsen, S; Harsløf, T; Husted, L B; Carstens, M; Stenkjaer, L; Langdahl, B L

    2007-01-01

    Interleukin-1alpha (IL-1alpha) stimulates bone resorption via osteoclasts. Mononuclear cells from patients with osteoporosis show increased IL-1alpha production, and IL-1alpha mRNA is more often detected in bone biopsies from osteoporotic compared to normal postmenopausal women. Polymorphisms have been identified in the IL-1alpha gene; however, none of these has been examined for an effect on bone phenotypes in Caucasians. We investigated if the polymorphisms in the IL-1alpha gene affect the risk of osteoporotic fractures, bone mineral density (BMD), and bone turnover in 462 osteoporotic patients and 336 normal controls. Based on previous studies of polymorphisms in the gene and data from the International Hap-Map Project, four polymorphisms needed examination in order to investigate the effect of known polymorphisms in the IL-1alpha gene. We examined C(-1202)-T(rs1800794), C(-889)-T(rs1800587), T(155 + 209)-C(rs2071373), C(155 + 320)-T(rs2856838), and G(398)-T(rs 17561) by Taqman and restriction fragment-length polymorphism assays. BMD was examined by dual-energy X-ray absorptiometry. Bone turnover was evaluated by serum osteocalcin, serum carboxy-terminal propeptide of human type I procollagen, serum bone-specific alkaline phosphatase, serum carboxy-terminal telopeptide of type I collagen, and urinary hydroxyproline/creatinine. Genotype distributions were in Hardy-Weinberg equilibrium. All polymorphisms were in strong linkage disequilibrium. The C allele of the C(155 + 320)-T polymorphism tended to be more common among patients with vertebral fractures (P = 0.06) and patients with BMD T score <-2.5 (P = 0.05). Furthermore, haplotype 1 was associated with reduced risk of having BMD T score <-2.5 (P = 0.02). None of the other polymorphisms or haplotypes was associated with fracture risk or BMD T score <-2.5. BMD and bone turnover were not associated with any of the genetic variants. In conclusion, all the polymorphisms within the IL-1alpha gene are in strong

  15. Effects of Rubus coreanus-Cheonggukjang on Bone Mineral Density and Bone Mineral Content in Growing Rats

    PubMed Central

    Jung, Yun-Jung; Choi, Mi-Ja

    2015-01-01

    The purpose of the present study was to investigate the bone-conserving effects of Rubus coreanus-Cheonggukjang (RC-CGJ) supplemented with more intensified phytochemicals compared to general Cheonggukjang (CGJ) in growing rats. Eighteen rats were divided into 3 treatment groups (Control, CGJ, and RC-CGJ) and were given experimental diets for 9 weeks. All of the rats in this study were fed a AIN-93G-based diet. Both CGJ groups were fed with 33.1% CGJ and RC-CGJ powder, respectively. The results of this study indicate that weight gain, mean food intake, and food efficiency ratio were not significantly different by the experimental diets among all groups. Spine bone mineral density (BMD) and femur BMD were not significantly different by the experimental diets. Spine bone mineral content (BMC) was significantly higher in the RC-CGJ and CGJ groups than in the control group, regardless of CGJ type. The femur BMC of the CGJ supplemented group was significantly higher compared with the control group and the RC-CGJ group. Compared with the control group, spine BMD and femur BMD per weight were markedly increased in the RC-CGJ and CGJ group regardless of CGJ type. Also, spine BMC per weight was significantly higher in the RC-CGJ group than in the CGJ group. However, femur BMC per weight was significantly higher in the CGJ group than in the RC-CGJ group. It can be concluded that RC-CGJ and CGJ supplemented diets have more beneficial effects on spine and femur peak bone mass in growing rats. PMID:26770913

  16. Effects of Rubus coreanus-Cheonggukjang on Bone Mineral Density and Bone Mineral Content in Growing Rats.

    PubMed

    Jung, Yun-Jung; Choi, Mi-Ja

    2015-12-01

    The purpose of the present study was to investigate the bone-conserving effects of Rubus coreanus-Cheonggukjang (RC-CGJ) supplemented with more intensified phytochemicals compared to general Cheonggukjang (CGJ) in growing rats. Eighteen rats were divided into 3 treatment groups (Control, CGJ, and RC-CGJ) and were given experimental diets for 9 weeks. All of the rats in this study were fed a AIN-93G-based diet. Both CGJ groups were fed with 33.1% CGJ and RC-CGJ powder, respectively. The results of this study indicate that weight gain, mean food intake, and food efficiency ratio were not significantly different by the experimental diets among all groups. Spine bone mineral density (BMD) and femur BMD were not significantly different by the experimental diets. Spine bone mineral content (BMC) was significantly higher in the RC-CGJ and CGJ groups than in the control group, regardless of CGJ type. The femur BMC of the CGJ supplemented group was significantly higher compared with the control group and the RC-CGJ group. Compared with the control group, spine BMD and femur BMD per weight were markedly increased in the RC-CGJ and CGJ group regardless of CGJ type. Also, spine BMC per weight was significantly higher in the RC-CGJ group than in the CGJ group. However, femur BMC per weight was significantly higher in the CGJ group than in the RC-CGJ group. It can be concluded that RC-CGJ and CGJ supplemented diets have more beneficial effects on spine and femur peak bone mass in growing rats. PMID:26770913

  17. Vascular calcification, bone and mineral metabolism after kidney transplantation

    PubMed Central

    D’Marco, Luis; Bellasi, Antonio; Mazzaferro, Sandro; Raggi, Paolo

    2015-01-01

    The development of end stage renal failure can be seen as a catastrophic health event and patients with this condition are considered at the highest risk of cardiovascular disease among any other patient groups and risk categories. Although kidney transplantation was hailed as an optimal solution to such devastating disease, many issues related to immune-suppressive drugs soon emerged and it became evident that cardiovascular disease would remain a vexing problem. Progression of chronic kidney disease is accompanied by profound alterations of mineral and bone metabolism that are believed to have an impact on the cardiovascular health of patients with advanced degrees of renal failure. Cardiovascular risk factors remain highly prevalent after kidney transplantation, some immune-suppression drugs worsen the risk profile of graft recipients and the alterations of mineral and bone metabolism seen in end stage renal failure are not completely resolved. Whether this complex situation promotes progression of vascular calcification, a hall-mark of advanced chronic kidney disease, and whether vascular calcifications contribute to the poor cardiovascular outcome of post-transplant patients is reviewed in this article. PMID:26722649

  18. Accelerated Growth Plate Mineralization and Foreshortened Proximal Limb Bones in Fetuin-A Knockout Mice

    PubMed Central

    Gupta, Himadri S.; Schäfer, Cora; Krauss, Stefanie; Dunlop, John W. C.; Masic, Admir; Kerschnitzki, Michael; Zaslansky, Paul; Boesecke, Peter; Catalá-Lehnen, Philip; Schinke, Thorsten; Fratzl, Peter; Jahnen-Dechent, Willi

    2012-01-01

    The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix - a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth. PMID:23091616

  19. Accelerated growth plate mineralization and foreshortened proximal limb bones in fetuin-A knockout mice.

    PubMed

    Seto, Jong; Busse, Björn; Gupta, Himadri S; Schäfer, Cora; Krauss, Stefanie; Dunlop, John W C; Masic, Admir; Kerschnitzki, Michael; Zaslansky, Paul; Boesecke, Peter; Catalá-Lehnen, Philip; Schinke, Thorsten; Fratzl, Peter; Jahnen-Dechent, Willi

    2012-01-01

    The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix--a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth.

  20. [Clinical evaluation for abnormalities of bone and mineral metabolism in ESKD].

    PubMed

    Yano, Shozo

    2016-09-01

    In patients with end-stage kidney disease(ESKD), bone disorders are characterized by cortical porosity and by abnormal turnover of bone metabolism:adynamic(low turnover)bone disease and high turnover bone due to various degrees of secondary hyperparathyroidism. Abnormalities of bone metabolism are generally assessed by interview, X-ray, bone mineral density(BMD), serum phosphorus, calcium, and parathyroid hormone levels, and bone metabolic markers. Recent clinical studies have demonstrated that high turnover bone representing elevated bone metabolic markers and low BMD are independent risks of bone fractures as well as mortality among this population. Treatment of bone disorders in ESKD patients should be aiming at the normalization of mineral metabolism and the maintenance and/or improvement of BMD. PMID:27561341

  1. Osteoarthritis and bone mineral density: are strong bones bad for joints?

    PubMed

    Hardcastle, Sarah A; Dieppe, Paul; Gregson, Celia L; Davey Smith, George; Tobias, Jon H

    2015-01-01

    Osteoarthritis (OA) is a common and disabling joint disorder affecting millions of people worldwide. In OA, pathological changes are seen in all of the joint tissues including bone. Although both cross-sectional and longitudinal epidemiological studies have consistently demonstrated an association between higher bone mineral density (BMD) and OA, suggesting that increased BMD is a risk factor for OA, the mechanisms underlying this observation remain unclear. Recently, novel approaches to examining the BMD-OA relationship have included studying the disease in individuals with extreme high bone mass, and analyses searching for genetic variants associated with both BMD variation and OA, suggesting possible pleiotropic effects on bone mass and OA risk. These studies have yielded valuable insights into potentially relevant pathways that might one day be exploited therapeutically. Although animal models have suggested that drugs reducing bone turnover (antiresorptives) may retard OA progression, it remains to be seen whether this approach will prove to be useful in human OA. Identifying individuals with a phenotype of OA predominantly driven by increased bone formation could help improve the overall response to these treatments. This review aims to summarise current knowledge regarding the complex relationship between BMD and OA.

  2. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women.

    PubMed

    Wensel, Terri M; Iranikhah, Maryam M; Wilborn, Teresa W

    2011-05-01

    Osteoporosis is a degenerative bone disease affecting approximately 10 million American adults. Several options are available to prevent development of the disease or slow and even stop its progression. Nonpharmacologic measures include adequate intake of calcium and vitamin D, exercise, fall prevention, and avoidance of tobacco and excessive alcohol intake. Current drug therapy includes bisphosphonates, calcitonin, estrogen or hormone therapy, selective estrogen receptor modulators, and teriparatide. Denosumab, a receptor activator of nuclear factor-K B ligand (RANKL) inhibitor, was recently approved by the United States Food and Drug Administration for treatment of postmenopausal osteoporosis. Patients treated with denosumab experienced significant gains in bone mineral density, rapid reductions in markers of bone turnover, and a reduced risk for new vertebral fracture. Compared with placebo, patients receiving denosumab 60 mg subcutaneously once every 6 months experienced gains in bone mineral density of 6.5-11% when treated for 24-48 months. One trial demonstrated the superiority of denosumab compared with alendronate, but the differences were small. The most common adverse reactions to denosumab include back pain, pain in extremities, musculoskeletal pain, and cystitis. Serious, but rare, adverse reactions include the development of serious infections, dermatologic changes, and hypocalcemia. The recommended dosing of denosumab is 60 mg every 6 months as a subcutaneous injection in the upper arm, upper thigh, or abdomen. Although beneficial effects on bone mineral density and fracture rate have been established in clinical trials, the risks associated with denosumab must be evaluated before therapy initiation. Of concern is the risk of infection, and denosumab should likely be avoided in patients taking immunosuppressive therapy or at high risk for infection. Therefore, bisphosphonates will likely remain as first-line therapy. Denosumab should be considered in

  3. Gemstone spectral imaging for measuring adult bone mineral density

    PubMed Central

    Shao, Wei-Guang; Liu, Dian-Mei

    2016-01-01

    The present study aimed to detect the bone Ca2+ content of L3 vertebrae in adults by gemstone spectral computed tomography. In total, 235 patients were selected and divided into age groups of 10 years each. The scanning data were used to detect the water-based and Ca2+-based substance levels on the L3 vertebral cancellous bone images. The results indicated that there were significant differences in vertebral Ca2+-water and water-Ca2+ densities determined by gemstone spectral imaging (GSI) between males and females in subjects aged 50–59 years, 60–69 years, 70–79 years and ≥80 years (P<0.05). The ages of male and female participants were negatively correlated with vertebral Ca2+-water density (P<0.01) and water-Ca2+ density (P<0.01). In conclusion, GSI may be used as a novel method of measuring the vertebral adult bone mineral density. PMID:27703518

  4. Bone mineral content in early-postmenopausal and postmenopausal osteoporotic women: comparison of measurement methods

    SciTech Connect

    Reinbold, W.D.; Genant, H.K.; Reiser, U.J.; Harris, S.T.; Ettinger, B.

    1986-08-01

    To investigate associations among methods for noninvasive measurement of skeletal bone mass, we studied 40 healthy early postmenopausal women and 68 older postmenopausal women with osteoporosis. Methods included single- and dual-energy quantitative computed tomography (QCT) and dual-photon absorptiometry (DPA) of the lumbar spine, single-photon absorptiometry (SPA) of the distal third of the radius, and combined cortical thickness (CCT) of the second metacarpal shaft. Lateral thoracolumbar radiography was performed, and a spinal fracture index was calculated. There was good correlation between QCT and DPA methods in early postmenopausal women and modest correlation in postmenopausal osteoporotic women. Correlations between spinal measurements (QCT or DPA) and appendicular cortical measurements (SPA or CCT) were modest in healthy women and poor in osteoporotic women. Measurements resulting from one method are not predictive of those by another method for the individual patient. The strongest correlation with severity of vertebral fracture is provided by QCT; the weakest, by SPA. There was a high correlation between single- and dual-energy QCT results, indicating that errors due to vertebral fat are not substantial in these postmenopausal women. Single-energy QCT may be adequate and perhaps preferable for assessing postmenopausal women. The measurement of spinal trabecular bone density by QCT discriminates between osteoporotic women and younger healthy women with more sensitivity than measurements of spinal integral bone by DPA or of appendicular cortical bone by SPA or CCT.

  5. The correlation between mineralization degree and bone tissue stiffness in the porcine mandibular condyle.

    PubMed

    Willems, Nop M B K; Mulder, Lars; den Toonder, Jaap M J; Zentner, Andrej; Langenbach, Geerling E J

    2014-01-01

    The aim of this study was to correlate the local tissue mineral density (TMD) with the bone tissue stiffness. It was hypothesized that these variables are positively correlated. Cancellous and cortical bone samples were derived from ten mandibular condyles taken from 5 young and 5 adult female pigs. The bone tissue stiffness was assessed in three directions using nanoindentation. At each of three tested sides 5 indents were made over the width of 5 single bone elements, resulting in a total number of 1500 indents. MicroCT was used to determine the local TMD at the indented sites. The TMD and the bone tissue stiffness were higher in bone from the adult animals than from the young ones, but did not differ between cancellous and cortical bone. In the adult group, both the TMD and the bone tissue stiffness were higher in the center than at the surface of the bone elements. The mean TMD, thus ignoring the local mineral distribution, had a coefficient of determination (R(2)) with the mean bone tissue stiffness of 0.55, p < 0.05, whereas the correlation between local bone tissue stiffness and the concomitant TMD appeared to be weak (R (2) 0.07, p < 0.001). It was concluded that the mineralization degree plays a larger role in bone tissue stiffness in cancellous than in cortical bone. Our data based on bone from the mandibular condyle suggest that the mineralization degree is not a decisive determinant of the local bone tissue stiffness.

  6. Protein and mineral characterisation of rendered meat and bone meal.

    PubMed

    Buckley, M; Penkman, K E H; Wess, T J; Reaney, S; Collins, M J

    2012-10-01

    We report the characterisation of meat and bone meal (MBM) standards (Set B-EFPRA) derived from cattle, sheep, pig and chicken, each rendered at four different temperatures (133, 137, 141 and 145 °C). The standards, prepared for an EU programme STRATFEED (to develop new methodologies for the detection and quantification of illegal addition of mammalian tissues in feeding stuffs), have been widely circulated and used to assess a range of methods for identification of the species composition of MBM. The overall state of mineral alteration and protein preservation as a function of temperature was monitored using small angle X-ray diffraction (SAXS), amino acid composition and racemization analyses. Progressive increases in protein damage and mineral alteration in chicken and cattle standards was observed. In the case of sheep and pig, there was greater damage to the proteins and alteration of the minerals at the lowest treatment temperature (133 °C), suggesting that the thermal treatments must have been compromised in some way. This problem has probably impacted upon the numerous studies which tested methods against these heat treatments. We use protein mass spectrometric methods to explore if thermostable proteins could be used to identify rendered MBM. In more thermally altered samples, so-called 'thermostable' proteins such as osteocalcin which has been proposed as a ideal target to speciate MBM were no longer detectable, but the structural protein type I collagen could be used to differentiate all four species, even in the most thermally altered samples.

  7. Serum Sema4D levels are associated with lumbar spine bone mineral density and bone turnover markers in patients with postmenopausal osteoporosis

    PubMed Central

    Zhang, Yiyuan; Feng, Eryou; Xu, Yang; Wang, Wulian; Zhang, Tao; Xiao, Lili; Chen, Rong; Lin, Yu; Chen, Dongdong; Lin, Liqiong; Chen, Kangyao; Lin, Yanbin

    2015-01-01

    To investigate the association of serum semaphorin 4D (Sema4D) levels with lumbar spine bone mineral density (BMD) and bone turnover markers in patients with postmenopausal osteoporosis (PO). Lumbar spine BMD was measured by dual-energy X-ray absorptiometry in 257 PO patients (aged from 50 to 75) and 90 healthy controls (aged from 51 to 83). Serum Sema4D, BAP, BGP and TRACP-5b levels were measured by enzyme linked immunosorbent assay. Serum cross linked N-telopeptides of type I (NTX), 25-hydroxyvitamin D (25(OH)D) and N-mid fragment of osteocalcin (N-MID-OT) levels were measured using automated electrochemiluminescence system. Sema4D level was significantly higher in PO women compared to healthy controls (1.40±0.33 vs. 0.58±0.18 μg/L, P=0.006). Sema4D level was positively correlated with serumTRACP-5b and NTX levels and negatively correlated with lumbar spine BMD and serum BAP and BGP levels. There were no correlations between Sema4D level and age, body mass index, and serum 25(OH)D and N-MID-OT levels. Lumbar spine BMD (β=-0.354, P<0.001) and serum BAP level (β=0.127, P=0.019) were independent predictors of serum Sema4D level in PO patients. Sema4D may be involved in the pathogenesis of PO and play a critical role in bone formation and resorption. Sema4D may represent a novel therapeutic target for treatment of PO and function as a predictive indicator of PO. PMID:26629156

  8. Relationship between MRI-Measured Bone Marrow Adipose Tissue and Hip and Spine Bone Mineral Density in African-American and Caucasian Participants: The CARDIA Study

    PubMed Central

    Scherzer, Rebecca; Gantz, Madeleine; Chen, Jun; Punyanitya, Mark; Lewis, Cora E.; Grunfeld, Carl

    2012-01-01

    Context: An increasing number of studies suggest that bone marrow adipose tissue (BMAT) might play a role in the pathogenesis of osteoporosis. Our previous study of Caucasian women demonstrated that there is an inverse relationship between BMAT and whole-body bone mineral density (BMD). It is unknown whether visceral adipose tissue (VAT), sc adipose tissue (SAT), and skeletal muscle had an effect on the relationship between BMAT and BMD. Objective: In the present study we investigated the relationship between pelvic, hip, and lumbar spine BMAT with hip and lumbar spine BMD in the population-based Coronary Artery Risk Development in Young Adults (CARDIA) sample with adjustment for whole-body magnetic resonance imaging (MRI)-measured VAT, SAT, and skeletal muscle. Design: T1-weighted MRI was acquired for 210 healthy African-American and Caucasian men and women (age 38–52 yr). Hip and lumbar spine BMD were measured by dual-energy x-ray absorptiometry. Results: Pelvic, hip, and lumbar spine BMAT had negative correlations with hip and lumbar spine BMD (r = −0.399 to −0.550, P < 0.001). The inverse associations between BMAT and BMD remained strong after adjusting for demographics, weight, skeletal muscle, SAT, VAT, total adipose tissue (TAT), menopausal status, lifestyle factors, and inflammatory markers (standardized regression coefficients = −0. 296 to −0.549, P < 0.001). Among body composition measures, skeletal muscle was the strongest correlate of BMD after adjusting for BMAT (standardized regression coefficients = 0.268–0.614, P < 0.05), with little additional contribution from weight, SAT, VAT, or total adipose tissue. Conclusion: In this middle-aged population, a negative relationship existed between MRI-measured BMAT and hip and lumbar spine BMD independent of demographics and body composition. These observations support the growing evidence linking BMAT with low bone density. PMID:22319043

  9. An investigation of the mineral in ductile and brittle cortical mouse bone.

    PubMed

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J

    2015-05-01

    Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta model, oim(-/-) , mice have a defect in the collagen, which leads to brittle bone; PHOSPHO1 mutants, Phospho1(-/-) , have ductile bone resulting from altered mineralization. Oim(-/-) and Phospho1(-/-) were compared with their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD) and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (BSE SEM). Results revealed that although both pathology models had extremely different whole-bone mechanics, they both had smaller apatite crystals, lower bulk mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. In contrast, the degree of mineralization of bone matrix was different for each strain: brittle oim(-/-) were hypermineralized, whereas ductile Phospho1(-/-) were hypomineralized. Despite differences in the mineralization, nanoscale alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results indicated that alterations from normal crystal size

  10. Changes in bone mineral density 10 years after marked reduction of cadmium exposure in a Chinese population

    SciTech Connect

    Chen, Xiao; Zhu, Guoying; Jin, Taiyi; Akesson, Agneta; Bergdahl, Ingvar A.; Lei, Lijian; Weng, Shifang; Liang, Yihuai

    2009-10-15

    The main focus of this study was to evaluate the long-term effects of Cd on forearm bone mineral density after the cessation of the ingestion of Cd-polluted rice. A total of 458 persons (294 women, 164 men) from three Cd exposure areas (low, moderately, and heavy) participated in this study. Those living in the moderate and heavy exposure areas ceased ingesting Cd-polluted rice (0.51 and 3.7 mg/kg, respectively) in 1996 (10 years prior to present analysis). The participants completed a questionnaire and bone mineral density (BMD) was measured by dual energy X-ray absorptiometry (DXA) at the proximal radius and ulna. The changes and change percentage in forearm bone density and the prevalence of osteoporosis between 1998 and 2006 were used as markers of bone recovery. The Cd concentrations in urine (UCd) and blood (BCd) in 1998 were used as Cd exposure markers. The values of the BMD change and change percentage of groups in which UCd was above 5 {mu}g/g creatinine ({mu}g/g crea) and BCd was above 10 {mu}g/L were significantly higher than those of the low-exposure groups (in women, p<0.001; in men, p>0.05). The BMD change and change percentage correlated positively with the UCd and BCd (in women, p<0.01; in men, p>0.05). Analysis of the Z-score revealed that the prevalence of osteoporosis in 2006 was higher than that in 1998 and increased along with the level of UCd and BCd in both women and men, especially for those subjects with the higher BCd [BCd>5 {mu}g/L, OR=3.45 (0.95-13.6); BCd>10 {mu}g/L, OR=4.51(1.57-13.54)] and UCd [UCd>10 {mu}g/g crea, OR=4.74 (1.82-12.81)] in women. It is concluded that decreasing dietary cadmium exposure at the population level is not associated with bone recovery at the individual level, and the adverse bone effects of Cd exposure persisted after the main source of Cd exposure had been blocked, especially in women.

  11. Bone morphometry and mineral density measurement using quantitative computed tomography

    SciTech Connect

    Jacobson, D.R.

    1991-01-01

    Application of computed tomography (CT) to the study of bone structure and density was explored and developed. A review of bone mineral densitometry (BMD) methodology and general principles of quantitative CT (QCT) are presented. A method for QCT of the spine was developed using a flexible tissue equivalent reference placed adjacent to the patient. A methodology for the development and production of tissue equivalent materials is also presented. Patient equivalent phantoms were used to characterize the method, and phantom studies were performed at five clinical sites. A protocol is defined for measuring the inside diameter of the lumbar pedicular canal. Data generated from this study has proven invaluable in the planning for lumbar fusion surgery when screws are to be used for immobilization. Pedicular canal data from 33 patients is presented. QCT was also used to quantify several parameters of the femoral shaft for use in hip replacement surgical planning. Parameters studied include inside diameter, BMD, endosteal BMD and proximal shaft morphology. The structure and trabecular BMD of the proximal femur was extensively studied using QCT. A large variation was found in the fat content of marrow within the proximal femur, and phantom studies were performed to quantify the effect of fat on trabecular QCT BMD. Cadaveric trabecular bone samples with marrow were analyzed physically to determine water, fat, non-fat soft tissue, and ash content. Multiple thin-slice CT studies were performed on cadaveric femurs. A structural model of the proximal femur was developed in which the structural support is provided primarily by trabecular bone. This model may have profound implications in the study of femoral fractures and prosthetic hardware design.

  12. Thyroid function and bone mineral density among Indian subjects

    PubMed Central

    Marwaha, Raman K.; Garg, M. K.; Tandon, Nikhil; Kanwar, Ratnesh; Narang, Aparna; Sastry, Archna; Bhadra, Kuntal

    2012-01-01

    Background: Thyroid hormones affect bone remodeling in patients with thyroid disease by acting directly or indirectly on bone cells. In view of limited information on correlation of thyroid function with bone mineral density (BMD) in euthyroid subjects, we undertook this study to evaluate the correlation between thyroid function with BMD in subjects with normal thyroid function and subclinical hypothyroidism. Material and Methods: A total of 1290 subjects included in this cross sectional study, were divided in Group-1 with normal thyroid function and Group-2 with subclinical hypothyroidism. Fasting blood samples were drawn for the estimation of serum 25(OH)D, intact parathyroid hormone, total and ionized calcium, inorganic phosphorus, and alkaline phosphatase. BMD at lumbar spine, femur, and forearm was measured. Results: BMD at all sites (radius, femur, and spine) were comparable in both groups. There was no difference in BMD when subjects were divided in tertiles of TSH in either group. In group-1, FT4 and TSH were positively associated with BMD at 33% radius whereas FT3 was negatively associated with BMD at femoral neck in multiple regression analysis after adjustment for age, sex, BMI, 25(OH)D and PTH levels. In group-2, there was no association observed between TSH and BMD at any site. Amongst all study subjects FT4 and FT3 were positively correlated with BMD at lumbar spine and radius respectively among all subjects. Conclusion: TSH does not affect BMD in euthyroid subjects and subjects with subclinical hypothyroidism. Thyroid hormones appear to have more pronounced positive effect on cortical than trabecular bone in euthyroid subjects. PMID:22837919

  13. Agave fructans: their effect on mineral absorption and bone mineral content.

    PubMed

    García-Vieyra, María Isabel; Del Real, Alicia; López, Mercedes G

    2014-11-01

    In this study we investigate the effect that Agave fructans as new prebiotics have on mineral absorption improvement. Forty-eight 12-week-old C57BL/6J mice were used in this study. Forty mice were ovariectomized and eight were sham-operated controls. Mice were fed standard diets or diets supplemented with 10% Agave fructans or 10% inulin fructans. Calcium and magnesium were evaluated as well as their excretion in feces. Osteocalcin levels were also measured; femur structure was studied by scanning electron microscopy. Other parameters, such as food intake, body weight, glucose, and short-chain fatty acid content, were recorded. Calcium in plasma and bone increased in Agave fructan groups (from 53.1 to 56 and 85 mg/L and from 0.402 to 0.474 and 0.478 g/g, respectively) and osteocalcin increased in all fructan groups (>50%). Scanning electron microscopy showed that fructans were able to mitigate bone loss. In conclusion, we demonstrated that supplementation with Agave fructans prevents bone loss and improves bone formation. PMID:25069021

  14. Agave fructans: their effect on mineral absorption and bone mineral content.

    PubMed

    García-Vieyra, María Isabel; Del Real, Alicia; López, Mercedes G

    2014-11-01

    In this study we investigate the effect that Agave fructans as new prebiotics have on mineral absorption improvement. Forty-eight 12-week-old C57BL/6J mice were used in this study. Forty mice were ovariectomized and eight were sham-operated controls. Mice were fed standard diets or diets supplemented with 10% Agave fructans or 10% inulin fructans. Calcium and magnesium were evaluated as well as their excretion in feces. Osteocalcin levels were also measured; femur structure was studied by scanning electron microscopy. Other parameters, such as food intake, body weight, glucose, and short-chain fatty acid content, were recorded. Calcium in plasma and bone increased in Agave fructan groups (from 53.1 to 56 and 85 mg/L and from 0.402 to 0.474 and 0.478 g/g, respectively) and osteocalcin increased in all fructan groups (>50%). Scanning electron microscopy showed that fructans were able to mitigate bone loss. In conclusion, we demonstrated that supplementation with Agave fructans prevents bone loss and improves bone formation.

  15. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein.

    PubMed

    Foster, B L; Ao, M; Willoughby, C; Soenjaya, Y; Holm, E; Lukashova, L; Tran, A B; Wimer, H F; Zerfas, P M; Nociti, F H; Kantovitz, K R; Quan, B D; Sone, E D; Goldberg, H A; Somerman, M J

    2015-09-01

    Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp(-/-) mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp(-/-) mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp(-/-) mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp(-/-) mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified in

  16. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein.

    PubMed

    Foster, B L; Ao, M; Willoughby, C; Soenjaya, Y; Holm, E; Lukashova, L; Tran, A B; Wimer, H F; Zerfas, P M; Nociti, F H; Kantovitz, K R; Quan, B D; Sone, E D; Goldberg, H A; Somerman, M J

    2015-09-01

    Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp(-/-) mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp(-/-) mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp(-/-) mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp(-/-) mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified in

  17. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein

    PubMed Central

    Foster, B.L.; Ao, M.; Willoughby, C.; Soenjaya, Y.; Holm, E.; Lukashova, L.; Tran, A. B.; Wimer, H.F.; Zerfas, P.M.; Nociti, F.H.; Kantovitz, K.R.; Quan, B.D.; Sone, E.D.; Goldberg, H.A.; Somerman, M.J.

    2015-01-01

    Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp−/− mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp−/− mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp−/− mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp−/− mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified

  18. Bone mineral density in MPS IV A (Morquio syndrome type A).

    PubMed

    Kecskemethy, Heidi H; Kubaski, Francyne; Harcke, H T; Tomatsu, Shunji

    2016-02-01

    Mucopolysaccharidosis IV A (MPS IV A), Morquio A, is caused by deficiency in lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS), which is responsible for the catabolism of the glycosaminoglycans (GAGs) keratan sulfate (KS) and chondroitin 6-sulfate (C6S). Accumulation of GAGs results in disrupted cartilage formation and skeletal dysplasia. In this prospective cross-sectional study, bone mineral density (BMD) of the whole body (WB), lumbar spine (LS), and lateral distal femur (LDF) was acquired by dual-energy X-ray absorptiometry (DXA) on patients with MPS IV A. Functional abilities, medical history, Tanner score, and laboratory results were reviewed. Age and sex-matched norms were used to calculate Z-scores. Participants included 18 patients (13 females; 16 were unrelated) with a mean age of 21.4years (3.3 to 40.8years). While every patient was able to bear weight, 9 were full-time ambulators. Whole-body DXA could be obtained on only 6 patients (5 full-time ambulators) because of respiratory compromise caused by the position, presence of hardware, or positioning difficulties. Mean WB Z-score was -2.0 (range-0.3 to -4.1). Technical issues invalidating LS DXA in 8 patients included kyphosis at the thoracolumbar junction resulting in overlap of vertebrae in the posterior-anterior view. Mean LS BMD Z-score in full-time ambulators was -3.4 (range-1.6 to -5.0) and in the non-/partial ambulator was -4.0 (-3.7 to -4.2). Lateral distal femur BMD was acquired on every patient, and average Z-scores were -2 or less at all sites; full-time ambulators exhibited higher BMD. In conclusion, the LDF proved to be the most feasible site to measure in patients with MPS IV A. The higher LDF values in ambulators suggest this should be a consideration in promoting bone health for this group. PMID:26670863

  19. Autologous implantation of BMP2-expressing dermal fibroblasts to improve bone mineral density and architecture in rabbit long bones.

    PubMed

    Ishihara, Akikazu; Weisbrode, Steve E; Bertone, Alicia L

    2015-10-01

    Cell-mediated gene therapy may treat bone fragility disorders. Dermal fibroblasts (DFb) may be an alternative cell source to stem cells for orthopedic gene therapy because of their rapid cell yield and excellent plasticity with bone morphogenetic protein-2 (BMP2) gene transduction. Autologous DFb or BMP2-expressing autologous DFb were administered in twelve rabbits by two delivery routes; a transcortical intra-medullar infusion into tibiae and delayed intra-osseous injection into femoral drill defects. Both delivery methods of DFb-BMP2 resulted in a successful cell engraftment, increased bone volume, bone mineral density, improved trabecular bone microarchitecture, greater bone defect filling, external callus formation, and trabecular surface area, compared to non-transduced DFb or no cells. Cell engraftment within trabecular bone and bone marrow tissue was most efficiently achieved by intra-osseous injection of DFb-BMP2. Our results suggested that BMP2-expressing autologous DFb have enhanced efficiency of engraftment in target bones resulting in a measurable biologic response by the bone of improved bone mineral density and bone microarchitecture. These results support that autologous implantation of DFb-BMP2 warrants further study on animal models of bone fragility disorders, such as osteogenesis imperfecta and osteoporosis to potentially enhance bone quality, particularly along with other gene modification of these diseases.

  20. Influence of the mineral staggering on the elastic properties of the mineralized collagen fibril in lamellar bone.

    PubMed

    Vercher-Martínez, Ana; Giner, Eugenio; Arango, Camila; Fuenmayor, F Javier

    2015-02-01

    In this work, a three-dimensional finite element model of the staggered distribution of the mineral within the mineralized collagen fibril has been developed to characterize the lamellar bone elastic behavior at the sub-micro length scale. Minerals have been assumed to be embedded in a collagen matrix, and different degrees of mineralization have been considered allowing the growth of platelet-shaped minerals both in the axial and the transverse directions of the fibril, through the variation of the lateral space between platelets. We provide numerical values and trends for all the elastic constants of the mineralized collagen fibril as a function of the volume fraction of mineral. In our results, we verify the high influence of the mineral overlapping on the mechanical response of the fibril and we highlight that the lateral distance between crystals is relevant to the mechanical behavior of the fibril and not only the mineral overlapping in the axial direction.

  1. Treatment with eldecalcitol positively affects mineralization, microdamage, and collagen crosslinks in primate bone.

    PubMed

    Saito, Mitsuru; Grynpas, Marc D; Burr, David B; Allen, Matthew R; Smith, Susan Y; Doyle, Nancy; Amizuka, Norio; Hasegawa, Tomoka; Kida, Yoshikuni; Marumo, Keishi; Saito, Hitoshi

    2015-04-01

    Eldecalcitol (ELD), an active form of vitamin D analog approved for the treatment of osteoporosis in Japan, increases lumbar spine bone mineral density (BMD), suppresses bone turnover markers, and reduces fracture risk in patients with osteoporosis. We have previously reported that treatment with ELD for 6 months improved the mechanical properties of the lumbar spine in ovariectomized (OVX) cynomolgus monkeys. ELD treatment increased lumbar BMD, suppressed bone turnover markers, and reduced histomorphometric parameters of both bone formation and resorption in vertebral trabecular bone. In this study, we elucidated the effects of ELD on bone quality (namely, mineralization, microarchitecture, microdamage, and bone collagen crosslinks) in OVX cynomolgus monkeys in comparison with OVX-vehicle control monkeys. Density fractionation of bone powder prepared from lumbar vertebrae revealed that ELD treatment shifted the distribution profile of bone mineralization to a higher density, and backscattered electron microscopic imaging showed improved trabecular bone connectivity in the ELD-treated groups. Higher doses of ELD more significantly reduced the amount of microdamage compared to OVX-vehicle controls. The fractionated bone powder samples were divided according to their density, and analyzed for collagen crosslinks. Enzymatic crosslinks were higher in both the high-density (≥2.0 mg/mL) and low-density (<2.0 mg/mL) fractions from the ELD-treated groups than in the corresponding fractions in the OVX-vehicle control groups. On the other hand, non-enzymatic crosslinks were lower in both the high- and low-density fractions. These observations indicated that ELD treatment stimulated the enzymatic reaction of collagen crosslinks and bone mineralization, but prevented non-enzymatic reaction of collagen crosslinks and accumulation of bone microdamage. Bone anti-resorptive agents such as bisphosphonates slow down bone remodeling so that bone mineralization, bone microdamage

  2. Association of bone mineral density with biochemical markers of bone turnover in hemodialysis children

    PubMed Central

    Hajizadeh, Niloofar; Mehrkash, Mehryar; Fahimi, Daryoosh; Qorbani, Mostafa; Shafa, Nina

    2016-01-01

    Introduction: Although some descriptive and cross-sectional studies have been reported about bone mass in chronic kidney disease (CKD) children, only a few studies investigated markers of bone turnover and the bone mass measurements. Objectives: The aim of this study was to evaluate the association between bone mineral density (BMD) and biochemical markers of bone turnover in hemodialysis (HD) children. Patients and Methods: The children who had received dialysis for at least the preceding 6‐month were included. BMD was measured for total body, the lumbar spine and the femoral neck and the blood samples were tested to assess biochemical bone turnover markers. Results: The study group was comprised of 27 patients with CKD, 9 males (33%) and 18 females (67%) with the mean±SD age of the subjects 14.9±4.5 years. Positive significant correlations of parathyroid hormone (PTH) with total body bone densitometry Z-score, lumbar spine and femoral neck Z-score(r=0.43, P=0.06; r=0.41, P=0.08 and r=0.45, P=0.05, respectively) was noted. In addition, positive significant correlations calcium and total body, lumbar spine and femoral neck Z-score (r=0.52, P=0.02; r=0.28, P=0.23 and r=0.36, P=0.12, respectively) was seen. Interestingly, a positive significant correlation between alkaline phosphatase (ALP) and lumbar spine Z-score was found (r=0.46, P=0.04), while the correlation of this parameter with total body and femoral neck Z-score was not significant (P>0.05). Conclusion: In our study, majority of patients with CKD had low level of BMD. In addition, lower levels of calcium (Ca), phosphorus (P), PTH and 25 (OH) vitamins D in patients with abnormal BMD Z-scores were detected. PMID:27689118

  3. Association of bone mineral density with biochemical markers of bone turnover in hemodialysis children

    PubMed Central

    Hajizadeh, Niloofar; Mehrkash, Mehryar; Fahimi, Daryoosh; Qorbani, Mostafa; Shafa, Nina

    2016-01-01

    Introduction: Although some descriptive and cross-sectional studies have been reported about bone mass in chronic kidney disease (CKD) children, only a few studies investigated markers of bone turnover and the bone mass measurements. Objectives: The aim of this study was to evaluate the association between bone mineral density (BMD) and biochemical markers of bone turnover in hemodialysis (HD) children. Patients and Methods: The children who had received dialysis for at least the preceding 6‐month were included. BMD was measured for total body, the lumbar spine and the femoral neck and the blood samples were tested to assess biochemical bone turnover markers. Results: The study group was comprised of 27 patients with CKD, 9 males (33%) and 18 females (67%) with the mean±SD age of the subjects 14.9±4.5 years. Positive significant correlations of parathyroid hormone (PTH) with total body bone densitometry Z-score, lumbar spine and femoral neck Z-score(r=0.43, P=0.06; r=0.41, P=0.08 and r=0.45, P=0.05, respectively) was noted. In addition, positive significant correlations calcium and total body, lumbar spine and femoral neck Z-score (r=0.52, P=0.02; r=0.28, P=0.23 and r=0.36, P=0.12, respectively) was seen. Interestingly, a positive significant correlation between alkaline phosphatase (ALP) and lumbar spine Z-score was found (r=0.46, P=0.04), while the correlation of this parameter with total body and femoral neck Z-score was not significant (P>0.05). Conclusion: In our study, majority of patients with CKD had low level of BMD. In addition, lower levels of calcium (Ca), phosphorus (P), PTH and 25 (OH) vitamins D in patients with abnormal BMD Z-scores were detected.

  4. Bone mineral density reduction in adolescents with systemic erythematosus lupus: association with lack of vitamin D supplementation.

    PubMed

    Caetano, M; Terreri, M T; Ortiz, T; Pinheiro, M; Souza, F; Sarni, R

    2015-12-01

    The aim of this study is to evaluate body composition and the bone mineral density in female adolescents with juvenile systemic lupus erythematosus. Body composition (BC) and bone mineral density (BMD) were evaluated in an observational cohort study with 35 postmenarcheal adolescent females. The variables studied were as follows: current and cumulative corticosteroid dose, intake of supplements containing calcium and vitamin D, 24-h proteinuria, body mass index (BMI), and height for age (Z-score). BC was assessed using dual-energy X-ray absorptiometry (DXA) at two time points (median interval of 1.2 years). The fat mass index (FMI = fat mass in kilograms divided by the height in meters squared) and lean mass index (LMI = lean mass in kilograms divided by the height in meters squared) were calculated based on the DXA results. BMD was classified according to the International Society of Clinical Densitometry (low BMD for chronological age < -2.0 standard deviations). .The mean age of the subjects was 15.4 ± 1.8 years. Of patients, 54.3 % were normal weight, 22.8 % were overweight, 22.8 % were obese, and 8.6 % had short stature. Low BMD for chronological age was observed in 42.8 % of patients, and 60 % were not taking vitamin D. There was no significant difference between the two time points with respect to FMI, LMI, or body mass index Z-score (ZBMI); however, BMD has decreased significantly (p = 0.011). There was an association between not taking a vitamin D supplement and decreased BMD (p = 0.027). Almost half of the patients had altered nutritional status. The BMD decrease in adolescents with juvenile systemic lupus erythematosus (JSLE) was associated with the lack of vitamin D supplementation, highlighting the importance of well-defined vitamin D supplementation protocols.

  5. Bone mineralization after strontium and fluoride treatment on osteoporosis

    NASA Astrophysics Data System (ADS)

    Rokita, E.; Mutsaers, P. H. A.; Quaedackers, J. A.; Tatoń, G.; de Voigt, M. J. A.

    1999-10-01

    The proton microprobe in combination with proton induced X-ray emission (micro-PIXE) and with proton induced gamma-ray emission (micro-PIGE) are used to determine quantitatively the modulation of inorganic deposits formation by Sr and F ions in a cell culture model. The results indicate that the process may be investigated by the micro-PIXE determination of the amount of calcium deposited. It was found that F-treatment stimulate bone formation at doses much lower than Sr. At high doses an impaired mineralization is found for both elements. It was found that the mechanisms responsible for of F and Sr incorporations are different. The minimal F and Sr concentrations in the medium at which the incorporation may be investigated by micro-PIGE and micro-PIXE amount to ˜0.02 mg/l and <0.08 mg/l, respectively.

  6. Dietary strontium increases bone mineral density in intact zebrafish (Danio rerio): a potential model system for bone research.

    PubMed

    Siccardi, Anthony J; Padgett-Vasquez, Steve; Garris, Heath W; Nagy, Tim R; D'Abramo, Louis R; Watts, Stephen A

    2010-09-01

    Zebrafish (Danio rerio) skeletal bone possesses properties similar to human bone, which suggests that they may be used as a model to study mineralization characteristics of the human Haversian system, as well as human bone diseases. One prerequisite for the use of zebrafish as an alternative osteoporotic bone model is to determine whether their bone displays functional plasticity similar to that observed in other bone models. Strontium citrate was supplemented into a laboratory-prepared diet (45% crude protein) to produce dietary strontium levels of 0%, 0.63%, 1.26%, 1.89%, and 2.43% and fed ad libitum twice daily for 12 weeks to 28-day-old intact zebrafish. Length was determined at 4-week intervals, and both weight and length were recorded at 12 weeks. At 12 weeks, seven zebrafish from each dietary level were analyzed for total bone mineral density by microcomputed tomography. Dietary strontium citrate supplementation significantly (p < 0.05) increased zebrafish whole-body and spinal column bone mineral density. In addition, trace amounts of strontium were incorporated into the scale matrix in those zebrafish that consumed strontium-supplemented diets. These findings suggest that zebrafish bone displays plasticity similar to that reported for other bone models (i.e., rat, mouse, and monkey) that received supplements of strontium compounds and zebrafish should be viewed as an increasingly valuable bone model. PMID:20874492

  7. The effects of different levels of calcium supplementation on the bone mineral status of postpartum lactating Chinese women: a 12-month randomised, double-blinded, controlled trial.

    PubMed

    Zhang, Zhe-Qing; Chen, Yu-Ming; Wang, Ruo-Qin; Huang, Zhen-Wu; Yang, Xiao-Guang; Su, Yi-Xiang

    2016-01-14

    Increasing dietary Ca intake may prevent the excessive mobilisation of bone mineral in nursing mothers. We aimed to investigate whether higher Ca intake could positively modulate the bone mineral changes in Chinese postpartum lactating women. The study was a 12-month randomised, double-blinded, parallel group trial conducted over 12 months. A total of 150 postpartum women were randomly selected to receive either 40 g of milk powder containing 300 mg of Ca and 5 μg of vitamin D (Low-Ca group) or same milk powder additionally fortified with 300 mg of Ca (Mid-Ca group) or 600 mg of Ca (High-Ca group). Bone mineral density (BMD) for the whole body, the lumbar spine, the total left hip and its sub-regions was measured using dual-energy X-ray absorptiometry. A total of 102 subjects completed the whole trial. The duration of total lactating time was 7·9 (SD 2·8) months on average. The intention-to-treat analysis yielded the following mean percentage changes in BMD for the whole body, the lumbar spine and the total left hip, respectively: -0·93 (SD 1·97), 2·11 (SD 4·90) and -1·60 (SD 2·65)% for the Low-Ca group; -0·56 (SD 1·89), 2·21 (SD 3·77) and -1·43 (SD 2·30)% for the Mid-Ca group; and -0·44 (SD 1·67), 2·32 (SD 4·66) and -0·95 (SD 4·08)% for the High-Ca group. The differences between the groups were not statistically significant (P: 0·5-0·9). The results of the complete case analysis were similar. In sum, we found no significant differences in the bone mineral changes from baseline to 12 months in postpartum lactating women consuming milk powder fortified with different levels of Ca.

  8. Dual X-ray absorptiometry

    NASA Astrophysics Data System (ADS)

    Altman, Albert; Aaron, Ronald

    2012-07-01

    Dual X-ray absorptiometry is widely used in analyzing body composition and imaging. Both the method and its limitations are related to the Compton and photoelectric contributions to the X-ray attenuation coefficients of materials.

  9. Unique micro- and nano-scale mineralization pattern of human osteogenesis imperfecta type VI bone.

    PubMed

    Fratzl-Zelman, Nadja; Schmidt, Ingo; Roschger, Paul; Roschger, Andreas; Glorieux, Francis H; Klaushofer, Klaus; Wagermaier, Wolfgang; Rauch, Frank; Fratzl, Peter

    2015-04-01

    Osteogenesis imperfecta (OI) is a heterogeneous group of inheritable connective tissue disorders characterized by mutation in genes involved in collagen synthesis and leading to increased bone fragility, low bone mass, impaired bone material properties and abnormally high bone matrix mineralization. Recessive OI type VI is caused by mutation in SERPINF1 leading to a loss-of-function of pigment epithelium-derived factor (PEDF) a collagen-binding protein with potent antiangiogenic activity. Affected patients develop a severe OI phenotype with a striking histological characteristic, rare in other OI types, of an excess of osteoid tissue and prolonged mineralization lag time. To get insights into matrix mineralization, we evaluated biopsies from 9 affected children by quantitative and by high-resolution backscattered electron imaging and assessed bone mineralization density distribution. Thickness, shape and arrangement of mineral particles were measured in a subset of 4 patients by synchrotron small angle X-ray scattering. Typical calcium content in the bone matrix was found to be increased compared to controls, even exceeding values found previously in OI patients with collagen-gene mutations. A main characteristic however, is the coexistence of this highly mineralized bone matrix with seams showing abnormally low mineral content. Atypical collagen fibril organization was found in the perilacunar region of young osteocytes, suggesting a disturbance in the early steps of mineralization. These observations are consistent with the presence of a heterogeneous population of mineral particles with unusual size, shape and arrangement, especially in the region with lower mineral content. The majority of the particles in the highly mineralized bone areas were less disorganized, but smaller and more densely packed than in controls and in previously measured OI patients. These data suggest that the lack of PEDF impairs a proper osteoblast-osteocyte transition and consequently

  10. [A population survey on bone mineral density in a fishing village in Wakayama prefecture. (Part 1) Distribution of bone mineral density by sex and age based on a representative sample of the community].

    PubMed

    Kasamatsu, T; Yoshimura, N; Morioka, S; Sugita, K; Hashimoto, T

    1996-02-01

    To establish reference values for bone mineral density (BMD), a population survey was carried out in a fishing community in Wakayama Prefecture. The BMD measurements of the lumbar spine (L2-L4) and proximal femur (femoral neck, trochanter and Ward's triangle area) were performed by sex and age, using dual-energy X-ray absorptiometry. Four hundred subjects, aged 40 to 79 years, were recruited randomly to give 50 persons in each of eight age-sex strata from a list of 2,261 residents (1,028 men and 1,233 women) living in a fishing village. The validity of sampling methods was assessed using a questionnaire about lifestyle factors, which was used for all residents aged from 40 to 79 years in the baseline survey. There were no significant differences between the subjects for BMD measurements and all the residents of the community in the frequencies of past history of diseases, healthy habits, food intakes, and rates of smoking, alcohol drinking, coffee and green tea consumption. These findings suggested that the present study population could be considered representative of samples obtained from the entire population in the fishing community. The results of BMD measurements in these subjects, who were selected at random, showed that except for a slightly high BMD of the lumbar spine in men in their 60's, the mean BMD of the lumbar spine and the three proximal segments of the femur decreased with increasing age in both sexes.

  11. The Effects of Hypergravity and Adrenalectomy on Bone Mineral Content, Urine Calcium and Body Mass in Rats

    NASA Technical Reports Server (NTRS)

    Lau, A.; Ramirez, J.; Melson, E.; Moran, M.; Baer, L.; Arnaud, S.; Wade, C.; Girten, B.; Dalton, Bonnie (Technical Monitor)

    2001-01-01

    The effects of 14 days of increased gravitational load, and the absence of adrenal stress hormones on total body bone mineral content (BMC) were examined in male Sprague-Dawley rats. Centrifugation at 2 Gs (2G) was used to increase the gravitational load, and bilateral adrenalectomy (ADX) was used to eliminate the production of adrenal stress hormones. Stationary groups at 1 G (1G) and sham operated (SHAM) animals served as controls. Thirty rats (n=6 or 8) made up the four experimental groups (1G SHAM, 1G ADX, 2G SHAM and 2G ADX). BMC was assessed by dual energy x-ray absorptiometry (DXA) which was performed to determine the total body bone mineral content, and also through bone ashing of the left femur and the left humerus. Activity was determined through biotelemetry, also body mass and food intake were measured. Multi-factorial analysis of variance (MANCOVA) and Newman Keuls post hoc tests were used to analyze significant effects (p is less than 0.05) for the primary variables. Results from both DXA and the ashed femur indicated that BMC decreased significantly with increased G for both the SHAM and ADX groups. The BMC determined by DXA for the 1G ADX group was also significantly lower than the 1G SHAM group, however the 2G SHAM and 2G ADX groups were not significantly different. However, the bone ashing results showed the femur differed significantly only between the rates of centrifugation and not between the ADX and SHAM. The humerus showed no significant difference between any of the groups. There was a significant decrease in body mass with increased G and there was no ADX effect on body mass. When DXA BMC was normalized for body mass changes, there were no significant group differences. However, with bone ashing, the femur BMC/BW still showed significant difference between rates of centrifugation, with the 2G group being lower. Activity level decreased with body mass, and food intake data showed there was significant hypophagia during the first few days of

  12. Higher Dietary Acidity is Associated with Lower Bone Mineral Density in Postmenopausal Iranian Women, Independent of Dietary Calcium Intake.

    PubMed

    Shariati-Bafghi, Seyedeh-Elaheh; Nosrat-Mirshekarlou, Elaheh; Karamati, Mohsen; Rashidkhani, Bahram

    2014-01-01

    Findings of studies on the link between dietary acid-base balance and bone mass are relatively mixed. We examined the association between dietary acid-base balance and bone mineral density (BMD) in a sample of Iranian women, hypothesizing that a higher dietary acidity would be inversely associated with BMD, even when dietary calcium intake is adequate. In this cross-sectional study, lumbar spine and femoral neck BMDs of 151 postmenopausal women aged 50-85 years were measured using dual-energy x-ray absorptiometry. Dietary intakes were assessed using a validated food frequency questionnaire. Renal net acid excretion (RNAE), an estimate of acid-base balance, was then calculated indirectly from the diet using the formulae of Remer (based on dietary intakes of protein, phosphorus, potassium, and magnesium; RNAERemer) and Frassetto (based on dietary intakes of protein and potassium; RNAEFrassetto), and was energy adjusted by the residual method. After adjusting for potential confounders, multivariable adjusted means of the lumbar spine BMD of women in the highest tertiles of RNAERemer and RNAEFrassetto were significantly lower than those in the lowest tertiles (for RNAERemer: mean difference -0.084 g/cm2; P=0.007 and for RNAEFrassetto: mean difference -0.088 g/cm2; P=0.004). Similar results were observed in a subgroup analysis of subjects with dietary calcium intake of >800 mg/day. In conclusion, a higher RNAE (i. e. more dietary acidity), which is associated with greater intake of acid-generating foods and lower intake of alkali-generating foods, may be involved in deteriorating the bone health of postmenopausal Iranian women, even in the context of adequate dietary calcium intake.

  13. Intramuscular neridronate in postmenopausal women with low bone mineral density.

    PubMed

    Adami, Silvano; Gatti, Davide; Bertoldo, Francesco; Sartori, Leonardo; Di Munno, Ombretta; Filipponi, Paolo; Marcocci, Claudio; Frediani, Bruno; Palummeri, Ernesto; Fiore, Carmelo Erio; Costi, Daniele; Rossini, Maurizio

    2008-11-01

    Compliance to osteoporosis treatment with oral bisphosphonates is very poor. Intermittent intravenous bisphosphonate is a useful alternative, but this route is not readily available. Neridronate, a nitrogen-containing bisphosphonate that can be given intramuscularly (IM), was tested in a phase 2 clinical trial in 188 postmenopausal osteoporotic women randomized to IM treatment with 25 mg neridronate every 2 weeks, neridronate 12.5 or 25 mg every 4 weeks, or placebo. All patients received calcium and vitamin D supplements. The patients were treated over 12 months with 2-year posttreatment follow-up. After 12-month treatment, all three doses were associated with significant bone mineral density (BMD) increases at both the total hip and spine. A significant dose-response relationship over the three doses was observed for the BMD changes at the total hip but not at the spine. Bone alkaline phosphatase decreased significantly by 40-55% in neridronate-treated patients, with an insignificant dose-response relationship. Serum type I collagen C-telopeptide decreased by 58-79%, with a significant dose-response relationship (P < 0.05). Two years after treatment discontinuation, BMD declined by 1-2% in each dose group, with values still significantly higher than baseline at both the spine and the total hip. Bone turnover markers progressively increased after treatment discontinuation, and on the second year of follow-up the values were significantly higher than pretreatment baseline. The results of this study indicate that IM neridronate might be of value for patients intolerant to oral bisphosphonates and unwilling or unable to undergo intravenous infusion of bisphosphonates.

  14. Age-related differences in the bone mineralization pattern of rats following exercise

    SciTech Connect

    McDonald, R.; Hegenauer, J.; Saltman, P.

    1986-07-01

    The effect of 12 weeks of treadmill exercise on the mineralization of trabecular and cortical bone was studied in rats 7, 14, and 19 months of age. Bone mineralization was evaluated by measuring concentrations of Ca, Mg, and hydroxyproline as well as uptake of 45Ca concentration in the femur, humerus, rib and calvaria. The 7- and 14-month-old rats increased mineralization in those cortical bones directly involved in exercise. The 19-month animal responded to exercise by increasing mineralization in all bones examined, including the nonweight bearing trabecular calvaria and cortical rib. From these data, it is apparent that the older animals undergo a total skeletal mineralization in response to exercise compared with local adaptation in the younger animal. Further, we provide evidence to support the use of the rat as a model in which to study mammalian bone physiology during the aging process.

  15. Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans

    NASA Technical Reports Server (NTRS)

    Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.

    2004-01-01

    Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.

  16. Mineral-binding proteoglycans of fetal porcine calvarial bone.

    PubMed

    Goldberg, H A; Domenicucci, C; Pringle, G A; Sodek, J

    1988-08-25

    To provide a more definitive characterization of the hydroxylapatite-associated proteoglycans (HAPG) of bone, proteins were extracted from the mineralized matrix of fetal porcine calvaria with 0.5 M EDTA in the absence of guanidine HCl. The small proteoglycans obtained in the extract were fractionated by gel filtration on Sepharose CL-6B, purified by ion-exchange chromatography on Polyanion matrix (fast protein liquid chromatography), and then separated into three major populations of chondroitin sulfate proteoglycans by chromatography on hydroxylapatite, all in the presence of 7 M urea. Based on immunological and chemical properties, two classes of bone proteoglycan were resolved. In one class (HAPG1), the proteoglycan and specific CNBr-derived peptides cross-reacted with three monoclonal antibodies that recognize different epitopes of the protein core of bovine skin proteodermatan sulfate. The other class of proteoglycan included two species (HAPG2, HAPG3) which were not recognized by these antibodies. In addition, these proteoglycans did not stain with Coomassie Blue R-250 nor with silver stain nor did they bind to nitrocellulose membranes used in Western blots. However, the cationic dye Stains-all stained both HAPG2 and HAPG3; the protein cores of these proteoglycans were stained a characteristic turquoise blue, whereas the protein core of HAPG1 was stained pink. The average Mr values of the bone proteoglycans, from gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis were: HAPG1, 120,000, with a protein core (chondroitinase AC-digested) of 45,000; HAPG2 and HAPG3, 110,000, with protein cores of 37,000-38,000. On 15% polyacrylamide gel electrophoresis, the protein cores of HAPG2 and HAPG3 migrated with an Mr 30,000, while HAPG1 protein core was unchanged (Mr 45,000). Based on amino acid analysis, the protein chains of HAPG2 and HAPG3 appear to be identical, although minor differences in the relative amount of glucosamine were evident. In contrast

  17. Genetically Low Vitamin D Levels, Bone Mineral Density, and Bone Metabolism Markers: a Mendelian Randomisation Study.

    PubMed

    Li, Shan-Shan; Gao, Li-Hong; Zhang, Xiao-Ya; He, Jin-We; Fu, Wen-Zhen; Liu, Yu-Juan; Hu, Yun-Qiu; Zhang, Zhen-Lin

    2016-01-01

    Low serum 25-hydroxyvitamin D (25OHD) is associated with osteoporosis and osteoporotic fracture, but it remains uncertain whether these associations are causal. We conducted a Mendelian randomization (MR) study of 1,824 postmenopausal Chinese women to examine whether the detected associations between serum 25OHD and bone mineral density (BMD) and bone metabolism markers were causal. In observational analyses, total serum 25OHD was positively associated with BMD at lumbar spine (P = 0.003), femoral neck (P = 0.006) and total hip (P = 0.005), and was inversely associated with intact parathyroid hormone (PTH) (P = 8.18E-09) and procollagen type 1 N-terminal propeptide (P1NP) (P = 0.020). By contract, the associations of bioavailable and free 25OHD with all tested outcomes were negligible (all P > 0.05). The use of four single nucleotide polymorphisms, GC-rs2282679, NADSYN1-rs12785878, CYP2R1-rs10741657 and CYP24A1-rs6013897, as candidate instrumental variables in MR analyses showed that none of the two stage least squares models provided evidence for associations between serum 25OHD and either BMD or bone metabolism markers (all P > 0.05). We suggest that after controlling for unidentified confounding factors in MR analyses, the associations between genetically low serum 25OHD and BMD and bone metabolism markers are unlikely to be causal. PMID:27625044

  18. Genetically Low Vitamin D Levels, Bone Mineral Density, and Bone Metabolism Markers: a Mendelian Randomisation Study

    PubMed Central

    Li, Shan-Shan; Gao, Li-Hong; Zhang, Xiao-Ya; He, Jin-We; Fu, Wen-Zhen; Liu, Yu-Juan; Hu, Yun-Qiu; Zhang, Zhen-Lin

    2016-01-01

    Low serum 25-hydroxyvitamin D (25OHD) is associated with osteoporosis and osteoporotic fracture, but it remains uncertain whether these associations are causal. We conducted a Mendelian randomization (MR) study of 1,824 postmenopausal Chinese women to examine whether the detected associations between serum 25OHD and bone mineral density (BMD) and bone metabolism markers were causal. In observational analyses, total serum 25OHD was positively associated with BMD at lumbar spine (P = 0.003), femoral neck (P = 0.006) and total hip (P = 0.005), and was inversely associated with intact parathyroid hormone (PTH) (P = 8.18E-09) and procollagen type 1 N-terminal propeptide (P1NP) (P = 0.020). By contract, the associations of bioavailable and free 25OHD with all tested outcomes were negligible (all P > 0.05). The use of four single nucleotide polymorphisms, GC-rs2282679, NADSYN1-rs12785878, CYP2R1-rs10741657 and CYP24A1-rs6013897, as candidate instrumental variables in MR analyses showed that none of the two stage least squares models provided evidence for associations between serum 25OHD and either BMD or bone metabolism markers (all P > 0.05). We suggest that after controlling for unidentified confounding factors in MR analyses, the associations between genetically low serum 25OHD and BMD and bone metabolism markers are unlikely to be causal. PMID:27625044

  19. Basketball Affects Bone Mineral Density Accrual in Boys More Than Swimming and Other Impact Sports: 9-mo Follow-Up.

    PubMed

    Agostinete, Ricardo R; Lynch, Kyle R; Gobbo, Luís A; Lima, Manoel Carlos Spiguel; Ito, Igor H; Luiz-de-Marco, Rafael; Rodrigues-Junior, Mario A; Fernandes, Romulo A

    2016-01-01

    The objective of this study was to analyze the effect of different sports on bone mineral density (BMD) accrual among male adolescents during a 9-mo follow-up. The sample was composed of 82 boys (control [n = 13], basketball [n = 14], karate [n = 9], soccer [n = 18], judo [n = 12], and swimming [n = 16]) who were followed up for 9 mo (from October 2013 to August 2014). BMD (gram per square centimeter) was assessed at baseline and follow-up using a dual-energy X-ray absorptiometry scanner, whereas somatic maturation was estimated through the use of the peak height velocity. Vitamin D consumption was assessed by questionnaire. After 9 mo of follow-up, all groups (including the control group) presented significant BMD accrual (overall sample: 4.5% in the whole body). On the other hand, the basketball group presented higher BMD accrual in the upper limbs (17.6%) than the control group (7.2%). A similar difference was observed in whole-body BMD (control group: 4.1% vs basketball group: 7.1%). The basketball group had significantly higher BMD gains than the control group and other sports groups. PMID:27174316

  20. Bone mineral density distribution in the proximal femur and its relationship to morphologic factors in progressed unilateral hip osteoarthritis.

    PubMed

    Kobayashi, Naomi; Inaba, Yutaka; Yukizawa, Yohei; Takagawa, Shu; Ike, Hiroyuki; Kubota, So; Naka, Takuma; Saito, Tomoyuki

    2015-07-01

    Although an adverse relationship between osteoporosis and osteoarthritis (OA) has been reported, it remains controversial. In most previous reports of OA, bone mineral density (BMD) changes in the subtrochanteric region have not been clarified, whilst BMD of the femoral neck and trochanteric region has been well investigated. In our current study, we investigated the BMD ratio compared to the contralateral side in the whole proximal femurs of hip OA patients. We aimed to clarify the morphologic factor that may influence these BMD ratios. We performed dual energy X-ray absorptiometry (DEXA) analysis of 69 hip joints from unilateral progressed OA cases. The minimum joint space, center edge angle, Sharp angle, acetabular head index, neck-shaft angle, and leg length discrepancy were also measured as radiographic factors. The correlation between BMD ratio and radiographic morphologic factors was then evaluated by logistic regression. The BMD ratio was higher in the femoral neck than in the distal region. In terms of radiographic factors, the neck-shaft angle was revealed to influence the decreased BMD ratio in the distal subtrochanteric part, whilst the leg length discrepancy and Sharp angle showed a relationship with the increased BMD ratio in the proximal neck region. The discrepancy in the BMD ratio between the femoral neck and the distal subtrochanteric region in the proximal femur is influenced by several morphologic factors.

  1. Association of the g.27563G>A osteoprotegerin genetic polymorphism with bone mineral density in Chinese women.

    PubMed

    Liu, Y P; Zhao, D W; Wang, W M; Wang, B J; Zhang, Y; Li, Z G

    2014-02-14

    Osteoporosis is a common multifactorial disease in postmenopausal women. This study aimed to investigate the association of the g.27563G>A osteoprotegerin (OPG) genetic polymorphism with bone mineral density (BMD) and osteoporosis. A case-control study was carried out with 435 osteoporosis postmenopausal women cases and 442 age-matched healthy controls. The BMD at the femoral neck hip, lumbar spine (L₂₋₄), and total hip were assessed by Norland XR-46 dual-energy X-ray absorptiometry. The genotypes of the g.27563G>A genetic polymorphism were detected by created restriction site-polymerase chain reaction and verified by DNA sequencing methods. We detected that the g.27563G>A genetic polymorphism was a non-synonymous mutation that resulted in an arginine (Arg) to glutamine (Gln) amino acid replacement (p.Arg333Gln). Significant differences were found in the BMD of the femoral neck hip, lumbar spine (L₂₋₄), and total hip among different genotypes of the g.27563G>A genetic polymorphism. Subjects with the genotype GG had significantly higher BMD values than those with genotypes GA and AA (P < 0.05). Our data indicated that the A allele of the g.27563G>A genetic polymorphism in OPG could be associated with lower BMD values in the Chinese postmenopausal women evaluated, and that it might be an increased risk factor for osteoporosis.

  2. The effect of menarche age, parity and lactation on bone mineral density in premenopausal ambulatory multiple sclerosis patients.

    PubMed

    Sioka, Chrissa; Fotopoulos, Andreas; Papakonstantinou, Stilianos; Georgiou, Athanasia; Pelidou, Sygliti-Henrietta; Kyritsis, Athanasios P; Kalef-Ezra, John A

    2015-07-01

    Although pregnancy and breast-feeding do not have any deleterious effect on disease activity in female multiple sclerosis (MS) patients, their role on bone mineral density (BMD) and osteoporosis risk is unknown. We investigated the role of age at menarche, parity and lactation on BMD expressed as percentage of the mean BMD (%BMD) in 46 pre-menopausal ambulatory female MS patients using dual-energy X-ray absorptiometry (DXA) scans in lumbar spine (LS) and hip. MS female patients with age at menarche ≥13 years old had reduced %BMD compared to those with menarche age <13 years (95.2±10.7 vs 102.1±13.3, p=0.05 in LS; 90.5±12.6 vs 99.8±12.6, p=0.02 in hip). Parity did not result in any statistically significant changes in either LS or hip. Patients that breastfed their offspring compared to those that did not had significantly lower BMD in both LS (93.9±9.3 vs 110.7±15.6, p=0.004) and hip (91.6±10.7 vs 105.6±15.3, p=0.02). MS female patients with menarche at age≥13 years and those who breastfed their offspring may have reduced BMD. Larger studies are needed to verify these findings and establish a definite role of menarche age and breast feeding with BMD.

  3. Bone mineral density in postmenopausal Mexican-Mestizo women with normal body mass index, overweight, or obesity.

    PubMed

    Méndez, Juan Pablo; Rojano-Mejía, David; Pedraza, Javier; Coral-Vázquez, Ramón Mauricio; Soriano, Ruth; García-García, Eduardo; Aguirre-García, María Del Carmen; Coronel, Agustín; Canto, Patricia

    2012-12-30

    OBJECTIVE: Obesity and osteoporosis are two important public health problems that greatly impact mortality and morbidity. Several similarities between these complex diseases have been identified. The aim of this study was to analyze if different body mass indexes (BMIs) are associated with variations in bone mineral density (BMD) among postmenopausal Mexican-Mestizo women with normal weight, overweight, or different degrees of obesity. METHODS: We studied 813 postmenopausal Mexican-Mestizo women. A structured questionnaire for risk factors was applied. Height and weight were used to calculate BMI, whereas BMD in the lumbar spine (LS) and total hip (TH) was measured by dual-energy x-ray absorptiometry. We used ANCOVA to examine the relationship between BMI and BMDs of the LS, TH, and femoral neck (FN), adjusting for confounding factors. RESULTS: Based on World Health Organization criteria, 15.13% of women had normal BMI, 39.11% were overweight, 25.96% had grade 1 obesity, 11.81% had grade 2 obesity, and 7.99% had grade 3 obesity. The higher the BMI, the higher was the BMD at the LS, TH, and FN. The greatest differences in size variations in BMD at these three sites were observed when comparing women with normal BMI versus women with grade 3 obesity. CONCLUSIONS: A higher BMI is associated significantly and positively with a higher BMD at the LS, TH, and FN.

  4. Basketball Affects Bone Mineral Density Accrual in Boys More Than Swimming and Other Impact Sports: 9-mo Follow-Up.

    PubMed

    Agostinete, Ricardo R; Lynch, Kyle R; Gobbo, Luís A; Lima, Manoel Carlos Spiguel; Ito, Igor H; Luiz-de-Marco, Rafael; Rodrigues-Junior, Mario A; Fernandes, Romulo A

    2016-01-01

    The objective of this study was to analyze the effect of different sports on bone mineral density (BMD) accrual among male adolescents during a 9-mo follow-up. The sample was composed of 82 boys (control [n = 13], basketball [n = 14], karate [n = 9], soccer [n = 18], judo [n = 12], and swimming [n = 16]) who were followed up for 9 mo (from October 2013 to August 2014). BMD (gram per square centimeter) was assessed at baseline and follow-up using a dual-energy X-ray absorptiometry scanner, whereas somatic maturation was estimated through the use of the peak height velocity. Vitamin D consumption was assessed by questionnaire. After 9 mo of follow-up, all groups (including the control group) presented significant BMD accrual (overall sample: 4.5% in the whole body). On the other hand, the basketball group presented higher BMD accrual in the upper limbs (17.6%) than the control group (7.2%). A similar difference was observed in whole-body BMD (control group: 4.1% vs basketball group: 7.1%). The basketball group had significantly higher BMD gains than the control group and other sports groups.

  5. Association between bone mineralization, body composition, and cardiorespiratory fitness level in young Australian men.

    PubMed

    Liberato, Selma Coelho; Maple-Brown, Louise; Bressan, Josefina

    2015-01-01

    The critical age for attainment of peak bone mineralization is however 20-30 yr, but few studies have investigated bone mineralization and its association with body composition and cardiorespiratory fitness level in young men. This study aimed to investigate relationships between age, bone mineral measurements, body composition measurements, and cardiorespiratory fitness level in a group of young healthy Australian men. Thirty-five healthy men aged 18-25 yr had anthropometric measures, body composition, and cardiorespiratory fitness level assessed. Bone mineral content was significantly associated with height, body mass and lean mass, and bone mineral density positively correlated with lean mass and body mass. Bone mineral measurements did not correlate with fat mass, percentage of fat mass, or cardiorespiratory fitness level. Age was directly correlated with total body mass, body fat, and percentage of fat mass. Body mineral measurements correlated with lean mass but not with fat mass or with cardiorespiratory fitness in this group of young healthy men. Positive association between body fat and age in such young group suggests that more studies with young men are warranted and may help inform strategies to optimize increase in bone mineral measurements.

  6. Effects of Statins on Bone Mineral Density and Fracture Risk

    PubMed Central

    Wang, Zongze; Li, Ying; Zhou, Fengxin; Piao, Zhe; Hao, Jian

    2016-01-01

    Abstract Although observational studies have identified the protective effect of statins on bone health, the effects remain controversial in randomized controlled trials (RCTs). We conducted a meta-analysis of RCTs to evaluate the effects of statins on bone mineral density (BMD) and fracture risk among adults. We searched electronic databases of Medline, Embase, and the Cochrane Central Register of Controlled Trials (CENTRAL) and conducted a bibliography review to identify articles published until May, 2015. Studies included in this meta-analysis should be randomized controlled trials conducted in adults, using statins in the intervention group. Information on changes in BMD or odds ratio, relative risk or hazard ratio (HR) for fracture risk with the corresponding 95% confidence interval (CI) was provided. Two investigators independently reviewed the title or abstract, further reviewed the full-texts and extracted information on study characteristics and study outcomes. Net change estimates of BMD and pooled HR of fracture risk comparing the intervention group with the control group were estimated across trials using random-effects models. Of the relevant 334 citations, 7 trials (including 27,900 randomized participants in total) meeting the eligibility criteria were included. Of the 7 trials, 5 were conducted to assess the association of statins use with BMD change and 2 with fracture risk. Compared with the control group, statins use was associated with significant increase in BMD of 0.03 g/cm2 (95% CI: 0.006, 0.053; I2 = 99.2%; P < 0.001), but null association with fracture risk, with the pooled HR of 1.00 (95% CI: 0.87, 1.15; I2 = 0; P = 0.396). Sensitivity analyses revealed that the associations were consistent and robust. The effect of statins use on bone health among subpopulation could not be identified due to limited number of trials. These findings provide evidence that statins could be used to increase BMD other than decreasing fracture

  7. Preliminary study report: topological texture features extracted from standard radiographs of the heel bone are correlated with femoral bone mineral density

    NASA Astrophysics Data System (ADS)

    Boehm, H. F.; Lutz, J.; Koerner, M.; Notohamiprodjo, M.; Reiser, M.

    2009-02-01

    With the growing number of eldery patients in industrialized nations the incidence of geriatric, i.e. osteoporotic fractures is steadily on the rise. It is of great importance to understand the characteristics of hip fractures and to provide diagnostic tests for the assessment of an individual's fracture-risk that allow to take preventive action and give therapeutic advice. At present, bone-mineral-density (BMD) obtained from DXA (dual-energy x-ray-absorptiometry) is the clinical standard of reference for diagnosis and follow-up of osteoporosis. Since availability of DXA - other than that of clinical X-ray imaging - is usually restricted to specialized medical centers it is worth trying to implement alternative methods to estimate an individual's BMD. Radiographs of the peripheral skeleton, e.g. the ankle, range among the most ordered diagnostic procedures in surgery for exclusion or confirmation of fracture. It would be highly beneficial if - as a by-product of conventional imaging - one could obtain a quantitative parameter that is closely correlated with femoral BMD in addition to the original diagnostic information, e.g. fracture status at the peripheral site. Previous studies could demonstrate a correlation between calcaneal BMD and osteoporosis. The objective of our study was to test the hypothesis that topological analysis of calcaneal bone texture depicted by a lateral x-ray projection of the ankle allows to estimate femoral BMD. Our analysis on 34 post-menopausal patients indicate that texture properties based on graylevel topology in calcaneal x-ray-films are closely correlated with BMD at the hip and may qualify as a substitute indicator of femoral fracture risk.

  8. Relationship between Bone-Specific Physical Activity Scores and Measures for Body Composition and Bone Mineral Density in Healthy Young College Women

    PubMed Central

    Kim, SoJung; So, Wi-Young; Kim, Jooyoung; Sung, Dong Jun

    2016-01-01

    Objective The purpose of this cross-sectional study was to investigate the relationship between bone-specific physical activity (BPAQ) scores, body composition, and bone mineral density (BMD) in healthy young college women. Methods Seventy-three college women (21.7 ± 1.8 years; 162.1 ± 4.6 cm; 53.9 ± 5.8 kg) between the ages of 19 and 26 years were recruited from the universities in Seoul and Gyeonggi province, South Korea. We used dual energy X-ray absorptiometry to measure the lumbar spine (L2-L4) and proximal femur BMD (left side; total hip, femoral neck). The BPAQ scores (past, pBPAQ; current, cBPAQ; total, tBPAQ) were used to obtain a comprehensive account of lifetime physical activity related to bone health. We used X-scan plus II instrumentation to measure height (cm), weight (kg), fat free mass (FFM, kg), percent body fat (%), and body mass index (BMI). Participants were asked to record their 24-hour food intake in a questionnaire. Results There were positive correlations between BPAQ scores and total hip (pBPAQ r = 0.308, p = 0.008; tBPAQ, r = 0.286, p = 0.014) and FN BMD (pBPAQ r = 0.309, p = 0.008; tBPAQ, r = 0.311, p = 0.007), while no significant relationships were found in cBPAQ (p > 0.05). When FFM, Vitamin D intake, cBPAQ, pBPAQ, and tBPAQ were included in a stepwise multiple linear regression analysis, FFM and pBPAQ were predictors of total hip, accounting for 16% (p = 0.024), while FFM and tBPAQ predicted 14% of the variance in FN (p = 0.015). Only FFM predicted 15% of the variance in L2-L4 (p = 0.004). There was a positive correlation between Vitamin D intake and L2-L4 (p = 0.025), but other dietary intakes variables were not significant (p > 0.05). Conclusions BPAQ-derived physical activity scores and FFM were positively associated with total hip and FN BMD in healthy young college women. Our study suggests that osteoporosis awareness and effective bone healthy behaviors for college women are required to prevent serious bone diseases later in

  9. The use of dual-energy x-ray absorptiometry in animals.

    PubMed

    Grier, S J; Turner, A S; Alvis, M R

    1996-01-01

    The use of dual-energy absorptiometry (DXA) to measure bone mineral content (BMC) and bone mineral density (BMD) is widespread in humans and has been adapted to animals because of the need to examine bone and body composition in longitudinal studies. In this review, the indications and techniques for DXA in small-sized animals (rodents, cats, and rabbits) and large-sized animals (dogs, swine, nonhuman primates, sheep, and horses) are discussed. Now that software has been developed for measuring BMD in small laboratory animals, the most frequent use of DXA in animals is in rats. An ultrahigh-resolution mode of acquisition is used for their small bones but also is necessary for other small-sized animals such as rabbits and cats. In larger-sized animals such as dogs, pigs, and sheep, software used in humans has been adapted successfully to measure BMC/BMD and body composition. The human spine and left and right hip protocols are adapted easily to animals of this size, and the software for body composition has been adapted to dogs. Measurement of bone mass around metallic implants is possible in animals and most studies have involved dogs. To ensure precision of DXA in the noninvasive measurement of BMD in animals, attention to positioning and ability of the operator to define the same region of interest using clearly defined anatomical landmarks on the scan image cannot be overemphasized. This is one of the essential requirements for successful densitometry in animals. PMID:8850365

  10. Serum leptin, bone mineral density and the healing of long bone fractures in men with spinal cord injury.

    PubMed

    Wang, Lei; Liu, Linjuan; Pan, Zhanpeng; Zeng, Yanjun

    2015-11-16

    Previously reported fracture rates in patients with spinal cord injury range from 1% to 20%. However, the exact role of spinal cord injury in bone metabolism has not yet been clarified. In order to investigate the effects of serum leptin and bone mineral density on the healing of long bone fractures in men with spinal cord injury, 15 male SCI patients and 15 matched controls were involved in our study. The outcome indicated that at 4 and 8 weeks after bone fracture, callus production in patients with spinal cord injury was lower than that in controls. Besides, bone mineral density was significantly reduced at 2, 4 and 8 weeks. In addition, it was found that at each time point, patients with spinal cord injury had significantly higher serum leptin levels than controls and no association was found between serum leptin level and bone mineral density of lumbar vertebrae. Moreover, bone mineral density was positively correlated with bone formation in both of the groups. These findings suggest that in early phases i.e. week 4 and 8, fracture healing was impaired in patients with spinal cord injury and that various factors participated in the complicated healing process, such as hormonal and mechanical factors.

  11. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes.

    PubMed

    Morgan, Jennifer L L; Skulan, Joseph L; Gordon, Gwyneth W; Romaniello, Stephen J; Smith, Scott M; Anbar, Ariel D

    2012-06-19

    The ability to rapidly detect changes in bone mineral balance (BMB) would be of great value in the early diagnosis and evaluation of therapies for metabolic bone diseases such as osteoporosis and some cancers. However, measurements of BMB are hampered by difficulties with using biochemical markers to quantify the relative rates of bone resorption and formation and the need to wait months to years for altered BMB to produce changes in bone mineral density large enough to resolve by X-ray densitometry. We show here that, in humans, the natural abundances of Ca isotopes in urine change rapidly in response to changes in BMB. In a bed rest experiment, use of high-precision isotope ratio MS allowed the onset of bone loss to be detected in Ca isotope data after about 1 wk, long before bone mineral density has changed enough to be detectable with densitometry. The physiological basis of the relationship between Ca isotopes and BMB is sufficiently understood to allow quantitative translation of changes in Ca isotope abundances to changes in bone mineral density using a simple model. The rate of change of bone mineral density inferred from Ca isotopes is consistent with the rate observed by densitometry in long-term bed rest studies. Ca isotopic analysis provides a powerful way to monitor bone loss, potentially making it possible to diagnose metabolic bone disease and track the impact of treatments more effectively than is currently possible.

  12. Comparative Analysis of Linear and Angular Measurements on Digital Orthopantomogram with Calcaneus Bone Mineral Density

    PubMed Central

    Daniel, Mariappan Jonathan; Srinivasan, Subramaniam Vasudevan; Koliyan, Ramadoss; Kumar, Jimsha Vannathan

    2015-01-01

    Background Bone remodeling is a continuous and complex process which occurs throughout life. Radiomorphometric and radioangular indices on the orthopantomogram are the predictors of bone remodeling associated with mandible. Bone mineral density is the amount of calcified tissue in a certain volume of the bone. Materials and Methods Fifty normal healthy individuals within the age range of 25-55 years were included in the study. Linear measurements including mandibular cortical width (MCW) and panoramic mandibular index (PMI); and angular measurements including mandibular angle (MA) and antegonial angle (AGA) were recorded. Quantitative ultrasound bone mineral density (BMD) scan of the heel bone (calcaneus) of the same patient were also performed. Results In our study, for both males and females, antegonial angle (AGA) had highest correlation with calcaneus bone mineral density. In the age group of less than 35 years, PMI in males, and AGA in females had highest correlation. In the age range of more than 35 years, MA in males and AGA in females had highest correlation. Conclusion There is a correlation between the mandibular bone remodelling changes and calcaneal bone mineral density in case of elder subjects and thus these parameters may be used as an inexpensive alternative screening method to assess the bone mineral density and identify individuals at risk for osteoporosis and fractures and also for dental treatment planning. PMID:26393197

  13. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes

    NASA Astrophysics Data System (ADS)

    Morgan, Jennifer L. L.; Skulan, Joseph L.; Gordon, Gwyneth W.; Romaniello, Stephen J.; Smith, Scott M.; Anbar, Ariel D.

    2012-06-01

    The ability to rapidly detect changes in bone mineral balance (BMB) would be of great value in the early diagnosis and evaluation of therapies for metabolic bone diseases such as osteoporosis and some cancers. However, measurements of BMB are hampered by difficulties with using biochemical markers to quantify the relative rates of bone resorption and formation and the need to wait months to years for altered BMB to produce changes in bone mineral density large enough to resolve by X-ray densitometry. We show here that, in humans, the natural abundances of Ca isotopes in urine change rapidly in response to changes in BMB. In a bed rest experiment, use of high-precision isotope ratio MS allowed the onset of bone loss to be detected in Ca isotope data after about 1 wk, long before bone mineral density has changed enough to be detectable with densitometry. The physiological basis of the relationship between Ca isotopes and BMB is sufficiently understood to allow quantitative translation of changes in Ca isotope abundances to changes in bone mineral density using a simple model. The rate of change of bone mineral density inferred from Ca isotopes is consistent with the rate observed by densitometry in long-term bed rest studies. Ca isotopic analysis provides a powerful way to monitor bone loss, potentially making it possible to diagnose metabolic bone disease and track the impact of treatments more effectively than is currently possible.

  14. Bone mineral response to a 7-month randomized controlled, school-based jumping intervention in 121 prepubertal boys: associations with ethnicity and body mass index.

    PubMed

    MacKelvie, K J; McKay, H A; Petit, M A; Moran, O; Khan, K M

    2002-05-01

    We examined the effects of a 7-month jumping intervention (10 minutes, 3 times per week) on bone mineral gain in prepubertal Asian and white boys (10.3+/-0.6 years, 36.0+/-9.2 kg) at 14 schools randomized to control (n = 60) and intervention (n = 61) groups. Intervention and control groups had similar mean baseline and change in height, weight, lean mass and fat mass, baseline areal bone mineral density (aBMD; g/cm2), bone mineral content (BMC; g; dual-energy X-ray absorptiometry [DXA], QDR 4500W), and similar average physical activity and calcium intakes. Over 7 months, the intervention group gained more total body (TB) BMC (1.6%,p < 0.01) and proximal femur (PF) aBMD (1%, p < 0.05) than the control group after adjusting for age, baseline weight, change in height, and loaded physical activity. We also investigated the 41 Asian and 50 white boys (10.2+/-0.6 years and 31.9+/-4.4 kg) who were below the 75th percentile (19.4 kg/m2) of the cohort mean for baseline body mass index (BMI). Boys in the intervention group gained significantly more TB and lumbar spine (LS) BMC, PF aBMD, and trochanteric (TR) aBMD (+ approximately2%) than boys in the control group (adjusted for baseline weight, final Tanner stage, change in height, and loaded physical activity). Bone changes were similar between Asians and whites. Finally, we compared the boys in the control group (n = 16) and the boys in the intervention group (n = 14) whose baseline BMI fell in the highest quartile (10.5+/-0.6 years and 49.1+/-8.2 kg). Seven-month bone changes (adjusted as aforementioned) were similar in the control and intervention groups. In summary, jumping exercise augmented bone mineral accrual at several regions equally in prepubertal Asian and white boys of average or low BMI, and intervention effects on bone mineral were undetectable in high BMI prepubertal boys. PMID:12009014

  15. The effects of strontium on bone mineral: A review on current knowledge and microanalytical approaches.

    PubMed

    Querido, William; Rossi, Andre L; Farina, Marcos

    2016-01-01

    The interest in effects of strontium (Sr) on bone has greatly increased in the last decade due to the development of the promising drug strontium ranelate. This drug is used for treating osteoporosis, a major bone disease affecting hundreds of millions of people worldwide, especially postmenopausal women. The novelty of strontium ranelate compared to other treatments for osteoporosis is its unique effect on bone: it simultaneously promotes bone formation by osteoblasts and inhibits bone resorption by osteoclasts. Besides affecting bone cells, treatment with strontium ranelate also has a direct effect on the mineralized bone matrix. Due to the chemical similarities between Sr and Ca, a topic that has long been of particular interest is the incorporation of Sr into bones replacing Ca from the mineral phase, which is composed by carbonated hydroxyapatite nanocrystals. Several groups have analyzed the mineral produced during treatment; however, most analysis were done with relatively large samples containing numerous nanocrystals, resulting thus on data that represents an average of many crystalline domains. The nanoscale analysis of the bone apatite crystals containing Sr has only been described in a few studies. In this study, we review the current knowledge on the effects of Sr on bone mineral and discuss the methodological approaches that have been used in the field. In particular, we focus on the great potential that advanced microscopy and microanalytical techniques may have on the detailed analysis of the nanostructure and composition of bone apatite nanocrystals produced during treatment with strontium ranelate. PMID:26546967

  16. The effects of strontium on bone mineral: A review on current knowledge and microanalytical approaches.

    PubMed

    Querido, William; Rossi, Andre L; Farina, Marcos

    2016-01-01

    The interest in effects of strontium (Sr) on bone has greatly increased in the last decade due to the development of the promising drug strontium ranelate. This drug is used for treating osteoporosis, a major bone disease affecting hundreds of millions of people worldwide, especially postmenopausal women. The novelty of strontium ranelate compared to other treatments for osteoporosis is its unique effect on bone: it simultaneously promotes bone formation by osteoblasts and inhibits bone resorption by osteoclasts. Besides affecting bone cells, treatment with strontium ranelate also has a direct effect on the mineralized bone matrix. Due to the chemical similarities between Sr and Ca, a topic that has long been of particular interest is the incorporation of Sr into bones replacing Ca from the mineral phase, which is composed by carbonated hydroxyapatite nanocrystals. Several groups have analyzed the mineral produced during treatment; however, most analysis were done with relatively large samples containing numerous nanocrystals, resulting thus on data that represents an average of many crystalline domains. The nanoscale analysis of the bone apatite crystals containing Sr has only been described in a few studies. In this study, we review the current knowledge on the effects of Sr on bone mineral and discuss the methodological approaches that have been used in the field. In particular, we focus on the great potential that advanced microscopy and microanalytical techniques may have on the detailed analysis of the nanostructure and composition of bone apatite nanocrystals produced during treatment with strontium ranelate.

  17. Calcium supplementation, bone mineral density and bone mineral content. Predictors of bone mass changes in adolescent mothers during the 6-month postpartum period.

    PubMed

    Malpeli, Agustina; Apezteguia, María; Mansur, José L; Armanini, Alicia; Macías Couret, Melisa; Villalobos, Rosa; Kuzminczuk, Marta; Gonzalez, Horacio F

    2012-03-01

    We determined the effect of calcium supplementation on bone mineral density (BMD) and bone mineral content (BMC) and identified predictors of bone mass changes in adolescent mothers 6 months postpartum. A prospective, analytical, clinical study was performed in adolescent mothers (< or = 19 years old; n = 37) from La Plata, Argentina. At 15 days postpartum, mothers were randomly assigned into one of two groups and started with calcium supplementation; one group received dairy products (932 mg Ca; n = 19) and the other calcium citrate tablets (1000 mg calcium/day; n = 18). Weight, height and dietary intake were measured and BMD was determined by DEXA at 15 days (baseline) and 6 months postpartum. BMC, total body BMD and BMD were assessed in lumbar spine, femoral neck, trochanter and total hip. Regression models were used to identify the relationship of total body BMD and BMC with independent variables (calcium supplementation, months of lactation, weight at 6 months, percent weight change, lean mass at 6 months, percent lean mass change, total calcium intake). Results showed that changes in BMD and BMC at the different sites were similar in both groups, and changes in percent body weight and total calcium intake were the main predictive factors. In conclusion, the effect of calcium was similar with either form of supplementation, i.e., dairy products or tablets, and changes in percent body weight and total calcium intake were predictors of total body BMD and BMC changes. PMID:23477205

  18. The relationships between blood pressure, blood glucose, and bone mineral density in postmenopausal Turkish women

    PubMed Central

    Cakmak, Huseyin Altug; Cakmak, Burcu Dincgez; Yumru, Ayse Ender; Aslan, Serkan; Enhos, Asim; Kalkan, Ali Kemal; Coskun, Ebru Inci; Acikgoz, Abdullah Serdar; Karatas, Suat

    2015-01-01

    Background Hypertension, diabetes mellitus, and osteoporosis are important comorbidities commonly seen in postmenopausal women. The aim of the present study was to investigate the relationships between blood pressure, blood glucose, and bone mineral density (BMD) in postmenopausal Turkish women. Methods In this cross-sectional study, 270 consecutive patients who were admitted to an outpatient clinic with vasomotor symptoms and/or at least 1 year of amenorrhea were included. The patients were categorized into three groups according to their blood pressure and metabolic status as follows: normotensive, hypertensive nondiabetics, and hypertensive diabetics. The T- and z-scores of the proximal femur and lumbar vertebrae were measured with the dual-energy X-ray absorptiometry method to assess the BMD of the study groups. Results Lumbar vertebral T-scores (P<0.001), lumbar vertebral z-scores (P<0.003), and proximal femoral T-scores (P<0.001) were demonstrated to be significantly lower in the hypertensive diabetic group compared to the hypertensive nondiabetic and normotensive groups. Systolic blood pressure was significantly inversely correlated with lumbar vertebral T-scores (r=−0.382; P=0.001), lumbar vertebral z-scores (r=−0.290; P=0.001), and proximal femoral T-scores (r=−0.340; P=0.001). Moreover, diastolic blood pressure was significantly inversely correlated with lumbar vertebral T-scores (r=−0.318; P=0.001), lumbar vertebral z-scores (r=−0.340; P=0.001), and proximal femoral T-scores (r=−0.304; P=0.001). Hypertension (odds ratio [OR]: 2.541, 95% confidence interval [CI]: 1.46–3.48, P=0.003), diabetes mellitus (OR: 2.136, 95% CI: 1.254–3.678, P=0.006), and age (OR: 1.069, 95% CI: 1.007–1.163, P=0.022) were found to be significant independent predictors of osteopenia in a multivariate analysis, after adjusting for other risk parameters. Conclusion The present study is the first to evaluate the relationships between blood pressure, blood glucose

  19. Relationship between body mass index and fracture risk is mediated by bone mineral density.

    PubMed

    Chan, Mei Y; Frost, Steve A; Center, Jacqueline R; Eisman, John A; Nguyen, Tuan V

    2014-11-01

    The relationship between body mass index (BMI) and fracture risk is controversial. We sought to investigate the effect of collinearity between BMI and bone mineral density (BMD) on fracture risk, and to estimate the direct and indirect effect of BMI on fracture with BMD being the mediator. The study involved 2199 women and 1351 men aged 60 years or older. BMI was derived from baseline weight and height. Femoral neck BMD was measured by dual-energy X-ray absorptiometry (DXA; GE-LUNAR, Madison, WI, USA). The incidence of fragility fracture was ascertained by X-ray reports from 1991 through 2012. Causal mediation analysis was used to assess the mediated effect of BMD on the BMI-fracture relationship. Overall, 774 women (35% of total women) and 258 men (19%) had sustained a fracture. Approximately 21% of women and 20% of men were considered obese (BMI ≥ 30). In univariate analysis, greater BMI was associated with reduced fracture risk in women (hazard ratio [HR] 0.92; 95% confidence interval [CI], 0.85 to 0.99) and in men (HR 0.77; 95% CI, 0.67 to 0.88). After adjusting for femoral neck BMD, higher BMI was associated with greater risk of fracture in women (HR 1.21; 95% CI, 1.11 to 1.31) but not in men (HR 0.96; 95% CI, 0.83 to 1.11). Collinearity had minimal impact on the BMD-adjusted results (variance inflation factor [VIF] = 1.2 for men and women). However, in mediation analysis, it was found that the majority of BMI effect on fracture risk was mediated by femoral neck BMD. The overall mediated effect estimates were -0.048 (95% CI, -0.059 to -0.036; p < 0.001) in women and -0.030 (95% CI, -0.042 to -0.018; p < 0.001) in men. These analyses suggest that there is no significant direct effect of BMI on fracture, and that the observed association between BMI and fracture risk is mediated by femoral neck BMD in both men and women.

  20. Transport of membrane-bound mineral particles in blood vessels during chicken embryonic bone development.

    PubMed

    Kerschnitzki, Michael; Akiva, Anat; Ben Shoham, Adi; Koifman, Naama; Shimoni, Eyal; Rechav, Katya; Arraf, Alaa A; Schultheiss, Thomas M; Talmon, Yeshayahu; Zelzer, Elazar; Weiner, Stephen; Addadi, Lia

    2016-02-01

    During bone formation in embryos, large amounts of calcium and phosphate are taken up and transported to the site where solid mineral is first deposited. The initial mineral forms in vesicles inside osteoblasts and is deposited as a highly disordered calcium phosphate phase. The mineral is then translocated to the extracellular space where it penetrates the collagen matrix and crystallizes. To date little is known about the transport mechanisms of calcium and phosphate in the vascular system, especially when high transport rates are needed and the concentrations of these ions in the blood serum may exceed the solubility product of the mineral phase. Here we used a rapidly growing biological model, the chick embryo, to study the bone mineralization pathway taking advantage of the fact that large amounts of bone mineral constituents are transported. Cryo scanning electron microscopy together with cryo energy dispersive X-ray spectroscopy and focused-ion beam imaging in the serial surface view mode surprisingly reveal the presence of abundant vesicles containing small mineral particles in the lumen of the blood vessels. Morphologically similar vesicles are also found in the cells associated with bone formation. This observation directly implicates the vascular system in solid mineral distribution, as opposed to the transport of ions in solution. Mineral particle transport inside vesicles implies that far larger amounts of the bone mineral constituents can be transported through the vasculature, without the danger of ectopic precipitation. This introduces a new stage into the bone mineral formation pathway, with the first mineral being formed far from the bone itself. PMID:26481471

  1. Transport of membrane-bound mineral particles in blood vessels during chicken embryonic bone development.

    PubMed

    Kerschnitzki, Michael; Akiva, Anat; Ben Shoham, Adi; Koifman, Naama; Shimoni, Eyal; Rechav, Katya; Arraf, Alaa A; Schultheiss, Thomas M; Talmon, Yeshayahu; Zelzer, Elazar; Weiner, Stephen; Addadi, Lia

    2016-02-01

    During bone formation in embryos, large amounts of calcium and phosphate are taken up and transported to the site where solid mineral is first deposited. The initial mineral forms in vesicles inside osteoblasts and is deposited as a highly disordered calcium phosphate phase. The mineral is then translocated to the extracellular space where it penetrates the collagen matrix and crystallizes. To date little is known about the transport mechanisms of calcium and phosphate in the vascular system, especially when high transport rates are needed and the concentrations of these ions in the blood serum may exceed the solubility product of the mineral phase. Here we used a rapidly growing biological model, the chick embryo, to study the bone mineralization pathway taking advantage of the fact that large amounts of bone mineral constituents are transported. Cryo scanning electron microscopy together with cryo energy dispersive X-ray spectroscopy and focused-ion beam imaging in the serial surface view mode surprisingly reveal the presence of abundant vesicles containing small mineral particles in the lumen of the blood vessels. Morphologically similar vesicles are also found in the cells associated with bone formation. This observation directly implicates the vascular system in solid mineral distribution, as opposed to the transport of ions in solution. Mineral particle transport inside vesicles implies that far larger amounts of the bone mineral constituents can be transported through the vasculature, without the danger of ectopic precipitation. This introduces a new stage into the bone mineral formation pathway, with the first mineral being formed far from the bone itself.

  2. Improved accuracy of cortical bone mineralization measured by polychromatic microcomputed tomography using a novel high mineral density composite calibration phantom

    SciTech Connect

    Deuerling, Justin M.; Rudy, David J.; Niebur, Glen L.; Roeder, Ryan K.

    2010-09-15

    Purpose: Microcomputed tomography (micro-CT) is increasingly used as a nondestructive alternative to ashing for measuring bone mineral content. Phantoms are utilized to calibrate the measured x-ray attenuation to discrete levels of mineral density, typically including levels up to 1000 mg HA/cm{sup 3}, which encompasses levels of bone mineral density (BMD) observed in trabecular bone. However, levels of BMD observed in cortical bone and levels of tissue mineral density (TMD) in both cortical and trabecular bone typically exceed 1000 mg HA/cm{sup 3}, requiring extrapolation of the calibration regression, which may result in error. Therefore, the objectives of this study were to investigate (1) the relationship between x-ray attenuation and an expanded range of hydroxyapatite (HA) density in a less attenuating polymer matrix and (2) the effects of the calibration on the accuracy of subsequent measurements of mineralization in human cortical bone specimens. Methods: A novel HA-polymer composite phantom was prepared comprising a less attenuating polymer phase (polyethylene) and an expanded range of HA density (0-1860 mg HA/cm{sup 3}) inclusive of characteristic levels of BMD in cortical bone or TMD in cortical and trabecular bone. The BMD and TMD of cortical bone specimens measured using the new HA-polymer calibration phantom were compared to measurements using a conventional HA-polymer phantom comprising 0-800 mg HA/cm{sup 3} and the corresponding ash density measurements on the same specimens. Results: The HA-polymer composite phantom exhibited a nonlinear relationship between x-ray attenuation and HA density, rather than the linear relationship typically employed a priori, and obviated the need for extrapolation, when calibrating the measured x-ray attenuation to high levels of mineral density. The BMD and TMD of cortical bone specimens measured using the conventional phantom was significantly lower than the measured ash density by 19% (p<0.001, ANCOVA) and 33% (p<0

  3. Bio-inspired mineralization of hydroxyapatite in 3D silk fibroin hydrogel for bone tissue engineering.

    PubMed

    Jin, Yashi; Kundu, Banani; Cai, Yurong; Kundu, Subhas C; Yao, Juming

    2015-10-01

    To fabricate hard tissue implants with bone-like structure using a biomimetic mineralization method is drawing much more attentions in bone tissue engineering. The present work focuses in designing 3D silk fibroin hydrogel to modulate the nucleation and growth of hydroxyapatite crystals via a simple ion diffusion method. The study indicates that Ca(2+) incorporation within the hydrogel provides the nucleation sites for hydroxyapatite crystals and subsequently regulates their oriented growth. The mineralization process is regulated in a Ca(2+) concentration- and minerlization time-dependent way. Further, the compressive strength of the mineralized hydrogels is directly proportional with the mineral content in hydrogel. The orchestrated organic/inorganic composite supports well the viability and proliferation of human osteoblast cells; improved cyto-compatibility with increased mineral content. Together, the present investigation reports a simple and biomimetic process to fabricate 3D bone-like biomaterial with desired efficacy to repair bone defects. PMID:26209967

  4. Correlation between longitudinal, circumferential, and radial moduli in cortical bone: effect of mineral content.

    PubMed

    Macione, J; Depaula, C A; Guzelsu, N; Kotha, S P

    2010-07-01

    Previous studies indicate that changes in the longitudinal elastic properties of bone due to changes in mineral content are related to the longitudinal strength of bone tissue. Changes in mineral content are expected to affect bone tissue mechanical properties along all directions, albeit to different extents. However, changes in tissue mechanical properties along the different directions are expected to be correlated to one another. In this study, we investigate if radial, circumferential, and longitudinal moduli are related in bone tissue with varying mineral content. Plexiform bovine femoral bone samples were treated in fluoride ion solutions for a period of 3 and 12 days to obtain bones with 20% and 32% lower effective mineral contents. Transmission ultrasound velocities were obtained in the radial, circumferential, and longitudinal axes of bone and combined with measured densities to obtain corresponding tensorial moduli. Results indicate that moduli decreased with fluoride ion treatments and were significantly correlated to one another (r(2) radial vs. longitudinal = 0.80, r(2) circumferential vs. longitudinal = 0.90, r(2) radial vs. circumferential = 0.85). Densities calculated from using ultrasound parameters, acoustic impedance and transmission velocities, were moderately correlated to those measured by the Archimedes principle (r(2)=0.54, p<0.01). These results suggest that radial and circumferential ultrasound measurements could be used to determine the longitudinal properties of bone and that ultrasound may not be able to predict in vitro densities of bones containing unbonded mineral. PMID:20416555

  5. Bone Mineral Density and Vitamin D Level Compared to Lifestyle in Resident Physicians.

    PubMed

    McConda, David B; Boukhemis, Karim W; Matthews, Leslie J; Watkins, Colleen M

    2016-01-01

    Due to the demands of resident education and long periods of time spent indoors, resident physicians may have poorer bone quality than would be expected. Forty-four resident physicians underwent dual-energy X-ray absorptiometry (DEXA) and 25-hydroxyvitamin D level testing at our institution. Results were correlated with a survey of self-reported duty hours, physical activity, and sun exposure. The average 25-hydroxyvitamin D level for all participants was 29 ng/dL, which fell into the insufficient range, and 31.5% of all participants were in the deficient range, with a 25-hydroxyvitamin D level < 20 ng/ dL. For the 40 subjects who underwent DEXA, 17 were found to be osteopenic and three were found to be osteoporotic. Greater awareness of bone health, with routine use of vitamin D supplementation and increased time spent outdoors during peak sunlight hours, may be indicated in this cohort. PMID:27491100

  6. Effects of differences in mineralization on the mechanical properties of bone.

    PubMed

    Currey, J D

    1984-02-13

    There is a considerable variation in the mineralization of bone; normal, non-pathological compact bone has ash masses ranging from 45 to 85% by mass. This range of mineralization results in an even greater range of mechanical properties. The Young modulus of elasticity can range from 4 to 32 GPa, bending strength from 50 to 300 MPa, and the work of fracture from 200 to 7000 Jm-2. It is not possible for any one type of bone to have high values for all three properties. Very high values of mineralization produce high values of Young modulus but low values of work of fracture (which is a measure of fracture toughness). Rather low values of mineralization are associated with high values of work of fracture but low values of Young modulus and intermediate values of bending strength. The reason for the high value for the Young modulus associated with high mineralization is intuitively obvious, but has not yet been rigorously modelled. The low fracture toughness associated with high mineralization may be caused by the failure of various crack-stopping mechanisms that can act when the mineral crystals in bone have not coalesced, but which become ineffective when the volume fraction of mineral becomes too high. The adoption of different degrees of mineralization by different bones, leading to different sets of mechanical properties, is shown to be adaptive in most cases studied, but some puzzles still remain.

  7. A comparative study of zwitterionic ligands-mediated mineralization and the potential of mineralized zwitterionic matrices for bone tissue engineering

    PubMed Central

    Liu, Pingsheng; Emmons, Erin

    2014-01-01

    Cationic and anionic residues of the extracellular matrices (ECM) of bone play synergistic roles in recruiting precursor ions and templating the nucleation, growth and crystalline transformations of calcium apatite in natural biomineralization. We previously reported that zwitterionic sulfobetaine ligands can template extensive 3-dimensional (3-D) hydroxyapaptite (HA)-mineralization of photo-crosslinked polymethacrylatehydrogels. Here, we compared the potency of two other major zwitterionic ligands, phosphobetaine and carboxybetaine, with that of the sulfobetaine in mediating 3-D mineralization using the crosslinked polymethacrylate hydrogel platform. We confirmed that all three zwitterionic hydrogels were able to effectively template 3-D mineralization, supporting the general ability of zwitterions to mediate templated mineralization. Among them, however, sulfobetaine and phosphobetaine hydrogels templated denser 3-D mineralizationthan the carboxybetaine hydrogel, likely due to their higher free water fractions and better maintenance of zwitterionic nature throughout the pH-changes during the in vitro mineralization process. We further demonstrated that the extensively mineralized zwitterionic hydrogels could be exploited for efficient retention (e.g. 99% retention after 24-h incubation in PBS) of osteogenic growth factor recombinant bone morphogenetic protein-2 (rhBMP-2) and subsequent sustained local release with retained bioactivity. Combined with the excellent cytocompatibility of all three zwitterionic hydrogels and the significantly improved cell adhesive properties of their mineralized matrices, these materials could find promising applications in bone tissue engineering. PMID:25558374

  8. Difference in Bone Mineral Density Change at the Lateral Femoral Cortices according to Administration of Different Bisphosphonate Agents

    PubMed Central

    Kim, Sungjun; Bang, Hyun Hee; Yoo, Hanna; Lim, Hyunsun; Jung, Woo Seok

    2016-01-01

    Background To retrospectively assess whether the response of subtrochanteric lateral cortex (STLC) is different according to the bisphosphonate agents in terms of bone mineral density (BMD) change. Methods A total of 149 subjects, who had 2- to 4-year interval follow-up of BMD using dual energy X-ray absorptiometry (DXA), were included in this retrospective study divided into following 3 groups: control group (no consumption of any anti-osteoporotic drugs, n=38), alendronate group (naïve alendronate users, n=48), risedronate group (naïve risedronate users, n=63). BMD was measured at the STLC and subtrochanteric medial cortex (STMC) in each patient by drawing rectangular ROIs at the bone cortices. The percent change of BMD at the STLC were compared between the aforementioned 3 groups by using analysis of covariance model to control five independent variables of age, body mass index, percent change of STMC, hip axis length, time interval between DXA examinations. Results The least square mean values±standard deviation of the percent change of BMD in the control, alendronate, and risedronate groups were 1.46±1.50, 2.23±1.26, and 6.96±1.11, respectively. The risedronate group showed significantly higher change of BMD percentage compared with the control (adjusted P=0.012) or alendronate (adjusted P=0.016) groups. Conclusions The percent change of BMD at the STLC in the risedronate user group was greater than the alendronate and control groups. The implication of these changes needs to be further verified. PMID:27294080

  9. BMP7 gene polymorphisms are not associated with bone mineral density or osteoporotic fractures in postmenopausal Chinese women

    PubMed Central

    Gao, Li-hong; Li, Shan-shan; Shao, Chong; Fu, Wen-zhen; Liu, Yu-juan; He, Jin-wei; Zhang, Zhen-lin

    2016-01-01

    Aim: A previous study shows that bone morphogenetic protein 7 (BMP7) gene polymorphisms are associated with bone mineral density (BMD) in 920 European Americans. To determine the association of BMP7 polymorphisms and BMD and osteoporotic fracture susceptibility, we performed a case-control association study in postmenopausal Chinese women with or without osteoporotic fracture. Methods: A total of 3815 unrelated postmenopausal Chinese women (1238 with osteoporotic fracture and 2577 healthy controls) were recruited. BMDs of the lumbar spine 1–4 (L1–4) and proximal femur (including total hip and femoral neck) were measured using dual-energy X-ray absorptiometry. Eight tagging single nucleotide polymorphisms (SNPs) in BMP7 gene, including rs11086598, rs4811822, rs12481628, rs6025447, rs230205, rs17404303, rs162316 and rs6127980, were genotyped. Results: Among the 8 SNPs, rs6025447 and rs230205 were associated with total hip BMD (P=0.013 and 0.045, respectively). However, the associations became statistically insignificant after adjusting for age, height and weight. The TGTG haplotype of BMP7 gene was associated with total hip BMD (P=0.032), even after adjusting for age, height and weight (P=0.048); but the association was insignificant after performing the Bonferroni multiple-significance-test correction. Moreover, the 8 SNPs and 9 haplotypes of BMP7 gene were not associated with L1–4 or femoral neck BMD or osteoporotic fracture. Conclusion: This large-sample case-control association study suggests that the common genetic polymorphisms of BMP7 gene are not major contributors to variations in BMD or osteoporotic fracture in postmenopausal Chinese women. PMID:27264311

  10. Dose-response effect of exercise frequency on bone mineral density in post-menopausal, osteopenic women.

    PubMed

    Kemmler, W; von Stengel, S

    2014-06-01

    The purpose of this study was to determine the long-term dose-response relationship of exercise frequency on areal bone mineral density (aBMD) in early post-menopausal women with osteopenia. Based on the 12-year results of the consequently supervised exercise group (EG) of the Erlangen Fitness and Osteoporosis Prevention Study, we retrospectively structured two exercise groups according to the overall exercise frequency. Changes in aBMD at lumbar spine and proximal femur as assessed by dual-energy x-ray absorptiometry technique were compared between a low-frequency exercise group (LEF-EG, n = 16) with 1.5-<2 sessions/week and a high-frequency exercise group (HEF-EG, n = 25) with ≥ 2-3.5 sessions/week. Changes in aBMD at the lumbar spine and proximal femur were significantly more favorable in the HEF-EG compared with the LEF-EG; lumbar spine: (mean value ± standard deviation) 1.1 ± 4.7% vs -4.1 ± 3.0%; P = 0.001, ES: d' = 1.26; total hip: -4.4 ± 3.9% vs -6.7 ± 3.5%, P = 0.045, ES: d' = 0.70). BMD results of the LEF-EG did not significantly differ from the data of the non-training control group (lumbar spine: -4.4 ± 5.2%, total hip: -6.9 ± 5.0%). Although this result might not be generalizable across all exercise types and cohorts, it indicates that to impact bone, an overall exercise frequency of at least 2 sessions/week may be crucial, even if exercise is applied with high intensity/impact.

  11. Effect of Clothing on Measurement of Bon